WO2024040971A1 - 用户终端的通信管理方法、网管设备及存储介质 - Google Patents

用户终端的通信管理方法、网管设备及存储介质 Download PDF

Info

Publication number
WO2024040971A1
WO2024040971A1 PCT/CN2023/085123 CN2023085123W WO2024040971A1 WO 2024040971 A1 WO2024040971 A1 WO 2024040971A1 CN 2023085123 W CN2023085123 W CN 2023085123W WO 2024040971 A1 WO2024040971 A1 WO 2024040971A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
attributes
frequency offset
speed
attribute
Prior art date
Application number
PCT/CN2023/085123
Other languages
English (en)
French (fr)
Inventor
李伟
孙中锋
李满
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024040971A1 publication Critical patent/WO2024040971A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a communication management method for a user terminal, a network management device, and a storage medium.
  • the main implementation method of current mobile communications is cellular multi-sector coverage.
  • Each cell has its own coverage area.
  • the business of the cell is processed internally, and attributes are configured in units of cells, such as ordinary large antenna cells, ordinary small cells, etc. Antenna cells, high-speed cells, super cells, etc.
  • different user terminal types such as high-speed mobile user terminals and stationary/slow-speed mobile user terminals will appear in the same community. However, limited by the properties of the community, it is difficult to be well compatible with high-speed mobile users in the same community.
  • resource allocation for user terminals based on cell attributes is not effective, which will affect the demodulation performance of the user terminal and affect the user experience.
  • the main purpose of the embodiments of the present disclosure is to provide a communication management method, network management equipment and storage medium for a user terminal.
  • inventions of the present disclosure provide a communication management method for a user terminal.
  • the communication management method for a user terminal includes: determining the beam attributes currently corresponding to the user terminal; and based on the mapping relationship between the preset beam attributes and resource policies. , determine a resource policy corresponding to the beam attribute of the user terminal; and send the resource policy to the network element side, so that the network element side configures resources for the user terminal based on the resource policy.
  • inventions of the present disclosure also provide a network management device.
  • the network management device includes a memory, a processor, a program stored on the memory and executable on the processor, and a program for implementing the processing.
  • a data bus for connection and communication between the processor and the memory.
  • embodiments of the present disclosure also provide a storage medium for computer-readable storage.
  • the storage medium One or more programs are stored in the mass, and the one or more programs can be executed by one or more processors to implement any communication management method of a user terminal as provided in this disclosure.
  • Figure 1 is a schematic flowchart of a communication management method for a user terminal provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of steps for determining the beam attributes currently corresponding to a user terminal provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of another step for determining the beam attributes currently corresponding to the user terminal provided by an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of a beam attribute grid area division provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic flow chart of communication management of user terminals based on the communication system of Figure 2 provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic structural block diagram of a network management device provided by an embodiment of the present disclosure.
  • the main implementation method of current mobile communications is cellular multi-sector coverage.
  • Each cell has its own coverage area.
  • the business of the cell is processed internally, and attributes are configured in units of cells, such as ordinary large antenna cells, ordinary small cells, etc. Antenna cells, high-speed cells, super cells, etc.
  • different user terminal types such as high-speed mobile user terminals and stationary/slow-speed mobile user terminals will appear in the same cell. However, limited by the properties of the cell, in the same cell It is difficult to be well compatible with high-speed mobile user terminals and stationary/slow-speed mobile user terminals.
  • Using cell attributes as a reference to allocate resources to user terminals is not effective, which will affect the demodulation performance of the user terminals and affect the use of users. experience.
  • embodiments of the present disclosure provide a communication management method, a network management device, and a storage medium for a user terminal, aiming to improve the demodulation performance of the user terminal.
  • FIG. 1 is a schematic flowchart of a communication management method for a user terminal provided by an embodiment of the present disclosure.
  • the communication management method of the user terminal includes steps S101 to S103.
  • the communication system involved in this disclosure includes a user terminal, a network element side, and a network management side.
  • the user terminal includes but is not limited to a 5G mobile terminal
  • the network element side includes but is not limited to a base station
  • the network management side includes But not limited to network management equipment.
  • the AAPC Automatic Antenna Pattern Control, antenna weight adaptive
  • the base station cell coverage space is divided, and different beams cover different intervals.
  • attributes of different beams are defined in advance, for example, using a large amount of a priori statistical data to define attributes of different beams.
  • the defined beam attributes include but are not limited to high-speed beam attributes, low-speed/stationary beam attributes, etc.
  • the network management side determines the beam attributes currently corresponding to the user terminal. For example, it is determined that the beam attribute currently corresponding to the user terminal is a high-speed beam attribute or a low-speed/stationary beam attribute.
  • step S101 may include sub-step S1011 and sub-step S1012.
  • the network element side detects and obtains the frequency offset information corresponding to the user terminal, which is referred to as frequency offset information for short.
  • the network element side receives measurement signals such as SRS (Sounding Reference Signal) and DMRS (Demodulation Reference Signal) from the user terminal, and calculates the frequency corresponding to the user terminal based on the measurement signals such as SRS and DMRS. offset.
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • the network element side After the network element side obtains the frequency offset information corresponding to the user terminal, the network element side reports the frequency offset information to the network management side, and the network management side obtains the frequency offset information corresponding to the user terminal reported by the network element side.
  • the network management side After obtaining the frequency offset information corresponding to the user terminal, the network management side determines the beam attributes corresponding to the user terminal based on the frequency offset information corresponding to the user terminal. For example, according to the frequency offset information corresponding to the user terminal, it is determined that the beam attribute corresponding to the user terminal is a high-speed beam attribute or a low-speed/stationary beam attribute.
  • determining the beam attributes corresponding to the user terminal based on the frequency offset information includes: comparing the frequency offset information with frequency offset thresholds corresponding to different beam attributes to determine the beam attributes corresponding to the user terminal.
  • AAPC is provided with frequency offset thresholds corresponding to beam attributes in advance to determine different types of beam attributes. For example, set the frequency deviation threshold interval corresponding to the high-speed beam attribute or the low-speed/stationary beam attribute respectively.
  • the frequency deviation threshold corresponding to the beam attribute may vary depending on the actual application situation, and there are no specific restrictions here.
  • the network management side After the network management side obtains the frequency offset information corresponding to the user terminal, it compares the frequency offset information corresponding to the user terminal with the frequency offset thresholds corresponding to different beam attributes, and determines whether the beam attribute corresponding to the user terminal is a high-speed beam attribute or a low-speed/stationary beam attribute.
  • the frequency offset information is compared with frequency offset thresholds corresponding to different beam attributes to determine the beam attributes corresponding to the user terminal, including: if the frequency offset information is within the frequency offset threshold interval corresponding to the low-speed/stationary beam attribute, Then it is determined that the beam attribute corresponding to the user terminal is a low-speed/stationary beam attribute; if the frequency offset information is within the frequency offset threshold interval corresponding to the high-speed beam attribute, it is determined that the beam attribute corresponding to the user terminal is a high-speed beam attribute.
  • the beam attribute corresponding to the user terminal is determined to be Low speed/stationary beam properties. If the frequency offset information corresponding to the user terminal is less than the upper limit of the frequency offset threshold corresponding to the high-speed beam attribute and greater than the lower limit of the frequency offset threshold corresponding to the high-speed beam attribute, the beam attribute corresponding to the user terminal is determined to be the high-speed beam attribute.
  • step S101 may include sub-step S1013 and sub-step S1014.
  • the network element side can detect the user based on the relationship between the beam and the preamble ID used to access PRACH (Physical Random Access Channel, physical layer random access channel) specified in the protocol.
  • PRACH Physical Random Access Channel, physical layer random access channel
  • PreambleID information currently corresponding to the terminal, and based on the PreambleID currently corresponding to the user terminal, the beam coverage area where the user terminal is currently located is distinguished.
  • the network management side presets the corresponding relationship between the marked beam coverage area and the beam attributes.
  • the coverage area is divided into six areas: 1/2/3/4/5/6.
  • Areas 1 and 2 are static grid areas, and these areas are covered accordingly.
  • the beam attributes of the beams in the two areas are stationary beam attributes; areas 3 and 4 are low-speed grid areas, and the corresponding beam attributes of the beams covering these two areas are low-speed beam attributes; areas 5 and 6 are high-speed grid areas, The beam attributes of the corresponding beams covering these two areas are high-speed beam attributes.
  • the beam coverage area where the user terminal is currently located can be determined. Beam attributes corresponding to the domain. For example, if it is determined that the beam coverage area where the user terminal is currently located is area 1 in Figure 5, it is determined that the beam attribute currently corresponding to the user terminal is a stationary beam attribute. For another example, if it is determined that the beam coverage area where the user terminal is currently located is area 5 in Figure 5, it is determined that the beam attribute currently corresponding to the user terminal is the high-speed beam attribute.
  • the resource strategy corresponding to the low-speed/stationary beam attribute includes SRS/CSI (Channel State Information) configured as the first cycle and DMRS configured as the first number of symbols.
  • the resource strategy corresponding to the high-speed beam attribute includes SRS/CSI.
  • the CSI is configured as a second period, and the DMRS is configured as a second number of symbols; the first period is longer than the second period, and the first number is smaller than the second number.
  • the first number of symbols is configured as a single symbol or 2 symbols; in the resource policy corresponding to the high-speed beam attribute, the second number of symbols is configured as 2 symbols, 3 symbols or even 4 symbols.
  • the network management side After the network management side determines the resource policy corresponding to the beam attribute of the user terminal, it sends the resource policy to the network element side, and the network element side configures resources for the user terminal based on the resource policy.
  • the resource policy corresponding to the low-speed/stationary beam attribute is used to allocate wireless resources, including but not limited to SRS/CSI configuration as the first Period (long period), DMRS is configured as a single symbol or 2 symbols, thereby leaving more air interface resources for the business channel, carrying more information, and improving spectrum transmission efficiency.
  • the resource policy corresponding to the high-speed beam attribute is used to allocate wireless resources, including but not limited to the SRS/CSI configuration for the second period (short period). period) to track channel changes faster;
  • DMRS is configured as 2 symbols, 3 symbols or even 4 symbols, and more pilot symbols are configured for user terminals, which can improve the demodulation performance of user terminals in high-speed scenarios.
  • the network element side enters the frequency offset compensation process during uplink demodulation, and performs frequency offset compensation processing based on the frequency offset compensation range known from previous statistics, which can more accurately determine the frequency offset compensation process. Perform demodulation calculations.
  • the network element side will also pre-compensate and send downlink service data based on the frequency offset compensation range and the frequency offset result during the uplink processing process.
  • Such pre-compensation processing on the network element side can effectively offset the air interface
  • the spectrum generated during the transmission process improves the demodulation capability of the user terminal and improves the robustness of the communication system.
  • a mapping relationship between beam attributes and power control strategies is preset, and different beam attributes correspond to different power control strategies.
  • power control management of the user terminal can also be performed based on the power control strategy corresponding to the beam attributes of the user terminal.
  • the communication management method of the user terminal further includes: obtaining the communication measurement data of the user terminal reported by the network element side; determining the current scheduling policy corresponding to the user terminal based on the communication measurement data; and sending the scheduling policy to the network element side. , for the network element side to adjust the communication parameters of the user terminal based on the scheduling policy.
  • communication measurement data includes but is not limited to RSRP (Reference Signal Receiving Power), DOA (Direction of Arrival) and other data.
  • RSRP Reference Signal Receiving Power
  • DOA Direction of Arrival
  • the network element side detects and obtains the communication measurement data corresponding to the user terminal, it reports the communication measurement data such as RSRP and DOA to the network management side.
  • the network management side obtains the communication measurement data such as RSRP and DOA reported by the network element side, it performs statistical classification on the communication measurement data such as RSRP and DOA, and calculates the communication parameter weight corresponding to the user terminal, that is, the current optimal weight of the user terminal. , determine the current corresponding scheduling policy of the user terminal.
  • the scheduling strategy includes but is not limited to horizontal/vertical beam width weights, direction angle weights, downtilt angle weights, beam number weights, beam attribute weights, etc.
  • the network management side sends the scheduling policy to the network element side, and the network element side adjusts the communication parameters of the user terminal based on the obtained scheduling policy.
  • the communication parameter adjustment includes at least one of the following: horizontal/vertical beam width adjustment; direction angle/downtilt angle adjustment; beam number adjustment; and beam attribute adjustment.
  • the horizontal/vertical beam width is adjusted according to the horizontal/vertical beam width weight in the scheduling policy.
  • the direction angle is adjusted according to the direction angle weight in the scheduling policy.
  • Another example is to adjust the downtilt angle according to the downtilt angle weight in the scheduling strategy.
  • the cycle time is preset, and the resource strategy/scheduling strategy/power control strategy corresponding to the user terminal is periodically determined according to the preset cycle time, and communication parameter adjustment, resource configuration, and power control management are performed on the user terminal. wait. It should be noted that the cycle time can be flexibly set according to the actual situation, and there is no specific limit here.
  • the network element side evaluates the management effect.
  • the evaluation criteria include beam coverage, number of user terminals, user experience rate, etc.
  • Assessment elements Determine whether the resource policy/scheduling policy/power control policy should be updated or rolled back based on the evaluation results. For example, if the evaluation result meets the preset requirements, the resource policy/scheduling strategy/power control strategy will be updated; if the evaluation result does not meet the preset requirements, the resource policy/scheduling strategy/power control strategy will be returned so that the resource strategy can be re-determined. /Scheduling Strategy/Power Control Strategy is updated.
  • the process of communication management of the user terminal includes the following steps Step1 to Step5.
  • Step1 The network element side obtains RSRP, DOA, and frequency offset information and reports them to the network management side.
  • Step 2 The network management side determines the communication parameter weights and beam attributes based on RSRP, DOA, and frequency offset information, obtains the corresponding resource strategy/scheduling strategy, and sends it to the network element side.
  • Step3 The network element side takes the resource policy/scheduling policy into effect and manages user terminals.
  • Step 4 The network management side performs effect evaluation and sends the evaluation results to the network element side.
  • Step5 The network element side updates or rolls back the resource policy/scheduling policy based on the evaluation results.
  • the network element side performs differentiated scheduling and resource configuration processing for user terminals in beam coverage areas with different beam attributes.
  • short-period closed-loop feedback resources are configured for user terminals in beam coverage areas with high-speed beam attributes.
  • configure long-period closed-loop feedback resources reduce the number of DMRS and other scheduling solutions suitable for stationary or low-speed mobile user terminals, leaving more air interface resources for the business Channels carry more information and improve spectrum transmission efficiency.
  • the resource policy corresponding to the beam attribute of the user terminal is determined, and then the determined resource policy is sent to the network element side.
  • the network element side configures resources for the user terminal based on the obtained resource policy, that is, it implements differentiated resource configuration and scheduling processing for user terminals in beam coverage areas with different beam attributes, thereby improving the demodulation performance of the user terminal.
  • FIG. 7 is a schematic block diagram of a network management device provided by an embodiment of the disclosure.
  • the network management device 200 may include a processor 210 and a memory 220.
  • the processor 210 and the memory 220 are connected through a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 210 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP), etc.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 220 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk or a mobile hard disk, etc.
  • Various computer programs for execution by the processor 210 are stored in the memory 220 .
  • the processor 210 runs a computer program stored in the memory, and when executing the computer program, can implement the following steps: determine the current corresponding beam attributes of the user terminal; determine the beam of the user terminal according to the preset mapping relationship between the beam attributes and the resource policy.
  • the resource policy corresponding to the attribute; the resource policy is sent to the network element side so that the network element side can configure resources for the user terminal based on the resource policy.
  • the processor 210 when determining the current beam attributes corresponding to the user terminal, can: obtain the frequency offset information corresponding to the user terminal reported by the network element side; and determine the beam attributes corresponding to the user terminal based on the frequency offset information. .
  • the processor 210 when determining the beam attributes corresponding to the user terminal based on the frequency offset information, can: compare the frequency offset information with frequency offset thresholds corresponding to different beam attributes, and determine the beam corresponding to the user terminal. Attributes.
  • the beam attributes include high-speed beam attributes and low-speed/stationary beam attributes.
  • the processor 210 compares the frequency offset information with frequency offset thresholds corresponding to different beam attributes and determines the beam attributes corresponding to the user terminal, Implementation: If the frequency offset information is within the frequency offset threshold interval corresponding to the low-speed/stationary beam attribute, then the beam attribute corresponding to the user terminal is determined to be the low-speed/stationary beam attribute; if the frequency offset information is within the frequency offset threshold interval corresponding to the high-speed beam attribute , then it is determined that the beam attribute corresponding to the user terminal is a high-speed beam attribute.
  • the processor 210 when determining the beam attributes currently corresponding to the user terminal, can: determine the beam coverage area where the user terminal is currently located when the user terminal initially accesses or switches access to the base station cell; The corresponding relationship between the assumed beam coverage area and the beam attributes is determined to determine the beam attributes corresponding to the beam coverage area where the user terminal is currently located.
  • the beam attributes include high-speed beam attributes and low-speed/stationary beam attributes.
  • the resource policy corresponding to the low-speed/stationary beam attributes includes sounding reference signal SRS/channel state information CSI configuration.
  • the demodulation reference signal DMRS is configured as a first number of symbols
  • the resource policy corresponding to the high-speed beam attribute includes SRS/CSI configured as a second period
  • DMRS is configured as a second number of symbols; wherein, the first period is longer than the second period. period, the first quantity is less than the second quantity.
  • the processor 210 can also implement: obtain the communication measurement data of the user terminal reported by the network element side; determine the current scheduling policy corresponding to the user terminal based on the communication measurement data; and send the scheduling policy to the network element side, It is used for the network element side to adjust the communication parameters of the user terminal based on the scheduling policy.
  • the communication parameter adjustment includes at least one of the following: horizontal/vertical beam width adjustment; direction angle/downtilt angle adjustment; beam number adjustment; and beam attribute adjustment.
  • Embodiments of the present disclosure also provide a storage medium for computer-readable storage.
  • the storage medium stores one or more programs.
  • the one or more programs can be executed by one or more processors to implement any of the tasks of the present disclosure.
  • An embodiment provides steps of a communication management method for a user terminal.
  • the storage medium may be an internal storage unit of the network management device in the aforementioned embodiment, such as a hard disk or memory of the network management device.
  • the storage medium can also be an external storage device of the network management device, such as a plug-in hard disk, smart memory card (SMC), secure digital (SD) card, and flash card (Flash Card) equipped on the network management device. wait.
  • Computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
  • Embodiments of the present disclosure provide a communication management method, a network management device, and a storage medium for a user terminal.
  • the corresponding beam attributes of the user terminal are determined according to the preset mapping relationship between the beam attributes and the resource policy.
  • the resource policy is then sent to the network element side.
  • the network element side performs resource configuration on the user terminal based on the obtained resource policy, that is, differentiation of user terminals in the beam coverage area for different beam attributes is achieved. Resource configuration and scheduling processing, thereby improving the demodulation performance of the user terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种用户终端的通信管理方法、网管设备及存储介质,属于通信技术领域。该用户终端的通信管理方法包括:确定用户终端当前对应的波束属性;根据预设的波束属性与资源策略的映射关系,确定用户终端的波束属性对应的资源策略;将资源策略发送至网元侧,以供网元侧基于资源策略,对用户终端进行资源配置。

Description

用户终端的通信管理方法、网管设备及存储介质
相关申请的交叉引用
本公开要求享有2022年08月25日提交的名称为“用户终端的通信管理方法、网管设备及存储介质”的中国专利申请CN202211026626.0的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种用户终端的通信管理方法、网管设备及存储介质。
背景技术
当前移动通信的主要实施方式是蜂窝状的多扇区覆盖,每个小区有自己的覆盖范围,小区内部处理本小区的业务,会以小区为单位进行属性配置,如普通大天线小区、普通小天线小区、高速小区、超级小区等。实际应用当中,在同一个小区内会出现高速移动用户终端、静止/慢速移动用户终端等不同用户终端类型,然而受限于小区属性,在同一个小区内很难较好地兼容高速移动用户终端和静止/慢速移动用户终端,以小区属性为参考对用户终端进行资源分配效果不佳,会导致用户终端的解调性能受到影响,影响用户的使用体验。
因此,如何提升用户终端的解调性能成为亟待解决的问题。
发明内容
本公开实施例的主要目的在于提供一种用户终端的通信管理方法、网管设备及存储介质。
第一方面,本公开实施例提供了一种用户终端的通信管理方法,所述用户终端的通信管理方法包括:确定用户终端当前对应的波束属性;根据预设的波束属性与资源策略的映射关系,确定所述用户终端的所述波束属性对应的资源策略;以及将所述资源策略发送至网元侧,以供所述网元侧基于所述资源策略,对所述用户终端进行资源配置。
第二方面,本公开实施例还提供了一种网管设备,所述网管设备包括存储器、处理器、存储在所述存储器上并可在所述处理器上运行的程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,所述程序被所述处理器执行时实现如本公开说明书提供的任一项用户终端的通信管理方法。
第三方面,本公开实施例还提供了一种存储介质,用于计算机可读存储,所述存储介 质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如本公开说明书提供的任一项用户终端的通信管理方法。
附图说明
为了更清楚地说明本公开实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种用户终端的通信管理方法的流程示意图;
图2为本公开实施例提供的一种通信系统的示意图;
图3为本公开实施例提供的一种确定用户终端当前对应的波束属性的步骤流程示意图;
图4为本公开实施例提供的另一种确定用户终端当前对应的波束属性的步骤流程示意图;
图5为本公开实施例提供的一种波束属性栅格区域划分示意图;
图6为本公开实施例提供的一种基于图2的通信系统进行用户终端的通信管理的流程示意图;以及
图7为本公开实施例提供的一种网管设备的结构示意性框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在此本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本公开。如在本公开说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
当前移动通信的主要实施方式是蜂窝状的多扇区覆盖,每个小区有自己的覆盖范围,小区内部处理本小区的业务,会以小区为单位进行属性配置,如普通大天线小区、普通小天线小区、高速小区、超级小区等。实际应用当中,在同一个小区内会出现高速移动用户终端、静止/慢速移动用户终端等不同用户终端类型,然而受限于小区属性,在同一个小区 内很难较好地兼容高速移动用户终端和静止/慢速移动用户终端,以小区属性为参考对用户终端进行资源分配效果不佳,会导致用户终端的解调性能受到影响,影响用户的使用体验。
为了解决上述问题,本公开实施例提供了一种用户终端的通信管理方法、网管设备及存储介质,旨在实现提升用户终端的解调性能。
下面结合附图,对本公开的一些实施例作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参照图1,图1为本公开实施例提供的一种用户终端的通信管理方法流程示意图。
如图1所示,该用户终端的通信管理方法包括步骤S101至步骤S103。
S101、确定用户终端当前对应的波束属性。
示例性地,如图2所示,本公开中涉及的通信系统包括用户终端、网元侧和网管侧,用户终端包括但不限于5G移动终端,网元侧包括但不限于基站,网管侧包括但不限于网络管理设备。在目标优化区域部署AAPC(Automatic Antenna Pattern Control,天馈权值自适应)功能,基于AAPC天馈权值自适应技术,将基站小区覆盖空间进行划分,不同的波束覆盖不同的区间。
并且,预先对不同的波束进行属性定义,例如,利用大量的先验统计数据,对不同的波束进行属性定义。定义的波束属性包括但不限于高速波束属性、低速/静止波束属性等。
对于基站小区内的任一用户终端,在对该用户终端进行通信管理的过程中,网管侧确定该用户终端当前对应的波束属性。例如,确定该用户终端当前对应的波束属性为高速波束属性或者低速/静止波束属性。
在一些实施例中,如图3所示,步骤S101可以包括子步骤S1011和子步骤S1012。
S1011、获取网元侧上报的用户终端对应的频偏信息。
根据多普勒效应,快速移动用户终端会产生较大的频率偏移,而低速移动用户终端产生较小的频率偏移,静止用户终端的频率偏移为零。在无线通讯技术领域,网元侧检测获得用户终端对应的频率偏移信息,简称为频偏信息。例如,网元侧接收到用户终端发出的SRS(Sounding Reference Signal,探测参考信号)、DMRS(Demodulation Reference Signal,解调参考信号)等测量信号,根据SRS、DMRS等测量信号计算用户终端对应的频率偏移。
网元侧获得用户终端对应的频偏信息之后,网元侧将频偏信息上报至网管侧,网管侧获得网元侧上报的用户终端对应的频偏信息。
S1012、根据频偏信息,确定用户终端对应的波束属性。
网管侧获得用户终端对应的频偏信息之后,基于用户终端对应的频偏信息,确定用户终端对应的波束属性。例如,根据用户终端对应的频偏信息,确定用户终端对应的波束属性为高速波束属性或者低速/静止波束属性。
在一些实施例中,根据频偏信息,确定用户终端对应的波束属性,包括:将频偏信息与不同波束属性对应的频偏门限进行比较,确定用户终端对应的波束属性。
示例性地,预先给AAPC提供波束属性对应的频偏门限,以判决不同类型的波束属性。例如,分别设置高速波束属性或者低速/静止波束属性对应的频偏门限区间。
需要说明的是,波束属性对应的频偏门限根据实际应用情况的不同可以有差异,这里不做具体限制。
网管侧获得用户终端对应的频偏信息之后,将用户终端对应的频偏信息与不同波束属性对应的频偏门限进行比较,确定用户终端对应的波束属性为高速波束属性或者低速/静止波束属性。
在一些实施例中,将频偏信息与不同波束属性对应的频偏门限进行比较,确定用户终端对应的波束属性,包括:若频偏信息在低速/静止波束属性对应的频偏门限区间内,则确定用户终端对应的波束属性为低速/静止波束属性;若频偏信息在高速波束属性对应的频偏门限区间内,则确定用户终端对应的波束属性为高速波束属性。
也即,若用户终端对应的频偏信息小于低速/静止波束属性对应的频偏门限上限值且大于低速/静止波束属性对应的频偏门限下限值,则确定用户终端对应的波束属性为低速/静止波束属性。若用户终端对应的频偏信息小于高速波束属性对应的频偏门限上限值且大于高速波束属性对应的频偏门限下限值,则确定用户终端对应的波束属性为高速波束属性。
在另一些实施例中,如图4所示,步骤S101可以包括子步骤S1013和子步骤S1014。
S1013、在用户终端初始接入或者切换接入基站小区时,确定用户终端当前位于的波束覆盖区域。
当用户终端是初始接入或者切换接入基站小区时,网元侧可以根据协议规定波束和接入PRACH(Physical Random Access Channel,物理层随机接入信道)使用的前导码PreambleID关系,检测到用户终端当前对应的PreambleID信息,并根据用户终端当前对应的PreambleID,区分用户终端当前位于的波束覆盖区域。
S1014、根据预设的波束覆盖区域与波束属性的对应关系,确定用户终端当前位于的波束覆盖区域对应的波束属性。
示例性地,网管侧预先设置标记波束覆盖区域与波束属性的对应关系。例如,如图5所示,将覆盖区域进行栅格划分,划分成6个区域:1/2/3/4/5/6,其中,区域1和2为静止栅格区域,相应的覆盖这两个区域的波束的波束属性为静止波束属性;区域3和4为低速栅格区域,相应的覆盖这两个区域的波束的波束属性为低速波束属性;区域5和6为高速栅格区域,相应的覆盖这两个区域的波束的波束属性为高速波束属性。
确定了用户终端当前位于的波束覆盖区域,即可确定用户终端当前位于的波束覆盖区 域对应的波束属性。例如,若确定用户终端当前位于的波束覆盖区域为图5中的区域1,则确定用户终端当前对应的波束属性为静止波束属性。又如,若确定用户终端当前位于的波束覆盖区域为图5中的区域5,则确定用户终端当前对应的波束属性为高速波束属性。
S102、根据预设的波束属性与资源策略的映射关系,确定用户终端的波束属性对应的资源策略。
在预设的波束属性与资源策略的映射关系中,不同的波束属性对应不同的资源策略。示例性的,低速/静止波束属性对应的资源策略包括SRS/CSI(Channel State Information,信道状态信息)配置为第一周期、DMRS配置为第一数量符号,高速波束属性对应的资源策略包括SRS/CSI配置为第二周期、DMRS配置为第二数量符号;第一周期长于第二周期,第一数量小于第二数量。例如,低速/静止波束属性对应的资源策略中,第一数量符号配置为单符号或者2符号;高速波束属性对应的资源策略中,第二数量符号配置为2符号或者3符号甚至4符号。
S103、将资源策略发送至网元侧,以供网元侧基于资源策略,对用户终端进行资源配置。
网管侧确定了用户终端的波束属性对应的资源策略后,将该资源策略发送至网元侧,网元侧基于该资源策略,对用户终端进行资源配置。
例如,若确定用户终端的波束属性对应的资源策略为低速/静止波束属性对应的资源策略,则采用低速/静止波束属性对应的资源策略分配无线资源,包括但不限于SRS/CSI配置为第一周期(长周期),DMRS配置为单符号或者2符号,从而将更多的空口资源留给业务信道,承载更多的信息、提升频谱传输效率。
又如,若确定用户终端的波束属性对应的资源策略为高速波束属性对应的资源策略,则采用高速波束属性对应的资源策略分配无线资源,包括但不限于SRS/CSI配置为第二周期(短周期),从而更快的跟踪信道变化情况;DMRS配置为2符号或者3符号甚至4符号,给用户终端配置较多的导频符号,可以提升高速场景下用户终端的解调性能。
示例性地,对于高速波束属性对应的用户终端,网元侧上行解调时进入频率偏移补偿流程,根据之前统计得知的频率偏移补偿范围,进行频率偏移补偿处理,能更精准的进行解调计算。网元侧在下行处理过程,也会根据频率偏移补偿范围和上行处理过程中的频率偏移结果相应的进行预补偿发送下行业务数据,这样的网元侧预补偿处理,可以有效的抵消空口传输过程产生的频谱,提升用户终端的解调能力,并且提升了通信系统的鲁棒性。
在一些实施例中,预设波束属性与功控策略的映射关系,不同的波束属性对应不同的功控策略。除了按照上述方式对用户终端进行资源配置以外,还可以根据用户终端的波束属性对应的功控策略,对用户终端进行功控管理。
在一些实施例中,用户终端的通信管理方法还包括:获取网元侧上报的用户终端的通信测量数据;根据通信测量数据,确定用户终端当前对应的调度策略;将调度策略发送至网元侧,以供网元侧基于调度策略,对用户终端进行通信参数调整。
示例性地,通信测量数据包括但不限于RSRP(Reference Signal Receiving Power,参考信号接收功率)、DOA(Direction of Arrival,到达方位角)等数据。网元侧检测获得用户终端对应的通信测量数据后,将RSRP、DOA等通信测量数据上报至网管侧。网管侧获得网元侧上报的RSRP、DOA等通信测量数据之后,对RSRP、DOA等通信测量数据进行统计分类,计算得到用户终端对应的通信参数权值,也即用户终端当前的最优权值,确定用户终端当前对应的调度策略。
示例性地,调度策略包括但不限于水平/垂直波瓣宽度权值、方向角权值、下倾角权值、波束数量权值、波束属性权值等。
之后,网管侧将调度策略发送至网元侧,网元侧基于获得的调度策略,对用户终端进行通信参数调整。示例性的,通信参数调整包括以下至少一项:水平/垂直波瓣宽度调整;方向角/下倾角调整;波束数量调整;以及波束属性调整。
例如,根据调度策略中的水平/垂直波瓣宽度权值,对水平/垂直波瓣宽度进行调整。又如,根据调度策略中的方向角权值,对方向角进行调整。再如,根据调度策略中的下倾角权值,对下倾角进行调整。
在一些实施例中,预设周期时间,根据预设的周期时间,周期性地确定用户终端对应的资源策略/调度策略/功控策略,对用户终端进行通信参数调整、资源配置、功控管理等。需要说明的是,该周期时间可根据实际情况进行灵活设置,在此不做具体限制。
示例性地,网元侧根据用户终端对应的资源策略/调度策略/功控策略,对用户终端进行管理后,对管理效果进行评估,评估准则包括波束覆盖范围、用户终端数量、用户体验速率等评估要素。根据评估结果判定资源策略/调度策略/功控策略是否更新或回退。例如,若评估结果达到预设要求,则将资源策略/调度策略/功控策略更新;若评估结果未达到预设要求,则将资源策略/调度策略/功控策略退回,以便重新确定资源策略/调度策略/功控策略进行更新。
下面,基于图2所示的通信系统,对用户终端的通信管理的流程进行简要说明,如图6所示,进行用户终端的通信管理的流程包括如下步骤Step1至步骤Step5。
Step1:网元侧获得RSRP、DOA、频偏信息,并上报至网管侧。
Step2:网管侧根据RSRP、DOA、频偏信息,确定通信参数权值以及波束属性,获得对应的资源策略/调度策略,并发送至网元侧。
Step3:网元侧将资源策略/调度策略生效,对用户终端进行管理。
Step4:网管侧进行效果评估,并将评估结果发送至网元侧。
Step5:网元侧根据评估结果,将资源策略/调度策略更新或回退。
这样,网元侧对不同波束属性的波束覆盖区域的用户终端进行差别化调度处理和资源配置处理,比如,针对处在高速波束属性的波束覆盖区域的用终端户,配置短周期闭环反馈资源,增加DMRS数量等适合高速移动用户终端的调度处理方案,给用户终端配置较多的导频符号,提升高速场景下用户终端的解调性能。又如,针对处于静止或低速波束属性的波束覆盖区域的用户终端,配置长周期闭环反馈资源,减少DMRS数量等适合静止或低速移动用户终端的调度处理方案,将更多的空口资源留给业务信道,承载更多的信息、提升频谱传输效率。
上述实施例中,通过确定用户终端当前对应的波束属性,根据预设的波束属性与资源策略的映射关系,确定用户终端的波束属性对应的资源策略,然后将确定的资源策略发送至网元侧,网元侧基于获得的资源策略,对用户终端进行资源配置,也即实现针对不同波束属性的波束覆盖区域的用户终端,进行差别化资源配置调度处理,从而提升了用户终端的解调性能。
本公开实施例还提供了一种网管设备,请参阅图7,图7是本公开一实施例提供的网管设备的示意性框图。
如图7所示,该网管设备200可以包括处理器210、存储器220,处理器210与存储器220通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
处理器210可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
存储器220可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。存储器220中存储有供处理器210执行的各种计算机程序。
处理器210运行存储在存储器中的计算机程序,并在执行计算机程序时可以实现如下步骤:确定用户终端当前对应的波束属性;根据预设的波束属性与资源策略的映射关系,确定用户终端的波束属性对应的资源策略;将资源策略发送至网元侧,以供网元侧基于资源策略,对用户终端进行资源配置。
在一些实施例中,处理器210在实现确定用户终端当前对应的波束属性时,可以实现:获取网元侧上报的用户终端对应的频偏信息;根据频偏信息,确定用户终端对应的波束属性。
在一些实施例中,处理器210在实现根据频偏信息,确定用户终端对应的波束属性时,可以实现:将频偏信息与不同波束属性对应的频偏门限进行比较,确定用户终端对应的波束属性。
在一些实施例中,波束属性包括高速波束属性、低速/静止波束属性,处理器210在实现将频偏信息与不同波束属性对应的频偏门限进行比较,确定用户终端对应的波束属性时,可以实现:若频偏信息在低速/静止波束属性对应的频偏门限区间内,则确定用户终端对应的波束属性为低速/静止波束属性;若频偏信息在高速波束属性对应的频偏门限区间内,则确定用户终端对应的波束属性为高速波束属性。
在一些实施例中,处理器210在实现确定用户终端当前对应的波束属性时,可以实现:在用户终端初始接入或者切换接入基站小区时,确定用户终端当前位于的波束覆盖区域;根据预设的波束覆盖区域与波束属性的对应关系,确定用户终端当前位于的波束覆盖区域对应的波束属性。
在一些实施例中,波束属性包括高速波束属性、低速/静止波束属性,在波束属性与资源策略的映射关系中,低速/静止波束属性对应的资源策略包括探测参考信号SRS/信道状态信息CSI配置为第一周期、解调参考信号DMRS配置为第一数量符号,高速波束属性对应的资源策略包括SRS/CSI配置为第二周期、DMRS配置为第二数量符号;其中,第一周期长于第二周期,第一数量小于第二数量。
在一些实施例中,处理器210还可以实现:获取网元侧上报的用户终端的通信测量数据;根据通信测量数据,确定用户终端当前对应的调度策略;以及将调度策略发送至网元侧,以供网元侧基于调度策略,对用户终端进行通信参数调整。
在一些实施例中,通信参数调整包括以下至少一项:水平/垂直波瓣宽度调整;方向角/下倾角调整;波束数量调整;以及波束属性调整。
本公开实施例还提供了一种存储介质,用于计算机可读存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现如本公开任一实施例提供的用户终端的通信管理方法的步骤。
存储介质可以是前述实施例的网管设备的内部存储单元,例如网管设备的硬盘或内存。存储介质也可以是网管设备的外部存储设备,例如网管设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施例中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介 质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本公开实施例提供一种用户终端的通信管理方法、网管设备及存储介质,通过确定用户终端当前对应的波束属性,根据预设的波束属性与资源策略的映射关系,确定用户终端的波束属性对应的资源策略,然后将确定的资源策略发送至网元侧,网元侧基于获得的资源策略,对用户终端进行资源配置,也即实现针对不同波束属性的波束覆盖区域的用户终端,进行差别化资源配置调度处理,从而提升了用户终端的解调性能。
应当理解,在本公开说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。以上所述,仅为本公开的具体实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种用户终端的通信管理方法,包括:
    确定用户终端当前对应的波束属性;
    根据预设的波束属性与资源策略的映射关系,确定所述用户终端的所述波束属性对应的资源策略;以及
    将所述资源策略发送至网元侧,以供所述网元侧基于所述资源策略,对所述用户终端进行资源配置。
  2. 根据权利要求1所述的用户终端的通信管理方法,其中,所述确定用户终端当前对应的波束属性,包括:
    获取所述网元侧上报的所述用户终端对应的频偏信息;以及
    根据所述频偏信息,确定所述用户终端对应的所述波束属性。
  3. 根据权利要求2所述的用户终端的通信管理方法,其中,所述根据所述频偏信息,确定所述用户终端对应的所述波束属性,包括:
    将所述频偏信息与不同波束属性对应的频偏门限进行比较,确定所述用户终端对应的所述波束属性。
  4. 根据权利要求3所述的用户终端的通信管理方法,其中,所述波束属性包括高速波束属性、低速/静止波束属性,所述将所述频偏信息与不同波束属性对应的频偏门限进行比较,确定所述用户终端对应的所述波束属性,包括:
    响应于所述频偏信息在低速/静止波束属性对应的频偏门限区间内,则确定所述用户终端对应的所述波束属性为低速/静止波束属性;以及
    响应于所述频偏信息在高速波束属性对应的频偏门限区间内,则确定所述用户终端对应的所述波束属性为高速波束属性。
  5. 根据权利要求1所述的用户终端的通信管理方法,其中,所述确定用户终端当前对应的波束属性,包括:
    在所述用户终端初始接入或者切换接入基站小区的情况下,确定所述用户终端当前位于的波束覆盖区域;以及
    根据预设的波束覆盖区域与波束属性的对应关系,确定所述用户终端当前位于的波束覆盖区域对应的波束属性。
  6. 根据权利要求1所述的用户终端的通信管理方法,其中,所述波束属性包括高速波束属性、低速/静止波束属性,在所述波束属性与资源策略的映射关系中,低速/静止波束属性对应的资源策略包括探测参考信号SRS/信道状态信息CSI配置为第一周期、解调参考信号DMRS配置为第一数量符号,高速波束属性对应的资源策略包括所 述SRS/CSI配置为第二周期、所述DMRS配置为第二数量符号;其中,所述第一周期长于所述第二周期,所述第一数量小于所述第二数量。
  7. 根据权利要求1至6任一项所述的用户终端的通信管理方法,还包括:
    获取所述网元侧上报的所述用户终端的通信测量数据;
    根据所述通信测量数据,确定所述用户终端当前对应的调度策略;以及
    将所述调度策略发送至所述网元侧,以供所述网元侧基于所述调度策略,对所述用户终端进行通信参数调整。
  8. 根据权利要求7所述的用户终端的通信管理方法,其中,所述通信参数调整包括以下至少一项:
    水平/垂直波瓣宽度调整;
    方向角/下倾角调整;
    波束数量调整;以及
    波束属性调整。
  9. 一种网管设备,包括存储器、处理器、存储在所述存储器上并可在所述处理器上运行的程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,所述程序被所述处理器执行时实现如权利要求1至8任一项所述的用户终端的通信管理方法。
  10. 一种存储介质,用于计算机可读存储,其中,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1至8中任一项所述的用户终端的通信管理方法。
PCT/CN2023/085123 2022-08-25 2023-03-30 用户终端的通信管理方法、网管设备及存储介质 WO2024040971A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211026626.0A CN117693052A (zh) 2022-08-25 2022-08-25 用户终端的通信管理方法、网管设备及存储介质
CN202211026626.0 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024040971A1 true WO2024040971A1 (zh) 2024-02-29

Family

ID=90012318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085123 WO2024040971A1 (zh) 2022-08-25 2023-03-30 用户终端的通信管理方法、网管设备及存储介质

Country Status (2)

Country Link
CN (1) CN117693052A (zh)
WO (1) WO2024040971A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014098A (zh) * 2009-09-08 2011-04-13 上海华为技术有限公司 一种测算最大多普勒频偏方法和装置
US20180352526A1 (en) * 2016-10-21 2018-12-06 Telefonaktiebolaget Lm Ericsson (Publ) Method of assigning transmission timing to radio terminal, radio network node and radio terminal
CN109274472A (zh) * 2017-07-17 2019-01-25 华为技术有限公司 数据传输方法、网络设备和终端设备
CN112312300A (zh) * 2019-07-25 2021-02-02 中兴通讯股份有限公司 通信管理、速度上报方法、装置、基站、终端及存储介质
CN114520713A (zh) * 2020-11-20 2022-05-20 上海华为技术有限公司 一种信道探测周期配置方法、基站、设备、及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014098A (zh) * 2009-09-08 2011-04-13 上海华为技术有限公司 一种测算最大多普勒频偏方法和装置
US20180352526A1 (en) * 2016-10-21 2018-12-06 Telefonaktiebolaget Lm Ericsson (Publ) Method of assigning transmission timing to radio terminal, radio network node and radio terminal
CN109274472A (zh) * 2017-07-17 2019-01-25 华为技术有限公司 数据传输方法、网络设备和终端设备
CN112312300A (zh) * 2019-07-25 2021-02-02 中兴通讯股份有限公司 通信管理、速度上报方法、装置、基站、终端及存储介质
CN114520713A (zh) * 2020-11-20 2022-05-20 上海华为技术有限公司 一种信道探测周期配置方法、基站、设备、及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZTE, ZTE MICROELECTRONICS: "Discussion on downlink DMRS design", 3GPP DRAFT; R1-1701815 DISCUSSION ON DOWNLINK DMRS DESIGN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051208981 *
ZTE: "Discussion on multiplexing of different RSs", 3GPP DRAFT; R1-1712302 DISCUSSION ON MULTIPLEXING OF DIFFERENT RSS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czechia; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051315118 *

Also Published As

Publication number Publication date
CN117693052A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
US11102728B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
EP2668804B1 (en) A method and a network node for determining an offset for selection of a cell of a first radio network node
JP5795399B2 (ja) マージンタイムを用いた送/受信制御方法、及び通信装置
CN103988526A (zh) 用于在自组织网络(son)中进行波束成形的系统和方法
KR102077831B1 (ko) 무선 네트워크의 무선 자원 관리 방법 및 장치
KR102197559B1 (ko) 무선 통신 시스템을 위한 장치 및 방법
WO2018196834A1 (zh) 一种天线下倾角调整方法和装置
CN103384398B (zh) 切换控制方法与系统、用户终端、网络设备
WO2021073329A1 (zh) 一种抑制小区同频干扰的方法、基站及系统
CN103002499B (zh) 无线资源分配优化方法及无线通信系统
US9408181B2 (en) Automatic calibration of probe request received signal strength indication (RSSI) threshold to control associations
US9538387B2 (en) Radio resource assignment coordination in superdense networks
WO2024040971A1 (zh) 用户终端的通信管理方法、网管设备及存储介质
CN104780552A (zh) 无线网络接入参数优化方法及装置
CN113973310A (zh) 一种远距离同频干扰的优化方法、装置和计算机设备
CN110650522B (zh) 闭环功率控制方法、网络侧设备和终端
JP5745443B2 (ja) 無線スケジューラ処理装置、無線スケジューリング方法およびコンピュータプログラム
CN113840363A (zh) 闭环功率控制方法、电子设备及存储介质
CN105636186B (zh) 一种控制上行干扰噪声比的方法和装置
EP4120578A1 (en) Beam optimization based on signal measurements in neighboring cells
CN115103415B (zh) 基站算力调度方法、装置及存储介质
CN113348712A (zh) Mimo层数自适应调整方法及相关产品
CN103874183A (zh) 路径损耗补偿因子确定方法及相关设备
KR20240096155A (ko) 기지국장치 및 그 장치에서 수행되는 자원 할당 방법
WO2024032328A1 (zh) 配置信息处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856066

Country of ref document: EP

Kind code of ref document: A1