WO2024041129A1 - 一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法 - Google Patents

一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法 Download PDF

Info

Publication number
WO2024041129A1
WO2024041129A1 PCT/CN2023/100928 CN2023100928W WO2024041129A1 WO 2024041129 A1 WO2024041129 A1 WO 2024041129A1 CN 2023100928 W CN2023100928 W CN 2023100928W WO 2024041129 A1 WO2024041129 A1 WO 2024041129A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
strength
plastic
waterproof
degradable
Prior art date
Application number
PCT/CN2023/100928
Other languages
English (en)
French (fr)
Inventor
刘鹤
杨欣欣
张博文
商士斌
宋湛谦
Original Assignee
中国林业科学研究院林产化学工业研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国林业科学研究院林产化学工业研究所 filed Critical 中国林业科学研究院林产化学工业研究所
Publication of WO2024041129A1 publication Critical patent/WO2024041129A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/24Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/34Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • D21H25/06Physical treatment, e.g. heating, irradiating of impregnated or coated paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to the technical field of composite materials, and specifically relates to a method for preparing a degradable, waterproof, high-strength, recyclable paper plastic and a recycling method thereof.
  • the present invention provides a preparation method and a recycling method for degradable, waterproof, high-strength, recyclable paper plastics and a recycling method thereof.
  • the degradable, waterproof, high-strength, recyclable paper of the present invention The preparation process of the modified material is simple and can be produced in batches and on a large scale; the paper-based composite material prepared by the invention overcomes the problem of poor water resistance and solvent resistance of paper packaging materials, and has high mechanical strength while retaining the good properties of paper.
  • the prepared paper-based composite materials are biodegradable, which greatly alleviates the problem of "white pollution”; the prepared paper-based composite materials are easy to chemically degrade , after chemical degradation, it can be reshaped, realizing the reuse of resources, reducing the cost of raw materials to a certain extent, and having higher economic benefits.
  • a preparation method for degradable, waterproof, high-strength and recyclable paper plastics including the following steps:
  • the amine compound is tetraethylene pentamine, polyethyleneimine, mixed amine AMIX1000, amino-modified At least one of cellulose, polyethylene polyamine, chitosan or tris(2-aminoethyl)amine;
  • step 2) Coat the modified material prepared in step 1) on the paper and cure it at 65-130°C for 0.5-6 hours or under microwave irradiation of 700-6000W for 1-15 minutes without hot pressing to obtain waterproof, High-strength, degradable and recycled paper-based composite materials.
  • the above room temperature includes a temperature range of 0 to 40°C.
  • Step 1) Preferably stir and mix at room temperature.
  • Degradable, waterproof, high-strength and recyclable paper plastics refer to the paper plastics produced by this application that are easily degradable, waterproof, high-strength, recyclable and reprocessable, and also have self-healing properties.
  • step 2) the paper reacts with the cyclic carbonate compound and the amine compound to form a composite body.
  • this step 2) no hot pressing operation is required to achieve better results.
  • the operation steps are simple, and the obtained paper plastic exhibits Excellent mechanical properties.
  • the paper plastic produced above is biodegradable and overcomes the problems of poor water resistance and solvent resistance and low mechanical strength of paper packaging materials. It also retains the good flexibility of paper and can replace plastic products.
  • Paper plastic in this application refers to composite paper that can exhibit plastic reprocessing properties like plastic. That is to say, the material produced in this application is essentially a kind of paper. It has extremely strong water resistance, solvent resistance, temperature resistance and Mechanical strength, excellent plasticity and reprocessing properties, natural degradation, degradation regeneration and flexibility, and good self-healing ability, showing better overall performance than existing plastics, therefore, it can be very good in packaging and other fields alternative to plastic.
  • step 1) the preparation method of the cyclic carbonate compound is: add the epoxy compound and the catalyst into the pressure reaction kettle according to a molar ratio of 100: (1 to 6) and exhaust the air in the kettle, then introduce CO 2 and The pressure is maintained at 0.5-3.5MPa, the reaction temperature is controlled at 50-120°C, and after stirring for 6-48 hours, the cyclic carbonate compound is obtained.
  • the epoxy compound is epoxidized soybean oil, rosin-derived epoxy compound, bisphenol A diglycidyl ether, 1,4-butanediol di- At least one of glycidyl ether, epoxy-terminated polyethylene glycol, cellulose-derived epoxy compound, or lignin-based epoxy compound.
  • the catalyst is tetrabutylammonium bromide, tetrabutylammonium iodide, N,N-dimethylaminopyridine, benzyltrimethyl At least one of ammonium chloride or L-ascorbic acid.
  • the dosage of the cyclic carbonate compound and the amine compound is according to the ratio between the cyclic carbonate group and The molar ratio of amino groups is 0.25:1 ⁇ 2:1. Too many amines will lead to too strong activity and the reaction will proceed too fast, making it difficult to mix the system evenly; too few amines will lead to too slow reactions and may be difficult to cross-link, and the molecular weight will be too low to form a polymer network.
  • the method of applying the mixture on the paper can be at least one of spraying, scraping, brushing, and dipping.
  • the paper-based composite material produced above is waterproof, high-strength, recyclable, degradable, recyclable, self-healing, etc., and can replace plastic products.
  • the mass ratio of the above-mentioned degradable, waterproof, high-strength and recyclable paper modified material to paper is 0.25:1-2.5:1, preferably 1:(1.7-1).
  • the above-mentioned paper is any paper material produced using cellulose.
  • a pressure of 0.5-5MPa and a temperature of 70-120°C to form a paper-plastic board.
  • the degradable, waterproof, high-strength and recyclable paper and plastic produced above can be naturally degraded when buried in the soil, and will be completely degraded in 4 to 6 months.
  • the reuse method of the degradable, waterproof, high-strength, recyclable paper and plastic produced above is: soak the composite paper in a sodium hydroxide solution or absolute ethanol at a temperature of 70 to 100°C for 5 to 6 hours, and then The polyhydroxyurethane is degraded and filtered to obtain paper fibers, which are then re-formed through the paper sheet former to produce new paper.
  • the reshaped paper strength recovery rate (compared to the original paper) is no less than 97%.
  • the molar concentration of the above-mentioned sodium hydroxide is 0.8 ⁇ 1.2mol/L.
  • the reuse method of the degradable, waterproof, high-strength, recyclable paper plastic produced above is: crush the paper plastic under the conditions of a pressure of 1-2MPa and a temperature of 120-135°C. , hot press for 2-4 hours to get paper plastic again.
  • the present invention has the following beneficial technical effects:
  • the degradable, waterproof, high-strength and recyclable composite paper prepared by the present invention cyclic carbonate and amine compounds are introduced into the paper, and the paper plastic can be obtained after heating and curing or microwave curing.
  • the prepared composite paper still has Degradation performance, green and environmentally friendly; in addition, the paper plastic produced is combined with the polyhydroxyurethane formed
  • the chemical bonds and intermolecular interactions between esters can obtain excellent mechanical properties; it also significantly improves the water resistance, solvent resistance and high temperature resistance of paper materials; the resulting paper plastic has excellent self-healing properties, plastic reprocessing properties and It has acid and alkali degradation and regeneration properties; the preparation process is simple, easy to operate, convenient for large-scale industrial production, and can replace traditional plastics.
  • Figure 1 is a physical picture of the biodegradability of Example 1;
  • Figure 2 is a schematic diagram of the degradation and recycling process of Example 1;
  • Figure 3 is a cross-sectional scanning electron microscope picture of the filter paper before and after modification in Example 2;
  • Figure 4 is a picture of the actual object of Example 2 after being soaked in different solvents for one week;
  • Figure 5 is the stress strain curve of Example 2.
  • Figure 6 is the original picture of the modified paper material and commonly used plastics in Example 3 and the pictures of the modified paper material after being placed at 200°C for 30 minutes and several commonly used plastics after being placed at 200°C for 5 minutes;
  • Figure 7 is an actual picture of the paper plastic obtained in Example 4.
  • Figure 8 is an actual picture of the paper plastic obtained in Example 5 after being crushed and hot-pressed again;
  • Figure 9 is an actual picture of the paper plastic obtained in Example 6;
  • Figure 10 is an actual picture of the multi-layer paper plastic board obtained in Example 6;
  • Figure 11 is a flow chart for the preparation of paper plastic according to the present invention.
  • the temperature is not specified in each example, it means operating at room temperature, and the room temperature is 15 to 25°C.
  • Test method for water absorption Take it out after being completely immersed in water for a certain period of time, then dry the surface moisture of the sample and weigh it. Use the calculation formula of (W-W0)/W0 to get the water absorption. W is the weight after water absorption, and W0 is Initial weight.
  • FIG. 3 is a cross-sectional scanning electron microscope picture of the filter paper before and after modification.
  • the fibers after modification are tightly combined and orderly; after soaking the obtained paper plastic in water at room temperature for a week, it is pulled The tensile strength still retains a relatively high value of 129MPa, and the measurement Its water absorption capacity after being placed in water for a week is only 10%, while the water absorption rate of filter paper can reach 160% on the first day; the resulting paper plastic is buried in the soil and will be completely degraded in 6 months; the paper After the plastic is immersed in boiling 1M sodium hydroxide for 6 hours, it is filtered to obtain paper fibers.
  • the paper plastic is crushed to an outer diameter of less than 1cm, and then hot-pressed at 125°C and a pressure of 2MPa for 2.5 hours.
  • the paper plastic can be recovered with mechanical properties restored to more than 85%, and it is resistant to degradation, water, solvents, and solvents. High temperature and self-healing properties are basically unaffected.
  • the modified paper material (the paper plastic obtained above) did not change in size even after being placed at 200° C. for 30 minutes.
  • the tensile strength of the paper plastic can reach 147MPa; after soaking it in water at room temperature for a week, its tensile strength still retains a relatively high value of 126MPa, showing that the paper plastic has excellent water resistance.
  • the paper plastic is crushed to an outer diameter of less than 1cm, and then hot-pressed at 135°C and a pressure of 2MPa for 3 hours to obtain the paper plastic again.
  • the mechanical properties are restored to more than 85%, and they are resistant to degradation, water, solvents, and solvents.
  • High temperature and self-healing properties are basically unaffected.
  • the modified paper material the paper plastic obtained above
  • the material still maintains its original shape and the mechanical strength can still reach 125MPa, while several commonly used plastics are placed at 200°C.
  • the deformation occurred after 5 minutes, as shown in Figure 6.
  • the resulting paper plastic is buried in the soil and will be completely degraded in 6 months.
  • the tensile strength of the material is 122MPa.
  • This process uses waste newspapers for composite modification, which also broadens the application field of this method.
  • use sandpaper to make scratches on the surface of the paper plastic and place it in an oven at 140°C. After 1 hour, the scratches disappear and the surface of the paper plastic returns to a flat surface.
  • the paper plastic is crushed to an outer diameter of less than 1cm, and then hot pressed at 120°C and a pressure of 2MPa for 4 hours to obtain the paper plastic again.
  • the mechanical properties are restored to more than 85%, and they are resistant to degradation, water, solvents, High temperature resistance and self-healing properties are basically unaffected.
  • the resulting paper plastic is buried in the soil and will be completely degraded in 6 months.
  • soybean oil (47g, 45mmol) and add it to the pressure reactor, add tetrabutylammonium iodide (2g) as a catalyst, then repeatedly pass carbon dioxide into the pressure reactor three times to drain the air in the reactor, and finally The pressure was maintained at 2MPa, the reaction temperature was controlled at 80°C, and soybean oil-based cyclic carbonate was obtained after stirring for 10 hours.
  • Soybean oil-based cyclic carbonate (5.53g) and polyethyleneimine (1.97g) were stirred and mixed evenly at room temperature, scraped onto the surface of 9g of kraft paper, and cured at 130°C for 2.5 hours to obtain a paper plastic material.
  • the multi-layer paper plastic can be well realized.
  • a paper-plastic board is prepared.
  • the actual picture of the paper-plastic board is shown in Figure 10, and the mechanical compression strength of the plastic board can reach 120MPa, and can be used for building boards or furniture boards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明公开了一种可降解防水高强度可循环再加工的纸塑料纸塑料的制备方法及其循环回用方法,通过将环碳酸酯与胺类化合物涂布在纸张上从而将其引入纸张的纤维结构中,随后进行固化处理形成防水、高强度、可循环再加工、可降解、可回收的纸塑料材料。由于该制备过程只需要将环碳酸酯与胺类涂布在纸张上后加热即可得到该纸塑料,且本发明具有普适性,对各种纸张都能起到增强作用,纸张的力学性能、耐温性、耐水耐溶剂性均得到提升,同时保留纸张的降解能力,具有优异的自修复性能、可塑再加工性能和降解再生性能,该工艺方法简单易操作,适合工业化生产。

Description

一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法 技术领域
本发明涉及复合材料技术领域,具体涉及一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法。
背景技术
自从塑料发明以来,塑料制品的使用越来越广泛,给人们的日常生活带来了极大的方便。但与此同时,塑料污染问题日益严重,已成为全球普遍关注的热点环境问题。我国也从2021年开始正式升级“限塑令”,更加严厉的限制塑料制品的生产、销售和使用。然而,目前能够对塑料袋进行替代的可降解塑料仍然具有较高的成本,且生产能力难以满足应用需求。
纸作为一种具有几千年历史的材料,具有优秀的降解能力,近年来也被考虑作为塑料的替代品应用在一些包装领域,但其在耐水及机械强度方面,与传统塑料制品相差较远。
发明内容
针对现有技术中存在的问题,本发明提供了一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法,本发明可降解防水高强度可循环再加工的纸张改性材料制备过程简单,可批量化大规模生产;由本发明制备得到的纸基复合材料,克服了纸包装材料耐水耐溶剂性差的问题,且在具有高力学强度的同时还保留纸较好的柔韧性;同时,相较于容易产生环境污染的传统塑料包装材料,制备得到的纸基复合材料具有生物降解性,极大地缓解了“白色污染”问题;制备得到的纸基复合材料易化学降解,化学将降解后,可重新成型,实现了资源的重复使用,在一定程度上降低了原料成本,具有更高的经济效益。
为解决上述技术问题,本发明所采取的技术方案如下:
一种可降解防水高强度可循环再加工的纸塑料的制备方法,包括以下步骤:
1)将环碳酸酯化合物与胺类化合物在室温~70℃下搅拌混合均匀,得改性材料,其中,胺类化合物为四乙烯五胺、聚乙烯亚胺、混胺AMIX1000、氨基改性 纤维素、多乙烯多胺、壳聚糖或三(2-氨基乙基)胺中的至少一种;
2)将步骤1)制得的改性材料涂在纸张上,在65~130℃下固化0.5~6小时或在700-6000W的微波辐照下固化1~15min,无需热压,得到防水、高强度、可降解回收的纸基复合材料。
上述室温包括0~40℃的温度范围。步骤1)优选在室温下搅拌混合。
可降解防水高强度可循环再加工的纸塑料,指本申请制得的纸塑料易降解、防水、高强度、可循环再加工,同时还具有自愈合等性能。
步骤2)中,纸张与环碳酸酯化合物和胺类化合物反应,复合为一体,此步骤2)中不需要热压操作即可达到较好的效果,操作步骤简单,得到的纸塑料即展示出优秀的力学性能。
上述制得纸塑料,具有生物降解性,同是克服了纸包装材料耐水耐溶剂性差、力学强度低的问题,同时还保留纸较好的柔韧性,替代塑料制品。
本申请纸塑料,指可以展示出像塑料一样的可塑再加工性能的复合纸,也即本申请制得的材料实质是一种纸,由于具有极强的耐水性、耐溶剂、耐温性和机械强度,具有优异的可塑再加工性能、自然降解、降解再生和柔韧性,同时具有良好的自修复能力,展现出比现有塑料更优的综合性能,因此,在包装等领域,可以很好地的替代塑料。
步骤1)中,环碳酸酯化合物的制备方法为:将环氧化合物和催化剂按照摩尔比为100:(1~6)加入到压力反应釜中并排尽釜内空气,然后通入CO2,将压力维持在0.5~3.5MPa,反应温度控制在50~120℃,搅拌反应6~48h后,得到环碳酸酯化合物。
上述步骤1)中,环氧化合物为含有二元及二元以上环氧基的化合物的环氧大豆油、松香衍生环氧化合物、双酚A二缩水甘油醚、1,4-丁二醇二缩水甘油醚、环氧封端聚乙二醇、纤维素衍生环氧化合物或木质素基环氧化合物中的至少一种。
为了更大程度的将环氧化合物转化为环碳酸酯,上述步骤1)中,催化剂为四丁基溴化铵、四丁基碘化铵、N,N-二甲氨基吡啶、苄基三甲基氯化铵或L-抗坏血酸中的至少一种。
上述步骤1)中,环碳酸酯化合物与胺类化合物的用量按照环碳酸酯基团与 氨基的摩尔比为0.25:1~2:1添加。胺类过多会导致活性太强,反应进行太快使体系难以混合均匀;胺类过少导致反应过慢,且可能难以交联,分子量过低而不能成为聚合物网络。
上述步骤2)中,混合物在纸张上的涂抹方式可以为喷涂、刮涂、刷涂、浸涂中的至少一种。
上述制得的纸基复合材料,具有防水、高强度、可循环再加工、可降解、可回收、自愈合等效果,可替代塑料制品。
上述可降解防水高强度可循环再加工的纸张改性材料与纸张的质量比为0.25:1~2.5:1,优选为,1:(1.7~1)。
上述纸张为利用纤维素制备的任一种纸张材料。
将两层以上的可降解防水高强度可循环再加工的纸塑料叠加,在0.5-5MPa的压力、70-120℃的温度下,热压0.5-2小时,形成纸塑料板。可用于包装或家装等领域。
上述制得的可降解防水高强度可循环再加工的纸塑料埋入土中,可自然降解,4~6个月完全降解。
上述制得的可降解防水高强度可循环再加工的纸塑料的回用方法为:将复合纸在温度为70~100℃的氢氧化钠溶液或无水乙醇中浸泡5~6h,纸塑料中的聚羟基氨基甲酸酯得到降解,过滤,得到纸纤维,重新经过纸页成型器成型、制得新纸张。
重新成型的纸张强度(相比于原始的纸张)恢复率不小97%。
上述氢氧化钠的摩尔浓度为0.8~1.2mol/L。
作为另一种实现方案,上述制得的可降解防水高强度可循环再加工的纸塑料的回用方法为:将纸塑料粉碎,在压力为1-2MPa、温度为120-135℃的条件下,热压2-4小时,重新得到纸塑料。
本发明未提及的技术均参照现有技术。
与现有技术相比,本发明具有以下有益的技术效果:
本发明制得的可降解防水高强度可循环再加工的复合纸,将环碳酸酯与胺类化合物引入纸张中,加热固化或微波固化后即可得到该纸塑料,制备得到的复合纸仍具有降解性能,绿色环保;另外制得的纸塑料通过与形成的聚羟基氨基甲酸 酯之间的化学键及分子间相互作用,可得到优异的力学性能;也显著提升了纸张材料的耐水、耐溶剂和耐高温性能;得到的纸塑料具有优异的自修复性能、可塑再加工性能和酸碱降解再生性能;制备工艺简单,易操作,便于大规模产业化生产,可替代传统的塑料。
附图说明
图1为实施例1的生物降解性的实物图片;
图2为实施例1的降解及回收的过程示意图;
图3为实施例2中滤纸改性前后的截面扫描电镜图片;
图4为实施例2的在不同溶剂中浸泡一周后的实物图;
图5为实施例2的应力应变曲线;
图6为实施例3中的改性纸张材料和常用塑料的原始图片及改性纸张材料置于200℃下放置30分钟和几种常用的塑料置于200℃下5分钟后的图片;
图7为实施例4得到的纸塑料的实物图片;
图8为实施例5中得到的纸塑料粉碎后重新热压得到纸塑料的实物图片;
图9为实施例6得到的纸塑料的实物图片;
图10为实施例6得到的多层纸塑料板的实物图片;
图11为本发明纸塑料的制备流程图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
各例中没有特别说明温度的,均指在室温下操作,室温温度为15~25℃。
实施例1
取购自阿拉丁试剂的环氧大豆油(CP,货号E107074,47g,45mmol)加入到压力反应釜中,加入四丁基碘化铵(2g)作为催化剂,然后向压力反应釜中重复通入二氧化碳三次以排尽反应釜内空气,最后将压力维持在2.5MPa,反应温度控制在90℃,搅拌反应8小时后得到大豆油基环碳酸酯。取大豆油基环碳酸酯(6g)与四乙烯五胺(1.5g)在室温下搅拌混合均匀,刮涂在7g的打印纸表 面后在80℃下固化3.5小时,得到纸塑料材料。将得到的纸塑料埋入土中,自然降解,随着时间的延长,纸塑料在6个月时完全降解,如图1所示。将纸塑料浸入煮沸的1M的氢氧化钠中6小时后,纸塑料中的聚羟基氨基甲酸酯得到降解,过滤,重新回收得到纸纤维,重新经过纸页成型器的制备可得到新的纸张,强度恢复率为97%,如图2所示;将纸塑料分别在二甲基亚砜、丙酮、二氯甲烷和四氢呋喃中浸泡一周,尺寸几乎无变化(变化<0.2mm)。同时,在纸塑料表面使用砂纸划出划痕后放置于130℃的烘箱中,经过50小时后划痕消失,纸塑料表面恢复至平整。另外,将该改性纸张材料(前述得到的纸塑料)置于200℃下放置50分钟后仍未发生尺寸的变化。
将实施例1中刮涂后,在功率为6000W微波辐照下,辐照1min,也可完成固化,且性能基本不变,不再赘述。
吸水率的测试方法:完全浸泡在水中一定的时间后取出,然后擦干样品表面水分后称重,用(W-W0)/W0的计算公式得吸水率,W是吸水后的重量,W0是初始的重量。
实施例2
取富马海松酸三缩水甘油醚(5.86g,10mmol)到反应釜中,加入四丁基碘化铵(0.5g)和L-抗坏血酸(0.2g)作为催化剂,向压力反应釜中重复通入二氧化碳三次以排尽反应釜内空气,最后将压力维持在2MPa,反应温度控制在80℃,搅拌反应12h后得到松香基环碳酸酯。取松香基环碳酸酯(5g)与聚乙烯亚胺(1.28g)在室温下混合搅拌均匀,刷涂在7.85g的普通中速定性滤纸表面后在70℃下固化4小时得到纸塑料材料,其拉伸强度可达到151MPa,图3为滤纸改性前后的截面扫描电镜图片,可看出改性后后的纤维结合紧密有序;将得到的纸塑料置于水中室温浸泡一周后,其拉伸强度仍保留较高值,为129MPa,且测量 其置于水中一周的吸水能力,其仅有10%的吸水率,而滤纸的吸水率在第一天即可达到160%;将得到的纸塑料埋入土中,6个月完全降解;将纸塑料浸入煮沸的1M的氢氧化钠中6小时后,过滤,得到纸纤维,重新经过纸页成型器的制备可得到新的纸张,强度恢复率为97.6%;将纸塑料置于有机溶剂中一周后,如图4所示,变化<0.2mm,还可保留较好的尺寸稳定性,显示了较好的耐溶剂性。纸塑料在水中浸泡前后的拉伸应力-应变曲线如图5所示,可看出水中浸泡2h几乎不会对纸塑料的力学性能造成影响。同时,在纸塑料表面使用砂纸划出划痕后放置于150℃的烘箱中,经过30小时后划痕消失,纸塑料表面恢复至平整。将该纸塑料进行粉碎至外径小于1cm,然后在125℃下,2MPa的压力下进行热压2.5小时,可以重新得到纸塑料,力学性能恢复在85%以上,降解、耐水、耐溶剂、耐高温和自修复等性能,基本不受影响。另外,将该改性纸张材料(前述得到的纸塑料)置于200℃下放置30分钟后仍未发生尺寸的变化。
将实施例1中刮涂后,在功率为3000W微波辐照下,辐照2min,也可完成固化,且性能基本不变,不再赘述。
实施例3
取双酚A二缩水甘油醚(17g,50mmol)到反应釜中,加入N,N-二甲氨基吡啶(1g)作为催化剂,向压力反应釜中重复通入二氧化碳三次以排尽反应釜内空气,最后将压力维持在3MPa,反应温度控制在100℃,搅拌反应10h后得到双酚A基环碳酸酯。取双酚A基环碳酸酯(5g)与多乙烯多胺(2.12g)在室温下混合搅拌均匀,刮涂在8.3g的普通中速定性滤纸表面后在100℃下固化2小时得到纸塑料材料。对其力学性能进行测试,纸塑料的拉伸强度可达到147MPa;将其置于水中室温浸泡一周后,其拉伸强度仍保留较高值,为126MPa,显示了该纸塑料具有优秀的耐水性。同时,在纸塑料表面使用砂纸划出划痕后放置于 120℃的烘箱中,经过1小时后划痕消失,纸塑料表面恢复至平整。将该纸塑料进行粉碎至外径小于1cm,然后在135℃下,2MPa的压力下进行热压3小时,可以重新得到纸塑料,力学性能恢复在85%以上,降解、耐水、耐溶剂、耐高温和自修复等性能,基本不受影响。另外,将该改性纸张材料(前述得到的纸塑料)置于200℃下放置30分钟,材料仍保持原始形状不变,力学强度仍可达到125MPa,而将几种常用的塑料置于200℃下5分钟后即发生变形,如图6所示。将得到的纸塑料埋入土中,6个月时完全降解。将纸塑料浸入煮沸的1M的盐酸中6小时后,过滤,重新回收得到纸纤维,重新经过纸页成型器的制备可得到新的纸张,强度恢复率为97.9%;将纸塑料分别在二甲基亚砜、丙酮、二氯甲烷和四氢呋喃中浸泡一周,尺寸几乎无变化(变化<0.2mm)。
将实施例1中刮涂后,在功率为700W微波辐照下,辐照15min,也可完成固化,且性能基本不变,不再赘述。
实施例4
取环氧大豆油(5g,4.3mmol)加入到压力反应釜中,加入四丁基碘化铵(0.2g)作为催化剂,然后向压力反应釜中重复通入二氧化碳三次以排尽反应釜内空气,最后将压力维持在1MPa,反应温度控制在70℃,搅拌反应15h后得到大豆油基环碳酸酯。取大豆油基环碳酸酯(6g)与三(2-氨基乙基)胺(2.8g)在室温下搅拌混合均匀,刮涂在使用过的8g报纸表面后在120℃下固化6小时,得到纸塑料材料如图7所示,材料的拉伸强度为122MPa,该过程使用废弃的报纸进行复合改性,也拓宽了该方法的应用领域。同时,在纸塑料表面使用砂纸划出划痕后放置于140℃的烘箱中,经过1小时后划痕消失,纸塑料表面恢复至平整。将该纸塑料进行粉碎至外径小于1cm,然后在120℃下,2MPa的压力下进行热压4小时,可以重新得到纸塑料,力学性能恢复在85%以上,降解、耐水、耐溶剂、 耐高温和自修复等性能,基本不受影响。将得到的纸塑料埋入土中,6个月时完全降解。将纸塑料浸入煮沸的无水乙醇中5小时后,过滤,重新回收得到纸纤维,重新经过纸页成型器的制备可得到新的纸张,强度恢复率为98.1%;将纸塑料分别在二甲基亚砜、丙酮、二氯甲烷和四氢呋喃中浸泡一周,尺寸几乎无变化(变化<0.2mm)。
将实施例1中刮涂后,在功率为1000W微波辐照下,辐照5min,也可完成固化,且性能基本不变,不再赘述。
实施例5
取环氧大豆油(47g,45mmol)加入到压力反应釜中,加入四丁基碘化铵(2g)作为催化剂,然后向压力反应釜中重复通入二氧化碳三次以排尽反应釜内空气,最后将压力维持在2MPa,反应温度控制在80℃,搅拌反应10h后得到大豆油基环碳酸酯。取大豆油基环碳酸酯(5.53g)与聚乙烯亚胺(1.97g)在室温下搅拌混合均匀,刮涂在9g的牛皮纸表面后在130℃下固化2.5小时,得到纸塑料材料。在纸塑料表面使用砂纸划出划痕后放置于130℃的烘箱中,经过0.5小时后划痕消失,纸塑料表面恢复至平整,显示了纸塑料的自修复能力。将该纸塑料进行粉碎至外径小于1cm,然后在130℃下,1MPa的压力下进行热压3.5小时,可以重新得到纸塑料,如图8所示,力学性能恢复在85%以上,降解、耐水、耐溶剂、耐高温和自修复等性能,基本不受影响。将得到的纸塑料埋入土中,6个月时完全降解。将纸塑料浸入煮沸的1M的氢氧化钠中6小时后,过滤,重新回收得到纸纤维,重新经过纸页成型器的制备可得到新的纸张,强度恢复率为97.3%;将纸塑料分别在二甲基亚砜、丙酮、二氯甲烷和四氢呋喃中浸泡一周,尺寸几乎无变化(变化<0.2mm)。

将实施例1中刮涂后,在功率为2000W微波辐照下,辐照5min,也可完成固化,且性能基本不变,不再赘述。
实施例6
取环氧大豆油(CP,货号E107074,47g,45mmol)加入到压力反应釜中,加入四丁基碘化铵(2g)作为催化剂,然后向压力反应釜中重复通入二氧化碳三次以排尽反应釜内空气,最后将压力维持在2MPa,反应温度控制在80℃,搅拌反应15h后得到大豆油基环碳酸酯。取丙烯海松酸二缩水甘油醚(4.86g,10mmol)到反应釜中,加入四丁基碘化铵(0.5g)和L-抗坏血酸(0.2g)作为催化剂,向压力反应釜中重复通入二氧化碳三次以排尽反应釜内空气,最后将压力维持在2MPa,反应温度控制在80℃,搅拌反应12h后得到松香基环碳酸酯。取3100g的环氧大豆油环碳酸酯与500g的丙烯海松酸环碳酸酯加入到1400g的聚乙烯亚胺中,混合均匀后涂在5000g的纸张上,在经过5000W的微波辐射固化90s后即可得到高强度纸塑料,得到的纸塑料实物图如图9所示。将多张纸塑料进行叠加后在热压机下2MPa的压力下,90℃下进行热压50分钟,通过纸塑料与纸塑料之间的键交换反应,可以很好的实现多层纸塑料之间的叠加,从而制备得到纸塑料板,该纸塑料板的实物图如图10所示,且该塑料板的力学压缩强度可达到120MPa,可用于建筑板材或家具板材。

Claims (10)

  1. 一种可降解防水高强度可循环再加工的纸塑料的制备方法,其特征在于,包括以下步骤:
    1)将环碳酸酯化合物与胺类化合物在室温~70℃下搅拌混合均匀,得改性材料,其中,胺类化合物为四乙烯五胺、聚乙烯亚胺、混胺AMIX1000、氨基改性纤维素、多乙烯多胺、壳聚糖或三(2-氨基乙基)胺中的至少一种;
    2)将步骤1)制得的改性材料涂在纸张上,在65~130℃下固化0.5~6小时或在700-6000W的微波辐照下固化1~15min,无需热压,得到防水、高强度、可循环再加工、可降解、可回收的纸塑料。
  2. 根据权利要求1所述的可降解防水高强度可循环再加工的纸塑料的制备方法,其特征在于,步骤2)中,改性材料与纸张的质量比为0.25:1~2.5:1,纸张为利用纤维素制备的任一种纸张材料。
  3. 根据权利要求1或2所述的可降解防水高强度可循环再加工的纸塑料的制备方法,其特征在于,步骤1)中,环碳酸酯化合物与胺类化合物的用量按照环碳酸酯基团与氨基的摩尔比为0.25:1~2:1添加。
  4. 根据权利要求1或2所述的可降解防水高强度可循环再加工的纸塑料的制备方法,其特征在于,步骤1)中,环碳酸酯化合物的制备方法为:将环氧化合物和催化剂按照摩尔比为100:(1~6)加入到压力反应釜中并排尽釜内空气,然后通入CO2,将压力维持在0.5~3.5MPa,反应温度控制在50~120℃,搅拌反应6~48h后,得到环碳酸酯化合物。
  5. 根据权利要求4所述的可降解防水高强度可循环再加工的纸塑料的制备方法,其特征在于,环氧化合物为含有二元及二元以上环氧基的化合物的环氧大豆油、松香衍生环氧化合物、双酚A二缩水甘油醚、1,4-丁二醇二缩水甘油醚、环氧封端聚乙二醇、纤维素衍生环氧化合物或木质素基环氧化合物中的至少一种。
  6. 根据权利要求4所述的可降解防水高强度可循环再加工的纸塑料的制备方法,其特征在于,催化剂为四丁基溴化铵、四丁基碘化铵、N,N-二甲氨基吡啶、苄基三甲基氯化铵或L-抗坏血酸中的至少一种。
  7. 根据权利要求1或2所述的可降解防水高强度可循环再加工的纸塑料的制备方法,其特征在于,纸塑料埋入土中,自然降解,4~6个月完全降解。
  8. 根据权利要求1或2所述的可降解防水高强度可循环再加工的纸塑料的 制备方法,其特征在于,将两层以上的纸塑料叠加,在0.5-5MPa的压力、70-120℃的温度下,热压0.5-2小时,形成纸塑料板。
  9. 由权利要求1-8任意一项所述的制备方法制得的可降解防水高强度可循环再加工的纸塑料的回用方法,其特征在于,将纸塑料粉碎,在压力为1-2MPa、温度为120-135℃的条件下,热压2-4小时,重新得到纸塑料。
  10. 由权利要求1-8任意一项所述的制备方法制得的可降解防水高强度可循环再加工的纸塑料的回用方法,其特征在于,将纸塑料在温度为70~100℃的氢氧化钠溶液或无水乙醇中浸泡5~6h,纸塑料中的聚羟基氨基甲酸酯得到降解,过滤,得到纸纤维,重新经过纸页成型器成型、制得新纸张;氢氧化钠的摩尔浓度为0.8~1.2mol/L。
PCT/CN2023/100928 2022-08-23 2023-06-19 一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法 WO2024041129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211013187.X 2022-08-23
CN202211013187.XA CN115418884B (zh) 2022-08-23 2022-08-23 一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法

Publications (1)

Publication Number Publication Date
WO2024041129A1 true WO2024041129A1 (zh) 2024-02-29

Family

ID=84198287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100928 WO2024041129A1 (zh) 2022-08-23 2023-06-19 一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法

Country Status (2)

Country Link
CN (1) CN115418884B (zh)
WO (1) WO2024041129A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418884B (zh) * 2022-08-23 2023-07-07 中国林业科学研究院林产化学工业研究所 一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1373253A (zh) * 2001-02-28 2002-10-09 付强 可降解复合材料及制备方法
CN111485447A (zh) * 2020-04-17 2020-08-04 华南理工大学 一种纤维素纸/动态共价聚合物复合包装材料及其制备方法与应用
CN112979943A (zh) * 2021-02-25 2021-06-18 中国林业科学研究院林产化学工业研究所 一种可回收再生的全生物基非异氰酸酯聚氨酯的制备方法
CN115418884A (zh) * 2022-08-23 2022-12-02 中国林业科学研究院林产化学工业研究所 一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1373253A (zh) * 2001-02-28 2002-10-09 付强 可降解复合材料及制备方法
CN111485447A (zh) * 2020-04-17 2020-08-04 华南理工大学 一种纤维素纸/动态共价聚合物复合包装材料及其制备方法与应用
CN112979943A (zh) * 2021-02-25 2021-06-18 中国林业科学研究院林产化学工业研究所 一种可回收再生的全生物基非异氰酸酯聚氨酯的制备方法
CN115418884A (zh) * 2022-08-23 2022-12-02 中国林业科学研究院林产化学工业研究所 一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法

Also Published As

Publication number Publication date
CN115418884B (zh) 2023-07-07
CN115418884A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024041129A1 (zh) 一种可降解防水高强度可循环再加工的纸塑料的制备方法及其循环回用方法
Krishnakumar et al. Vitrimers based on bio-derived chemicals: Overview and future prospects
CN104449531B (zh) 一种金属包装罐用双组份聚氨酯树脂及其制备方法
CN101280055A (zh) 高固低粘环保型醇酸树脂及其制备方法
TW201224012A (en) Raw materials and methods of manufacturing bio-based epoxy resins
CN110229531B (zh) 一种完全生物基来源环氧树脂复合材料及其制备方法
Zhang et al. Multifunctional tannin extract-based epoxy derived from waste bark as a highly toughening and strengthening agent for epoxy resin
CN111485447B (zh) 一种纤维素纸/动态共价聚合物复合包装材料及其制备方法与应用
CN112876946A (zh) 一种供热管道内壁耐温防腐粉体涂料及其使用方法
CN105646925A (zh) 一种防静电离型膜及其制备方法
CN115850910A (zh) 一种生物基超支化聚合物环氧树脂及其制备方法、应用
CN107043453B (zh) 饱和聚酯树脂及制备方法、含其的桔纹粉末涂料及制备方法
Liu et al. Constructing phenylboronic acid-tethered hierarchical kenaf fibers to develop strong soy meal adhesives with excellent water resistant, mildew proof, and flame-retardant properties
CN110283426B (zh) 一种生物基来源可降解淀粉填充环氧树脂复合材料及其制备方法
US11970575B2 (en) Bioderived recyclable epoxy-anhydride thermosetting polymers and resins
JPH0791367B2 (ja) 非ゲル化ポリアミン―ポリエポキシド樹脂
Monteserin et al. Sustainable biobased epoxy thermosets with covalent dynamic imine bonds for green composite development
Yang et al. Integration of branched amine and dialdehyde cellulose to produce high-performance bio-based wood adhesive
CN106349433A (zh) 一种生产不饱和聚酯树脂的方法
CN101503605A (zh) 一种固体万能胶浆料及其制备方法
CN109096497B (zh) 一种废旧聚酯纺织品深度降解石墨烯共聚改性方法
CN113788823A (zh) 一种基于香草醛的生物基环氧树脂及其制备方法
CN117164817B (zh) 一种自催化型腰果酚基自修复及可回收聚合物及其制备方法
CN107671961B (zh) 一种木材改性剂的制备方法
CN101440087B (zh) 邻苯二甲酰亚胺二缩水甘油醚及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856221

Country of ref document: EP

Kind code of ref document: A1