WO2013131261A1 - 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构 - Google Patents

柔性颅内皮层微电极芯片及其制备和封装方法及封装结构 Download PDF

Info

Publication number
WO2013131261A1
WO2013131261A1 PCT/CN2012/072075 CN2012072075W WO2013131261A1 WO 2013131261 A1 WO2013131261 A1 WO 2013131261A1 CN 2012072075 W CN2012072075 W CN 2012072075W WO 2013131261 A1 WO2013131261 A1 WO 2013131261A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
microelectrode
layer
cranial
chip
Prior art date
Application number
PCT/CN2012/072075
Other languages
English (en)
French (fr)
Inventor
于喆
张红治
谢雷
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2012/072075 priority Critical patent/WO2013131261A1/zh
Publication of WO2013131261A1 publication Critical patent/WO2013131261A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0531Brain cortex electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]

Definitions

  • the invention relates to the field of medical equipment, in particular to a flexible cranial endothelial layer microelectrode chip, and a preparation method of a flexible cranial endothelial layer microelectrode chip, a flexible cranial endothelial layer microelectrode chip packaging method, The package structure of the flexible cranial endothelial microelectrode chip.
  • EEG epilepsy
  • Epilepsy is caused by excitatory or inhibitory failure of a neuron in a certain area of the brain, causing limb convulsions or abnormal behavior.
  • Clinical studies have shown that patients have specific changes in EEG before seizures or near-onset, and EEG is now an irreplaceable standard method for clinical diagnosis and related research of epilepsy.
  • EEG signals there are two main methods for collecting EEG signals: one is the collection of cerebral EEG, and the other is the collection of EEG in the cranial endothelium.
  • the so-called scalp brain electrical collection is to place multiple electrodes on the surface of the patient's scalp to collect EEG signals.
  • the advantage of this method is non-invasive, long-term use, and easy to operate.
  • the disadvantage is that the scalp is far from the cerebral cortex, and the skull, soft tissue, etc. are filtered out.
  • Gamma The frequency segment information makes the spatial resolution and the information factors contained in the signal relatively limited, the signal-to-noise ratio is very low, and the difficulty in the post-processing algorithm is relatively large, and there are many interference factors, and the artifacts are large.
  • intracranial EEG acquisition methods are used.
  • the so-called intracranial EEG collection is to use local anesthesia and analgesia, skull drilling, and place special electrodes on the surface of the cerebral cortex to record EEG.
  • the advantages of this acquisition method are relatively simple operation, high spatial resolution, wide signal frequency band, high signal-to-noise ratio, large area covered by electrodes, less interference factors and low attenuation.
  • the intracranial The spatial resolution of the EEG monitoring electrode ie the distance between adjacent electrodes
  • the cranial endothelial layer EEG monitoring electrode array currently used in clinical practice has a large scale, the electrode diameter is about 3.5 mm, and the distance between adjacent electrodes reaches 10 mm. Therefore, it restricts the spatial resolution of brain electrical information acquisition in the cranial endothelium.
  • the density of the cell array can be greatly increased to the micrometer scale.
  • a flexible cranial endothelial layer microelectrode chip comprising a flexible substrate, a microelectrode unit, an electrode lead electrically connected to the microelectrode unit, and a wire bonding point electrically connected to the electrode lead, the microelectrode unit and the electrode Lead wires and lead solder joints are disposed on the flexible substrate, and the flexible cranial endothelial layer microelectrode chip further includes an insulating layer disposed on the flexible substrate and covering the electrode leads.
  • the flexible substrate and the insulating layer are made of polydimethylsiloxane.
  • the microelectrode unit, the electrode lead and the wire bonding point are made of an alloy or a compound of one or more of gold, platinum, titanium, tantalum and chromium.
  • a method for preparing a flexible cranial endothelial layer microelectrode chip comprises the following steps: Step 1: forming a layer of polydimethylsiloxane on a rigid substrate to form a flexible substrate; and step 2, forming a microelectrode on the flexible substrate a unit, an electrode lead, and a wire bonding point, the electrode lead electrically connecting the microelectrode unit and the wire bonding point; and step 3, providing a layer of polydimethylsiloxane on the flexible substrate to form an insulating layer, and An opening is formed at a position of the microelectrode unit and the lead pad of the insulating layer to expose the microelectrode unit and the lead pad; and in step 4, the flexible substrate and the rigid substrate are separated.
  • the microelectrode unit, the electrode lead and the wire bonding point are made of an alloy or a compound of one or more of gold, platinum, titanium, tantalum and chromium.
  • the second step comprises: depositing a conductive film on the flexible substrate; forming a photoresist pattern on the conductive film to form the microelectrode unit, the electrode lead and the lead solder joint; The photoresist pattern is etched and removed to form the microelectrode unit, electrode leads, and wire bond pads.
  • the third step is to remove the insulating layer forming opening at the position of the microelectrode unit and the wire bonding point by laser cutting.
  • the second step comprises: photolithographically forming the microelectrode unit, the electrode lead and the reversed photoresist pattern of the wire bonding point on the flexible substrate as a first photoresist sacrificial layer; Forming a conductive film on the substrate; removing the first photoresist sacrificial layer, the portion of the conductive film on the sacrificial layer of the first photoresist being stripped together to form the microelectrode unit, Electrode leads and lead pads.
  • the step 3 comprises: photolithography on the flexible substrate to form a second photoresist sacrificial layer on the surface of the microelectrode unit and the lead pad; and placing a layer of poly on the flexible substrate Methyl siloxane forms the insulating layer; the second photoresist sacrificial layer is removed, and a portion of the insulating layer on the sacrificial layer of the second photoresist is peeled off together to form the opening.
  • the thickness of the sacrificial layer of the second photoresist is greater than the thickness of the insulating layer.
  • the step 3 comprises: disposing a layer of light-sensitive polydimethylsiloxane on the flexible substrate to form an insulating layer, and photolithography, at the position of the microelectrode unit and the lead pad of the insulating layer The opening is formed.
  • a package structure of a flexible cranial endothelial layer microelectrode chip comprising a flexible cranial endothelial layer microelectrode chip, a flexible printed circuit board, a sleeve and a cylinder;
  • the flexible printed circuit board is provided with one end of the solder joint a first solder joint electrically connected, the other end being provided with a second solder joint for electrically connecting an external circuit, the first solder joint electrically connecting the second solder joint;
  • the flexible printed circuit board is wound on the a side surface of the cylinder; an outer diameter of the cylinder is matched with an inner diameter of the sleeve, and a cylinder wound with the flexible printed circuit board is fitted into the sleeve and formed to be fixed.
  • the cylinder is a cylindrical structure
  • the sleeve comprises a first collar and a second collar which are connected to each other and have the same inner diameter, and the outer diameter of the first collar is larger than the outer diameter of the second collar path.
  • a method for packaging a flexible cranial endothelial layer microelectrode chip comprising the steps of: fabricating a flexible printed circuit board having a first solder joint for electrically connecting the lead solder joints at one end and the other end Providing a second solder joint for electrically connecting an external circuit; pressing the lead solder joint to the first solder joint for electrical connection; providing a pillar, and winding the flexible printed circuit board a side surface of the cylinder; a sleeve is provided, and a cylinder wound with the flexible printed circuit board is loaded into the sleeve and formed to be fixed.
  • the cylinder is a cylindrical structure
  • the sleeve comprises a first collar and a second collar which are connected to each other and have the same inner diameter, and the outer diameter of the first collar is larger than the outer diameter of the second collar path.
  • the flexible cranial endothelial microelectrode chip Compared with the traditional rigid electrode chip, the flexible cranial endothelial microelectrode chip has good flexibility and can form a good fit with the cerebral cortex, ensuring the degree of space matching between the electrode and the cerebral cortex, and realizing effective information transmission (including information detection). And applying electrical stimulation). It can achieve better flexibility matching with the cerebral cortex, and effectively reduce the attenuation of the electrode performance in the long-term implantation process. And compared with the rigid chip, it is not easy to cause tissue damage, inflammatory reaction, scarring, bleeding and the like.
  • FIG. 1 is a schematic view of a flexible cranial endothelial layer microelectrode chip in an embodiment
  • Figure 2 is a cross-sectional view taken along the dotted line 6 shown in Figure 1;
  • Figure 3 is a cross-sectional view taken along the dotted line 7 shown in Figure 1;
  • FIG. 4 is a flow chart showing a method of preparing a flexible cranial endothelial layer microelectrode chip in an embodiment
  • FIG. 5 is a flow chart showing a method of preparing a flexible cranial endothelial layer microelectrode chip in another embodiment
  • FIG. 6 is a flow chart showing a method of preparing a flexible cranial endothelial layer microelectrode chip in still another embodiment
  • Figure 7 is a schematic view of a flexible printed circuit board in an embodiment
  • Figure 8 is a schematic view of a sleeve and a cylinder in an embodiment
  • FIG. 9 is a packaging effect diagram of a package structure of a flexible cranial endothelial layer microelectrode chip in an embodiment
  • FIG. 10 is a schematic view showing the packaging structure of the flexible cranial endothelial microelectrode chip shown in FIG. 9 fixed on the skull;
  • Figure 11 is a flow chart showing a method of encapsulating a flexible cranial endothelial layer microelectrode chip in an embodiment.
  • FIG. 1 is a schematic view of a flexible cranial endothelial microelectrode chip in an embodiment, the flexible cranial endothelial microelectrode chip 13 comprising a flexible substrate 1
  • Microelectrode unit 3, electrode lead 4 And the wire bonding points 5 are all disposed on the flexible substrate 1, and the insulating layer 2 is disposed on the flexible substrate 1 and covers the electrode leads 4.
  • a plurality of microelectrode cells 3 are arranged in a matrix to form a microelectrode array.
  • Microelectrode unit 3 It may be a microelectrode detection unit having an EEG signal extraction function, or a microelectrode stimulation unit having an electrical stimulation function applied thereto, or a microelectrode detection and stimulation unit having both an EEG signal extraction function and an electrical stimulation function.
  • the above flexible cranial endothelial layer microelectrode chip 13 Compared with the traditional rigid electrode chip, it has good flexibility and can form a good fit with the cerebral cortex, ensuring the degree of space matching between the electrode and the cerebral cortex, and realizing the effective transmission of information. It can achieve better flexibility matching with the cerebral cortex, and effectively reduce the attenuation of the electrode performance in the long-term implantation process. And compared with the rigid chip, it is not easy to cause tissue damage, inflammatory reaction, scarring, bleeding and the like.
  • a polymer material polyimide is used, and a soft and bendable microelectrode array is developed for monitoring intracranial EEG using a microelectromechanical system processing technique.
  • the polyimide film cannot be stretched and folded, and the degree of local tolerance is less than 1% .
  • the researchers have improved the flexibility of the microelectrode array by continuously reducing the thickness of the polyimide film, but this has increased the processing difficulty of the electrode, and the processing size of the electrode has to be increased due to the limitation of the process, thereby causing the electrode.
  • the resolution is reduced, and the clinically used flexible cranial endothelial electrode can only reach The spatial resolution of 3mm-1cm horizontally, and the thinning of the thickness of the polyimide substrate, also reduces the mechanical strength and operability of the microelectrode array.
  • the flexible substrate 1 and the insulating layer 2 are made of polydimethylsiloxane ( Polydimethylsiloxane , PDMS ).
  • Polydimethylsiloxane has good flexibility and deformation ability, and can achieve 90% one-dimensional deformation and 20% while ensuring micro-scale processing precision and spatial resolution of microelectrode array.
  • the two-dimensional deformation therefore, does not have to sacrifice the thickness of the substrate to achieve good flexibility, ensure the processing accuracy of the flexible electrode array, can realize the monitoring and stimulation of EEG information with micro-scale spatial resolution, and achieve good electronic interface and cerebral cortex. Anastomosed and attached.
  • good flexibility matching with the cerebral cortex can effectively reduce the risk of damage to the brain tissue during long-term implantation of the chip, and maintain the long-term stability of the chip performance.
  • the chip maintains good electrical properties under conditions of folding, twisting and stretching, thereby improving the operability of the implant, achieving minimally invasive and reducing the risk of surgery.
  • Microelectrode unit 3 electrode lead 4 and lead solder joint 5
  • the material may be an alloy or a compound of one or more of gold, platinum, titanium, rhodium, and chromium.
  • Figure 2 is a cross-sectional view taken along line 6 of Figure 1
  • Figure 3 is a broken line along Figure 1. Cutaway view.
  • the microelectrode unit 3 and the lead pad 5 are exposed to the outside, and the surface is not provided with the insulating layer 2 .
  • the microelectrode array contains 12 microelectrode units 3 arranged in 4*3 Matrix.
  • the wire bonding points 5 correspond to the microelectrode unit 3 in one-to-one correspondence.
  • the microelectrode array is in direct contact with the intracranial cerebral cortex to extract EEG signals or to apply electrical stimulation.
  • Wire solder joint 5 It is used to realize the electrical connection between the flexible cranial endothelial microelectrode chip 13 and the flexible printed circuit board, which will be described in detail below. Due to the microelectrode unit 3 and the lead solder joint 5 The intracranial cerebral cortex and the external circuit are connected separately, so that the upper opening is not provided with the insulating layer 2 structure.
  • FIG. 4 is a flow chart of a method for preparing a flexible cranial endothelial layer microelectrode chip according to an embodiment, comprising the following steps:
  • the rigid substrate can be made of glass, silicon wafer, etc., and mainly serves as a support.
  • the rigid substrate is made of a silicon wafer (which may be in any crystal orientation), and the polydimethylsiloxane is disposed on the surface of the silicon wafer by spin coating.
  • Change There are two main methods for changing the thickness of the flexible substrate 1 : one is to change the spin coating speed, and the other is to change the concentration of the polydimethylsiloxane.
  • the electrode lead 4 electrically connects the microelectrode unit 3 and the lead pad 5.
  • the insulating layer 2 can also be set by spin coating, the insulating layer 2
  • the thickness can also be adjusted by changing the spin coating speed or changing the concentration of polydimethylsiloxane.
  • a method for preparing a flexible cranial endothelial layer microelectrode chip specifically includes the following steps:
  • the flexible substrate 1 has a thickness of 200 ⁇ m.
  • the conductive film is made of a metal, an alloy or a metal compound.
  • the deposition may be specifically performed by a magnetron sputtering process, and the conductive film is a gold film having a thickness of 40 nm.
  • the gold etching solution is used to etch the gold to form a pattern, and the photoresist is used to block the corrosion, and the microelectrode unit 3 and the electrode lead are retained. 4 and the soldered portion of the solder joint 5, the remaining part of the gold is etched away. After the etching is completed, the photoresist pattern is removed to obtain a desired microelectrode unit 3, electrode leads 4, and lead pads 5 .
  • the insulating layer 2 has a thickness of 10 ⁇ m.
  • FIG. 6 is a flow chart of a method for preparing a flexible cranial endothelial layer microelectrode chip according to still another embodiment, and FIG. 5
  • the main difference of the illustrated embodiment is the use of a lift-off process. Includes the following steps:
  • the flexible substrate 1 has a thickness of 200 ⁇ m.
  • the reverse photoresist pattern serves as a sacrificial layer of the first photoresist.
  • the conductive film is made of a metal, an alloy or a metal compound.
  • the deposition may specifically adopt a process of electron beam evaporation, and the conductive film is a titanium film with a thickness of 40 nm. .
  • the thickness of the first photoresist sacrificial layer should be greater than the thickness of the conductive film.
  • a layer of polydimethylsiloxane is formed on the flexible substrate to form an insulating layer 2 .
  • the thickness of the polydimethylsiloxane should be much lower than the thickness of the sacrificial layer of the second photoresist, that is, the sacrificial layer of the second photoresist should be a thick photoresist.
  • step S130 is to provide a layer of light-sensitive polydimethylsiloxane on the flexible substrate 1 ( Photopatternable PDMS ) forms an insulating layer 2 and lithography using light-sensitive polydimethylsiloxane as a photoresist, microelectrode unit 3 and lead pad 5 in insulating layer 2 An opening is formed at the position to expose the microelectrode unit 3 and the lead pad 5.
  • the invention also provides a package structure of a flexible cranial endothelial layer microelectrode chip, comprising the above flexible cranial endothelial layer microelectrode chip 13 , flexible printed circuit board 8, sleeve 11 and cylinder 12, their respective structure, please refer to Figure 7 and Figure 8.
  • the flexible printed circuit board 8 has a first solder joint electrically connected to the lead solder joint 5 at one end 10, the other end is provided with a second solder joint 9 for electrically connecting an external circuit.
  • the first solder joint 10 is electrically connected to the second solder joint 9 .
  • a flexible printed circuit board connected to the microelectrode chip 13 8 The roller is disposed on the side of the cylinder 12, the outer diameter of the cylinder 12 is matched with the inner diameter of the sleeve 11, and the cylinder 12 on which the flexible printed circuit board 8 is wound is loaded into the sleeve 11 and fixed. See Figure 10 The sleeve 11 is fixed to the skull 15 and the microelectrode array region 14 formed by the array of microelectrodes is directly in contact with the intracranial cerebral cortex 16.
  • the cylinder 12 is of a cylindrical configuration.
  • the sleeve 11 includes a first collar 112 that is interconnected and has the same inner diameter 112 And the second collar 114, the outer diameter of the first collar 112 is greater than the outer diameter of the second collar 114, and the height of the first collar 112 is lower than the height of the second collar 114.
  • First set of rings 112 and second set of rings 114 The different outer diameters are set to form a resisting structure. After opening the hole on the skull 15, only the second set of rings 114 extends into the hole.
  • the first set of rings 112 Due to the large outer diameter, it is at the edge of the hole.
  • FIG. 11 is a flow chart of a method for packaging a flexible cranial endothelial layer microelectrode chip according to an embodiment, comprising the following steps:
  • the flexible printed circuit board 8 has a rectangular structure with a first solder joint for electrically connecting the wire bonding pads 5 at one end 10 The other end is provided with a second solder joint 9 for electrically connecting an external circuit.
  • a cylinder 12 is provided, and the flexible printed circuit board 8 is wound on the side of the cylinder 12.
  • the first solder joint 10 and the second solder joint 9 are respectively located in the cylinder 12 Upper and lower.
  • the package structure of the obtained micro-electrode chip of the flexible cranial endothelial layer is as shown in FIG. 9 . Shown. In actual use, the package structure needs to be fixed on the skull, as shown in FIG.
  • the package structure of the obtained micro-electrode chip of the flexible cranial endothelial layer is as shown in FIG. 9 . Shown. In actual use, the package structure needs to be fixed on the skull, as shown in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Psychology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种柔性颅内皮层微电极芯片(13),包括柔性基底(1),微电极单元(3),与微电极单元(3)电连接的电极引线(4),以及与电极引线(4)电连接的引线焊点(5),微电极单元(3)、电极引线(4)以及引线焊点(5)均设于柔性基底(1)上,柔性颅内皮层微电极芯片(13)还包括设于柔性基底(1)上并覆盖电极引线(4)的绝缘层(2)。一种柔性颅内皮层微电极芯片(13)的制备方法,一种柔性颅内皮层微电极芯片(13)的封装结构及封装方法。该柔性颅内皮层微电极芯片(13)柔韧性好,可以与大脑皮层形成良好的贴合,实现信息检测和施加电刺激。可以与大脑皮层实现更好的柔性匹配,在长期植入过程中,有效降低机体反应对电极性能的衰减作用,且不易引起组织损伤、炎症反应、结痂、出血等情况。

Description

柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
【技术领域】
本发明涉及医疗设备领域,特别是涉及一种柔性颅内皮层微电极芯片,还涉及一种柔性颅内皮层微电极芯片的制备方法,一种柔性颅内皮层微电极芯片的封装方法,一种柔性颅内皮层微电极芯片的封装结构。
【背景技术】
人体大脑在正常的生理情况下,其表面会产生微弱的放电并具有一定的模式。当大脑出现病理变化时,其放电模式会发生改变。临床上,通过观察这些放电模式的改变,可以对疾病进行诊断和治疗。目前应用脑电进行诊断和治疗最广泛的疾病就是癫痫病。癫痫是由于大脑中某个区域神经元发生兴奋性异常或者抑制性失效而引起患者出现肢体抽搐或意识行为异常。临床研究表明,患者在癫痫发作或者临近发作之前,脑电会出现特异性变化,脑电图现在已成为癫痫临床诊疗和相关研究无可替代的标准方法。
目前,关于脑电信号的采集主要有两种方法:一种是头皮脑电的采集,另外一种是颅内皮层脑电的采集。所谓头皮脑电的采集,就是将多个电极放置在患者头皮表面采集脑电信号。这种方法的优点是无创,可以长期使用,操作简单方便。缺点是头皮距离大脑皮层较远,颅骨、软组织等滤掉了 gamma 频率段信息,使得空间分辨率和信号所包含的信息因素都相对有限,信噪比很低,在后期处理算法中困难比较大,并且存在诸多干扰因素,伪差大。为了获得高保真性的脑电信号,就要采用颅内脑电采集的方法。所谓颅内脑电采集,就是要通过局部麻醉镇痛,颅骨钻孔,将特制的电极放置于大脑皮层表面,记录脑电。这种采集方式的优点是操作相对简单,空间分辨率较高,信号频段宽,信噪比较高,电极覆盖的面积较大,干扰因素少,衰减小。
临床研究和分析表明,针对人体大脑皮层的尺寸和结构,为了获得最佳的 EEG 监测数据和分析结果,所采用的颅内 EEG 监测电极的空间分辨率(也就是相邻电极之间的距离)需要达到 0.125mm 的精度。然而受到加工工艺的制约,目前临床所采用的颅内皮层脑电监测电极阵列尺度较大,电极直径大约为 3.5mm 左右,相邻电极之间距离达到 10mm ,因而制约了颅内皮层脑电信息采集的空间分辨率。尽管基于传统的微加工技术可以大规模集成多个单元,单元阵列的密度也可以大幅提升到微米尺度。然而,传统的微加工技术是基于刚性材料的基础之上;而采用刚性电极芯片采集颅内皮层脑电,存在几个方面的问题: 1 、刚性电子器件与柔软的大脑皮层之间存在巨大的柔性差异,如果长期植入,由于电子器件微小扰动可能引起神经组织损伤、出现炎症反应、结痂甚至大脑出血; 2 、与此同时,随着时间的推移,这种巨大的柔性差异会引起生物组织对刚性电子器件进行包裹,从而使器件的性能逐渐丧失; 3 、刚性电子器件的平面结构与大脑皮层的复杂曲面结构有着很大的差异,影响电子接口与神经组织的空间吻合程度,进而影响信息的有效传递; 4 、刚性电子器件植入,需要对患者进行全身麻醉的情况下,采取骨瓣开颅,创口较大,手术风险增加。
【发明内容】
基于此,有必要发展一种基于柔性材料的微加工技术,提供一种柔性颅内皮层微电极芯片,实现毫米以下尺度空间分辨率的颅内皮层脑电监测和施加电刺激。
一种柔性颅内皮层微电极芯片,包括柔性基底,微电极单元,与所述微电极单元电连接的电极引线,以及与所述电极引线电连接的引线焊点,所述微电极单元、电极引线以及引线焊点均设于所述柔性基底上,所述柔性颅内皮层微电极芯片还包括设于所述柔性基底上并覆盖所述电极引线的绝缘层。
优选的,所述柔性基底和绝缘层的材质为聚二甲基硅氧烷。
优选的,所述微电极单元、电极引线及引线焊点的材质为金、铂、钛、铱、铬中的一种或者几种的合金或化合物。
还有必要提供一种柔性颅内皮层微电极芯片的制备方法。
一种柔性颅内皮层微电极芯片的制备方法,包括下列步骤:步骤一,在刚性基底上设置一层聚二甲基硅氧烷形成柔性基底;步骤二,在所述柔性基底上形成微电极单元、电极引线以及引线焊点,所述电极引线将所述微电极单元和引线焊点电连接;步骤三,在所述柔性基底上设置一层聚二甲基硅氧烷形成绝缘层,并在所述绝缘层的微电极单元和引线焊点位置处形成开口,露出所述微电极单元和引线焊点;步骤四,将所述柔性基底和刚性基底分离。
优选的,所述微电极单元、电极引线及引线焊点的材质为金、铂、钛、铱、铬中的一种或者几种的合金或化合物。
优选的,所述步骤二包括:在所述柔性基底上淀积一层导电薄膜;在所述导电薄膜上光刻形成所述微电极单元、电极引线以及引线焊点的光刻胶图案;湿法刻蚀并去除所述光刻胶图案,形成所述微电极单元、电极引线以及引线焊点。
优选的,所述步骤三是通过激光切割的方式去除所述微电极单元和引线焊点位置处的绝缘层形成开口。
优选的,所述步骤二包括:在所述柔性基底上光刻形成所述微电极单元、电极引线以及引线焊点的反转光刻胶图案作为第一光刻胶牺牲层;在所述柔性基底上淀积形成一层导电薄膜;去除所述第一光刻胶牺牲层,所述导电薄膜位于所述第一光刻胶牺牲层上的部分被一并剥离,形成所述微电极单元、电极引线以及引线焊点。
优选的,所述步骤三包括:在所述柔性基底上光刻,从而在所述微电极单元和引线焊点表面形成第二光刻胶牺牲层;在所述柔性基底上设置一层聚二甲基硅氧烷形成所述绝缘层;去除所述第二光刻胶牺牲层,所述绝缘层位于所述第二光刻胶牺牲层上的部分被一并剥离,形成所述开口。
优选的,所述第二光刻胶牺牲层的厚度大于所述绝缘层的厚度。
优选的,所述步骤三包括:在所述柔性基底上设置一层光敏感聚二甲基硅氧烷形成绝缘层,并光刻,在所述绝缘层的微电极单元和引线焊点位置处形成所述开口。
还有必要提供一种柔性颅内皮层微电极芯片的封装结构。
一种柔性颅内皮层微电极芯片的封装结构,包括柔性颅内皮层微电极芯片、柔性印制电路板、套筒以及柱体;所述柔性印制电路板一端设有与所述引线焊点电连接的第一焊点,另一端设有用于电连接外部电路的第二焊点,所述第一焊点电连接所述第二焊点;所述柔性印制电路板卷设于所述柱体的侧面;所述柱体的外径与所述套筒的内径相匹配,卷设有所述柔性印制电路板的柱体装入所述套筒内并形成固定。
优选的,所述柱体为圆柱结构,所述套筒包括相互连接且内径相同的第一套环和第二套环,所述第一套环的外径大于所述第二套环的外径。
还有必要提供一种柔性颅内皮层微电极芯片的封装方法。
一种柔性颅内皮层微电极芯片的封装方法,包括下列步骤:制作柔性印制电路板,所述柔性印制电路板一端设有用于电连接所述引线焊点的第一焊点,另一端设有用于电连接外部电路的第二焊点;将所述引线焊点压合在所述第一焊点上实现电连接;提供一柱体,将所述柔性印制电路板卷设于所述柱体的侧面;提供一套筒,将卷设有所述柔性印制电路板的柱体装入所述套筒内并形成固定。
优选的,所述柱体为圆柱结构,所述套筒包括相互连接且内径相同的第一套环和第二套环,所述第一套环的外径大于所述第二套环的外径。
上述柔性颅内皮层微电极芯片相对于传统的刚性电极芯片,柔韧性好,可以与大脑皮层形成良好的贴合,保证了电极与大脑皮层的空间吻合程度,实现信息的有效传递(包括信息检测和施加电刺激)。可以与大脑皮层实现更好的柔性匹配,在长期植入过程中,有效降低机体反应对电极性能的衰减作用。且相对于刚性芯片,不易引起组织损伤、炎症反应、结痂、出血等情况。
【附图说明】
图 1 是一实施例中柔性颅内皮层微电极芯片的示意图;
图 2 是沿图 1 所示虚线 6 的剖视图;
图 3 是沿图 1 所示虚线 7 的剖视图;
图 4 是一实施例中柔性颅内皮层微电极芯片的制备方法的流程图;
图 5 是另一实施例中柔性颅内皮层微电极芯片的制备方法的流程图;
图 6 是再一实施例中柔性颅内皮层微电极芯片的制备方法的流程图;
图 7 是一实施例中柔性印制电路板的示意图;
图 8 是一实施例中套筒及柱体的示意图;
图 9 是一实施例中柔性颅内皮层微电极芯片的封装结构的封装效果图;
图 10 是图 9 所示柔性颅内皮层微电极芯片的封装结构固定在颅骨上的示意图;
图 11 是一实施例中柔性颅内皮层微电极芯片的封装方法的流程图。
【具体实施方式】
为使本发明的目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
图 1 是一实施例中柔性颅内皮层微电极芯片的示意图,柔性颅内皮层微电极芯片 13 包括柔性基底 1 ,绝缘层 2 ,微电极单元 3 ,与微电极单元 3 电连接的电极引线 4 ,以及与电极引线 4 电连接的引线焊点 5 。微电极单元 3 、电极引线 4 以及引线焊点 5 均设于柔性基底 1 上,绝缘层 2 设于柔性基底 1 上并覆盖电极引线 4 。多个微电极单元 3 按矩阵的形式排列形成微电极阵列。微电极单元 3 可以是具有脑电信号提取功能的微电极检测单元、或者具有施加电刺激功能的微电极刺激单元,或者兼具脑电信号提取功能和施加电刺激功能的微电极检测和刺激单元。
上述柔性颅内皮层微电极芯片 13 相对于传统的刚性电极芯片,柔韧性好,可以与大脑皮层形成良好的贴合,保证了电极与大脑皮层的空间吻合程度,实现信息的有效传递。可以与大脑皮层实现更好的柔性匹配,在长期植入过程中,有效降低机体反应对电极性能的衰减作用。且相对于刚性芯片,不易引起组织损伤、炎症反应、结痂、出血等情况。
传统技术中有使用高分子材料聚酰亚胺,利用微机电系统加工工艺开发出柔软可以弯曲的微电极阵列用于颅内脑电的监测的方案。然而,受到材料本身性能的制约,聚酰亚胺薄膜不能拉伸和折叠,局部容忍应变程度小于 1% 。研究者们通过不断降低聚酰亚胺薄膜的厚度来提高微电极阵列的柔韧性,但是这样做增加了电极的加工难度,由于受到工艺的制约不得不增大电极的加工尺寸,从而导致电极的分辨率下降,临床采用的柔性颅内皮层电极只能达到 3mm-1cm 水平的空间分辨率,另外聚酰亚胺基底厚度减薄,也使微电极阵列的机械强度和可操作性随之下降。
在优选的实施例中,柔性基底 1 和绝缘层 2 的材质为聚二甲基硅氧烷( Polydimethylsiloxane , PDMS )。聚二甲基硅氧烷具有良好的柔韧性和形变能力,在保证微电极阵列的微米尺度加工精度和空间分辨率的同时,可以实现 90% 的一维形变和 20% 的二维形变,因此不必牺牲基底厚度来实现良好的柔韧性,保证了柔性电极阵列的加工精度,可以实现具有微米尺度空间分辨率的脑电信息监测与刺激,实现电子接口与大脑皮层良好的吻合贴附。同时,与大脑皮层良好的柔性匹配性能,可以有效降低芯片长期植入过程中对脑组织造成损伤的风险,并保持芯片性能的长期稳定性。另外,该芯片在折叠、扭曲和拉伸的条件下仍然保持良好的电学性能,从而提高了植入的可操作性,实现微创,降低了手术的风险。
微电极单元 3 、电极引线 4 及引线焊点 5 的材质可以为金、铂、钛、铱、铬中的一种或者几种的合金或化合物。
图 2 是沿图 1 所示虚线 6 的剖视图,图 3 是沿图 1 所示虚线 7 的剖视图。在该实施例中,微电极单元 3 和引线焊点 5 暴露在外界,表面不设绝缘层 2 。微电极阵列包含 12 个微电极单元 3 ,排成 4*3 的矩阵。引线焊点 5 与微电极单元 3 一一对应,数量相同。在使用时,微电极阵列直接与颅内大脑皮层接触,提取脑电信号或者施加电刺激。引线焊点 5 用于实现柔性颅内皮层微电极芯片 13 与柔性印制电路板的电连接,下文会再进行详细介绍。由于微电极单元 3 和引线焊点 5 分别要连接颅内大脑皮层和外部电路,故其上方开口,不设置绝缘层 2 结构。
图 4 是一实施例中柔性颅内皮层微电极芯片的制备方法的流程图,包括下列步骤:
S110 , 在刚性基底上设置一层聚二甲基硅氧烷形 成柔性基底 1 。
刚性基底可以选用玻璃、硅片等,主要起支撑的作用。在本实施例中,刚性基底采用硅片(可以为任意晶向),并采用旋涂的方式将聚 二甲基硅氧烷设置在硅片表面。其中改 变柔性基底 1 厚度的 方法主要有 两种:一种是改变旋涂速度,另外一种是改变聚二甲基硅氧烷的浓度。
S120 ,在柔性基底上形成微电极单元 3 、电极引线 4 以及引线焊点 5 。
电极引线 4 将微电极单元 3 和引线焊点 5 电连接。
S130 ,在柔性基底 1 上设置聚二甲基硅氧烷形成绝缘层 2 ,并在绝缘层 2 的微电极单元 3 和引线焊点 5 位置处形成开口,将微电极单元 3 和引线焊点 5 露出。
绝缘层 2 同样可以通过旋涂的方法进行设置,绝缘层 2 的厚度也可以通过改变旋涂速度或改变聚二甲基硅氧烷的浓度的方法进行调整。
S140 ,将柔性基底 1 和刚性基底分离。
参见图 5 ,在另一个实施例中,柔性颅内皮层微电极芯片的制备方法具体包括下列步骤:
S111 ,在任意晶向的硅片上面旋涂一层聚二甲基硅氧烷作为柔性基底 1 。
在本实施例中,柔性基底 1 厚度为 200 μ m 。
S121 ,在柔性基底 1 上淀积一层导电薄膜。
该导电薄膜为金属、合金或金属化合物材质。在本实施例中,淀积具体可以采用磁控溅射的工艺,导电薄膜为金膜,厚度为 40nm 。
S123 ,在导电薄膜上光刻形成微电极单元 3 、电极引线 4 以及引线焊点 5 的光刻胶图案。
S125 ,湿法刻蚀并去除光刻胶图案,形成微电极单元 3 、电极引线 4 以及引线焊点 5 。
在本实施例中,采用金腐蚀液来蚀刻金形成图案,利用光刻胶对腐蚀的阻断作用,保留微电极单元 3 、电极引线 4 和引线焊点 5 的图形部分,将其余部分的金腐蚀掉。刻蚀完成后去除光刻胶图案,得到所需的微电极单元 3 、电极引线 4 和引线焊点 5 。
S131 ,在制备好微电极阵列 3 、电极引线 4 及引线焊点 5 的柔性基底 1 上旋涂一层聚二甲基硅氧烷作为绝缘层 2 。
在本实施例中,绝缘层 2 的厚度为 10 μ m 。
S133 ,采用激光切割的方式去除微电极单元 3 和引线焊点 4 表面的绝缘层 2 ,实现开口。
S140 ,将柔性基底 1 和刚性基底分离。
图 6 是再一个实施例中柔性颅内皮层微电极芯片的制备方法的流程图,其与图 5 所示实施例的主要区别在于采用了剥离( lift-off )工艺。包括下列步骤:
S111 ,在任意晶向的硅片上面旋涂一层聚二甲基硅氧烷作为柔性基底 1 。
在本实施例中,柔性基底 1 厚度为 200 μ m 。
S122 ,在柔性基底 1 上光刻形成微电极单元 3 、电极引线 4 以及引线焊点 5 的反转光刻胶图案作为第一光刻胶牺牲层。
S124 ,在柔性基底 1 上淀积形成一层导电薄膜。
该导电薄膜为金属、合金或金属化合物材质。在本实施例中,淀积具体可以采用电子束蒸发的工艺,导电薄膜为钛膜,厚度为 40nm 。第一光刻胶牺牲层的厚度应大于导电薄膜的厚度。
S126 ,去除第一光刻胶牺牲层,导电薄膜位于第一光刻胶牺牲层上的部分被一并剥离,形成微电极单元 3 、电极引线 4 以及引线焊点 5 。
S132 ,在柔性基底 1 上光刻,从而在微电极单元 3 和引线焊点 5 表面形成第二光刻胶牺牲层。
S134 ,在柔性基底上设置一层聚二甲基硅氧烷形成绝缘层 2 。
旋涂一层聚二甲基硅氧烷作为绝缘层 2 ,聚二甲基硅氧烷的厚度应远低于第二光刻胶牺牲层的厚度,即第二光刻胶牺牲层应采用厚型光刻胶。
S136 ,去除第二光刻胶牺牲层,绝缘层 2 位于第二光刻胶牺牲层表面的部分被一并剥离,形成开口。
S140 ,将柔性基底 1 和刚性基底分离。
在一个实施例中,步骤 S130 是在柔性基底 1 上设置一层光敏感聚二甲基硅氧烷( photopatternable PDMS )形成绝缘层 2 ,并将光敏感聚二甲基硅氧烷作为光刻胶进行光刻,在绝缘层 2 的微电极单元 3 和引线焊点 5 位置处形成开口,将微电极单元 3 和引线焊点 5 露出。
本发明还提供一种柔性颅内皮层微电极芯片的封装结构,包括上述的柔性颅内皮层微电极芯片 13 、柔性印制电路板 8 、套筒 11 以及柱体 12 ,它们各自的结构请参见图 7 、图 8 。柔性印制电路板 8 一端设有与引线焊点 5 电连接的第一焊点 10 ,另一端设有用于电连接外部电路的第二焊点 9 。第一焊点 10 电连接第二焊点 9 。参见图 9 ,与微电极芯片 13 相连接的柔性印制电路板 8 卷设于柱体 12 的侧面,柱体 12 的外径与套筒 11 的内径相匹配,卷设有柔性印制电路板 8 的柱体 12 装入套筒 11 内并形成固定。参见图 10 ,套筒 11 固定于颅骨 15 上,微电极阵列排列形成的微电极阵列区域 14 直接与颅内大脑皮层 16 接触。
在优选的实施例中,柱体 12 为圆柱结构。套筒 11 包括相互连接且内径相同的第一套环 112 和第二套环 114 ,第一套环 112 的外径大于第二套环 114 的外径,第一套环 112 的高小于第二套环 114 的高。第一套环 112 和第二套环 114 设置不同的外径是为了形成一个抵止结构,颅骨 15 上开洞后仅第二套环 114 伸入这个洞内,第一套环 112 由于外径较大而抵止在洞口边缘。通过设置合适且相匹配的柱体 12 的外径与套筒 11 的内径,使得卷设有柔性印制电路板 8 的柱体 12 能够正好紧密地卡在套筒 11 内。
图 11 是一实施例中柔性颅内皮层微电极芯片的封装方法的流程图,包括下列步骤:
S210 ,制作柔性印制电路板 8 。
柔性印制电路板 8 为长方形结构,一端设有用于电连接引线焊点 5 的第一焊点 10 ,另一端设有用于电连接外部电路的第二焊点 9 。
S220 ,将引线焊点 5 压合在第一焊点 10 上实现引线焊点 5 和第一焊点 10 的电连接。
S230 ,提供柱体 12 ,将柔性印制电路板 8 卷设于柱体 12 的侧面。
柔性印制电路板 8 卷在柱体 12 上后,第一焊点 10 和第二焊点 9 分别位于柱体 12 的上底和下底。
S240 ,提供套筒 11 ,将卷设有柔性印制电路板 8 的柱体 12 装入套筒 11 内并形成固定。
步骤 S240 完成后,得到的柔性颅内皮层微电极芯片的封装结构如图 9 所示。在实际使用时还需把该封装结构固定于颅骨上,如图 10 所示。
步骤 S240 完成后,得到的柔性颅内皮层微电极芯片的封装结构如图 9 所示。在实际使用时还需把该封装结构固定于颅骨上,如图 10 所示。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明
构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种柔性颅内皮层微电极芯片,其特征在于,包括柔性基底,微电极单元,与所述微电极单元电连接的电极引线,以及与所述电极引线电连接的引线焊点,所述微电极单元、电极引线以及引线焊点均设于所述柔性基底上,所述柔性颅内皮层微电极芯片还包括设于所述柔性基底上并覆盖所述电极引线的绝缘层。
  2. 根据权利要求 1 所述的柔性颅内皮层微电极芯片,其特征在于,所述柔性基底和绝缘层的材质为聚二甲基硅氧烷。
  3. 根据权利要求 1 所述的柔性颅内皮层微电极芯片,其特征在于,所述微电极单元、电极引线及引线焊点的材质为金、铂、钛、铱、铬中的一种或者几种的合金或化合物。
  4. 一种柔性颅内皮层微电极芯片的制备方法,包括下列步骤:
    步骤一,在刚性基底上设置一层聚二甲基硅氧烷形成柔性基底;
    步骤二,在所述柔性基底上形成微电极单元、电极引线以及引线焊点,所述电极引线将所述微电极单元和引线焊点电连接;
    步骤三,在所述柔性基底上设置一层聚二甲基硅氧烷形成绝缘层,并在所述绝缘层的微电极单元和引线焊点位置处形成开口,露出所述微电极单元和引线焊点;
    步骤四,将所述柔性基底和刚性基底分离。
  5. 根据权利要求 4 所述的柔性颅内皮层微电极芯片的制备方法,其特征在于,所述微电极单元、电极引线及引线焊点的材质为金、铂、钛、铱、铬中的一种或者几种的合金或化合物。
  6. 根据权利要求 4 或 5 所述的柔性颅内皮层微电极芯片的制备方法,其特征在于,所述步骤二包括:
    在所述柔性基底上淀积一层导电薄膜;
    在所述导电薄膜上光刻形成所述微电极单元、电极引线以及引线焊点的光刻胶图案;
    湿法刻蚀并去除所述光刻胶图案,形成所述微电极单元、电极引线以及引线焊点。
  7. 根据权利要求 4 所述的柔性颅内皮层微电极芯片的制备方法,其特征在于,所述步骤三是通过激光切割的方式去除所述微电极单元和引线焊点位置处的绝缘层形成开口。
  8. 根据权利要求 4 或 5 所述的柔性颅内皮层微电极芯片的制备方法,其特征在于,所述步骤二包括:
    在所述柔性基底上光刻形成所述微电极单元、电极引线以及引线焊点的反转光刻胶图案作为第一光刻胶牺牲层;
    在所述柔性基底上淀积形成一层导电薄膜;
    去除所述第一光刻胶牺牲层,所述导电薄膜位于所述第一光刻胶牺牲层上的部分被一并剥离,形成所述微电极单元、电极引线以及引线焊点。
  9. 根据权利要求 4 所述的柔性颅内皮层微电极芯片的制备方法,其特征在于,所述步骤三包括:
    在所述柔性基底上光刻,从而在所述微电极单元和引线焊点表面形成第二光刻胶牺牲层;
    在所述柔性基底上设置一层聚二甲基硅氧烷形成所述绝缘层;
    去除所述第二光刻胶牺牲层,所述绝缘层位于所述第二光刻胶牺牲层上的部分被一并剥离,形成所述开口。
  10. 根据权利要求 9 所述的柔性颅内皮层微电极芯片的制备方法,其特征在于,所述第二光刻胶牺牲层的厚度大于所述绝缘层的厚度。
  11. 根据权利要求 4 所述的柔性颅内皮层微电极芯片的制备方法,其特征在于,所述步骤三包括:
    在所述柔性基底上设置一层光敏感聚二甲基硅氧烷形成绝缘层,并光刻,在所述绝缘层的微电极单元和引线焊点位置处形成所述开口。
  12. 一种柔性颅内皮层微电极芯片的封装结构,其特征在于,包括根据权利要求 1 至 3 中任意一项所述的柔性颅内皮层微电极芯片,还包括柔性印制电路板、套筒以及柱体;
    所述柔性印制电路板一端设有与所述引线焊点电连接的第一焊点,另一端设有用于电连接外部电路的第二焊点,所述第一焊点电连接所述第二焊点;所述柔性印制电路板卷设于所述柱体的侧面;所述柱体的外径与所述套筒的内径相匹配,卷设有所述柔性印制电路板的柱体装入所述套筒内并形成固定。
  13. 根据权利要求 12 所述的柔性颅内皮层微电极芯片的封装结构,其特征在于,所述柱体为圆柱结构,所述套筒包括相互连接且内径相同的第一套环和第二套环,所述第一套环的外径大于所述第二套环的外径。
  14. 一种柔性颅内皮层微电极芯片的封装方法,其特征在于,所述柔性颅内皮层微电极芯片是根据权利要求 1 至 3 中任意一项所述的柔性颅内皮层微电极芯片,所述柔性颅内皮层微电极芯片的封装方法包括下列步骤:
    制作柔性印制电路板,所述柔性印制电路板一端设有用于电连接所述引线焊点的第一焊点,另一端设有用于电连接外部电路的第二焊点;
    将所述引线焊点压合在所述第一焊点上实现电连接;
    提供一柱体,将所述柔性印制电路板卷设于所述柱体的侧面;
    提供一套筒,将卷设有所述柔性印制电路板的柱体装入所述套筒内并形成固定。
  15. 根据权利要求 14 所述的柔性颅内皮层微电极芯片的封装方法,其特征在于,所述柱体为圆柱结构,所述套筒包括相互连接且内径相同的第一套环和第二套环,所述第一套环的外径大于所述第二套环的外径。
PCT/CN2012/072075 2012-03-08 2012-03-08 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构 WO2013131261A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/072075 WO2013131261A1 (zh) 2012-03-08 2012-03-08 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/072075 WO2013131261A1 (zh) 2012-03-08 2012-03-08 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构

Publications (1)

Publication Number Publication Date
WO2013131261A1 true WO2013131261A1 (zh) 2013-09-12

Family

ID=49115876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072075 WO2013131261A1 (zh) 2012-03-08 2012-03-08 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构

Country Status (1)

Country Link
WO (1) WO2013131261A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109381183A (zh) * 2018-10-09 2019-02-26 浙江大学昆山创新中心 兼具压力传感的可降解脑电极阵列及其制备方法
CN111743537A (zh) * 2020-07-02 2020-10-09 西北工业大学 一种基于酢浆草仿生结构的柔性神经微电极及制备方法
CN112006685A (zh) * 2020-09-07 2020-12-01 中国科学院空天信息创新研究院 皮层癫痫脑功能定位柔性微纳电极阵列及其制备方法
CN113133770A (zh) * 2021-04-21 2021-07-20 国家纳米科学中心 一种柔性电极及其制备方法和应用
CN113180604A (zh) * 2021-04-28 2021-07-30 中国科学院空天信息创新研究院 用于颅内生理生化信息获取的多模态传感器制备方法
CN113729717A (zh) * 2021-08-09 2021-12-03 江西脑虎科技有限公司 一种柔性电极探针的制备方法及其结构
CN115078487A (zh) * 2022-05-18 2022-09-20 厦门大学 一种基于液态金属的体外心肌柔性微电极阵列及其制备方法
CN115363592A (zh) * 2022-08-31 2022-11-22 上海脑虎科技有限公司 植入式探针装置及其制备方法、电极装置、电子设备
CN115500831A (zh) * 2022-08-24 2022-12-23 武汉衷华脑机融合科技发展有限公司 一种基于集成电路芯片的复合微针结构
US11602630B2 (en) 2017-06-07 2023-03-14 Neuronexus Technologies, Inc. Systems and methods for flexible electrode arrays

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040010208A1 (en) * 2002-07-09 2004-01-15 Michael Ayad Brain retraction sensor
CN101137324A (zh) * 2005-01-12 2008-03-05 马奎特紧急护理公司 用于生理信号测量的电极及其制造方法
CN101248993A (zh) * 2007-10-10 2008-08-27 天津大学 有源神经微电极的专用信号调理控制芯片
CN201135436Y (zh) * 2007-12-12 2008-10-22 中国科学院半导体研究所 带位置稳定结构的针状神经微电极
CN101973508A (zh) * 2010-09-17 2011-02-16 上海交通大学 基于柔性衬底mems技术的脑电图干电极阵列及其制备方法
WO2011132756A1 (ja) * 2010-04-21 2011-10-27 国立大学法人東北大学 小動物用の脳測定用電極ユニットとそれを用いた測定システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040010208A1 (en) * 2002-07-09 2004-01-15 Michael Ayad Brain retraction sensor
CN101137324A (zh) * 2005-01-12 2008-03-05 马奎特紧急护理公司 用于生理信号测量的电极及其制造方法
CN101248993A (zh) * 2007-10-10 2008-08-27 天津大学 有源神经微电极的专用信号调理控制芯片
CN201135436Y (zh) * 2007-12-12 2008-10-22 中国科学院半导体研究所 带位置稳定结构的针状神经微电极
WO2011132756A1 (ja) * 2010-04-21 2011-10-27 国立大学法人東北大学 小動物用の脳測定用電極ユニットとそれを用いた測定システム
CN101973508A (zh) * 2010-09-17 2011-02-16 上海交通大学 基于柔性衬底mems技术的脑电图干电极阵列及其制备方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11602630B2 (en) 2017-06-07 2023-03-14 Neuronexus Technologies, Inc. Systems and methods for flexible electrode arrays
CN109381183A (zh) * 2018-10-09 2019-02-26 浙江大学昆山创新中心 兼具压力传感的可降解脑电极阵列及其制备方法
CN111743537A (zh) * 2020-07-02 2020-10-09 西北工业大学 一种基于酢浆草仿生结构的柔性神经微电极及制备方法
CN111743537B (zh) * 2020-07-02 2023-06-02 西北工业大学 一种基于酢浆草仿生结构的柔性神经微电极及制备方法
CN112006685A (zh) * 2020-09-07 2020-12-01 中国科学院空天信息创新研究院 皮层癫痫脑功能定位柔性微纳电极阵列及其制备方法
CN112006685B (zh) * 2020-09-07 2023-07-14 中国科学院空天信息创新研究院 皮层癫痫脑功能定位柔性微纳电极阵列及其制备方法
CN113133770A (zh) * 2021-04-21 2021-07-20 国家纳米科学中心 一种柔性电极及其制备方法和应用
CN113133770B (zh) * 2021-04-21 2024-05-14 国家纳米科学中心 一种柔性电极及其制备方法和应用
CN113180604A (zh) * 2021-04-28 2021-07-30 中国科学院空天信息创新研究院 用于颅内生理生化信息获取的多模态传感器制备方法
CN113729717A (zh) * 2021-08-09 2021-12-03 江西脑虎科技有限公司 一种柔性电极探针的制备方法及其结构
CN115078487B (zh) * 2022-05-18 2024-04-19 厦门大学 一种基于液态金属的体外心肌柔性微电极阵列及其制备方法
CN115078487A (zh) * 2022-05-18 2022-09-20 厦门大学 一种基于液态金属的体外心肌柔性微电极阵列及其制备方法
CN115500831A (zh) * 2022-08-24 2022-12-23 武汉衷华脑机融合科技发展有限公司 一种基于集成电路芯片的复合微针结构
CN115500831B (zh) * 2022-08-24 2024-01-12 武汉衷华脑机融合科技发展有限公司 一种基于集成电路芯片的复合微针结构
CN115363592B (zh) * 2022-08-31 2023-12-12 上海脑虎科技有限公司 植入式探针装置及其制备方法、电极装置、电子设备
CN115363592A (zh) * 2022-08-31 2022-11-22 上海脑虎科技有限公司 植入式探针装置及其制备方法、电极装置、电子设备

Similar Documents

Publication Publication Date Title
WO2013131261A1 (zh) 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
WO2013111985A1 (ko) 나노 와이어와 지지층을 포함하는 신경소자
Jeong et al. Capacitive Epidermal Electronics for Electrically Safe, Long–Term Electrophysiological Measurements
EP2713863B1 (en) Conformable actively multiplexed high-density surface electrode array for brain interfacing
US9119533B2 (en) Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
CN102544052A (zh) 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
WO2014139194A1 (zh) 柔性心外膜心电电极芯片及其制备方法
US20090299166A1 (en) Mems flexible substrate neural probe and method of fabricating same
US20200085375A1 (en) Electrode fabrication and design
US20140257052A1 (en) Monolithically integrated implantable flexible antenna for electrocorticography and related biotelemetry devices
CN114631822A (zh) 一种柔性神经电极、制备方法及设备
WO2024046185A1 (zh) 植入式探针装置及其制备方法、电极装置、电子设备
US8504148B2 (en) Neural device having via-hole connection and using at least one nano-wire
WO2009054575A1 (en) Nervous device using at least one nano-wire
WO2018004313A1 (ko) 멀티 채널을 갖는 표면 근전도 센서
WO2023240686A1 (zh) 用于与seeg电极结合的柔性电极装置及其制造方法
WO2023240700A1 (zh) 用于与可植入光学器件结合的柔性电极装置及制造方法
US10576268B2 (en) High resolution brain-electronics interface
KR101218188B1 (ko) 외부 모듈과 데이터 통신이 가능한 지능형 신경소자
KR20120052633A (ko) 나노 와이어와 커프를 활용한 신경 소자
CN109998544B (zh) 超薄柔性阵列式表面肌电电极的制备方法
Mei et al. Flexible concentric ring electrode array for low-noise and non-invasive detection
Kilias et al. Intracortical probe arrays with silicon backbone and microelectrodes on thin polyimide wings enable long-term stable recordings in vivo
WO2023085653A1 (ko) 생체 삽입형 방광 치료 장치 및 이에 포함되는 전자 망, 전자 실 제조 방법
Chou et al. A parylene-C based 16 channels flexible bio-electrode for ECoG recording

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870392

Country of ref document: EP

Kind code of ref document: A1