WO2024040903A1 - Méthode de préparation de phosphate de ferromanganèse par coprécipitation et son utilisation - Google Patents
Méthode de préparation de phosphate de ferromanganèse par coprécipitation et son utilisation Download PDFInfo
- Publication number
- WO2024040903A1 WO2024040903A1 PCT/CN2023/079081 CN2023079081W WO2024040903A1 WO 2024040903 A1 WO2024040903 A1 WO 2024040903A1 CN 2023079081 W CN2023079081 W CN 2023079081W WO 2024040903 A1 WO2024040903 A1 WO 2024040903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- manganese
- ferricyanide
- phosphate
- iron
- Prior art date
Links
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000000975 co-precipitation Methods 0.000 title claims abstract description 11
- 229910000616 Ferromanganese Inorganic materials 0.000 title abstract description 26
- 229910019142 PO4 Inorganic materials 0.000 title abstract description 25
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title abstract description 25
- 239000010452 phosphate Substances 0.000 title abstract description 25
- 239000000243 solution Substances 0.000 claims abstract description 60
- 238000006243 chemical reaction Methods 0.000 claims abstract description 47
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 44
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims abstract description 44
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000007788 liquid Substances 0.000 claims abstract description 40
- 239000011572 manganese Substances 0.000 claims abstract description 25
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 22
- 239000002244 precipitate Substances 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 20
- 239000011259 mixed solution Substances 0.000 claims abstract description 19
- YAGKRVSRTSUGEY-UHFFFAOYSA-N ferricyanide Chemical compound [Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] YAGKRVSRTSUGEY-UHFFFAOYSA-N 0.000 claims abstract description 15
- 150000002696 manganese Chemical class 0.000 claims abstract description 14
- 239000012266 salt solution Substances 0.000 claims abstract description 11
- 238000000926 separation method Methods 0.000 claims abstract description 10
- 239000003513 alkali Substances 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 27
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 claims description 13
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 claims description 10
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 7
- 229940099596 manganese sulfate Drugs 0.000 claims description 4
- 239000011702 manganese sulphate Substances 0.000 claims description 4
- 235000007079 manganese sulphate Nutrition 0.000 claims description 4
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 4
- -1 potassium ferricyanide Chemical compound 0.000 claims description 4
- DCXPBOFGQPCWJY-UHFFFAOYSA-N trisodium;iron(3+);hexacyanide Chemical compound [Na+].[Na+].[Na+].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCXPBOFGQPCWJY-UHFFFAOYSA-N 0.000 claims description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 3
- 229910001416 lithium ion Inorganic materials 0.000 claims description 3
- GTSHREYGKSITGK-UHFFFAOYSA-N sodium ferrocyanide Chemical compound [Na+].[Na+].[Na+].[Na+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] GTSHREYGKSITGK-UHFFFAOYSA-N 0.000 claims description 3
- 239000000264 sodium ferrocyanide Substances 0.000 claims description 3
- 235000012247 sodium ferrocyanide Nutrition 0.000 claims description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000000276 potassium ferrocyanide Substances 0.000 claims description 2
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052742 iron Inorganic materials 0.000 abstract description 15
- 229910052748 manganese Inorganic materials 0.000 abstract description 15
- 238000001556 precipitation Methods 0.000 abstract description 7
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 abstract description 5
- 238000001035 drying Methods 0.000 abstract description 4
- 229910000398 iron phosphate Inorganic materials 0.000 abstract description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 abstract description 2
- 229910001447 ferric ion Inorganic materials 0.000 abstract description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 abstract 1
- 239000002585 base Substances 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 18
- 238000003756 stirring Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 239000008367 deionised water Substances 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 239000010406 cathode material Substances 0.000 description 4
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 150000002697 manganese compounds Chemical class 0.000 description 2
- 239000005955 Ferric phosphate Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- ZWXLZABZHZXDGX-UHFFFAOYSA-N P(O)(O)(O)=O.[Mn].[Fe].[Li] Chemical compound P(O)(O)(O)=O.[Mn].[Fe].[Li] ZWXLZABZHZXDGX-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 229940032958 ferric phosphate Drugs 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- AWKHTBXFNVGFRX-UHFFFAOYSA-K iron(2+);manganese(2+);phosphate Chemical compound [Mn+2].[Fe+2].[O-]P([O-])([O-])=O AWKHTBXFNVGFRX-UHFFFAOYSA-K 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the technical field of lithium battery cathode material precursors, and specifically relates to a method for preparing ferromanganese phosphate by co-precipitation and its application.
- Lithium iron phosphate has the disadvantages of low electronic conductivity, small lithium ion diffusion coefficient, and low material tap density in battery applications. Since manganese compounds have higher electrochemical reaction voltage and better electrolyte compatibility , currently, manganese compounds are introduced into lithium iron phosphate to broaden the application of lithium iron phosphate and form a solid solution of lithium iron manganese phosphate to obtain better capacitance and cycle effects.
- the direct use of co-precipitation method to prepare ferromanganese phosphate also has the problem that ferromanganese is difficult to form co-precipitate.
- the manganese in the synthesized ferromanganese phosphate mostly exists as divalent manganese, and during subsequent sintering with the lithium source, an additional phosphorus source needs to be added.
- direct use of trivalent manganese is prone to disproportionation reactions in the solution, producing divalent manganese and tetravalent manganese, which affects the purity of the product.
- the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
- the present invention proposes a method for preparing ferromanganese phosphate by co-precipitation and its application. This process can slow down the precipitation rate of ferric phosphate, enable co-precipitation of iron and manganese, and the ferromanganese distribution in the prepared ferromanganese phosphate is relatively uniform.
- a method for preparing ferric manganese phosphate by co-precipitation which includes the following steps:
- the ferricyanide solution is a solution containing at least one of sodium ferrocyanide, potassium ferrocyanide, sodium ferricyanide or potassium ferricyanide.
- the concentration of the ferricyanide solution is 0.1-1.0 mol/L.
- the manganese salt in the manganese salt solution is selected from at least one of manganese nitrate and manganese sulfate.
- step S1 the concentration of the manganese salt solution is 0.1-1.0 mol/L.
- step S1 the molar ratio of phosphoric acid and perchloric acid in the mixed solution is 1: (0.9-3.5).
- step S1 the total concentration of phosphoric acid and perchloric acid in the mixed solution is 0.5-1.0 mol/L.
- step S2 the pH of the bottom liquid is 1.8-2.0.
- step S2 the temperature of the reaction is controlled to be 50-70°C, and the pH is controlled to be 1.8-2.0.
- the alkali solution is at least one of sodium hydroxide solution or potassium hydroxide solution.
- the concentration of the alkali solution is 0.5-1.0 mol/L.
- step S2 the reaction is carried out under stirring at a rotation speed of 150-300 r/min.
- the target particle size D50 is 2-15 ⁇ m.
- step S3 the drying is vacuum drying, and the drying temperature is 120-150°C, drying time is 2-4h.
- the invention also provides the application of the method in preparing lithium iron manganese phosphate or lithium ion battery.
- the present invention uses ferricyanide and manganese salt to carry out coprecipitation reaction in the medium of phosphoric acid and perchloric acid to generate manganese iron phosphate coprecipitate.
- the reaction equation is as follows (taking sodium ferricyanide as an example): 4Na 3 [Fe(CN) 6 ]+15HClO 4 +4H 3 PO 4 ⁇ 24CO 2 ⁇ +12N 2 ⁇ +12NaCl+12H 2 O+4FePO 4 ⁇ +3HCl; 14Mn 2+ +14H 3 PO 4 +2HClO 4 ⁇ 14MnPO 4 ⁇ +Cl 2 ⁇ +8H 2 O+28H + .
- iron and manganese co-precipitate with phosphate in a positive trivalent state to form ferromanganese phosphate, which avoids the subsequent shortage of phosphorus sources due to the precipitation of divalent cations and the need for additional additions.
- the problem of phosphorus source avoids the problem of uneven distribution of phosphorus, manganese and iron; on the other hand, due to the large difference in Ksp between iron phosphate and manganese phosphate, it is difficult for iron to directly carry out co-precipitation reaction with manganese.
- the present invention uses ferricyanide
- the compound inhibits the direct precipitation of ferric ions, and uses perchloric acid and phosphoric acid to perform a cyanide-breaking reaction, which slows down the precipitation rate of iron phosphate, makes iron and manganese co-precipitate, improves the uniformity of iron and manganese mixing, and provides the basis for subsequent sintering of phosphoric acid Lithium iron manganese cathode materials lay the foundation for improving material specific capacity and cycle performance.
- Figure 1 is a SEM image of ferric manganese phosphate prepared in Example 1 of the present invention.
- a ferromanganese phosphate is prepared.
- the specific process is:
- Step 1 prepare a sodium ferricyanide solution with a concentration of 1.0 mol/L;
- Step 2 prepare a manganese nitrate solution with a concentration of 1.0mol/L
- Step 4 Prepare a sodium hydroxide solution with a concentration of 1.0 mol/L
- Step 5 Add the solution prepared in Steps 3 and 4 into the reaction kettle as the bottom liquid.
- the bottom liquid flows through the bottom stirring paddle, and the pH of the bottom liquid is 1.8-2.0;
- Step 6 Add the solutions prepared in Step 1, Step 2, Step 3 and Step 4 into the reaction kettle in parallel flow. Control the molar ratio of the materials fed to the reaction kettle.
- Step 7 When it is detected that the D50 of the material in the kettle reaches 10.5 ⁇ m, stop feeding and perform solid-liquid separation to obtain a precipitate;
- Step 8 Wash the precipitate first with deionized water and then with absolute ethanol;
- Step 9 Vacuum dry the washed product at 135°C for 3 hours to obtain ferromanganese phosphate product.
- a ferromanganese phosphate is prepared.
- the specific process is:
- Step 1 prepare a potassium ferricyanide solution with a concentration of 0.5mol/L;
- Step 2 prepare a manganese sulfate solution with a concentration of 0.5mol/L;
- Step 4 Prepare a sodium hydroxide solution with a concentration of 0.5mol/L
- Step 5 Add the solution prepared in Steps 3 and 4 into the reaction kettle as the bottom liquid.
- the bottom liquid flows through the bottom stirring paddle, and the pH of the bottom liquid is 1.8-2.0;
- Step 6 Add the solutions prepared in Step 1, Step 2, Step 3 and Step 4 into the reaction kettle in parallel flow. Control the molar ratio of the materials fed to the reaction kettle.
- Step 7 When it is detected that the D50 of the material in the kettle reaches 2 ⁇ m, stop feeding and perform solid-liquid separation to obtain a precipitate;
- Step 8 Wash the precipitate first with deionized water and then with absolute ethanol;
- Step 9 Vacuum dry the washed product at 120°C for 4 hours to obtain ferromanganese phosphate product.
- a ferromanganese phosphate is prepared.
- the specific process is:
- Step 1 prepare a sodium ferrocyanide solution with a concentration of 0.1mol/L;
- Step 2 prepare a manganese nitrate solution with a concentration of 0.1mol/L;
- Step 4 Prepare a sodium hydroxide solution with a concentration of 0.5mol/L
- Step 5 Add the solution prepared in Steps 3 and 4 into the reaction kettle as the bottom liquid.
- the bottom liquid flows through the bottom stirring paddle, and the pH of the bottom liquid is 1.8-2.0;
- Step 6 Add the solutions prepared in Step 1, Step 2, Step 3 and Step 4 into the reaction kettle in parallel flow. Control the molar ratio of the materials fed to the reaction kettle.
- Step 7 When it is detected that the D50 of the material in the kettle reaches 15 ⁇ m, stop feeding and perform solid-liquid separation to obtain a precipitate;
- Step 8 Wash the precipitate first with deionized water and then with absolute ethanol;
- Step 9 Vacuum-dry the washed product at 150°C for 2 hours to obtain ferromanganese phosphate product.
- This comparative example prepares a ferric manganese phosphate.
- the difference from Example 1 is that ferric nitrate is used as the iron source.
- the specific process is:
- Step 1 prepare a ferric nitrate solution with a concentration of 1.0mol/L
- Step 2 prepare a manganese nitrate solution with a concentration of 1.0mol/L
- Step 4 Prepare a sodium hydroxide solution with a concentration of 1.0 mol/L
- Step 5 Add the solution prepared in Steps 3 and 4 into the reaction kettle as the bottom liquid.
- the bottom liquid flows through the bottom stirring paddle, and the pH of the bottom liquid is 1.8-2.0;
- Step 6 Add the solutions prepared in Step 1, Step 2, Step 3 and Step 4 into the reaction kettle in parallel flow. Control the molar ratio of the materials fed to the reaction kettle.
- Step 7 When it is detected that the D50 of the material in the kettle reaches 10.5 ⁇ m, stop feeding and perform solid-liquid separation to obtain a precipitate;
- Step 8 Wash the precipitate first with deionized water and then with absolute ethanol;
- Step 9 Vacuum dry the washed product at 135°C for 3 hours to obtain ferromanganese phosphate product.
- a ferric manganese phosphate was prepared.
- the difference from Example 2 is that ferric sulfate is used as the iron source.
- the specific process is:
- Step 1 Prepare an iron sulfate solution with a concentration of 0.5 mol/L
- Step 2 prepare a manganese sulfate solution with a concentration of 0.5mol/L;
- Step 4 Prepare a sodium hydroxide solution with a concentration of 0.5mol/L
- Step 5 Add the solution prepared in Steps 3 and 4 into the reaction kettle as the bottom liquid.
- the bottom liquid flows through the bottom stirring paddle, and the pH of the bottom liquid is 1.8-2.0;
- Step 6 Add the solutions prepared in Step 1, Step 2, Step 3 and Step 4 into the reaction kettle in parallel flow. Control the molar ratio of the materials fed to the reaction kettle.
- Step 7 When it is detected that the D50 of the material in the kettle reaches 2 ⁇ m, stop feeding and perform solid-liquid separation to obtain a precipitate;
- Step 8 Wash the precipitate first with deionized water and then with absolute ethanol;
- Step 9 Vacuum dry the washed product at 120°C for 4 hours to obtain ferromanganese phosphate product.
- This comparative example prepares a ferric manganese phosphate.
- the difference from Example 3 is that ferrous nitrate is used as the iron source.
- the specific process is:
- Step 1 prepare a ferrous nitrate solution with a concentration of 0.1mol/L
- Step 2 prepare a manganese nitrate solution with a concentration of 0.1mol/L;
- Step 4 Prepare a sodium hydroxide solution with a concentration of 0.5mol/L
- Step 5 Add the solution prepared in Steps 3 and 4 into the reaction kettle as the bottom liquid.
- the bottom liquid flows through the bottom stirring paddle, and the pH of the bottom liquid is 1.8-2.0;
- Step 6 Add the solutions prepared in Step 1, Step 2, Step 3 and Step 4 into the reaction kettle in parallel flow, and control the molar ratio of the materials fed to the reaction kettle.
- Step 7 When it is detected that the D50 of the material in the kettle reaches 15 ⁇ m, stop feeding and perform solid-liquid separation to obtain a precipitate;
- Step 8 Wash the precipitate first with deionized water and then with absolute ethanol;
- Step 9 Vacuum-dry the washed product at 150°C for 2 hours to obtain ferromanganese phosphate product.
- This comparative example prepares a ferric manganese phosphate.
- the difference from Example 1 is that ferric nitrate is used as the iron source and no perchloric acid is added.
- the specific process is:
- Step 1 prepare a ferric nitrate solution with a concentration of 1.0mol/L
- Step 2 prepare a manganese nitrate solution with a concentration of 1.0mol/L
- Step 3 Prepare a phosphoric acid solution with a concentration of 1.0 mol/L
- Step 4 Prepare a sodium hydroxide solution with a concentration of 1.0 mol/L
- Step 5 Add the solution prepared in Steps 3 and 4 into the reaction kettle as the bottom liquid.
- the bottom liquid flows through the bottom stirring paddle, and the pH of the bottom liquid is 1.8-2.0;
- Step 6 Add the solutions prepared in Step 1, Step 2, Step 3 and Step 4 into the reaction kettle in parallel flow. Control the molar ratio of the materials fed to the reaction kettle.
- Step 7 When it is detected that the D50 of the material in the kettle reaches 10.5 ⁇ m, stop feeding and perform solid-liquid separation to obtain a precipitate;
- Step 8 Wash the precipitate first with deionized water and then with absolute ethanol;
- Step 9 Vacuum dry the washed product at 135°C for 3 hours to obtain ferromanganese phosphate product.
- the ferromanganese phosphate products obtained in Examples 1-3 and Comparative Examples 1-4 were mixed with lithium hydroxide and glucose respectively, and then the total 25% deionized water by mass, mixed evenly and then spray-dried; calcined at 750°C for 16 hours under the protection of an inert gas, and naturally cooled to room temperature to obtain the finished lithium iron manganese phosphate cathode material.
- acetylene black is used as the conductive agent and PVDF is used as the binder.
- the materials are mixed according to the mass ratio of 8:1:1, and a certain amount of organic solvent NMP is added, stirred and then coated.
- the positive electrode sheet is made by covering it on aluminum foil, and the negative electrode is made of metallic lithium sheet;
- the separator is Celgard2400 polypropylene porous membrane;
- the solvent in the electrolyte is a solution composed of EC, DMC and EMC in a mass ratio of 1:1:1, and the solute is LiPF 6 .
- the concentration of LiPF 6 is 1.0mol/L; a 2023 button cell is assembled in the glove box.
- the charge and discharge cycle performance of the battery was tested, and the discharge specific capacity of 0.2C and 1C was tested in the cut-off voltage range of 2.2 to 4.3V; the electrochemical performance results of the test are shown in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
La présente invention concerne une méthode de préparation de phosphate de ferromanganèse par coprécipitation et son utilisation. Une solution de ferricyanure, une solution de sel de manganèse, et une solution mixte d'un acide phosphorique et d'un acide perchlorique sont respectivement préparées ; la solution de ferricyanure, la solution de sel de manganèse, la solution mixte et la liqueur alcaline sont ajoutées simultanément dans une solution de base pour réaction ; lorsqu'un matériau de réaction a une taille de particule cible, une séparation solide-liquide est effectuée pour obtenir un précipité ; et un lavage et un séchage sont effectués pour obtenir du phosphate de ferromanganèse. Selon la présente invention, le ferricyanure est utilisé pour inhiber la précipitation directe d'ions ferriques, et l'acide perchlorique et l'acide phosphorique sont utilisés pour effectuer une réaction de rupture de cyanure, de telle sorte que le taux de précipitation du phosphate de fer est ralenti, ce qui permet de mettre en œuvre une coprécipitation de fer et de manganèse, et d'améliorer l'homogénéité du mélange de fer et de manganèse.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2309719.9A GB2627026A (en) | 2022-08-25 | 2023-03-01 | Method for preparing ferromanganese phosphate by coprecipitation and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211026776.1 | 2022-08-25 | ||
CN202211026776.1A CN115321507B (zh) | 2022-08-25 | 2022-08-25 | 共沉淀制备磷酸锰铁的方法及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024040903A1 true WO2024040903A1 (fr) | 2024-02-29 |
Family
ID=83928278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/079081 WO2024040903A1 (fr) | 2022-08-25 | 2023-03-01 | Méthode de préparation de phosphate de ferromanganèse par coprécipitation et son utilisation |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN115321507B (fr) |
FR (1) | FR3139241A1 (fr) |
WO (1) | WO2024040903A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115321507B (zh) * | 2022-08-25 | 2023-07-07 | 广东邦普循环科技有限公司 | 共沉淀制备磷酸锰铁的方法及其应用 |
GB2627026A (en) * | 2022-08-25 | 2024-08-14 | Guangdong Brunp Recycling Technology Co Ltd | Method for preparing ferromanganese phosphate by coprecipitation and use thereof |
CN115832256A (zh) * | 2022-12-15 | 2023-03-21 | 广东邦普循环科技有限公司 | 一种复合正极材料及其制备方法和应用 |
CN116062726A (zh) * | 2023-03-09 | 2023-05-05 | 金驰能源材料有限公司 | 磷酸铁锂及其连续式生产方法 |
CN117440928A (zh) * | 2023-09-13 | 2024-01-23 | 广东邦普循环科技有限公司 | 磷酸锰铁前驱体、磷酸锰铁锂正极材料及制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011100592A (ja) * | 2009-11-05 | 2011-05-19 | Tayca Corp | 炭素−オリビン型リン酸マンガン鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料 |
CN104518217A (zh) * | 2015-01-20 | 2015-04-15 | 杨志宽 | 一种电池级磷酸铁锰及其制备方法 |
US20160072129A1 (en) * | 2013-05-08 | 2016-03-10 | Advanced Lithium Electrochemistry Co., Ltd. | Preparation method of battery composite material and precursor thereof |
CN107697899A (zh) * | 2017-10-31 | 2018-02-16 | 中钢集团安徽天源科技股份有限公司 | 电池级磷酸铁锰的制备方法、磷酸铁锰锂、电池正极材料及二次电池 |
CN115321507A (zh) * | 2022-08-25 | 2022-11-11 | 广东邦普循环科技有限公司 | 共沉淀制备磷酸锰铁的方法及其应用 |
-
2022
- 2022-08-25 CN CN202211026776.1A patent/CN115321507B/zh active Active
-
2023
- 2023-03-01 WO PCT/CN2023/079081 patent/WO2024040903A1/fr unknown
- 2023-06-29 FR FR2306857A patent/FR3139241A1/fr active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011100592A (ja) * | 2009-11-05 | 2011-05-19 | Tayca Corp | 炭素−オリビン型リン酸マンガン鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料 |
US20160072129A1 (en) * | 2013-05-08 | 2016-03-10 | Advanced Lithium Electrochemistry Co., Ltd. | Preparation method of battery composite material and precursor thereof |
CN104518217A (zh) * | 2015-01-20 | 2015-04-15 | 杨志宽 | 一种电池级磷酸铁锰及其制备方法 |
CN107697899A (zh) * | 2017-10-31 | 2018-02-16 | 中钢集团安徽天源科技股份有限公司 | 电池级磷酸铁锰的制备方法、磷酸铁锰锂、电池正极材料及二次电池 |
CN115321507A (zh) * | 2022-08-25 | 2022-11-11 | 广东邦普循环科技有限公司 | 共沉淀制备磷酸锰铁的方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
FR3139241A1 (fr) | 2024-03-01 |
CN115321507A (zh) | 2022-11-11 |
CN115321507B (zh) | 2023-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024040903A1 (fr) | Méthode de préparation de phosphate de ferromanganèse par coprécipitation et son utilisation | |
CN108123115B (zh) | O2构型锂电池正极材料及其制备方法 | |
WO2024040905A1 (fr) | Méthode de préparation hydrothermique de phosphate de ferromanganèse et son utilisation | |
CN103500827A (zh) | 锂离子电池及其多元正极材料、制备方法 | |
CN103715424A (zh) | 一种核壳结构正极材料及其制备方法 | |
CN105161679A (zh) | 富锂正极材料及其制备方法和应用 | |
Zhu et al. | Enhanced electrochemical performance of LiNi0. 8Co0. 1Mn0. 1O2 via titanium and boron co-doping | |
WO2015039490A1 (fr) | Matériau d'anode riche en lithium et son procédé de préparation | |
CN108767216A (zh) | 具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法 | |
WO2007000075A1 (fr) | Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium | |
CN105036103A (zh) | 一种长方体型锂电池正极材料磷酸铁锰锂的制备方法 | |
WO2024000840A1 (fr) | Méthode de préparation de phosphate d'ammonium-manganèse-fer, et phosphate de lithium-manganèse-fer et utilisation associée | |
CN111115713A (zh) | 一种LaMnO3包覆富锂锰基正极材料及其制备方法 | |
WO2024055519A1 (fr) | Méthode de préparation et utilisation de phosphate de fer-manganèse-lithium | |
WO2023207247A1 (fr) | Particule d'oxyde de cobalt sphérique poreuse et procédé pour la préparer | |
WO2023226556A1 (fr) | Méthode de préparation et utilisation de lithium fer phosphate | |
CN117383519A (zh) | 一种铜铁双金属硒化物纳米材料及其制备方法和应用 | |
CN109616663B (zh) | 镍钴铝三元正极材料、制备方法及锂离子电池 | |
CN114604904B (zh) | 碲掺杂钴酸锂前驱体的制备方法及其应用 | |
CN115881889A (zh) | 一种锂离子电池 | |
CN113823790B (zh) | 钴铁硒化物/石墨烯纳米带复合负极材料及其制备方法 | |
CN116281879B (zh) | 一种应用于钠离子电池负极极片上的纳米复合材料 | |
Lu et al. | Modified KCl molten salt method synthesis of spinel LiNi0. 5Mn1. 5O4 with loose structure as cathodes for Li-ion batteries | |
CN110620215B (zh) | 一种正极材料、其制备方法及包含该正极材料的锂离子电池 | |
CN112811471B (zh) | 一种锂离子电池银、钴和镍掺杂锰酸锂正极材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 202309719 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20230301 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23856000 Country of ref document: EP Kind code of ref document: A1 |