WO2023240874A1 - 一种复合微针结构 - Google Patents

一种复合微针结构 Download PDF

Info

Publication number
WO2023240874A1
WO2023240874A1 PCT/CN2022/127284 CN2022127284W WO2023240874A1 WO 2023240874 A1 WO2023240874 A1 WO 2023240874A1 CN 2022127284 W CN2022127284 W CN 2022127284W WO 2023240874 A1 WO2023240874 A1 WO 2023240874A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
soft
hard
inverted
microneedle structure
Prior art date
Application number
PCT/CN2022/127284
Other languages
English (en)
French (fr)
Inventor
黄立
黄晟
童贝
Original Assignee
武汉衷华脑机融合科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉衷华脑机融合科技发展有限公司 filed Critical 武汉衷华脑机融合科技发展有限公司
Publication of WO2023240874A1 publication Critical patent/WO2023240874A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/262Needle electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/294Bioelectric electrodes therefor specially adapted for particular uses for nerve conduction study [NCS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053

Definitions

  • the invention belongs to the technical field of microelectrodes, and specifically relates to a composite microneedle structure.
  • a microelectrode refers to an electrode in which at least one dimension of the electrode is micron or nanoscale (i.e. ⁇ 100 micron). It has been widely used in analytical chemistry, medical research and other fields. Various physiological functions of humans and animals are directly or indirectly regulated by the neural network in the brain. Recording changes in the firing frequency of single neurons requires microelectrodes to collect strong electrical signals and conduct long-term observation and research. Among them, microelectrodes that can be implanted into the central nervous system (CNS) for a long time have a wide range of applications.
  • CNS central nervous system
  • microelectrodes include metal and glass.
  • the metal microelectrode is a high-strength metal fine needle.
  • the part other than the tip is insulated with paint or glass.
  • the metal electrode wire is made of stainless steel, platinum-iridium alloy or tungsten carbide wire electrolyzed in an acidic solution. It is made of corrosion and has a variety of finished products to choose from. Its disadvantage is that it is difficult to keep the geometry and insulation state of the microelectrode consistent. Glass microelectrodes are drawn from hard capillary tubes according to user needs.
  • the tip When used to measure the resting potential and action potential in cells, the tip needs to be less than 0.5 microns; when used to measure the inactive point potential in the extracellular active area, its tip must be smaller than 0.5 microns.
  • the tip can be 1-5 microns.
  • microneedles of the above two types of microelectrodes are rigid microneedles, which cannot adapt to the expansion and contraction of blood vessels during implantation, which can easily cause damage to human tissues or animal tissues.
  • the microneedles of the microelectrode are completely made of flexible materials, the microneedles will easily deform during the process of implanting into the tissue, making it inconvenient for the operator to implant the microneedle body into the tissue.
  • the purpose of the present invention is to provide a composite microneedle structure that can at least solve some of the defects existing in the prior art.
  • a composite microneedle structure includes hard needles and soft needles.
  • the soft needles are placed on the upper surface of the hard needles.
  • the upper surface of the hard needles is provided with at least one soft needle fixing member at intervals along its length direction.
  • the soft needles are The needle fixing member fixes the edge of the soft needle to the hard needle.
  • the hard needle is made of silicon material.
  • the soft needle is made of silicon nitride, polysilicon, and silicon carbide materials.
  • the soft needle fixing member is an inverted L-shaped hook
  • the bottom of the inverted L-shaped hook is fixed on the upper surface of the hard needle
  • a certain gap is left between the horizontal section of the inverted L-shaped hook and the upper surface of the hard needle.
  • the barb and the soft needle are integrally formed.
  • each inverted L-shaped hook is arranged at equal intervals along the length direction of the hard needle, and the openings of each inverted L-shaped hook are in the same direction; the edges on both sides of the soft needle There are multiple barbs, and they are arranged in one-to-one correspondence with the inverted L-shaped hooks on the upper surface of the hard needle.
  • each of the inverted L-shaped hooks face the needle tip of the hard needle.
  • the inverted L-shaped hooks on both sides of the hard needle are arranged symmetrically with respect to the axis of the hard needle.
  • the soft needle has at least one body electrode point for collecting nerve signals.
  • the above-mentioned composite microneedle structure also includes an integrated circuit chip, which is bonded to the tail of the soft needle to form an electrical connection.
  • the integrated circuit chip receives and analyzes the nerves collected by the body electrode points. Signal.
  • the composite microneedle structure provided by the present invention uses hard needles to drive soft needles to be implanted into the tissue together.
  • soft needle fixing parts are provided along the entire length of the hard needles, which effectively prevents the soft needles from warping in the middle of the soft needles during the process of implanting into the tissue.
  • the hard needle can be pulled out, and the soft needle can adaptively deform as the blood vessel expands and contracts. This solves the problem that in the existing technology, rigid microneedle can easily cause implantation damage, while soft needle can easily cause implantation damage.
  • the problem with microneedles is that it is inconvenient for the operator to implant the microneedle body into the tissue.
  • Figure 1 is a schematic structural diagram of the composite microneedle of the present invention.
  • Figure 2 is an enlarged view of part I in Figure 1;
  • Figure 3 is a schematic cross-sectional view of the composite microneedle structure of the present invention.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection.
  • the connection can also be a conflicting connection or an integral connection; for those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features; in the description of the present invention, unless otherwise stated, “plurality”, “several” ” means two or more.
  • this embodiment provides a composite microneedle structure, including a hard needle 1 and a soft needle 2.
  • the soft needle 2 is placed on the upper surface of the hard needle 1.
  • the upper surface of the hard needle 1 is provided with several soft needle fixing parts at intervals along its length direction.
  • the soft needle fixing parts fix the edge of the soft needle 2 to the hard needle 1 .
  • the hard needle 1 has a certain degree of rigidity and can be implanted into the soft tissue of the human body or an animal.
  • the hard needle 1 can be made of silicon material; the soft needle 2 needs to have a certain degree of flexibility, such as silicon nitride or polysilicon.
  • Soft needles 2 are made from materials such as silicon carbide and silicon carbide.
  • the soft needle 2 is laid flat on the upper surface of the hard needle 1, so that the hard needle 1 can drive the soft needle to be implanted into the soft tissue of the human body or animal.
  • the soft needle 2 is implanted, After entering the tissue, the hard needle 1 is pulled out, and the hard needle 1 is separated from the soft needle 2.
  • the soft needle 2 remains in the implanted tissue.
  • the soft needle 2 has a certain degree of flexibility and can expand and contract with the blood vessels in the implanted tissue. The adaptive deformation is carried out, thus avoiding the problem of damage caused by traditional rigid microneedle to the soft tissue of human body or animals.
  • a soft needle fixing piece is provided on the upper surface of the hard needle 1 to fix the soft needle 2 to the hard needle 1. on needle 1.
  • the installation position of the soft needle fixation piece is specifically designed to be on both sides of the soft needle within the entire length of hard needle 1. This will not affect the electrode lead distribution on soft needle 2 on the one hand, and can also It plays a role in preventing possible warping in the middle of the soft needle 2.
  • the soft needle fixer in this embodiment must not only be able to fix the soft needle 2 when the microneedle is implanted into the tissue, so that the hard needle 1 can drive the soft needle 2 to be implanted into the tissue, but also need to be able to be used when the hard needle 1 is pulled out.
  • the soft needle 2 can be easily separated from the hard needle 1, so the optional optimized implementation provides a specific structure of the soft needle fixation piece, as shown in Figures 1 and 2, the soft needle fixation piece is an inverted L-shaped hook 3.
  • the bottom of the inverted L-shaped hook 3 is fixed on the upper surface of the hard needle 1. There is a certain gap between the horizontal section of the inverted L-shaped hook 3 and the upper surface of the hard needle 1.
  • the two soft needles 2 A barb 4 extends horizontally outward from the side edge, and the projection of the inverted L-shaped hook 3 and the barb 4 on the soft needle 2 on the surface of the hard needle 1 at least partially overlaps.
  • the fixation structure of the soft needle 2 and the hard needle 1 is not It will affect the distribution of the electrode leads on the soft needle 2; when the hard needle 1 is pulled out after the soft needle 2 is implanted in the tissue, the barb 4 of the soft needle 2 and the inverted L-shaped hook 3 on the hard needle 1 are simply pressed together.
  • the connection is detachable, and the barb 4 can be detached from the inverted L-shaped hook 3 by applying a certain force, thereby realizing the separation of the soft needle 2 and the hard needle 1, and completing the extraction process of the hard needle 1.
  • the barb 4 and the soft needle 2 are designed as an integrated structure.
  • each inverted L-shaped hook 3 is arranged at equal intervals along the length direction of the hard needle 1.
  • the edges on both sides of the soft needle 2 There are multiple barbs 4, and they are arranged in one-to-one correspondence with the inverted L-shaped hooks 3 on the upper surface of the hard needle 1.
  • each inverted L-shaped hook 3 are designed to be in the same direction, facing the tip of the hard needle 1, so that when the hard needle is pulled out,
  • needle 1 you only need to pull out the hard needle 1 horizontally and backward for a certain distance, so that each barb 4 can be separated from the corresponding inverted L-shaped hook 3, and the fixation between the soft needle 2 and the hard needle 1 is released.
  • the hard needle 1 is pulled down a certain distance, the hard needle 1 and the soft needle 2 are separated, and the hard needle 1 can be withdrawn. There is no need to specially design the decoupling related structure, and the operation is easy.
  • the inverted L-shaped hooks 3 on both sides of the soft needle 2 can be arranged staggered in sequence along the length direction of the hard needle 1, or can also be arranged oppositely. In this implementation, it is preferred that the inverted L-shaped hooks 3 on both sides of the hard needle 1 are arranged symmetrically with respect to the axis of the hard needle 1 .
  • the composite microneedle structure in the above embodiment also includes an integrated circuit chip, and the soft needle 2 has at least one body electrode point, which is used to collect nerve signals; the integrated circuit chip and the soft needle 2 have at least one body electrode point.
  • the tail of the needle 2 is bonded to form an electrical connection, and the integrated circuit chip receives and analyzes the nerve signals collected by the body electrode points.
  • the integrated circuit chip and the microneedle are connected using wires, so that the information collected by the microneedle is transmitted to the integrated circuit chip through the wire.
  • This connection method between the integrated circuit chip and the microneedle has a higher signal transmission speed. It is slow and has low efficiency.
  • the integrated circuit chip and the soft pin 2 are connected by bonding, which reduces the information transmission path and improves the information transmission efficiency.
  • the composite microneedle structure provided by the present invention uses hard needles to drive soft needles to be implanted into the tissue.
  • soft needle fixators are provided along the entire length of the hard needles, which effectively prevents the soft needles from being implanted in the tissue during the process.
  • the middle part of the soft needle is warped and deformed, and after the microneedle is implanted into the tissue, the hard needle can be pulled out, and the soft needle can adapt to the deformation as the blood vessel expands and contracts, which solves the problem that rigid microneedle can easily cause implantation in the existing technology. Damage, and soft microneedles make it difficult for the operator to implant the microneedles into the tissue.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

一种复合微针结构,包括硬针(1)和软针(2),软针(2)置于硬针(1)上表面,硬针(1)上表面沿其长度方向间隔设有至少一个软针固定件,软针固定件将软针(2)边缘固定于硬针(1)上。复合微针结构通过硬针(1)带动软针(2)一同植入组织,同时通过沿硬针(1)整个长度范围内设置软针(2)固定件,有效避免软针(2)在植入组织过程中软针(2)中间发生翘曲变形,并且在微针植入组织后,硬针(1)可拔出,软针(2)可随着血管伸缩而进行适应性形变,解决了现有技术中刚性微针易造成植入性损伤,而软性微针不便于操作者将微针体植入组织内的问题。

Description

一种复合微针结构 技术领域
本发明属于微电极技术领域,具体涉及一种复合微针结构。
背景技术
微电极是指电极的至少一维度的尺寸为微米或纳米级的电极(即<100微米)。已经广泛应用于分析化学、医学研究等领域。人和动物的各种生理机能都直接或间接受脑内神经网络的调控,记录单个神经元放电频率的变化需要微电极采集到较强的电信号,并进行长时间的观察和研究。其中,可长期植入中枢神经系统(CNS)的微电极具有广泛的应用范围。
常用微电极有金属和玻璃两类,金属微电极是一种高强度金属细针,尖端以外的部分用漆或玻璃绝缘,金属电极丝由不锈钢、铂铱合金或碳化钨丝在酸性溶液中电解腐蚀而成,有多种成品可供选择,其缺点是微电极的几何形状与绝缘状态难以保持一致。玻璃微电极由用户根据需要用硬质毛细管拉制而成,用于测量细胞内静息电位和动作电位时,其尖端需小于0.5微米;用于测量细胞外活性区域非活性点电位时,其尖端可为1-5微米。
上面这两种微电极的微针都采用刚性微针,在植入时无法随着血管伸缩而进行适应性形变,这样容易对人体组织或者动物组织造成损伤。而若将微电极的微针完全采用柔性材料制成,在植入组织过程中微针易变形,不便于操作者将微针体植入组织内。
发明内容
本发明的目的是提供一种复合微针结构,至少可以解决现有技术中存在的部分缺陷。
为实现上述目的,本发明采用如下技术方案:
一种复合微针结构,包括硬针和软针,所述软针置于所述硬针上表面, 所述硬针上表面沿其长度方向间隔设有至少一个软针固定件,所述软针固定件将所述软针边缘固定于硬针上。
进一步的,所述硬针采用硅材料制得。
进一步的,所述软针采用氮化硅、多晶硅、碳化硅材料制得。
进一步的,所述软针固定件为倒L型钩,所述倒L型钩底部固定于所述硬针上表面,倒L型钩的水平段与硬针上表面之间留有一定空隙,所述软针两侧边缘水平向外延伸设有倒刺,所述倒L型钩与所述软针的倒刺在所述硬针表面的投影至少存在部分重合。
进一步的,所述倒刺与所述软针一体成型。
进一步的,所述硬针上表面的倒L型钩有多个,各倒L型钩沿硬针长度方向等间距布置,且各倒L型钩的开口朝向相同;所述软针两侧边缘的倒刺有多个,且与所述硬针上表面的倒L型钩一一对应布置。
进一步的,各所述倒L型钩的开口均朝向硬针的针尖。
进一步的,所述硬针两侧的倒L型钩关于硬针的轴线对称布置。
进一步的,所述软针上具有至少一个用于采集神经信号的体电极点。
进一步的,上述复合微针结构还包括集成电路芯片,所述集成电路芯片与所述软针的尾部键合,形成电连接,所述集成电路芯片接收并分析处理所述体电极点采集的神经信号。
与现有技术相比,本发明的有益效果:
本发明提供的这种复合微针结构通过硬针带动软针一同植入组织,同时通过沿硬针整个长度范围内设置软针固定件,有效避免软针在植入组织过程中软针中间发生翘曲变形,并且在微针植入组织后,硬针可拔出,软针可随着血管伸缩而进行适应性形变,解决了现有技术中刚性微针易造成植入性损伤,而软性微针不便于操作者将微针体植入组织内的问题。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1是本发明复合微针结构示意图;
图2是图1中I部放大图;
图3是本发明复合微针结构的剖面示意图。
附图标记说明:1、硬针;2、软针;3、倒L型钩;4、倒刺。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,还可以是抵触连接或一体地连接;对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征;在本发明的描述中,除非另有说明,“多个”、“若干”的含义是两个或两个以上。
如图1、图2和图3所示,本实施例提供了一种复合微针结构,包括硬针1和软针2,所述软针2置于所述硬针1上表面,所述硬针1上表面沿其长度方向间隔设有若干个软针固定件,所述软针固定件将所述软针2边缘 固定于硬针1上。其中,硬针1具有一定刚性,其可以被植入人体或者动物的软组织内,例如可采用硅材料制得硬针1;所述软针2需要具有一定柔性,例如可采用氮化硅、多晶硅、碳化硅等材料制得软针2。
在本实施例中,由于硬针1具有一定刚性,将软针2平铺于硬针1上表面,这样硬针1可以带动软针一同植入人体或动物的软组织内,当软针2植入组织后,再将硬针1拔出,硬针1与软针2分离,软针2留在植入的组织中,软针2具有一定柔性,在植入的组织内可随着血管伸缩而进行适应性形变,从而避免了传统刚性微针对人体或动物的软组织造成损伤的问题。而要保证软针2能随硬针1一同植入组织,需要将软针2与硬针1进行固定,本实施例中在硬针1上表面设置软针固定件将软针2固定于硬针1上,同时对于软针固定件的安装位置具体设计在硬针1整个长度范围内的软针两侧边缘,这样一方面不会影响软针2上的电极引线分布,另一方面还可以起到防止软针2中间可能发生翘曲的作用。
本实施例中的软针固定件既要满足在微针植入组织时,能固定软针2,使硬针1能带动软针2一同植入组织,同时还需要满足在硬针1拔出时,能方便使软针2与硬针1分离,因此可选的优化实施方案提供了软针固定件的一种具体结构,如图1和图2所示,所述软针固定件为倒L型钩3,所述倒L型钩3底部固定于所述硬针1上表面,倒L型钩3的水平段与硬针1上表面之间留有一定空隙,所述软针2两侧边缘水平向外延伸设有倒刺4,所述倒L型钩3与所述软针2上的倒刺4在所述硬针1表面的投影至少存在部分重合。固定软针2时,将软针2两侧边缘的倒刺4压入至倒L型钩3内,从而将软针2与硬针1连接成一整体,实现硬针1带动软针2一同植入组织的目的;并且由于倒L型钩3固定的部位是倒刺4,而倒刺4是由软针2边缘水平向外延伸形成,因而软针2与硬针1的这种固定结构不会影响软针2上电极引线分布;软针2植入组织后再将硬针1拔出时,由于软针2的倒刺4与硬针1上的倒L型钩3只是简单的压合可拆卸连接,只需 对其施加一定作用力即可使倒刺4从倒L型钩3中脱离,从而可实现软针2与硬针1的分离,完成硬针1的拔出过程。优选的,将所述倒刺4与软针2设计为一体成型结构。
进一步优化上述实施方式,所述硬针1上表面的倒L型钩3有多个,各倒L型钩3沿硬针1长度方向等间距布置,相应地,所述软针2两侧边缘的倒刺4有多个,且与所述硬针1上表面的倒L型钩3一一对应布置,这样,对于在硬针1上的软针2而言,可使其在硬针1整个长度范围内进行固定,从而起到防止软针2中间可能发生翘曲的作用;同时,设计各倒L型钩3的开口朝向相同,均朝向硬针1的针尖方向,这样在拔出硬针1时,只需先将硬针1水平向后拔出一定距离,即可实现各倒刺4从相应的倒L型钩3中脱离,软针2与硬针1之间的固定解除,然后再将硬针1向下拉动一定距离,硬针1与软针2实现分离,硬针1即可退出,无需专门设计脱钩相关结构,操作方便。
对于软针2两侧的软针固定件的分布形式,可选的,所述软针2两侧的倒L型钩3沿硬针1长度方向可以依次交错布置,也可相对布置,本实施例中优选硬针1两侧的倒L型钩3关于硬针1的轴线对称布置。
另外,上述实施例中的复合微针结构还包括集成电路芯片,同时所述软针2上具有至少一个体电极点,该体电极点用于采集神经信号;所述集成电路芯片与所述软针2的尾部键合,形成电连接,所述集成电路芯片接收并分析处理所述体电极点采集的神经信号。在传统的微电极结构中,集成电路芯片与微针利用导线进行连接,这样微针采集到的信息经过电线传递给集成电路芯片,集成电路芯片与微针的这种连接方式,其信号传递速度慢,效率低,本实施例中将集成电路芯片与软针2通过键合方式连接,减少了信息的传递路径,提高了信息传递效率。
综上所述,本发明提供的这种复合微针结构通过硬针带动软针一同植入组织,同时通过沿硬针整个长度范围内设置软针固定件,有效避免软针 在植入组织过程中软针中间发生翘曲变形,并且在微针植入组织后,硬针可拔出,软针可随着血管伸缩而进行适应性形变,解决了现有技术中刚性微针易造成植入性损伤,而软性微针不便于操作者将微针体植入组织内的问题。
以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本发明相同或相似的设计均属于本发明的保护范围之内。

Claims (10)

  1. 一种复合微针结构,其特征在于:包括硬针和软针,所述软针置于所述硬针上表面,所述硬针上表面沿其长度方向间隔设有至少一个软针固定件,所述软针固定件将所述软针边缘固定于硬针上。
  2. 如权利要求1所述的复合微针结构,其特征在于:所述硬针采用硅材料制得。
  3. 如权利要求1所述的复合微针结构,其特征在于:所述软针采用氮化硅、多晶硅、碳化硅材料制得。
  4. 如权利要求1所述的复合微针结构,其特征在于:所述软针固定件为倒L型钩,所述倒L型钩底部固定于所述硬针上表面,倒L型钩的水平段与硬针上表面之间留有空隙,所述软针两侧边缘水平向外延伸设有倒刺,所述倒L型钩与所述软针的倒刺在所述硬针表面的投影至少存在部分重合。
  5. 如权利要求4所述的复合微针结构,其特征在于:所述倒刺与所述软针一体成型。
  6. 如权利要求4所述的复合微针结构,其特征在于:所述硬针上表面的倒L型钩有多个,各倒L型钩沿硬针长度方向等间距布置,且各倒L型钩的开口朝向相同;所述软针两侧边缘的倒刺有多个,且与所述硬针上表面的倒L型钩一一对应布置。
  7. 如权利要求6所述的复合微针结构,其特征在于:各所述倒L型钩的开口均朝向硬针的针尖。
  8. 如权利要求6所述的复合微针结构,其特征在于:所述硬针两侧的倒L型钩关于硬针的轴线对称布置。
  9. 如权利要求1~8任一项所述的复合微针结构,其特征在于:所述软针上具有至少一个用于采集神经信号的体电极点。
  10. 如权利要求9所述的复合微针结构,其特征在于:还包括集成电路芯片,所述集成电路芯片与所述软针的尾部键合,形成电连接,所述集成电路芯片接收并分析处理所述体电极点采集的神经信号。
PCT/CN2022/127284 2022-06-15 2022-10-25 一种复合微针结构 WO2023240874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210672922.1 2022-06-15
CN202210672922.1A CN115153565B (zh) 2022-06-15 2022-06-15 一种复合微针结构

Publications (1)

Publication Number Publication Date
WO2023240874A1 true WO2023240874A1 (zh) 2023-12-21

Family

ID=83484781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127284 WO2023240874A1 (zh) 2022-06-15 2022-10-25 一种复合微针结构

Country Status (2)

Country Link
CN (1) CN115153565B (zh)
WO (1) WO2023240874A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115153565B (zh) * 2022-06-15 2024-03-12 武汉衷华脑机融合科技发展有限公司 一种复合微针结构
CN115281682B (zh) * 2022-07-25 2024-06-14 武汉衷华脑机融合科技发展有限公司 一种复合微针结构及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331935A1 (en) * 2009-05-01 2010-12-30 Phillipe Tabada Rigid Spine Reinforced Polymer Microelectrode Array Probe and Method of Fabrication
CN102499666A (zh) * 2011-10-17 2012-06-20 上海交通大学 神经刚柔结构微电极
CN107473175A (zh) * 2017-08-15 2017-12-15 薛宁 一种基于多孔硅和聚合物的神经电极及其制作工艺和应用
CN113855031A (zh) * 2021-09-18 2021-12-31 浙江清华柔性电子技术研究院 柔性微针电极及其制备方法
CN115153565A (zh) * 2022-06-15 2022-10-11 武汉衷华脑机融合科技发展有限公司 一种复合微针结构

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738968B2 (en) * 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US7643884B2 (en) * 2005-01-31 2010-01-05 Warsaw Orthopedic, Inc. Electrically insulated surgical needle assembly
US20130150931A1 (en) * 2011-07-25 2013-06-13 Daryl R. Kipke Distributed neural stimulation array system
US10214001B2 (en) * 2012-02-03 2019-02-26 Lawrence Livermore National Security, Llc Rigid stiffener-reinforced flexible neural probes, and methods of fabrication using wicking channel-distributed adhesives and tissue insertion and extraction
US20130211485A1 (en) * 2012-02-13 2013-08-15 Agency For Science, Technology And Research Probe Device and a Method of Fabricating the Same
TWI630934B (zh) * 2015-10-14 2018-08-01 瑞典商神經毫微股份有限公司 移植醫藥設備到神經組織中的方法以及設備
WO2018110510A1 (ja) * 2016-12-12 2018-06-21 株式会社メドレックス マイクロニードル貼付剤
CN106667475B (zh) * 2016-12-20 2019-05-07 国家纳米科学中心 一种植入式柔性神经微电极梳及其制备方法和植入方法
US20200261025A1 (en) * 2017-09-08 2020-08-20 Board Of Regents, The University Of Texas System System and method for making and implanting high-density electrode arrays
US20210093307A1 (en) * 2019-09-30 2021-04-01 Cook Medical Technologies Llc Internally barbed biopsy stylet and system
WO2021096403A1 (en) * 2019-11-13 2021-05-20 Neuronano Ab Medical proto microelectrode, method for its manufacture, and use thereof
CN211534712U (zh) * 2020-01-15 2020-09-22 林艳 一次性安全内瘘套管穿刺针
CN114209333A (zh) * 2021-12-31 2022-03-22 武汉衷华脑机融合科技发展有限公司 一种用于神经接口的微针
CN114469117A (zh) * 2022-02-25 2022-05-13 武汉衷华脑机融合科技发展有限公司 一种带有可降解涂层的神经接口
CN114343654A (zh) * 2022-02-25 2022-04-15 武汉衷华脑机融合科技发展有限公司 一种柔性微针结构
CN114469110A (zh) * 2022-03-10 2022-05-13 武汉衷华脑机融合科技发展有限公司 一种连接线结构
CN217938220U (zh) * 2022-06-15 2022-12-02 武汉衷华脑机融合科技发展有限公司 一种mems微针
CN115500832B (zh) * 2022-08-24 2024-04-02 武汉衷华脑机融合科技发展有限公司 一种复合微针结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331935A1 (en) * 2009-05-01 2010-12-30 Phillipe Tabada Rigid Spine Reinforced Polymer Microelectrode Array Probe and Method of Fabrication
CN102499666A (zh) * 2011-10-17 2012-06-20 上海交通大学 神经刚柔结构微电极
CN107473175A (zh) * 2017-08-15 2017-12-15 薛宁 一种基于多孔硅和聚合物的神经电极及其制作工艺和应用
CN113855031A (zh) * 2021-09-18 2021-12-31 浙江清华柔性电子技术研究院 柔性微针电极及其制备方法
CN115153565A (zh) * 2022-06-15 2022-10-11 武汉衷华脑机融合科技发展有限公司 一种复合微针结构

Also Published As

Publication number Publication date
CN115153565B (zh) 2024-03-12
CN115153565A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2023240874A1 (zh) 一种复合微针结构
Dai et al. Mesh nanoelectronics: seamless integration of electronics with tissues
Zhao et al. Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays
US8423143B2 (en) Probe device for electrical stimulation and recording of the activity of excitable cells
Caravaca et al. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve
CN101884530A (zh) 用于记录神经活动电信号的柔性探针电极及其植入工具
CN115153566A (zh) 一种微电极结构及其制作方法
CN114343654A (zh) 一种柔性微针结构
US8918186B2 (en) Device with flexible multilayer system for contacting or electrostimulation of living tissue cells or nerves
US4219027A (en) Subcutaneous electrode structure
WO2024021325A1 (zh) 一种复合微针结构及其制备方法
CN115500832B (zh) 一种复合微针结构
Poppendieck et al. Development, manufacturing and application of double-sided flexible implantable microelectrodes
CN204767032U (zh) 一种柔性神经微电极阵列
CN217938220U (zh) 一种mems微针
US8060217B2 (en) Neural device using at least one nano-wire
WO2024040732A1 (zh) 一种定位隔板和面阵式微针结构
US20160059005A1 (en) Paddle leads configured for suture fixation
WO2024021326A1 (zh) 一种复合微针结构及神经微电极
CN115500831A (zh) 一种基于集成电路芯片的复合微针结构
US20190254546A1 (en) Neural multielectrode arrays and their manufacture and use
CN217793074U (zh) 一种柔性微针结构
Suenson Ephaptic impulse transmission between ventricular myocardial cells in vitro
WO2024021324A1 (zh) 一种复合微针结构及其制备方法
CN114515152B (zh) 一种植入式微针的辅助装置及微针植入系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946545

Country of ref document: EP

Kind code of ref document: A1