WO2024041126A1 - 一种太阳能电池及其制造方法 - Google Patents

一种太阳能电池及其制造方法 Download PDF

Info

Publication number
WO2024041126A1
WO2024041126A1 PCT/CN2023/100863 CN2023100863W WO2024041126A1 WO 2024041126 A1 WO2024041126 A1 WO 2024041126A1 CN 2023100863 W CN2023100863 W CN 2023100863W WO 2024041126 A1 WO2024041126 A1 WO 2024041126A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
solar cell
chemical treatment
manufacturing
wet chemical
Prior art date
Application number
PCT/CN2023/100863
Other languages
English (en)
French (fr)
Inventor
李文强
童洪波
於龙
丁超
李华
Original Assignee
泰州隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰州隆基乐叶光伏科技有限公司 filed Critical 泰州隆基乐叶光伏科技有限公司
Publication of WO2024041126A1 publication Critical patent/WO2024041126A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells

Definitions

  • the present invention relates to the technical field of solar cells, and in particular, to a solar cell and a manufacturing method thereof.
  • photovoltaic solar cells are devices that convert the sun's light energy into electrical energy. Specifically, solar cells use the photovoltaic principle to generate carriers, and then use electrodes to extract the carriers, thereby facilitating the effective use of electrical energy.
  • one type of surface area will be treated to a greater extent, resulting in a reduction in the photoelectric conversion efficiency of the solar cell.
  • the object of the present invention is to provide a solar cell and a manufacturing method thereof to reduce the degree of treatment of the first area by the wet chemical treatment solution under the etching delay of the tunnel passivation layer, so that the first area after the wet chemical treatment
  • the surface structure meets the requirements of the preset plan and improves the photoelectric conversion efficiency of solar cells.
  • the invention provides a method for manufacturing a solar cell.
  • the method for manufacturing a solar cell includes:
  • a semiconductor substrate is provided.
  • the semiconductor substrate has a first region and a second region.
  • a tunnel passivation layer covering at least the first region is formed.
  • a wet chemical treatment is performed on the first region.
  • the surface structure of the first area after wet chemical treatment is different from the surface structure of the second area.
  • the solar cell provided by the present invention includes a semiconductor substrate having a first region and a second region. Furthermore, before performing wet chemical treatment on the first region, a tunnel passivation layer covering at least the first region is formed. Based on this, during the wet chemical treatment of the first region, at least the tunnel passivation layer covering the first region can act as an etching delay and reduce the impact of the wet chemical treatment solution on the surface of the first region. degree.
  • the manufacturing method provided by the present invention is beneficial to preventing the surface of the first area from being over-treated after the wet chemical treatment, so that After wet chemical treatment, the surface structure of the first area meets the requirements of the preset plan and improves the solar cell yield.
  • the thickness of the tunnel passivation layer is 1.4nm to 1.8nm. It should be understood that, within a certain range, the thickness of the tunnel passivation layer is proportional to the time that the tunnel passivation layer can play an etching delay role. In this case, when the thickness of the tunnel passivation layer is 1.4nm to 1.8nm, the thickness of the tunnel passivation layer is moderate, which can prevent the small thickness of the tunnel passivation layer from being easily performed by wet chemical treatment.
  • the solution etching through causes the tunnel passivation layer to play an etching delay role for a shorter time, further ensuring that the surface of the first area is not over-processed after the wet chemical treatment.
  • the tunnel passivation layer not only has the effect of etching delay, but when the tunnel passivation layer is applied to the tunnel passivation contact structure, setting the thickness of the tunnel passivation layer to the above range can also prevent tunneling due to The large thickness of the passivation layer makes it difficult for carriers to pass through the tunnel passivation layer based on the tunneling effect, thereby reducing the tunneling resistance of the tunnel passivation layer and further improving the photoelectric conversion efficiency of the solar cell.
  • the material of the tunnel passivation layer is silicon oxide, aluminum oxide, titanium oxide, hafnium dioxide, gallium oxide, tantalum pentoxide, niobium pentoxide, silicon nitride, silicon carbonitride , aluminum nitride, titanium nitride or titanium nitride carbide.
  • the material selection range of the tunnel passivation layer is larger, which is beneficial to improving the applicability of the solar cell manufacturing method provided by the present invention in different application scenarios.
  • wet chemical treatment is performed on the first area and the second area at the same time, so that the surface structure of the first area forms a boss structure, a right pyramid structure or an inverted pyramid hole structure, and the second area is formed into a convex structure.
  • the surface structure of the area forms a boss structure, a right pyramid structure or an inverted pyramid hole structure.
  • wet chemical treatment of the first region and the second region at the same time can improve the manufacturing efficiency of solar cells and help improve the mass production of solar cells.
  • the surface structure of the first region and the surface structure of the second region have multiple possible implementation solutions, which is conducive to improving the manufacturing method of the solar cell provided by the present invention. Applicability in different application scenarios.
  • forming the tunnel passivation layer covering at least the first region is: forming a tunnel passivation layer covering at least the first region and the second region.
  • the manufacturing method of a solar cell further includes: forming a first doped semiconductor layer covering at least a portion of the tunnel passivation layer corresponding to the second region.
  • the surface structure of the second area is a boss structure, a right pyramid structure or an inverted pyramid hole structure.
  • the surface structure of the first area is a boss structure, a right pyramid structure or an inverted pyramid hole structure.
  • the portion of the first doped semiconductor layer and the tunnel passivation layer located on the second region may form a tunnel passivation contact structure.
  • the solar cell manufactured by the manufacturing method provided by the present invention is a tunnel oxide passivation contact solar cell.
  • the tunnel passivation layer in the above-mentioned tunnel passivation contact structure allows majority carriers to tunnel into the first doped semiconductor layer while blocking minority carriers from passing through, and then the majority carriers pass through the first doped semiconductor layer It is transmitted and collected by corresponding electrodes, reducing the recombination rate of carriers of different conductivity types at the surface of the second region, achieving interface passivation and selective collection of carriers, and further improving the photoelectric conversion efficiency of the solar cell.
  • the surface structure of the second area and the surface structure of the first area after wet chemical treatment have multiple possible implementation solutions.
  • Appropriate implementation solutions can be selected according to the requirements of different application scenarios, which is conducive to improving the performance provided by the present invention.
  • the applicability of solar cell manufacturing methods in different application scenarios are possible implementation solutions.
  • the above-mentioned semiconductor substrate has a first surface and a second surface opposite to each other. Along a direction parallel to the second surface, the second surface has alternately arranged first areas and second areas.
  • Forming the tunnel passivation layer covering at least the first region is: forming a tunnel passivation layer covering at least the first region and the second region.
  • the surface structure of the first area is a boss structure, a right pyramid structure or an inverted pyramid hole structure.
  • the surface structure of the second area after wet chemical treatment is a boss structure.
  • the surface structure of the second area is a boss structure. Because the boss structure is the right pyramid base structure that remains after polishing treatment.
  • the top surface of the right pyramid tower base structure is relatively flat, so the surface of the second area with the surface structure of the boss structure is a flat polished surface, which is conducive to improving the tunneling passivation layer and the first doped semiconductor layer on the second area.
  • the film formation quality is advantageous in that the tunnel passivation contact structure composed of the tunnel passivation layer and the portion of the first doped semiconductor layer located on the second region has excellent interface passivation and carrier selective collection characteristics. .
  • the manufacturing method of the solar cell further includes: forming a tunnel passivation layer covering at least the tunnel passivation layer.
  • the passivation layer corresponds to the first doped semiconductor layer on a portion of the second region.
  • the surface structure of the first region after wet chemical treatment is a right pyramid structure or an inverted pyramid hole structure.
  • both the positive pyramid structure and the inverted pyramid hole structure are suede structures, and the suede structure has a light-trapping effect, when the second surface with the first area is facing the light-receiving surface of the solar cell, In response, the surface of the first region can refract more light into the semiconductor substrate, thereby further improving the photoelectric conversion efficiency of the solar cell.
  • wet chemical treatment is performed on the first side and the first region simultaneously, so that the surface structure of the first side and the surface structure of the first region are different.
  • performing wet chemical treatment on the first surface and the first region at the same time can improve the manufacturing efficiency of the solar cell and help improve the mass productivity of the solar cell.
  • the above-mentioned solar cell is a double-sided contact cell.
  • wet chemical treatment is performed on the first surface and the first region at the same time, so that the surface structure of the first surface forms a boss structure, and the surface structure of the first region forms a boss structure, a right pyramid structure, or Inverted pyramid hole structure.
  • the surface of the first side is a boss structure after wet chemical treatment
  • the surface of the first side is a flat polished surface.
  • the polished surface has relatively good reflective properties, so when the first surface corresponds to the backlight surface of the double-sided contact battery, the light can be at least partially reflected back into the semiconductor substrate after reaching the first surface, and be reused by the semiconductor substrate. Improve the photoelectric conversion efficiency of double-sided contact cells.
  • the second surface corresponds to the light-receiving surface of the double-sided contact battery.
  • the surface structure of the first area on the second surface can form any one of a boss structure, a right pyramid structure or an inverted pyramid hole structure, so as to improve the manufacturing method provided by the present invention for different applications. Applicability to application scenarios.
  • the base width of the surface structure formed on the first surface is greater than the base width of the surface structure formed on the first area.
  • the surface structure on the first side is a boss structure
  • the third side is a boss structure.
  • the surface structure of the first area after wet chemical treatment can be a straight pyramid structure or an inverted pyramid hole. structure.
  • the second surface corresponds to the light-receiving surface of the double-sided contact battery, and the surface of the first area can refract more light into the semiconductor substrate, further improving the photoelectric conversion efficiency of the double-sided contact battery.
  • the solar cell is a back contact cell.
  • wet chemical treatment is performed on the first surface and the first region at the same time, so that the surface structure of the first surface forms a right pyramid structure, and the surface structure of the first region forms a boss structure and a right pyramid structure. Or an inverted pyramid hole structure.
  • the solar cell when the solar cell is a back-contact cell, since the two types of electrodes with opposite polarities included in the back-contact cell are both the backlight surface of the solar cell, the light-receiving surface of the back-contact cell is not blocked by the metal electrode. , so compared with double-sided contact batteries, back-contact batteries have higher short-circuit current.
  • the first side corresponds to the light-receiving side of the back-contact cell, so the first side whose surface structure is a positive pyramid structure or an inverted pyramid hole structure can refract more light from the first side into the semiconductor substrate, further Improve the photoelectric conversion efficiency of back contact cells.
  • the second side corresponds to the backlight side of the back contact battery.
  • the surface structure of the first area on the second surface can form any one of a boss structure, a right pyramid structure or an inverted pyramid hole structure, so as to improve the manufacturing method provided by the present invention for different applications. Applicability to application scenarios.
  • the base width of the surface structure provided on the first surface is smaller than the base width of the surface structure formed on the first area.
  • the surface structure on the first side is positive.
  • the surface structure of the first region can be a boss structure after wet chemical treatment.
  • the second surface corresponds to the backlight surface of the back contact battery, and the first area can reflect at least part of the light back into the semiconductor substrate, further improving the photoelectric conversion efficiency of the back contact battery.
  • the base width of the surface structure formed on the second region is different from the base width of the surface structure formed on the first region after wet chemical treatment.
  • the first doped semiconductor layer can be formed by the difference between the base width of the surface structure provided on the second region and the base width of the surface structure formed on the first region after wet chemical treatment. and the specific formation position of the second doped semiconductor layer (or doped region), so that there is higher resolution between the first doped semiconductor layer and the second doped semiconductor layer (or doped region), This can reduce the difficulty of accurately setting electrodes with the same polarity on the first doped semiconductor layer and the second doped semiconductor layer (or doped region) respectively, thereby reducing the difficulty of the first doped semiconductor layer and the third doped semiconductor layer with opposite conductivity types.
  • the second doped semiconductor layer (or doped region) reduces the risk of short circuiting the back contact battery through electrode coupling, thereby improving the electrical stability of the back contact battery.
  • the manufacturing method of the solar cell includes:
  • a tunnel passivation layer and a first doped semiconductor layer are formed as a whole layer on the second surface in sequence.
  • the first doped semiconductor layer is patterned, leaving only the portion of the first doped semiconductor layer located on the second region.
  • the entire first doped semiconductor layer disposed on the second surface is patterned to facilitate formation of the first doped semiconductor layer on the first region (or within the first region).
  • a second doped semiconductor layer (or doped region) of opposite conductivity type in addition, in the actual application process, the first surface can be textured and the first doped semiconductor layer can be patterned simultaneously through wet chemical treatment to improve the manufacturing efficiency of the back contact battery.
  • both the tunnel passivation layer and the portion of the first doped semiconductor layer located on the first region have an etching delay function, which can extend the solution etching of texturing and patterning within a certain range.
  • the etching delay time to the surface of the first area can obtain a longer processing time for the right pyramid structure formed on the first surface that meets the preset plan requirements, and improve the efficiency of the right pyramid structure formed on the first surface. quality, further improving the photoelectric conversion efficiency of back contact cells.
  • the surface of the first region is concave into the semiconductor substrate relative to the surface of the second region.
  • the first doped semiconductor layer and the second doped semiconductor layer (or doped region) with opposite doping types in the back contact battery are formed on the second region and the first region respectively (or within the first region), so when the surface of the first region is concave into the semiconductor substrate relative to the surface of the second region after wet chemical treatment, along the thickness direction of the semiconductor substrate, the first doped semiconductor layer can It is at least offset from part of the second doped semiconductor layer (or the first doped semiconductor layer can be completely offset from the doped region), which is beneficial to preventing the gap between the first doped semiconductor layer and the second doped semiconductor layer (or doped region). Leakage occurs.
  • the above-mentioned second surface is provided with a middle region and an edge isolation region extending outward from the middle region.
  • the first area and the second area are located within the intermediate area.
  • the surface of the edge isolation region is concave into the semiconductor substrate relative to the surface of the second region.
  • the first doped semiconductor layer in the process of actually manufacturing the first doped semiconductor layer and the second doped semiconductor layer (or doped region) that have opposite doping types in the back contact battery, the first doped semiconductor layer
  • the doping element of one of the second doped semiconductor layer (or doped region) and the second doped semiconductor layer (or doped region) is also doped to the side surface of the semiconductor substrate.
  • the surface of the edge isolation region is concave into the semiconductor substrate relative to the surface of the second region, so that the first doped semiconductor layer and the second doped semiconductor layer (or doped region) can be
  • the other is isolated from the side of the semiconductor substrate through an edge isolation region to prevent leakage between the other of the first doped semiconductor layer and the second doped semiconductor layer (or doped region) and the side of the semiconductor substrate. , improve the photoelectric conversion efficiency of back-contact cells.
  • the manufacturing method of the solar cell further includes: forming a doped region in the first region, the doped region having an opposite conductivity type to that of the first doped semiconductor layer .
  • a second doped semiconductor layer is formed on the first region. The second doped semiconductor layer has an opposite conductivity type to the first doped semiconductor layer.
  • the manufacturing method of the solar cell further includes: forming a surface passivation layer covering at least the first doped semiconductor layer and the doped region.
  • the surface passivation layer can passivate the side of the first doped semiconductor layer and the doped region facing away from the semiconductor substrate, thereby reducing the side of the first doped semiconductor layer and the doped region facing away from the semiconductor substrate.
  • the carrier recombination rate on the side further improves the photoelectric conversion efficiency of the back contact cell.
  • the manufacturing method of the solar cell further includes: forming at least covering the first doped semiconductor layer and the second doped semiconductor layer.
  • Surface passivation layer forming at least covering the first doped semiconductor layer and the second doped semiconductor layer.
  • the manufacturing method of the solar cell further includes: forming a layer covering at least the first region and the first doped region.
  • Surface passivation layer on the semiconductor layer.
  • a first electrode is formed through the surface passivation layer. The bottom of the first electrode is in contact with the first region.
  • the above method of forming the doping region in the first region is: using the first electrode as a doping source to form the doping region in the first region.
  • the surface passivation layer can passivate the surface of the first region and the side of the first doped semiconductor layer facing away from the semiconductor substrate, reducing the interference between the surface of the first region and the first doped semiconductor layer.
  • using the first electrode penetrating the surface passivation layer as a doping source can only form a doped region within a certain range where the first region contacts the first electrode, preventing the doped region from contacting the first doped semiconductor layer. Electricity leakage occurs.
  • the process of forming a mask layer to only form a doped region in the first region can be saved, thereby simplifying the manufacturing process of the back contact battery.
  • the present invention also provides a solar cell, which is prepared by any of the aforementioned solar cell manufacturing methods.
  • Figure 1 is a flow chart of a manufacturing method of a solar cell provided by an embodiment of the present invention
  • FIG. 2 is a schematic longitudinal cross-sectional view of a first structure of a semiconductor substrate provided by an embodiment of the present invention
  • FIG. 3 is a schematic longitudinal cross-sectional view of the second structure of a semiconductor substrate provided by an embodiment of the present invention.
  • Parts (1) to (4) in Figure 4 are schematic diagrams of four distribution situations of the first region and the second region on the semiconductor substrate when the first region and the second region are located on different surfaces in the embodiment of the present invention
  • FIG. 5 is a schematic diagram of the distribution of the first region and the second region on the second surface when the second surface of the semiconductor substrate only has a first region and a second region in an embodiment of the present invention
  • Figure 6 is a schematic diagram of the distribution of each area on the second side when the second side of the semiconductor substrate has an edge isolation area and a middle area in an embodiment of the present invention
  • Figure 7 is a schematic longitudinal cross-sectional view of the first structure after forming a tunnel passivation layer in the embodiment of the present invention when the first region and the second region are located on different surfaces;
  • Figure 8 is a schematic longitudinal cross-sectional view of the structure after wet chemical treatment of the second area in the embodiment of the present invention when the first area and the second area are located on different surfaces;
  • Figure 9 is a schematic longitudinal cross-sectional view of the structure after simultaneous wet chemical treatment of the first region and the second region in the embodiment of the present invention when the first region and the second region are on the same plane;
  • Figure 10 shows the formation of a tunnel passivation layer covering the first region and the second region and a third passivation layer located above the second region when both the first region and the second region are located on the second surface in the embodiment of the present invention.
  • Figure 11 is a schematic longitudinal cross-sectional view of the first structure after simultaneous metal wet chemical treatment of the first surface and the first region in the embodiment of the present invention
  • Figure 12 is a schematic longitudinal cross-sectional view of the structure after sequentially forming a tunnel passivation layer and a first doped semiconductor layer covering the first region and the second region in an embodiment of the present invention
  • FIG. 13 is a schematic longitudinal cross-sectional view of the structure after forming a material layer for manufacturing the mask layer on the first doped semiconductor layer in an embodiment of the present invention
  • Figure 14 is a schematic longitudinal cross-sectional view of the structure after forming a mask layer on the first doped semiconductor layer in an embodiment of the present invention
  • Figure 15 is a schematic longitudinal cross-sectional view of the structure after patterning the first doped semiconductor layer under the masking action of the mask layer in the embodiment of the present invention.
  • Figure 16 is a schematic longitudinal cross-sectional view of the second structure after simultaneous wet chemical treatment of the first surface and the first region in the embodiment of the present invention
  • Figure 17 is a third structural longitudinal view after simultaneous wet chemical treatment of the first surface and the first region in the embodiment of the present invention.
  • Figure 18 is a schematic longitudinal cross-sectional view of the fourth structure after simultaneous wet chemical treatment of the first surface and the first region in the embodiment of the present invention.
  • Figure 19 is a schematic longitudinal cross-sectional view of the structure in which the surface of the edge isolation region and the first region are both recessed into the semiconductor substrate relative to the surface of the second region after wet chemical treatment in an embodiment of the present invention
  • Figure 20 is a schematic longitudinal cross-sectional view of the first structure after forming the doping region in the embodiment of the present invention.
  • Figure 21 is a schematic longitudinal cross-sectional view of the first structure after forming the second doped semiconductor layer in an embodiment of the present invention.
  • Figure 22 is a schematic longitudinal cross-sectional view of the second structure after forming the second doped semiconductor layer in an embodiment of the present invention.
  • Figure 23 is a schematic longitudinal cross-sectional view of a structure after forming a surface passivation layer in an embodiment of the present invention.
  • Figure 24 is a schematic longitudinal cross-sectional view of the structure after forming the first electrode in the embodiment of the present invention.
  • Figure 25 is a schematic longitudinal cross-sectional view of the second structure after the doping region is formed in the embodiment of the present invention.
  • Figure 26 is a schematic longitudinal cross-sectional view of a structure after forming the first electrode and the second electrode in the embodiment of the present invention.
  • Reference signs: 1 is the semiconductor substrate, 2 is the first region, 3 is the second region, 4 is the tunnel passivation layer, 5 is the first side, 6 is the second side, 7 is the first doped semiconductor layer, 8 is the mask layer, 9 is the middle area, 10 is the edge isolation area, 11 is the doped area, 12 is the second doped semiconductor layer, 13 is the surface passivation layer, 14 is the first electrode, 15 is the second electrode , 16 is the third area.
  • a layer/element when referred to as being "on" another layer/element, it can be directly on the other layer/element or intervening layers/elements may be present between them. element. Additionally, if one layer/element is "on” another layer/element in one orientation, then the layer/element can be "under” the other layer/element when the orientation is reversed.
  • the present invention will be further described in detail below with reference to the drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • Several means one or more than one, unless otherwise expressly and specifically limited.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection or a detachable connection.
  • Connection, or integral connection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection or integral connection
  • connection, or integral connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two elements or an interaction between two elements.
  • photovoltaic solar cells are devices that convert the sun's light energy into electrical energy. Specifically, solar cells use the photovoltaic principle to generate carriers, and then use electrodes to extract the carriers, thereby facilitating the effective use of electrical energy.
  • one type of surface area will be treated to a greater extent, resulting in a reduction in the photoelectric conversion efficiency of the solar cell.
  • the wet-chemical treatment solution will also cause the semiconductor substrate to be in contact with the solar cell. Texturing the side corresponding to the backlight of the battery makes the semiconductor substrate significantly thinner, shortening the propagation path of light in the semiconductor substrate, thereby reducing the probability of light being absorbed by the semiconductor substrate, ultimately leading to a reduction in the photoelectric conversion efficiency of the solar cell. .
  • the semiconductor substrate After forming the first doped semiconductor layer covering the side of the semiconductor substrate corresponding to the backlight surface, it is necessary to remove the first doped semiconductor layer located on the partial area of the semiconductor substrate. Doped semiconductor layer, so that a second doped semiconductor layer with a conductivity type opposite to that of the first doped semiconductor layer is subsequently formed in (or on) this part.
  • wet chemical treatment is used to selectively etch the first doped semiconductor layer, the semiconductor substrate will be The part corresponding to the area to be removed is over-processed, causing the semiconductor substrate to be significantly thinned, thus causing the problems mentioned above.
  • an embodiment of the present invention provides a method for manufacturing a solar cell.
  • the solar cell manufactured by the manufacturing method provided by the embodiment of the present invention can be a double-sided contact cell, that is, one of the first electrode and the second electrode of opposite polarity included in the solar cell is disposed on the light-receiving surface of the solar cell. side, and the other is set on the backlight side of the solar cell.
  • the manufactured solar cell may also be a back-contact cell, that is, the solar cell includes a first electrode and a second electrode with opposite polarities that are both disposed on the backlight surface of the solar cell.
  • the manufacturing method of the solar cell includes the following steps:
  • a semiconductor substrate 1 is provided. As shown in FIGS. 2 and 3 , the semiconductor substrate 1 has a first region and a second region.
  • the above-mentioned semiconductor substrate may be a substrate of semiconductor material such as a silicon substrate, a silicon germanium substrate, or a germanium substrate.
  • the above-mentioned semiconductor substrate may be an N-type semiconductor substrate or a P-type semiconductor substrate.
  • the semiconductor substrate may be a semiconductor substrate that has not been polished or textured.
  • the semiconductor substrate 1 may also be a semiconductor substrate that has been polished on both sides. At this time, the opposite first surface 5 and the second surface 6 of the semiconductor substrate 1 are both polished surfaces.
  • the opposite first surface 5 and second surface 6 of the semiconductor substrate 1 may also be textured to form textured surfaces.
  • the boundary between the first region and the second region of the semiconductor substrate is a virtual boundary.
  • the specific positions of the two regions on the surface of the semiconductor substrate and the range of the first region and the second region on the corresponding surface can be determined according to actual application scenarios. OK, no specific restrictions here.
  • the first region 2 and the second region 3 may be located on different surfaces of the semiconductor substrate 1 .
  • the first region 2 may be located on the side of the semiconductor substrate 1 corresponding to the light-receiving surface of the solar cell.
  • the second region 3 is located on the side of the semiconductor substrate 1 corresponding to the backlight surface of the solar cell.
  • the first region 2 can also be located on the side of the semiconductor substrate 1 corresponding to the backlight surface.
  • the second region 3 is located on the side of the semiconductor substrate 1 corresponding to the light-receiving surface.
  • the boundary of the first region 2 may be the same as the semiconductor substrate 1 The boundaries overlap.
  • the first region 2 may also be a local region located on a corresponding surface of the semiconductor substrate 1 .
  • the boundary of the second region 3 may coincide with the boundary of the semiconductor substrate 1 .
  • the second region 3 may also be a local region located on a corresponding surface of the semiconductor substrate 1 .
  • the first region 2 and the second region 3 may also be located on the same surface of the semiconductor substrate 1 .
  • the arrangement of the first region 2 and the second region 3 on the same surface can be determined according to the type of solar cell and the actual application scenario, and is not specifically limited here.
  • the solar cell is a back-contact cell
  • the first region 2 and the second region 3 may be alternately disposed on the side of the semiconductor substrate 1 corresponding to the backlight surface.
  • a tunnel passivation layer 4 covering at least the first region 2 is formed.
  • the tunnel passivation layer can be formed through processes such as atomic layer deposition or plasma-enhanced chemical vapor deposition.
  • the formation range, thickness and material of the tunnel passivation layer can be set according to the actual application scenario, as long as it can be applied to the solar cell manufacturing method provided by the embodiment of the present invention.
  • the thickness of the tunnel passivation layer is 1.4nm to 1.8nm. It should be understood that, within a certain range, the thickness of the tunnel passivation layer is proportional to the time that the tunnel passivation layer can play an etching delay role. In this case, when the thickness of the tunnel passivation layer is 1.4nm to 1.8nm, the thickness of the tunnel passivation layer is moderate, which can prevent the small thickness of the tunnel passivation layer from being easily performed by subsequent wet chemistry.
  • the treatment solution etches through and causes the tunneling passivation layer to act as an etching delay for a shorter time, further ensuring that the surface of the first region is not over-processed after subsequent wet chemical treatment is performed.
  • the tunnel passivation layer not only has the effect of etching delay, but when the tunnel passivation layer is applied to the tunnel passivation contact structure, setting the thickness of the tunnel passivation layer to the above range can also prevent tunneling due to The large thickness of the passivation layer makes it difficult for carriers to pass through the tunnel passivation layer based on the tunneling effect, thereby reducing the tunneling resistance of the tunnel passivation layer and further improving the photoelectric conversion efficiency of the solar cell.
  • the tunnel passivation layer is made of silicon oxide, aluminum oxide, titanium oxide, hafnium dioxide, gallium oxide, tantalum pentoxide, niobium pentoxide, silicon nitride, silicon carbonitride, aluminum nitride , titanium nitride or titanium nitride carbide.
  • the material selection range of the tunnel passivation layer is larger, which is beneficial to improving the applicability of the solar cell manufacturing method provided by the embodiment of the present invention in different application scenarios.
  • the thickness and material of the tunnel passivation layer can also be set to other suitable ranges and materials according to actual needs, and are not specifically limited here.
  • a wet chemical treatment is performed on the first region 2 .
  • the surface structure of the first region 2 and the surface structure of the second region 3 are different after wet chemical treatment.
  • the above-mentioned difference in the surface structure of the first region and the surface structure of the second region after wet chemical treatment may mean that the types of surface structures of the first region and the second region after wet chemical treatment are different.
  • the surface structure of the first area forms a boss structure (the boss structure is the right pyramid base structure remaining after polishing of the right pyramid structure), and the surface structure of the second area forms a right pyramid structure.
  • the surface structure of the first area forms a boss structure
  • the surface structure of the second area forms an inverted pyramid hole structure.
  • the size of the surface structure of the first region after wet chemical treatment is different from the size of the surface structure of the second region.
  • the surface structures also vary in size. It will be appreciated that the dimensions of the surface structure are generally defined by the width of the tower base. It should be noted that, as shown in Figure 18, the width of the tower base of the inverted pyramid hole structure refers to the width of the opening of the inverted pyramid hole.
  • the surface structures of the first region and the second region may also mean that the surface structures of the first region and the second region have different sizes after wet chemical treatment.
  • the surface structures of the first region and the second region both form a right pyramid structure, but the width of the tower base corresponding to the surface structure of the first region is smaller than the width of the tower base corresponding to the surface structure of the second region.
  • the solution type, concentration and temperature of the wet chemical treatment of the first area, as well as the surface structure of the first area and the second area after the wet chemical treatment can be determined according to the type of solar cell to be manufactured. and actual application scenario settings, there are no specific limitations here.
  • a tunnel passivation layer covering at least the first region is formed before performing wet chemical treatment on the first region. Based on this, during the wet chemical treatment of the first region, at least the tunnel passivation layer covering the first region can act as an etching delay and reduce the impact of the wet chemical treatment solution on the surface of the first region. degree.
  • the manufacturing method provided by the embodiment of the present invention is beneficial to preventing the surface of the first area from being over-treated after the wet chemical treatment. , so that the surface structure of the first area after wet chemical treatment meets the requirements of the preset plan and improves the solar cell yield.
  • wet chemical treatment process is divided into the following two situations for explanation:
  • Type 1 Wet chemical treatment of the second area is required.
  • the first region and the second region may be subjected to wet chemical treatment at the same time, or the first region and the second region may be subjected to wet chemical treatment respectively in different operating steps.
  • the specific conditions of the surface structure of the first region after wet chemical treatment and the surface structure of the second region after wet chemical treatment can be determined according to the type of solar cell to be manufactured and actual needs.
  • the first area and the second area can be subjected to wet chemical treatment at the same time, so that the surface structure of the first area forms a boss structure, a right pyramid structure or a An inverted pyramid hole structure is formed, and the surface structure of the second area forms a boss structure, a right pyramid structure or an inverted pyramid hole structure.
  • performing wet chemical treatment on the first region and the second region at the same time can improve the manufacturing efficiency of the solar cell and help improve the mass productivity of the solar cell.
  • the surface structure of the first region and the surface structure of the second region respectively have multiple possible implementation solutions, which is conducive to improving the manufacturing of solar cells provided by embodiments of the present invention.
  • the wet chemical treatment is performed because a tunnel passivation layer is formed on the first region.
  • the solution treats the surfaces of the first region and the second region to different degrees, so that the size of the surface structure on the first region after wet chemical treatment is different from the size of the surface structure on the second region.
  • the surface structure of the first region and the second region are both convex structures, since a tunnel passivation layer is formed on the first region, the surface structure of the first region becomes a tower.
  • the base width is less than the base width of the surface structure on the second region.
  • the two opposite surfaces of the semiconductor substrate 1 may both be polished surfaces.
  • the entire first region 2 is disposed on the side of the semiconductor substrate 1 corresponding to the backlight surface.
  • the tunnel passivation layer 4 only covers the first region 2 .
  • the entire second region 3 is disposed on the side of the semiconductor substrate 1 corresponding to the light-receiving surface, and the surface of the second region 3 is exposed.
  • wet chemical treatment is performed on the first region 2 and the second region 3 at the same time, so that the surface structure of the second region 3 forms a right pyramid structure.
  • the surface structure of the first region 2 may be a boss structure.
  • the wet chemical treatment solution can penetrate the holes in the tunnel passivation layer and corrode the surface of the first region, thereby forming an inverted pyramid hole structure.
  • the tunnel passivation layer is completely corroded by the wet chemical treatment solution.
  • the surface structure of the first region forms a right pyramid structure.
  • the width of the base of the right pyramid structure on the surface of the first region is smaller than the width of the base of the right pyramid structure on the surface of the second region. width.
  • the semiconductor substrate 1 has opposing first and second surfaces. Moreover, both the first area 2 and the second area 3 are located on the second surface. Furthermore, the second side also has a third area 16 . Along the direction parallel to the second surface, the first regions 2 and the second regions 3 are alternately arranged at intervals. A third area 16 is located between each first area 2 and an adjacent second area 3 .
  • the tunnel passivation layer 4 covers at least the first region 2 and the third region 16 . Based on this, when the manufactured solar cell is a back-contact cell, the second surface corresponds to the backlight surface of the solar cell.
  • the first doped semiconductor layer 7 is formed on the second region 3 and the tunnel passivation layer 4, it is necessary to selectively remove the first doped semiconductor layer 7 at the location of the tunnel passivation layer 4 through wet chemical treatment.
  • the presence of the tunnel passivation layer 4 can act as an etching delay for the portions of the semiconductor substrate located in the first region 2 and the third region 16 . If the processing time is short, the surface structure of the first region 2 and the third region 16 may be a boss structure.
  • the wet chemical treatment solution can penetrate the holes in the tunnel passivation layer 4 and corrode the surfaces of the first region 2 and the third region 16 , thereby forming an inverted pyramid hole structure.
  • the tunnel passivation layer 4 is completely corroded by the wet chemical treatment solution.
  • the surface structures of the first region 2 and the third region 16 form a right pyramid structure.
  • the width of the tower base of the surface structure of the first region 2 and the third region 16 is smaller than the surface of the second region 3 The width of the structure's base.
  • the surface structure of the first region after wet chemical treatment can be determined according to the type of solar cell and actual needs.
  • the above step of forming the tunnel passivation layer 4 covering at least the first region 2 is: forming a tunnel passivation layer 4 covering at least the first region 2 and the second region 3 .
  • the above-mentioned solar cell manufacturing method further includes the step of: forming at least covering the first region 2 and the second region 3.
  • the surface structure of the second region 3 is a boss structure, a right pyramid structure or an inverted pyramid hole structure.
  • the surface structure of the first region 2 is a boss structure, a right pyramid structure or an inverted pyramid hole structure.
  • the portion of the first doped semiconductor layer and the tunnel passivation layer located on the second region may form a tunnel passivation contact structure.
  • the solar cell manufactured by the manufacturing method provided by the embodiment of the present invention is a tunnel oxide layer passivation contact solar cell.
  • the tunnel passivation layer in the above-mentioned tunnel passivation contact structure allows majority carriers to tunnel into the first doped semiconductor layer while blocking minority carriers from passing through, and then the majority carriers pass through the first doped semiconductor layer It is transmitted and collected by corresponding electrodes, reducing the recombination rate of carriers of different conductivity types at the surface of the second region, achieving interface passivation and selective collection of carriers, and further improving the photoelectric conversion efficiency of the solar cell.
  • the surface structure of the second area and the surface structure of the first area after wet chemical treatment have multiple possible implementation solutions.
  • Appropriate implementation solutions can be selected according to the requirements of different application scenarios, which is conducive to improving the embodiments of the present invention.
  • the applicability of the provided solar cell manufacturing methods in different application scenarios are possible implementation solutions.
  • the first region and the second region may be located on the same surface of the semiconductor substrate, or may be located on different surfaces of the semiconductor substrate.
  • the semiconductor substrate may have a first side and a second side opposite to each other.
  • the second surface has alternately arranged first areas and second areas.
  • the surface structure of the second area is a boss structure.
  • the surface structure of the first area is a right pyramid structure or an inverted pyramid hole structure.
  • the surface structure of the second area is a boss structure, because the boss structure is a right pyramid base structure remaining after polishing of the right pyramid structure.
  • the top surface of the right pyramid tower base structure is relatively flat, so the surface of the second area with the surface structure of the boss structure is a flat polished surface, which is conducive to improving the tunneling passivation layer and the first doped semiconductor layer on the second area.
  • the film formation quality is advantageous in that the tunnel passivation contact structure composed of the tunnel passivation layer and the portion of the first doped semiconductor layer located on the second region has excellent interface passivation and carrier selective collection characteristics. .
  • the first region and the second region are located on different surfaces of the semiconductor substrate
  • the first region is provided on the side of the semiconductor substrate opposite to the light-receiving surface
  • the first region may be a positive pyramid structure or an inverted pyramid hole structure, so that the surface of the first region can refract more light into the semiconductor substrate.
  • the surface structure of the second area may be a boss structure or an inverted pyramid hole structure.
  • the total surface area of the inverted pyramid suede surface is greater than the total surface area of the polished surface when the range of the second area is certain, when the surface structure of the second area is an inverted pyramid hole structure, the number of holes formed in the second area can be increased.
  • the contact area between the first doped semiconductor layer and the second region is beneficial to reducing the interface resistance of the second region.
  • the first region and the second region are located on different surfaces of the semiconductor substrate, if the first region is disposed on the side of the semiconductor substrate opposite to the backlight surface, then the first region after wet chemical treatment
  • the surface structure can be a boss structure or an inverted pyramid hole structure.
  • the surface structure of the second area may be a boss structure, a right pyramid structure or an inverted pyramid hole structure.
  • the conductivity type and doping concentration of the first doped semiconductor layer can be set according to actual needs, as long as it can be applied to the manufacturing method of the solar cell provided by the embodiment of the present invention.
  • the first doped semiconductor layer may be an N-type semiconductor layer doped with N-type conductive particles such as phosphorus.
  • the first doped semiconductor layer is a P-type semiconductor layer.
  • the conductivity type of the first doped semiconductor layer may be the same as the conductivity type of the semiconductor substrate, or may be opposite.
  • the first doped semiconductor layer can be amorphous, microcrystalline, single crystal, polycrystalline, nanocrystalline, etc.
  • the first doped semiconductor layer can be made of silicon, silicon germanium, germanium, doped Semiconductor materials such as hybrid silicon carbide and gallium arsenide.
  • the first doped semiconductor layer may be a hydrogenated doped layer.
  • the thickness of the first doped semiconductor layer can be set according to actual requirements and is not specifically limited here. For example, the thickness of the first doped semiconductor layer may be 20 nm to 600 nm.
  • the first doped semiconductor layer 7 may be formed only on the portion of the tunnel passivation layer 4 corresponding to the second region 3 .
  • the first doped semiconductor layer 7 can also cover the entire tunnel passivation layer 4 .
  • the above-mentioned semiconductor substrate has a first surface and a second surface opposite to each other. Along a direction parallel to the second surface, the second surface has alternately arranged first areas and second areas.
  • forming the tunnel passivation layer covering at least the first region means forming a tunnel passivation layer covering at least the first region and the second region.
  • the surface structure of the first area after wet chemical treatment is a boss structure, a right pyramid structure or an inverted pyramid hole structure. After wet chemical treatment, the surface of the second region structure has a boss structure.
  • the corresponding solar cell in this case can be a tunnel oxide layer passivation contact solar cell.
  • the manufacturing method of the above solar cell further includes: forming at least a tunnel passivation layer covering the first region and the second region.
  • the first doped semiconductor layer is on the portion corresponding to the second region.
  • the portion of the first doped semiconductor layer and the tunnel passivation layer located on the second region constitutes a tunnel passivation contact structure included in the tunnel oxide layer passivation contact solar cell.
  • the surface structure of the first region and the surface structure of the second region after wet chemical treatment can be referred to the above, and will not be described again here.
  • the solar cell corresponding to this situation can be a double-sided contact cell or a back-contact cell.
  • a double-sided contact battery includes a semiconductor substrate having a first electrode region and a second electrode region respectively corresponding to two electrodes of opposite conductivity types. Based on this, when the solar cell corresponding to this situation is a double-sided contact cell, the first electrode region may be entirely or partially disposed on the first surface of the semiconductor substrate. The above-mentioned second electrode area is provided in the second area of the second surface.
  • the first side of the solar cell also needs to be wet chemically treated
  • the first side and the first area can be wet chemically treated at the same time, or the second side can be treated separately in different operating steps.
  • One side and first area undergo wet chemical treatment.
  • the first surface and the first region are subjected to wet chemical treatment at the same time, so that the surface structure of the first surface and the surface structure of the first region are different.
  • performing wet chemical treatment on the first surface and the first region at the same time can improve the manufacturing efficiency of the solar cell and help improve the mass productivity of the solar cell.
  • the manufactured solar cell is a double-sided contact cell
  • wet chemical treatment is performed on the first side 5 and the first region 2 at the same time, so that the first side 5
  • the surface structure forms a boss structure
  • the surface structure of the first region 2 forms a boss structure, a right pyramid structure or an inverted pyramid hole structure.
  • the first surface when the surface structure of the first surface after wet chemical treatment is a boss structure, the first surface is a flat polished surface. Because the polished surface has relatively good reflective properties. Moreover, the surface structure of the first side forms a boss structure after wet chemical treatment. Therefore, when the first side corresponds to the backlight side of the double-sided contact cell, the light can be at least partially reflected back into the semiconductor substrate after reaching the first side. , is reused by the semiconductor substrate to further improve the photoelectric conversion efficiency of double-sided contact cells. At this time, the second surface corresponds to the light-receiving surface of the double-sided contact battery. Specifically, after wet chemical treatment, the surface structure of the first area can be set according to actual needs.
  • the surface structure of the first region after wet chemical treatment is a boss structure
  • the surface of the first region is relatively flat, which can improve the density of the passivation anti-reflection layer formed on the first region, thereby improving passivation.
  • the passivation effect of the anti-reflection layer on the surface of the first region further improves the photoelectric conversion efficiency of the double-sided solar cell.
  • the surface structure of the first area after wet chemical treatment is a right pyramid structure or an inverted pyramid hole structure, more light can be refracted into the semiconductor substrate through the surface of the first area, further improving the performance of the double-sided contact battery. Photoelectric conversion efficiency. It can be seen that the surface structure of the first area after wet chemical treatment can be determined according to the requirements of different application scenarios.
  • the base width of the surface structure formed on the first surface 5 is greater than the base width of the surface structure formed on the first region 2 .
  • the surface structure on the first side 5 is a boss structure, and the first side
  • the surface structure of the first area 2 forms a right pyramid structure or an inverted pyramid hole after wet chemical treatment. structure.
  • the second surface 6 corresponds to the light-receiving surface of the double-sided contact cell.
  • the positive pyramid structure and the inverted pyramid hole structure in the first area 2 can allow more light to be refracted into the semiconductor substrate 1 .
  • the first side 5 and the first region 2 are simultaneously subjected to wet chemical treatment, so that the first The surface structure of the surface 5 forms a right pyramid structure, and the surface structure of the first region 2 forms a boss structure, a right pyramid structure or an inverted pyramid hole structure.
  • the above-mentioned solar cell manufacturing method may include the following steps: as shown in Figure 12, sequentially forming an entire layer disposed on Tunnel passivation layer 4 and first doped semiconductor layer 7 on second side 6 .
  • the first doped semiconductor layer 7 is A patterning process is performed, leaving only the portion of the first doped semiconductor layer 7 located on the second region 3 .
  • the entire tunnel passivation layer 4 and the first doped semiconductor layer 7 covering the second surface can be formed sequentially through processes such as atomic layer deposition or plasma enhanced chemical vapor deposition.
  • a mask layer 8 is formed on the portion of the first doped semiconductor layer 7 located above the second region 3 .
  • the mask layer 8 may be a photoresist layer, a silicon nitride layer, a silicon oxide layer, or the like, and a film layer with a certain etching selectivity ratio between the first doped semiconductor layer 7 and the like.
  • the formation process of the mask layer 8 can be determined according to the material of the mask layer 8 and is not specifically limited here.
  • the first doped semiconductor layer 7 can be patterned using a laser etching process, a plasma etching process or a wet chemical treatment process.
  • a wet chemical treatment process is used to pattern the first doped semiconductor layer 7, the same treatment solution can be used to directly process the first region 2 after the above-mentioned patterning process.
  • the solar cell manufactured is a back junction cell
  • the first doped semiconductor layer is located on the second surface side of the semiconductor substrate
  • the second surface of the semiconductor substrate is in contact with the back junction cell.
  • the backlight of the battery corresponds.
  • the first side of the semiconductor substrate corresponds to the light-receiving side of the back contact cell.
  • the first side with a right pyramidal surface structure can refract more light from the first side into the semiconductor substrate, further improving the photoelectric conversion efficiency of the back contact cell.
  • the surface structure of the first region on the second surface can form any one of a boss structure, a right pyramid structure, or an inverted pyramid hole structure, so as to improve the performance provided by the embodiments of the present invention. Suitability of manufacturing methods for different application scenarios. Specifically, the surface structure of the first area after wet chemical treatment can be determined according to the requirements of different application scenarios.
  • the base width of the surface structure formed on the first surface 5 is smaller than the base width of the surface structure formed on the first region 2 .
  • the surface structure of the first surface 5 is a right pyramid shape. structure, and the width of the tower base of the surface structure formed on the first surface 5 is smaller than the width of the tower base of the surface structure formed on the first region 2, the surface structure of the first region 2 after wet chemical treatment is a boss structure.
  • the second surface 6 corresponds to the backlight surface of the back contact cell, and the surface of the first region 2 can reflect at least part of the light back into the semiconductor substrate 1 , further improving the photoelectric conversion efficiency of the back contact cell.
  • the base width of the surface structure formed on the second region 3 is different from that of the first region after wet chemical treatment. 2.
  • the surface structure is set on the tower base width.
  • the surface structure provided on the second region 3 may be of the same type as the surface structure provided on the first region 2 after wet chemical treatment, or may be different.
  • the width of the tower base of the convex structure provided on the surface of the first area is different from The width of the tower base of the boss structure provided on the second area after wet chemical treatment.
  • the width of the tower base of the boss structure provided on the surface of the second area is greater than The width of the base of the inverted pyramid hole structure in the first area after wet chemical treatment.
  • the first doped semiconductor layer can be formed by the difference between the base width of the surface structure provided on the second region and the base width of the surface structure formed on the first region after wet chemical treatment. and the specific formation position of the second doped semiconductor layer (or doped region), so that there is higher resolution between the first doped semiconductor layer and the second doped semiconductor layer (or doped region), This can reduce the difficulty of accurately setting electrodes with the same polarity on the first doped semiconductor layer and the second doped semiconductor layer (or doped region) respectively, thereby reducing the difficulty of the first doped semiconductor layer and the third doped semiconductor layer with opposite conductivity types.
  • the second doped semiconductor layer (or doped region) reduces the risk of short circuiting the back contact battery through electrode coupling, thereby improving the electrical stability of the back contact battery.
  • the surface of the first region 2 after wet chemical treatment is relative to the first region 2 .
  • the surface of the second region 3 is concave into the semiconductor substrate 1 .
  • the first doped semiconductor layer 7 and the second doped semiconductor layer 12 (or doped region 11) with opposite doping types in the back contact battery are formed on the second region 3 and the first region 2 respectively.
  • the first doped semiconductor layer 7 can be offset from at least part of the second doped semiconductor layer 12 (or the first doped semiconductor layer 7 can be completely offset from the doped region 11), which is beneficial to preventing the first doped semiconductor layer 7 from being separated from the second doped semiconductor layer 12. Leakage current occurs between the doped semiconductor layers 12 (or doped regions 11).
  • the depth at which the surface of the first region is recessed into the semiconductor substrate relative to the surface of the second region after wet chemical treatment can be set according to actual needs, as long as it can be applied to the manufacturing method of the solar cell provided by the embodiment of the present invention. Both are available.
  • the surface of the first region is recessed into the semiconductor substrate by 0.51 ⁇ m to 8 ⁇ m relative to the surface of the second region.
  • the second surface 6 is provided with a middle region 9 and a middle region 9 .
  • the outwardly extending edges of area 9 isolate area 10 .
  • the first area 2 and the second area 3 are located in the intermediate area 9 .
  • the surface of the edge isolation region 10 is recessed into the semiconductor substrate relative to the surface of the second region 3 .
  • the first doped semiconductor layer 7 and one of the second doped semiconductor layer 12 (or doped region 11) of opposite doping types are also doped into the side surfaces of the semiconductor substrate 1 .
  • the surface of the edge isolation region 10 is concave into the semiconductor substrate relative to the surface of the second region 3, so that the first doped semiconductor layer 7 and the second doped semiconductor layer 12 (or doped The other one of the doped regions 11) is isolated from the side of the semiconductor substrate 1 by the edge isolation region 10, preventing the other one of the first doped semiconductor layer 7 and the second doped semiconductor layer 12 (or the doped region 11) from Leakage is generated between the back-contact battery and the side surface of the semiconductor substrate 1, thereby improving the photoelectric conversion efficiency of the back-contact battery.
  • the depth at which the surface of the edge isolation region is recessed into the semiconductor substrate relative to the surface of the second region after wet chemical treatment can be set according to actual needs, as long as it can be applied to the manufacturing method of the solar cell provided by the embodiment of the present invention. Both are available.
  • the surface of the edge isolation region is recessed into the semiconductor substrate by 0.5 ⁇ m to 8 ⁇ m relative to the surface of the second region.
  • the solar cell manufacturing method further includes the following steps: as shown in Figure 20 As shown, a doped region 11 is formed in the first region 2, and the conductivity type of the doped region 11 is opposite to that of the first doped semiconductor layer 7. Or, as shown in FIG. 21 , the second doped semiconductor layer 12 is formed on the first region 2 . The conductivity type of the second doped semiconductor layer 12 is opposite to that of the first doped semiconductor layer 7 .
  • the above-mentioned doped region can be formed using processes such as plasma injection and diffusion under the masking action of the corresponding mask layer.
  • a process such as chemical vapor deposition can be used to form an intrinsic semiconductor layer covering the first doped semiconductor layer and the first region.
  • the intrinsic semiconductor layer can be doped using processes such as plasma injection or diffusion to obtain a second doped semiconductor material layer.
  • the portion of the second doped semiconductor material layer located on the first doped semiconductor layer is selectively removed to obtain the second doped semiconductor layer.
  • the tunneling layer can be patterned at least under the mask of the second doped semiconductor layer 12 , at least leaving the tunneling layer located on the semiconductor substrate. 1 and the second doped semiconductor layer 12 .
  • the back contact battery After forming the above-mentioned doped region or the second doped semiconductor layer, if the back contact battery does not include other film layers, screen printing and other processes can be used to form the doped region (or the second doped semiconductor layer) respectively. ) a first electrode in ohmic contact, and a second electrode in ohmic contact with the first doped semiconductor layer, obtaining a back contact cell.
  • a surface passivation layer may also be formed on the second side of the semiconductor substrate to protect the first doped semiconductor layer and the doped region. (or the second doped semiconductor layer) is passivated on the side facing away from the semiconductor substrate, thereby reducing the carrier recombination rate on the side of the first doped semiconductor layer and the doped region facing away from the semiconductor substrate, further improving the photovoltaic performance of the back contact cell. conversion efficiency.
  • the above-mentioned manufacturing method of the solar cell further includes the step of: forming at least the first doped semiconductor layer covering the first doped semiconductor layer and Surface passivation layer on doped areas.
  • the above-mentioned manufacturing method of the solar cell further includes the step of: forming a layer covering at least the first region. a doped semiconductor layer and a surface passivation layer on the second doped semiconductor layer.
  • the thickness and material of the surface passivation layer can be set according to actual needs and are not specifically limited here.
  • the material of the surface passivation layer may be one or more of silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, silicon carbide, and amorphous silicon.
  • screen printing or other processes can be used to form the first electrode 14 and the first electrode 14 that are in ohmic contact with the doped region 11 (or the second doped semiconductor layer 12 ) respectively.
  • a second electrode 15 in ohmic contact with the first doped semiconductor layer 7 is obtained.
  • the above-mentioned manufacturing method of the solar cell further includes Step: As shown in Figure 23, form a surface passivation layer 13 covering at least the first region 2 and the first doped semiconductor layer 7. As shown in FIG. 24 , the first electrode 14 is formed penetrating the surface passivation layer 13 . The bottom of the first electrode 14 is in contact with the first region 2 . As shown in FIG. 25 , forming the doping region 11 in the first region 2 is: using the first electrode 14 as a doping source to form the doping region 11 in the first region 2 .
  • the aforementioned process may be used to form a surface passivation layer covering the first region and the first doped semiconductor layer.
  • the material and thickness of the surface passivation layer can be referred to the previous article.
  • laser etching or plasma etching or other processes may be used to open an electrode window at the contact between the surface passivation layer and the first region.
  • a process such as screen printing can be used to form a first electrode that penetrates the surface passivation layer through the electrode window.
  • the material of the first electrode can be determined according to the doping type of the doping region. For example: when the doped region is an N-type doped region, the material of the first electrode may be antimony.
  • the material of the first electrode may be aluminum, gallium or indium.
  • the first electrode may be heat treated by sintering or other methods, thereby forming a doped region in the first region using the first electrode as a doping source.
  • the second electrode may be formed at the same time as the first electrode, or in a different step from the first electrode.
  • the second electrode is in ohmic contact with the first doped semiconductor layer.
  • the surface passivation layer can passivate the surface of the first region and the side of the first doped semiconductor layer facing away from the semiconductor substrate, reducing the interference between the surface of the first region and the first doped semiconductor layer.
  • using the first electrode penetrating the surface passivation layer as a doping source can only form a doped region within a certain range where the first region contacts the first electrode, preventing the doped region from contacting the first doped semiconductor layer. Electricity leakage occurs.
  • the process of forming a mask layer to only form a doped region in the first region can be saved, thereby simplifying the manufacturing process of the back contact battery.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种太阳能电池及其制造方法,涉及太阳能电池技术领域,以在隧穿钝化层的刻蚀延迟作用下,降低湿化学处理溶液对第一区域的处理程度,使得湿化学处理后第一区域的表面结构满足预设方案的要求,提高太阳能电池电池的光电转换效率。所述太阳能电池的制造方法包括:提供一半导体基底,半导体基底具有第一区域和第二区域。形成至少覆盖在第一区域上的隧穿钝化层。在隧穿钝化层的刻蚀延迟作用下,对第一区域进行湿化学处理。经湿化学处理后第一区域的表面结构和第二区域的表面结构不同。

Description

一种太阳能电池及其制造方法
本申请要求在2022年8月22日提交中国专利局、申请号为202211007498.5、名称为“一种太阳能电池的制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及太阳能电池技术领域,尤其涉及一种太阳能电池及其制造方法。
背景技术
太阳能电池作为绿色能源,对节能减排起着积极的作用,使用也越来越广泛。其中,光伏太阳能电池是将太阳的光能转换为电能的装置。具体的,太阳能电池利用光生伏特原理产生载流子,然后使用电极将载流子引出,从而利于将电能有效利用。
但是,采用现有的制造太阳能电池的方法对半导体基底具有的至少一类表面区域进行湿化学处理后,会使得其中一类表面区域的被处理程度较大,从而导致太阳能电池的光电转换效率降低。
发明内容
本发明的目的在于提供一种太阳能电池及其制造方法,以在隧穿钝化层的刻蚀延迟作用下,降低湿化学处理溶液对第一区域的处理程度,使得湿化学处理后第一区域的表面结构满足预设方案的要求,提高太阳能电池电池的光电转换效率。
本发明提供了一种太阳能电池的制造方法,该太阳能电池的制造方法包括:
提供一半导体基底,半导体基底具有第一区域和第二区域。
形成至少覆盖在第一区域上的隧穿钝化层。
在隧穿钝化层的刻蚀延迟作用下,对第一区域进行湿化学处理。经湿化学处理后第一区域的表面结构和第二区域的表面结构不同。
采用上述技术方案的情况下,本发明提供的太阳能电池包括的半导体基底具有第一区域和第二区域。并且,在对第一区域进行湿化学处理前,形成了至少覆盖在第一区域上的隧穿钝化层。基于此,在对第一区域进行湿化学处理的过程中,至少覆盖在第一区域上的隧穿钝化层可以起到刻蚀延迟的作用,降低湿化学处理溶液对第一区域表面的处理程度。由此可见,与现有制造中执行湿化学处理的溶液直接对第一区域的表面进行处理相比,本发明提供的制造方法利于防止在湿化学处理后第一区域的表面被过度处理,使得经湿化学处理后第一区域的表面结构满足预设方案的要求,提高太阳能电池良率。并且,还利于防止经湿化学处理后半导体基底减薄过大,降低半导体基底减薄后出现隐裂的风险,同时还可以增大光半导体基底的传播路径,进而增大光入射半导体基底后被吸收的概率,提高太阳能电池的光电转换效率。
作为一种可能的实现方式,上述隧穿钝化层的厚度为1.4nm至1.8nm。应理解,在一定范围内,隧穿钝化层的厚度与隧穿钝化层所能起到刻蚀延迟作用的时间成正比。在此情况下,当隧穿钝化层的厚度为1.4nm至1.8nm时,隧穿钝化层的厚度适中,可以防止因隧穿钝化层的厚度较小使得其容易被执行湿化学处理的溶液刻穿而导致隧穿钝化层起到刻蚀延迟作用的时间较短,进一步确保在湿化学处理后第一区域的表面不被过度处理。同时,也可以防止因隧穿钝化层的厚度较大导致材料浪费,降低太阳能电池的制造成本。此外,隧穿钝化层不仅具有刻蚀延迟的作用,当隧穿钝化层应用至隧穿钝化接触结构中时,将隧穿钝化层的厚度设置为上述范围还可以防止因隧穿钝化层的厚度较大而导致载流子难以基于隧穿效应穿过该隧穿钝化层,降低隧穿钝化层的隧穿电阻,进一步提高太阳能电池的光电转换效率。
作为一种可能的实现方式,上述隧穿钝化层的材质为氧化硅、氧化铝、氧化钛、二氧化铪、氧化镓、五氧化二钽、五氧化铌、氮化硅、碳氮化硅、氮化铝、氮化钛或氮碳化钛。在此情况下,隧穿钝化层的材质可选范围较大,利于提高本发明提供的太阳能电池的制造方法在不同应用场景下的适用性。
作为一种可能的实现方式,对第一区域和第二区域同时进行湿化学处理,以使得第一区域的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构,并使得第二区域的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
采用上述技术方案的情况下,同时对第一区域和第二区域进行湿化学处理可以提高太阳能电池的制造效率,利于提升太阳能电池的量产性。此外,对第一区域和第二区域同时进行湿化学处理后,第一区域的表面结构和第二区域的表面结构分别具有多种可能的实现方案,利于提高本发明提供的太阳能电池的制造方法在不同应用场景下的适用性。
作为一种可能的实现方式,上述形成至少覆盖在第一区域上的隧穿钝化层为:形成至少覆盖在第一区域和第二区域上的隧穿钝化层。
形成至少覆盖在第一区域和第二区域上的隧穿钝化层后,对第一区域进行湿化学处理 前,太阳能电池的制造方法还包括:形成至少覆盖在隧穿钝化层对应第二区域的部分上的第一掺杂半导体层。
第二区域的表面结构为凸台结构、正金字塔型结构或倒金字塔型孔洞结构。经湿化学处理后第一区域的表面结构为凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
采用上述技术方案的情况下,第一掺杂半导体层和隧穿钝化层位于第二区域上的部分可以构成隧穿钝化接触结构。此时,本发明提供的制造方法所制造的太阳能电池为隧穿氧化层钝化接触太阳能电池。其中,上述隧穿钝化接触结构中的隧穿钝化层允许多数载流子隧穿进入第一掺杂半导体层同时阻挡少数载流子通过,进而多数载流子经由第一掺杂半导体层传输并被相应电极收集,降低不同导电类型的载流子在第二区域表面处的复合速率,实现了界面钝化和载流子的选择性收集,进一步提高太阳能电池的光电转换效率。另外,第二区域的表面结构、以及经湿化学处理后第一区域的表面结构均具有多种可能的实现方案,可以根据不同应用场景的要求,选择合适的实现方案,利于提高本发明提供的太阳能电池的制造方法在不同应用场景下的适用性。
作为一种可能的实现方式,上述半导体基底具有相对的第一面和第二面。沿着平行于第二面的方向,第二面具有交替设置的第一区域和第二区域。
形成至少覆盖在第一区域上的隧穿钝化层为:形成至少覆盖在第一区域和第二区域上的隧穿钝化层。
经湿化学处理后第一区域的表面结构为凸台结构、正金字塔型结构或倒金字塔型孔洞结构。经湿化学处理后第二区域的表面结构为凸台结构。
采用上述技术方案的情况下,第二区域的表面结构为凸台结构。因凸台结构为正金字塔型结构经抛光处理后剩余的正金字塔塔基结构。正金字塔塔基结构的顶面较为平坦,故表面结构为凸台结构的第二区域的表面为平坦的抛光面,利于提高隧穿钝化层和第一掺杂半导体层在第二区域上的成膜质量,进而利于使得由隧穿钝化层和第一掺杂半导体层位于第二区域上的部分所构成的隧穿钝化接触结构具有优异的界面钝化和载流子选择性收集特性。
在一种示例中,形成至少覆盖在第一区域和第二区域上的隧穿钝化层后,对第一区域进行湿化学处理前,太阳能电池的制造方法还包括:形成至少覆盖在隧穿钝化层对应第二区域的部分上的第一掺杂半导体层。该情况下具有的有益效果可以参考前文所述的第一掺杂半导体层和隧穿钝化层位于第二区域上的部分所构成的隧穿钝化接触结构的有益效果分析,此处不再赘述。
示例性的,经湿化学处理后第一区域的表面结构为正金字塔型结构或倒金字塔型孔洞结构。
采用上述技术方案的情况下,因正金字塔结构和倒金字塔型孔洞结构均为绒面结构,且绒面结构具有陷光作用,故当具有第一区域的第二面与太阳能电池的受光面对应时,第一区域的表面可以将更多的光线折射至半导体基底内,从而可以进一步提高太阳能电池的光电转换效率。
在一种示例中,对第一面和第一区域同时进行湿化学处理,以使得第一面的表面结构和第一区域的表面结构不同。在此情况下,同时对第一面和第一区域进行湿化学处理可以提高太阳能电池的制造效率,利于提高太阳能电池的量产性。
示例性的,上述太阳能电池为双面接触电池。在此情况下,对第一面和第一区域同时进行湿化学处理,以使得第一面的表面结构形成凸台结构,并使得第一区域的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
采用上述技术方案的情况下,经湿化学处理后第一面的表面结构为凸台结构时,第一面的表面为平坦的抛光面。而抛光面具有相对良好的反射特性,因此当第一面与双面接触电池的背光面对应时,光线到达第一面后可以至少部分被反射回半导体基底内,被半导体基底重新利用,进一步提高双面接触电池的光电转换效率。此时,第二面与双面接触电池的受光面对应。在湿化学处理后,位于第二面上的第一区域的表面结构可以形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构中的任一种,以提高本发明提供的制造方法对不同应用场景的适用性。
示例性的,上述第一面上形成的表面结构的塔基宽度大于第一区域上形成的表面结构的塔基宽度。
采用上述技术方案的情况下,因凸台结构对应的塔基宽度分别大于正金字塔型结构或倒金字塔型孔洞结构对应的塔基宽度,故在第一面的表面结构为凸台结构、且第一面上形成的表面结构的塔基宽度大于第一区域上形成的表面结构的塔基宽度的情况下,经湿化学处理后第一区域的表面结构可以为正金字塔型结构或倒金字塔型孔洞结构。此时,将第二面与双面接触电池的受光面对应,第一区域的表面可以使得更多的光线折射至半导体基底内,进一步提高双面接触电池的光电转换效率。
在另一种示例中,上述太阳能电池为背接触电池。在此情况下,对第一面和第一区域同时进行湿化学处理,以使得第一面的表面结构形成正金字塔型结构,并使得第一区域的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
采用上述技术方案的情况下,当太阳能电池为背接触电池时,因背接触电池包括的极性相反的两类电极均为太阳能电池的背光面,背接触电池的受光面没有金属电极遮挡的影响,故与双面接触电池相比,背接触电池具有更高的短路电流。此外,第一面与背接触电池的受光面对应,因此表面结构为正金字塔型结构或倒金字塔型孔洞结构的第一面可以将更多的光线由第一面折射至半导体基底内,进一步提高背接触电池的光电转换效率。并且,第二面与背接触电池的背光面对应。在湿化学处理后,位于第二面上的第一区域的表面结构可以形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构中的任一种,以提高本发明提供的制造方法对不同应用场景的适用性。
示例性的,上述第一面上设置的表面结构的塔基宽度小于第一区域上形成的表面结构的塔基宽度。
采用上述技术方案的情况下,如前文所述,因正金字塔型结构和倒金字塔型孔洞结构对应的塔基宽度均小于凸台结构对应的塔基宽度,故在第一面的表面结构为正金字塔型结构、且第一面上形成的表面结构的塔基宽度小于第一区域上形成的表面结构的塔基宽度的情况下,经湿化学处理后第一区域的表面结构可以为凸台结构。此时,将第二面与背接触电池的背光面对应,第一区域能够将至少部分光线反射回半导体基底内,进一步提高背接触电池的光电转换效率。
作为一种可能的实现方式,在太阳能电池为背接触电池的情况下,第二区域上形成的表面结构的塔基宽度不同于经湿化学处理后第一区域上形成的表面结构的塔基宽度。
采用上述技术方案的情况下,可以通过第二区域上设置的表面结构的塔基宽度与经湿化学处理后第一区域形成上的表面结构的塔基宽度的差异,将第一掺杂半导体层和第二掺杂半导体层(或掺杂区)的具体形成位置区分开,使得第一掺杂半导体层和第二掺杂半导体层(或掺杂区)之间具有更高的可分辨性,从而能够降低在第一掺杂半导体层和第二掺杂半导体层(或掺杂区)上分别准确设置与其极性相同的电极的难度,进而降低导电类型相反的第一掺杂半导体层和第二掺杂半导体层(或掺杂区)通过电极耦合而导致背接触电池短路的风险,提高背接触电池的电学稳定性。
作为一种可能的实现方式,上述提供一半导体基底后,对第一区域进行湿化学处理前,太阳能电池的制造方法包括:
依次形成整层设置在第二面上的隧穿钝化层和第一掺杂半导体层。
对第一掺杂半导体层进行图案化处理,仅保留第一掺杂半导体层位于第二区域上的部分。
采用上述技术方案的情况下,对整层设置在第二面上的第一掺杂半导体层进行图案化处理,以便于在第一区域上(或第一区域内)形成与第一掺杂半导体层导电类型相反的第二掺杂半导体层(或掺杂区)。此外,在实际的应用过程中,可以通过湿化学处理的方式同时对第一面进行制绒、以及对第一掺杂半导体层进行图案化处理,以提高背接触电池的制造效率。并且,在该情况下,隧穿钝化层和第一掺杂半导体层位于第一区域上的部分均具有刻蚀延迟的作用,可以在一定范围内延长执行制绒和图案化处理的溶液腐蚀至第一区域表面的刻蚀延迟时间,从而可以为在第一面上形成的满足预设方案要求的正金字塔型结构争取较长的处理时间,提高第一面上形成的正金字塔型结构的质量,进一步提升背接触电池的光电转换效率。
作为一种可能的实现方式,经湿化学处理后第一区域的表面相对于第二区域的表面向半导体基底内凹入。
采用上述技术方案的情况下,因背接触电池中掺杂类型相反的第一掺杂半导体层和第二掺杂半导体层(或掺杂区)分别形成在第二区域和第一区域上(或第一区域内),故在经湿化学处理后第一区域的表面相对于第二区域的表面向半导体基底内凹入的情况下,沿着半导体基底的厚度方向,第一掺杂半导体层可以至少与部分第二掺杂半导体层错开(或者第一掺杂半导体层可以完全与掺杂区错开),利于防止第一掺杂半导体层和第二掺杂半导体层(或掺杂区)之间产生漏电。
作为一种可能的实现方式,上述第二面设置有中间区域、以及自中间区域向外延伸的边缘隔离区域。第一区域和第二区域位于中间区域内。在此情况下,经湿化学处理后边缘隔离区域的表面相对于第二区域的表面向半导体基底内凹入。
采用上述技术方案的情况下,在实际制造背接触电池包括的掺杂类型相反的第一掺杂半导体层和第二掺杂半导体层(或掺杂区)的过程中,第一掺杂半导体层和第二掺杂半导体层(或掺杂区)中的一者的掺杂元素也会掺杂至半导体基底的侧面。基于此,经湿化学处理后边缘隔离区域的表面相对于第二区域的表面向半导体基底内凹入,从而可以将第一掺杂半导体层和第二掺杂半导体层(或掺杂区)中的另一者通过边缘隔离区域与半导体基底的侧面隔离开,防止第一掺杂半导体层和第二掺杂半导体层(或掺杂区)中的另一者与半导体基底的侧面之间产生漏电,提高背接触电池的光电转换效率。
作为一种可能的实现方式,对第一区域进行湿化学处理后,太阳能电池的制造方法还包括:在第一区域内形成掺杂区,掺杂区与第一掺杂半导体层的导电类型相反。或,在第一区域上形成第二掺杂半导体层。第二掺杂半导体层与第一掺杂半导体层的导电类型相反。
作为一种可能的实现方式,在第一区域内形成掺杂区后,太阳能电池的制造方法还包括:形成至少覆盖在第一掺杂半导体层和掺杂区上的表面钝化层。
采用上述技术方案的情况下,表面钝化层可以对第一掺杂半导体层和掺杂区背离半导体基底的一侧进行钝化,降低第一掺杂半导体层和掺杂区背离半导体基底的一侧的载流子复合速率,进一步提高背接触电池的光电转换效率。
作为另一种可能的实现方式,在第一区域上形成第二掺杂半导体层后,太阳能电池的制造方法还包括:形成至少覆盖在第一掺杂半导体层和第二掺杂半导体层上的表面钝化层。该情况下具有的有益效果可以参考前文所述的形成至少覆盖在第一掺杂半导体层和掺杂区上的表面钝化层所具有的有益效果,此处不再赘述。
作为一种可能的实现方式,上述对第一区域进行湿化学处理后,在第一区域内形成掺杂区前,太阳能电池的制造方法还包括:形成至少覆盖在第一区域和第一掺杂半导体层上的表面钝化层。形成贯穿表面钝化层的第一电极。第一电极的底部与第一区域接触。
上述在第一区域内形成掺杂区为:以第一电极为掺杂源在第一区域内形成掺杂区。
采用上述技术方案的情况下,表面钝化层可以对第一区域的表面、以及对第一掺杂半导体层背离半导体基底的一侧进行钝化,降低第一区域表面和第一掺杂半导体层背离半导体基底的一侧的载流子复合速率。此外,以贯穿表面钝化层的第一电极为掺杂源可以仅在第一区域与第一电极相接触的一定范围内形成掺杂区,防止掺杂区和第一掺杂半导体层接触而出现漏电。同时,还可以节省为仅在第一区域内形成掺杂区而形成掩膜层的工序,简化背接触电池的制造过程。
本发明还提供了一种太阳能电池,该太阳能电池由任一前述的太阳能电池制造方法制备得到。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的太阳能电池的制造方法流程图;
图2为本发明实施例提供的半导体基底的第一种结构的纵向剖视示意图;
图3为本发明实施例提供的半导体基底的第二种结构的纵向剖视示意图;
图4中(1)至(4)部分为本发明实施例中在第一区域和第二区域位于不同面的情况下,第一区域和第二区域在半导体基底上的四种分布情况示意图;
图5为本发明实施例中半导体基底的第二面仅具有第一区域和第二区域时,第一区域和第二区域在第二面的分布情况示意图;
图6为本发明实施例中半导体基底的第二面具有边缘隔离区域和中间区域时,各区域在第二面的分布情况示意图;
图7为本发明实施例中在第一区域和第二区域位于不同面的情况下,形成隧穿钝化层后的第一种结构纵向剖视示意图;
图8为本发明实施例中在第一区域和第二区域位于不同面的情况下,对第二区域进行湿化学处理后的结构纵向剖视示意图;
图9为本发明实施例中在第一区域和第二区域同一面的情况下,对第一区域和第二区域同时进行湿化学处理后的结构纵向剖视示意图;
图10为本发明实施例中在第一区域和第二区域均位于第二面的情况下,在形成覆盖第一区域和第二区域的隧穿钝化层、以及位于第二区域上方的第一掺杂半导体层后的结构纵向剖视示意图;
图11为本发明实施例中对第一面和第一区域同时进行金属湿化学处理后的第一种结构纵向剖视示意图;
图12为本发明实施例中依次形成覆盖第一区域和第二区域的隧穿钝化层和第一掺杂半导体层后的结构纵向剖视示意图;
图13为本发明实施例中在第一掺杂半导体层上形成制造掩膜层的材料层后的结构纵向剖视示意图;
图14为本发明实施例中在第一掺杂半导体层上形成掩膜层后的结构纵向剖视示意图;
图15为本发明实施例中在掩膜层的掩膜作用下对第一掺杂半导体层进行图案化处理后的结构纵向剖视示意图;
图16为本发明实施例中对第一面和第一区域同时进行湿化学处理后的第二种结构纵向剖视示意图;
图17为本发明实施例中对第一面和第一区域同时进行湿化学处理后的第三种结构纵 向剖视示意图;
图18为本发明实施例中对第一面和第一区域同时进行湿化学处理后的第四种结构纵向剖视示意图;
图19为本发明实施例中经湿化学处理后边缘隔离区域和第一区域的表面均相对于第二区域的表面向半导体基底内凹入的结构纵向剖视示意图;
图20为本发明实施例中形成掺杂区后的第一种结构纵向剖视示意图;
图21为本发明实施例中形成第二掺杂半导体层后的第一种结构纵向剖视示意图;
图22为本发明实施例中形成第二掺杂半导体层后的第二种结构纵向剖视示意图;
图23为本发明实施例中形成表面钝化层后的一种结构纵向剖视示意图;
图24为本发明实施例中形成第一电极后的结构纵向剖视示意图;
图25为本发明实施例中形成掺杂区后的第二种结构纵向剖视示意图;
图26为本发明实施例中形成第一电极和第二电极后的一种结构纵向剖视示意图。
附图标记:1为半导体基底,2为第一区域,3为第二区域,4为隧穿钝化层,5为第一面,6为第二面,7为第一掺杂半导体层,8为掩膜层,9为中间区域,10为边缘隔离区域,11为掺杂区,12为第二掺杂半导体层,13为表面钝化层,14为第一电极,15为第二电极,16为第三区域。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
太阳能电池作为绿色能源,对节能减排起着积极的作用,使用也越来越广泛。其中,光伏太阳能电池是将太阳的光能转换为电能的装置。具体的,太阳能电池利用光生伏特原理产生载流子,然后使用电极将载流子引出,从而利于将电能有效利用。
但是,采用现有的制造太阳能电池的方法对半导体基底具有的至少一类表面区域进行湿化学处理后,会使得其中一类表面区域的被处理程度较大,从而导致太阳能电池的光电转换效率降低。
例如:采用现有的制造方法对半导体基底与太阳能电池受光面对应的一面进行湿化学处理,以使得该表面为正金字塔绒面的过程中,湿化学处理的溶液也会导致半导体基底与太阳能电池背光面对应的一面制绒,使得半导体基底减薄明显,缩短了光线在半导体基底内的传播路径,进而使得光线入射半导体基底内被吸收的概率降低,最终导致太阳能电池的光电转换效率降低。
又例如:采用现有的制造方法制造背接触电池的过程中,形成覆盖在半导体基底与背光面对应的一面上第一掺杂半导体层后,需要去除位于半导体基底部分区域上的第一掺杂半导体层,以便于后续在该部分内(或上)形成与第一掺杂半导体层导电类型相反的第二掺杂半导体层。而在采用湿化学处理选择性刻蚀第一掺杂半导体层时,会导致半导体基底 对应待去除区域的部分处理过度,使得半导体基底减薄明显,从而出现前文所述的问题。
如图1所示,本发明实施例提供了一种太阳能电池的制造方法。其中,本发明实施例提供的制造方法所制造的太阳能电池可以为双面接触电池,即太阳能电池包括的极性相反的第一电极和第二电极中的一者设置在太阳能电池的受光面一侧,另一者设置在太阳能电池的背光面一侧。或者,所制造的太阳能电池也可以为背接触电池电池,即太阳能电池包括的极性相反的第一电极和第二电极均设置在太阳能电池的背光面。
下文将根据图2至图26示出的操作的剖视图,对制造过程进行描述。具体的,该太阳能电池的制造方法包括以下步骤:
首先,如图2和图3所示,提供一半导体基底1。如图2和图3所示,该半导体基底1具有第一区域和第二区域。
具体来说,从材质方面来讲,上述半导体基底可以为硅基底、锗硅基底或锗基底等半导体材质的基底。从导电类型方面来讲,上述半导体基底可以为N型半导体基底或P型半导体基底。从结构方面来讲,半导体基底可以为未经过抛光或制绒等处理的半导体基底。如图2所示,半导体基底1也可以为经过双面抛光处理的半导体基底。此时,半导体基底1具有的相对的第一面5和第二面6均为抛光面。或者,如图3所示,半导体基底1具有的相对的第一面5和第二面6还可以经制绒处理形成绒面。
另外,半导体基底具有的第一区域和第二区域之间的边界为虚拟边界,二者在半导体基底表面的具体位置、以及第一区域和第二区域在相应表面上的范围可以根据实际应用场景确定,此处不做具体限定。
在一种示例中,如图4中的(1)至(4)部分所示,上述第一区域2和第二区域3可以位于半导体基底1具有的不同面上。其中,第一区域2可以位于半导体基底1与太阳能电池的受光面对应的一面,此时,第二区域3位于半导体基底1与太阳能电池的背光面对应的一面。或者,第一区域2也可以位于半导体基底1与背光面对应的一面,此时,第二区域3位于半导体基底1与受光面对应的一面。在上述情况下,至于第一区域2和第二区域3在不同面的范围来说,如图4中的(1)和(3)部分所示,第一区域2的边界可以与半导体基底1的边界重合。或者,如图4中的(2)和(4)部分所示,第一区域2也可以为位于半导体基底1具有的相应面上的局部区域。此外,如图4中的(1)和(2)部分所示,第二区域3的边界可以与半导体基底1的边界重合。或者,如图4中的(3)和(4)部分所示,第二区域3也可以为位于半导体基底1具有的相应面上的局部区域。
在另一种示例中,如图5所示,上述第一区域2和第二区域3也可以位于半导体基底1具有的同一面上。在此情况下,第一区域2和第二区域3在同一面上的排布方式可以根据太阳能电池的类型、以及实际应用场景确定,此处不做具体限定。例如:在太阳能电池为背接触电池的情况下,第一区域2和第二区域3可以交替设置在半导体基底1与背光面对应的一面。
如图7、图9和图10所示,形成至少覆盖在第一区域2上的隧穿钝化层4。
在实际的应用过程中,可以通过原子层沉积或等离子增强化学气相沉积等工艺形成上述隧穿钝化层。其中,隧穿钝化层的形成范围、厚度和材质可以根据实际应用场景进行设置,只要能够应用至本发明实施例提供的太阳能电池的制造方法中均可。
示例性的,上述隧穿钝化层的厚度为1.4nm至1.8nm。应理解,在一定范围内,隧穿钝化层的厚度与隧穿钝化层所能起到刻蚀延迟作用的时间成正比。在此情况下,当隧穿钝化层的厚度为1.4nm至1.8nm时,隧穿钝化层的厚度适中,可以防止因隧穿钝化层的厚度较小使得其容易被执行后续湿化学处理的溶液刻穿而导致隧穿钝化层起到刻蚀延迟作用的时间较短,进一步确保在执行后续湿化学处理后第一区域的表面不被过度处理。同时,也可以防止因隧穿钝化层的厚度较大导致材料浪费,降低太阳能电池的制造成本。此外,隧穿钝化层不仅具有刻蚀延迟的作用,当隧穿钝化层应用至隧穿钝化接触结构中时,将隧穿钝化层的厚度设置为上述范围还可以防止因隧穿钝化层的厚度较大而导致载流子难以基于隧穿效应穿过该隧穿钝化层,降低隧穿钝化层的隧穿电阻,进一步提高太阳能电池的光电转换效率。
示例性的,上述隧穿钝化层的材质为氧化硅、氧化铝、氧化钛、二氧化铪、氧化镓、五氧化二钽、五氧化铌、氮化硅、碳氮化硅、氮化铝、氮化钛或氮碳化钛。在此情况下,隧穿钝化层的材质可选范围较大,利于提高本发明实施例提供的太阳能电池的制造方法在不同应用场景下的适用性。
当然,也可以根据实际需求,将隧穿钝化层的厚度和材质设置为其它合适范围和材料,此处不做具体限定。
如图8和图11所示,在隧穿钝化层4的刻蚀延迟作用下,对第一区域2进行湿化学处理。经湿化学处理后第一区域2的表面结构和第二区域3的表面结构不同。
具体来说,上述经湿化学处理后第一区域的表面结构和第二区域的表面结构不同可以是指:经湿化学处理后第一区域和第二区域的表面结构的类型不同。例如:经湿化学处理后第一区域的表面结构形成凸台结构(凸台结构为正金字塔型结构经抛光处理后剩余的正金字塔塔基结构),第二区域的表面结构形成正金字塔型结构。又例如:经湿化学处理后 第一区域的表面结构形成凸台结构,第二区域的表面结构形成倒金字塔型孔洞结构。其中,在经湿化学处理后的第一区域的表面结构的类型与第二区域的表面结构的类型不同的情况下,经湿化学处理后的第一区域的表面结构的尺寸与第二区域的表面结构的尺寸也不相同。应理解,通常通过塔基宽度对表面结构的尺寸进行限定。需要说明的是,如图18所示,倒金字塔型孔洞结构的塔基宽度是指倒金字塔型孔洞的开口处的宽度。
也可以是指:经湿化学处理后第一区域和第二区域的表面结构的尺寸不同。例如:经湿化学处理后第一区域和第二区域的表面结构均形成正金字塔型结构,但是第一区域表面结构对应的塔基宽度小于第二区域表面结构对应的塔基宽度。
在实际的应用过程中,对第一区域进行湿化学处理的溶液类型、浓度和温度等处理条件,以及湿化学处理后第一区域和第二区域的表面结构可以根据所要制造的太阳能电池的种类和实际应用场景设置,此处不做具体限定。其中,因在对第一区域进行湿化学处理前,形成了至少覆盖在第一区域上的隧穿钝化层。基于此,在对第一区域进行湿化学处理的过程中,至少覆盖在第一区域上的隧穿钝化层可以起到刻蚀延迟的作用,降低湿化学处理溶液对第一区域表面的处理程度。由此可见,与现有制造中执行湿化学处理的溶液直接对第一区域的表面进行处理相比,本发明实施例提供的制造方法利于防止在湿化学处理后第一区域的表面被过度处理,使得经湿化学处理后第一区域的表面结构满足预设方案的要求,提高太阳能电池良率。并且,还利于防止经湿化学处理后半导体基底减薄过大,降低半导体基底减薄后出现隐裂的风险,同时还可以增大光半导体基底的传播路径,进而增大光入射半导体基底后被吸收的概率,提高太阳能电池的光电转换效率。
在实际的应用过程中,根据是否对第二区域也进行湿化学处理,对湿化学处理的过程分为以下两种情况进行说明:
第一种:需要对第二区域进行湿化学处理。其中,可以对第一区域和第二区域同时进行湿化学处理,也可以在不同的操作步骤中分别对第一区域和第二区域进行湿化学处理。经湿化学处理后第一区域的表面结构和经湿化学处理后第二区域的表面结构的具体情况,可以根据所要制造的太阳能电池的种类、以及实际需求确定。
优选的,在需要对第二区域进行湿化学处理的情况下,可以对第一区域和第二区域同时进行湿化学处理,以使得第一区域的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构,并使得第二区域的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构。在此情况下,同时对第一区域和第二区域进行湿化学处理可以提高太阳能电池的制造效率,利于提升太阳能电池的量产性。此外,对第一区域和第二区域同时进行湿化学处理后,第一区域的表面和第二区域的表面结构分别具有多种可能的实现方案,利于提高本发明实施例提供的太阳能电池的制造方法在不同应用场景下的适用性。
其中,在上述第一种情况下,若经湿化学处理后,第一区域和第二区域的表面结构的类型相同,则因第一区域上形成有隧穿钝化层,故执行湿化学处理的溶液对第一区域和第二区域的表面的处理程度不同,使得经湿化学处理后第一区域上的表面结构的尺寸不同于第二区域上的表面结构的尺寸。
例如:经湿化学处理后,第一区域和第二区域的表面结构均为凸台结构的情况下,因第一区域上形成有隧穿钝化层,故第一区域上的表面结构的塔基宽度小于第二区域上的表面结构的塔基宽度。
又例如:经湿化学处理后,第一区域和第二区域的表面结构均为正金字塔型结构的情况下,因第一区域上形成有隧穿钝化层,故第一区域上的表面结构的塔基宽度小于第二区域上的表面结构的塔基宽度。
在实际的应用过程中,如图7所示,半导体基底1具有的相对的两面可以均为抛光面。第一区域2整层设置在半导体基底1与背光面对应的一面。隧穿钝化层4仅覆盖在第一区域2上。第二区域3整层设置在半导体基底1与受光面对应的一面、且第二区域3的表面暴露在外。在此情况下,在对第一区域2和第二区域3同时进行湿化学处理,以使得第二区域3的表面结构形成正金字塔型结构。在上述处理过程中,如图8所示,若处理时间较短,则第一区域2的表面结构可以为凸台结构。若处理时间较长,则湿化学处理溶液可以透过隧穿钝化层内的孔洞腐蚀第一区域的表面,从而形成倒金字塔型孔洞结构。而当处理时间继续延长,则隧穿钝化层完全被湿化学处理溶液腐蚀掉。此时,第一区域的表面结构形成正金字塔型结构。其中,经湿化学处理后,若第一区域的表面结构形成正金字塔型结构,则第一区域表面上的正金字塔型结构的塔基宽度小于第二区域表面上的正金字塔型结构的塔基宽度。
或者,如图9所示,半导体基底1具有相对的第一面和第二面。并且,第一区域2和第二区域3均位于第二面上。并且,第二面还具有第三区域16。沿着平行于第二面的方向,第一区域2和第二区域3交替间隔设置。第三区域16介于每个第一区域2和相邻第二区域3之间。隧穿钝化层4至少覆盖在第一区域2上和第三区域16上。基于此,在所制造的太阳能电池为背接触电池的情况下,第二面与太阳能电池的背光面相对应。在形成上述隧穿钝化层4、以及在第二区域3和隧穿钝化层4上形成第一掺杂半导体层7后,需要通过湿化学处理选择性去除第一掺杂半导体层7位于第一区域2和第三区域16上方的部分。 其中,在进行湿化学处理过程中,隧穿钝化层4的存在可以对半导体基底位于第一区域2和第三区域16的部分起到刻蚀延迟的作用。其中,若处理时间较短,则第一区域2和第三区域16的表面结构可以为凸台结构。若处理时间较长,则湿化学处理溶液可以透过隧穿钝化层4内的孔洞腐蚀第一区域2和第三区域16的表面,从而形成倒金字塔型孔洞结构。而当处理时间继续延长,则隧穿钝化层4完全被湿化学处理溶液腐蚀掉。此时,第一区域2和第三区域16的表面结构形成正金字塔型结构。其中,经湿化学处理后,若第一区域2和第三区域16的表面结构形成凸台结构,则第一区域2和第三区域16的表面结构的塔基宽度小于第二区域3的表面结构的塔基宽度。
第二种:不需要对第二区域进行湿化学处理。在该情况下,经湿化学处理后第一区域的表面结构可以根据太阳能电池的种类、以及实际需求确定。
作为一种可能的实现方式,如图10所示,上述形成至少覆盖在第一区域2上的隧穿钝化层4的步骤为:形成至少覆盖在第一区域2和第二区域3上的隧穿钝化层4。并且,在形成至少覆盖在第一区域2和第二区域3上的隧穿钝化层4后,对第一区域2进行湿化学处理前,上述太阳能电池的制造方法还包括步骤:形成至少覆盖在隧穿钝化层4对应第二区域3的部分上的第一掺杂半导体层7。另外,第二区域3的表面结构为凸台结构、正金字塔型结构或倒金字塔型孔洞结构。经湿化学处理后第一区域2的表面结构为凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
采用上述技术方案的情况下,第一掺杂半导体层和隧穿钝化层位于第二区域上的部分可以构成隧穿钝化接触结构。此时,本发明实施例提供的制造方法所制造的太阳能电池为隧穿氧化层钝化接触太阳能电池。其中,上述隧穿钝化接触结构中的隧穿钝化层允许多数载流子隧穿进入第一掺杂半导体层同时阻挡少数载流子通过,进而多数载流子经由第一掺杂半导体层传输并被相应电极收集,降低不同导电类型的载流子在第二区域表面处的复合速率,实现了界面钝化和载流子的选择性收集,进一步提高太阳能电池的光电转换效率。另外,第二区域的表面结构、以及经湿化学处理后第一区域的表面结构均具有多种可能的实现方案,可以根据不同应用场景的要求,选择合适的实现方案,利于提高本发明实施例提供的太阳能电池的制造方法在不同应用场景下的适用性。
具体的,在该情况下,上述第一区域和第二区域可以位于半导体基底具有的同一面上,也可以位于半导体基底具有的不同面上。
在一种示例中,上述半导体基底可以具有相对的第一面和第二面。沿着平行于第二面的方向,第二面具有交替设置的第一区域和第二区域。第二区域的表面结构为凸台结构。经湿化学处理后第一区域的表面结构为正金字塔型结构或倒金字塔型孔洞结构。采用上述技术方案的情况下,因正金字塔型结构或倒金字塔型孔洞结构均为绒面结构、且绒面结构具有陷光作用,故当具有第一区域的第二面与太阳能电池的受光面对应时,第一区域的表面可以将更多的光线折射至半导体基底内,从而可以进一步提高太阳能电池的光电转换效率。另外,第二区域的表面结构为凸台结构,因凸台结构为正金字塔型结构经抛光处理后剩余的正金字塔塔基结构。正金字塔塔基结构的顶面较为平坦,故表面结构为凸台结构的第二区域的表面为平坦的抛光面,利于提高隧穿钝化层和第一掺杂半导体层在第二区域上的成膜质量,进而利于使得由隧穿钝化层和第一掺杂半导体层位于第二区域上的部分所构成的隧穿钝化接触结构具有优异的界面钝化和载流子选择性收集特性。
在另一种示例中,当第一区域和第二区域位于半导体基底具有的不同面上时,若第一区域设置在半导体基底与受光面相对的一面,则经湿化学处理后第一区域的表面结构可以为正金字塔型结构或倒金字塔型孔洞结构,以使得第一区域的表面可以将更多的光线折射至半导体基底内。此时,第二区域的表面结构可以为凸台结构或倒金字塔型孔洞结构。其中,当第二区域的表面结构为凸台结构时,第二区域的表面可以将更多的光线反射至半导体基底内,以被导体基底重新利用。另外,因在第二区域的范围一定时倒金字塔绒面的总表面积大于抛光面的总表面积,故当第二区域的表面结构为倒金字塔型孔洞结构时可以增大形成在第二区域上的第一掺杂半导体层与第二区域之间的接触面积,利于降低第二区域的界面电阻。
在又一种示例中,当第一区域和第二区域位于半导体基底具有的不同面上时,若第一区域设置在半导体基底与背光面相对的一面,则经湿化学处理后第一区域的表面结构可以为凸台结构或倒金字塔型孔洞结构。第二区域的表面结构可以为凸台结构、正金字塔型结构或倒金字塔型孔洞结构。该情况下具有的有益效果可以参考上述有益效果分析,此处不再赘述。
至于上述第一掺杂半导体层来说,该第一掺杂半导体层的导电类型和掺杂浓度可以根据实际需求进行设置,只要能够应用至本发明实施例提供的太阳能电池的制造方法中均可。例如:第一掺杂半导体层可以为掺杂有磷等N型导电粒子的N型半导体层。又例如:第一掺杂半导体层为P型半导体层。第一掺杂半导体层的导电类型可以与半导体基底的导电类型相同,也可以相反。
此外,从物质的内部排列形式方面来讲,第一掺杂半导体层可以为非晶、微晶、单晶、多晶、纳米晶等。从具有的材料方面来讲,第一掺杂半导体层材质可以硅、锗硅、锗、掺 杂碳化硅、砷化镓等半导体材料。从钝化方面来讲,第一掺杂半导体层可以为氢化掺杂层。至于第一掺杂半导体层的厚度可以根据实际需求进行设置,此处不做具体限定。例如:第一掺杂半导体层的厚度可以为20nm至600nm。
至于第一掺杂半导体层的形成范围,如图10所示,第一掺杂半导体层7可以仅形成在隧穿钝化层4对应第二区域3的部分上。或者,如图12所示,第一掺杂半导体层7还可以整层覆盖在隧穿钝化层4上。
作为一种可能的实现方式,上述半导体基底具有相对的第一面和第二面。沿着平行于第二面的方向,第二面具有交替设置的第一区域和第二区域。在此情况下,上述形成至少覆盖在第一区域上的隧穿钝化层为:形成至少覆盖在第一区域和第二区域上的隧穿钝化层。并且,经湿化学处理后第一区域的表面结构为凸台结构、正金字塔型结构或倒金字塔型孔洞结构。经湿化学处理后第二区域结构的表面为凸台结构。
具体的,从钝化方面来讲,该情况下对应的太阳能电池可以为隧穿氧化层钝化接触太阳能电池。基于此,在形成至少覆盖在第一区域和第二区域上的隧穿钝化层后,对第一区域进行湿化学处理前,上述太阳能电池的制造方法还包括:形成至少覆盖在隧穿钝化层对应第二区域的部分上的第一掺杂半导体层。其中,第一掺杂半导体层和隧穿钝化层位于第二区域上的部分构成隧穿氧化层钝化接触太阳能电池所包括的隧穿钝化接触结构。此时,经湿化学处理后第一区域的表面结构、以及第二区域的表面结构可以参考前文,此处不再赘述。
另外,从电极的形成位置方面来讲,该情况对应的太阳能电池可以为双面接触电池,也可以为背接触电池。在实际应用中,双面接触电池包括的半导体基底具有分别与导电类型相反的两个电极对应的第一电极区和第二电极区。基于此,当该情况对应的太阳能电池为双面接触电池时,上述第一电极区可以整层或局部设置在半导体基底具有的第一面。上述第二电极区设置在第二面具有的第二区域处。
再者,在该请况下,若太阳能电池的第一面也需要进行湿化学处理时,可以同时对第一面和第一区域进行湿化学处理,也可以在不同的操作步骤中分别对第一面和第一区域进行湿化学处理。
优选的,对第一面和第一区域同时进行湿化学处理,以使得第一面的表面结构和第一区域的表面结构不同。在此情况下,同时对第一面和第一区域进行湿化学处理可以提高太阳能电池的制造效率,利于提高太阳能电池的量产性。
在实际的应用过程中,根据太阳能电池所包括的电极在半导体基底上的形成位置的不同,可以将对第一面和第一区域同时进行湿化学处理的结果细分为以下两种情况进行说明:
在一种示例中,如图11所示,在所制造的太阳能电池为双面接触电池的情况下,对第一面5和第一区域2同时进行湿化学处理,以使得第一面5的表面结构形成凸台结构,并使得第一区域2的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
在实际的应用过程中,经湿化学处理后的第一面的表面结构为凸台结构时,第一面为平坦的抛光面。因抛光面具有相对良好的反射特性。并且,经湿化学处理后第一面的表面结构形成凸台结构,故当第一面与双面接触电池的背光面对应时,光线到达第一面后可以至少部分被反射回半导体基底内,被半导体基底重新利用,进一步提高双面接触电池的光电转换效率。此时,第二面与双面接触电池的受光面对应。具体的,经湿化学处理后,第一区域的表面结构可以根据实际需求进行设置。其中,当经湿化学处理后第一区域的表面结构为凸台结构时,第一区域的表面较为平坦,可以提高形成在第一区域上的钝化减反层的致密性,进而提高钝化减反层对第一区域表面的钝化效果,进一步提升双面太阳能电池的光电转换效率。而当经湿化学处理后第一区域的表面结构为正金字塔型结构或倒金字塔型孔洞结构时,更多的光线可以经由第一区域的表面折射至半导体基底内,进一步提高双面接触电池的光电转换效率。由此可见,可以根据不同应用场景的要求,确定经湿化学处理后第一区域的表面结构。
示例性的,如图11所示,上述第一面5上形成的表面结构的塔基宽度大于第一区域2上形成的表面结构的塔基宽度。在此情况下,因凸台结构对应的塔基宽度分别大于正金字塔型结构和倒金字塔型孔洞结构对应的塔基宽度,故在第一面5的表面结构为凸台结构、且第一面5上形成的表面结构的塔基宽度大于第一区域2上形成的表面结构的塔基宽度的情况下,经湿化学处理后第一区域2的表面结构形成正金字塔型结构或倒金字塔型孔洞结构。此时,将第二面6与双面接触电池的受光面对应,第一区域2处的正金字塔型结构和倒金字塔型孔洞结构可以使得更多的光线折射至半导体基底1内。
在另一种示例中,如图16至图19所示,在所制造的太阳能电池为背接触电池的情况下,对第一面5和第一区域2同时进行湿化学处理,以使得第一面5的表面结构形成正金字塔型结构,并使得第一区域2的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
在实际的应用过程中,在该情况下,提供一半导体基底后,对第一区域进行湿化学处理前,上述太阳能电池的制造方法可以包括步骤:如图12所示,依次形成整层设置在第二面6上的隧穿钝化层4和第一掺杂半导体层7。如图15所示,对第一掺杂半导体层7进 行图案化处理,仅保留第一掺杂半导体层7位于第二区域3上的部分。
具体来说,如图12所示,可以通过原子层沉积或等离子增强化学气相沉积等工艺依次形成整层覆盖在第二面上的隧穿钝化层4和第一掺杂半导体层7。接着,如图13和图14所示,在第一掺杂半导体层7位于第二区域3上方的部分上形成掩膜层8。该掩膜层8可以为光刻胶层、氮化硅层或氧化硅层等与第一掺杂半导体层7之间具有一定刻蚀选择比的膜层。掩膜层8的形成工艺可以根据掩膜层8的材质所确定,此处不做具体限定。最后,如图15所示,在掩膜层8的掩膜作用下,可以采用激光刻蚀工艺、等离子刻蚀工艺或湿化学处理等工艺对第一掺杂半导体层7进行图案化处理。其中,可以在采用湿化学处理工艺对第一掺杂半导体层7进行图案化处理的情况下,可以采用相同的处理溶液在进行上述图案化处理后,直接对第一区域2进行处理。
采用上述技术方案的情况下,在所制造的太阳能电池为背结电池的情况下,因第一掺杂半导体层位于半导体基底具有的第二面一侧,故半导体基底的第二面与背接触电池的背光面对应。半导体基底的第一面与背接触电池的受光面对应。在此情况下,经湿化学处理后,表面结构为正金字塔型结构的第一面可以将更多的光线由第一面折射至半导体基底内,进一步提高背接触电池的光电转换效率。并且,在湿化学处理后,位于第二面上的第一区域的表面结构可以形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构中的任一种,以提高本发明实施例提供的制造方法对不同应用场景的适用性。具体的,可以根据不同应用场景的要求,确定经湿化学处理后第一区域的表面结构。
示例性的,如图16所示,上述第一面5上形成的表面结构的塔基宽度小于第一区域2上形成的表面结构的塔基宽度。在此情况下,如前文所述,因正金字塔型结构和倒金字塔型孔洞结构对应的塔基宽度均小于凸台结构对应的塔基宽度,故在第一面5的表面结构为正金字塔型结构、且第一面5上形成的表面结构的塔基宽度小于第一区域2上形成的表面结构的塔基宽度的情况下,经湿化学处理后第一区域2的表面结构为凸台结构。此时,将第二面6与背接触电池的背光面对应,第一区域2的表面可以将至少部分光线反射回半导体基底1内,进一步提高背接触电池的光电转换效率。
在一种示例中,如图16至图19所示,在上述太阳能电池为背接触电池的情况下,第二区域3上形成的表面结构的塔基宽度不同于经湿化学处理后第一区域2上设置的表面结构的塔基宽度。在此情况下,第二区域3上设置的表面结构与经湿化学处理后第一区域2上设置的表面结构的类型可以相同,也可以不同。
例如:第二区域的表面结构为凸台结构、且经湿化学处理后第一区域的表面结构也为凸台结构的情况下,第一区域表面上设置的凸台结构的塔基宽度不同于经湿化学处理后第二区域上设置的凸台结构的塔基宽度。
又例如:第二区域的表面结构为凸台结构、且经湿化学处理后第一区域的表面为倒金字塔型孔洞结构的情况下,第二区域表面上设置的凸台结构的塔基宽度大于经湿化学处理后第一区域上的倒金字塔型孔洞结构的塔基宽度。
采用上述技术方案的情况下,可以通过第二区域上设置的表面结构的塔基宽度与经湿化学处理后第一区域形成上的表面结构的塔基宽度的差异,将第一掺杂半导体层和第二掺杂半导体层(或掺杂区)的具体形成位置区分开,使得第一掺杂半导体层和第二掺杂半导体层(或掺杂区)之间具有更高的可分辨性,从而能够降低在第一掺杂半导体层和第二掺杂半导体层(或掺杂区)上分别准确设置与其极性相同的电极的难度,进而降低导电类型相反的第一掺杂半导体层和第二掺杂半导体层(或掺杂区)通过电极耦合而导致背接触电池短路的风险,提高背接触电池的电学稳定性。
在一种示例中,如图19至图21所示,在上述第二种情况、且所制造的太阳能电池为背接触电池的情况下,经湿化学处理后第一区域2的表面相对于第二区域3的表面向半导体基底1内凹入。在此情况下,因背接触电池中掺杂类型相反的第一掺杂半导体层7和第二掺杂半导体层12(或掺杂区11)分别形成在第二区域3和第一区域2上(或第一区域2内),故在经湿化学处理后第一区域2的表面相对于第二区域3的表面向半导体基底1内凹入的情况下,沿着半导体基底1的厚度方向,第一掺杂半导体层7可以至少与部分第二掺杂半导体层12错开(或者第一掺杂半导体层7可以完全与掺杂区11错开),利于防止第一掺杂半导体层7和第二掺杂半导体层12(或掺杂区11)之间产生漏电。
具体的,经湿化学处理后第一区域的表面相对于第二区域的表面向半导体基底内凹入的深度可以根据实际需求设置,只要能够应用至本发明实施例提供的太阳能电池的制造方法中均可。例如:经湿化学处理后第一区域的表面相对于第二区域的表面向半导体基底内凹入0.51μm至8μm。
在一种示例中,如图19至图21所示,在上述第二种情况、且所制造的太阳能电池为背接触电池的情况下,上述第二面6设置有中间区域9、以及自中间区域9向外延伸的边缘隔离区域10。第一区域2和第二区域3位于中间区域9内。经湿化学处理后边缘隔离区域10的表面相对于第二区域3的表面向半导体基底内凹入。在此情况下,在实际的制造背接触电池包括的掺杂类型相反的第一掺杂半导体层7和第二掺杂半导体层12(或掺杂区11)的过程中,第一掺杂半导体层7和第二掺杂半导体层12(或掺杂区11)中的一者的 掺杂元素也会掺杂至半导体基底1的侧面。基于此,经湿化学处理后边缘隔离区域10的表面相对于第二区域3的表面向半导体基底内凹入,从而可以将第一掺杂半导体层7和第二掺杂半导体层12(或掺杂区11)中的另一者通过边缘隔离区域10与半导体基底1的侧面隔离开,防止第一掺杂半导体层7和第二掺杂半导体层12(或掺杂区11)中的另一者与半导体基底1的侧面之间产生漏电,提高背接触电池的光电转换效率。
具体的,经湿化学处理后边缘隔离区域的表面相对于第二区域的表面向半导体基底内凹入的深度可以根据实际需求设置,只要能够应用至本发明实施例提供的太阳能电池的制造方法中均可。例如:经湿化学处理后边缘隔离区域的表面相对于第二区域的表面向半导体基底内凹入0.5μm至8μm。
在一种示例中,在上述第二种情况、且所制造的太阳能电池为背接触电池的情况下,对第一区域进行湿化学处理后,太阳能电池的制造方法还包括步骤:如图20所示,在第一区域2内形成掺杂区11,掺杂区11与第一掺杂半导体层7的导电类型相反。或,如图21所示,在第一区域2上形成第二掺杂半导体层12。第二掺杂半导体层12与第一掺杂半导体层7的导电类型相反。
在实际的应用过程中,当需要在第一区域内形成掺杂区的情况下,可以在相应掩膜层的掩膜作用下,采用等离子体注入、扩散等工艺形成上述掺杂区。当需要在第一区域上形成第二掺杂半导体层的情况下,可以采用化学气相沉积等工艺,形成覆盖在第一掺杂半导体层和第一区域上的本征半导体层。然后,可以采用等离子体注入或扩散等工艺对本征半导体层进行掺杂处理,获得第二掺杂半导体材料层。最后,选择性去除第二掺杂半导体材料层位于第一掺杂半导体层上的部分,获得第二掺杂半导体层。
其中,当所制造的太阳能电池上述第二掺杂半导体层的情况下,在形成第二掺杂半导体层前,可以采用原子层沉积等工艺形成覆盖在第一区域和第一掺杂半导体层上的隧穿层。如图22所示,在形成第二掺杂半导体层12后,可以至少在第二掺杂半导体层12的掩膜作用下对该隧穿层进行图案化处理,至少保留隧穿层位于半导体基底1与第二掺杂半导体层12之间的部分。
在形成上述掺杂区或者第二掺杂半导体层后,若背接触电池不包括其它膜层的情况下,可以采用丝网印刷等工艺,分别形成与掺杂区(或第二掺杂半导体层)欧姆接触的第一电极、以及与第一掺杂半导体层欧姆接触的第二电极,获得背接触电池。
在其它情况下,在形成上述掺杂区或者第二掺杂半导体层后,还可以在半导体基底具有的第二面一侧形成表面钝化层,以对第一掺杂半导体层和掺杂区(或第二掺杂半导体层)背离半导体基底的一侧进行钝化,降低第一掺杂半导体层和掺杂区背离半导体基底的一侧的载流子复合速率,进一步提高背接触电池的光电转换效率。
具体的,在所制造的太阳能电池包括上述掺杂区的情况下,在第一区域内形成掺杂区后,上述太阳能电池的制造方法还包括步骤:形成至少覆盖在第一掺杂半导体层和掺杂区上的表面钝化层。
或者,在所制造的太阳能电池包括上述第二掺杂半导体层的情况下,在第一区域上形成第二掺杂半导体层后,上述太阳能电池的制造方法还包括步骤:形成至少覆盖在第一掺杂半导体层和第二掺杂半导体层上的表面钝化层。
在实际的应用过程中,可以采用化学气相沉积等工艺形成上述表面钝化层。该表面钝化层的厚度和材质可以根据实际需求进行设置,此处不做具体限定。例如:表面钝化层的材质可以为氮化硅、氧化硅、氮氧化硅、氧化铝、碳化硅、非晶硅中的一种或多种。此外,如图26所示,在形成该表面钝化层13后可以采用丝网印刷等工艺,分别形成与掺杂区11(或第二掺杂半导体层12)欧姆接触的第一电极14、以及与第一掺杂半导体层7欧姆接触的第二电极15,获得背接触电池。
在一种示例中,在所制造的太阳能电池包括上述掺杂区的情况下,对第一区域进行湿化学处理后,在第一区域内形成掺杂区前,上述太阳能电池的制造方法还包括步骤:如图23所示,形成至少覆盖在第一区域2和第一掺杂半导体层7上的表面钝化层13。如图24所示,形成贯穿表面钝化层13的第一电极14。第一电极14的底部与第一区域2接触。如图25所示,上述在第一区域2内形成掺杂区11为:以第一电极14为掺杂源在第一区域2内形成掺杂区11。
在实际的应用过程中,可以采用前文所述工艺形成覆盖在第一区域和第一掺杂半导体层上的表面钝化层。该表面钝化层的材质和厚度可以参考前文。接着可以采用激光刻蚀或等离子刻蚀等工艺在表面钝化层与第一区域的接触处开设电极窗口。然后可以采用丝网印刷等工艺形成通过电极窗口贯穿表面钝化层的第一电极。该第一电极的材质可以根据掺杂区的掺杂类型确定。例如:在掺杂区为N型掺杂区的情况下,第一电极的材质可以为锑。又例如:在掺杂区为P型掺杂区的情况下,第一电极的材质可以为铝、镓或铟。最后,可以采用烧结等方式对第一电极进行热处理,从而实现以第一电极为掺杂源在第一区域内形成掺杂区。
需要说明的是,在该情况下,可以在形成第一电极的同时,或者与第一电极在不同的步骤中形成第二电极。该第二电极与第一掺杂半导体层欧姆接触。
采用上述技术方案的情况下,表面钝化层可以对第一区域的表面、以及对第一掺杂半导体层背离半导体基底的一侧进行钝化,降低第一区域表面和第一掺杂半导体层背离半导体基底的一侧的载流子复合速率。此外,以贯穿表面钝化层的第一电极为掺杂源可以仅在第一区域与第一电极相接触的一定范围内形成掺杂区,防止掺杂区和第一掺杂半导体层接触而出现漏电。同时,还可以节省为仅在第一区域内形成掺杂区而形成掩膜层的工序,简化背接触电池的制造过程。
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种太阳能电池的制造方法,其特征在于,包括:
    提供一半导体基底,所述半导体基底具有第一区域和第二区域;
    形成至少覆盖在第一区域上的隧穿钝化层;
    在所述隧穿钝化层的刻蚀延迟作用下,对所述第一区域进行湿化学处理;经所述湿化学处理后所述第一区域的表面结构和所述第二区域的表面结构不同。
  2. 根据权利要求1所述的太阳能电池的制造方法,其特征在于,所述隧穿钝化层的厚度为1.4nm至1.8nm;
    和/或,所述隧穿钝化层的材质为氧化硅、氧化铝、氧化钛、二氧化铪、氧化镓、五氧化二钽、五氧化铌、氮化硅、碳氮化硅、氮化铝、氮化钛或氮碳化钛。
  3. 根据权利要求1所述的太阳能电池的制造方法,其特征在于,对所述第一区域和所述第二区域同时进行所述湿化学处理,以使得所述第一区域的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构,并使得所述第二区域的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
  4. 根据权利要求1所述的太阳能电池的制造方法,其特征在于,所述形成至少覆盖在第一区域上的隧穿钝化层为:形成至少覆盖在所述第一区域和所述第二区域上的所述隧穿钝化层;
    所述形成至少覆盖在所述第一区域和所述第二区域上的所述隧穿钝化层后,所述对所述第一区域进行湿化学处理前,所述太阳能电池的制造方法还包括:形成至少覆盖在所述隧穿钝化层对应所述第二区域的部分上的第一掺杂半导体层;
    所述第二区域的表面结构为凸台结构;经湿化学处理后所述第一区域的表面结构为凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
  5. 根据权利要求1所述的太阳能电池的制造方法,其特征在于,所述半导体基底具有相对的第一面和第二面;沿着平行于所述第二面的方向,所述第二面具有交替设置的所述第一区域和所述第二区域;
    所述形成至少覆盖在第一区域上的隧穿钝化层为:形成至少覆盖在所述第一区域和所述第二区域上的所述隧穿钝化层;
    经所述湿化学处理后所述第一区域的表面结构为凸台结构、正金字塔型结构或倒金字塔型孔洞结构;经所述湿化学处理后所述第二区域的表面结构为凸台结构。
  6. 根据权利要求5所述的太阳能电池的制造方法,其特征在于,所述形成至少覆盖在所述第一区域和所述第二区域上的隧穿钝化层后,所述对所述第一区域进行湿化学处理前,所述太阳能电池的制造方法还包括:形成至少覆盖在所述隧穿钝化层对应所述第二区域的部分上的第一掺杂半导体层。
  7. 根据权利要求6所述的太阳能电池的制造方法,其特征在于,经所述湿化学处理后所述第一区域的表面结构为正金字塔型结构或倒金字塔型孔洞结构。
  8. 根据权利要求5~7任一项所述的太阳能电池的制造方法,其特征在于,对所述第一面和所述第一区域同时进行湿化学处理,以使得所述第一面的表面结构和所述第一区域的表面结构不同。
  9. 根据权利要求8所述的太阳能电池的制造方法,其特征在于,所述太阳能电池为双面接触电池;
    对所述第一面和所述第一区域同时进行湿化学处理,以使得所述第一面的表面结构形成凸台结构,并使得所述第一区域的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
  10. 根据权利要求9所述的太阳能电池的制造方法,其特征在于,所述第一面上形成的表面结构的塔基宽度大于所述第一区域上形成的表面结构的塔基宽度。
  11. 根据权利要求8所述的太阳能电池的制造方法,其特征在于,所述太阳能电池为背接触电池;
    对所述第一面和所述第一区域同时进行湿化学处理,以使得第一面的表面结构形成正金字塔型结构,并使得所述第一区域的表面结构形成凸台结构、正金字塔型结构或倒金字塔型孔洞结构。
  12. 根据权利要求11所述的太阳能电池的制造方法,其特征在于,所述第一面上设置的表面结构的塔基宽度小于所述第一区域上形成的表面结构的塔基宽度。
  13. 根据权利要求5所述的太阳能电池的制造方法,其特征在于,所述太阳能电池为背接触电池;
    所述第二区域上形成的表面结构的塔基宽度不同于经所述湿化学处理后所述第一区域上形成的表面结构的塔基宽度。
  14. 根据权利要求11所述的太阳能电池的制造方法,其特征在于,所述提供一半导 体基底后,对所述第一区域进行湿化学处理前,所述太阳能电池的制造方法包括:
    依次形成整层设置在所述第二面上的所述隧穿钝化层和所述第一掺杂半导体层;
    对所述第一掺杂半导体层进行图案化处理,仅保留所述第一掺杂半导体层位于所述第二区域上的部分。
  15. 根据权利要求11所述的太阳能电池的制造方法,其特征在于,经所述湿化学处理后所述第一区域的表面相对于所述第二区域的表面向所述半导体基底内凹入。
  16. 根据权利要求11~15任一项所述的太阳能电池的制造方法,其特征在于,所述第二面设置有中间区域、以及自所述中间区域向外延伸的边缘隔离区域;所述第一区域和所述第二区域位于所述中间区域内;
    经所述湿化学处理后所述边缘隔离区域的表面相对于所述第二区域的表面向所述半导体基底内凹入。
  17. 根据权利要求11~15任一项所述的太阳能电池的制造方法,其特征在于,所述对所述第一区域进行湿化学处理后,所述太阳能电池的制造方法还包括:
    在所述第一区域内形成掺杂区,所述掺杂区与所述第一掺杂半导体层的导电类型相反;
    或,在所述第一区域上形成第二掺杂半导体层;所述第二掺杂半导体层与所述第一掺杂半导体层的导电类型相反。
  18. 根据权利要求17所述的太阳能电池的制造方法,其特征在于,所述在所述第一区域内形成掺杂区后,所述太阳能电池的制造方法还包括:形成至少覆盖在所述第一掺杂半导体层和所述掺杂区上的表面钝化层;
    或,所述在所述第一区域上形成第二掺杂半导体层后,所述太阳能电池的制造方法还包括:形成至少覆盖在所述第一掺杂半导体层和所述第二掺杂半导体层上的表面钝化层。
  19. 根据权利要求17所述的太阳能电池的制造方法,其特征在于,所述对所述第一区域进行湿化学处理后,所述在所述第一区域内形成掺杂区前,所述太阳能电池的制造方法还包括:
    形成至少覆盖在所述第一区域和所述第一掺杂半导体层上的表面钝化层;
    形成贯穿所述表面钝化层的第一电极;所述第一电极的底部与所述第一区域接触;
    所述在所述第一区域内形成掺杂区为:以所述第一电极为掺杂源在所述第一区域内形成所述掺杂区。
  20. 一种太阳能电池,其特征在于,所述太阳能电池由权利要求1至19中任一项所述的太阳能电池的制造方法制备得到。
PCT/CN2023/100863 2022-08-22 2023-06-16 一种太阳能电池及其制造方法 WO2024041126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211007498.5 2022-08-22
CN202211007498.5A CN115566099A (zh) 2022-08-22 2022-08-22 一种太阳能电池的制造方法

Publications (1)

Publication Number Publication Date
WO2024041126A1 true WO2024041126A1 (zh) 2024-02-29

Family

ID=84738503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100863 WO2024041126A1 (zh) 2022-08-22 2023-06-16 一种太阳能电池及其制造方法

Country Status (2)

Country Link
CN (1) CN115566099A (zh)
WO (1) WO2024041126A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115566099A (zh) * 2022-08-22 2023-01-03 泰州隆基乐叶光伏科技有限公司 一种太阳能电池的制造方法
CN117497626B (zh) * 2023-12-14 2024-04-23 天合光能股份有限公司 太阳能电池和太阳能电池的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149773A (ja) * 2012-01-19 2013-08-01 Sharp Corp 薄膜化合物太陽電池の製造方法
CN111628050A (zh) * 2020-06-11 2020-09-04 常州时创能源股份有限公司 实现电子局部钝化接触的方法、晶体硅太阳能电池及其制备方法
CN111628049A (zh) * 2020-06-11 2020-09-04 常州时创能源股份有限公司 实现空穴局部钝化接触的方法、晶体硅太阳能电池及其制备方法
CN114171643A (zh) * 2021-12-02 2022-03-11 中节能太阳能科技(镇江)有限公司 选择性制绒异质结太阳能电池的制造方法
CN114843368A (zh) * 2022-04-29 2022-08-02 通威太阳能(眉山)有限公司 太阳电池及其制备方法和应用
CN115566099A (zh) * 2022-08-22 2023-01-03 泰州隆基乐叶光伏科技有限公司 一种太阳能电池的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149773A (ja) * 2012-01-19 2013-08-01 Sharp Corp 薄膜化合物太陽電池の製造方法
CN111628050A (zh) * 2020-06-11 2020-09-04 常州时创能源股份有限公司 实现电子局部钝化接触的方法、晶体硅太阳能电池及其制备方法
CN111628049A (zh) * 2020-06-11 2020-09-04 常州时创能源股份有限公司 实现空穴局部钝化接触的方法、晶体硅太阳能电池及其制备方法
CN114171643A (zh) * 2021-12-02 2022-03-11 中节能太阳能科技(镇江)有限公司 选择性制绒异质结太阳能电池的制造方法
CN114843368A (zh) * 2022-04-29 2022-08-02 通威太阳能(眉山)有限公司 太阳电池及其制备方法和应用
CN115566099A (zh) * 2022-08-22 2023-01-03 泰州隆基乐叶光伏科技有限公司 一种太阳能电池的制造方法

Also Published As

Publication number Publication date
CN115566099A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
CN110828583B (zh) 正面局域钝化接触的晶硅太阳电池及其制备方法
WO2024041126A1 (zh) 一种太阳能电池及其制造方法
CN108666393B (zh) 太阳能电池的制备方法及太阳能电池
NL2034302B1 (en) Solar cell and photovoltaic module
JP2023163098A (ja) 太陽電池およびその製造方法、光起電力モジュール
CN117059681B (zh) 太阳能电池及其制造方法、光伏组件
AU2024200716A1 (en) Semiconductor Substrate, Solar Cell, and Photovoltaic Module
WO2024041120A1 (zh) 一种背接触电池
EP4239690A2 (en) Solar cell and preparation method thereof
NL2034299B1 (en) Solar cell and photovoltaic module
WO2019237561A1 (zh) 一种背接触太阳能电池及其制备方法
KR101198438B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
CN114864740A (zh) 一种双面局域钝化接触太阳能电池及其制作方法
KR102132741B1 (ko) 태양 전지 및 이의 제조 방법
CN218957742U (zh) 一种背接触太阳能电池及光伏组件
CN217426758U (zh) 一种双面背接触太阳能电池及其背面结构
WO2024114031A1 (zh) 一种背接触电池及其制造方法、光伏组件
EP4235818A2 (en) Solar cell and preparation method thereof
CN117637876A (zh) 一种背接触电池及其制造方法
CN116404051A (zh) 一种背接触太阳能电池及其制造方法、光伏组件
CN117637875A (zh) 一种背接触电池及其制造方法
CN117727808A (zh) 太阳能电池及其制备方法、叠层电池和光伏组件
KR20120077713A (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856218

Country of ref document: EP

Kind code of ref document: A1