WO2024041073A1 - 分光器和光网络系统 - Google Patents

分光器和光网络系统 Download PDF

Info

Publication number
WO2024041073A1
WO2024041073A1 PCT/CN2023/097592 CN2023097592W WO2024041073A1 WO 2024041073 A1 WO2024041073 A1 WO 2024041073A1 CN 2023097592 W CN2023097592 W CN 2023097592W WO 2024041073 A1 WO2024041073 A1 WO 2024041073A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
circuit board
space
output
input interface
Prior art date
Application number
PCT/CN2023/097592
Other languages
English (en)
French (fr)
Inventor
潘子睿
姜永硕
付昕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024041073A1 publication Critical patent/WO2024041073A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present application relates to the field of optical communications, and in particular to an optical splitter and an optical network system.
  • the optical splitter plays a key role as a passive component that implements P2MP optical splitting technology.
  • the optical splitter splits the coupled downlink signals to multiple optical network units (optical network units, ONTs), and sends the uplink signals to the optical line terminal (optical line terminal, OLT).
  • the input and output of the existing optical splitter are pure optical signals, and its output port can only provide pure optical signals and cannot provide power for lower-level equipment. If the lower-level equipment is active, it needs to be powered locally separately. There will be a variety of cables intertwined around the lower-level equipment, resulting in a poor product experience. Therefore, this type of optical splitter is usually used in feeder sections or wiring sections, not at user access points, and its use scenarios are limited.
  • the technical solution of this application provides an optical splitter and an optical network system.
  • the optical splitter can provide optical signals and electric energy to lower-level equipment, so that the lower-level equipment does not need to draw additional local power, which improves the product experience and expands the applicable scenarios of the optical splitter.
  • the technical solution of this application provides an optical splitter, including a housing, a circuit board, an input interface, a transformer module, a shunt module, an optical splitting module and at least two photoelectric output interfaces; the circuit board is located in the housing, and the input The interface, transformer module, shunt module and at least two optoelectronic output interfaces are all arranged on the circuit board; the splitting module is located in the casing and is connected to the input interface and the optoelectronic output interface through optical fibers; the casing and the circuit board form a first space and In the second space, the first space and the second space are separated by the shell. At least part of the input interface and the transformer module are located in the first space.
  • the shunt module and at least two photoelectric output interfaces are located in the second space; the input interface is used to receive External optical signal and external electric energy; the transformer module is used to step down the external electric energy and convert it into output electric energy; the shunt module is used to split the output electric energy into at least two channels; the light splitting module is used to split the external optical signal into at least two beams Output optical signals; each photoelectric output interface is used to output one output electrical energy and one output optical signal.
  • the housing can be the housing of the optical splitter.
  • the circuit board and each device on the circuit board can be installed in the casing.
  • the input interfaces can be completely hidden in the casing or partially exposed from the casing; the photoelectric output interfaces can be completely hidden in the casing or partially exposed from the casing.
  • the input interface can be a single component that can realize the composite input of optical signals and electrical energy; or the input interface can include separate different components that can realize the input of optical signals respectively. input and electrical energy input.
  • the external power received by the input interface can be transmitted to the transformer module through the lines on the circuit board, and the transformer module steps down the external power to obtain output power.
  • the output electric energy can be transmitted to the shunt module through the lines on the circuit board, and the shunt module shunts the output electric energy into several channels.
  • the photoelectric output interface is a single component, which can realize the composite output of optical signals and electric energy. Among them, one output electric energy can be transmitted to an optical output interface through the line on the circuit board and output through the photoelectric output interface; one output optical signal It can be transmitted to an optoelectronic output interface through optical fiber and output through the optoelectronic output interface.
  • this solution when it is necessary to output optical signals and electrical energy to the outside, the optical connector of the external device can be plugged into the optical output interface, thereby transmitting the output optical signal and output electrical energy to the external device. Therefore, this solution can not only provide optical signals to external devices, but also input electrical energy to them. This eliminates the need for external devices to draw additional local power, avoids interlacing of cables around external devices, and improves user experience. Moreover, the optical splitter of this solution can not only be used in feeder sections or wiring sections, but can also be used at user access points, with a wide range of applicable scenarios.
  • the casing and the circuit board form a first space and a second space, and the first space and the second space are separated by a structure on the casing.
  • the first space may be located on one side or both sides of the circuit board, and the first space may not be connected to the outside world.
  • the second space can be located on one side or both sides of the circuit board.
  • At least a part of the input interface and the transformer module are located in the first space, and the shunt module and at least two photoelectric output interfaces are located in the second space.
  • the input interface and transformer module are both high-voltage devices, and the shunt module and the photoelectric output interface are both low-voltage devices.
  • the input interface includes an electrical input interface and an optical input interface.
  • the electrical input interface is located in the first space, and the optical input interface is located in the second space.
  • the electrical input interface is used to receive external power, and the optical input interface Used to receive external optical signals; the optical splitting module is connected to the optical input interface through optical fiber.
  • the input interface includes an independent electrical input interface and an optical input interface.
  • the electrical input interface implements external power input
  • the optical input interface implements external optical signal input.
  • the electrical input interface and the optical input interface are separated.
  • the input interface includes a first optical-electrical composite adapter and a first optical-electrical connector that are fixed, the first optical-electrical composite adapter is fixed to the circuit board; the first optical-electrical connector is connected to the circuit board, and It is connected to the optical splitting module through optical fiber; the first photoelectric connector is used to receive external optical signals and external electric energy.
  • the input interface is a single component that can realize composite input of photoelectric signals.
  • the first optoelectronic composite adapter can fix and accommodate the first optoelectronic connector.
  • the first optoelectronic connector can be plugged into one end of the first optoelectronic composite adapter.
  • the optical and electrical connector of the external device can be inserted into the other end of the first optical and electrical composite adapter and docked with the first optical and electrical connector to realize the transmission of optical and electrical signals.
  • the first photoelectric connector is a component in the input interface that realizes photoelectric composite input.
  • the first optoelectronic connector may have built-in optical transmission structures (for example, including ferrules) and electrical transmission structures (for example, including electrodes).
  • the optical transmission structure can accommodate and fix the optical fiber connected to the optical splitting module to transmit external optical signals to the optical splitting module; the electrical transmission structure can be connected to the circuit board to transmit external electrical energy.
  • each optoelectronic output interface includes a second optoelectronic composite adapter and a second optoelectronic connector that are fixed, and the second optoelectronic composite adapter is fixed to the circuit board; the second optoelectronic connector and the circuit board connection, and is connected to the optical splitting module through an optical fiber; the second photoelectric connector is used to output an output electrical energy and a bundle of output optical signals.
  • the second optoelectronic composite adapter can fix and accommodate the second optoelectronic connector.
  • the second optoelectronic connector can be plugged into one end of the second optoelectronic composite adapter.
  • the optical and electrical connector of the external device can be inserted into the other end of the second optical and electrical composite adapter and docked with the second optical and electrical connector to realize the transmission of optical and electrical signals.
  • the second optical connector is an optical The component that realizes photoelectric composite output in the electrical output interface.
  • the second optoelectronic connector may have built-in optical transmission structures (for example, including ferrules) and electrical transmission structures (for example, including electrodes).
  • the optical transmission structure can accommodate and fix the optical fiber connected to the light splitting module to receive a beam of output optical signals from the light splitting module; the electrical transmission structure can be connected to the circuit board and receive a channel of output power through the circuit board.
  • the spectrometer includes an indicator light, the indicator light is electrically connected to the circuit board, and the indicator light is used to emit light that can propagate outside the housing.
  • the indicator light is electrically connected to the circuit board and used for controlled emission to indicate the working status of the spectrometer.
  • An indicator light hole can be provided on the housing, and the light emitted by the indicator light can be emitted through the indicator light hole.
  • a first indicator light may be provided to indicate the power input and/or power output status.
  • a photoelectric conversion device and a second indicator light may be provided.
  • the photoelectric conversion device can be arranged on the circuit board and connected to the light splitting module.
  • the photoelectric conversion device is used to convert the optical signal of the light splitting module into an electrical signal.
  • the second indicator light can be electrically connected to the photoelectric conversion device through the circuit board, and the second indicator light is used to indicate the input and/or output status of the optical signal.
  • the transformer module includes a heating device and a heat sink, the heating device and the heat sink are fixedly connected; the heating device is connected to the circuit board, and the heat sink is connected to the circuit board.
  • the heating device can be a device that generates significant heat during operation and needs to be dissipated, such as a MOS tube.
  • the heat sink plays the role of fixing the MOS tube.
  • the heat sink itself has good heat dissipation performance. After the heat sink is connected to the circuit board, it can transfer the heat to the circuit board so that it can be dissipated through the circuit board with a larger heat dissipation area, thereby improving the heat dissipation performance of the heating device. Ensure it can work reliably.
  • the housing includes a peripheral side wall and a bottom wall, the peripheral side wall surrounds the periphery of the bottom wall; a partition rib is provided on the inside of the bottom wall, and the top surface of the partition rib faces the circuit board; the bottom wall The wall, the dividing rib, the circuit board and the peripheral side wall form a first space and a second space, and the first space and the second space are separated by the dividing rib.
  • the peripheral side walls surround the periphery of the bottom wall and are connected to the bottom wall.
  • the dividing ribs can be protruding from the inner surface of the bottom wall, there can be one or more dividing ribs, and the dividing ribs can be located on one side or both sides of the circuit board.
  • the top surface of the dividing rib refers to the surface of the dividing rib on the side opposite to the root of the dividing rib. The top surface may be in contact with the circuit board or have a certain gap.
  • the first space and the second space are surrounded by the bottom wall, the dividing ribs, the circuit board and the peripheral side walls, and the dividing ribs separate the first space and the second space.
  • the bottom wall includes an opposite first bottom wall and a second bottom wall, and the peripheral side wall is located between the first bottom wall and the second bottom wall;
  • the separation rib includes a first separation rib and a second bottom wall.
  • the second dividing rib, the first dividing rib is arranged on the inner side of the first bottom wall, and the second dividing rib is arranged on the inner side of the second bottom wall;
  • the transformer module and the shunt module are arranged on opposite sides of the circuit board;
  • the circuit board is located on Between the first dividing rib and the second dividing rib, the first bottom wall, the first dividing rib, the circuit board, the second dividing rib, the second bottom wall and the peripheral side wall form a first space and a second space.
  • the space and the second space are both distributed on opposite sides of the circuit board; on one side of the circuit board, the first space and the second space are separated by a first dividing rib; on the opposite side of the circuit board, the first space It is separated from the second space by a second dividing rib.
  • the peripheral side wall is connected between the first bottom wall and the second bottom wall.
  • the first separating ribs and the second separating ribs are respectively located on opposite sides of the circuit board.
  • the first separating ribs and the second separating ribs may basically overlap or may be staggered.
  • the first dividing rib separates the space on one side of the circuit board, and the second dividing rib separates the space on the other side of the circuit board.
  • High-voltage devices and low-voltage devices can be arranged on opposite sides of the circuit board, so that the high-voltage devices and low-voltage devices on each side of the circuit board can be separated, thus ensuring safety requirements.
  • the housing has an input through hole and at least two output through holes, and the input interface passes through
  • the input through hole receives external optical signals and external electric energy, and a photoelectric output interface outputs an output electric energy and a beam of output optical signal through an output through hole respectively;
  • the inner wall of the housing is provided with positioning ribs, and the positioning ribs and the input interface are away from the circuit board.
  • One side abuts, and/or the positioning rib abuts the side of each photoelectric output interface facing away from the circuit board.
  • the positioning ribs can press against the input interface and/or the optoelectronic output interface, so that the input interface is aligned with the input through hole and/or the optoelectronic output interface is aligned with the output through hole, so as to avoid unevenness of the input interface and/or optoelectronic output interface.
  • the output interface is uneven, resulting in inaccurate alignment.
  • a limiting structure in the housing.
  • the limiting structure includes a limiting part and a connecting part.
  • the connecting part connects the limiting part and the inner wall of the housing, and a gap is formed between the limiting part and the inner wall. ;
  • the light splitting module is clamped and installed in the gap.
  • the limiting structure can be similar to the back of a chair, and the connecting part can be similar to the seat surface.
  • the gap between the limiting structure and the inner wall of the housing can be used to install the light splitting module, and the limiting structure can hold and limit the light splitting module.
  • the optical splitter includes a fiber bundle holder for constraining the optical fiber, and the fiber bundle holder is fixed to the circuit board; the inner wall of the housing is provided with a support portion, and the support portion and the fiber bundle holder are respectively located on the circuit board. On opposite sides of the circuit board, the support portions abut against the circuit board.
  • the support part can correspond to the installation position of the fiber bundle holder on the circuit board, and the support part can provide structural support to the circuit board to prevent the stress generated by the plug-in installation of the fiber bundle holder from causing damage to the stress-sensitive devices on the circuit board.
  • the technical solution of the present application provides an optical network system, including an optical line terminal, at least two optical network units and any of the above optical splitters; the optical line terminal is used to provide external optical signals; an optical line terminal The network unit is correspondingly connected to an optical and electrical output interface, and an optical network unit is used to receive one output electrical energy and one output optical signal.
  • the optical network system can be an FTTR system, which can apply the P2MP optical fiber networking solution.
  • the optical network system can belong to the access network, and the optical network system can interact with the public switched telephone network (PSTN) and IP backbone network in the core network through optical line terminals.
  • Optical line terminals are used to deliver downlink signals (including but not limited to voice, video, data and other signals).
  • the optical network unit is close to the user side and is used to obtain optical signals and power from the optical splitter.
  • the optical splitter in this solution can provide optical signals and power to the optical network unit, so that the optical network unit does not need to draw additional local power, which improves the product experience.
  • Figure 1 is a schematic diagram of the frame structure of the optical network system according to the embodiment of the present application.
  • Figure 2 is a schematic diagram of the assembly structure of the optical splitter in Figure 1;
  • Figure 3 is a schematic diagram of the hierarchical structure of the optical splitter in Figure 2;
  • Figure 4 is a schematic structural diagram of the upper shell of the spectrometer in Figure 3;
  • Figure 5 is a partial enlarged structural diagram of position A in Figure 4.
  • Figure 6 is a partial enlarged structural diagram of B in Figure 4.
  • Figure 7 is a schematic structural diagram of the lower housing of the spectrometer in Figure 3.
  • Figure 8 is a schematic structural diagram of the lower housing of the spectrometer in Figure 3;
  • Figure 9 is a partial enlarged structural diagram of C in Figure 8.
  • Figure 10 is a schematic diagram showing the matching structure of the upper shell and the lower shell of the spectrometer
  • Figure 11 is a schematic structural diagram of the circuit board assembly of the optical splitter in Figure 3.
  • Figure 12 is a structural schematic diagram of the photoelectric output interface in Figure 11;
  • Figure 13 is an exploded structural diagram of the photoelectric output interface in Figure 12;
  • Figure 14 shows the functional framework structure of the optical splitter according to the embodiment of the present application.
  • Figure 15 is a schematic cross-sectional structural diagram of a spectrometer according to an embodiment of the present application.
  • the embodiment of the present application provides an optical network system 1.
  • the optical network system 1 may be an FTTR system, which can apply the P2MP optical fiber networking solution.
  • the optical network system 1 may include an optical line terminal 30, an optical splitter 20 and several optical network units 10 (three optical network units 10 are schematically shown in Figure 1).
  • the optical splitter 20 can connect the optical line terminal 30 and the optical network unit 10.
  • the optical splitter 20 is used to split the downlink signals (including but not limited to voice, video, data and other signals) of the optical line terminal 30 to each optical network unit. 10, in which the optical splitter 20 can output optical signals and electrical energy to the optical network unit 10 (the description will be continued below).
  • the optical splitter 20 is also used to send the uplink signals of each optical network unit 10 (including but not limited to voice, video, data and other signals) to the optical line terminal 30 .
  • the optical network system 1 may belong to the access network, and the optical network system 1 may interact with the public switched telephone network (PSTN) and IP backbone network in the core network through the optical line terminal 30.
  • PSTN public switched telephone network
  • IP backbone network IP backbone network
  • the optical splitter 20 may include an upper shell 201, a lower shell 202, a circuit board 207, a fiber bundle holder 208, a transformer module 209, an electrical input interface 210, and an optical input interface. 203. Cascade interface 204, photoelectric output interface 205 and light splitting module 206.
  • the upper shell 201 and the lower shell 202 can form a shell, and the upper shell 201 and the lower shell 202 are assembled to form a receiving cavity.
  • the circuit board 207, the fiber bundle holder 208, the transformer module 209, the electrical input interface 210, the optical input interface 203, The cascade interface 204, the photoelectric output interface 205 and the light splitting module 206 can all be installed in the receiving cavity.
  • the electrical input interface 210 and the optical input interface 203 may be collectively referred to as input interfaces. They are explained one by one below.
  • the upper shell 201 may include a first bottom wall 201a, and the first bottom wall 201a may be substantially plate-shaped. There may be no opening on the first bottom wall 201a.
  • first buckles 201b can be provided on the inner edge of the first bottom wall 201a (the side of the first bottom wall 201a close to the lower shell 202).
  • the first buckles 201b can be connected with the second buckles (201b) on the lower shell 202. (will be described below) forms a snap connection, which may be a detachable connection, so that the housing of the spectrometer 20 can be opened for inspection.
  • first positioning ribs 201e and second positioning ribs 201d can also be provided on the inner side of the first bottom wall 201a.
  • Figures 5 and 6 respectively illustrate the partially enlarged structures of the first positioning rib 201e and the second positioning rib 201d.
  • both the first positioning rib 201e and the second positioning rib 201d (hereinafter referred to as the positioning rib) may be roughly a frame structure or a lattice structure.
  • the positioning ribs include several walls erected on the first bottom wall 201a, and these walls can surround several grooves. According to product requirements, the top surfaces of each wall in the positioning ribs can be flush or stepped.
  • the second positioning rib 201d may include a connected first part 201f and a second part 201g.
  • the top surfaces of each wall in the first part 201f may be flush, and the top surfaces of each wall in the second part 201g may be flush, but the top surface of the wall of the first part 201f can be lower, and the top surface of the wall of the second part 201g can be higher, and the top surface of the wall of the first part 201f and the top surface of the wall of the second part 201g can form a step difference.
  • the first positioning rib 201e is used to cooperate with the electrical input interface 210.
  • the top surface of the first positioning rib 201e can contact the electrical input interface 210, so that the electrical input interface 210 is aligned with the power hole on the lower case 202. 202a.
  • the second positioning rib 201d is used to cooperate with the optical input interface 203, the cascade interface 204 and the photoelectric output interface 205.
  • the top surface of the first part 201f can contact the optical input interface 203 and the cascade interface 204, so that they are respectively aligned with the light input hole 202b and the cascade hole 202c on the lower case 202; the top surface of the second part 201g
  • the photoelectric output interface 205 can be contacted so that the photoelectric output interface 205 is aligned with the photoelectric output hole 202d on the lower case 202.
  • a first dividing rib 201c may also be provided on the inner side of the first bottom wall 201a, and the first dividing rib 201c may be generally in the shape of a wall.
  • the first dividing rib 201c may extend from one side of the first bottom wall 201a to the opposite side.
  • the first dividing rib 201c may be located between the first positioning rib 201e and the second positioning rib 201d, and the first dividing rib 201c may be connected to the second positioning rib 201d.
  • the top surface of the first dividing rib 201c can face the circuit board 207, and the top surface can contact the circuit board 207, or the top surface can be in contact with the circuit board 207.
  • the circuit board 207 has a certain gap (the gap can be smaller).
  • the first separating rib 201c is used to separate high-voltage devices such as the transformer module 209 from low-voltage devices other than the transformer module 209. The design is continued below.
  • the structure of the upper shell 201 described above is only an example and is not a limitation of the embodiment of the present application.
  • the structure of the upper shell can be flexibly designed according to product needs.
  • the upper shell may not have at least one of the above-mentioned structural features such as positioning ribs, separation ribs, and first buckles.
  • the lower shell 202 may be generally an open boxed structure.
  • the lower shell 202 may include a second bottom wall 202f (which together with the above-mentioned first bottom wall 201a may be collectively referred to as the bottom wall) and a peripheral side wall 202e surrounding the periphery connected to the second bottom wall 202f.
  • a second dividing rib 202h may be formed on the inner side of the second bottom wall 202f (located on one side of the internal space of the lower shell 202 ), and the second dividing rib 202h may be generally in a strip structure.
  • the second dividing rib 202h can extend from one side of the second bottom wall 202f to the opposite side, and the opposite ends of the second dividing rib 202h can be connected to the peripheral side wall 202e, and the second dividing rib 202h can The internal space of the lower case 202 is divided into two areas.
  • the top surface of the second dividing rib 202h can face the circuit board 207, and the top surface can contact the circuit board 207, or there is a certain distance between the top surface and the circuit board 207. gap (the gap can be smaller).
  • the second separation rib 202h is used to separate high-voltage devices such as the transformer module 209 from low-voltage devices other than the transformer module 209 . The design is continued below.
  • a support portion 202i can also be formed on the inner side of the second bottom wall 202f.
  • the number of the support portion 202i can be at least one.
  • the support portion 202i can correspond to the installation position of the fiber bundle holder 208 on the circuit board 207.
  • the support part 202i can provide structural support to the circuit board 207 and prevent the stress generated by the plug-in installation of the fiber bundle holder 208 from causing damage to the stress-sensitive devices on the circuit board 207. This design will be explained below.
  • a limiting structure 202j can also be formed on the inside of the second bottom wall 202f.
  • the limiting structure 202j may include a limiting part 202k and a connecting part 202m.
  • the limiting part 202k may have a plate-like structure, and may have a certain curvature.
  • the connecting portion 202m may be in the shape of a block or a strip, which connects the limiting portion 202k and the peripheral side wall 202e, and forms a gap between the limiting portion 202k and the peripheral side wall 202e.
  • the limiting part 202k in the limiting structure 202j is similar to a chair back, and the connecting part 202m is similar to a chair surface.
  • the gap between the limiting structure 202j and the peripheral side wall 202e can be used to install the light splitting module 206, and the limiting structure 202j can hold and limit the light splitting module 206.
  • the top of the limiting part 202k may be chamfered or rounded, and the chamfer or rounded corner has the function of guiding and reducing friction to facilitate The light splitting module 206 is smoothly installed into the gap.
  • a power supply hole 202a, a light input hole 202b, a cascade hole 202c and a photoelectric output hole 202d can be provided on the peripheral side wall 202e. These holes are all through holes and can be opened on the same side plate of the peripheral side wall 202e. There are at least two photoelectric output holes 202d, for example, four photoelectric output holes 202d are shown in the figure.
  • the power hole 202a may be located on one side of the second dividing rib 202h
  • the light input hole 202b, the cascade hole 202c and the photoelectric output hole 202d may be located on the other side of the second dividing rib 202h.
  • the power hole 202a and the light input hole 202b can both be called input through holes
  • the cascade hole 202c and the photoelectric output hole 202d can both be called output through holes.
  • the peripheral side wall 202e, the second bottom wall 202f and the second dividing rib 202h can enclose two areas.
  • the area 202n corresponding to the power hole 202a ie, the left space in the perspective of Figure 7, 8
  • the portion of the peripheral side wall 202e corresponding to the area 202n has no openings except for the power hole 202a
  • the portion of the second bottom wall 202f corresponding to the area 202n has no openings.
  • the area 202n is used to arrange high-voltage devices such as the electrical input interface 210 and the transformer module 209.
  • the non-opening design of part of the peripheral side walls 202e and part of the second bottom wall 202f corresponding to the area 202n is conducive to meeting the safety requirements of high-voltage devices. .
  • the design is continued below.
  • second buckles 202g may also be provided on the peripheral side wall 202e.
  • the second buckles 202g may be located near the top surface of the peripheral side wall 202e, for example.
  • the second buckle 202g can form a buckle connection with the above-mentioned first buckle 201b, and the buckle connection can be a detachable connection, so that the housing of the spectrometer 20 can be opened for inspection.
  • the structure of the lower shell 202 described above is only an example and is not a limitation of the embodiment of the present application.
  • the structure of the lower shell can be flexibly designed according to product needs.
  • the lower shell may not have at least one of the above-mentioned structural features such as separation ribs, second buckles, and cascade holes.
  • FIG. 10 is used to show the matching relationship between the upper shell 201 and the lower shell 202 .
  • the upper shell 201 covers the lower shell 202
  • the first bottom wall 201 a and the second bottom wall 202 f are spaced apart and opposed.
  • the first positioning rib 201e may correspond to the power supply hole 202a
  • the first part 201f of the second positioning rib 201d may correspond to the light input hole 202b and the cascade hole 202c
  • the second part 201g of the second positioning rib 201d may correspond to the photoelectric output Hole 202d corresponds.
  • the first dividing rib 201c and the second dividing rib 202h may substantially overlap (may overlap completely, or they may be misaligned), and there is a gap between the top surface of the first dividing rib 201c and the top surface of the second dividing rib 202h.
  • the upper shell 201 and the lower shell 202 can be connected through buckles.
  • the upper shell 201 and the lower shell 202 can be further connected through connectors such as screws or other suitable connection methods to ensure assembly reliability.
  • the light splitting module 206 is used to split external optical signals, and the split optical signals may be called output optical signals.
  • Spectroscopic module 206 may be a passive component including several optical elements.
  • the light splitting module 206 can be installed at the limiting structure 202j and is clamped between the limiting structure 202j and the peripheral side wall 202e.
  • Figure 11 can show various devices arranged on the circuit board 207. It can be understood that what is shown in Figure 11 is only a schematic and does not limit the specific structure and layout of the circuit board 207 and the various devices on it.
  • a fiber path pattern 213 can be formed on the circuit board 207 , and the fiber path pattern 213 can avoid taller devices on the circuit board 207 .
  • several fiber bundle holders 208 can be fixed along the fiber path pattern 213 , and the optical fibers are clamped and fixed in the fiber bundle holders 208 to constrain the optical fibers on the fiber path pattern 213 .
  • the number and position of the fiber bundle holders 208 can be reasonably set as needed to avoid damaging the optical fiber when the upper shell 201 and the lower shell 202 are fastened and installed.
  • the support portion 202i in the lower case 202 can correspond to the installation position of at least part of the fiber bundle holder 208 on the circuit board 207 , supporting Part 202i can The installation position is supported to prevent the stress generated when the fiber bundle holder 208 is plugged into the circuit board 207 from causing damage to the stress-sensitive devices on the circuit board 207 .
  • the electrical input interface 210 may be arranged at the edge of the circuit board 207 .
  • the electrical input interface 210 is used to connect an external power source and receive external electrical energy input.
  • the external electrical energy received by the electrical input interface 210 may be high-voltage electricity, for example, the voltage may be between 170V-264V (including endpoint values).
  • the electrical input interface 210 may be a C8 power socket.
  • the electrical input interface 210 can be aligned with the power hole 202a to connect an external power source through the power hole 202a.
  • the electrical input interface 210 may be completely hidden in the lower case 202, or may be partially exposed from the power hole 202a. Furthermore, the first positioning rib 201e can contact the electrical input interface 210 to keep the electrical input interface 210 aligned with the power hole 202a to prevent misalignment due to unevenness of the electrical input interface 210.
  • the groove in the first positioning rib 201e can avoid key structures of the electrical input interface 210 and avoid affecting the operation of the electrical input interface 210.
  • the transformer module 209 can be arranged close to the electrical input interface 210 , and the transformer module 209 can be arranged on both sides or one side of the circuit board 207 .
  • the transformer module 209 can be electrically connected to the electrical input interface 210 through lines on the circuit board 207 .
  • the voltage conversion module 209 is used to convert the external electric energy received by the electric input interface 210 to convert high-voltage electric power into low-voltage electric power, where the low-voltage electric power may be, for example, 56V.
  • the electrical energy after step-down conversion can be output to the outside, and this electrical energy can be called output electrical energy.
  • the transformer module 209 may be composed of several devices and circuits.
  • the transformer module 209 may include a MOS tube 209b.
  • the MOS tube 209b will generate heat during operation and may be called a heat-generating device.
  • the MOS tube 209b can be fixed to the heat sink 209a.
  • the heat sink 209a can be, for example, a copper bracket.
  • the heat sink 209a can be fixed to the circuit board 207.
  • the heat sink 209a itself can dissipate the heat of the MOS tube 209b and can also transfer the heat to the circuit. board 207 to dissipate heat through the circuit board 207 with a larger heat dissipation area.
  • the working voltages of the electrical input interface 210 and the transformer module 209 are relatively high (for example, 170V-264V), and they can be called high-voltage devices.
  • High-voltage devices may be arranged on both sides or one side of the circuit board 207 .
  • other devices have lower operating voltages (such as 56V) and can be called low-voltage devices.
  • Low-voltage components are arranged on both sides or one side of the circuit board 207 .
  • a shunt module can also be arranged on the circuit board 207 .
  • the shunt module can be electrically connected to the transformer module 209 through the circuit on the circuit board 207.
  • the shunt module is used to shunt the output electric energy transformed by the transformer module 209 into at least two channels.
  • the shunt module may be composed of several devices and circuits, which is not specifically limited in this embodiment.
  • the optical input interface 203 may be arranged at the edge of the circuit board 207 .
  • the optical input interface 203 is used to connect an external light source and receive an external optical signal, and can transmit the external optical signal to the optical splitting module 206 through an optical fiber (for the purpose of clear illustration, the optical input interface 203 and the optical splitting module 206 are not shown in Figure 11 connected via optical fiber).
  • This embodiment does not limit the specific structure of the optical input interface 203.
  • the light input interface 203 can be aligned with the light input hole 202b so as to connect an external light source through the light input hole 202b.
  • a part of the light input interface 203 may be exposed outside the lower housing 202 , or the light input interface 203 may be completely hidden within the lower housing 202 . Furthermore, the first portion 201f of the second positioning rib 201d can contact the light input interface 203 to keep the light input interface 203 aligned with the light input hole 202b to prevent misalignment due to unevenness of the light input interface 203.
  • the groove in the first part 201f can avoid key structures of the light input interface 203 and avoid affecting the operation of the light input interface 203.
  • the input interface may be a photoelectric input interface.
  • the optoelectronic input interface may include a first optoelectronic composite adapter and a first optoelectronic connector, and the first optoelectronic connector is fixedly connected to the first optoelectronic composite adapter, for example For example, a part of the first optical and electrical connector can be plugged into the first optical and electrical composite adapter.
  • the first optoelectronic connector may have built-in optical transmission structures (for example, including ferrules) and electrical transmission structures (for example, including electrodes).
  • the optical transmission structure can accommodate and fix the optical fiber, and the optical transmission structure is connected to the optical splitting module through the optical fiber.
  • the electrical transmission structure can be connected to the circuit board.
  • the cascade interface 204 may be arranged at the edge of the circuit board 207 , and may be arranged side by side adjacent to the optical input interface 203 .
  • One end of the cascade interface 204 can be connected to the optical splitter module 206 through an optical fiber, and the other end can be connected to an external device (such as a lower-level optical splitter) to transmit optical signals to the external device.
  • This embodiment does not limit the specific structure of the cascade interface 204.
  • the cascade interface 204 can be aligned with the cascade hole 202c to connect the external device through the cascade hole 202c.
  • a portion of the cascade interface 204 may be exposed outside the lower case 202 , or the cascade interface 204 may be completely hidden within the lower case 202 .
  • the second part 201g of the second positioning rib 201d can contact the cascade interface 204 to keep the cascade interface 204 aligned with the cascade hole 202c to prevent misalignment due to unevenness of the cascade interface 204.
  • the groove in the second part 201g can avoid key structures of the cascade interface 204 and avoid affecting the operation of the cascade interface 204.
  • the optoelectronic output interface 205 may be arranged at the edge of the circuit board 207 .
  • the optoelectronic output interface 205 can be connected to the optical splitting module 206 through optical fibers, and transmits a bundle of output optical signals split by the optical splitting module 206 to the external optical network unit 10 .
  • the optoelectronic output interface 205 can also be electrically connected to the shunt module through the circuit board 207.
  • the optoelectronic output interface 205 can transmit one output power branched out by the shunt module to the external optical network unit 10.
  • the optoelectronic output interface 205 may include a second optoelectronic composite adapter 205a and a second optoelectronic connector 205b.
  • the second optoelectronic connector 205b and the second optoelectronic composite adapter 205a are fixedly connected, for example, the second optoelectronic connection A part of the device 205b can be plugged into the second optical-electrical composite adapter 205a.
  • the second optoelectronic connector 205b may have built-in optical transmission structures (for example, including ferrules) and electrical transmission structures (for example, including electrodes).
  • the optical transmission structure can accommodate and fix optical fibers connected to the optical splitting module 206 to receive a beam of output optical signals from the optical splitting module 206 .
  • the electrical transmission structure can be connected to the circuit board 207 and receive an output power through the circuit board 207 .
  • the optical and electrical connector of the external device can be plugged into the second optical and electrical composite adapter 205a and connected with the second optical and electrical connector 205b, thereby transmitting the output optical signal and output electrical energy to the external device. equipment. Therefore, the optical splitter 20 of this embodiment can not only provide optical signals to external devices, but also input electrical energy to them. This eliminates the need for external devices to draw additional local power, avoids interlacing of cables around external devices, and improves user experience. Moreover, the optical splitter 20 can not only be used in feeder sections or wiring sections, but can also be used at user access points, and the applicable scenarios are relatively rich.
  • FIG. 14 illustrates the functional framework structure of the optical splitter 20 having such input and output characteristics.
  • optical input interfaces 203 there may be at least two optical input interfaces 203, which is a backup redundant design that can ensure that optical signals are input to the optical splitter.
  • photoelectric output interfaces 205 There may be one or at least two photoelectric output interfaces 205 . This type of optical splitter can be used in specific application scenarios.
  • a photoelectric output interface 205 can be aligned with a photoelectric output hole 202d to connect external devices through the photoelectric output hole 202d.
  • a part of the optoelectronic output interface 205 may be exposed outside the lower case 202 , or the optoelectronic output interface 205 may be completely hidden within the lower case 202 .
  • the second portion 201g of the second positioning rib 201d can contact the photoelectric output interface 205 to keep the photoelectric output interface 205 aligned with the photoelectric output hole 202d to avoid The alignment is inaccurate due to unevenness of the photoelectric output interface 205 and/or insufficient flatness of the circuit board 207 .
  • the groove in the second part 201g can avoid the key structure of the photoelectric output interface 205 and avoid affecting the operation of the photoelectric output interface 205.
  • the spectroscope 20 may also have an indicator light, which is electrically connected to the circuit board 207 and used for controlled emission to indicate the working status of the spectroscope 20 .
  • An indicator light hole can be provided on the housing, and the light emitted by the indicator light can be emitted through the indicator light hole.
  • a first indicator light may be provided to indicate the power input and/or power output status.
  • a photoelectric conversion device and a second indicator light may be provided.
  • the photoelectric conversion device can be arranged on the circuit board 207 and connected to the light splitting module 206.
  • the photoelectric conversion device is used to convert the optical signal of the light splitting module 206 into an electrical signal.
  • the second indicator light can be electrically connected to the photoelectric conversion device through the circuit board 207, and the second indicator light is used to indicate the input and/or output status of the optical signal.
  • FIG. 15 shows the assembly structure of the lower case 202, the circuit board 207 and each device in a cross-sectional view, in which only the lower case 202 is shown in cross-section.
  • the second dividing rib 202h on the lower case 202 can cooperate with the circuit board 207 (contact or have a certain gap).
  • the first separation rib 201c on the upper case 201 can also cooperate with the circuit board 207 (contact or have a certain gap), and the two separation ribs are located on opposite sides of the circuit board 207.
  • the first bottom wall 201a, the first dividing rib 201c, the circuit board 207, the second dividing rib 202h, the second bottom wall 202f and the peripheral side wall 202e form a first space and a second space. Both spaces are distributed on both sides of the circuit board 207 , or the first space includes two parts located on both sides of the circuit board 207 , and the second space includes two parts located on both sides of the circuit board 207 .
  • the first space is the space where the area 202n is located, for example, the space on the left side of the first dividing rib 201c and the second dividing rib 202h in FIG. 10 .
  • the second space is the space on the right side of the first dividing rib 201c and the second dividing rib 202h in FIG. 10 .
  • the first space and the second space are separated by the first dividing rib 201c; on the opposite side of the circuit board 207, the first space and the second space are separated by the first dividing rib 201c.
  • the space is separated by the second dividing rib 202h.
  • the high-voltage devices on the circuit board 207 can be located in the high-voltage area of the circuit board 207 (the high-voltage area can refer to the areas on both sides of the circuit board 207, and high-voltage devices can be distributed on both sides of the circuit board 207).
  • the low-voltage devices on the circuit board 207 can be located in the low-voltage area of the circuit board 207 (the low-voltage area can refer to the area on both sides of the circuit board 207, and the shunt module can be arranged on both sides of the circuit board 207) .
  • the high-voltage device and the high-voltage area may be located on one side of the second separation bar 202h (for example, the left side in FIG. 15), and the high-voltage device and the high-voltage area may be located in the above-mentioned first space.
  • the low-voltage device and the low-voltage area may be located on the other side of the second separation bar 202h (for example, the right side in FIG. 15), and the low-voltage device and the low-voltage area may be located in the above-mentioned second space.
  • the high-voltage devices and the low-voltage devices can also be located in the above-mentioned first space, and the low-voltage devices and the low-voltage area can also be located in the above-mentioned second space. .
  • the high-voltage devices and the low-voltage devices on both sides of the circuit board 207 can be located in different spaces respectively and separated by the first separation rib 201c and the second separation rib 202h.
  • the portion of the housing corresponding to the second space may be provided with openings, such as multiple strip-shaped openings on the lower housing 202 .
  • openings such as multiple strip-shaped openings on the lower housing 202 .
  • the optical splitter 20 of this embodiment is designed to isolate high-voltage devices from low-voltage devices, external conductive foreign matter entering the low-voltage area is blocked by the separation ribs and cannot enter the high-voltage area, thereby avoiding the risk of short circuit of the high-voltage devices. Therefore, the isolation design of this embodiment can meet safety requirements, making the optical splitter 20 highly reliable.
  • one side of the circuit board 207 can also be provided with partitions.
  • ribs that is, separating ribs are provided in the upper shell or the lower shell.
  • the upper shell or the lower shell, the separating ribs and the circuit board 207 can enclose a first space and a second space.
  • the first space can be located on one side of the circuit board 207
  • the second space may be located on one side or both sides of the circuit board 207
  • the dividing rib separates the first space from the second space.
  • High-voltage devices are located in the first space
  • low-voltage devices are located in the second space.
  • the separation rib isolates high-voltage components from low-voltage components to ensure safety requirements.
  • connection can be It can be detachably connected or non-detachably connected; it can be directly connected or indirectly connected through an intermediate medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种分光器,包括壳体、电路板以及布置在电路板上的输入接口、变压模块、分流模块、分光模块和至少两个光电输出接口;分光模块位于壳体内,并通过光纤与输入接口以及光电输出接口连接;输入接口用于接收外部光信号与外部电能;变压模块用于将外部电能降压并转换成输出电能;分流模块用于将输出电能分流为至少两路;分光模块用于将外部光信号分束为至少两束输出光信号;每个光电输出接口用于输出一路输出电能以及一束输出光信号;分光器中的高压器件与低压器件是隔离的。还提供了一种具有该分光器的光网络系统,使分光器的下级设备无需额外本地取电。

Description

分光器和光网络系统
本申请要求于2022年8月24日提交中国国家知识产权局、申请号202222242549.4、申请名称为“分光器和光网络系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种分光器和光网络系统。
背景技术
随着光纤到房间(fiber to the room,FTTR)业务的普及,在家庭场景中越来越多的使用点对多点(point to multiple point,P2MP)光纤组网的解决方案。其中,分光器作为实现P2MP的分光技术的无源器件,起到了关键的作用。分光器将耦合的下行信号分束给多个光网络单元(optical network unit,ONT),将上行信号发送到光线路终端(optical line terminal,OLT)。
现有分光器的输入与输出都是纯光信号,其输出口仅能提供纯光信号,无法为下级设备提供电能。下级设备如果是有源的,需要单独本地取电,在下级设备周围会有多种线缆交织使用,产品体验不好。因此,此种分光器通常用于馈线段或配线段,不在用户接入点处使用,使用场景受限。
实用新型内容
本申请的技术方案提供了一种分光器和光网络系统,该分光器能够给下级设备提供光信号与电能,使下级设备无需额外本地取电,提升了产品体验,扩展了分光器的适用场景。
第一方面,本申请的技术方案提供了一种分光器,包括壳体、电路板、输入接口、变压模块、分流模块、分光模块和至少两个光电输出接口;电路板位于壳体内,输入接口、变压模块、分流模块和至少两个光电输出接口均布置于电路板;分光模块位于壳体内,并通过光纤与输入接口以及光电输出接口连接;壳体与电路板围成第一空间与第二空间,第一空间与第二空间被壳体隔开,输入接口的至少一部分与变压模块位于第一空间,分流模块与至少两个光电输出接口位于第二空间;输入接口用于接收外部光信号与外部电能;变压模块用于将外部电能降压并转换成输出电能;分流模块用于将输出电能分流为至少两路;分光模块用于将外部光信号分束为至少两束输出光信号;每个光电输出接口用于输出一路输出电能以及一束输出光信号。
本方案中,壳体可以是分光器的外壳。电路板及电路板上的各个器件均可以安装在壳体内,其中,输入接口可以全部隐藏于壳体内或者从壳体内露出一部分;光电输出接口可以全部隐藏于壳体内或者从壳体内露出一部分。输入接口可以是单个部件,其能实现光信号与电能的复合输入;或者,输入接口可以包括分离的不同部件,该不同部件分别实现光信号的输 入与电能的输入。输入接口接收的外部电能可通过电路板上的线路传输至变压模块,变压模块对外部电能进行降压处理,以得到输出电能。该输出电能可通过电路板上的线路传输至分流模块,分流模块将输出电能分流为若干路。光电输出接口为单个部件,其能实现光信号与电能的复合输出,其中,一路输出电能可通过电路板上的线路传输至一个光电输出接口,并通过该光电输出接口输出;一束输出光信号可通过光纤传输至一个光电输出接口,并通过该光电输出接口输出。
本方案中,当需要对外输出光信号与电能时,外部设备的光电连接器可插接至光电输出接口,从而将输出光信号与输出电能传输至该外部设备。由此,本方案不仅能向外部设备提供光信号,还能向其输入电能。这样使得外部设备无需额外本地取电,避免外部设备的周围线缆交织,提升了用户体验。并且,本方案的分光器不仅能够用于馈线段或配线段,还能在用户接入点处使用,适用场景较为丰富。
本方案中,壳体与电路板围成第一空间与第二空间,第一空间与第二空间被壳体上的结构隔开。第一空间可以位于电路板一侧或者两侧,第一空间可以与外界不连通。第二空间可以位于电路板一侧或者两侧。输入接口的至少一部分与变压模块位于第一空间,分流模块与至少两个光电输出接口位于第二空间。输入接口与变压模块均属于高压器件,分流模块与光电输出接口均属于低压器件,本方案能够将高压器件与低压器件隔开,以满足安规要求。
在第一方面的一种实现方式中,输入接口包括电输入接口与光输入接口,电输入接口位于第一空间,光输入接口位于第二空间;电输入接口用于接收外部电能,光输入接口用于接收外部光信号;分光模块通过光纤与光输入接口连接。
本方案中,输入接口包括独立的电输入接口与光输入接口,电输入接口实现外部电能输入,光输入接口实现外部光信号输入,电输入接口与光输入接口是隔开的。本方案能满足产品需求,并能实现高压器件的安规要求。
在第一方面的一种实现方式中,输入接口包括相固定的第一光电复合适配器与第一光电连接器,第一光电复合适配器固定于电路板;第一光电连接器与电路板连接,并通过光纤与分光模块连接;第一光电连接器用于接收外部光信号与外部电能。
本方案中,输入接口是单个部件,能够实现光电信号的复合输入。其中,第一光电复合适配器可以固定和收容第一光电连接器,例如第一光电连接器可以插接在第一光电复合适配器内的一端。外部设备的光电连接器可以插入第一光电复合适配器内的另一端,并与第一光电连接器对接,以实现光电信号的传输。第一光电连接器是输入接口中实现光电复合输入的部件。第一光电连接器可以内置光传输结构(例如包括插芯)与电传输结构(例如包括电极)。该光传输结构可以容纳和固定与分光模块连接的光纤,以向分光模块传输外部光信号;该电传输结构可以与电路板连接,以传输外部电能。本方案能满足产品需求,并能实现高压器件的安规要求。
在第一方面的一种实现方式中,每个光电输出接口包括相固定的第二光电复合适配器与第二光电连接器,第二光电复合适配器固定于电路板;第二光电连接器与电路板连接,并通过光纤与分光模块连接;第二光电连接器用于输出一路输出电能以及一束输出光信号。
本方案中,第二光电复合适配器可以固定和收容第二光电连接器,例如第二光电连接器可以插接在第二光电复合适配器内的一端。外部设备的光电连接器可以插入第二光电复合适配器内的另一端,并与第二光电连接器对接,以实现光电信号的传输。第二光电连接器是光 电输出接口中实现光电复合输出的部件。第二光电连接器可以内置光传输结构(例如包括插芯)与电传输结构(例如包括电极)。该光传输结构可以容纳和固定与分光模块连接的光纤,以从分光模块处接收一束输出光信号;该电传输结构可以与电路板连接,并通过电路板接收一路输出电能。本方案能满足产品需求,并能实现高压器件的安规要求。
在第一方面的一种实现方式中,分光器包括指示灯,指示灯与电路板电连接,指示灯用于发出能传播至壳体外的光线。
本方案中,指示灯与电路板电连接,用于受控发光以指示分光器的工作状态。壳体上可以设指示灯孔,指示灯发出的光可穿过指示灯孔射出。例如,可以设置第一指示灯,用于指示电能输入和/或电能输出状态。例如,可以设置光电转换器件与第二指示灯。光电转换器件可以布置于电路板并与分光模块连接,光电转换器件用于将分光模块的光信号转换成电信号。第二指示灯可通过电路板与光电转换器件电连接,第二指示灯用于指示光信号的输入和/或输出状态。本方案能够实现分光器的工作状态的直观提示。
在第一方面的一种实现方式中,变压模块包括发热器件与散热件,发热器件与散热件固定连接;发热器件与电路板连接,散热件与电路板连接。
本方案中,发热器件可以是工作时发热较为显著,需要进行散热的器件,如MOS管。散热件起到固定MOS管的作用。另外,散热件本身具有较好的散热性能,散热件连接至电路板后又能将热量传递至电路板,以通过具有较大散热面积的电路板散发出去,从而提升了发热器件的散热性能,保证其能可靠工作。
在第一方面的一种实现方式中,壳体包括周侧壁与底壁,周侧壁环绕于底壁的周缘;底壁的内侧设有分隔筋,分隔筋的顶面朝向电路板;底壁、分隔筋、电路板和周侧壁围成第一空间与第二空间,第一空间与第二空间被分隔筋隔开。
本方案中,周侧壁环绕于底壁的周缘,并与底壁连接。分隔筋可以凸设于底壁的内表面,分隔筋可以有一个或多个,分隔筋可以位于电路板的一侧或者两侧。分隔筋的顶面指与分隔筋的根部相对的一侧的分隔筋的表面,该顶面可与电路板接触或者具有一定间隙。本方案中,通过底壁、分隔筋、电路板和周侧壁围成第一空间与第二空间,分隔筋将第一空间与第二空间隔开。本方案通过简单的结构实现高压器件与低压器件的隔离,方案的可靠性与量产性好。
在第一方面的一种实现方式中,底壁包括相对的第一底壁与第二底壁,周侧壁位于第一底壁与第二底壁之间;分隔筋包括第一分隔筋与第二分隔筋,第一分隔筋设于第一底壁的内侧,第二分隔筋设于第二底壁的内侧;变压模块与分流模块均布置于电路板的相对两侧;电路板位于第一分隔筋与第二分隔筋之间,第一底壁、第一分隔筋、电路板、第二分隔筋、第二底壁和周侧壁围成第一空间与第二空间,第一空间与第二空间均分布在电路板的相对两侧;在电路板的一侧,第一空间与第二空间被第一分隔筋隔开;在电路板的相对的另一侧,第一空间与第二空间被第二分隔筋隔开。
本方案中,周侧壁连接在第一底壁与第二底壁之间。第一分隔筋与第二分隔筋分别位于电路板的相对两侧,第一分隔筋与第二分隔筋可以基本重合,也可以错开。第一分隔筋将电路板一侧的空间隔开,第二分隔筋将电路板另一侧的空间隔开。高压器件与低压器件均可布置在电路板的相对两侧,由此电路板每一侧的高压器件和低压器件均能被隔开,从而很好地保证了安规要求。
在第一方面的一种实现方式中,壳体具有输入通孔与至少两个输出通孔,输入接口通过 输入通孔接收外部光信号与外部电能,一个光电输出接口分别通过一个输出通孔输出一路输出电能以及一束输出光信号;壳体的内壁设有定位筋,定位筋与输入接口背离电路板的一侧抵接,和/或,定位筋与每个光电输出接口背离电路板的一侧抵接。
本方案中,定位筋可以抵压输入接口和/或光电输出接口,以使输入接口对准输入通孔和/或使光电输出接口对准输出通孔,避免由于输入接口不平整和/或光电输出接口不平整导致对位不准。
在第一方面的一种实现方式中,壳体内设有限位结构,限位结构包括限位部分与连接部分,连接部分连接限位部分与壳体的内壁,限位部分与内壁之间形成间隙;分光模块卡持安装于间隙内。
本方案中,限位结构可以类似椅背,连接部分可以类似椅面。限位结构与壳体内壁之间的间隙可用于安装分光模块,限位结构可对分光模块进行卡持和限位。本方案通过简单的设计实现了分光模块在壳体内的安装,量产性好。
在第一方面的一种实现方式中,分光器包括用于约束光纤的束纤座,束纤座固定于电路板;壳体的内壁设有支撑部,支撑部与束纤座分别位于电路板的相对两侧,支撑部抵接电路板。
本方案中,沿着电路板上的盘纤路径,可以固定若干束纤座,光纤被夹持固定在束纤座内,以将光纤约束在盘纤路径上。束纤座的数量及位置可以根据需要合理设置,以避免组装时损伤光纤。支撑部可以对应电路板上的束纤座的安装位置,支撑部能够对电路板进行结构支撑,防止束纤座插接安装产生的应力对电路板上的应力敏感器件造成损伤。
第二方面,本申请的技术方案提供了一种光网络系统,包括光线路终端、至少两个光网络单元和上述任一项中的分光器;光线路终端用于提供外部光信号;一个光网络单元与一个光电输出接口对应连接,一个光网络单元用于接收一路输出电能以及一束输出光信号。
本方案中,光网络系统可以是一种FTTR系统,其可应用P2MP光纤组网解决方案。光网络系统可以属于接入网,光网络系统可以通过光线路终端与核心网中的公共交换电话网(public switched telephone network,PSTN)及IP骨干网进行信号交互。光线路终端用于下发下行信号(包括但不限限于语音、视频、数据等信号)。光网络单元靠近用户侧,用于从分光器获取光信号与电能。本方案中的分光器能够向光网络单元提供光信号与电能,使光网络单元无需额外本地取电,提升了产品体验。
附图说明
图1是本申请实施例的光网络系统的框架结构示意图;
图2是图1中的分光器的组装结构示意图;
图3是图2中的分光器的分级结构示意图;
图4是图3中的分光器的上壳的结构示意图;
图5是图4中A处的局部放大结构示意图;
图6是图4中B处的局部放大结构示意图;
图7是图3中的分光器的下壳的结构示意图;
图8是图3中的分光器的下壳的结构示意图;
图9是图8中C处的局部放大结构示意图;
图10是表示分光器的上壳与下壳的配合结构的示意图;
图11是图3中的分光器的电路板组件的结构示意图;
图12是图11中的光电输出接口的一种结构示意图;
图13是图12中的光电输出接口的分解结构示意图;
图14表示本申请实施例的分光器的功能框架结构;
图15是本申请实施例的分光器的剖视结构示意图。
具体实施方式
如图1所示,本申请实施例提供了一种光网络系统1,光网络系统1可以是一种FTTR系统,其可应用P2MP光纤组网解决方案。
示意性的,光网络系统1可以包括光线路终端30、分光器20及若干个光网络单元10(图1示意性画出了三个光网络单元10)。分光器20可连接光线路终端30与光网络单元10,分光器20用于将光线路终端30的下行信号(包括但不限限于语音、视频、数据等信号)分束给每个光网络单元10,其中分光器20能向光网络单元10输出光信号与电能(下文将继续说明)。分光器20还用于将每个光网络单元10的上行信号(包括但不限限于语音、视频、数据等信号)发送至光线路终端30。
示意性的,光网络系统1可以属于接入网,光网络系统1可以通过光线路终端30与核心网中的公共交换电话网(public switched telephone network,PSTN)及IP骨干网进行信号交互。
一种实施例中,如图2和图3所示,分光器20可以包括上壳201、下壳202、电路板207、束纤座208、变压模块209、电输入接口210、光输入接口203、级联接口204、光电输出接口205和分光模块206。其中,上壳201与下壳202可以构成壳体,上壳201与下壳202装配形成收容腔,电路板207、束纤座208、变压模块209、电输入接口210、光输入接口203、级联接口204、光电输出接口205和分光模块206均可以安装在该收容腔内。电输入接口210与光输入接口203可以合称输入接口。下面逐一进行说明。
如图3和图4所示,示意性的,上壳201可以包括第一底壁201a,第一底壁201a可以大致呈板状。第一底壁201a上可以无开孔。第一底壁201a的内侧(第一底壁201a靠近下壳202的一侧)的周缘可以设置若干个第一卡扣201b,第一卡扣201b可与下壳202上的第二卡扣(下文将会描述)形成卡扣连接,该卡扣连接可以为可拆卸连接,以便打开分光器20的壳体进行检修。
如图4所示,示意性的,第一底壁201a的内侧还可以设置第一定位筋201e与第二定位筋201d。图5与图6分别示意出了第一定位筋201e与第二定位筋201d的局部放大结构。如图5与图6所示,第一定位筋201e与第二定位筋201d(下文简称为定位筋)均可大致为框架结构或者框格结构。定位筋包括若干个竖立于第一底壁201a的壁,这些壁可以围成若干个凹槽。根据产品需要,定位筋中的各个壁的顶面可以平齐或者形成段差。例如图6所示,第二定位筋201d可以包括相连的第一部分201f与第二部分201g,第一部分201f中的各个壁的顶面可以平齐,第二部分201g中的各个壁的顶面可以平齐,但是第一部分201f的壁的顶面可以较低,第二部分201g的壁的顶面可以较高,第一部分201f的壁的顶面与第二部分201g的壁的顶面可以形成段差。
本实施例中,第一定位筋201e用于与电输入接口210配合,第一定位筋201e的顶面可以抵接电输入接口210,以使电输入接口210对准下壳202上的电源孔202a。第二定位筋201d用于与光输入接口203、级联接口204及光电输出接口205配合。其中,第一部分201f的顶面可以抵接光输入接口203与级联接口204,以使二者分别对准下壳202上的光输入孔202b和级联孔202c;第二部分201g的顶面可以抵接光电输出接口205,以使光电输出接口205对准下壳202上的光电输出孔202d。上述设计将在下文继续说明。
如图4所示,第一底壁201a的内侧还可以设置第一分隔筋201c,第一分隔筋201c可大致为墙壁形状。示意性的,第一分隔筋201c可以从第一底壁201a的一边延伸至相对的另一边。第一分隔筋201c可以位于第一定位筋201e与第二定位筋201d之间,第一分隔筋201c可以与第二定位筋201d相连。
本实施例中,当电路板207及变压模块209等器件安装在壳体内时,第一分隔筋201c的顶面可以朝向电路板207,该顶面可以接触电路板207,或者该顶面与电路板207具有一定间隙(该间隙可以较小)。第一分隔筋201c用于将变压模块209等高压器件与除变压模块209以外的低压器件隔开。该设计将在下文继续说明。
上文所述的上壳201的结构,仅仅是一种举例,并非是本申请实施例的限定。实际上,可以根据产品需要灵活设计上壳的结构。例如,上壳可以没有上述的定位筋、分隔筋、第一卡扣等结构特征中的至少一个。
如图7和图8所示,下壳202可以大致为敞口的盒装结构。示意性的,下壳202可以包括第二底壁202f(与上述的第一底壁201a可以合称底壁)以及环绕连接于第二底壁202f的周缘的周侧壁202e。
如图7和图8所示,第二底壁202f的内侧(位于下壳202的内部空间的一侧)可以形成第二分隔筋202h,第二分隔筋202h可以大致为条状结构。示意性的,第二分隔筋202h可以从第二底壁202f的一侧延伸至相对的另一侧,第二分隔筋202h的相对两端可以与周侧壁202e连接,第二分隔筋202h可以将下壳202的内部空间分隔为两个区域。当电路板207及变压模块209等器件安装在壳体内时,第二分隔筋202h的顶面可以朝向电路板207,该顶面可以接触电路板207,或者该顶面与电路板207具有一定间隙(该间隙可以较小)。第二分隔筋202h用于将变压模块209等高压器件与除变压模块209以外的低压器件隔开。该设计将在下文继续说明。
如图7和图8所示,第二底壁202f的内侧还可以形成支撑部202i,支撑部202i的数量可以为至少一个,支撑部202i可以对应电路板207上的束纤座208的安装位置,支撑部202i能够对电路板207进行结构支撑,防止束纤座208插接安装产生的应力对电路板207上的应力敏感器件造成损伤。该设计将在下文将继续说明。
如图7-图9所示,第二底壁202f的内侧还可以形成限位结构202j。示意性的,限位结构202j可以包括限位部分202k与连接部分202m。其中,限位部分202k可以呈板状结构,其可以具有一定弯曲度。连接部分202m可以呈块状或条状,其连接限位部分202k与周侧壁202e,并且使得限位部分202k与周侧壁202e之间形成间隙。限位结构202j中的限位部分202k类似椅背,连接部分202m类似椅面。限位结构202j与周侧壁202e之间的间隙可用于安装分光模块206,限位结构202j可对分光模块206进行卡持和限位。示意性的,限位部分202k的顶部可以形成倒角或者倒圆角,该倒角或者倒圆角具有导向和减少摩擦的作用,以利 于分光模块206顺滑地装入该间隙。
如图7和图8所示,周侧壁202e上可以开设电源孔202a、光输入孔202b、级联孔202c以及光电输出孔202d。这些孔均为通孔,且可以开设于周侧壁202e的同一侧板。光电输出孔202d为至少两个,例如图中示出了四个光电输出孔202d。示意性的,电源孔202a可以位于第二分隔筋202h的一侧,光输入孔202b、级联孔202c以及光电输出孔202d可以位于第二分隔筋202h的另一侧。
本实施例中,可以将电源孔202a与光输入孔202b均称为输入通孔,将级联孔202c与光电输出孔202d均称为输出通孔。
如图7和图8所示,周侧壁202e、第二底壁202f和第二分隔筋202h可以围成两个区域,针对对应电源孔202a的区域202n(即图7视角中的左空间,图8视角中的上空间),周侧壁202e中的与区域202n对应的部分除了开设电源孔202a外再无开孔,第二底壁202f中的与区域202n对应的部分无开孔。区域202n用于布置电输入接口210、变压模块209等高压器件,区域202n所对应的部分周侧壁202e以及部分第二底壁202f的无开孔设计,有利于实现高压器件的安规要求。该设计将在下文继续说明。
如图7和图8所示,周侧壁202e上还可以设有若干个第二卡扣202g,第二卡扣202g例如可以位于周侧壁202e的顶面附近。第二卡扣202g可与上述的第一卡扣201b形成卡扣连接,该卡扣连接可以为可拆卸连接,以便打开分光器20的壳体进行检修。
上文所述的下壳202的结构,仅仅是一种举例,并非是本申请实施例的限定。实际上,可以根据产品需要灵活设计下壳的结构。例如,下壳可以没有上述的分隔筋、第二卡扣、级联孔等结构特征中的至少一个。
图10用于表示上壳201与下壳202的配合关系。参考图10所示,当上壳201与下壳202装配在一起时,上壳201将下壳202封盖,第一底壁201a与第二底壁202f间隔相对。第一定位筋201e可以与电源孔202a对应,第二定位筋201d中的第一部分201f可以与光输入孔202b及级联孔202c对应,第二定位筋201d中的第二部分201g可以与光电输出孔202d对应。第一分隔筋201c可以与第二分隔筋202h可以基本重合(可以完全重合,或者二者存在错位),第一分隔筋201c的顶面与第二分隔筋202h的顶面之间具有间隙。
本实施例中,上壳201与下壳202可以通过卡扣连接。另外,还可以通过螺钉等连接件或者其他合适的连接方式将上壳201与下壳202进一步连接,以保证组装可靠性。
如图3所示,分光模块206用于对外部光信号进行分束,分束后的光信号可以称为输出光信号。分光模块206可以是包括若干光学元件的无源部件。结合图3与图9所示,分光模块206可以安装至限位结构202j处,并被夹持在限位结构202j与周侧壁202e之间。
图11可以表示布置在电路板207上的各个器件,可以理解的是,图11所示仅仅是一种示意,并非是限定电路板207及其上的各个器件的具体结构及布局形式。
如图11所示,电路板207上可以形成盘纤路径图案213,盘纤路径图案213可以避开电路板207上的较高的器件。在电路板207上,沿盘纤路径图案213可以固定若干束纤座208,光纤被夹持固定在束纤座208内,以将光纤约束在盘纤路径图案213上。束纤座208的数量及位置可以根据需要合理设置,以避免上壳201与下壳202扣合安装时损伤光纤。
结合图11与图10所示,当电路板207及各个器件安装至下壳202时,下壳202内的支撑部202i可以与电路板207上的至少一部分束纤座208的安装位置对应,支撑部202i可以 对该安装位置进行支撑,防止束纤座208插接至电路板207时产生的应力对电路板207上的应力敏感器件造成损伤。
如图11所示,电输入接口210可以布置在电路板207的边缘。电输入接口210用于连接外部电源并接收外部电能输入,电输入接口210所接收的外部电能可以是高压电,如电压可以在170V-264V之间(含端点值)。本实施例不限定电输入接口210的具体结构,示意性的,电输入接口210可以是C8电源座。结合图11与图10所示,电输入接口210可以对准电源孔202a,以便通过电源孔202a连接外部电源。电输入接口210可以完全隐藏在下壳202内,也可以从电源孔202a露出一部分。并且,第一定位筋201e可以抵接电输入接口210,以保持电输入接口210与电源孔202a对准,防止由于电输入接口210不平整导致的对位不准。第一定位筋201e中的凹槽能够避让电输入接口210的关键结构,避免影响电输入接口210工作。
如图11所示,变压模块209可以靠近电输入接口210布置,变压模块209可以布置在电路板207的两侧或者一侧。变压模块209可以通过电路板207上的线路与电输入接口210电连接。变压模块209用于将电输入接口210所接收的外部电能进行变换,以将高压电变换成低压电,其中低压电例如可以为56V。经过降压变换后的电能可以输出至外部,可将该电能称为输出电能。
变压模块209可以由若干器件与电路构成。例如图11所示,变压模块209可以包括MOS管209b,MOS管209b在工作时会发热,可以将其称为发热器件。MOS管209b可以固定至散热件209a,散热件209a例如可以是铜支架,散热件209a可以固定至电路板207,散热件209a本身能够将MOS管209b的热量进行发散,还可将热量传递给电路板207,以通过具有较大散热面积的电路板207进行散热。
本实施例中,电输入接口210与变压模块209的工作电压均较高(例如170V-264V),可将其称为高压器件。高压器件可以布置在电路板207的两侧或者一侧。除高压器件以外,其他器件的工作电压较低(例如56V),可将其称为低压器件。低压器件布置在电路板207的两侧或者一侧。
本实施例中,电路板207上还可以布置分流模块。分流模块可以通过电路板207上的电路与变压模块209电连接,分流模块用于将变压模块209变换后的输出电能分流为至少两路。分流模块可以由若干器件与电路构成,本实施例不做具体限定。
如图11所示,光输入接口203可以布置在电路板207的边缘。光输入接口203用于连接外部光源并接收外部光信号,并可以通过光纤将外部光信号传输至分光模块206(出于清楚示意的目的,图11中并未将光输入接口203与分光模块206通过光纤连接起来)。本实施例不限定光输入接口203的具体结构。结合图11与图10所示,光输入接口203可以对准光输入孔202b,以便通过光输入孔202b连接外部光源。光输入接口203的一部分可以露在下壳202之外,或者光输入接口203可以完全隐藏在下壳202内。并且,第二定位筋201d中的第一部分201f可以与光输入接口203抵接,以保持光输入接口203与光输入孔202b对准,防止由于光输入接口203不平整导致的对位不准。第一部分201f中的凹槽能够避让光输入接口203的关键结构,避免影响光输入接口203工作。
在其他实施例中,与上述实施例不同的是,外部电能与外部光信号可以通过同一个输入接口输入分光器。该输入接口可以是光电输入接口。示意性的,该光电输入接口可以包括第一光电复合适配器与第一光电连接器,第一光电连接器与第一光电复合适配器固定连接,例 如第一光电连接器的一部分可以插接在第一光电复合适配器内。第一光电连接器可以内置光传输结构(例如包括插芯)与电传输结构(例如包括电极)。该光传输结构可以容纳和固定光纤,该光传输结构通过光纤与分光模块连接。该电传输结构可以与电路板连接。当需要接收外部光信号与外部电能时,外部设备的光电连接器可插接至第一光电复合适配器内,并与第一光电连接器对接,从而使外部光信号与外部电能输入分光器。
如图11所示,级联接口204可以布置在电路板207的边缘,其可与光输入接口203相邻并排布置。级联接口204的一端可以通过光纤连接分光模块206,另一端可以跳接外部设备(例如下级分光器),以将光信号传输至该外部设备。本实施例不限定级联接口204的具体结构。结合图11与图10所示,级联接口204可以对准级联孔202c以便通过级联孔202c连接该外部设备。级联接口204的一部分可以露在下壳202之外,或者级联接口204可以完全隐藏在下壳202内。并且,第二定位筋201d中的第二部分201g可以与级联接口204抵接,以保持级联接口204与级联孔202c对准,防止由于级联接口204不平整导致的对位不准。第二部分201g中的凹槽能够避让级联接口204的关键结构,避免影响级联接口204工作。
如图11所示,光电输出接口205可以布置在电路板207的边缘。光电输出接口205可以通过光纤连接分光模块206,并将分光模块206分束出的一束输出光信号传输至外部的光网络单元10。光电输出接口205还可通过电路板207与分流模块电连接,光电输出接口205可以将分流模块分流出的一路输出电能传输至外部的光网络单元10。
本实施例不限定光电输出接口205的结构。例如图12与图13所示,光电输出接口205可以包括第二光电复合适配器205a与第二光电连接器205b,第二光电连接器205b与第二光电复合适配器205a固定连接,例如第二光电连接器205b的一部分可以插接在第二光电复合适配器205a内。第二光电连接器205b可以内置光传输结构(例如包括插芯)与电传输结构(例如包括电极)。该光传输结构可以容纳和固定与分光模块206连接的光纤,以从分光模块206处接收一束输出光信号。该电传输结构可以与电路板207连接,并通过电路板207接收一路输出电能。
当需要对外输出光信号与电能时,外部设备的光电连接器可插接至第二光电复合适配器205a内,并与第二光电连接器205b对接,从而将输出光信号与输出电能传输至该外部设备。由此,本实施例的分光器20不仅能向外部设备提供光信号,还能向其输入电能。这样使得外部设备无需额外本地取电,避免外部设备的周围线缆交织,提升了用户体验。并且,分光器20不仅能够用于馈线段或配线段,还能在用户接入点处使用,适用场景较为丰富。
本实施例中,光输入接口203为一个,光电输出接口205可以为至少两个,以此实现一个光/电输入,多个光/电输出。图14示意了具有此种输入输出特性的分光器20的功能框架结构。
在其他实施例中,光输入接口203可以为至少两个,这是一种备份冗余设计,能够确保有光信号输入分光器。其中,光电输出接口205可以是一个或者至少两个。此种分光器能够适用特定的应用场景。
结合图11与图10所示,一个光电输出接口205可以对准一个光电输出孔202d,以便通过光电输出孔202d连接外部设备。光电输出接口205的一部分可以露在下壳202之外,或者光电输出接口205可以完全隐藏在下壳202内。并且,第二定位筋201d中的第二部分201g可以与光电输出接口205抵接,以保持光电输出接口205与光电输出孔202d对准,避免由于 光电输出接口205不平整和/或电路板207的平整度不够导致的对位不准。第二部分201g中的凹槽能够避让光电输出接口205的关键结构,避免影响光电输出接口205工作。
本实施例中,分光器20还可以具有指示灯,指示灯与电路板207电连接,用于受控发光以指示分光器20的工作状态。壳体上可以设指示灯孔,指示灯发出的光可穿过指示灯孔射出。例如,可以设置第一指示灯,用于指示电能输入和/或电能输出状态。例如,可以设置光电转换器件与第二指示灯。光电转换器件可以布置于电路板207并与分光模块206连接,光电转换器件用于将分光模块206的光信号转换成电信号。第二指示灯可通过电路板207与光电转换器件电连接,第二指示灯用于指示光信号的输入和/或输出状态。
图15以剖视图的方式表示下壳202、电路板207及各个器件的组装结构,其中仅对下壳202做了剖视表达。
如图15所示,下壳202上的第二分隔筋202h可与电路板207配合(接触或者具有一定间隙)。结合图15、图10以及上文所述,上壳201上的第一分隔筋201c也可与电路板207配合(接触或者具有一定间隙),两个分隔筋分别位于电路板207相对两侧。
由此,第一底壁201a、第一分隔筋201c、电路板207、第二分隔筋202h、第二底壁202f和周侧壁202e围成第一空间与第二空间,第一空间与第二空间均在电路板207的两侧有分布,或者说第一空间包括分别位于电路板207的两侧的两部分、第二空间包括分别位于电路板207的两侧的两部分。其中,第一空间是区域202n所在的空间,例如为图10中第一分隔筋201c与第二分隔筋202h左侧的空间。第二空间是图10中第一分隔筋201c与第二分隔筋202h右侧的空间。结合图15与图10所示,在电路板207的一侧,第一空间与第二空间被第一分隔筋201c隔开;在电路板207的相对的另一侧,第一空间与第二空间被第二分隔筋202h隔开。
如图15所示,对于电路板207朝向第二分隔筋202h的一侧(图15朝向纸面内的一侧),电路板207上的高压器件(如变压模块209、电输入接口210等)可以位于电路板207的高压区(高压区可以指电路板207两侧的区域,高压器件可以在电路板207的两侧均有分布),电路板207上的低压器件(如光输入接口203、级联接口204、光电输出接口205、分流模块等)可以位于电路板207的低压区(低压区可以指电路板207两侧的区域,分流模块可以在电路板207的两侧均有布置)。高压器件和高压区可以位于第二分隔筋202h的一侧(例如图15中的左侧),高压器件和高压区可以位于上述的第一空间。低压器件和低压区可位于第二分隔筋202h的另一侧(例如图15中的右侧),低压器件和低压区可以位于上述的第二空间。
结合图15与图10所示,对于电路板207朝向第一分隔筋201c的一侧,高压器件与低压器件同样可以位于上述的第一空间,低压器件和低压区同样可以位于上述的第二空间。
所以,电路板207两侧的高压器件与低压器件可以分别位于不同的空间内,并被第一分隔筋201c与第二分隔筋202h隔开。
结合图15、图10以及上文综述,壳体对应第一空间(或者高压区)的部分除了电源孔202a以外,再无开孔。由于电源孔202a可以被电输入接口210堵住,外界异物不易从电源孔202a进入第一空间内,因而可以认为第一空间与外界不连通。
结合图15与图10所示,壳体对应第二空间(或者低压区)的部分可以设有开孔,例如下壳202上的多个条状开孔。若没有上述的高压器件与低压器件的隔离设计,外部的导电异物可能从该开孔进入低压区并达到高压区,导致高压器件短路。由于高压器件的电压较高,短路电流较大,会影响分光器20的性能,甚至造成分光器20损坏(若外部导电异物导致低 压器件短路,由于低压器件的电压较低,短路电流较小,对分光器20的影响有限)。但是,由于本实施例的分光器20具有将高压器件与低压器件隔离的设计,使得进入低压区的外部的导电异物被分隔筋阻挡而无法进入高压区,从而避免了高压器件的短路风险。因此,本实施例的隔离设计能够满足安规要求,使得分光器20具有较高的可靠性。
基于上文所述容易理解,当高压器件仅分布在电路板207的一侧时(低压器件可以分布在电路板207的两侧或一侧),也可以使电路板207的一侧设有分隔筋,即在上壳或者下壳中设置分隔筋,上壳或下壳、该分隔筋和电路板207可围成第一空间与第二空间,该第一空间可以位于电路板207的一侧,该第二空间可以位于电路板207的一侧或者两侧,该分隔筋将第一空间与第二空间隔开。高压器件位于该第一空间,低压器件位于该第二空间。该分隔筋将高压器件与低压器件隔离,以保证安规要求。
在本申请实施例的描述中,除非另有说明,“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请实施例的描述中,“多个”是指两个或多于两个。
在本申请实施例的描述中,术语“第一”、“第二”等用词仅用于区分技术特征以便进行清楚的描述,而不能理解为是在暗示相对重要性,或者隐含指明所指示的技术特征的数量。
本申请实施例中所提到的方位用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”、“顶”、“底”等,仅是参考附图中的视角方向。因此,该方位用语是为了更好、更清楚地说明及理解本申请实施例,而不是明示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限定。
在本申请实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“设置在……上”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种分光器(20),其特征在于,
    包括壳体、电路板(207)、输入接口、变压模块(209)、分流模块、分光模块(206)和至少两个光电输出接口(205);所述电路板(207)位于所述壳体内,所述输入接口、所述变压模块(209)、所述分流模块和所述至少两个光电输出接口(205)均布置于所述电路板(207);所述分光模块(206)位于所述壳体内,并通过光纤与所述输入接口以及所述光电输出接口(205)连接;
    所述壳体与所述电路板(207)围成第一空间与第二空间,所述第一空间与所述第二空间被所述壳体隔开,所述输入接口的至少一部分与所述变压模块(209)位于所述第一空间,所述分流模块与所述至少两个光电输出接口(205)位于所述第二空间;
    所述输入接口用于接收外部光信号与外部电能;所述变压模块(209)用于将所述外部电能降压并转换成输出电能;所述分流模块用于将所述输出电能分流为至少两路;所述分光模块(206)用于将所述外部光信号分束为至少两束输出光信号;每个所述光电输出接口(205)用于输出一路所述输出电能以及一束所述输出光信号。
  2. 根据权利要求1所述的分光器(20),其特征在于,
    所述输入接口包括电输入接口(210)与光输入接口(203),所述电输入接口(210)位于所述第一空间,所述光输入接口(203)位于所述第二空间;所述电输入接口(210)用于接收所述外部电能,所述光输入接口(203)用于接收所述外部光信号;所述分光模块(206)通过光纤与所述光输入接口(203)连接。
  3. 根据权利要求1所述的分光器(20),其特征在于,
    所述输入接口包括相固定的第一光电复合适配器与第一光电连接器,所述第一光电复合适配器固定于所述电路板(207);所述第一光电连接器与所述电路板(207)连接,并通过光纤与所述分光模块(206)连接;所述第一光电连接器用于接收所述外部光信号与所述外部电能。
  4. 根据权利要求1-3任一项所述的分光器(20),其特征在于,
    每个所述光电输出接口(205)包括相固定的第二光电复合适配器(205a)与第二光电连接器(205b),所述第二光电复合适配器(205a)固定于所述电路板(207);所述第二光电连接器(205b)与所述电路板(207)连接,并通过光纤与所述分光模块(206)连接;所述第二光电连接器(205b)用于输出所述一路所述输出电能以及一束所述输出光信号。
  5. 根据权利要求1-4任一项所述的分光器(20),其特征在于,
    所述分光器包括指示灯,所述指示灯与所述电路板(207)电连接,所述指示灯用于发出能传播至所述壳体外的光线。
  6. 根据权利要求1-5任一项所述的分光器(20),其特征在于,
    所述变压模块(209)包括发热器件(209b)与散热件(209a),所述发热器件(209b)与所述散热件(209a)固定连接;所述发热器件(209b)与所述电路板(207)连接,所述散热件(209a)与所述电路板(207)连接。
  7. 根据权利要求1-6任一项所述的分光器(20),其特征在于,
    所述壳体包括周侧壁(202e)与底壁,所述周侧壁(202e)环绕于所述底壁的周缘;所 述底壁的内侧设有分隔筋,所述分隔筋的顶面朝向所述电路板(207);所述底壁、所述分隔筋、所述电路板(207)和所述周侧壁(202e)围成所述第一空间与所述第二空间,所述第一空间与所述第二空间被所述分隔筋隔开。
  8. 根据权利要求7所述的分光器(20),其特征在于,
    所述底壁包括相对的第一底壁(201a)与第二底壁(202f),所述周侧壁(202e)位于所述第一底壁(201a)与所述第二底壁(202f)之间;所述分隔筋包括第一分隔筋(201c)与第二分隔筋(202h),所述第一分隔筋(201c)设于所述第一底壁(201a)的内侧,所述第二分隔筋(202h)设于所述第二底壁(202f)的内侧;
    所述变压模块(209)与所述分流模块均布置于所述电路板(207)的相对两侧;所述电路板(207)位于所述第一分隔筋(201c)与所述第二分隔筋(202h)之间,所述第一底壁(201a)、所述第一分隔筋(201c)、所述电路板(207)、所述第二分隔筋(202h)、所述第二底壁(202f)和所述周侧壁(202e)围成所述第一空间与所述第二空间,所述第一空间与所述第二空间均分布在所述电路板(207)的相对两侧;在所述电路板(207)的一侧,所述第一空间与所述第二空间被所述第一分隔筋(201c)隔开;在所述电路板(207)的相对的另一侧,所述第一空间与所述第二空间被所述第二分隔筋(202h)隔开。
  9. 根据权利要求1-8任一项所述的分光器(20),其特征在于,
    所述壳体具有输入通孔与至少两个输出通孔,所述输入接口通过所述输入通孔接收所述外部光信号与所述外部电能,一个所述光电输出接口(205)分别通过一个所述输出通孔输出一路所述输出电能以及一束所述输出光信号;
    所述壳体的内壁设有定位筋,所述定位筋与所述输入接口背离所述电路板(207)的一侧抵接,和/或,所述定位筋与每个所述光电输出接口(205)背离所述电路板(207)的一侧抵接。
  10. 根据权利要求1-9任一项所述的分光器(20),其特征在于,
    所述壳体内设有限位结构(202j),所述限位结构(202j)包括限位部分(202k)与连接部分(202m),所述连接部分(202m)连接所述限位部分(202k)与所述壳体的内壁,所述限位部分(202k)与所述内壁之间形成间隙;所述分光模块(206)卡持安装于所述间隙内。
  11. 根据权利要求1-10任一项所述的分光器(20),其特征在于,
    所述分光器包括用于约束光纤的束纤座(208),所述束纤座(208)固定于所述电路板(207);所述壳体的内壁设有支撑部(202i),所述支撑部(202i)与所述束纤座(208)分别位于所述电路板(207)的相对两侧,所述支撑部抵接所述电路板(207)。
  12. 一种光网络系统(1),其特征在于,
    包括光线路终端(30)、至少两个光网络单元(10)和权利要求1-11任一项所述的分光器(20);所述光线路终端(30)用于提供所述外部光信号;一个所述光网络单元(10)与一个所述光电输出接口(205)对应连接,一个所述光网络单元(10)用于接收一路所述输出电能以及一束所述输出光信号。
PCT/CN2023/097592 2022-08-24 2023-05-31 分光器和光网络系统 WO2024041073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222242549.4 2022-08-24
CN202222242549.4U CN218446090U (zh) 2022-08-24 2022-08-24 分光器和光网络系统

Publications (1)

Publication Number Publication Date
WO2024041073A1 true WO2024041073A1 (zh) 2024-02-29

Family

ID=85097264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097592 WO2024041073A1 (zh) 2022-08-24 2023-05-31 分光器和光网络系统

Country Status (2)

Country Link
CN (1) CN218446090U (zh)
WO (1) WO2024041073A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218446090U (zh) * 2022-08-24 2023-02-03 华为技术有限公司 分光器和光网络系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244047A (ja) * 2007-03-27 2008-10-09 Nippon Telegr & Teleph Corp <Ntt> 光送受信モジュール
US20120183289A1 (en) * 2008-03-10 2012-07-19 Emcore Corporation Passive Optical Network Module
US20140072264A1 (en) * 2012-09-10 2014-03-13 Tellabs Bedford, Inc. Delivery of gpon technology
CN112738660A (zh) * 2019-10-28 2021-04-30 华为技术有限公司 无源光网络的检测方法、装置及系统
CN112817098A (zh) * 2019-11-18 2021-05-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN214205538U (zh) * 2020-09-23 2021-09-14 华为技术有限公司 一种光纤面板和光纤面板排
CN215682291U (zh) * 2021-08-10 2022-01-28 北京尚工科技有限公司 一种基于pon技术的光信号传输装置
CN218446090U (zh) * 2022-08-24 2023-02-03 华为技术有限公司 分光器和光网络系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244047A (ja) * 2007-03-27 2008-10-09 Nippon Telegr & Teleph Corp <Ntt> 光送受信モジュール
US20120183289A1 (en) * 2008-03-10 2012-07-19 Emcore Corporation Passive Optical Network Module
US20140072264A1 (en) * 2012-09-10 2014-03-13 Tellabs Bedford, Inc. Delivery of gpon technology
CN112738660A (zh) * 2019-10-28 2021-04-30 华为技术有限公司 无源光网络的检测方法、装置及系统
CN112817098A (zh) * 2019-11-18 2021-05-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN214205538U (zh) * 2020-09-23 2021-09-14 华为技术有限公司 一种光纤面板和光纤面板排
CN215682291U (zh) * 2021-08-10 2022-01-28 北京尚工科技有限公司 一种基于pon技术的光信号传输装置
CN218446090U (zh) * 2022-08-24 2023-02-03 华为技术有限公司 分光器和光网络系统

Also Published As

Publication number Publication date
CN218446090U (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2022037546A1 (zh) 复合模块及其制造方法
WO2024041073A1 (zh) 分光器和光网络系统
CN111413770B (zh) 一种光电连接装置
JP2005529354A (ja) ハイブリッドプラグコネクタ
US10063316B2 (en) Wall plate having a built-in modem for performing electrical-to-optical conversion, optical-to-electrical conversion and protocol-to-protocol conversion
CN210839636U (zh) 一种交换机
EP3521882B1 (en) Line card and optical network device
EP2795811B1 (en) Fiber optic wall plate with redundancy system
CN214205538U (zh) 一种光纤面板和光纤面板排
CN114500124A (zh) PoE供电设备、PoE供电系统和接口部件
WO2022105314A1 (zh) 光电混合公端连接器、母端及光电混合连接器系统
CN220545020U (zh) 一种适用面板式网关的电路板及面板式网关
WO2023029707A1 (zh) 光模块
CN220933241U (zh) 一种插片式分路器
CN113258994B (zh) 一种上位机、光模块及光纤接入网络设备
US11917772B2 (en) Power supply with separable communication module
CN215420306U (zh) 一种光模块
CN221283195U (zh) 光纤信号收发设备
KR100964106B1 (ko) 소형 통합 스위칭허브 인출구
CN219936149U (zh) 光模块
WO2023093130A1 (zh) 光模块
CN117677878A (zh) 光模块
KR20230058674A (ko) 광전자 모듈, 광전자 플러그 커넥터 및 광전자 하위 배전 유닛
CN114696122A (zh) 通信模块连接装置和电子设备
CN117499349A (zh) 交换机及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856165

Country of ref document: EP

Kind code of ref document: A1