WO2024040859A1 - 一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置 - Google Patents

一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置 Download PDF

Info

Publication number
WO2024040859A1
WO2024040859A1 PCT/CN2023/071245 CN2023071245W WO2024040859A1 WO 2024040859 A1 WO2024040859 A1 WO 2024040859A1 CN 2023071245 W CN2023071245 W CN 2023071245W WO 2024040859 A1 WO2024040859 A1 WO 2024040859A1
Authority
WO
WIPO (PCT)
Prior art keywords
deformation
magnet
rare earth
cerium
nanocrystalline
Prior art date
Application number
PCT/CN2023/071245
Other languages
English (en)
French (fr)
Inventor
周庆
廖雪峰
朱用洋
唐永利
卢其云
曾炜炜
卢赐福
唐仁衡
Original Assignee
广东省科学院资源利用与稀土开发研究所
惠州市福益乐永磁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院资源利用与稀土开发研究所, 惠州市福益乐永磁科技有限公司 filed Critical 广东省科学院资源利用与稀土开发研究所
Publication of WO2024040859A1 publication Critical patent/WO2024040859A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Definitions

  • the invention belongs to the field of rare earth permanent magnet manufacturing, and particularly relates to a preparation method and device for a high-abundance rare earth cerium-based anisotropic nanocrystalline magnet.
  • Nd-Fe-B The third generation rare earth permanent magnet neodymium iron boron (Nd-Fe-B) is an important type of rare earth (RE) functional material, which is widely used in industrial motors, electronic equipment, intelligent robots, medical equipment and other fields.
  • Nd-Fe-B magnets use a large amount of key rare earths such as neodymium (Nd), praseodymium (Pr), dysprosium (Dy) and terbium (Tb), while the associated high-abundance rare earths cerium (Ce), lanthanum (La) and yttrium ( Y) The backlog is serious.
  • the thermal deformation process is widely used in the preparation of nanocrystalline Nd-Fe-B anisotropic magnets, which mainly includes two processes: hot pressing and thermal deformation: (1) hot pressing process, loading nanocrystalline magnetic powder into In the mold, it is pressed under high temperature and high pressure into isotropically densified magnets; (2) Thermal deformation process: Apply pressure in the vertical direction of the hot pressed magnet at high temperature to perform upsetting deformation. During this process, the main phase grains pass through Preferential orientation is achieved to achieve microstructure texturing, that is, anisotropic magnets are obtained.
  • the existing cerium-based anisotropic nanocrystalline magnet preparation technology using the above two-step thermal deformation technology method and equipment has the following shortcomings:
  • nanocrystal grains are very sensitive to temperature, they tend to grow under high temperature conditions for a long time.
  • the traditional two-step heating process in the prior art further increases the high-temperature heating time, causing abnormal grain growth and seriously affecting the coercive force.
  • the purpose of the present invention is to provide a preparation method and device for a high-abundance rare earth cerium-based anisotropic nanocrystalline magnet to overcome the orientation difficulties and abnormal grain growth of the cerium-based nanocrystalline magnet during the deformation process in the prior art. The problem.
  • a method for preparing high-abundance rare earth cerium-based anisotropic nanocrystalline magnets, using a restraint deformation method including the following two steps:
  • step (2) Put the cylindrical precursor magnet from step (1) into a vacuum hot pressing furnace, perform a thermal deformation process at a certain temperature, apply pressure on the upper and lower surfaces of the magnet in the vertical direction, and perform upsetting deformation at a low speed to obtain an anisotropic magnet. .
  • the high-abundance rare earth cerium-based nanocrystalline magnetic powder in step (1) is nanocrystalline fast-quenching magnetic powder or ball-milled magnetic powder based on the intermetallic compound RE 2 Fe 14 B.
  • Rare earth (RE) is pure metal cerium (Ce) or one or two mixtures of metal Ce and rare earth metal lanthanum (La) and metal yttrium (Y). Among them, rare earth metal lanthanum (La) and metal yttrium (Y) Neither or both mixtures shall exceed 30at.%.
  • the mechanical pressure in step (1) is 50-100MPa.
  • the temperature of thermal deformation in step (2) is 600-700°C
  • the pressure is such that the magnet height after deformation is 10-40% of the original magnet height, that is, the deformation amount is 60-90%.
  • the deformation rate v is controlled by adjusting the pressure, where v refers to the deformation rate per unit time along the pressure direction.
  • the low-speed upsetting deformation used in the thermal deformation process of step (2) is uniform deformation, and the deformation rate is fixed;
  • the deformation rate is 0.01 to 0.02 min -1 .
  • the second aspect of the present invention is to provide a preparation device for a high-abundance rare earth cerium-based anisotropic nanocrystalline magnet, that is, a constrained deformation mold, used to realize the above-mentioned high-abundance rare earth cerium-based anisotropic nanocrystalline magnet.
  • the preparation method includes: a mold outer mold, an upper pressure head, a base, and a restraining ring.
  • the material of the restraint ring in step (1) is brass, copper or pure iron.
  • the outer diameter of the restraint ring is 12-20 mm, the height is 10-15 mm, and the ring thickness is 2-5 mm.
  • the invention can overcome the shortcomings of difficulty in forming a textured structure of high-abundance rare earth cerium-based anisotropic nanocrystalline magnets and deterioration of coercive force due to grain growth under existing hot-press heating and deformation technology conditions.
  • the cold embryo magnet obtained by the cold pressing process of the restrained deformation mold can obtain anisotropic magnets after one thermal deformation, which effectively avoids the problem of grain growth caused by the two high-temperature processes of traditional hot pressing and heating deformation.
  • the conventional hot-pressing heating deformation process generally adopts a process temperature (700 ⁇ 800°C) higher than the melting point of the magnet grain boundary phase.
  • the liquid phase grain boundary is beneficial to the plastic deformation ability of the magnet during the thermal deformation process and prevents the magnet from cracking.
  • the binding ring has the function of preventing cracking during the deformation process of the magnet. Therefore, low temperature (600-700°C) and low-speed deformation can be used to further optimize the grain size and effectively suppress the effect of grain growth and deterioration of coercive force.
  • the present invention provides a preparation method and device for a high-abundance rare earth cerium-based anisotropic nanocrystalline magnet, which simplifies the thermal deformation process and strengthens various properties of the cerium-based RE-Fe-B nanocrystalline magnet.
  • Anisotropy and coercivity are effective methods to develop high-performance anisotropic and high-abundance rare earth cerium-based magnets.
  • Figure 1 is a schematic diagram of the restraint deformation mold
  • Figure 2 is an SEM image of the high-abundance rare earth cerium-based anisotropic nanocrystalline magnet after restraint deformation in Example 1.
  • Figure 3 is a hysteresis loop diagram of the high-abundance rare earth cerium-based anisotropic nanocrystalline magnet after restraint deformation in Example 1.
  • High-abundance rare earth cerium-based nanocrystal fast-quenching magnetic powder with a chemical composition of Ce 16 Fe 78 B 6 (at.%) is used as raw material.
  • the magnetic powder is loaded into the outer mold 1 of the restraining deformation mold.
  • the restraining ring 4 is made of H70 brass, with an outer diameter of 15mm, a height of 15mm, and a ring thickness of 5mm.
  • the cold embryo is initially pressed by the mechanical pressure of the upper pressure head 2 with a pressure of 100MPa. After demoulding, a cylindrical precursor magnet with a side layer wrapped with a binding ring is obtained.
  • High-abundance rare earth cerium-based nanocrystal fast-quenching magnetic powder with a chemical composition of Ce 16 Fe 78 B 6 (at.%) is used as raw material.
  • the magnetic powder is loaded into the outer mold 1 of the restraining deformation mold.
  • the restraining ring 4 is made of H70 brass, with an outer diameter of 15mm, a height of 15mm, and a ring thickness of 2mm.
  • the cold embryo is initially pressed by the mechanical pressure of the upper pressure head 2 with a pressure of 100MPa. After demoulding, a cylindrical precursor magnet with a side layer wrapped with a binding ring is obtained.
  • the raw materials are exactly the same as those in Example 1, and conventional hot-press heating deformation technology is used, including the following steps:
  • the magnetic powder is put into a hot-pressing mold with an inner diameter of 10mm, hot-pressed at 700°C at a pressure of 100MPa for 30 minutes, and then cooled in the furnace to obtain a cylindrical precursor magnet.
  • the process flow is the same as that of Example 1.
  • the process temperature is 700°C
  • the deformation amount is 70%.
  • High-abundance rare earth cerium-based nanocrystal fast-quenching magnetic powder with a chemical composition of (Ce 0.8 La 0.2 ) 16 Fe 78 B 6 (at.%) is used as raw material.
  • the magnetic powder is loaded into the outer mold 1 of the restraining deformation mold.
  • the restraining ring 4 is made of H65 brass, with an outer diameter of 15mm, a height of 15mm, and a ring thickness of 5mm.
  • the cold embryo is initially pressed by the mechanical pressure of the upper pressure head 2 with a pressure of 80MPa. After demoulding, a cylindrical precursor magnet with a side layer wrapped with a binding ring is obtained.
  • High-abundance rare earth cerium-based nanocrystal fast-quenching magnetic powder with a chemical composition of (Ce 0.8 La 0.1 Y 0.1 ) 16 Fe 78 B 6 (at.%) is used as raw material.
  • the magnetic powder is loaded into the outer mold 1 of the constraint deformation mold, in which the constraint ring 4 is made of copper, has an outer diameter of 15mm, a height of 15mm, and a ring thickness of 5mm.
  • the cold embryo is initially pressed by the mechanical pressure of the upper pressure head 2 with a pressure of 50 MPa. After demoulding, a cylindrical precursor magnet with a side layer wrapped with a binding ring is obtained.
  • High-abundance rare earth cerium-based nanocrystal fast-quenching magnetic powder with a chemical composition of (Ce 0.8 La 0.1 Y 0.1 ) 13.5 Fe 80.5 B 6 (at.%) is used as raw material.
  • the magnetic powder is loaded into the mold outer mold 1 of the restraining deformation mold.
  • the restraining ring 4 is made of copper, with an outer diameter of 12mm, a height of 12mm, and a ring thickness of 2mm.
  • the cold embryo is initially pressed by the mechanical pressure of the upper pressure head 2 with a pressure of 50MPa. After demoulding, a cylindrical precursor magnet with a side layer wrapped with a binding ring is obtained.
  • High-abundance rare earth cerium-based nanocrystal ball-milled magnetic powder with a chemical composition of (Ce 0.8 Y 0.2 ) 15 Fe 79 B 6 (at.%) is used as raw material.
  • the magnetic powder is loaded into the outer mold 1 of the constraining deformation mold.
  • the constraining ring 4 is made of copper, has an outer diameter of 20mm, a height of 10mm, and a ring thickness of 3mm.
  • the cold embryo is initially pressed by the mechanical pressure of the upper pressure head 2 with a pressure of 80MPa. After demoulding, a cylindrical precursor magnet with a side layer wrapped with a binding ring is obtained.
  • High-abundance rare earth cerium-based nanocrystalline rapid extraction magnetic powder with a chemical composition of (Ce 0.8 La 0.1 Y 0.1 ) 15 Fe 79 B 6 (at.%) is used as raw material.
  • the magnetic powder is loaded into the mold outer mold 1 of the constraint deformation mold, in which the constraint ring 4 is made of pure iron, has an outer diameter of 20mm, a height of 10mm, and a ring thickness of 2mm.
  • the cold embryo is initially pressed by the mechanical pressure of the upper pressure head 2 with a pressure of 80MPa. After demoulding, a cylindrical precursor magnet with a side layer wrapped with a binding ring is obtained.

Abstract

一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置。采用束缚变形模具将高丰度稀土铈基纳米晶磁粉通过机械压力初步压制成冷胚,脱模后得到前驱体磁体。将前驱体磁体放入真空热压炉中,在垂直表面施加压力,低温下低速镦粗变形,得到各向异性磁体。特点是利用束缚变形模具,采用一次热变形的方法即可得到各向异性磁体,有效避免了传统热压加热变形两次高温工艺过程带来的晶粒长大问题。束缚变形模具中的束缚环(4)有防止磁体变形过程中开裂作用,因此可采用低温(600~700℃)、低速变形的方法,进一步优化晶粒大小。从而,有效地克服了现有技术中主相晶粒无法获得各向异性和磁体矫顽力恶化严重的问题。该制备方法简单,制备条件要求低,装置成本低,大大降低了制备成本,同时显著提升了高丰度稀土铈基各向异性纳米晶磁体成品的性质。

Description

一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置 技术领域
本发明属于稀土永磁制造领域,特别涉及一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置。
背景技术
第三代稀土永磁钕铁硼(Nd-Fe-B)是一类重要的稀土(RE)功能材料,被广泛应用于工业电机、电子设备、智能机器人和医疗器械等领域。Nd-Fe-B磁体大量使用钕(Nd)、镨(Pr)、镝(Dy)和铽(Tb)等关键稀土,而伴生的高丰度稀土铈(Ce)、镧(La)和钇(Y)积压严重。因此,为实现我国实现我国稀土资源平衡利用,急需开发低成本、高性价比的高丰度稀土永磁材料。近年来,研究者已开发出具有高性能的纳米晶Ce-Fe-B快淬合金磁粉,下一步的发展方向是开发具有实际使用价值的致密化磁体。各向异性磁体比各向同性磁体具有更高的剩磁和磁能积,而通过变形产生织构是纳米晶磁体获得各向异性的主要方法。
目前,热变形工艺被广泛应用于纳米晶Nd-Fe-B各向异性磁体的制备中,主要包括热压和热变形两个工艺过程:(1)热压过程,将纳米晶磁粉体装入模具中,在高温和高压下压制为各向同性致密化磁体;(2)热变形过程:在高温下对热压磁体垂直方向施加压力进行镦粗变形,在此过程中,主相晶粒通过择优取向而实现微观结构织构化,即得到各向异性磁体。
现有的铈基各向异性纳米晶磁体制备技术采用上述两步热变形技术方法和设备存在以下缺点:
1.由于铈基体系中存在高熔点CeFe 2相,导致缺乏低熔点晶界相,严重影响合金的热变形过程。最终导致主相晶粒无法择优取向形成织构组织,即无法获得各向异性。
2.由于纳米晶晶粒对温度非常敏感,长时间高温条件下容易长大。现有技术中传统的两步加热过程进一步增加了高温加热的时间,导致晶粒异常长大,严重影响矫顽力。
迄今为止,未有技术方法能开发出具有高性能的高丰度稀土铈基各向异性纳米晶磁体。
发明内容
本发明的目的是提供一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置,以克服现有技术中铈基纳米晶磁体在变形过程中存在取向困难和晶粒异常长大的问题。
为实现上述目的,本发明采用以下技术方案:
一种高丰度稀土铈基各向异性纳米晶磁体的制备方法,采用束缚变形法,包括以下两个步骤:
(1)将高丰度稀土铈基纳米晶磁粉装入束缚变形模具中,在空气环境中、室温条件下通过机械压力初步压制成冷胚,进行脱模后得到侧面层包裹束缚环的圆柱形前驱体磁体;
(2)将步骤(1)的圆柱形前驱体磁体放入真空热压炉中,一定温度下进行热变形过程,在垂直方向对磁体上下表面施加压力,低速镦粗变形,得到各向异性磁体。
优选地,所述步骤(1)中高丰度稀土铈基纳米晶磁粉是以金属间化合物RE 2Fe 14B为基体的纳米晶快淬磁粉或球磨磁粉。稀土(RE)是纯金属铈(Ce)或者是金属Ce与稀土金属镧(La)、金属钇(Y)的一种或两种混合,其中,稀土金属镧(La)、金属钇(Y)的一种或两种混合均不超过30at.%。
优选地,所述步骤(1)中机械压力为50~100MPa。
优选地,所述步骤(2)中热变形的温度为600~700℃,压力为变形后磁体高度为原始磁体高度的10~40%,即变形量为60~90%。
所述步骤(2)中热变形过程中通过调节压力控制变形速率v,其中v是指沿着压力方向,在单位时间内的变形率。计算方法为v=Δh/h 0/t,其中,Δh为沿着压力方向磁体变形高度,h 0为磁体初始高度,t为单位时间。
优选地,所述步骤(2)的热变形过程中采用的低速镦粗变形为匀速变形,变形速率固定;
更优选地,所述的变形速率为0.01~0.02min -1
本发明的第二个方面在于提供一种高丰度稀土铈基各向异性纳米晶磁体的制备装置,即,束缚变形模具,用于实现上述的高丰度稀土铈基各向异性纳米晶磁体的制备方法,所述装置包括:模具外模,上压头,底座,束缚环。
优选地,所述步骤(1)中的束缚环材质为黄铜、紫铜或纯铁。
优选地,所述步骤(1)中束缚环外径为12~20mm,高度为10~15mm,环厚度为2~5mm。
与现有技术相比,本发明的优点在于:
本发明能克服现有热压加热变形技术条件下高丰度稀土铈基各向异性纳米晶磁体难以形成织构组织以及晶粒长大恶化矫顽力的缺点。
1.通过束缚变形模具冷压工艺得到的冷胚磁体经过一次热变形即可得到各向异性磁体,有效避免了传统热压加热变形两次高温工艺过程带来的晶粒长大问题。
2.通过束缚环在磁体的变形自由面施加能量,促使晶粒向垂直于压力方向,择优取向。这种方法促进织构组织的形成,克服了现有技术中铈基纳米晶磁体难以形成织构组织缺点,从而提升了磁体的各向异性。
3.常规热压加热变形工艺普遍采用高于磁体晶界相熔点的工艺温度(700~800℃),液相晶界有利于热变形过程磁体的塑形变形能力,防止磁体开裂。而本发明中束缚环有防止磁体变形过程中开裂作用,因此可采用低温(600~700℃)、低速变形,进一步优化晶粒大小,有效抑制了晶粒长大恶化矫顽力的作用。
综上所述,本发明提供一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置,简化了热变形工艺流程,并强化了铈基RE-Fe-B纳米晶磁体的各向异性和矫顽力,是发展高性能的各向异性高丰度稀土铈基磁体的有效方法。
附图说明
图1为束缚变形模具示意图;
说明:1-模具外模;2-上压头;3-底座;4-束缚环。
图2为实施例1中束缚变形后高丰度稀土铈基各向异性纳米晶磁体的SEM图。
图3为实施例1中束缚变形后高丰度稀土铈基各向异性纳米晶磁体的磁滞回线图。
具体实施方式
实施例1:
以化学成分为Ce 16Fe 78B 6(at.%)的高丰度稀土铈基纳米晶快淬磁粉为原料。第一步,将磁粉装入束缚变形模具的模具外模1中,其中束缚环4材质为H70黄铜,外径为15mm,高度为15mm,环厚度为5mm。在空气环境中、室温条件下通过上压头2的机械压力初步压制成冷胚,压力为100MPa。进行脱模后得到侧面层包裹束缚环的圆柱形前驱体磁体。
第二步,将圆柱形前驱体磁体放入真空热压炉中,随炉升温至650℃,随后在垂直方向对磁体上下表面施加压力,以v=0.015min -1的变形速率进行低速变形,直至变形量达到70%。随炉冷却后得到高丰度稀土铈基各向异性纳米晶磁体。
实施例2
以化学成分为Ce 16Fe 78B 6(at.%)的高丰度稀土铈基纳米晶快淬磁粉为原料。第一步,将磁粉装入束缚变形模具的模具外模1中,其中束缚环4材质为H70黄铜,外径为15mm,高度为15mm,环厚度为2mm。在空气环境中、室温条件下通过上压头2的机械压力初步压制成冷胚,压力为100MPa。进行脱模后得到侧面层包裹束缚环的圆柱形前驱体磁体。
第二步,将圆柱形前驱体磁体放入真空热压炉中,随炉升温至650℃,随后在垂直方向对磁体上下表面施加压力,以v=0.01min -1的变形速率进行低速变形,直至变形量达到70%。 随炉冷却后得到高丰度稀土铈基各向异性纳米晶磁体。
比较例1
本比较例中,原料与实施例1中的原料完全相同,利用常规热压加热变形技术,包含以下步骤:
第一步,将磁粉装入内径为10mm的热压模具中,在700℃条件下以100MPa压力热压30min,随炉冷却后得到圆柱形前驱体磁体。
第二步,与实施例1的工艺流程相同,工艺温度为700℃,变形速率为v=0.03min -1,变形量为70%,随炉冷却后得到对比磁体。
实施例1磁体、实施例2磁体和比较例1磁体在室温下平行于压力方向的磁性能如表1所示。
表1实施例1、2磁体和比较例1磁体在室温下平行于压力方向的磁性能
Figure PCTCN2023071245-appb-000001
实施例3
以化学成分为(Ce 0.8La 0.2) 16Fe 78B 6(at.%)的高丰度稀土铈基纳米晶快淬磁粉为原料。第一步,将磁粉装入束缚变形模具的模具外模1中,其中束缚环4材质为H65黄铜,外径为15mm,高度为15mm,环厚度为5mm。在空气环境中、室温条件下通过上压头2的机械压力初步压制成冷胚,压力为80MPa。进行脱模后得到侧面层包裹束缚环的圆柱形前驱体磁体。
第二步,将圆柱形前驱体磁体放入真空热压炉中,随炉升温至650℃,随后在垂直方向对磁体上下表面施加压力,以v=0.01min -1的变形速率进行低速变形,直至变形量达到80%。随炉冷却后得到高丰度稀土铈基各向异性纳米晶磁体。
实施例4
以化学成分为(Ce 0.8La 0.1Y 0.1) 16Fe 78B 6(at.%)的高丰度稀土铈基纳米晶快淬磁粉为原料。第一步,将磁粉装入束缚变形模具的模具外模1中,其中束缚环4材质为紫铜,外径为15mm,高度为15mm,环厚度为5mm。在空气环境中、室温条件下通过上压头2的机械压力初步压制成冷胚,压力为50MPa。进行脱模后得到侧面层包裹束缚环的圆柱形前驱体磁体。
第二步,将圆柱形前驱体磁体放入真空热压炉中,随炉升温至675℃,随后在垂直方向 对磁体上下表面施加压力,以v=0.01min -1的变形速率进行低速变形,直至变形量达到70%。随炉冷却后得到高丰度稀土铈基各向异性纳米晶磁体。
实施例5
以化学成分为(Ce 0.8La 0.1Y 0.1) 13.5Fe 80.5B 6(at.%)的高丰度稀土铈基纳米晶快淬磁粉为原料。第一步,将磁粉装入束缚变形模具的模具外模1中,其中束缚环4材质为紫铜,外径为12mm,高度为12mm,环厚度为2mm。在空气环境中、室温条件下通过上压头2的机械压力初步压制成冷胚,压力为50MPa。进行脱模后得到侧面层包裹束缚环的圆柱形前驱体磁体。
第二步,将圆柱形前驱体磁体放入真空热压炉中,随炉升温至625℃,随后在垂直方向对磁体上下表面施加压力,以v=0.02min -1的变形速率进行低速变形,直至变形量达到90%。随炉冷却后得到高丰度稀土铈基各向异性纳米晶磁体。
实施例6
以化学成分为(Ce 0.8Y 0.2) 15Fe 79B 6(at.%)的高丰度稀土铈基纳米晶球磨磁粉为原料。第一步,将磁粉装入束缚变形模具的模具外模1中,其中束缚环4材质为紫铜,外径为20mm,高度为10mm,环厚度为3mm。在空气环境中、室温条件下通过上压头2的机械压力初步压制成冷胚,压力为80MPa。进行脱模后得到侧面层包裹束缚环的圆柱形前驱体磁体。
第二步,将圆柱形前驱体磁体放入真空热压炉中,随炉升温至700℃,随后在垂直方向对磁体上下表面施加压力,以v=0.02min -1的变形速率进行低速变形,直至变形量达到60%。随炉冷却后得到高丰度稀土铈基各向异性纳米晶磁体。
实施例7
以化学成分为(Ce 0.8La 0.1Y 0.1) 15Fe 79B 6(at.%)的高丰度稀土铈基纳米晶快萃磁粉为原料。第一步,将磁粉装入束缚变形模具的模具外模1中,其中束缚环4材质为纯铁,外径为20mm,高度为10mm,环厚度为2mm。在空气环境中、室温条件下通过上压头2的机械压力初步压制成冷胚,压力为80MPa。进行脱模后得到侧面层包裹束缚环的圆柱形前驱体磁体。
第二步,将圆柱形前驱体磁体放入真空热压炉中,随炉升温至600℃,随后在垂直方向对磁体上下表面施加压力,以v=0.02min -1的变形速率进行低速变形,直至变形量达到60%。随炉冷却后得到高丰度稀土铈基各向异性纳米晶磁体。
表2实施例3、4、5、6和7磁体在室温下平行于压力方向的磁性能
Figure PCTCN2023071245-appb-000002
Figure PCTCN2023071245-appb-000003
本发明未尽事宜为公知技术。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (8)

  1. 一种高丰度稀土铈基各向异性纳米晶磁体的制备方法,其特征在于,包括以下两个步骤:
    (1)将高丰度稀土铈基纳米晶磁粉装入束缚变形模具中,在空气环境中、室温条件下通过机械压力初步压制成冷胚,进行脱模后得到侧面层包裹束缚环的圆柱形前驱体磁体;
    (2)将步骤(1)的圆柱形前驱体磁体放入真空热压炉中,在一定温度下进行热变形过程,在垂直方向对磁体上下表面施加压力,低速镦粗变形,得到各向异性磁体。
  2. 如权利要求1所述的方法,其特征在于,所述步骤(1)中高丰度稀土铈基纳米晶磁粉是以金属间化合物RE 2Fe 14B为基体的纳米晶快淬磁粉或球磨磁粉,稀土是纯金属铈或者是金属铈与稀土金属镧、金属钇的一种或两种混合,其中,稀土金属镧、金属钇的一种或两种混合均不超过30at.%。
  3. 如权利要求1所述的方法,其特征在于,所述步骤(1)中机械压力为50~100MPa。
  4. 如权利要求1所述的方法,其特征在于,所述步骤(2)中热变形的温度为600~700℃,压力为变形后磁体高度为原始磁体高度的10~40%,即变形量为60~90%。
  5. 如权利要求1所述的方法,其特征在于,所述步骤(2)中热变形过程中采用的低速镦粗变形为匀速变形,变形速率固定,所述的变形速率为0.01~0.02min -1
  6. 一种用于实现权利要求1的高丰度稀土铈基各向异性纳米晶磁体的制备方法的装置,其特征在于,所述装置包括:模具外模,上压头,底座,束缚环。
  7. 如权利要求6所述的制备装置,其特征在于,束缚环材质为黄铜、紫铜或纯铁。
  8. 如权利要求6所述的制备装置,其特征在于,束缚环外径为12~20mm,高度为10~15mm,环厚度为2~5mm。
PCT/CN2023/071245 2022-08-24 2023-01-09 一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置 WO2024040859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211020067.2 2022-08-24
CN202211020067.2A CN115430836B (zh) 2022-08-24 2022-08-24 一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置

Publications (1)

Publication Number Publication Date
WO2024040859A1 true WO2024040859A1 (zh) 2024-02-29

Family

ID=84245065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071245 WO2024040859A1 (zh) 2022-08-24 2023-01-09 一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置

Country Status (2)

Country Link
CN (1) CN115430836B (zh)
WO (1) WO2024040859A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115430836B (zh) * 2022-08-24 2023-11-17 广东省科学院资源利用与稀土开发研究所 一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置
CN116682661A (zh) * 2023-05-12 2023-09-01 燕山大学 一种钕铁硼永磁材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921551A (en) * 1986-01-29 1990-05-01 General Motors Corporation Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
CN101530916A (zh) * 2009-04-15 2009-09-16 中南大学 控制粉末冶金材料及制品烧结膨胀缺陷的烧结方法及模具
CN103084577A (zh) * 2013-02-07 2013-05-08 哈尔滨工业大学 阶梯式热挤压制备富Nd相Nd2Fe14B/α-Fe永磁体装置及方法
CN104576028A (zh) * 2014-12-30 2015-04-29 四川大学 富铈各向异性纳米晶稀土永磁体的制备方法
CN106448986A (zh) * 2016-09-23 2017-02-22 四川大学 一种各向异性纳米晶稀土永磁体及其制备方法
CN115430836A (zh) * 2022-08-24 2022-12-06 广东省科学院资源利用与稀土开发研究所 一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751237B2 (ja) * 2012-11-02 2015-07-22 トヨタ自動車株式会社 希土類磁石とその製造方法
CN104134529B (zh) * 2014-07-21 2016-08-17 华南理工大学 一种各向异性纳米晶钕铁硼磁体及其制备方法与应用
CN107675112A (zh) * 2017-10-12 2018-02-09 哈尔滨工业大学 一种超高强铝合金的包套变形方法
CN110534279A (zh) * 2019-08-23 2019-12-03 华南理工大学 一种纯高丰度稀土Ce,La,Y基多元纳米晶永磁合金及制备
CN112103022A (zh) * 2020-08-21 2020-12-18 杭州电子科技大学 一种ThMn12基稀土永磁体及其制备方法
CN112828280B (zh) * 2021-01-06 2022-09-09 南京工业大学 一种梯度孔径结构金属膜的制备方法
CN113223846A (zh) * 2021-04-26 2021-08-06 北京工业大学 一种一步加热制备各向异性钕铁硼磁体的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921551A (en) * 1986-01-29 1990-05-01 General Motors Corporation Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
CN101530916A (zh) * 2009-04-15 2009-09-16 中南大学 控制粉末冶金材料及制品烧结膨胀缺陷的烧结方法及模具
CN103084577A (zh) * 2013-02-07 2013-05-08 哈尔滨工业大学 阶梯式热挤压制备富Nd相Nd2Fe14B/α-Fe永磁体装置及方法
CN104576028A (zh) * 2014-12-30 2015-04-29 四川大学 富铈各向异性纳米晶稀土永磁体的制备方法
CN106448986A (zh) * 2016-09-23 2017-02-22 四川大学 一种各向异性纳米晶稀土永磁体及其制备方法
CN115430836A (zh) * 2022-08-24 2022-12-06 广东省科学院资源利用与稀土开发研究所 一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置

Also Published As

Publication number Publication date
CN115430836B (zh) 2023-11-17
CN115430836A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2024040859A1 (zh) 一种高丰度稀土铈基各向异性纳米晶磁体的制备方法和装置
WO2018040299A1 (zh) 一种制备稀土永磁材料的方法
EP3029689A2 (en) Method for increasing coercive force of magnets
CN108063045B (zh) 一种无重稀土钕铁硼永磁材料及其制备方法
CN110931197B (zh) 一种用于高丰度稀土永磁体的扩散源
WO2021136366A1 (zh) 一种适用于大块稀土永磁材料的晶界扩散方法
CN103594243A (zh) 防止烧结钕铁硼磁体开裂的制造方法
CN108346508B (zh) 一种纳米晶复相钕铁硼永磁体织构化增强的制备方法
CN108806910B (zh) 提高钕铁硼磁性材料矫顽力的方法
WO2017210957A1 (zh) 一种稀土永磁材料的制备方法
CN114334415B (zh) 一种钕铁硼厚磁体的多层晶界扩散方法
JPS62203302A (ja) 鋳造希土類―鉄系永久磁石の製造方法
JP3597615B2 (ja) R−t−b系異方性ボンド磁石の製造方法
CN112750614A (zh) 提升稀土元素利用率的钕铁硼制备方法
CN108630366B (zh) 一种稀土永磁体及其制备方法
US20210130939A1 (en) Anisotropic Bonded Magnetic Powder and a Preparation Method Thereof
JPH0444301A (ja) 希土類永久磁石の製造方法
CN109637768A (zh) 一种含钇的稀土永磁材料及其制备方法
CN108428541B (zh) 一种超细晶高性能各向异性钕铁硼永磁体的制备方法
CN110111990A (zh) 一种热变形永磁体及其制备方法
JP3710837B2 (ja) 永久磁石用希土類合金鋳塊および合金粉末並びにボンド磁石の製造方法
JP2530185B2 (ja) 永久磁石の製造法
CN108428542B (zh) 一种无液相条件下高性能各向异性钕铁硼磁体的制备方法
JPH07123083B2 (ja) 鋳造希土類―鉄系永久磁石の製造方法
CN117594324A (zh) 一种振动辅助制备热变形钕铁硼磁体的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855956

Country of ref document: EP

Kind code of ref document: A1