WO2024040731A1 - 一种基于集成电路芯片的复合微针结构 - Google Patents

一种基于集成电路芯片的复合微针结构 Download PDF

Info

Publication number
WO2024040731A1
WO2024040731A1 PCT/CN2022/127285 CN2022127285W WO2024040731A1 WO 2024040731 A1 WO2024040731 A1 WO 2024040731A1 CN 2022127285 W CN2022127285 W CN 2022127285W WO 2024040731 A1 WO2024040731 A1 WO 2024040731A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
integrated circuit
soft
hard
circuit chip
Prior art date
Application number
PCT/CN2022/127285
Other languages
English (en)
French (fr)
Inventor
黄立
黄晟
童贝
Original Assignee
武汉衷华脑机融合科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉衷华脑机融合科技发展有限公司 filed Critical 武汉衷华脑机融合科技发展有限公司
Publication of WO2024040731A1 publication Critical patent/WO2024040731A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/262Needle electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/294Bioelectric electrodes therefor specially adapted for particular uses for nerve conduction study [NCS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/31Input circuits therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/311Input circuits therefor specially adapted for particular uses for nerve conduction study [NCS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/321Accessories or supplementary instruments therefor, e.g. cord hangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/388Nerve conduction study, e.g. detecting action potential of peripheral nerves

Definitions

  • the invention belongs to the technical field of brain-computer interface neural microelectrodes, and specifically relates to a composite microneedle structure based on an integrated circuit chip.
  • brain signals are collected through electrodes.
  • the electrodes include invasive and non-invasive forms.
  • the brain signals collected by invasive electrodes are more accurate and reliable.
  • most invasive microneedle structures are single-type electrodes, such as Michigan electrodes and Utah electrodes with hard needle structures, and polyimide electrodes with soft needle structures.
  • hard needles rigid needles
  • soft needle structures are prone to deformation during implantation and require the assistance of external equipment.
  • Implantation has problems such as complex structure and low efficiency; in addition, the current hard needle or soft needle has a single function, that is, it only has a recording function and does not have a stimulation effect; more importantly, the EEG signal amplitude is small and the frequency range is low And it is susceptible to noise interference, and the current technology is not accurate enough in extracting EEG signals.
  • the purpose of the present invention is to provide a composite microneedle structure based on integrated circuit chips, which can at least solve some of the defects existing in the prior art.
  • a composite microneedle structure based on an integrated circuit chip including microstrip lines, at least one microneedle body and at least one integrated circuit chip.
  • the microneedle body includes hard needles and soft needles, and the soft needles are fixed by fixed structural members.
  • the integrated circuit chip is disposed at the tail of the microneedle body, and the integrated circuit chip is fixed to the soft needle of the microneedle body to form an electrical connection, and the microstrip line is fixed to one end of the integrated circuit chip. Electrical connection.
  • the hard needle has a hard needle tail and at least one hard needle electrode formed on the hard needle tail
  • the soft needle has a soft needle tail and at least one soft needle electrode formed on the soft needle tail;
  • the soft needle tail and the hard needle tail are fixed, and the soft needle body electrode and the hard needle body electrode are fixed.
  • the fixing structure component includes a first fixing part for fixing the soft needle electrode and the hard needle electrode, and a second fixing part for fixing the soft needle tail part and the hard needle tail part.
  • the first fixing member is a plurality of hook structures arranged at intervals along the length direction of the hard needle electrode.
  • the hook structure has a first part and a second part, and both ends of the second part are respectively connected with the first part and the first part.
  • the hard needle electrode surface is connected, the first part is parallel to the hard needle electrode surface, and the soft needle electrode is located between the first part and the hard needle electrode surface, and the second The portion is at a preset angle with the surface of the hard needle electrode.
  • the preset angle between the second part of the hook structure and the surface of the hard needle electrode is an acute angle.
  • the soft needle body electrode is provided with an opening for the hook structure to pass through at a position corresponding to the hook structure, and the opening is provided with a dehooking structure for the hook structure to detach from the soft needle; the first part and the third part of the hook structure are provided.
  • the two parts and the surface of the hard needle body electrode form a groove, the groove faces the tip of the hard needle, and the dehooking structure is arranged at an end away from the tip of the soft needle.
  • the hook-off structure is a hook-off part extending from the edge of the opening into the opening, the distance between the hook-off parts is smaller than the width of the second part of the hook structure, and the hook-off part is arranged symmetrically with respect to the axis of the opening, and the hook-off part is arranged symmetrically with respect to the axis of the opening. There is a gap between the side edge of the opening and the side edge of the corresponding opening.
  • the second fixing member is a plurality of latch structures arranged at intervals along the width direction of the hard needle at the tail of the hard needle.
  • the latch structure is composed of two coaxial cylinders, larger at the top and smaller at the bottom.
  • the tail of the soft needle corresponds to A latch hole is provided at the latch structure, and several centrally symmetrical figures are provided on the tail of the soft needle outward along the edge of the latch hole.
  • the diameter of the upper cylinder of the latch structure is larger than the diameter of the latch hole.
  • connection point between the soft needle tail and the integrated circuit chip is located between the second fixing member and the soft needle body electrode.
  • the integrated circuit chip includes a soft pin connection section for connecting to the soft pin and a microstrip line connection section for connecting to the microstrip line.
  • the microstrip line connection section is located on one side of the soft pin connection section. ;
  • the integrated circuit chip and the soft needle of the microneedle body are electrically connected through reverse soldering, and the microstrip line and the integrated circuit chip are electrically connected through reverse soldering.
  • the composite microneedle structure based on integrated circuit chips provided by the present invention can realize real-time, fast and accurate extraction and stimulation of neural signals by directly integrating the microneedle body with the integrated circuit chip to minimize the risk of Transmission loss and noise signal reduction, thereby ensuring stable and lossless signal transmission.
  • the composite microneedle structure based on integrated circuit chips provided by the present invention uses hard needles to bring soft needles into the tissue and then pulls out the hard needles, thus avoiding the disadvantages of using a single hard needle or soft needle.
  • the composite microneedle structure based on integrated circuit chips provided by the present invention can be driven by the hook structure by patterning the dehooking structure on the soft needle body electrode of the soft needle and growing the hook structure at the corresponding position of the hard needle.
  • Soft needle implantation on the other hand, can well fix hard needles and soft needles to prevent them from moving while reducing the risk of warping of the soft needles.
  • the composite microneedle structure based on integrated circuit chips provided by the present invention can well fix hard needles and soft needles by patterning a centrally symmetrical pattern at the tail of the soft needle and growing a plug structure at the corresponding position of the hard needle. , to prevent movement between them and ensure the stability and accuracy of soft needle implantation.
  • Figure 1 is a schematic structural diagram of the composite microneedle based on the integrated circuit chip of the present invention
  • Figure 2 is a schematic structural diagram of the microneedle body in the composite microneedle structure of the present invention.
  • Figure 3 is a schematic diagram of the fixation structure of hard needle electrodes and soft needle electrodes in the composite microneedle structure of the present invention
  • Figure 4 is a schematic structural diagram of the hard needle electrode in the composite microneedle structure of the present invention.
  • Figure 5 is a schematic structural diagram of the soft needle electrode in the composite microneedle structure of the present invention.
  • Figure 6 is a schematic diagram of the fixation structure of the hard needle tail and the soft needle tail in the composite microneedle structure of the present invention.
  • Figure 7 is a schematic structural diagram of the hard needle tail in the composite microneedle structure of the present invention.
  • Figure 8 is a schematic structural diagram of the soft needle tail in the composite microneedle structure of the present invention.
  • Figure 9 is a schematic diagram of the connection between the microstrip line and the integrated circuit chip in the composite microneedle structure of the present invention.
  • Figure 10 is a schematic diagram of the connection between the microneedle body and the integrated circuit chip in the composite microneedle structure of the present invention.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection.
  • the connection can also be a conflicting connection or an integral connection; for those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features; in the description of the present invention, unless otherwise stated, the meaning of "plurality” is Two or more.
  • this embodiment provides a composite microneedle structure based on an integrated circuit chip, including a microstrip line 1, at least one microneedle body and at least one integrated circuit chip 2.
  • the microneedle body It includes a hard needle 3 and a soft needle 4.
  • the soft needle 4 is fixed on the upper surface of the hard needle 3 through a fixed structural member.
  • the integrated circuit chip 2 is arranged at the tail of the microneedle body, and the integrated circuit chip 2 and the microneedle The soft pins 4 of the body are fixed to form an electrical connection, and the microstrip line 1 is fixed to one end of the integrated circuit chip 2 to form an electrical connection.
  • the hard needle 3 has a certain degree of rigidity and can be implanted into the soft tissue of the human body or an animal.
  • the hard needle 3 can be made of silicon material; the soft needle 4 has a certain degree of flexibility, such as silicon nitride, polysilicon, Soft needles 4 are made of silicon carbide and other materials.
  • the soft needle 4 is laid flat on the upper surface of the hard needle 3, so that the hard needle 3 can drive the soft needle 4 to be implanted into the soft tissue of the human body or animal.
  • the soft needle 4 After implanting the tissue, the hard needle 3 is pulled out, the hard needle 3 and the soft needle 4 are separated, and the soft needle 4 remains in the implanted tissue, thereby effectively avoiding the defects caused by using a single hard needle or soft needle; at the same time Integrating the microneedle body with the integrated circuit chip 2 can realize on-site collection and stimulation of neural signals, correspondingly optimizing the functionality of the neural interface to better meet clinical needs.
  • the hard needle 3 has a hard needle tail 16 and at least one hard needle electrode 11 formed on the hard needle tail 16.
  • the soft needle 4 has a soft needle tail 17 and at least one soft needle electrode 12 formed on the soft needle tail 17; the soft needle electrode 12 and the hard needle electrode 11 are fixed by a first fixing member 6.
  • the tail 17 and the hard needle tail 16 are fixed through the second fixing part 5.
  • the first fixing part 6 and the second fixing part 5 together form the above-mentioned fixing structure, which plays the role of fixing the hard needle 3 and the soft needle 4, ensuring that the soft needle 4 can be implanted into the tissue together with the hard needle 3, and can ensure that there will be no displacement between the hard needle 3 and the soft needle 4; the integrated circuit chip 2 and the soft needle tail 17 are fitted and fixed to form an electrical connection to realize nerve Real-time, fast and accurate extraction and stimulation of signals.
  • first fixing part 6 and the second fixing part 5 must not only be able to fix the soft needle 4 when the microneedle is implanted into the tissue, so that the hard needle 3 can drive the soft needle 4 to be implanted into the tissue, but also It is necessary to facilitate the separation of the soft needle 4 and the hard needle 3 when the hard needle 3 is pulled out, so the optional optimized implementation provides a specific structure of the first fixing part 6 and the second fixing part 5 .
  • the first fixing member 6 is a plurality of hook structures 13 spaced apart along the length direction of the hard needle electrode 11.
  • the hook structure 13 has a first part and a second part, so Both ends of the second part are respectively connected to the first part and the surface of the hard needle electrode 11, the first part is parallel to the surface of the hard needle electrode 11, and the soft needle electrode 12 is located on the third Between one part and the surface of the hard needle electrode 11, the second part is at a preset angle with the surface of the hard needle electrode 11; accordingly, the soft needle electrode 12 is provided with a position corresponding to the hook structure 13. There is an opening 14 for the hook structure 13 to pass through, and a dehooking structure for the hook structure 13 to detach from the soft needle 4 is provided on the opening 14 .
  • the first part and the second part of the hook structure 13 and the surface of the hard needle body electrode 11 form a groove, the groove faces the needle tip of the hard needle 3, and the dehooking structure is arranged away from the needle tip of the soft needle 4 one end.
  • a sacrificial layer of a certain thickness is first grown on the surface of the hard needles 3, and then the soft needles 4 are grown on the surface of the sacrificial layer.
  • An opening 14 is opened on 12, and a dehooking structure is patterned on the soft needle 4, and then the second part of the hook structure 13 is regrown at the opening 14, and finally the first part of the hook structure 13 is regrown, and then the hard needle 3 and the soft needle 4 are released.
  • the hook structure 13 drives the soft needle 4 to be implanted together. After arriving at the implantation site, pull the hard needle 3 backward.
  • the dehooking structure causes the hook structure 13 to separate from the soft needle body electrode 12, and the soft needle body The fixation between the electrode 12 and the hard needle body electrode 11 is released, so that the hard needle 3 can be pulled out while the soft needle 4 remains in the tissue.
  • the decoupling structure is two decoupling parts 15 extending from the edge of the opening 14 into the opening 14 .
  • the two decoupling parts 15 are symmetrically arranged with respect to the axis of the opening 14 .
  • pulling out the hard needle 3 pull the hard needle 3 backward. After the hook structure 13 contacts the unhooking part 15, the unhooking part 15 will slowly tilt upward, so that the hook structure 13 exits the opening 14 downward.
  • the two-piece decoupling part 15 and the soft needle body electrode 12 can be designed to be an integrally formed structure, so that when the two-piece decoupling part 15 is opened upward, the second part of the hook structure 13 squeezes the decoupling part 15, so that the dehooking part 15 It tilts upward along the direction in which the hard needle 3 retreats, thereby expanding the area of the opening 14.
  • the hook structure 13 detaches from the soft needle 4 from the opening 14.
  • the soft needle 4 and the dehooking portion 15 are made of elastic material. When the hard needle 3 and the soft needle 4 After being detached, the raised portion of the dehooking portion 15 descends and returns to its original shape.
  • the first part and the second part of the hook structure 13 are integrally formed.
  • the bottom surface of the second part is in contact with the surface of the hard needle electrode 11, and the top surface of the second part is in contact with the bottom surface of the first part, and the bottom surface of the second part is larger than the top surface of the second part.
  • the angle between the second part of the hook structure 13 and the surface of the hard needle body electrode 11 is set to an acute angle, that is, to avoid being far away from the tip of the hard needle 3.
  • the first part exceeds the end of the second part in the direction; at the same time, it is conducive to the second part of the hook structure 13 to squeeze the decoupling part 15 to make the dehooking part 15 tilt upward.
  • the second fixing part 5 is a plurality of latch structures arranged at intervals along the width direction of the hard needle 3 at the tail 16 of the hard needle.
  • the latch structure 18 is composed of two coaxial cylinders, larger at the top and smaller at the bottom.
  • the soft needle tail 17 has a latch hole 20 corresponding to the latch structure 18, and the soft needle tail 17 is formed along the edge of the latch hole 20.
  • Several centrally symmetrical figures 19 are provided outside.
  • the centrally symmetrical figure 19 at the figure can be a petal-like structure.
  • the diameter of the upper cylinder of the latch structure 18 is larger than the diameter of the latch hole 20 .
  • the upper cylinder of the latch structure 18 passes through the corresponding latch hole 20 on the soft needle tail 17. Since the diameter of the upper cylinder of the latch structure 18 is larger than the diameter of the latch hole 20, the upper cylinder will press Hold part of the soft needle structure at the edge of the latch hole 20, thereby fixing the soft needle 4, and ensuring that there will be no displacement between the hard needle 3 and the soft needle 4; when the hard needle 3 drives the soft needle 4 to be implanted into the tissue, Pulling down the hard needle 3, the upper cylinder of the latch structure 18 will exert a certain downward force on the soft needle 4, and the centrally symmetrical figure 19 on the soft needle 4 will bend and deform to a certain extent until the latch structure 18 completely exits, and then continues to move upward. Then the hard needle 3 is pulled to withdraw the hook structure 13 on the hard needle 3, so that the hard needle 3 and the soft needle 4 are completely separated, the hard needle 3 is pulled out, and the soft needle 4 is retained in the tissue.
  • the center point of the centrally symmetrical figure 19 coincides with the center point of the latch hole 20 .
  • connection point between the soft needle tail 17 and the integrated circuit chip 2 is located between the second fixing member 5 and the soft needle body electrode 12.
  • This structural design causes the soft needle tail 17 to connect with the hard needle when the hard needle 3 is pulled downward.
  • the influence of the downward pulling force on the connection between the soft needle tail 17 and the integrated circuit chip 2 can be effectively reduced, ensuring the stability of the connection between the integrated circuit chip 2 and the soft needle 4.
  • the integrated circuit chip 2 includes a soft pin connection section 7 for connecting to the soft pin 4, and a soft pin connection section 7 for connecting to the microstrip line 1
  • the microstrip line connection section 10 is located on one side of the soft needle connection section 7 .
  • the integrated circuit chip 2 and the soft needle 4 of the microneedle body are electrically connected through reverse soldering, and the microstrip line 1 and the integrated circuit chip 2 are electrically connected through reverse soldering.
  • By connecting the microneedle body and The microstrip line 1 is directly back-soldered to the integrated circuit chip 2, which can realize real-time, fast, and accurate extraction and stimulation of neural signals to minimize transmission loss and reduce noise signals, thereby ensuring stable and lossless signal transmission.
  • the integrated circuit chip 2 can also be designed to include a chip connection section 8 for connecting with other integrated circuit chips 2.
  • the chip connection section 8 is located in the soft needle connection section. 7, and a connection through hole 9 is provided on the chip connection section 8.
  • a single microneedle body is connected to the integrated circuit chip 2 according to the connection method in the above embodiment, and the connection between multiple integrated circuit chips 2 is fixed.
  • the connection through holes 9 of each integrated circuit chip 2 can be connected and fixed through steel needles, so that the microneedle body can be assembled into an area array structure, thereby improving the application range of the composite microneedle structure.
  • the composite microneedle structure based on integrated circuit chips brings the soft needle into the tissue through the hard needle, and then pulls out the hard needle, which can well fix the soft needle and the hard needle and prevent them from collapsing. Movement between them can avoid the defects of using a single hard needle or soft needle.
  • integrating the microneedle body with the integrated circuit chip can realize the on-site collection and stimulation of nerve signals, and accordingly optimize the functionality of the neural interface, and more well meet clinical needs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明提供了一种基于集成电路芯片的复合微针结构,包括微带线、至少一个微针体和至少一个集成电路芯片,所述微针体包括硬针和软针,所述软针通过固定结构件固定于硬针上表面,所述集成电路芯片设置于所述微针体的尾部,且集成电路芯片与微针体的软针固定形成电连接,所述微带线与集成电路芯片一端部固定形成电连接。该发明通过硬针将软针带入组织内,再拔出硬针,既能够很好固定软针与硬针,防止它们之间发生移动,又可以避免采用单一硬针或软针的缺陷,同时将微针体与集成电路芯片集成,可以实现神经信号的就地采集与刺激,相应地优化神经接口的功能性,更好地满足临床需求。

Description

一种基于集成电路芯片的复合微针结构 技术领域
本发明属于脑机接口神经微电极技术领域,具体涉及一种基于集成电路芯片的复合微针结构。
背景技术
在神经接口中,通过电极采集脑信号,其中电极包括侵入式和非侵入式等形式,侵入式电极采集的脑信号更为准确、可靠性更高。目前侵入式微针结构多数为单一类型电极,如硬针结构的密西根电极、犹他电极,软针结构的聚酰亚胺电极。然而,对于硬针(刚性针)在植入时无法随着血管伸缩而进行适应性形变,可能会对组织造成一定的损伤;而软针结构在植入时易发生变形,需借助外部设备辅助植入,存在结构复杂,效率低下等问题;此外,目前硬针或软针的功能较单一,即仅具有记录功能,不具备刺激功效;更重要的是,脑电信号幅度小、频率范围低且易受噪声干扰,当前技术对脑电信号的提取也不够精确。
发明内容
本发明的目的是提供一种基于集成电路芯片的复合微针结构,至少可以解决现有技术中存在的部分缺陷。
为实现上述目的,本发明采用如下技术方案:
一种基于集成电路芯片的复合微针结构,包括微带线、至少一个微针体和至少一个集成电路芯片,所述微针体包括硬针和软针,所述软针通过固定结构件固定于硬针上表面,所述集成电路芯片设置于所述微针体的尾部,且集成电路芯片与微针体的软针固定形成电连接,所述微带线与集成电路芯片一端部固定形成电连接。
进一步的,所述硬针具有硬针尾部以及形成于硬针尾部上的至少一个 硬针体电极,所述软针具有软针尾部以及形成于软针尾部上的至少一个软针体电极;所述软针尾部与硬针尾部固定,所述软针体电极与硬针体电极固定。
进一步的,所述固定结构件包括用于固定软针体电极与硬针体电极的第一固定件,以及用于固定软针尾部与硬针尾部的第二固定件。
进一步的,所述第一固定件为若干个沿硬针体电极长度方向间隔布置的钩子结构,该钩子结构具有第一部分和第二部分,所述第二部分两端分别与所述第一部分和所述硬针体电极表面连接,所述第一部分与所述硬针体电极表面平行,且所述软针体电极位于所述第一部分与所述硬针体电极表面之间,所述第二部分与所述硬针体电极表面呈预设角度。
进一步的,所述钩子结构的第二部分与所述硬针体电极表面之间预设角度为锐角。
进一步的,所述软针体电极上对应钩子结构位置处设有供钩子结构穿过的开口,所述开口上设有供钩子结构脱离软针的脱钩结构;所述钩子结构的第一部分、第二部分和所述硬针体电极表面组成开槽,所述开槽朝向硬针的针尖,所述脱钩结构设置于远离软针针尖的一端。
进一步的,所述脱钩结构为由开口边缘向开口内延伸的脱钩部,所述脱钩部之间的间距小于钩子结构的第二部分的宽度,且脱钩部关于开口的轴线对称布置,所述脱钩部侧边与对应开口侧边沿之间具有间隙。
进一步的,所述第二固定件为在硬针尾部沿硬针宽度方向间隔布置的若干个插销结构,所述插销结构由上大下小的两个同轴圆柱构成,所述软针尾部对应插销结构处开设有插销孔,且在软针尾部上沿插销孔边缘向外设置若干个中心对称图形,所述插销结构的上圆柱直径大于所述插销孔直径。
进一步的,所述软针尾部与集成电路芯片的连接处位于第二固定件与软针体电极之间。
进一步的,所述集成电路芯片包括用于与软针连接的软针连接段以及用于与微带线连接的微带线连接段,所述微带线连接段位于软针连接段的一侧;所述集成电路芯片与微针体的软针通过倒焊方式进行电连接,所述微带线与集成电路芯片通过倒焊方式进行电连接。
与现有技术相比,本发明的有益效果:
(1)本发明提供的这种基于集成电路芯片的复合微针结构通过将微针体直接与集成电路芯片集成,可以实现神经信号的实时、快速、准确的提取与刺激,以最大限度的降低传输损耗和减小噪声信号,从而保证稳定无损的信号传输。
(2)本发明提供的这种基于集成电路芯片的复合微针结构通过硬针将软针带入组织内,再拔出硬针的设计,避免了采用单一硬针或软针的缺陷。
(3)本发明提供的这种基于集成电路芯片的复合微针结构通过在软针的软针体电极上图形化脱钩结构以及在硬针的相应位置生长钩子结构,一方面能够通过钩子结构带动软针植入,另一方面能够很好的固定硬针和软针,防止它们之间发生移动,同时减小软针发生翘曲的风险。
(4)本发明提供的这种基于集成电路芯片的复合微针结构通过在软针尾部图形化出中心对称图形和在硬针的相应位置生长插销结构,能够很好的固定硬针和软针,防止它们之间发生移动,保证软针植入的稳定性和准确性。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1是本发明基于集成电路芯片的复合微针结构示意图;
图2是本发明复合微针结构中微针体的结构示意图;
图3是本发明复合微针结构中硬针体电极和软针体电极固定结构示意图;
图4是本发明复合微针结构中硬针体电极的结构示意图;
图5是本发明复合微针结构中软针体电极的结构示意图;
图6是本发明复合微针结构中硬针尾部和软针尾部固定结构示意图;
图7是本发明复合微针结构中硬针尾部的结构示意图;
图8是本发明复合微针结构中软针尾部的结构示意图;
图9是本发明复合微针结构中微带线与集成电路芯片连接示意图;
图10是本发明复合微针结构中微针体与集成电路芯片连接示意图。
附图标记说明:1、微带线;2、集成电路芯片;3、硬针;4、软针;5、第二固定件;6、第一固定件;7、软针连接段;8、芯片连接段;9、连接通孔;10、微带线连接段;11、硬针体电极;12、软针体电极;13、钩子结构;14、开口;15、脱钩部;16、硬针尾部;17、软针尾部;18、插销结构;19、中心对称图形;20、插销孔。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,还可以是抵触连接或一体地连接;对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征;在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1和图2所示,本实施例提供了一种基于集成电路芯片的复合微针结构,包括微带线1、至少一个微针体和至少一个集成电路芯片2,所述微针体包括硬针3和软针4,所述软针4通过固定结构件固定于硬针3上表面,所述集成电路芯片2设置于所述微针体的尾部,且集成电路芯片2与微针体的软针4固定形成电连接,所述微带线1与集成电路芯片2一端部固定形成电连接。其中,硬针3具有一定刚性,其可以被植入人体或者动物的软组织内,例如可采用硅材料制得硬针3;所述软针4具有一定柔性,例如可采用氮化硅、多晶硅、碳化硅等材料制得软针4。在本实施例中,由于硬针3具有一定刚性,将软针4平铺于硬针3上表面,这样硬针3可以带动软针4一同植入人体或动物的软组织内,当软针4植入组织后,再将硬针3拔出,硬针3与软针4分离,软针4留在植入的组织中,从而有效避免了采用单一硬针或软针所产生的缺陷;同时将微针体与集成电路芯片2集成,可以实现神经信号的就地采集与刺激,相应地优化神经接口的功能性,更好地满足临床需求。
在一个可选的实施方式中,如图2、图3和图6所示,所述硬针3具有硬针尾部16以及形成于硬针尾部16上的至少一个硬针体电极11,所述软针4具有软针尾部17以及形成于软针尾部17上的至少一个软针体电极12;所述软针体电极12与硬针体电极11通过第一固定件6固定,所述软针尾部17与硬针尾部16通过第二固定件5固定,第一固定件6和第二固定件5共同构成上述的固定结构件,起到固定硬针3和软针4的作用,保证软针4能随硬针3一同植入组织,并能够保证硬针3和软针4之间不会发生位移;所述集成电路芯片2与所述软针尾部17贴合固定形成电连接,实现神经信 号的实时、快速、准确的提取与刺激。
对于第一固定件6和第二固定件5的具体结构设计,既要满足在微针植入组织时,能固定软针4,使硬针3能带动软针4一同植入组织,同时还需要满足在硬针3拔出时,能方便使软针4与硬针3分离,因此可选的优化实施方案提供了第一固定件6和第二固定件5的一种具体结构。如图3、图4和图5所示,所述第一固定件6为若干个沿硬针体电极11长度方向间隔布置的钩子结构13,该钩子结构13具有第一部分和第二部分,所述第二部分两端分别与所述第一部分和所述硬针体电极11表面连接,所述第一部分与所述硬针体电极11表面平行,且所述软针体电极12位于所述第一部分与所述硬针体电极11表面之间,所述第二部分与所述硬针体电极11表面呈预设角度;相应的,所述软针体电极12上对应钩子结构13位置处设有供钩子结构13穿过的开口14,所述开口14上设有供钩子结构13脱离软针4的脱钩结构。具体的,所述钩子结构13的第一部分、第二部分和所述硬针体电极11表面组成开槽,所述开槽朝向硬针3的针尖,所述脱钩结构设置于远离软针4针尖的一端。在制备该硬针3与软针4复合的微针体时,先在硬针3表面生长一定厚度的牺牲层,再在牺牲层的表面生长软针4,在软针4的软针体电极12上开设开口14,并在软针4上图形化出脱钩结构,然后在开口14处再生长钩子结构13的第二部分,最后再生长钩子结构13的第一部分,然后释放硬针3与软针4之间的牺牲层,从而开口14边缘的软针体电极12部分压入至钩子结构13内,当硬针3植入组织时,通过该钩子结构13带动软针4一同植入,在到达植入地点后,向后拉动硬针3,硬针体电极11上的钩子结构13接触到开口14后端的脱钩结构后,脱钩结构使得钩子结构13与软针体电极12脱离,软针体电极12与硬针体电极11之间的固定解除,实现硬针3拔出而软针4留在组织内的目的。
可选的,如图5所示,所述脱钩结构为由开口14边缘向开口14内延伸的两片脱钩部15,两片脱钩部15关于开口14的轴线对称布置,两片所 述脱钩部15之间具有间距,该间距小于钩子结构13的第二部分的宽度,两片所述脱钩部15侧边与对应开口14侧边沿之间具有间隙,以便脱钩部15能向上翻起以及向两侧方向挤压。拔出硬针3时,向后拉动硬针3,钩子结构13接触该脱钩部15后,脱钩部15将会慢慢向上翘起,从而使得钩子结构13向下退出开口14。优化的,可设计两片脱钩部15与软针体电极12为一体成型结构,这样两片脱钩部15在向上打开过程中,钩子结构13的第二部分挤压脱钩部15,使得脱钩部15沿硬针3回退的方向向上翘起,从而扩大开口14的区域,钩子结构13从开口14中脱离软针4,软针4和脱钩部15为弹性材料,在硬针3与软针4脱离后,脱钩部15翘起的部分下降,恢复至原形。
可选的,如图3至图5所示,为了提高钩子结构13的强度,钩子结构13的第一部分和第二部分一体成型。在硬针3和软针4分离的过程中,为了便于钩子结构13从开口14中脱离,以及在钩子结构13挤压脱钩部15的过程中避免第一部分对脱钩部15造成影响,本实施例中设计第二部分的底面与硬针体电极11表面抵接,第二部分的顶面与第一部分的底面抵接,而且第二部分的底面大于第二部分的顶面。
优选的,为了便于硬针3脱离软针4,在本实施例中,将钩子结构13的第二部分与硬针体电极11表面之间的角度设置为锐角,即避免在远离硬针3针尖的方向上第一部分超出第二部分的端部;同时有利于钩子结构13的第二部分挤压脱钩部15而使脱钩部15向上翘起。
对于第二固定件5的一种具体结构,如图6、图7和图8所示,所述第二固定件5为在硬针尾部16沿硬针3宽度方向间隔布置的若干个插销结构18,所述插销结构18由上大下小的两个同轴圆柱构成,所述软针尾部17对应插销结构18处开设有插销孔20,且在软针尾部17上沿插销孔20边缘向外设置若干中心对称图形19,如本实施例中图形处的中心对称图形19可以为类似花瓣结构,所述插销结构18的上圆柱直径大于所述插销孔20的 直径。当固定硬针3和软针4时,插销结构18的上圆柱穿过软针尾部17上对应的插销孔20,由于插销结构18的上圆柱直径大于所述插销孔20直径,上圆柱会压住插销孔20边缘的部分软针结构,从而固定软针4,并能够保证硬针3和软针4之间不会发生位移;当硬针3带动软针4一同植入组织后,通过向下拉动硬针3,插销结构18的上圆柱会对软针4产生一定向下作用力,软针4上的中心对称图形19会发生一定程度弯曲变形,直至插销结构18完全退出,然后继续向后拉动硬针3,使硬针3上的钩子结构13退出,从而使硬针3和软针4完全脱离,拔出硬针3,保留软针4在组织内。
本实施例中,中心对称图形19的中心点与插销孔20的中心点重合。
优选的,所述软针尾部17与集成电路芯片2的连接处位于第二固定件5与软针体电极12之间,这种结构设计在向下拉动硬针3使软针尾部17与硬针尾部16分离过程中,可有效减小向下拉动的作用力对软针尾部17与集成电路芯片2连接的影响,保证集成电路芯片2与软针4连接的稳定性。
在可选的实施方式中,如图1、图9和图10所示,所述集成电路芯片2包括用于与软针4连接的软针连接段7,以及用于与微带线1连接的微带线连接段10;所述微带线连接段10位于软针连接段7的一侧。优化的,所述集成电路芯片2与微针体的软针4通过倒焊方式进行电连接,所述微带线1与集成电路芯片2通过倒焊方式进行电连接,通过将微针体以及微带线1直接与集成电路芯片2进行倒焊,可以实现神经信号的实时、快速、准确的提取与刺激,以最大限度的降低传输损耗和减小噪声信号,从而保证稳定无损的信号传输。
进一步的,当上述复合微针结构有多个时,所述集成电路芯片2还可设计包括用于与其它集成电路芯片2连接的芯片连接段8,所述芯片连接段8位于软针连接段7的两端,且芯片连接段8上开设有连接通孔9,单个微针体与集成电路芯片2按上述实施例中的连接方式进行连接,而多个集成 电路芯片2之间的连接固定,则可通过钢针将各个集成电路芯片2的连接通孔9进行连接和固定,从而可将微针体组装成面阵结构形式,提高该复合微针结构的应用范围。
综上所述,本发明提供的这种基于集成电路芯片的复合微针结构通过硬针将软针带入组织内,再拔出硬针,既能够很好固定软针与硬针,防止它们之间发生移动,又可以避免采用单一硬针或软针的缺陷,同时将微针体与集成电路芯片集成,可以实现神经信号的就地采集与刺激,相应地优化神经接口的功能性,更好地满足临床需求。
以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本发明相同或相似的设计均属于本发明的保护范围之内。

Claims (10)

  1. 一种基于集成电路芯片的复合微针结构,其特征在于:包括微带线、至少一个微针体和至少一个集成电路芯片,所述微针体包括硬针和软针,所述软针通过固定结构件固定于硬针上表面,所述集成电路芯片设置于所述微针体的尾部,且集成电路芯片与微针体的软针固定形成电连接,所述微带线与集成电路芯片一端部固定形成电连接。
  2. 如权利要求1所述的基于集成电路芯片的复合微针结构,其特征在于:所述硬针具有硬针尾部以及形成于硬针尾部上的至少一个硬针体电极,所述软针具有软针尾部以及形成于软针尾部上的至少一个软针体电极;所述软针尾部与硬针尾部固定,所述软针体电极与硬针体电极固定。
  3. 如权利要求2所述的基于集成电路芯片的复合微针结构,其特征在于:所述固定结构件包括用于固定软针体电极与硬针体电极的第一固定件,以及用于固定软针尾部与硬针尾部的第二固定件。
  4. 如权利要求3所述的基于集成电路芯片的复合微针结构,其特征在于:所述第一固定件为若干个沿硬针体电极长度方向间隔布置的钩子结构,该钩子结构具有第一部分和第二部分,所述第二部分两端分别与所述第一部分和所述硬针体电极表面连接,所述第一部分与所述硬针体电极表面平行,且所述软针体电极位于所述第一部分与所述硬针体电极表面之间,所述第二部分与所述硬针体电极表面呈预设角度。
  5. 如权利要求4所述的基于集成电路芯片的复合微针结构,其特征在于:所述钩子结构的第二部分与所述硬针体电极表面之间预设角度为锐角。
  6. 如权利要求4所述的基于集成电路芯片的复合微针结构,其特征在于:所述软针体电极上对应钩子结构位置处设有供钩子结构穿过的开口,所述开口上设有供钩子结构脱离软针的脱钩结构;所述钩子结构的第一部分、第二部分和所述硬针体电极表面组成开槽,所述开槽朝向硬针的针尖,所述脱钩结构设置于远离软针针尖的一端。
  7. 如权利要求6所述的基于集成电路芯片的复合微针结构,其特征在 于:所述脱钩结构为由开口边缘向开口内延伸的脱钩部,所述脱钩部之间的间距小于钩子结构的第二部分的宽度,且脱钩部关于开口的轴线对称布置,所述脱钩部侧边与对应开口侧边沿之间具有间隙。
  8. 如权利要求3所述的基于集成电路芯片的复合微针结构,其特征在于:所述第二固定件为在硬针尾部沿硬针宽度方向间隔布置的若干个插销结构,所述插销结构由上大下小的两个同轴圆柱构成,所述软针尾部对应插销结构处开设有插销孔,且在软针尾部上沿插销孔边缘向外设置若干个中心对称图形,所述插销结构的上圆柱直径大于所述插销孔直径。
  9. 如权利要求3所述的基于集成电路芯片的复合微针结构,其特征在于:所述软针尾部与集成电路芯片的连接处位于第二固定件与软针体电极之间。
  10. 如权利要求1所述的基于集成电路芯片的复合微针结构,其特征在于:所述集成电路芯片包括用于与软针连接的软针连接段以及用于与微带线连接的微带线连接段,所述微带线连接段位于软针连接段的一侧;所述集成电路芯片与微针体的软针通过倒焊方式进行电连接,所述微带线与集成电路芯片通过倒焊方式进行电连接。
PCT/CN2022/127285 2022-08-24 2022-10-25 一种基于集成电路芯片的复合微针结构 WO2024040731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211015746.0 2022-08-24
CN202211015746.0A CN115500831B (zh) 2022-08-24 2022-08-24 一种基于集成电路芯片的复合微针结构

Publications (1)

Publication Number Publication Date
WO2024040731A1 true WO2024040731A1 (zh) 2024-02-29

Family

ID=84502039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127285 WO2024040731A1 (zh) 2022-08-24 2022-10-25 一种基于集成电路芯片的复合微针结构

Country Status (2)

Country Link
CN (1) CN115500831B (zh)
WO (1) WO2024040731A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115500832B (zh) * 2022-08-24 2024-04-02 武汉衷华脑机融合科技发展有限公司 一种复合微针结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11166782B1 (en) * 2020-07-19 2021-11-09 Sirius Medical Systems B.V. Implantable marker and a method of implanting markers
CN114343654A (zh) * 2022-02-25 2022-04-15 武汉衷华脑机融合科技发展有限公司 一种柔性微针结构
CN114788700A (zh) * 2022-02-25 2022-07-26 武汉衷华脑机融合科技发展有限公司 一种带有辅助结构的神经接口
CN114847957A (zh) * 2022-04-18 2022-08-05 上海交通大学 光电集成的一体化微针阵列式脑机接口器件及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8738110B2 (en) * 2009-05-01 2014-05-27 Livermore National Security, Llc Rigid spine reinforced polymer microelectrode array probe and method of fabrication
WO2011057137A1 (en) * 2009-11-05 2011-05-12 Neuronexus Technologies Waveguide neural interface device
CN101884530A (zh) * 2010-07-14 2010-11-17 中国科学院半导体研究所 用于记录神经活动电信号的柔性探针电极及其植入工具
US9241651B2 (en) * 2011-11-17 2016-01-26 Carnegie Mellon University Fabrication, methods, apparatuses, and systems for ultra-compliant probes for neural and other tissues
WO2013131261A1 (zh) * 2012-03-08 2013-09-12 中国科学院深圳先进技术研究院 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
US9949376B2 (en) * 2013-12-06 2018-04-17 Second Sight Medical Products, Inc. Cortical implant system for brain stimulation and recording
US11547849B2 (en) * 2017-06-07 2023-01-10 Neuronexus Technologies, Inc. Systems and methods for ruggedized penetrating medical electrode arrays
CN109171718B (zh) * 2018-08-03 2020-11-20 北京大学 微针电极阵列装置
WO2020214743A1 (en) * 2019-04-15 2020-10-22 Cornell University Optical relay station-based implantable sensor modules
CN114305432A (zh) * 2021-12-31 2022-04-12 武汉衷华脑机融合科技发展有限公司 一种基于集成电路芯片的微针
CN114209332A (zh) * 2021-12-31 2022-03-22 武汉衷华脑机融合科技发展有限公司 一种神经接口系统
CN114209333A (zh) * 2021-12-31 2022-03-22 武汉衷华脑机融合科技发展有限公司 一种用于神经接口的微针
CN114305433A (zh) * 2022-01-10 2022-04-12 武汉衷华脑机融合科技发展有限公司 一种基于集成电路芯片的微针
CN114469117A (zh) * 2022-02-25 2022-05-13 武汉衷华脑机融合科技发展有限公司 一种带有可降解涂层的神经接口
CN114699087B (zh) * 2022-05-23 2023-01-10 国家纳米科学中心 神经电极结构及其植入方法和制作方法
CN115500832B (zh) * 2022-08-24 2024-04-02 武汉衷华脑机融合科技发展有限公司 一种复合微针结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11166782B1 (en) * 2020-07-19 2021-11-09 Sirius Medical Systems B.V. Implantable marker and a method of implanting markers
CN114343654A (zh) * 2022-02-25 2022-04-15 武汉衷华脑机融合科技发展有限公司 一种柔性微针结构
CN114788700A (zh) * 2022-02-25 2022-07-26 武汉衷华脑机融合科技发展有限公司 一种带有辅助结构的神经接口
CN114847957A (zh) * 2022-04-18 2022-08-05 上海交通大学 光电集成的一体化微针阵列式脑机接口器件及其制备方法

Also Published As

Publication number Publication date
CN115500831B (zh) 2024-01-12
CN115500831A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN115500832B (zh) 一种复合微针结构
WO2024040731A1 (zh) 一种基于集成电路芯片的复合微针结构
WO2024040732A1 (zh) 一种定位隔板和面阵式微针结构
WO2023240874A1 (zh) 一种复合微针结构
WO2024021325A1 (zh) 一种复合微针结构及其制备方法
CN104000574B (zh) 一种基于挠性pcb的一次性皮肤表面干电极的制作方法
CN115153566A (zh) 一种微电极结构及其制作方法
CN204767032U (zh) 一种柔性神经微电极阵列
CN114305433A (zh) 一种基于集成电路芯片的微针
CN217938220U (zh) 一种mems微针
CN113384329B (zh) 一种用于拔除心脏临时起搏器导线的牵拉装置
CN212698992U (zh) 一种可调式s拉钩
CN209963427U (zh) 一种插拔式射频同轴连接器
CN115227254B (zh) 一种复合微针结构及神经微电极
CN217828006U (zh) 一种下鼻甲骨折内移器
WO2024021324A1 (zh) 一种复合微针结构及其制备方法
WO2024021323A1 (zh) 一种复合微针结构及神经微电极
CN218304924U (zh) 一种可磁驱动的软针、微针及神经接口系统
CN218304925U (zh) 一种电驱动微电极及微针
CN219594755U (zh) 一种腹腔分流手术用穿刺针
CN218009744U (zh) 一种新型神经电极
CN219206969U (zh) 一种一次性无创脑电传感器
CN213030659U (zh) 一种实验鼠心脏取血装置
CN215192117U (zh) 一种用于拔除心脏临时起搏器导线的牵拉装置
CN220495025U (zh) 电极结构及电极导管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956268

Country of ref document: EP

Kind code of ref document: A1