WO2024040999A1 - 一种带有拔针驱动功能的多通道放射源植入系统 - Google Patents

一种带有拔针驱动功能的多通道放射源植入系统 Download PDF

Info

Publication number
WO2024040999A1
WO2024040999A1 PCT/CN2023/089086 CN2023089086W WO2024040999A1 WO 2024040999 A1 WO2024040999 A1 WO 2024040999A1 CN 2023089086 W CN2023089086 W CN 2023089086W WO 2024040999 A1 WO2024040999 A1 WO 2024040999A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamping
driving
needle
drive
outer tube
Prior art date
Application number
PCT/CN2023/089086
Other languages
English (en)
French (fr)
Inventor
王学堂
朱鼎臣
付光明
雷星星
Original Assignee
杭州大士科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州大士科技有限公司 filed Critical 杭州大士科技有限公司
Publication of WO2024040999A1 publication Critical patent/WO2024040999A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body

Definitions

  • the present invention relates to the technical field of radioactive particle implantation, and in particular to a multi-channel radioactive source implantation system with a needle withdrawal driving function.
  • Radioactive seed implantation surgery is to implant many radioactive seeds directly into the tumor through puncture for local radiotherapy. This surgery has a wide range of indications, including lung cancer, liver cancer, breast cancer, prostate cancer, etc. , and it has small incision, less bleeding, and relatively few surgical complications, but it can effectively inhibit the growth of tumors.
  • the basic process of this surgery is to first take a preoperative CT, determine the puncture path and particle placement plan in the TPS system, and then insert many puncture needles into the tumor according to the plan. This process can be completed with the help of a puncture guide template to ensure that the spacing and direction between individual needles are consistent with the preoperative plan. After confirming through CT that all the puncture needles have reached the target location, the doctor will push multiple particles into the tumor according to the preoperative plan through the channel established by the puncture needle to complete the operation.
  • particle implantation robot systems have emerged, such as the particle implantation surgical robot proposed by Chinese patent CN201910714054.7.
  • This robot system is equipped with an automatic particle implantation device at the end of the robot, which can complete puncture and particle implantation with high precision.
  • the particle implantation device and the puncture needle are always rigidly connected during the operation, so the particle implantation is performed immediately after the puncture is completed, which changes the traditional manual surgery process and requires CT verification after each puncture. Performed immediately, this greatly increases the number of CT scans taken by the patient, exposing the patient to greater radiation.
  • the puncture needle will be rigidly connected to the particle implantation device and cannot be quickly detached and clamped, making it easy to scratch the patient.
  • the implantation process of existing particle implantation devices is generally guided by CT or other images.
  • the push rod is used to push the particles in the particle cartridge according to the preoperative TPS plan.
  • the particles are pushed to the appropriate position through the particle gun, then the puncture needle is pulled out to the next position, and the push rod is retracted to the rear of the magazine.
  • the particle magazine will automatically eject the next particle. Repeat the above operation to get the predetermined number of particles according to the implanted into the tumor.
  • the discrete distribution of multiple particles can easily cause particle displacement due to gravity, extrusion, blood flow, etc.
  • Chinese patent CN201810650275.8 proposes a radioactive particle chain implantation device.
  • the technical solution is as follows:
  • the particle needle assembly is detachably connected through the particle needle outer sheath.
  • the radioactive particle chain is placed inside in advance, and the particle needle outer sheath and push rod are fixed. relative position.
  • the piercing end of the outer sheath of the particle needle enters the designated position of the tumor.
  • the process of placing the particle chain still requires manual operation, still carries the risk of radiation, and the operation is complicated; 2. It cannot be based on the characteristics of the tumor and the needs of surgery.
  • the model of the particle chain and the length of the spacer rod can be adjusted at any time; 3.
  • General surgery requires implanting multiple sets of particle chains and adjusting the length of the particle chain according to the nature of the tumor.
  • the above patent cannot automatically adjust the length of the particle chain; 4. It cannot be realized Multi-channel automatic implantation; 5.
  • the implantation and needle withdrawal of the particle chain cannot be operated simultaneously, and the implantation accuracy and accurate positioning of the implantation position cannot be guaranteed.
  • the object of the present invention is to provide a multi-channel radioactive source implantation system with a needle withdrawal driving function, which can realize automatic needle withdrawal operation for the puncture needle at the end of the multi-channel delivery catheter and realize automatic implantation operation of radioactive particles.
  • a multi-channel radioactive source implantation system with a needle extraction drive function including a push rod output channel, a push rod arranged in the push rod output channel, a push rod driving mechanism that drives the push rod to move, a first connecting part, and a third A movement platform
  • the system also includes a needle-extracting driving mechanism for driving the needle-extracting accessory and extracting the puncture needle from the biological tissue; the first connection part and one end of the push rod output channel are respectively arranged on the first
  • the pin-pull driving mechanism is arranged in parallel with one end of the push rod output channel.
  • the first movement platform drives one end of the push rod output channel and the first connection part with the pin-pull driving mechanism to make relative motion.
  • the first connecting part is equipped with a first butt piece, a plurality of through holes are provided on the first butt piece, and each hole is provided with a hole for connecting to one end of the delivery conduit.
  • a quick connector, a puncture needle or a quick connector for connecting to the puncture needle is provided at the other end of the delivery catheter, and the radioactive source supply portion is used to place the radioactive source at the front end of the push rod;
  • the first connection The part is one or more combinations of an adhesive connection part, a welding connection part, a threaded connection part, a snap connection part, and a lock connection part.
  • the first movement platform drives the first docking member and one end of the push rod output channel to move relative in space, so that one end of the push rod output channel is connected to the hole of the first docking member, thereby transferring the radiation source from The delivery conduit connected to the hole is output, and the relative movement between the first docking piece and one end of the push rod output channel is: A. The first docking piece moves, and one end of the push rod output channel is stationary; B. The first docking piece Stationary, one end of the push rod output channel moves; C. The first docking piece moves, and one end of the push rod output channel moves.
  • the needle extraction driving mechanism drives the needle extraction accessory to act and extract the puncture needle from the biological tissue.
  • the needle extraction accessory is a cannula-type needle extraction accessory, and the cannula-type needle extraction accessory includes a sheath mounted on the body.
  • An outer tube outside the delivery conduit, the outer tube and the delivery conduit are made of a flexible material, and the flexible material is made of one or more combinations of plastic, nickel-titanium alloy, silicone, latex, and rubber;
  • the driving mode of the sleeve-type needle extraction accessory is one of direct push-pull, clamping driving, friction driving, and meshing driving to drive relative movement between the delivery catheter and the outer tube;
  • the front end of the outer tube is connected to or against the biological tissue, or the front end of the outer tube is connected to or against the support component.
  • the support component and the biological tissue are relatively stationary.
  • the support component is a puncture guide bracket, a puncture guide template, One or more combinations of 3D printing templates, CNC-processed customized templates, thermoplastic templates, scale support plates, and direct curing support components;
  • the needle extraction driving mechanism is a multi-channel selective needle extraction driving mechanism.
  • the first docking member has a plurality of driving holes or driving grooves distributed in an array. The plurality of driving holes or driving grooves are respectively provided corresponding to each delivery catheter.
  • the needle extraction driving mechanism is driven by the first movement platform to align with any drive hole or drive groove, and drives the needle extraction accessory corresponding to the drive hole or drive groove, so that the puncture needle moves upward.
  • the relative movement between the outer tube and the delivery catheter is one of the following forms: A. fixing one end of the delivery catheter away from the puncture needle, and driving the outer tube to move toward the biological tissue; B. , fix the outer tube, and drive the delivery catheter to move away from the biological tissue; C. drive both the outer tube and the delivery catheter to move, but relative sliding movement occurs between the two, and the delivery The catheter moves relative to the outer tube toward the side away from the biological tissue.
  • the direct push-pull assembly includes one or more combinations of a driving rod and a rocker arm; the driving rod or rocker arm One end of the drive rod or rocker arm is fixed or offset by one of the delivery conduit or the outer tube, and the other end of the drive rod or rocker arm is fixed or offset by the other of the delivery conduit or the outer tube, or the other end of the drive rod or rocker arm
  • the other one of the delivery catheter or the outer tube is connected to the base body at the same time and remains relatively stationary when the needle is withdrawn, and the relative movement of the delivery catheter and the outer tube is directly pushed/pulled through the linear motion of the drive rod or the rotation of the rocker arm; in the
  • the push-pull component is provided with a contact sensor. When the push-pull component is in contact with the end surface, the contact sensor feeds back a contact signal; the contact sensor is a conductive contact sensor, proximity switch, mechanical switch,
  • the clamping driving assembly includes a clamping movement assembly and a clamping assembly, and the clamping assembly is an active clamping assembly or a passive clamping assembly.
  • the clamping component clamps the delivery conduit or the outer tube, and the clamping movement component drives the clamping component to move along a set trajectory to achieve relative movement between the delivery conduit and the outer tube; or, the clamping component
  • the delivery conduit or outer tube has two states of clamping or unclamping. In the clamping state, the clamping movement component drives the clamping assembly to move in the first direction.
  • the clamping movement component In the unclamping state, the clamping movement component
  • the tightening movement component drives the clamping component to move in the second direction, and the clamping state and the loosening state are alternately switched to realize the reciprocating movement of the clamping component and the relative movement of the conveying catheter or the outer tube in one direction;
  • the needle-pulling drive mechanism is a friction drive assembly of the sleeve-type needle-pulling method
  • the friction drive assembly cooperates with a friction wheel or a friction belt to achieve friction driving, and a part of the friction wheel or friction belt is connected with the outer tube or the conveyor
  • the conduits are in contact, and the friction generated by the contact drives the relative movement between the delivery conduit and the outer tube;
  • the engagement drive assembly realizes the relative movement of the delivery catheter or outer tube by engaging and driving the tooth grooves provided on the delivery catheter or outer tube.
  • the meshing drive component is one or more combinations of gears and worms.
  • the passive clamping component automatically clamps when the clamping movement component drives it to move in the first direction, and automatically releases when the clamping movement component drives it to move in the second direction.
  • the passive clamping component is one or more combinations of a claw component, a rotating clamping mechanism, a side pressing mechanism or a side tightening mechanism;
  • the claw assembly includes a claw, and the claw can be opened or closed; when the clamping movement component drives the claw to move in the first direction, the claw closes and clamps the delivery conduit or outer tube; so When the clamping motion assembly drives the claws to move in the second direction, the claws open and release the delivery conduit or outer tube.
  • the claw assembly also includes a push block, and a push pin is provided on the push block. , there is a slope or chute on the claw, the clamping movement component drives the claw to move by pushing the block, the push pin cooperates with the slope or slide to realize the opening or closing of the claw, the push pin
  • the matching structure with the inclined plane or chute can be replaced by a gear mechanism or linkage mechanism;
  • the rotary clamping mechanism includes a rotary member and a rotary driving mechanism.
  • the rotary member is provided with a through hole or a through slot or a double protruding column.
  • the delivery conduit or outer tube passes through the through hole or through slot on the rotating member. Or double protruding columns; when the clamping movement component drives the rotational drive mechanism to move in the first direction, the rotational drive mechanism drives the rotating member to rotate or bend, and jams the delivery conduit or outer tube; the clamping movement component drives the rotation When the driving mechanism moves in the second direction, the rotating driving mechanism drives the rotating member or bends it to a limited position. At the limited position, the rotating member loosens the delivery conduit or outer tube.
  • the rotating driving mechanism is a driving connecting rod.
  • the rotating part is pried or pulled to move; or, the rotating driving mechanism is a rack and pinion structure, the rack drives the gear, and the gear drives the rotating part to move; the rotating part is a rotating column, a rotating piece, or a flexible piece;
  • the side pressing mechanism/side tensioning mechanism presses/tightens or loosens the delivery conduit or outer tube from the side; when the clamping movement component drives the side pressing mechanism/side tensioning mechanism to move in the first direction When the side pressing mechanism/side tensioning mechanism compresses/tightens the delivery conduit or the outer tube; when the clamping movement component drives the side pressing mechanism/side tensioning mechanism to move in the second direction, the The side pressing mechanism/side tensioning mechanism loosens the delivery conduit or the outer tube.
  • the side pressing mechanism/side tensioning mechanism adopts a connecting rod clamping mechanism and compresses/tightens it through the connecting rod in the connecting rod clamping mechanism.
  • the delivery conduit or the outer tube; or, the side pressing mechanism/side tightening mechanism adopts a cam clamping mechanism, and the cam in the cam clamping mechanism rotates to compress/tighten the delivery conduit or the outer tube; or, the side side
  • the pressing mechanism/side tightening mechanism adopts an inclined plane clamping mechanism or a chute clamping mechanism, and the conveying conduit or outer pipe is compressed/tightened through the coordinated movement of the inclined plane or chute and the pressing block/tensioning block;
  • the side pressing mechanism/side tightening mechanism is provided with a limiting portion, and the limiting portion is used to limit the distance at which the side pressing mechanism/side tightening mechanism is loosened;
  • the active clamping assembly can actively control its own loosening and clamping through an independent drive unit.
  • the active clamping assembly is an active claw assembly, an active rotating clamping mechanism, an active side pressing mechanism or an active side. One or more combinations of tensioning mechanisms.
  • the driving type of the needle pulling drive mechanism in the casing needle pulling method is direct drive or driven by a pipe driving assembly;
  • the pipe driving assembly is an independent power component, a driving wire assembly, a hydraulic oil pipe assembly, or a trachea assembly.
  • the independent power component is a motor or an electric push rod.
  • the needle pulling drive mechanism includes an electrical connector, and the electrical connector is aligned with any one of the three components driven by the first motion platform.
  • the driving hole or the driving slot is connected to the second electrical connector of the tube driving assembly corresponding to the driving hole or the driving slot and an electrical connection is established, thereby driving the independent power component to make the puncture needle perform an upward pulling movement;
  • the drive wire assembly includes a drive wire and a drive wire sleeve set outside the drive wire. One end of the drive wire sleeve is against or connected to the clamping assembly, and the other end is in the drive hole or drive groove on the first docking member.
  • the needle pulling drive mechanism is driven by the first movement platform to align with any drive hole or drive groove, and drives the driving wire and the driving wire sleeve to make relative motion through the needle pulling driving mechanism, thereby realizing the clamping Driving of the assembly;
  • the hydraulic oil pipe assembly includes a hydraulic oil pipe and hydraulic oil arranged in the hydraulic oil pipe. One end of the hydraulic oil pipe is connected to the clamping assembly, and the other end is connected to the driving hole or driving groove on the first docking member.
  • the needle pulling drive mechanism is driven by the first movement platform to align with any drive hole or drive slot, and drives the hydraulic oil in the hydraulic oil pipe to move through the needle pulling driving mechanism, or injects or extracts hydraulic oil into the hydraulic oil pipe to achieve alignment.
  • the tracheal assembly includes a trachea, one end of the trachea is connected to the clamping assembly, and the other end is connected to the drive hole or drive groove on the first docking member, and the needle pulling drive mechanism is in the first Driven by the motion platform, align it with any drive hole or drive slot, and push the gas movement in the trachea through the needle-pull driving mechanism, or inject or extract gas into the trachea to drive the clamping assembly.
  • the first motion platform includes a planar displacement mechanism and a first front-to-back docking mechanism
  • the first front-to-back docking mechanism is connected to the planar displacement mechanism
  • the planar displacement mechanism is used to drive the first front-to-back docking mechanism in a Movement in a plane
  • the first front and rear docking mechanism drives the needle extraction driving mechanism and one end of the push rod output channel to move forward and backward in a direction perpendicular to the plane.
  • the plane displacement mechanism is a single-joint rotary motion mechanism, a single-joint rotary motion mechanism combined with a radial linear motion mechanism, a double-joint rotary motion mechanism, or an XY-axis linear motion mechanism, and the first front-to-back docking mechanism is provided At the movable end of the plane displacement mechanism;
  • planar displacement mechanism is a single-joint rotary motion mechanism combined with a radial linear motion mechanism
  • the planar displacement mechanism further includes a rotating arm, and the single-joint rotary motion mechanism drives the rotating arm to rotate in a plane, and the radial
  • the linear motion mechanism is arranged on the rotating arm and drives the slider arranged on the rotating arm to move radially along the rotating arm.
  • the first front-rear docking mechanism is arranged on the side of the slider.
  • the invention can realize multi-channel automatic implantation, realize the docking of the push rod output channel with different hole positions through the relative movement between the main body and the first docking piece, and use the push rod to transfer the radioactive particles placed in the push rod output channel Push to the puncture needle and push it out from the needle tip for implantation into the human body, thereby realizing multi-channel implantation of radioactive particles and achieving rapid switching; the puncture needle can be automatically pulled out through the needle withdrawal driving mechanism, and the needle can be pulled out according to the corresponding procedures. Operate synchronously with implantation to improve implantation accuracy and effect, achieve fully automatic operation, avoid radiation risks and reduce operation time, have a simple and reasonable structure, and are convenient and fast to drive.
  • Figure 1 is a schematic structural diagram of the multi-channel radioactive source implantation system with needle extraction driving function of the present invention
  • Figure 2 is a schematic structural diagram of the first connection part of the present invention.
  • Figure 3 is an embodiment of the same structure of the second docking part and the first docking part of the present invention.
  • Figure 4 is a schematic structural diagram of the needle extraction driving mechanism of the present invention.
  • Figure 5 is a schematic structural diagram of the needle extraction driving mechanism of the present invention pushing out the outer tube
  • Figure 6 is a schematic structural diagram of the puncture guide template of the present invention.
  • Figure 7 is a schematic structural diagram of the needle extraction along the tube of the present invention.
  • Figure 8 is a side cross-sectional view of Figure 7;
  • Figure 9 is an internal structural diagram of the needle extraction quick-connect group of the present invention.
  • Figure 10 is a schematic structural diagram of the rotary clamping mechanism of the present invention.
  • Figure 11 is a schematic diagram of the internal structure of the traction box of the present invention.
  • Figure 12 is a schematic structural diagram of the claw assembly of the present invention.
  • Figure 13 is a schematic structural diagram of the clamping member of the claw set of the present invention.
  • Figure 14 is a schematic structural diagram of the resistance clamp block of the present invention.
  • Figure 15 is an embodiment of the side pressing mechanism of the present invention.
  • Figure 16 is another embodiment of the side pressing mechanism of the present invention.
  • Figure 17 is a schematic structural diagram of the conductive contacts provided in the needle extraction quick-connect group of the present invention.
  • Figure 18 is a schematic diagram of the hydraulic or pneumatic setting structure of the needle extraction quick-connect group of the present invention.
  • the present invention provides a multi-channel radioactive source implantation system with a needle extraction driving function, which includes a push rod output channel 200, a push rod disposed in the push rod output channel 200, and a push rod that drives the push rod to move.
  • the push rod driving mechanism 300, the connecting part 1000, and the first movement platform also include a needle pulling driving mechanism 900 for driving the needle pulling accessory and pulling out the puncture needle 10 from the biological tissue 600;
  • the first connecting part 1000 and one end of the push rod output channel 200 are respectively disposed on both sides of the first motion platform.
  • the needle extraction driving mechanism 900 is disposed in parallel with one end of the push rod output channel 200.
  • the first motion platform drives the push rod.
  • One end of the rod output channel 200 and the pin extraction driving mechanism 900 make relative movement with the first connecting part 1000 .
  • the first connecting part 1000 is equipped with a first docking part 400.
  • the first docking part 400 is provided with a number of through holes, and each of the holes is provided with an end for connecting with the delivery catheter 500.
  • the quick connection part of the connection is provided with the puncture needle 10 or a quick connection head for connecting with the puncture needle at the other end of the delivery catheter 500, and also includes a radioactive source supply part, which is used to transfer the radioactive source Placed at the front end of the push rod, the first connection part is one or more combinations of an adhesive connection part, a welding connection part, a threaded connection part, a snap connection part, and a lock connection part.
  • the delivery conduit 500 is made of flexible material to become the first flexible delivery conduit, and the push rod is also made of flexible material to become a flexible push rod; the flexible push rod is an elastic flexible wire, which can be moved under the action of external force. Bending, it can return to a straight state after the external force is removed.
  • the material of the flexible push rod is one or more combinations of nickel-titanium alloy, spring steel, elastomer materials, and composite materials; the length of the flexible push rod is greater than 300mm; so
  • the delivery conduit 500 is a bendable flexible pipe with an inner diameter of 0.5-1.5mm and an outer diameter of 1.5-5mm.
  • the length of the delivery conduit 500 exceeds 300mm and can be made of plastic, nickel-titanium alloy, rubber, silicone, or latex. Or a mixture of one or more elastomeric materials.
  • the first movement platform drives the first docking member 400 and one end of the push rod output channel 200 to move relative in space, so that one end of the push rod output channel is connected to the hole of the first docking member 400, thereby The radioactive source is output from the delivery conduit connected to the hole.
  • the relative movement between the first docking part 400 and one end of the push rod output channel is: A. The first docking part 400 moves, and one end of the push rod output channel 200 is stationary. ; B. The first docking part 400 is stationary, and one end of the push rod output channel 200 moves; C. The first docking part 400 moves, and one end of the push rod output channel 200 moves.
  • the first motion platform is used to realize relative movement in space between one end of the push rod output channel 200 and the first docking part 400, so that the push rod output channel 200 and any part on the first docking part 400 can move.
  • a delivery catheter 500 is connected to form delivery channels of particles or particle chains, thereby achieving multi-channel implantation.
  • the needle extraction driving mechanism 900 drives the needle extraction accessory to act and extract the puncture needle 10 from the biological tissue 600.
  • the needle extraction accessory is a sleeve-type needle extraction accessory, and the sleeve-type needle extraction accessory includes a sleeve mounted on
  • the outer tube 800 outside the delivery conduit 500, the outer tube 800 and the delivery conduit 500 are made of flexible materials, and the flexible materials are one or more combinations of plastic, nickel-titanium alloy, silicone, latex, and rubber;
  • the driving mode of the sleeve-type needle extraction accessory is one of direct push-pull, clamping driving, friction driving, and meshing driving to drive the relative movement between the delivery catheter 500 and the outer tube 800; the outer tube
  • the front end of 800 is connected to or against the biological tissue 600, or the front end of the outer tube 800 is connected to or against the support component 700.
  • the support component 700 and the biological tissue 600 are relatively stationary.
  • the support component 700 is a puncture guide bracket, puncture guide, or puncture guide bracket.
  • guide templates 3D printed templates, CNC-processed customized templates, thermoplastic templates, scale support plates, and direct curing support components;
  • the needle extraction driving mechanism 900 is a multi-channel selective needle extraction driving mechanism.
  • the first docking member 400 has a plurality of driving holes or driving grooves distributed in an array, and the plurality of driving holes or driving grooves correspond to each delivery catheter respectively. It is configured that the needle extraction driving mechanism 900 is driven by the first movement platform to align with any drive hole or drive groove, and drives the needle extraction accessory corresponding to the drive hole or drive groove, so that the puncture needle can be pulled upward. sports.
  • the outer tube 800 is made of a flexible, bendable and deformable material, and its inner diameter is larger than the outer diameter of the delivery conduit 500. It can be made of one or more of plastic, nickel-titanium alloy, rubber, silicone, latex or elastomer materials.
  • the outer tube 800 can be made of transparent material; the delivery catheter 500 or the puncture needle 10 is provided with a marking pattern to facilitate observation.
  • the relative movement between the outer tube 800 and the delivery catheter 500 is one of the following forms: A. fixing the end of the delivery catheter 500 away from the puncture needle 10 , and driving the outer tube 800 toward the biological tissue 600 . side movement; B. Fix the outer tube 800 and drive the delivery catheter 500 to move away from the biological tissue 600; C. Drive both the outer tube 800 and the delivery catheter 500 to move, but both Relative sliding movement occurs, and the delivery catheter 500 moves toward the side away from the biological tissue 600 relative to the outer tube 800 .
  • the direct push-pull assembly includes one or more combinations of a driving rod and a rocker arm; one end of the driving rod or rocker arm is connected to One of the delivery conduit 500 or the outer tube 800 is fixed or offset, the other end of the drive rod or rocker arm is fixed or offset with the other of the delivery conduit 500 or the outer tube 800, or the other end of the drive rod or rocker arm is fixed or offset.
  • One end is connected to a base body at the same time as the other of the delivery catheter 500 or the outer tube 800 and remains relatively stationary when the needle is withdrawn.
  • a contact sensor is provided on the direct push-pull component.
  • the contact sensor feeds back a contact signal;
  • the contact sensor is a conductive contact sensor, proximity switch, mechanical switch, photoelectric switch One or more combinations of switches, Hall switches, and force sensors;
  • the clamping driving assembly includes a clamping movement assembly and a clamping assembly, and the clamping assembly is an active clamping assembly or a clamping assembly.
  • Passive clamping assembly the clamping assembly clamps the delivery conduit 500 or the outer tube 800
  • the clamping movement component drives the clamping assembly to move along a set trajectory to achieve relative movement between the delivery conduit 500 and the outer tube 800; or,
  • the clamping assembly has two states of clamping or releasing the delivery conduit 500 or the outer tube 800. In the clamping state, the clamping movement assembly drives the clamping assembly to move in the first direction. In the loosening state, the clamping assembly drives the clamping assembly to move in the first direction.
  • the clamping movement component drives the clamping component to move in the second direction, and the clamping state and the releasing state are alternately switched to realize the reciprocating movement of the clamping component and the relative movement of the delivery conduit 500 or the outer tube 800 in one direction. ;
  • the needle extraction drive mechanism 900 is a friction drive assembly in the sleeve-type needle extraction mode
  • the friction drive assembly cooperates with a friction wheel or a friction belt to achieve friction driving, and a part of the friction wheel or friction belt is connected with the outer tube 800 Or the delivery conduit 500 is in contact, and the friction force generated by the contact drives the relative movement between the delivery conduit 500 and the outer tube 800;
  • the meshing driving assembly drives the gear grooves provided on the delivery catheter 500 or the outer tube 800 to realize the delivery catheter 500 or the outer tube 800.
  • Relative movement of the tube 800; the meshing driving component is one or more combinations of gears and worms.
  • the passive clamping component automatically clamps when the clamping movement component drives it to move in the first direction, and automatically releases when the clamping movement component drives it to move in the second direction.
  • the passive clamping component is one or more combinations of a claw component, a rotating clamping mechanism, a side pressing mechanism or a side tightening mechanism.
  • the claw assembly includes a claw, and the claw can be opened or closed; when the clamping movement component drives the claw to move in the first direction, the claw closes and clamps the delivery conduit 500 or the outer wall. Tube 800; when the clamping motion assembly drives the claws to move in the second direction, the claws open and release the delivery conduit 500 or the outer tube 800.
  • the claw assembly also includes a pushing block.
  • the block is provided with an ejection pin, and the claws are provided with a slope or a chute.
  • the clamping movement component drives the claws to move by pushing the block.
  • the push pin cooperates with the slope or the chute to realize the opening or closing of the claws.
  • the matching structure between the ejector pin and the inclined plane or chute can be replaced by a gear mechanism or a linkage mechanism.
  • the rotary clamping mechanism includes a rotary member and a rotary drive mechanism.
  • the rotary member is provided with a through hole or a through slot or a double protruding column.
  • the delivery conduit 500 or the outer tube 800 passes through the through hole or through hole on the rotary member.
  • the rotary drive mechanism drives the rotating member or bends it to a limited position. At the limited position, the rotating member loosens the delivery conduit 500 or the outer tube 800.
  • the rotary drive mechanism It is a driving connecting rod that pries or pulls the rotating part to move during movement; or the rotating driving mechanism is a rack and pinion structure, the rack drives the gear, and the gear drives the rotating part to move; the rotating part is a rotating column or a rotating piece or flexible sheet.
  • the rotary driving mechanism is a driving connecting rod, which pries or pulls the rotating part to rotate or bend during movement; or the rotary driving mechanism is a rack and pinion structure, the rack drives the gear, and the gear drives the rotating part to rotate or bend; so
  • the rotating member is a rotating column, a rotating piece, or a flexible piece.
  • the side pressing mechanism/side tensioning mechanism presses/tightens or loosens the delivery conduit 500 or the outer tube 800 from the side; when the clamping movement component drives the side pressing mechanism/side tensioning mechanism to the first When moving in the second direction, the side pressing mechanism/side tensioning mechanism compresses/tightens the delivery conduit 500 or the outer tube 800; when the clamping movement component drives the side pressing mechanism/side tensioning mechanism to move in the second direction When the side pressing mechanism/side tightening mechanism loosens the delivery conduit 500 or the outer tube 800, the side pressing mechanism/side tightening mechanism adopts a connecting rod clamping mechanism, and passes through the connecting rod in the connecting rod clamping mechanism.
  • the rod compresses/tightens the delivery conduit 500 or the outer tube 800; or, the side compression mechanism/side tensioning mechanism adopts a cam clamping mechanism, and the cam in the cam clamping mechanism rotates to compress/tighten the delivery conduit 500.
  • the outer tube 800; or, the side pressing mechanism/side tightening mechanism adopts an inclined plane clamping mechanism or a chute clamping mechanism, and the conveying conduit 500 is realized by the coordinated movement of the inclined plane or chute and the pressing block/tensioning block.
  • the compression/tightening of the outer tube 800; the side compression mechanism/side tensioning mechanism is provided with a limiting portion, and the limiting portion is used to limit the release of the side compression mechanism/side tensioning mechanism. distance.
  • the active clamping assembly can actively control its own loosening and clamping through an independent drive unit.
  • the active clamping assembly is an active claw assembly, an active rotating clamping mechanism, an active side pressing mechanism or an active side. One or more combinations of tensioning mechanisms.
  • the driving type of the needle pulling driving mechanism 900 in the casing needle pulling method is a direct drive or a driven component along with the tube.
  • the pipe driving assembly is one or more combinations of an independent power element, a driving wire assembly, a hydraulic oil pipe assembly, and an air pipe assembly.
  • the independent power element is a motor or an electric push rod.
  • the needle pulling drive mechanism 900 includes an electrical connector, which is aligned with any drive hole or drive slot under the driving of the first motion platform, and is docked with the second electrical connector of the tube drive assembly corresponding to the drive hole or drive slot.
  • the driving wire assembly includes a driving wire and a driving wire sleeve set on the outside of the driving wire, and the driving wire sleeve is One end is against or connected to the clamping component, and the other end is in the driving hole or driving groove on the first docking member 400.
  • the pin extraction driving mechanism 900 is aligned with any driving hole or driving groove under the driving of the first movement platform.
  • the relative sliding movement between the driving wire and the driving wire sleeve is driven by the needle pulling drive mechanism 900, and the power is transmitted to the clamping assembly, thereby realizing the driving of the clamping assembly;
  • the hydraulic oil pipe assembly includes a hydraulic oil pipe and a set Hydraulic oil in the hydraulic oil pipe, one end of the hydraulic oil pipe is connected to the clamping assembly, and the other end is connected to the driving hole or driving groove on the first docking member 400.
  • the needle pulling drive mechanism 900 is on the first movement platform.
  • the air pipe assembly includes One end of the air pipe is connected to the clamping assembly, and the other end is connected to the drive hole or drive groove on the first docking member 400.
  • the needle pulling drive mechanism 900 is driven by the first movement platform to align any The driving hole or the driving groove drives the gas movement in the trachea through the needle driving mechanism 900, or injects or extracts gas into the trachea to drive the clamping assembly; among them, the purpose of using the driving wire or hydraulic oil pipe to drive the clamping assembly is to avoid A heavier independent power component is added to the delivery catheter 500 to prevent it from scratching the biological tissue 600 by pulling the delivery catheter 500 and the puncture needle 10 connected to its front end.
  • the first motion platform includes a plane displacement mechanism and a first front-to-back docking mechanism.
  • the first front-to-back docking mechanism is connected to the plane displacement mechanism.
  • the plane displacement mechanism is used to drive the first front-to-back docking mechanism to move in one plane.
  • the first front and rear docking mechanism drives the needle extraction driving mechanism 900 and one end of the push rod output channel 200 to move forward and backward in a direction perpendicular to the plane.
  • the plane displacement mechanism is a single-joint rotary motion mechanism, a single-joint rotary motion mechanism combined with a radial linear motion mechanism, a double-joint rotary motion mechanism, or an XY-axis linear motion mechanism.
  • the first front-to-back docking mechanism is provided on the The movable end of the plane displacement mechanism;
  • the planar displacement mechanism is a single-joint rotary motion mechanism combined with a radial linear motion mechanism
  • the planar displacement mechanism also includes a rotating arm, and the single-joint rotary motion mechanism drives the rotating arm to rotate in a plane, and the radial linear motion mechanism
  • the movement mechanism is arranged on the rotating arm and drives the slider arranged on the rotating arm to move radially along the rotating arm.
  • the first front-rear docking mechanism is arranged on the side of the slider.
  • a conveying mechanism 18122107 is provided on the pushing mechanism 18122103 of the moving platform 18122102.
  • a storage box 18122106 is provided at the end of the conveying mechanism 18122107. The storage box is used to store the radiation source, and a push rod output is provided at the front end of the conveying mechanism.
  • the channel 200 and the push rod output channel 200 are fixed on the docking motion seat 18122121.
  • a rack seat 18122124 is provided below the push rod output channel 200, and a rack 18122123 is provided in the rack seat 18122124.
  • a motor B18122120 is provided at the bottom of the docking motion seat 18122121.
  • a force sensor 18122117 is provided on the side of the motor B18122120 to fit or connect with the motor B18122120.
  • the motor B18122120 is connected to the driving gear 18122119.
  • a driven gear 18122118 is provided on the docking movable seat 18122121.
  • the driven gear 18122118 meshes with the driving gear 18122119 and the rack 18122123.
  • the force sensor 18122117 can detect that the rotation of the motor B18122120 encounters resistance.
  • Reaction force motor B18122120 is equipped with an angle sensor, thereby converting the displacement of the rack 18122123. Based on the force feedback and position feedback, the device can determine whether the rack 18122123 is in contact with the outer tube pushing seat 18122112 at this time, or whether the rack Whether 18122123 protrudes from the second through hole 18122124 smoothly.
  • a delivery conduit 500 will be connected to the first docking part 400, a delivery conduit connector 18122111 will be provided at the front end of the delivery conduit 500, an outer tube 800 will be provided outside the delivery conduit 500, and a plurality of metal rings 18122114 will be provided at one end of the outer tube 800 evenly distributed
  • the outer tube pushing seat 18122112 is arranged outside the metal ring 18122114.
  • the pushing seat 18122112 is limitedly matched with the metal ring 18122114 through a locking mechanism, thereby realizing the relative position between the pushing seat 18122112 and the outer tube 800.
  • the limiting step is provided on one or a combination of teeth, protrusions, pits, and through holes of the outer tube.
  • the delivery catheter connector 18122111 is fixed at the first through hole 18122105 of the first docking member 400.
  • the section of the delivery catheter 500 close to the delivery catheter connector 18122111 is a rigid section and can remain perpendicular to the first docking member 400, so that It plays a guiding role in pushing the outer tube 18122112.
  • the other end of the delivery catheter 500 is a flexible section, so as to better connect with the puncture needles in different postures and adapt to the movement of the patient's body to ensure the safety of the operation. Then move the outer tube pushing seat 18122112 along the outer tube 800 so that its front end surface is close to or close to the first docking member 400.
  • the metal ring 18122112 is relatively fixed to the outer tube 800, and the metal ring 18122114 is used to prevent the flexible outer tube from being squeezed, causing relative movement between the delivery catheter and the outer tube to be impossible, that is, the needle cannot be pulled out.
  • the movement platform 18122102 works so that the push rod output channel 200 is aligned with the first through hole 18122105, and the pushing mechanism 18122103 pushes out the push rod output channel 200 so that it can dock with the first through hole 18122105.
  • the radioactive source is a particle chain. In this embodiment, the particle chain itself is a radioactive source push rod.
  • the transport mechanism 18122107 pushes out the particle chain inside the storage box 18122106. After pushing out the particle chain of the target length, the cutting mechanism cuts off the particle chain. , complete the supply of the radioactive source, the transport mechanism 18122107 pushes out the radioactive source, and the radioactive source is transported to the inside of the organism through the transport conduit 500 and the puncture needle 10 connected thereto.
  • the radioactive source feeding method can also be a particle cartridge Or the particle chain magazine feeds, and at the same time, the motor B18122120 rotates the driving gear 18122119, and the driven gear 18122118 meshed with it works to push out the upper rack 18122123. The rack 18122123 will be continuously pushed out until it contacts the outer tube pushing seat 18122112.
  • the motor The force sensor 18122117 on the side of B18122120 detects the resistance of motor B18122120 and records this position as zero position.
  • the motor B18122120 continues to rotate and pushes out the rack 18122123.
  • the rack 18122123 pushes out the outer tube pushing seat 18122112.
  • the other end of the outer tube 800 has resisted the surface of the living body.
  • the fixed delivery catheter 500 and the pushed outer tube 800 will form relative motion. , pull the delivery catheter 500 and the puncture needle out of the biological tissue 600.
  • the delivery mechanism 18122107 will simultaneously push out the radioactive source. After the needle is pulled out, the radioactive source will stay at the human lesion.
  • the rack and pinion mechanism used in this embodiment can also be replaced by a screw nut mechanism, a belt transmission mechanism, or a chain transmission mechanism. It only needs to realize linear reciprocating motion or arc reciprocating motion, which is no longer required here. Repeat.
  • the first docking part 400 is installed on the first movement platform 30442601, and the delivery catheter connector 30442603 and the needle extraction quick connection group 922 are installed on the same side of the first docking part 400.
  • One end of the delivery catheter is connected to the delivery catheter connector 30442603, and the other end of the delivery catheter is connected to the puncture needle 10.
  • the delivery catheter 500 passes through the traction box 911 and is installed therein.
  • One end of the outer tube 800 is against the traction box 911.
  • the traction box 911 When the traction box 911 will When the delivery catheter 500 is pulled out in a direction away from the biological tissue 600, because the other end of the outer tube 800 is connected to or offset from the biological tissue 600, or the other end of the outer tube 800 is connected to or offset from the support assembly 700, the support assembly 700 and The living tissues 600 are relatively stationary. At this time, the delivery catheter 500 will pull the puncture needle out of the living tissue 600.
  • the needle withdrawal quick-connection group 922 is connected to the traction box 911 through the connecting hose 30442605, and the connecting hose 30442605 Equipped with drive wire 9227.
  • the delivery catheter connector 30442603 and the needle extraction quick connection group 922 are docked and installed on the first through hole and the second through hole preset on the first docking member 400, and the first movement platform 30442616 drives the push rod output channel 200 and extraction pin respectively.
  • the needle driving rod 30442610 and the delivery catheter connector 30442603 are connected with the needle withdrawal quick connection group 922.
  • the gear 30442609 drives the needle extraction driving rod 30442610 to push forward.
  • the force sensor 30442623 detects the pressure, it indicates that the needle extraction driving rod 30442610 has Push to the quick-connect slider 9224 of the needle-extracting quick-connect group 922.
  • the pulling wire 30442614 With the forward movement of the quick-connect slider 9224, the pulling wire 30442614 will be pushed outward to the needle-extracting quick-connect group 922 and enter the connecting hose.
  • the clamping piece 30442622 will push the clamping piece mounting seat 30442619 downwards along with the guide rod 30442618.
  • the quick-connect slider 9224 will be The quick-connect spring 9225 pushes back to the original position.
  • the needle extraction quick-connect set 922 includes a quick-connect outer sleeve 9221, a quick-connect inner sleeve 9222 provided in the quick-connect outer sleeve 9221, and a quick-connect quick connector fixed on one end of the quick-connect inner sleeve 9222.
  • a quick-connect hole is provided, and a metal capillary tube 9226 is provided on the quick-connect slider 9224.
  • a driving wire 9227 is provided on the metal capillary tube 9226; one end of the driving wire 9227 passes through the quick-connect hole, and the other end is connected to the quick-connect hole.
  • the needle extraction paddle 914 in the needle extraction group is connected; the needle extraction driving rod moves forward and pushes the quick-connect slider 9224 to move in the quick-connect inner sleeve 9222 toward the quick-connect plug 9223.
  • the driving wire 9227 follows The tube needle extraction assembly 8111107 pushes the needle extraction slider 9224 to move forward; the needle extraction power group 921 moves backward to disengage from the quick-connect slider 9224.
  • the quick-connect slider 9224 transports force to the quick-connect plug through the action of the quick-connect spring 9225. 9223 direction movement, at this time, the driving wire 9227 pulls the needle extraction sliding block 913 in the traction box 911 to move backward; thus reciprocating.
  • the traction box 911 includes a needle extraction group and end caps 912 located at both ends of the traction box 911.
  • the end caps 912 are provided with needle extraction holes, and the delivery catheter 500 passes through the two needle extraction holes. hole and the needle extraction group.
  • the needle extraction quick-connect group 922 drives the needle extraction group to reciprocate, and the traction box 911 and the delivery catheter 500 move in one direction. When the needle extraction group moves in the direction closer to the puncture needle 10, it loosens The delivery catheter 500 is opened and can move on the delivery catheter 500.
  • a needle extraction positioning cylinder 917 is formed on the needle extraction through hole to the outside of the traction box 911.
  • the delivery catheter 500 is installed in the needle extraction positioning cylinder 917.
  • the traction box 911 is provided with a needle extraction sliding block 913 that moves along the direction of the delivery catheter 500 and a needle extraction paddle 914 provided in the needle extraction sliding block 913.
  • a needle extraction recess is provided on the needle extraction sliding block 913.
  • the pick hole is slightly larger or larger than the diameter of the delivery conduit 500.
  • the pick hole can also be set as a penetrating groove
  • a storage cavity 916 is provided on the needle extraction sliding block 913
  • the needle extraction pick 914 is provided in the storage cavity 916
  • the storage cavity 916 has a certain The space can facilitate the movement of the needle extraction paddle 914 inside.
  • the needle extraction paddle 914 moves in the direction closer to the puncture needle 10
  • the angle between the needle extraction paddle 914 and the delivery catheter 500 becomes larger, and the maximum can reach
  • the needle extraction paddle 914 is perpendicular to the delivery catheter 500.
  • the needle extraction paddle 914 can slide on the delivery catheter 500 using the paddle hole.
  • the needle extraction paddle 914 moves away from the puncture needle 10
  • the needle extraction paddle 914 moves away from the puncture needle 10.
  • the angle between the needle extraction paddle 914 and the delivery catheter 500 becomes smaller. At this time, the needle extraction paddle 914 is tilted, and the paddle hole is tilted so that the needle extraction paddle 914 clamps the delivery catheter 500 and drives the delivery catheter 500 toward Move away from the puncture needle in 10 directions to implement needle withdrawal operation.
  • the traction box 911 which also includes a 3D printed puncture template 93 and an outer tube 800 set on the delivery catheter 500.
  • the 3D printed puncture template 93 is provided with a needle hole.
  • the puncture needle 10 is inserted into the biological tissue 600 after passing through the needle hole, the 3D printed puncture template 93 is fixed and remains relatively stationary with the biological tissue 600, and can be directly fixed on the biological tissue 600, and the outer
  • the tube 800 is disposed between the 3D printing puncture template 93 and the traction box 911.
  • One end of the outer tube 800 is against the 3D printing puncture template 93, and the other end is against the traction box 911.
  • the delivery catheter 500 moves, the 3D printing The puncture template 93, the outer tube 800 and the traction box 911 do not move.
  • the claw assembly of the passive clamping assembly includes a traction box 911.
  • the traction box 911 includes a left fixed block 9114, a right fixed block 9115 and a support guide shaft 9116.
  • the support guide shaft 9116 is located between the left fixed block 9114 and the right fixed block 9115.
  • the needle extraction group is provided on the support guide shaft 9116 and can slide along the support guide shaft 9116; wherein, the needle extraction group includes a clamp Holding member 9125 and resistance clamping block 9126.
  • the clamping member 9125 includes a first clamping block 91251 and a second clamping block 91252.
  • the resistance clamping block 9126 can drive the first clamping block 91251 and the second clamping block 91252 to face each other.
  • the delivery catheter 500 is clamped by the first clamping block 91251 and the second clamping block 91252 to achieve the needle extraction operation; when the first clamping block 91251 and the second clamping block 91252 move in reverse direction, the first clamping block 91251 and the second clamping block 91252 move in opposite directions.
  • the distance between the block 91251 and the second clamping block 91252 becomes larger to loosen the delivery catheter 500.
  • the resistance clamping block 9126 is driven to move closer to the biological tissue 600 along the support guide shaft 9116.
  • the resistance clamping block 9126 moves together with the first clamping block 91251 and the second clamping block 91252.
  • first clamping block 91251 and the second clamping block 91252 release the delivery catheter 500, the first clamping block 91251 and the second clamping block 91252 move together.
  • the delivery catheter 500 will not follow the movement, thereby realizing the one-way needle withdrawal movement of the clamping member 9125 relative to the delivery catheter 500 .
  • first clamping block 91251 and the second clamping block 91252 are rotationally connected and sleeved on the supporting guide shaft 9116, and the other ends of both are free ends.
  • the first clamping block 91251 and the second clamping block 91252 can both rotate around the support guide shaft 9116, and through the rotation of the two, the relative movement and reverse movement of the two are realized; in order to protect the delivery catheter 500, a first clamping port 91253 is provided on the first clamping block 91251 And the first clamping opening 91253 is in a semi-arc shape, and a second clamping opening 91254 is provided on the second clamping block 91252, and the second clamping opening 91254 is in a semi-arc shape.
  • the resistance clamp block 9126 is provided on the support guide shaft 9116 and can slide on the support guide shaft 9116.
  • a first inclined surface 91255 is provided on the first clamping block 91251, and a second inclined surface 91256 is provided on the second clamping block 91252.
  • the first inclined surface 91255 and the second inclined surface 91256 are arranged symmetrically.
  • the clamping block 9126 is provided with a first clamping block protruding point 91261 and a second clamping block protruding point 91262.
  • the first clamping block protruding point 91261 cooperates with the first slope 91255
  • the second clamping block protruding point 91262 cooperates with the second clamping block protruding point 91261.
  • the first inclined surface 91255 and the second inclined surface 91256 cooperate with the inclined surface 91256, and both the first inclined surface 91255 and the second inclined surface 91256 are inclined to the movement direction of the resistance clamp block 9126; when the resistance clamp block 9126 moves away from the biological tissue 600, the first clamp block convexly Point 91261 is in contact with the first inclined surface 91255.
  • the resistance clamping block 9126 drives the first clamping block 91251 to move away from the biological tissue 600 and at the same time drives the first clamping block 91251 to its rotational connection.
  • the second clamping block protrusion 91262 moves in the same manner as the second inclined surface 91256.
  • the second clamping block 91252 moves away from the biological tissue 600 while driving the second clamping block 91252.
  • the third inclined surface 91257 and the fourth inclined surface 91258 form a V-shaped groove.
  • the resistance clamping block 9126 is provided with a third clamping block protrusion 91263.
  • the third clamping block protrusion 91263 can contact the third inclined plane 91257 and the fourth inclined plane 91258 at the same time.
  • the third clamping block convex point 91263 contacts the third slope 91257 and the fourth slope 91258 at the same time, and the first clamping block 91251 and the second clamping block 91252 move in the direction close to the body tissue 600
  • the third clamping block protrusion 91263 drives the first clamping block 91251 to rotate away from the second clamping block 91252
  • the third clamping block protruding point 91263 drives the second clamping block 91252 to rotate away from the first clamping block.
  • the block 91251 rotates in the direction to realize the releasing operation of the first clamping port 91253 and the second clamping port 91254; when the first clamping block protrusion 91261 and the second clamping block protrusion 61262 work, the third clamping block
  • the bump 91263 is separated from the third slope 91257 and the fourth slope 91258.
  • the third clamp bump 91263 works, the first clamp bump 91261 is separated from the first slope 91255 and the second clamp bump 91262 is separated. Second slope 91256.
  • resistance limiting portions 91264 are provided on both sides of the resistance clamping block 9126.
  • the resistance limiting parts 91264 respectively limit the reverse movement strokes of the first clamping block 91251 and the second clamping block 91252.
  • the part that cooperates with the third clamping block bump 91263 has a gap of The width needs to be smaller than the width of the third clamping block protrusion 91263.
  • the main purpose here is to drive the first clamping block 91251 and the second clamping block 91252 to move closer to the biological tissue 600 through the third clamping block protrusion 91263.
  • the side tightening method includes a traction box 911 and a needle extraction group provided in the traction box 911.
  • the traction box 911 includes an upper fixed seat 9117 and a lower fixed seat. 9118 and the needle extraction guide post 9119 provided between the lower fixed seat 9118 and the upper fixed seat 9117.
  • the needle extraction group is provided on the needle extraction guide post 9119 and can reciprocate along the needle extraction guide post 9119; the needle extraction guide post 9119
  • the group includes a needle extraction movable base 9127, a needle extraction rotating shaft 9128 provided on the needle extraction movable base 9127, a needle extraction top block 9129 provided on the needle extraction rotating shaft 9128, and a needle extraction clamping groove provided in the needle extraction movable base 9127.
  • the needle extraction moving seat 9127 is set on the needle extraction guide post 9119, the delivery catheter 500 is set in the needle extraction clamping groove 91210, the needle extraction top block 9129 can rotate around the needle extraction rotating shaft 9128 , one end of the needle extraction top block 9129 forms a clamping gap with the side wall of the needle extraction clamping groove 91210, and the increase or decrease of the clamping gap is adjusted by rotating the needle extraction top block 9129 to realize the delivery catheter 500 Loosening and clamping; the driving wire 9227 is connected to the needle extraction ejector block 9129, and the needle extraction movable base 9127 can be moved by driving the needle extraction ejector block 9129; when the needle extraction driving mechanism 900 drives the needle extraction ejector block 9129 When moving closer to the biological tissue 600, the needle extraction ejector block 9129 rotates around the needle extraction axis 9128.
  • the needle extraction ejector block 9129 moves until it no longer rotates.
  • the needle extraction ejector block 9129 drives the needle extraction movable seat 9127 to move closer to the biological tissue 600; when the needle extraction driving mechanism 900 drives the needle extraction ejector block 9129 to move away from the biological tissue 600, the needle extraction ejector block 9129 surrounds the needle extraction.
  • the rotating shaft 9128 rotates.
  • the clamping gap becomes smaller.
  • the delivery catheter 500 can be clamped through the head of the needle extraction block 9129 and the inner wall of the needle clamping groove 91210.
  • the needle extraction block 9129 no longer rotates.
  • the needle extraction ejector block 9129 drives the needle extraction moving base 9127 to move away from the biological tissue 600 .
  • the pin extraction rotating shaft 9128 can be disposed in the pin extraction clamping groove 91210 and between the two side walls, and the end of the pin extraction top block 9129 forms a clamping gap with the bottom of the pin extraction clamping groove 91210;
  • a needle-drawing accommodation groove 91211 is provided on the needle-drawing moving seat 9127.
  • the needle-drawing receiving groove 91211 is provided on one side of the needle-drawing clamping groove 91210, and the needle-drawing rotating shaft 9128 is disposed on the needle-drawing receiving groove 91210.
  • one end of the needle extraction block 9129 passes out of the extraction needle receiving groove 91211 and extends into the extraction needle clamping groove 91210 from the side of the extraction needle clamping groove 91210.
  • the The end of the needle extraction ejector block 9129 forms a clamping gap with the side wall of the needle extraction clamping groove 91210.
  • a needle extraction ejector is provided on the side wall of the needle extraction clamping groove 91210 away from the needle extraction ejector block 9129. Stopper 91212, the needle extraction stopper 91212 can prevent the delivery catheter 500 from running out of the needle extraction clamping groove 91210, thereby improving the stability of the operation.
  • the front end of the needle pulling driving rod 30442610 is provided with two first conductive contacts 101, and the needle pulling quick connection group 922 is provided with two second conductive contacts 102.
  • An electric push rod is installed in the traction box 911.
  • the electric push rod acts on the delivery conduit 500.
  • the gear 30442609 drives the needle withdrawal driving rod 30442610 to push forward.
  • the force sensor 30442623 detects the pressure, it indicates that the needle is withdrawn.
  • the first conductive contact on the drive rod 30442610 is in contact with the second conductive contact of the needle extraction quick-connect group 922, stopping the rotation of the gear 30442609. After the conductive contacts are connected, power is supplied to the electric push rod, and the delivery catheter 500 is transported through the electric push rod. Push it out and pull out the puncture needle 10.
  • the needle extraction quick connection group 922 is hollow inside and is provided with hydraulic oil or gas, and is connected to the traction box 911 through a connecting hose 30442605.
  • the needle extraction quick connection group The end of 922 installed on the first docking part 400 is provided with a sealing piston 92201, which drives the needle-removing driving rod 30442610 forward through the gear 30442609.
  • the force sensor 30442623 detects the pressure
  • the needle-removing driving rod 30442610 and the sealing piston 92201 Offset the needle extraction driving rod 30442610 is controlled to continue ejecting
  • the hydraulic oil or gas is pressurized to realize hydraulic transmission or pneumatic transmission
  • the needle extraction mechanism in the traction box 911 is controlled to pull out the puncture needle 10.
  • any combination of various embodiments of the present invention can also be carried out. As long as they do not violate the idea of the present invention, they should also be regarded as the disclosed content of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

本发明涉及一种带有拔针驱动功能的多通道放射源植入系统,包括推杆输出通道、推杆、推杆驱动机构、第一连接部、第一运动平台和拔针驱动机构,推杆顶推着设置在推杆前方的放射源沿着推杆输出通道输出出去;第一连接部与推杆输出通道的一端分别设置在第一运动平台的两侧,拔针驱动机构与推杆输出通道的一端并列设置,第一运动平台驱动推杆输出通道的一端和拔针驱动机构与第一连接部做相对运动。通过推杆输出通道与第一连接部的相对运动实现推杆输出通道与不同孔位对接,实现放射性粒子多通道植入;通过拔针驱动机构实现对穿刺针的自动拔出,提高植入精度与植入效果,实现全自动操作,避免辐射风险以及较少的手术时间,结构简单合理、驱动方便快捷。

Description

一种带有拔针驱动功能的多通道放射源植入系统 技术领域
本发明涉及放射性粒子植入技术领域,尤其是涉及一种带有拔针驱动功能的多通道放射源植入系统。
背景技术
放射性粒子植入手术是通过穿刺的方式,将具有很多个具有放射性的粒子直接植入到肿瘤内做一个局部的放疗,这种手术适应症很广,包括肺癌、肝癌、乳腺癌、前列腺癌等,而且其创口小、出血少,手术并发症相对较少,但却可以有效的抑制肿瘤的生长。
这种手术的基本流程是,首先拍摄术前CT,并在TPS系统中确定穿刺路径与粒子布置方案,之后根据规划,将很多根穿刺针插到肿瘤内。这个过程可以借助穿刺引导模板完成,从而保证各个针之间的间距和方向与术前规划保持一致。在通过CT确认所有穿刺针均到达目标位置之后,医生再通过穿刺针建立的通道,将多个粒子按术前规划推入到肿瘤内部,完成手术。
但目前这种手术时间较长,而且医生在植入过程中需与粒子近距离接触,受到极大的辐射伤害,这极大地限制了这类手术的应用与推广。因此,粒子植入机器人系统应运而生,例如中国专利CN201910714054.7所提出的粒子植入手术机器人,该机器人系统在机器人的末端安装自动粒子植入装置,可以高精度地完成穿刺与粒子植入,但是该粒子植入装置与穿刺针在手术过程中始终刚性相连,因此粒子植入是在穿刺完成之后立刻进行的,这改变了传统手工手术的流程,使拍摄CT验证需要在每次穿刺之后立刻进行,这极大地增加了患者拍摄CT的数量,使其受到较大辐射。另外,穿刺针将和粒子植入装置刚性相连,而且无法实现快速脱离与装夹,这样很容易划伤患者。
现有的粒子植入装置,其植入过程一般都是首先在CT或其他影像引导下,先将穿刺针穿刺肿瘤到达预定位置后,根据术前TPS计划,用推杆将粒子弹夹内的粒子通过粒子枪推送至合适位置,然后拔出穿刺针到下一位置,并将推杆回撤至弹夹后方后,粒子弹夹会自动弹出下一颗粒子,重复上述操作将预定数量粒子按照植入瘤体内。但多颗粒子离散分布很容易因为重力、挤压、血液流动等造成粒子的移位,这会导致粒子对肿瘤的辐照强度不足,甚至移位到其他正常的组织中形成栓塞,产生严重的手术并发症,随着技术发展,可以将若干个粒子间隔排列,用人体可吸收材料做成间隔杆将相邻两颗粒子连接起来,将其按照术前TPS计划要求排布做成粒子链,放入粒子植入通道内,一次性植入人体内。但是普通的粒子植入装置无法实现一次性将粒子链植入体内。
中国专利CN201810650275.8提出了一种放射性粒子链植入装置,其技术方案为;粒子针组件通过粒子针外鞘的可拆卸连接,事先将放射性粒子链放置内部,固定粒子针外鞘和推送杆的相对位置。通过旋转组件、支架、横架组件的位置调整,对准肿瘤处,往下移动,粒子针外鞘刺入端进入肿瘤处指定位置,松开定位螺栓,启动驱动电机,齿轮带动齿条竖直向上,从而带动粒子针外鞘相对推送杆往上移动,将放射性粒子链一次性植入肿瘤处。其能够实现粒子链的植入,但上述专利仍然具有如下不足;1、放置粒子链的过程还需要人工操作,仍然具有辐射的风险,而且操作复杂;2、不能根据肿瘤的特性及手术的需要随时调整粒子链的型号和间隔杆的长度;3、一般手术需要植入多组粒子链并根据肿瘤的性质调整粒子链的长度,上述专利无法自动化实现对粒子链长度的调整;4、无法实现多通道自动植入;5、粒子链的植入与拔针不能同步操作,无法保证植入精度和植入位置的准确定位。
发明内容
本发明的目的在于提供一种带有拔针驱动功能的多通道放射源植入系统,针对多通道输送导管端部的穿刺针实现自动化的拔针操作,针对放射性粒子实现自动化植入操作。
为实现上述目的,本发明提供如下技术方案:
一种带有拔针驱动功能的多通道放射源植入系统,包括推杆输出通道、设置于推杆输出通道内的推杆、驱动推杆移动的推杆驱动机构、第一连接部、第一运动平台,该系统还包括有用于驱动拔针配件动作并将穿刺针从生物体组织内拔出的拔针驱动机构;所述第一连接部与推杆输出通道的一端分别设置在第一运动平台的两侧,所述拔针驱动机构与推杆输出通道的一端并列设置,第一运动平台驱动推杆输出通道的一端和与拔针驱动机构的第一连接部做相对运动。
作为优选,所述第一连接部安装有第一对接件,在所述第一对接件上设置有若干贯穿的孔位,在每个所述孔位上均设置有用于与输送导管的一端连接的快速连接部,在所述输送导管另一端设置有穿刺针或用于与穿刺针连接的快速连接头,放射源供料部用于将放射源置于推杆的前端;所述第一连接部为粘胶连接部、焊接连接部、螺纹连接部、卡扣连接部、锁扣连接部中的一种或多种组合。
作为优选,所述第一运动平台驱动第一对接件与推杆输出通道的一端在空间中相对运动,使得推杆输出通道的一端与第一对接件的孔位对接连通,从而将放射源从与该孔位连接的输送导管输出出去,所述第一对接件与推杆输出通道的一端相对运动为:A、    第一对接件运动,推杆输出通道的一端静止;B、第一对接件静止,推杆输出通道的一端运动;C、    第一对接件运动,推杆输出通道的一端运动。
作为优选,所述拔针驱动机构通过驱动拔针配件动作并将穿刺针从生物体组织内拔出,所述拔针配件为套管式拔针配件,套管式拔针配件包括套设在输送导管外的外管,所述外管和所述输送导管由柔性材料制成,该柔性材料采用塑料、镍钛合金、硅胶、乳胶、橡胶的一种或多种组合;
所述套管式拔针配件的驱动方式为直接推拉、卡紧驱动、摩擦驱动、啮合驱动方式中的一种,以驱动所述输送导管与外管之间相对运动;
所述外管前端与生物体组织连接或相抵,或者外管前端与支撑组件连接或相抵,所述支撑组件与生物体组织之间相对静止,所述支撑组件为穿刺引导支架、穿刺引导模板、3D打印模板、数控加工定制的模板、热塑性模板、鳞片式支撑板、直接固化型支撑组件的一种或多种组合;
所述拔针驱动机构为多通道选择式拔针驱动机构,所述第一对接件上呈阵列分布有多个驱动孔或驱动槽,多个驱动孔或驱动槽分别与各输送导管对应设置,所述拔针驱动机构在第一运动平台的驱动下对准任一驱动孔或驱动槽,并对该驱动孔或驱动槽对应的拔针配件进行驱动,使穿刺针做向上拔出运动。
作为优选,所述外管与输送导管的相对运动为以下形式中的一种:A、固定所述输送导管远离穿刺针的一端,驱动所述外管向所述生物体组织一侧运动;B、固定所述外管,驱动所述输送导管向远离所述生物体组织一侧运动;C、驱动所述外管和所述输送导管均运动,但两者之间发生相对滑移运动,输送导管相对于外管向所述远离生物体组织一侧运动。
作为优选,当所述拔针驱动机构为套管式拔针方式的直接推拉组件时,所述直接推拉组件包括驱动杆、摇臂中的一种或多种组合;所述驱动杆或摇臂的一端与输送导管或外管中的一个固定或相抵,所述驱动杆或摇臂的另一端与输送导管或外管中的另一个固定或相抵,或者所述驱动杆或摇臂的另一端与输送导管或外管中的另一个同时与基体连接并在拔针时保持相对静止,通过驱动杆的直线运动或摇臂的转动直接推/拉输送导管与外管的相对运动;在所述推拉组件上设置有接触传感器,所述推拉组件与端面接触时,所述接触传感器反馈接触信号;所述接触传感器为导电式接触传感器、接近开关、机械开关、光电开关、霍尔开关、力传感器中的一种或多种组合;
当所述拔针驱动机构为套管式拔针方式的卡紧驱动组件时,所述卡紧驱动组件包括卡紧运动组件与卡紧组件,所述卡紧组件为主动式卡紧组件或被动式卡紧组件;所述卡紧组件卡紧输送导管或外管,所述卡紧运动组件驱动卡紧组件沿设定轨迹运动实现输送导管与外管的相对运动;或者,所述卡紧组件对输送导管或外管具有卡紧或松开两个状态,在所述卡紧状态下,所述卡紧运动组件驱动卡紧组件向第一方向运动,在所述松开状态下,所述卡紧运动组件驱动卡紧组件向第二方向运动,所述卡紧状态与松开状态交替切换,实现卡紧组件往复运动而输送导管或外管单方向相对运动;
当所述拔针驱动机构为套管式拔针方式的摩擦驱动组件时,所述摩擦驱动组件通过摩擦轮或摩擦带配合实现摩擦驱动,所述摩擦轮或摩擦带的一部分与外管或者输送导管相接触,通过接触产生的摩擦力驱动输送导管与外管之间相对运动;
当所述拔针驱动机构为套管式拔针方式的啮合驱动组件时,所述啮合驱动组件通过对输送导管或外管上设置的齿槽的啮合驱动,实现输送导管或外管的相对运动;所述啮合驱动组件为齿轮、蜗杆中的一种或多种组合。
作为优选,所述被动式卡紧组件在所述卡紧运动组件带动其向第一方向运动时自动卡紧,而在所述卡紧运动组件带动其向第二方向运动时自动松开,所述被动式卡紧组件为卡爪组件、旋转卡紧机构、侧面压紧机构或侧面拉紧机构中的一种或多种组合;
所述卡爪组件包括卡爪,所述卡爪可张开或收拢;所述卡紧运动组件带动卡爪向第一方向运动时,所述卡爪收拢并卡紧输送导管或外管;所述卡紧运动组件带动卡爪向第二方向运动时,所述卡爪张开并松开输送导管或外管,所述卡爪组件还包括推动块,在所述推动块上设有顶销,在所述卡爪上设有斜面或滑槽,所述卡紧运动组件通过推动块带动卡爪运动,所述顶销与斜面或滑槽配合实现卡爪张开或收拢,所述顶销与斜面或滑槽的配合结构可采用齿轮机构或连杆机构代替;
所述旋转卡紧机构包括旋转件与旋转驱动机构,在所述旋转件上设有通孔或通槽或双突柱,所述输送导管或外管穿过旋转件上的通孔或通槽或双突柱;所述卡紧运动组件带动旋转驱动机构向第一方向运动时,所述旋转驱动机构带动旋转件旋转或弯曲,卡住输送导管或外管;所述卡紧运动组件带动旋转驱动机构向第二方向运动时,所述旋转驱动机构带动旋转件或弯曲至限定位置,在限定位置下所述旋转件松开输送导管或外管,所述旋转驱动机构为驱动连杆,在运动时撬动或拉动旋转件运动;或者,所述旋转驱动机构为齿轮齿条结构,齿条带动齿轮,齿轮带动旋转件运动;所述旋转件为旋转柱或旋转片或柔性片;
所述侧面压紧机构/侧面拉紧机构对输送导管或外管从侧面压紧/拉紧或松开;当所述卡紧运动组件带动侧面压紧机构/侧面拉紧机构向第一方向运动时,所述侧面压紧机构/侧面拉紧机构压紧/拉紧输送导管或外管;当所述卡紧运动组件带动侧面压紧机构/侧面拉紧机构向第二方向运动时,所述侧面压紧机构/侧面拉紧机构松开输送导管或外管,所述侧面压紧机构/侧面拉紧机构采用连杆夹紧机构,通过连杆夹紧机构内的连杆压紧/拉紧输送导管或外管;或者,所述侧面压紧机构/侧面拉紧机构采用凸轮卡紧机构,通过凸轮卡紧机构内的凸轮转动压紧/拉紧输送导管或者外管;或者,所述侧面压紧机构/侧面拉紧机构采用斜面卡紧机构或滑槽卡紧机构,通过斜面或滑槽与压紧块/拉紧块配合运动实现对输送导管或外管的压紧/拉紧;所述侧面压紧机构/侧面拉紧机构上设有限位部,所述限位部用于限制所述侧面压紧机构/侧面拉紧机构松开的距离;
所述主动式卡紧组件能够通过独立驱动单元主动控制其自身的松开与卡紧,所述主动式卡紧组件为主动卡爪组件、主动旋转卡紧机构、主动侧面压紧机构或主动侧面拉紧机构中的一种或多种组合。
作为优选,套管拔针方式的所述拔针驱动机构的驱动类型为直接驱动或随管驱动组件驱动;所述随管驱动组件为独立动力元件、驱动丝组件、液压油管组件、气管组件的一种或多种组合时,所述独立动力元件为电机或电推杆,此时所述拔针驱动机构包括电连接器,所述电连接器在第一运动平台的驱动下对准任一驱动孔或驱动槽,并对该驱动孔或驱动槽对应的随管驱动组件的第二电连接器对接并建立电连接,从而对独立动力元件进行驱动,使穿刺针做向上拔出运动;所述驱动丝组件包括驱动丝以及套设在驱动丝外侧的驱动丝套管,所驱动丝套管的一端与卡紧组件相抵或连接,另一端在第一对接件上的驱动孔或驱动槽中,所述拔针驱动机构在第一运动平台的驱动下对准任一驱动孔或驱动槽,通过拔针驱动机构驱驱动驱动丝与驱动丝套管之间做相对运动,从而实现对卡紧组件的驱动;所述液压油管组件包括液压油管以及设置于液压油管内的液压油,所述液压油管的一端与卡紧组件相连,另一端连接在第一对接件上的驱动孔或驱动槽中,所述拔针驱动机构在第一运动平台的驱动下对准任一驱动孔或驱动槽,通过拔针驱动机构推动液压油管中的液压油运动,或者向液压油管注入或抽出液压油实现对卡紧组件的驱动;所述气管组件包括气管,所述气管的一端与卡紧组件相连,另一端连接在第一对接件上的驱动孔或驱动槽中,所述拔针驱动机构在第一运动平台的驱动下对准任一驱动孔或驱动槽,通过拔针驱动机构推动气管内的气体运动,或者向气管注入或抽出气体实现对卡紧组件的驱动。
作为优选,所述第一运动平台包括平面位移机构和第一前后对接机构,所述第一前后对接机构与平面位移机构连接,所述平面位移机构用于驱动所述第一前后对接机构在一个平面内运动,所述第一前后对接机构驱动所述拔针驱动机构与推杆输出通道的一端在垂直于该平面的方向上前后运动。
作为优选,所述平面位移机构为单关节旋转运动机构、单关节旋转运动机构结合径向直线运动机构、双关节旋转运动机构或XY轴直线运动机构的一种,所述第一前后对接机构设置在所述平面位移机构的活动端;
当所述平面位移机构为单关节旋转运动机构结合径向直线运动机构时,所述平面位移机构还包括旋转臂,所述单关节旋转运动机构驱动旋转臂在一个平面内旋转,所述径向直线运动机构设置在旋转臂上,并驱动设置在旋转臂上的滑块沿着旋转臂径向运动,所述第一前后对接机构设置在滑块的侧面。
有益效果
本发明能够实现多通道自动植入,通过主体与第一对接件之间的相对运动实现推杆输出通道与不同的孔位进行对接,并通过推杆将置于推杆输出通道内的放射性粒子推至穿刺针,并从针尖处推出植入人体,从而实现放射性粒子多通道的植入,实现快速切换;通过拔针驱动机构实现对穿刺针的自动拔出,并配合相应的程序实现拔针与植入同步操作,提高植入精度与植入效果,实现全自动操作,避免辐射风险以及较少的手术时间,结构简单合理、驱动方便快捷。
附图说明
图1是本发明带有拔针驱动功能的多通道放射源植入系统结构示意图;
图2是本发明的第一连接部结构示意图;
图3是本发明第二对接件与第一对接件同一结构的实施例;
图4是本发明的拔针驱动机构结构示意图;
图5是本发明的拔针驱动机构将外管推出的结构示意图;
图6是本发明的穿刺引导模板结构示意图;
图7为本发明的随管拔针结构示意图;
图8为图7的侧面剖视图;
图9为本发明的拔针快接组的内部结构图;
图10为本发明的旋转卡紧机构结构示意图;
图11为本发明的牵引盒内部结构示意图;
图12为本发明的卡爪组件结构示意图;
图13为本发明卡爪组的夹持件结构示意图;
图14为本发明的阻力夹块结构示意图;
图15为本发明的侧面压紧机构的一种实施例;
图16为本发明的侧面压紧机构的另一种实施例;
图17为本发明的拔针快接组设置导电触点结构示意图;
图18为本发明的拔针快接组的液压或气压设置结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-17所示本发明提供一种带有拔针驱动功能的多通道放射源植入系统,包括推杆输出通道200、设置于推杆输出通道200内的推杆、驱动推杆移动的推杆驱动机构300、连接部1000、第一运动平台,还包括有用于驱动拔针配件动作并将穿刺针10从生物体组织600内拔出的拔针驱动机构900;
所述第一连接部1000与推杆输出通道200的一端分别设置在第一运动平台的两侧,所述拔针驱动机构900与推杆输出通道200的一端并列设置,第一运动平台驱动推杆输出通道200的一端和拔针驱动机构900与第一连接部1000做相对运动。
所述第一连接部1000安装有第一对接件400,在所述第一对接件400上设置有若干贯穿的孔位,在每个所述孔位上均设置有用于与输送导管500的一端连接的快速连接部,在所述输送导管500另一端设置有穿刺针10或用于与穿刺针连接的快速连接头,还包括有放射源供料部,放射源供料部用于将放射源置于推杆的前端,所述第一连接部为粘胶连接部、焊接连接部、螺纹连接部、卡扣连接部、锁扣连接部中的一种或多种组合。
所述输送导管500采用柔性材料制作而成为第一柔性输送导管,所述推杆也采用柔性材料制作而成为柔性推杆;所述柔性推杆为具有弹性的柔性丝,在外力作用下能被弯折,撤销外力后能恢复笔直状态,柔性推杆的材料为镍钛合金、弹簧钢、弹性体材料、复合材料中的一种或多种组合;所述柔性推杆的长度大于300mm;所述输送导管500为可弯折的柔性管道,其内径为0.5-1.5mm,外径为1.5-5mm,所述输送导管500的长度超过300mm,可采用塑料、镍钛合金、橡胶、硅胶、乳胶或弹性体材料中的一种或多种混合制成。
在此处,所述第一运动平台驱动第一对接件400与推杆输出通道200的一端在空间中相对运动,使得推杆输出通道的一端与第一对接件400的孔位对接连通,从而将放射源从与该孔位连接的输送导管输出出去,所述第一对接件400与推杆输出通道的一端相对运动为:A、    第一对接件400运动,推杆输出通道200的一端静止;B、第一对接件400静止,推杆输出通道200的一端运动;C、    第一对接件400运动,推杆输出通道200的一端运动。
进一步,所述第一运动平台用于实现所述推杆输出通道200的一端和第一对接件400在空间中的相对运动,使所述推杆输出通道200与第一对接件400上的任一输送导管500连通形成粒子或粒子链的输送通道,从而实现多通道植入。
所述拔针驱动机构900通过驱动拔针配件动作并将穿刺针10从生物体组织600内拔出,所述拔针配件为套管式拔针配件,套管式拔针配件包括套设在输送导管500外的外管800,所述外管800和所述输送导管500由柔性材料制成,该柔性材料采用塑料、镍钛合金、硅胶、乳胶、橡胶的一种或多种组合;
所述套管式拔针配件的驱动方式为直接推拉、卡紧驱动、摩擦驱动、啮合驱动方式中的一种,以驱动所述输送导管500与外管800之间相对运动;所述外管800前端与生物体组织600连接或相抵,或者外管800前端与支撑组件700连接或相抵,所述支撑组件700与生物体组织600之间相对静止,所述支撑组件700为穿刺引导支架、穿刺引导模板、3D打印模板、数控加工定制的模板、热塑性模板、鳞片式支撑板、直接固化型支撑组件的一种或多种组合;
所述拔针驱动机构900为多通道选择式拔针驱动机构,所述第一对接件400上呈阵列分布有多个驱动孔或驱动槽,多个驱动孔或驱动槽分别与各输送导管对应设置,所述拔针驱动机构900在第一运动平台的驱动下对准任一驱动孔或驱动槽,并对该驱动孔或驱动槽对应的拔针配件进行驱动,使穿刺针做向上拔出运动。
所述外管800由柔性可弯折变形材料制成,其内径大于所述输送导管500的外径,可采用塑料、镍钛合金、橡胶、硅胶、乳胶或弹性体材料中的一种或多种混合制成;所述外管800可采用透明材料制作;在所述输送导管500或所述穿刺针10上设有标记图案,以方便观察。
所述外管800与输送导管500的相对运动为以下形式中的一种:A、固定所述输送导管500远离穿刺针10的一端,驱动所述外管800向靠近所述生物体组织600一侧运动;B、固定所述外管800,驱动所述输送导管500向远离所述生物体组织600一侧运动;C、驱动所述外管800和所述输送导管500均运动,但两者之间发生相对滑移运动,输送导管500相对于外管800向所述远离生物体组织600一侧运动。
当所述拔针驱动机构900套管式拔针方式的直接推拉组件时,所述直接推拉组件包括驱动杆、摇臂中的一种或多种组合;所述驱动杆或摇臂的一端与输送导管500或外管800中的一个固定或相抵,所述驱动杆或摇臂的另一端与输送导管500或外管800中的另一个固定或相抵,或者所述驱动杆或摇臂的另一端与输送导管500或外管800中的另一个同时与一个基体连接并在拔针时保持相对静止,通过驱动杆的直线运动或摇臂的转动直接推/拉输送导管500与外管800的相对运动;在所述直接推拉组件上设置有接触传感器,所述直接推拉组件与端面接触时,所述接触传感器反馈接触信号;所述接触传感器为导电式接触传感器、接近开关、机械开关、光电开关、霍尔开关、力传感器中的一种或多种组合;
当所述拔针驱动机构900为套管式拔针方式的卡紧驱动组件时,所述卡紧驱动组件包括卡紧运动组件与卡紧组件,所述卡紧组件为主动式卡紧组件或被动式卡紧组件;所述卡紧组件卡紧输送导管500或外管800,所述卡紧运动组件驱动卡紧组件沿设定轨迹运动实现输送导管500与外管800的相对运动;或者,所述卡紧组件对输送导管500或外管800具有卡紧或松开两个状态,在所述卡紧状态下,所述卡紧运动组件驱动卡紧组件向第一方向运动,在所述松开状态下,所述卡紧运动组件驱动卡紧组件向第二方向运动,所述卡紧状态与松开状态交替切换,实现卡紧组件往复运动而输送导管500或外管800单方向相对运动;
当所述拔针驱动机构900为套管式拔针方式的摩擦驱动组件时,所述摩擦驱动组件通过摩擦轮或摩擦带配合实现摩擦驱动,所述摩擦轮或摩擦带的一部分与外管800或者输送导管500相接触,通过接触产生的摩擦力驱动输送导管500与外管800之间相对运动;
当所述拔针驱动机构900为套管式拔针方式的啮合驱动组件时,所述啮合驱动组件通过对输送导管500或外管800上设置的齿槽的啮合驱动,实现输送导管500或外管800的相对运动;所述啮合驱动组件为齿轮、蜗杆中的一种或多种组合。
所述被动式卡紧组件在所述卡紧运动组件带动其向第一方向运动时自动卡紧,而在所述卡紧运动组件带动其向第二方向运动时自动松开,所述被动式卡紧组件为卡爪组件、旋转卡紧机构、侧面压紧机构或侧面拉紧机构中的一种或多种组合。
其中,所述卡爪组件包括卡爪,所述卡爪可张开或收拢;所述卡紧运动组件带动卡爪向第一方向运动时,所述卡爪收拢并卡紧输送导管500或外管800;所述卡紧运动组件带动卡爪向第二方向运动时,所述卡爪张开并松开输送导管500或外管800,所述卡爪组件还包括推动块,在所述推动块上设有顶销,在所述卡爪上设有斜面或滑槽,所述卡紧运动组件通过推动块带动卡爪运动,所述顶销与斜面或滑槽配合实现卡爪张开或收拢,所述顶销与斜面或滑槽的配合结构可采用齿轮机构或连杆机构代替。
所述旋转卡紧机构包括旋转件与旋转驱动机构,在所述旋转件上设有通孔或通槽或双突柱,所述输送导管500或外管800穿过旋转件上的通孔或通槽或双突柱;所述卡紧运动组件带动旋转驱动机构向第一方向运动时,所述旋转驱动机构带动旋转件旋转或弯曲,卡住输送导管500或外管800;所述卡紧运动组件带动旋转驱动机构向第二方向运动时,所述旋转驱动机构带动旋转件或弯曲至限定位置,在限定位置下所述旋转件松开输送导管500或外管800,所述旋转驱动机构为驱动连杆,在运动时撬动或拉动旋转件运动;或者,所述旋转驱动机构为齿轮齿条结构,齿条带动齿轮,齿轮带动旋转件运动;所述旋转件为旋转柱或旋转片或柔性片。
所述旋转驱动机构为驱动连杆,在运动时撬动或拉动旋转件旋转或弯曲;或者,所述旋转驱动机构为齿轮齿条结构,齿条带动齿轮,齿轮带动旋转件旋转或弯曲;所述旋转件为旋转柱或旋转片或柔性片。
所述侧面压紧机构/侧面拉紧机构对输送导管500或外管800从侧面压紧/拉紧或松开;当所述卡紧运动组件带动侧面压紧机构/侧面拉紧机构向第一方向运动时,所述侧面压紧机构/侧面拉紧机构压紧/拉紧输送导管500或外管800;当所述卡紧运动组件带动侧面压紧机构/侧面拉紧机构向第二方向运动时,所述侧面压紧机构/侧面拉紧机构松开输送导管500或外管800,所述侧面压紧机构/侧面拉紧机构采用连杆夹紧机构,通过连杆夹紧机构内的连杆压紧/拉紧输送导管500或外管800;或者,所述侧面压紧机构/侧面拉紧机构采用凸轮卡紧机构,通过凸轮卡紧机构内的凸轮转动压紧/拉紧输送导管500或者外管800;或者,所述侧面压紧机构/侧面拉紧机构采用斜面卡紧机构或滑槽卡紧机构,通过斜面或滑槽与压紧块/拉紧块配合运动实现对输送导管500或外管800的压紧/拉紧;所述侧面压紧机构/侧面拉紧机构上设有限位部,所述限位部用于限制所述侧面压紧机构/侧面拉紧机构松开的距离。
所述主动式卡紧组件能够通过独立驱动单元主动控制其自身的松开与卡紧,所述主动式卡紧组件为主动卡爪组件、主动旋转卡紧机构、主动侧面压紧机构或主动侧面拉紧机构中的一种或多种组合。
套管拔针方式的所述拔针驱动机构900的驱动类型为直接驱动或随管驱动组件。
所述随管驱动组件为独立动力元件、驱动丝组件、液压油管组件、气管组件中的一种或多种组合,所述独立动力元件为电机或电推杆,此时所述拔针驱动机构900包括电连接器,所述电连接器在第一运动平台的驱动下对准任一驱动孔或驱动槽,并对该驱动孔或驱动槽对应的随管驱动组件的第二电连接器对接并建立电连接,从而对独立动力元件进行驱动,使穿刺针做向上拔出运动;所述驱动丝组件包括驱动丝以及套设在驱动丝外侧的驱动丝套管,所述驱动丝套管的一端与卡紧组件相抵或相连,另一端在第一对接件400上的驱动孔或驱动槽中,所述拔针驱动机构900在第一运动平台的驱动下对准任一驱动孔或驱动槽,通过拔针驱动机构900驱动驱动丝与驱动丝套管之间的相对滑移运动,将动力传递至卡紧组件,从而实现对卡紧组件的驱动;所述液压油管组件包括液压油管以及设置于液压油管内的液压油,所述液压油管一端与卡紧组件相连,另一端连接在第一对接件400上的驱动孔或驱动槽中,所述拔针驱动机构900在第一运动平台的驱动下对准任一驱动孔或驱动槽,通过拔针驱动机构900)动液压油管中的液压油运动,或者向液压油管的注入或抽出,实现对卡紧组件的驱动;所述气管组件包括气管,所述气管的一端与卡紧组件相连,另一端连接在第一对接件400上的驱动孔或驱动槽中,所述拔针驱动机构900在第一运动平台的驱动下对准任一驱动孔或驱动槽,通过拔针驱动机构900推动气管内的气体运动,或者向气管注入或抽出气体实现对卡紧组件的驱动;其中,采用驱动丝或者液压油管驱动卡紧组件的目的在于避免在输送导管500上增加较重的独立动力元件,从而避免其牵拉输送导管500及其前端连接穿刺针10划伤生物体组织600。
所述第一运动平台包括平面位移机构和第一前后对接机构,所述第一前后对接机构与平面位移机构连接,所述平面位移机构用于驱动所述第一前后对接机构在一个平面内运动,所述第一前后对接机构驱动所述拔针驱动机构900与推杆输出通道200的一端在垂直于该平面的方向上前后运动。
所述平面位移机构为单关节旋转运动机构、单关节旋转运动机构结合径向直线运动机构、双关节旋转运动机构或XY轴直线运动机构的一种,所述第一前后对接机构设置在所述平面位移机构的活动端;
当所述平面位移机构为单关节旋转运动机构结合径向直线运动机构,所述平面位移机构还包括旋转臂,所述单关节旋转运动机构驱动旋转臂在一个平面内旋转,所述径向直线运动机构设置在旋转臂上,并驱动设置在旋转臂上的滑块沿着旋转臂径向运动,所述第一前后对接机构设置在滑块的侧面。
如图1至图6,在运动平台18122102的推出机构18122103上设置输送机构18122107,在输送机构18122107的末端会设置收纳盒18122106,收纳盒用于存放射源,在输送机构前端会设置推杆输出通道200,推杆输出通道200固定在对接运动座18122121上,推杆输出通道200的下方会设置齿条座18122124,齿条座18122124内设置齿条18122123。在对接运动座18122121底部设置电机B18122120,电机B18122120的的侧边会分别设置一个力传感器18122117与电机B18122120贴合或连接,电机B18122120与主动齿轮18122119连接。在对接运动座18122121上设置从动齿轮18122118,从动齿轮18122118与主动齿轮18122119和齿条18122123啮合,当齿条18122123遇到阻力时,力传感器18122117即能检测到因为电机B18122120转动遇阻时的反作用力,电机B18122120设有角度传感器,从而换算得到齿条18122123的位移量,基于力反馈与位置反馈,设备可以判断此时齿条18122123是否和外管顶推座18122112发生了接触,或者齿条18122123是否顺利从第二通孔18122124伸出。
在第一对接件400上会连接输送导管500,输送导管500前端会设置输送导管接头18122111,在输送导管500外会设有外管800,在外管800的一端会设置多个金属环18122114均布在外管800上,外管顶推座18122112设置在金属环18122114外,所述顶推座18122112通过锁紧机构与金属环18122114限位配合,从而实现顶推座18122112与外管800之间的相对位置的松开与锁紧;或者所述金属环采用限位台阶代替,所述顶推座18122112通过锁紧机构与限位台阶限位配合,从而实现顶推座18122112与外管800之间的相对位置的松开与锁紧,所述限位台阶设置在外管的卡齿、凸起、凹坑、通孔的一种或组合上。
穿刺手术时,将输送导管接头18122111固定在第一对接件400的第一通孔18122105处,输送导管500靠近输送导管接头18122111的一段为刚性段,可以保持与第一对接件400的垂直,从而起到对外管顶推座18122112的导向作用,输送导管500的另一端为柔性段,从而更好地与不同位姿的穿刺针对接,并适应患者身体的运动,确保手术的安全性。随后顺着外管800移动外管顶推座18122112使其前端面靠近或贴合在第一对接件400上,同时将调节锁紧旋钮18122113使其压紧金属环18122114,将外管顶推座18122112与外管800相对固定,采用金属环18122114是为了避免将柔性的外管挤扁,从而导致输送导管与外管之间无法发生相对运动,即无法拔针。运动平台18122102工作使推杆输出通道200对第一通孔18122105,推出机构18122103推出推杆输出通道200使其与第一通孔18122105对接配合。所述放射源是粒子链,在本实施例中,粒子链本身就是放射源推杆,输送机构18122107推出收纳盒18122106内部的粒子链,在推出目标长度的粒子链后,切断机构将粒子链切断,完成放射源的供料,所述输送机构18122107推出放射源,放射源通过输送导管500和与之相连的穿刺针10输送至生物体内部,所述放射源供料方式还可以是粒子弹夹或粒子链弹夹供料,同时电机B18122120转动主动齿轮18122119,与其啮合的从动齿轮18122118工作,推出上方的齿条18122123,齿条18122123会被持续推出直至与外管顶推座18122112接触,电机B18122120侧面的力传感器18122117检测到电机B18122120受到的阻力,将该位置记为零位。电机B18122120继续旋转推出齿条18122123,齿条18122123推出外管顶推座18122112,外管800的另一端已经顶住了生物体表面,固定的输送导管500与被推动的外管800会形成相对运动,将输送导管500牵拉穿刺针从生物体组织600中拔出,在穿刺针被拔出的同时,输送机构18122107会同步推出放射源,在完成拔针后,放射源会滞留在人病灶处并完成植入工作,本实施例所用的齿轮齿条机构还可以采用丝杠螺母机构、带传动机构、链传动机构代替,只需要实现直线往复运动或弧线往复运动即可,在此不再赘述。
本发明的一种实施例,如图7和图8,第一对接件400安装于第一运动平台30442601,输送导管接头30442603和拔针快接组922安装在第一对接件400的同一侧,输送导管的一端与输送导管接头30442603连接,输送导管的另一端与穿刺针10连接,输送导管500穿过牵引盒911安装在其中,外管800的一端与牵引盒911相抵,当牵引盒911将输送导管500向远离生物体组织600的方向拔出时,由于外管800另一端与生物体组织600连接或相抵,或者外管800另一端与支撑组件700连接或相抵,所述支撑组件700与生物体组织600之间相对静止,此时输送导管500将牵拉穿刺针从生物体组织600内拔出,拔针快接组922通过连接软管30442605连接于牵引盒911,连接软管30442605内设有驱动丝9227。
将输送导管接头30442603与拔针快接组922对接安装于第一对接件400上预设的第一通孔和第二通孔上,通过第一运动平台30442616分别带动推杆输出通道200和拔针驱动杆30442610输送导管接头30442603与拔针快接组922对接。
推杆将粒子弹夹内的粒子通过输送导管500推入到病灶后,此时齿轮30442609带动拔针驱动杆30442610向前顶出,当力传感器30442623检测到压力时,表明拔针驱动杆30442610已经顶推到往拔针快接组922的快接滑块9224,随着快接滑块9224的向前运动顶推,牵引丝 30442614将被向外推出往拔针快接组922进入连接软管30442605内,顺着牵引丝 30442614的顶出卡紧片30442622将顶动卡紧片安装座30442619随着导向杆30442618向下顶出,当推杆30442610向后退回时,快接滑块9224将被快接弹簧9225顶推回原位。
如图9所示,所述拔针快接组922包括快接外套筒9221、设置于快接外套筒9221内的快接内套筒9222、固定于快接内套筒9222一端的快接堵头9223、位于快接内套筒9222另一端的快接滑块9224以及位于快接堵头9223与快接滑块9224之间的快接弹簧9225,在所述快接堵头9223中心开设有快接通孔,在所述快接滑块9224上设置有金属毛细管9226,所述金属毛细管9226上设置有驱动丝9227;所述驱动丝9227一端穿过快接通孔,另一端与拔针组内的拔针拨片914连接;拔针驱动杆向前运动并推动快接滑块9224在快接内套筒9222向快接堵头9223方向运动,此时,驱动丝9227在随管拔针组件8111107推动拔针滑块9224向前运动;拔针动力组921向后运动脱离快接滑块9224,所述快接滑块9224通过快接弹簧9225的作用向运力快接堵头9223方向运动,此时,驱动丝9227在牵引盒911内拉动拔针滑动块913向后运动;以此往复。
如图10和图11,牵引盒911包括拔针组以及位于牵引盒911两端的端盖912,在所述端盖912上设置拔针通孔,所述输送导管500穿过两个拔针通孔以及拔针组,所述拔针快接组922驱动拔针组往复运动,而牵引盒911与输送导管500之间为单向运动,所述拔针组向靠近穿刺针10方向运动时松开输送导管500并可在输送导管500上移动,所述拔针组向远离穿刺针10方向运动时夹紧输送导管500并带着输送导管500向远离穿刺针10方向移动,来回往复,从而实现步进式拔针效果;为了保证输送导管500在进入或离开牵引盒911时,不会折弯,在所述拔针通孔上向牵引盒911外侧伸出形成拔针定位筒917,所述输送导管500设置于拔针定位筒917内。
所述牵引盒911内设有沿输送导管500方向移动的拔针滑动块913以及设置于拔针滑动块913内的拔针拨片914,在所述拔针滑动块913上设置有拔针凹槽915,所述输送导管500穿设在拔针凹槽915内,所述拔针凹槽915也可以替换为一通孔,只需要保证输送导管500穿过即可,所述拔针凹槽915相比通孔来说方便装配;在所述拔针拨片914上设置拨片孔,所述输送导管500穿过拨片孔,所述拨片孔略大或大于输送导管500的直径,在此处拨片孔也可设置为一贯穿的凹槽,在所述拔针滑动块913上设置存储腔916,所述拔针拨片914设置于存储腔916内,所述存储腔916具有一定的空间可方便拔针拨片914在内部移动,当所述拔针拨片914向靠近穿刺针10方向移动,所述拔针拨片914与输送导管500之间夹角变大,最大可达到拔针拨片914与输送导管500垂直,此时所述拔针拨片914利用拨片孔可在输送导管500上滑动,当所述拔针拨片914向远离穿刺针10方向移动,所述拔针拨片914与输送导管500之间夹角变小,此时所述拔针拨片914倾斜,所述拨片孔倾斜使得拔针拨片914夹住输送导管500并带动输送导管500向远离穿刺针10方向移动,实现拔针操作。
在进行拔针操作时,还需要对牵引盒911进行定位,还包括有3D打印穿刺模板93以及套设在输送导管500上的外管800,所述3D打印穿刺模板93上设置有穿针孔,所述穿刺针10穿过穿针孔后插入生物体组织600,所述3D打印穿刺模板93进行固定并保持与生物体组织600相对静止,可直接固定于生物体组织600上,所述外管800设置于3D打印穿刺模板93与牵引盒911之间,所述外管800一端抵在3D打印穿刺模板93上,另一端抵在牵引盒911上,输送导管500运动时,所述3D打印穿刺模板93、外管800以及牵引盒911位置不动。
作为本发明的一种实施例,如图12至图14,被动式卡紧组件的卡爪组件包括牵引盒911,所述牵引盒911包括左固定块9114、右固定块9115以及支撑导向轴9116,所述支撑导向轴9116位于左固定块9114与右固定块9115之间,所述拔针组设置于支撑导向轴9116上并可沿着支撑导向轴9116滑动;其中,所述拔针组包括夹持件9125以及阻力夹块9126,所述夹持件9125包括第一夹块91251与第二夹块91252,所述阻力夹块9126可驱动所述第一夹块91251与第二夹块91252相向运动或反向动;当所述第一夹块91251与第二夹块91252相向运动时,所述第一夹块91251与第二夹块91252之间的距离变小从而可以将所述输送导管500夹住,此时阻力夹块9126被驱动沿所述支撑导向轴9116向远离生物体组织600方向运动,同时所述阻力夹块9126带着第一夹块91251与第二夹块91252一起运动,通过第一夹块91251与第二夹块91252对输送导管500的夹持从而实现拔针操作;当所述第一夹块91251与第二夹块91252反向运动时,所述第一夹块91251与第二夹块91252之间的距离变大从而将所述输送导管500松开,此时阻力夹块9126被驱动沿所述支撑导向轴9116向靠近生物体组织600方向运动,同时所述阻力夹块9126带着第一夹块91251与第二夹块91252一起运动,由于第一夹块91251与第二夹块91252松开输送导管500,故在第一夹块91251与第二夹块91252运动时所述输送导管500不会跟随运动,从而实现了夹持件9125相对于输送导管500的单向拔针运动。
进一步,所述第一夹块91251与第二夹块91252的一端转动连接且套设在支撑导向轴9116上,而两者的另一端均为自由端,第一夹块91251与第二夹块91252均可围绕支撑导向轴9116旋转,通过两者的旋转从而实现两者的相向运动与反向运动;为了保护输送导管500,在所述第一夹块91251上设置有第一夹持口91253且所述第一夹持口91253呈半弧形,在所述第二夹块91252上设置有第二夹持口91254且所述第二夹持口91254呈半弧形,当所述第一夹块91251与第二夹块91252相向运动至所需位置,所述第一夹持口91253与第二夹持口91254拼合形成一个完整的夹持孔,该夹持孔的直径略小于所述输送导管500;所述第一夹块91251与第二夹块91252相向运动,第一夹持口91253与第二夹持口91254拼合夹紧所述输送导管500,所述第一夹块91251与第二夹块91252反向运动,第一夹持口91253与第二夹持口91254相离松开所述输送导管500;所述第一夹块91251与第二夹块91252之间的运动通过阻力夹块9126实现,所述阻力夹块9126设置于支撑导向轴9116上并可在支撑导向轴9116上滑动。
在所述第一夹块91251上设置有第一斜面91255,在所述第二夹块91252上设置有第二斜面91256,所述第一斜面91255与第二斜面91256对称设置,在所述阻力夹块9126上设置有第一夹块凸点91261以及第二夹块凸点91262,所述第一夹块凸点91261与第一斜面91255配合,所述第二夹块凸点91262与第二斜面91256配合,所述第一斜面91255与第二斜面91256均倾斜于阻力夹块9126的运动方向;当所述阻力夹块9126向远离生物体组织600方向运动时,所述第一夹块凸点91261与第一斜面91255接触,通过第一斜面91255的作用,所述阻力夹块9126驱动第一夹块91251向远离生物体组织600方向运动的同时驱动第一夹块91251以其转动连接处为轴向第二夹块91252靠近,所述第二夹块凸点91262与第二斜面91256的运动方式一致,第二夹块91252向远离生物体组织600方向运动的同时驱动第二夹块91252以其转动连接处为轴向第一夹块91251靠近,从而实现第一夹持口91253与第二夹持口91254的夹紧操作;在所述第一夹块91251上设置有第三斜面91257,在所述第二夹块91252设置有第四斜面91258,当所述第一夹块91251与第二夹块91252靠近时,所述第三斜面91257与第四斜面91258形成V型槽,在所述阻力夹块9126上设置有第三夹块凸点91263,所述第三夹块凸点91263可同时与所述第三斜面91257、第四斜面91258接触,当阻力夹块91263向靠近生物体组织600方向运动时,所述第三夹块凸点91263与第三斜面91257、第四斜面91258同时接触,第一夹块91251与第二夹块91252在向靠近生物体组织600方向运动的同时所述第三夹块凸点91263驱动所述第一夹块91251向远离第二夹块91252方向转动,所述第三夹块凸点91263驱动所述第二夹块91252向远离第一夹块91251方向转动,从而实现第一夹持口91253与第二夹持口91254的松开操作;当第一夹块凸点91261与第二夹块凸点61262工作时,所述第三夹块凸点91263与第三斜面91257、第四斜面91258脱离,而当第三夹块凸点91263工作时,所述第一夹块凸点91261脱离第一斜面91255,第二夹块凸点91262脱离第二斜面91256。
由于第一夹块91251与第二夹块91252在反向运动时,两者之间不能够松开过大,故在所述阻力夹块9126的两侧均设置有阻力限位部91264,两个阻力限位部91264分别限制第一夹块91251、第二夹块91252反向运动的行程,当第一夹块91251与第二夹块91252反向运动至最大行程处,即第一夹块91251与第二夹块91252均抵在阻力限位部91264上,此时第一夹块91251与第二夹块91252之间形成间隙,与第三夹块凸点91263配合的部位,其间隙的宽度需小于第三夹块凸点91263的宽度,此处主要目的是通过第三夹块凸点91263能够带动第一夹块91251与第二夹块91252向靠近生物体组织600方向运动。
作为本发明的一种实施例,如图15和图16,侧面顶紧方式包括牵引盒911以及设置于牵引盒911内的拔针组,所述牵引盒911包括上固定座9117、下固定座9118以及设置于下固定座9118与上固定座9117之间的拔针导柱9119,所述拔针组设置于拔针导柱9119上并可沿拔针导柱9119往复运动;所述拔针组包括拔针移动座9127、设置于拔针移动座9127上的拔针转轴9128、设置于拔针转轴9128上的拔针顶块9129以及设置于拔针移动座9127内的拔针夹紧槽91210,所述拔针移动座9127套设在拔针导柱9119上,所述输送导管500设置于拔针夹紧槽91210内,所述拔针顶块9129可围绕所述拔针转轴9128转动,所述拔针顶块9129的一端部与拔针夹紧槽91210侧壁形成夹紧间隙,通过转动所述拔针顶块9129调整夹紧间隙的增大或减小从而实现对输送导管500的松开与夹紧;所述驱动丝9227连接至拔针顶块9129,通过驱动拔针顶块9129可实现对拔针移动座9127的移动;当拔针驱动机构900驱动拔针顶块9129向靠近生物体组织600方向运动时,拔针顶块9129围绕拔针转轴9128转动,此时夹紧间隙变大松开所述输送导管500,拔针顶块9129运动至不再旋转,所述拔针顶块9129带动拔针移动座9127向靠近生物体组织600方向运动;当拔针驱动机构900驱动拔针顶块9129向远离生物体组织600方向运动时,拔针顶块9129围绕拔针转轴9128转动,此时夹紧间隙变小通过拔针顶块9129头部与拔针夹紧槽91210的内壁可实现对所述输送导管500夹紧,拔针顶块9129不再旋转,所述拔针顶块9129带动拔针移动座9127向远离生物体组织600方向运动。
所述拔针转轴9128可设置于拔针夹紧槽91210内且位于两侧壁之间,所述拔针顶块9129端部与所述拔针夹紧槽91210的槽底形成夹紧间隙;或者,如图19所示在所述拔针移动座9127上设置一拔针容纳槽91211,该拔针容纳槽91211设置于拔针夹紧槽91210一侧,拔针转轴9128设置于拔针容纳槽91211内,所述拔针顶块9129的一端从所述拔针容纳槽91211内穿出并从所述拔针夹紧槽91210的侧面伸入至拔针夹紧槽91210,此时,所述拔针顶块9129的端部与所述拔针夹紧槽91210的侧壁形成夹紧间隙,同时在所述拔针夹紧槽91210远离拔针顶块9129的侧壁上设置有拔针挡块91212,所述拔针挡块91212可阻挡所述输送导管500从拔针夹紧槽91210内跑出,提高操作的稳定性。
作为本发明的一种实施例,如图17,所述拔针驱动杆30442610的前端设有两个第一导电触点101,所述拔针快接组922设有两个第二导电触点102,所述牵引盒911内安装有电动推杆,所述电动推杆作用于输送导管500,齿轮30442609带动拔针驱动杆30442610向前顶出,当力传感器30442623检测到压力时,表明拔针驱动杆30442610上的第一导电触点与拔针快接组922的第二导电触点接触连通,停止齿轮30442609转动,导电触点连通后对电动推杆供电,通过电动推杆将输送导管500向外推出,拔出穿刺针10。
作为本发明的一种实施例,如图18,所述拔针快接组922为内部中空设有液压油或气体,且与牵引盒911之间通过连接软管30442605连接,拔针快接组922安装在第一对接件400上的那端设有密封活塞92201,通过齿轮30442609带动拔针驱动杆30442610向前顶出,当力传感器30442623检测到压力时,拔针驱动杆30442610与密封活塞92201相抵,控制拔针驱动杆30442610继续顶出,对液压油或气体加压实现液压传动或气压传动,控制牵引盒911内的拔针机构将穿刺针10拔出。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

  1. 一种带有拔针驱动功能的多通道放射源植入系统,其特征在于,包括推杆输出通道(200)、设置于推杆输出通道(200)内的推杆、驱动推杆移动的推杆驱动机构(300)、第一连接部(1000)、第一运动平台和拔针驱动机构(900),所述推杆顶推着设置在推杆前方的放射源沿着推杆输出通道输出出去;
    所述第一连接部(1000)与推杆输出通道(200)的一端分别设置在第一运动平台的两侧,所述拔针驱动机构(900)与推杆输出通道(200)的一端并列设置,第一运动平台驱动推杆输出通道(200)的一端和拔针驱动机构(900)与第一连接部(1000)做相对运动。
  2. 根据权利要求1所述带有拔针驱动功能的多通道放射源植入系统,其特征在于,所述第一连接部(1000)安装有第一对接件(400),在所述第一对接件(400)上设置有若干贯穿的孔位,在每个所述孔位上均设置有用于与输送导管(500)的一端连接的快速连接部,在所述输送导管(500)另一端设置有穿刺针(10)或用于与穿刺针连接的快速连接头,还包括有放射源供料部,放射源供料部用于将放射源置于推杆的前端;
    所述第一连接部为粘胶连接部、焊接连接部、螺纹连接部、卡扣连接部、锁扣连接部中的一种或多种组合。
  3. 根据权利要求2所述带有拔针驱动功能的多通道放射源植入系统,其特征在于,所述第一运动平台驱动第一对接件(400)与推杆输出通道的一端在空间中相对运动,使得推杆输出通道的一端与第一对接件(400)的孔位对接连通,从而将放射源从与该孔位连接的输送导管输出出去,所述第一对接件(400)与推杆输出通道的一端相对运动为:
    A、  第一对接件(400)运动,推杆输出通道(200)的一端静止;B、第一对接件(400)静止,推杆输出通道(200)的一端运动;C、第一对接件(400)运动,推杆输出通道(200)的一端运动。
  4. 根据权利要求2所述带有拔针驱动功能的多通道放射源植入系统,其特征在于,所述拔针驱动机构(900)通过驱动拔针配件动作并将穿刺针(10)从生物体组织(600)内拔出,所述拔针配件为套管式拔针配件,套管式拔针配件包括套设在输送导管(500)外的外管(800),所述外管(800)和所述输送导管(500)由柔性材料制成,该柔性材料采用塑料、镍钛合金、硅胶、乳胶、橡胶的一种或多种组合;
    所述套管式拔针配件的驱动方式为直接推拉、卡紧驱动、摩擦驱动、啮合驱动方式中的一种,以驱动所述输送导管(500)与外管(800)之间相对运动;
    所述外管(800)前端与生物体组织(600)连接或相抵,或者外管(800)前端与支撑组件(700)连接或相抵,所述支撑组件(700)与生物体组织(600)之间相对静止,所述支撑组件(700)为穿刺引导支架、穿刺引导模板、3D打印模板、数控加工定制的模板、热塑性模板、鳞片式支撑板、直接固化型支撑组件的一种或多种组合;
    所述拔针驱动机构(900)为多通道选择式拔针驱动机构,所述第一对接件上呈阵列分布有多个驱动孔或驱动槽,多个驱动孔或驱动槽分别与各输送导管对应设置,所述拔针驱动机构(900)在第一运动平台的驱动下对准任一驱动孔或驱动槽,并对该驱动孔或驱动槽对应的拔针配件进行驱动,使穿刺针做向上拔出运动。
  5. 根据权利要求4所述带有拔针驱动功能的多通道放射源植入系统,其特征在于,所述外管(800)与输送导管(500)的相对运动为以下形式中的一种:A、固定所述输送导管(500)远离穿刺针(10)的一端,驱动所述外管(800)向所述生物体组织(600)一侧运动;B、固定所述外管(800),驱动所述输送导管(500)向远离所述生物体组织(600)一侧运动;C、驱动所述外管(800)和所述输送导管(500)均运动,但两者之间发生相对滑移运动,输送导管(500)相对于外管(800)向所述远离生物体组织(600)一侧运动。
  6. 根据权利要求4所述带有拔针驱动功能的多通道放射源植入系统,其特征在于,当所述拔针驱动机构(900)为套管式拔针方式的直接推拉组件时,所述直接推拉组件包括驱动杆、摇臂中的一种或多种组合;所述驱动杆或摇臂的一端与输送导管(500)或外管(800)中的一个固定或相抵,所述驱动杆或摇臂的另一端与输送导管(500)或外管(800)中的另一个固定或相抵,或者所述驱动杆或摇臂的另一端与输送导管(500)或外管(800)中的另一个同时与一个基体连接并在拔针时保持相对静止,通过驱动杆的直线运动或摇臂的转动直接推/拉输送导管(500)与外管(800)的相对运动;在所述直接推拉组件上设置有接触传感器,所述直接推拉组件与端面接触时,所述接触传感器反馈接触信号;所述接触传感器为导电式接触传感器、接近开关、机械开关、光电开关、霍尔开关、力传感器中的一种或多种组合;
    当所述拔针驱动机构(900)为套管式拔针方式的卡紧驱动组件时,所述卡紧驱动组件包括卡紧运动组件与卡紧组件,所述卡紧组件为主动式卡紧组件或被动式卡紧组件;所述卡紧组件卡紧输送导管(500)或外管(800),所述卡紧运动组件驱动卡紧组件沿设定轨迹运动实现输送导管(500)与外管(800)的相对运动;或者,所述卡紧组件对输送导管(500)或外管(800)具有卡紧或松开两个状态,在所述卡紧状态下,所述卡紧运动组件驱动卡紧组件向第一方向运动,在所述松开状态下,所述卡紧运动组件驱动卡紧组件向第二方向运动,所述卡紧状态与松开状态交替切换,实现卡紧组件往复运动而输送导管(500)或外管(800)单方向相对运动;
    当所述拔针驱动机构(900)为套管式拔针方式的摩擦驱动组件时,所述摩擦驱动组件通过摩擦轮或摩擦带配合实现摩擦驱动,所述摩擦轮或摩擦带的一部分与外管(800)或者输送导管(500)相接触,通过接触产生的摩擦力驱动输送导管(500)与外管(800)之间相对运动;
    当所述拔针驱动机构(900)为套管式拔针方式的啮合驱动组件时,所述啮合驱动组件通过对输送导管(500)或外管(800)上设置的齿槽的啮合驱动,实现输送导管(500)或外管(800)的相对运动;所述啮合驱动组件为齿轮、蜗杆中的一种或多种组合。
  7. 根据权利要求6所述带有拔针驱动功能的多通道放射源植入系统,其特征在于,所述被动式卡紧组件在所述卡紧运动组件带动其向第一方向运动时自动卡紧,而在所述卡紧运动组件带动其向第二方向运动时自动松开,所述被动式卡紧组件为卡爪组件、旋转卡紧机构、侧面压紧机构或侧面拉紧机构中的一种或多种组合;
    所述卡爪组件包括卡爪,所述卡爪可张开或收拢;所述卡紧运动组件带动卡爪向第一方向运动时,所述卡爪收拢并卡紧输送导管(500)或外管(800);所述卡紧运动组件带动卡爪向第二方向运动时,所述卡爪张开并松开输送导管(500)或外管(800),所述卡爪组件还包括推动块,在所述推动块上设有顶销,在所述卡爪上设有斜面或滑槽,所述卡紧运动组件通过推动块带动卡爪运动,所述顶销与斜面或滑槽配合实现卡爪张开或收拢,所述顶销与斜面或滑槽的配合结构可采用齿轮机构或连杆机构代替;
    所述旋转卡紧机构包括旋转件与旋转驱动机构,在所述旋转件上设有通孔或通槽或双突柱,所述输送导管(500)或外管(800)穿过旋转件上的通孔或通槽或双突柱;所述卡紧运动组件带动旋转驱动机构向第一方向运动时,所述旋转驱动机构带动旋转件旋转或弯曲,卡住输送导管(500)或外管(800);所述卡紧运动组件带动旋转驱动机构向第二方向运动时,所述旋转驱动机构带动旋转件或弯曲至限定位置,在限定位置下所述旋转件松开输送导管(500)或外管(800),所述旋转驱动机构为驱动连杆,在运动时撬动或拉动旋转件运动;或者,所述旋转驱动机构为齿轮齿条结构,齿条带动齿轮,齿轮带动旋转件运动;所述旋转件为旋转柱或旋转片或柔性片;
    所述侧面压紧机构/侧面拉紧机构对输送导管(500)或外管(800)从侧面压紧/拉紧或松开;当所述卡紧运动组件带动侧面压紧机构/侧面拉紧机构向第一方向运动时,所述侧面压紧机构/侧面拉紧机构压紧/拉紧输送导管(500)或外管(800);当所述卡紧运动组件带动侧面压紧机构/侧面拉紧机构向第二方向运动时,所述侧面压紧机构/侧面拉紧机构松开输送导管(500)或外管(800),所述侧面压紧机构/侧面拉紧机构采用连杆夹紧机构,通过连杆夹紧机构内的连杆压紧/拉紧输送导管(500)或外管(800);或者,所述侧面压紧机构/侧面拉紧机构采用凸轮卡紧机构,通过凸轮卡紧机构内的凸轮转动压紧/拉紧输送导管(500)或者外管(800);或者,所述侧面压紧机构/侧面拉紧机构采用斜面卡紧机构或滑槽卡紧机构,通过斜面或滑槽与压紧块/拉紧块配合运动实现对输送导管(500)或外管(800)的压紧/拉紧;所述侧面压紧机构/侧面拉紧机构上设有限位部,所述限位部用于限制所述侧面压紧机构/侧面拉紧机构松开的距离;
    所述主动式卡紧组件能够通过独立驱动单元主动控制其自身的松开与卡紧,所述主动式卡紧组件为主动卡爪组件、主动旋转卡紧机构、主动侧面压紧机构或主动侧面拉紧机构中的一种或多种组合。
  8. 根据权利要求4所述带有拔针驱动功能的多通道放射源植入系统,其特征在于,套管拔针方式的所述拔针驱动机构(900)的驱动类型为直接驱动或通过随管驱动组件驱动;
    所述随管驱动组件为独立动力元件、驱动丝组件、液压油管组件、气管组件的一种或多种组合时,所述独立动力元件为电机或电推杆,此时所述拔针驱动机构(900)包括电连接器,所述电连接器在第一运动平台的驱动下对准任一驱动孔或驱动槽,并对该驱动孔或驱动槽对应的随管驱动组件的第二电连接器对接并建立电连接,从而对独立动力元件进行驱动,使穿刺针做向上拔出运动;所述驱动丝组件包括驱动丝以及套设在驱动丝外侧的驱动丝套管,所驱动丝套管的一端与卡紧组件相抵或连接,另一端连接在第一对接件(400)上的驱动孔或驱动槽中,所述拔针驱动机构(900)在第一运动平台的驱动下对准任一驱动孔或驱动槽,通过拔针驱动机构(900)驱动驱动丝与驱动丝套管之间做相对运动,从而实现对卡紧组件的驱动;所述液压油管组件包括液压油管以及设置于液压油管内的液压油,所述液压油管的一端与卡紧组件相连,另一端连接在第一对接件(400)上的驱动孔或驱动槽中,所述拔针驱动机构(900)在第一运动平台的驱动下对准任一驱动孔或驱动槽,通过拔针驱动机构(900)推动液压油管中的液压油运动,或者向液压油管注入或抽出液压油实现对卡紧组件的驱动;所述气管组件包括气管,所述气管的一端与卡紧组件相连,另一端连接在第一对接件(400)上的驱动孔或驱动槽中,所述拔针驱动机构(900)在第一运动平台的驱动下对准任一驱动孔或驱动槽,通过拔针驱动机构(900)推动气管内的气体运动,或者向气管注入或抽出气体实现对卡紧组件的驱动。
  9. 根据权利要求1所述带有拔针驱动功能的多通道放射源植入系统,其特征在于,所述第一运动平台包括平面位移机构和第一前后对接机构,所述第一前后对接机构与平面位移机构连接,所述平面位移机构用于驱动所述第一前后对接机构在一个平面内运动,所述第一前后对接机构驱动所述拔针驱动机构(900)与推杆输出通道(200)的一端在垂直于该平面的方向上前后运动。
  10. 根据权利要求9所述带有拔针驱动功能的多通道放射源植入系统,其特征在于,所述平面位移机构为单关节旋转运动机构、单关节旋转运动机构结合径向直线运动机构、双关节旋转运动机构或XY轴直线运动机构的一种,所述第一前后对接机构设置在所述平面位移机构的活动端;
    当所述平面位移机构为单关节旋转运动机构结合径向直线运动机构时,所述平面位移机构还包括旋转臂,所述单关节旋转运动机构驱动旋转臂在一个平面内旋转,所述径向直线运动机构设置在旋转臂上,并驱动设置在旋转臂上的滑块沿着旋转臂径向运动,所述第一前后对接机构设置在滑块的侧面。
PCT/CN2023/089086 2022-08-26 2023-04-19 一种带有拔针驱动功能的多通道放射源植入系统 WO2024040999A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202211032981.9 2022-08-26
CN202211032981 2022-08-26
CN202211586593.5 2022-12-09
CN202211586593 2022-12-09
CN202310014707 2023-01-05
CN202310014707.7 2023-01-05
CN202310368226.6 2023-04-07
CN202310368226 2023-04-07

Publications (1)

Publication Number Publication Date
WO2024040999A1 true WO2024040999A1 (zh) 2024-02-29

Family

ID=90012329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089086 WO2024040999A1 (zh) 2022-08-26 2023-04-19 一种带有拔针驱动功能的多通道放射源植入系统

Country Status (1)

Country Link
WO (1) WO2024040999A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100036245A1 (en) * 2005-12-02 2010-02-11 Yan Yu Image-guided therapy delivery and diagnostic needle system
CN107456259A (zh) * 2017-08-14 2017-12-12 爱美客技术发展股份有限公司 一种固体植入物的推注装置
CN109499009A (zh) * 2018-12-12 2019-03-22 深圳先进技术研究院 一种用于植入放射性粒子的机器人
CN110548218A (zh) * 2019-08-29 2019-12-10 中国科学院深圳先进技术研究院 放射粒子植入穿刺机器人
CN111281498A (zh) * 2020-03-13 2020-06-16 江苏工大博实医用机器人研究发展有限公司 一种自动粒子植入器
CN111658997A (zh) * 2020-06-18 2020-09-15 哈尔滨理工大学 一种可连续植入放射性粒子的装置及应用其的植入方法
CN114306914A (zh) * 2022-02-17 2022-04-12 哈尔滨工业大学 放疗粒子植入机器人末端执行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100036245A1 (en) * 2005-12-02 2010-02-11 Yan Yu Image-guided therapy delivery and diagnostic needle system
CN107456259A (zh) * 2017-08-14 2017-12-12 爱美客技术发展股份有限公司 一种固体植入物的推注装置
CN109499009A (zh) * 2018-12-12 2019-03-22 深圳先进技术研究院 一种用于植入放射性粒子的机器人
CN110548218A (zh) * 2019-08-29 2019-12-10 中国科学院深圳先进技术研究院 放射粒子植入穿刺机器人
CN111281498A (zh) * 2020-03-13 2020-06-16 江苏工大博实医用机器人研究发展有限公司 一种自动粒子植入器
CN111658997A (zh) * 2020-06-18 2020-09-15 哈尔滨理工大学 一种可连续植入放射性粒子的装置及应用其的植入方法
CN114306914A (zh) * 2022-02-17 2022-04-12 哈尔滨工业大学 放疗粒子植入机器人末端执行器

Similar Documents

Publication Publication Date Title
CN110548218B (zh) 放射粒子植入穿刺机器人
CN105050512B (zh) 线驱动器
KR101676287B1 (ko) 슬라이딩 커터 커버를 구비한 생검 디바이스
US20100036245A1 (en) Image-guided therapy delivery and diagnostic needle system
CN104162226A (zh) 一种可连续植入放射性粒子的自动化装置
KR20190007970A (ko) 자동 주사 장치
WO2024040999A1 (zh) 一种带有拔针驱动功能的多通道放射源植入系统
CN113425414A (zh) 一种自动椎体穿刺成形装置以及骨科手术机器人系统
CN215778832U (zh) 一种口腔种植手术用引导装置
CN213552663U (zh) 输送设备、控制装置及调弯单元
CN116570378B (zh) 一种用于血管介入手术的从端操作装置
WO2023165489A1 (zh) 一种消毒隔离的多通道放射源植入系统
WO2023165542A1 (zh) 一种柔性放射源植入系统及其使用方法
WO2023165239A1 (zh) 放射源植入装置的推杆或粒子链的位置控制组件及其使用方法
WO2023236861A1 (zh) 粒子植入系统及其多通道拔针装置
CN113082554B (zh) 阴道插置针助推器
CN117883154A (zh) 一种单体穿刺深度调控机构及其调控驱动机构
CN117398581B (zh) 导丝推送装置及血管介入手术机器人
CN219645834U (zh) 一种带有收纳功能的粒子或粒子链输送机构
WO2024146391A1 (zh) 一种套管式放射源输送组件及其使用方法
CN215425067U (zh) 一种自动椎体穿刺成形装置以及骨科手术机器人系统
CN219743676U (zh) 一种放射性粒籽防护植入器
CN112603499B (zh) 一种穿刺置入装置
CN213641255U (zh) 浅腔肿瘤边界标记装置
CN113749739A (zh) 一种用于骨肿瘤手术穿刺定位装置及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856094

Country of ref document: EP

Kind code of ref document: A1