WO2024040492A1 - 一种光学传感器件及显示装置 - Google Patents

一种光学传感器件及显示装置 Download PDF

Info

Publication number
WO2024040492A1
WO2024040492A1 PCT/CN2022/114676 CN2022114676W WO2024040492A1 WO 2024040492 A1 WO2024040492 A1 WO 2024040492A1 CN 2022114676 W CN2022114676 W CN 2022114676W WO 2024040492 A1 WO2024040492 A1 WO 2024040492A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
photosensitive
transistor
optical sensing
Prior art date
Application number
PCT/CN2022/114676
Other languages
English (en)
French (fr)
Inventor
海晓泉
王迎姿
董学
袁广才
张春芳
梁轩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002820.7A priority Critical patent/CN118076983A/zh
Priority to PCT/CN2022/114676 priority patent/WO2024040492A1/zh
Publication of WO2024040492A1 publication Critical patent/WO2024040492A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor

Definitions

  • the present disclosure relates to the field of sensing technology, and in particular to an optical sensing device and a display device.
  • Embodiments of the present disclosure provide an optical sensing device and a display device.
  • the specific solutions are as follows:
  • Embodiments of the present disclosure provide an optical sensing device, including:
  • a plurality of photosensitive devices located on the side of the detection circuit away from the base substrate;
  • a plurality of light-concentrating elements located on the side of the photosensitive device away from the substrate; the orthographic projection of one light-condensing element on the substrate covers at least two of the photosensitive devices on the substrate Orthographic projection on substrate;
  • a light confinement structure is located between the photosensitive device and the light condensing element; the light confinement structure has a plurality of light channels corresponding to the photosensitive device, each of the light channels is arranged obliquely, and two adjacent ones are Each of the optical channels is arranged symmetrically about the central axis of the light condensing element; the optical channels are configured to allow incident light within the range of an incident angle of ( ⁇ - ⁇ , ⁇ + ⁇ ) to hit the photosensitive device, Wherein, ⁇ is the angle between the central axis of the light channel and the central axis of the light condensing element.
  • the orthographic projection of one light-condensing element on the substrate covers k 2 of the photosensitive devices on the substrate. Orthographic projection on the base substrate, where k is a positive even number.
  • the value range of ⁇ is 42°-70°, and the value range of ⁇ is 0.5°-12°.
  • the light confinement structure includes at least two diaphragm layers arranged in a stack, and each of the diaphragm layers has a structure similar to that of the photosensitive There are a plurality of openings corresponding to the devices one by one, and at least two of the openings stacked above each photosensitive device are staggered to form the light channel corresponding to the photosensitive device.
  • the light confinement structure includes at least two diaphragm layers arranged in a stack, and the diaphragm closest to the light condensing element
  • the layer has a plurality of first openings
  • the aperture layer close to the photosensitive device has a plurality of second openings corresponding to the photosensitive device
  • one of the first openings is on the base substrate.
  • the orthographic projection on the substrate covers at least two orthographic projections of the second opening on the substrate, and the line connecting the center point of the first opening and the center point of the second opening is inclined, and each The first opening and the second opening stacked above the photosensitive device form the light channel.
  • the orthographic projection of one first opening on the substrate covers k 2 second openings on the base substrate. Orthographic projection on the substrate, where k is a positive even number.
  • each aperture layer includes a transparent layer and a A light-shielding layer, the light-shielding layer is provided with the opening.
  • the above-mentioned optical sensing device provided by the embodiment of the present disclosure further includes a filter film layer; wherein,
  • the filter film layer is reused as a transparent layer of any of the diaphragm layers
  • the filter film layer is arranged inside the transparent layer of any of the diaphragm layers, and the orthographic projection of the filter film layer on the base substrate at least covers the opening on the base substrate. orthographic projection.
  • the shape of the opening is a triangle, a square, or a circle.
  • D 2P-t; where, t is the distance between two adjacent light condensing elements, D is the light aperture of the light condensing element, and P is the size of the photosensitive device;
  • H1+H2 (D ⁇ 2+4hs ⁇ 2)*(nt/(ns-1))-nt*hs/ns; where nt is the refractive index of the transparent layer, ns is the refractive index of the light condensing element The refractive index, hs is the arch height of the light condensing element, H1 and H2 are the thickness of each transparent layer respectively;
  • d1 (D ⁇ 2+4hs ⁇ 2)*(nt/(ns-1))*(cot( ⁇ + ⁇ )-cot( ⁇ - ⁇ )); where d1 is the light-shielding layer close to the photosensitive device The size of the opening;
  • d2 H2*D/((D ⁇ 2+4hs ⁇ 2)*(nt/(ns-1))-nt*hs/ns); where d2 is the opening size of the light shielding layer away from the photosensitive device ;
  • the light condensing element includes at least one of a lens, a Fresnel zone plate, a grating, and a Fresnel lens.
  • the above-mentioned optical sensing device provided by the embodiment of the present disclosure further includes a light-gathering layer located on the side of the light confinement structure facing away from the base substrate, and the light-gathering layer has a plurality of A through hole constitutes the light condensing element.
  • the above optical sensing device provided by the embodiment of the present disclosure further includes: a first flat layer located between the detection circuit and the photosensitive device, and the first flat layer is located between the detection circuit and the photosensitive device. and a first passivation layer between the photosensitive device;
  • the photosensitive device includes a bottom electrode, a photosensitive layer and a top electrode stacked on the first passivation layer.
  • the bottom electrode passes through a first pass that penetrates the first passivation layer and the first planar layer.
  • the hole is electrically connected to the detection circuit, and the orthographic projection of the photosensitive layer on the base substrate does not overlap with the orthographic projection of the first via hole on the base substrate.
  • the photosensitive device includes a bottom electrode, a photosensitive layer and a top electrode arranged in a stack, and the bottom electrode is connected to the source of the detection circuit.
  • the drain electrodes are arranged on the same layer, and the bottom electrode and the drain of the detection circuit have an integrated structure.
  • the detection circuit includes a first transistor, a second transistor and a third transistor, and the gate of the first transistor is connected to the first transistor.
  • the control line is electrically connected, the first pole of the first transistor is electrically connected to the signal reading terminal, the second pole of the first transistor is electrically connected to the first pole of the second transistor, and the second pole of the second transistor is electrically connected.
  • the second electrode is electrically connected to the first power terminal.
  • the gate electrode of the second transistor and the first electrode of the third transistor are both electrically connected to the photosensitive device.
  • the second electrode of the third transistor is connected to the reset signal.
  • the gate of the third transistor is electrically connected to the second control line; wherein,
  • the first transistor, the second transistor and the third transistor all have a double-gate structure.
  • the width-to-length ratio of the second transistor is greater than the width-to-length ratio of the third transistor
  • the width-to-length ratio of the third transistor is The ratio is greater than or equal to the width-to-length ratio of the first transistor.
  • the above optical sensing device further includes: a covering layer located between the photosensitive device and the light confinement structure, and the covering layer and the light confinement structure are located between the covering layer and the light confinement structure.
  • a second planar layer between the light confinement structure, a second passivation layer between the second planar layer and the light confinement structure, a second passivation layer between the second passivation layer and the light confinement structure a first transparent electrode layer, a blocking layer located between the first transparent electrode layer and the light confinement structure, and a second transparent electrode layer located between the blocking layer and the light confinement structure;
  • the first transparent electrode layer is electrically connected to the top electrode of the photosensitive device through a second via hole penetrating the second passivation layer, the second planarization layer and the covering layer.
  • an embodiment of the present disclosure also provides a display device, including a display panel and an optical sensing device as described in any of the above provided by the embodiment of the present disclosure located on the back side of the display panel.
  • the above display device provided by the embodiment of the present disclosure further includes: a third flat layer located between the light condensing element and the display panel, and a third flat layer located between the light condensing element and the display panel.
  • the optical adhesive layer between the display panel and the display panel.
  • Figure 1 is a schematic structural diagram of an optical sensing device provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 3 is a schematic plan view of some film layers in the structure shown in Figure 1;
  • Figure 4 is another schematic plan view of some film layers in the structure shown in Figure 1;
  • Figure 5 is a schematic structural diagram of another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic plan view of some film layers in the structure shown in Figure 7;
  • Figure 9 is a schematic structural diagram of yet another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 11 is the transmittance spectrum chart of the filter film layer in the visible light range
  • Figure 12A is a schematic structural diagram of another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 12B is a schematic structural diagram of the Fresnel zone plate
  • Figure 13A is a schematic structural diagram of another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 13B is a schematic plan view of the grating
  • Figure 13C is a schematic cross-sectional view of the grating
  • Figure 14A is a schematic structural diagram of yet another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 14B is a schematic plan view of the Fresnel lens
  • Figure 15A is a schematic structural diagram of another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 15B is a schematic plan view of some of the film layers in Figure 15A;
  • Figure 16 is a schematic structural diagram of another optical sensing device provided by an embodiment of the present disclosure.
  • Figure 17 is a schematic diagram of the equivalent circuit of the detection circuit
  • Figure 18 is a schematic layout diagram of the detection circuit
  • Figures 19A to 19P are respectively plan views of some film layers in the structure shown in Figure 5;
  • FIG. 20 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • an optical sensing device as shown in Figures 1 and 2, including:
  • Detection circuit 2 is located on the base substrate 1;
  • a plurality of photosensitive devices 3 are located on the side of the detection circuit 2 facing away from the base substrate 1;
  • a plurality of light condensing elements 4 are located on the side of the photosensitive device 3 facing away from the base substrate 1; the orthographic projection of one light condensing element 4 on the base substrate 1 at least covers the orthographic projection of two photosensitive devices 3 on the base substrate 1 ;
  • the light confinement structure 5 is located between the photosensitive device 3 and the light condensing element 4; the light confinement structure 5 has a plurality of light channels 51 corresponding to the photosensitive device 3, each light channel 51 is arranged obliquely, and two adjacent light channels are 51 is arranged symmetrically about the central axis of the light condensing element 4; the optical channel 51 is configured to allow incident light within the range of an incident angle of ( ⁇ - ⁇ , ⁇ + ⁇ ) to hit the photosensitive device 3, where ⁇ is the optical channel 51 The angle between the central axis of , and the central axis of the light condensing element 4.
  • the light restriction structure 5 can reflect the fingerprint 7 at a small angle of ( ⁇ - ⁇ , ⁇ + ⁇ )
  • the light is nearly collimated and filtered out, allowing it to reach the photosensitive device 3 below.
  • the photosensitive device 3 can detect the intensity of the light. The energy of the light diffusely reflected downward from the valleys and ridges of the fingerprint is different.
  • the photosensitive device 3 array detects Different light intensities are used to obtain fingerprint information; in addition, by setting up an obliquely arranged light channel 51, and by adjusting the optimal matching relationship between each parameter in the light constraint structure 5 and the size and position of the photosensitive device 3 below, the light constraint structure is 5 can control its light collection angle within the range of ( ⁇ - ⁇ , ⁇ + ⁇ ), only allow part of the light to enter the photosensitive device 3, and remove the outside world within the angle range of (0 ⁇ - ⁇ , ⁇ + ⁇ 90°). Strong ambient light is blocked to solve the impact of strong external ambient light on optical sensing performance and further improve the recognition performance.
  • the embodiments of the present disclosure can realize the fingerprint alignment scheme design by using multiple photosensitive devices 3 to share the same light-concentrating element 4 without reducing the resolution.
  • the substrate substrate can be a rigid substrate or a flexible substrate, wherein the rigid substrate can be made of transparent glass, transparent plastic, etc., and the flexible substrate can be made of polyimide (PI), polyethersulfone (PES), poly(PES), etc.
  • PI polyimide
  • PES polyethersulfone
  • PES poly(PES)
  • Polymer materials such as carbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyarylate (PAR), fiberglass reinforced plastic (FRP), etc. .
  • the photosensitive device may be a PIN type photodiode.
  • the value range of ⁇ may be 42°-70°, and the value range of ⁇ may be 0.5°-12°.
  • the light channel 51 when defining the central axis of the light channel 51, the light channel 51 includes a light entrance hole V2 close to the light condensing element 4 and a light outlet hole V1 close to the photosensitive device 3.
  • the central axis of the light channel 51 is defined as the line connecting the center of the light entrance hole V2 and the center of the light exit hole V1.
  • the shapes of the light entrance hole V2 and the light exit hole V1 are not limited, and may be triangular, square, circular, etc.
  • the orthographic projection of one light-concentrating element on the substrate covers the orthographic projection of k 2 photosensitive devices on the substrate, where k is a positive even number.
  • Figure 1 is a plan view of some film layers in the structure shown in Figure 1
  • Figure 3 which is a plan view of some film layers in the structure shown in Figure 1
  • one light condensing element 4 can cover four photosensitive devices.
  • each photosensitive device 3 and detection circuit 2 corresponds to a sub-pixel P, that is, one light-collecting element 4 can correspondingly cover 4 sub-pixels P); as shown in Figure 4, Figure 4 is part of the structure shown in Figure 1 Another plan view of the film layer.
  • One light-concentrating element 4 can cover 16 photosensitive devices 3 (sub-pixels P), and so on.
  • the following embodiments provided by the present disclosure take one light-collecting element 4 covering four sub-pixels P as an example for description.
  • Figure 5 and Figure 6 are schematic diagrams of two specific structures corresponding to Figure 1.
  • the light confinement structure 5 can include a stacked At least two aperture layers are provided. Specifically, in order to ensure that the light reflected by the fingerprint is nearly collimated and incident on the photosensitive device 3, as shown in Figure 5, the light confinement structure 5 includes two aperture layers (52) arranged in a stack.
  • the aperture layer 52 has a plurality of openings (i.e., light exit holes V1) corresponding to the photosensitive device 3 one-to-one
  • the aperture layer 53 has a plurality of openings (i.e., the light entrance aperture) corresponding to the photosensitive device 3. V2)
  • the two openings (V2 and V1) stacked above each photosensitive device 3 are staggered to form an optical channel 51 corresponding to the photosensitive device 3; in order to ensure the best fingerprint recognition effect, the aperture layer can be three layers
  • the light confinement structure 5 includes three layers of diaphragm layers (52, 53 and 54) arranged in a stack.
  • the diaphragm layer 52 has a plurality of openings (one-to-one correspondence with the photosensitive device 3). That is, the light exit hole V1), the diaphragm layer 53 has a plurality of openings (that is, the middle hole V3) that corresponds to the photosensitive device 3 in a one-to-one manner, and the diaphragm layer 54 has a plurality of openings that correspond to the photosensitive device 3 in a one-to-one manner (that is, the entrance hole V3).
  • Light hole V2), three openings (V2, V3 and V1) stacked above each photosensitive device 3 are staggered to form a light channel 51 corresponding to the photosensitive device 3.
  • the opening centers of the light exit hole V1 and the light entrance hole V2 are on a straight line with the center of the light condensing element 4, and the included angle with the central axis of the light condensing element 4 is ⁇ .
  • the center of the light-concentrating element 4 coincides with the center of the basic unit composed of four sub-pixels.
  • the light confinement structure 5 includes at least two diaphragm layers arranged in a stack ( Taking two aperture layers as an example, 52 and 53 respectively), the aperture layer 53 closest to the light-condensing element 4 has a plurality of first openings (ie, light entrance holes V2), and the aperture layer close to the photosensitive device 3
  • the layer 52 has a plurality of second openings (ie, light exit holes V1) corresponding to the photosensitive devices 3 one-to-one.
  • the orthographic projection of one first opening (light entrance hole V2) on the base substrate 1 covers at least two second openings.
  • FIG. 8 is a schematic plan view of some film layers in the structure shown in Figure 7.
  • One light condensing element 4 corresponds to one light entrance hole V2 and four light exit holes V1, and the bottom of each light exit hole V1 corresponds to A sub-pixel P can also enable the light confinement structure 5 to control the light collection angle of the light received by the photosensitive device 3 to be within the range of ( ⁇ - ⁇ , ⁇ + ⁇ ).
  • the orthographic projection of a first opening (light entrance hole V2) on the substrate 1 can cover k 2th Orthographic projection of the two openings (light outlet V1) on the base substrate 1, where k is a positive even number.
  • one first opening (light entrance hole V2) can cover 4 sub-pixels P; of course, one first opening (light entrance hole V2) can also cover 16 sub-pixels P. ,etc.
  • the diaphragm layer 52 includes a transparent layer 521 and is disposed on a surface of the transparent layer 521 facing away from the light condensing element 4
  • the light-shielding layer 522 is provided with an opening (light outlet V1); as shown in Figures 5 and 7, the diaphragm layer 53 includes a transparent layer 531 and a surface on the side of the transparent layer 531 facing away from the light-condensing element 4
  • the light-shielding layer 532 is provided with an opening (light entrance hole V2) on the light-shielding layer 532; as shown in Figure 6, the diaphragm layer 53 includes a transparent layer 531 and is disposed on the surface of the transparent layer 531 facing away from the light condensing element 4.
  • the light-shielding layer 532 is provided with an opening (middle hole V3); as shown in Figure 6, the diaphragm layer 54 includes a transparent layer 541 and a light-shielding layer arranged on the surface of the transparent layer 541 away from the light condensing element 4. Layer 542, the light-shielding layer 542 is provided with an opening (light entrance hole V2).
  • the above-mentioned light-shielding layer can be a metal material with low transmittance, such as molybdenum, etc., or it can be a black resin, such as BM, etc.;
  • the material of the transparent layer can be a transparent material such as Resin (resin), SOG (Silicon On Glass, silicon-glass bonding structural material) and BCB (benzocyclobutene), etc.
  • the above-mentioned optical sensor device provided by the embodiment of the present disclosure, as shown in Figures 9 and 10, also includes a filter film layer 8; wherein,
  • the filter film layer 8 can be reused as the transparent layer of any diaphragm layer (52 and/or 53); for example, as shown in Figure 9, the filter film layer 8 can be reused as the transparent layer 521 of the diaphragm layer 52; in When setting, the selection can be made depending on the device or application scenario, and this disclosure does not limit this;
  • the filter film layer 8 is disposed inside the transparent layer (521 and/or 531) of any diaphragm layer (52 and/or 53), and the orthographic projection of the filter film layer 8 on the base substrate 1 at least covers the opening.
  • the light outlet V1 is an orthographic projection on the substrate 1; for example, as shown in Figure 10, the filter film layer 8 is disposed inside the transparent layer 521 of the diaphragm layer 52; when disposed, it may depend on the device or application. The selection is made according to different scenarios, and this disclosure does not limit this.
  • Figure 11 is the transmittance spectrum chart of the filter film layer in the visible light range, where curve A is the transmittance of the filter film layer shown in Figure 9, and curve B is the transmittance of the filter film layer shown in Figure 10
  • the transmittance of the filter film layer The difference between the filter film layers in Figure 9 and Figure 10 is that the thickness is different.
  • the fingerprint recognition signal is generally between 380nm and 600nm. Define its transmittance Ts and the value of Ts A range of 10% to 50% can meet the fingerprint identification requirements; the ambient light signal is generally between 600nm and 780nm, and its transmittance is defined as Ta. The value of Ta needs to be less than 10%. It can be seen from Figure 11 that the filter film layer provided by the embodiment of the present disclosure meets the requirements for fingerprint recognition performance and filtering out ambient light.
  • the light-condensing element 4 can be a lens, and the lens can be formed using a thermal reflow process.
  • One lens provided by the embodiment of the present disclosure covers four sub-pixels, so the size of the lens is large and easy to manufacture.
  • the light condensing element 4 may be a Fresnel zone plate (FZP).
  • FZP Fresnel zone plate
  • black resin can be used to produce a Fresnel zone plate arrangement through a photolithography process to achieve the collimating and condensing function.
  • the light-concentrating element 4 may be a grating.
  • the grating can modulate the light, so that the light reflected by the fingerprint is incident on the photosensitive device in a nearly collimated manner, thereby achieving the collimated light gathering function.
  • Figure 13B and Figure 13C As shown in Figure 13B and Figure 13C.
  • Figure 13B is a schematic plan view of the grating
  • Figure 13C is a schematic cross-sectional view of the grating
  • the grating period T 500nm
  • the duty cycle of the grating is 50% (the light-shielding area and the light-transmitting area are 1:1)
  • a raster corresponds to 4 sub-pixels or multiple sub-pixels.
  • PECVD can be used to deposit a layer of SiNx
  • a dry etching process can be used to etch the SINx to form a grating structure.
  • the light condensing element 4 may be a Fresnel lens.
  • the imprinting process can be used to make the Fresnel lens, as shown in Figure 14B.
  • Figure 14B is a plan view of the Fresnel lens.
  • the Fresnel lens can save materials and reduce production costs. cost.
  • FIG. 12A, FIG. 13A, and FIG. 14A are all based on the structure shown in FIG. 5, with the lens replaced by a Fresnel zone plate, a grating, and a Fresnel lens.
  • the lens may also be replaced by the structure shown in FIG. 6 or the structure shown in Figure 7, replace the lens with a Fresnel zone plate, grating, and Fresnel lens.
  • the optical sensing device provided by the embodiment of the present disclosure, as shown in FIG. 15A , it also includes a light-condensing layer 4' located on the side of the light confinement structure 5 facing away from the substrate 1.
  • the light-condensing layer 4' It has a plurality of through holes 41', and the through holes 41' constitute the light condensing element 4, that is, the through holes 41' realize the function of collimating and concentrating light.
  • FIG. 15B which is a schematic plan view of some film layers in FIG. 15A , one light condensing element 4 corresponds to covering four photosensitive devices 3 (sub-pixels P).
  • the material of the light-gathering layer 4' is the same as the material of the light-shielding layer (for example, 522, 532).
  • FIG. 15A is based on the structure shown in FIG. 5 , with the lens replaced by the light condensing layer 4 ′.
  • the lens can also be replaced with the lens based on the structure shown in FIG. 6 or 7 .
  • Light concentrating layer 4' is based on the structure shown in FIG. 5 , with the lens replaced by the light condensing layer 4 ′.
  • the lens can also be replaced with the lens based on the structure shown in FIG. 6 or 7 .
  • Light concentrating layer 4' Light concentrating layer 4'.
  • the above-mentioned optical sensing device provided by the embodiment of the present disclosure, as shown in Figures 5-7, 9, 10, 12A, 13A, 14A and 15A, also includes: a detection circuit The first flat layer 10 between 2 and the photosensitive device 3, the first passivation layer 11 between the first flat layer 10 and the photosensitive device 3;
  • the photosensitive device 3 includes a bottom electrode 31 , a photosensitive layer 32 (photosensitive PIN) and a top electrode 33 stacked on the first passivation layer 11 .
  • the bottom electrode 31 passes through the first passivation layer 11 and the first planar layer 10 .
  • a via V4 is electrically connected to the detection circuit 2, and the orthographic projection of the photosensitive layer 3 on the base substrate 1 does not overlap with the orthographic projection of the first via V4 on the base substrate 1.
  • the photosensitive layer 32 avoids the first via V4 area, that is, the PIN is arranged in a special-shaped structure in the sub-pixel (reflected in the layout diagram later), which can ensure the flatness of the photosensitive layer 3, thereby reducing the dark current band Comes with noise.
  • the photosensitive device 3 includes a stacked bottom electrode 31 , a photosensitive layer 32 and a top electrode 33 .
  • the bottom electrode 31 and the detection circuit 2 The source and drain electrodes (source electrode 21 and drain electrode 22) are arranged in the same layer, and the bottom electrode 31 and the drain electrode 22 of the detection circuit 2 have an integrated structure. In this way, when making the source and drain of the detection circuit 2, the bottom electrode 31 of the photosensitive device 3 is directly made on the source and drain layer, which saves a separate mask for making the bottom electrode 31 and saves mass production costs.
  • the material of the bottom electrode 31 may be a metal material
  • the material of the top electrode 33 may be a transparent conductive material.
  • the bottom electrode 31 and the source and drain electrodes (source electrode 21 and drain electrode 22 ) of the detection circuit 2 are arranged in the same layer. Of course, they can also be arranged in the same layer as in FIG. 16 . 6 or the structure shown in FIG. 7 , the bottom electrode 31 and the source and drain electrodes (source electrode 21 and drain electrode 22) of the detection circuit 2 are arranged in the same layer.
  • Figure 17 is a schematic diagram of the equivalent circuit of the detection circuit
  • Figure 18 is a schematic layout diagram of the detection circuit.
  • the detection circuit includes a first transistor T1, a second transistor T2 and a third transistor T3.
  • the gate of the first transistor T1 and The first control line G is electrically connected, the first pole of the first transistor T1 is electrically connected to the signal reading terminal Vread, the second pole of the first transistor T1 is electrically connected to the first pole of the second transistor T2, and the second pole of the second transistor T2 is electrically connected.
  • the second electrode is electrically connected to the first power supply terminal Vdd.
  • the gate electrode of the second transistor T2 and the first electrode of the third transistor T3 are both electrically connected to the photosensitive device 3.
  • the second electrode of the third transistor T3 is electrically connected to the reset signal line Vrest. connection, the gate of the third transistor T3 is electrically connected to the second control line Rst; where,
  • the first transistor T1, the second transistor T2 and the third transistor T3 all have a double-gate structure, which can reduce leakage current and improve the stability of the first transistor T1, the second transistor T2 and the third transistor T3.
  • the second transistor T2 is used to convert charge changes in the photosensitive device 3 (PIN) into current changes; when the third transistor T3 is turned on, the PD point potential is reset to the reset voltage (Vreset), Realize photosensitive device 3 (PIN) reset; when the third transistor T3 is turned off, it begins to enter the signal reading stage, and the PD point potential decreases due to the accumulation of photocharges; the first transistor T1 controls the signal output and reads the fingerprint identification signal.
  • Vrest can share the same signal trace with Vdd to reduce noise interference caused by increased traces.
  • the PIN avoids the first flat layer in Figures 5-7, 9, 10, 12A, 13A, 14A and 15A 10 and the first via V4 area of the first passivation layer 11 .
  • the signal quantity is mainly related to u (mobility) and C_ox (TFT capacitance characteristics).
  • the second transistor T2 adopts a larger width-to-length ratio W/L, for example, W/L is 5/(3.5+3.5) in a double-gate design.
  • the first transistor controls signal output and cuts off inter-row interference.
  • I_off off-state current
  • I_off off-state current
  • the third transistor T3 resets the potential of the PD point to Vreset to realize the reset of the photosensitive device (PIN).
  • the width-to-length ratio of the second transistor T2 is greater than the width-to-length ratio of the third transistor T3, and the width-to-length ratio of the third transistor T3 is greater than or equal to the width of the first transistor T1. Long ratio.
  • the first transistor T1, the second transistor T2, and the third transistor T3 may have a top gate structure or a bottom gate structure, and the present disclosure is not limited thereto.
  • a top gate structure is used as an example. When applied, the structure can be selected according to different devices or application scenarios.
  • the first transistor T1 includes an active layer Act1, a source S1, a drain D1, gates G1 and G1'
  • the second transistor T2 includes an active layer 23, a source 21, a drain 22, a gate 24 and 24'
  • the third transistor T3 includes an active layer Act3, a source S3, a drain D3, and gates G3 and G3'.
  • the above-mentioned optical sensing device provided by the embodiment of the present disclosure, as shown in Figures 5-7, 9, 10, 12A, 13A, 14A, 15A and 16, also includes: The covering layer 12 between the photosensitive device 3 and the light confinement structure 5 , the second flat layer 13 between the cover layer 12 and the light confinement structure 5 , the second blunt layer 13 between the second flat layer 13 and the light confinement structure 5 passivation layer 14, a first transparent electrode layer 15 between the second passivation layer 14 and the light confinement structure 5, a blocking layer 16 between the first transparent electrode layer 15 and the light confinement structure 5, and a blocking layer 16 and the second transparent electrode layer 17 between the light confinement structure 5; wherein,
  • the first transparent electrode layer 15 is electrically connected to the top electrode 33 of the photosensitive device 3 through a second via hole V5 that penetrates the second passivation layer 14 , the second planarization layer 13 and the covering layer 12 .
  • the first transparent electrode layer 15 serves as a lead of the top electrode 33 to realize the electrical connection between the top electrode 33 and the bias voltage;
  • the second transparent electrode layer 17 serves as a shielding layer covering the entire display panel 6 to prevent parasitic interference.
  • the detection circuit 2 also includes The source layer 23 and the gate electrode 24, the optical sensing device also includes: a buffer layer 18 located between the base substrate 1 and the detection circuit 2, a gate insulating layer 19 located between the active layer 23 and the gate electrode 24, and a gate insulation layer 19 located between the gate electrode 24 and the source layer 23. 24 and the interlayer insulating layer 20 between the source and drain electrodes (21 and 22).
  • Figure 19A is a schematic plan view of the active layer 23
  • Figure 19B is the screen of the gate electrode 24.
  • Schematic diagram Figure 19C is a schematic plan view of the interlayer insulating layer 20 (only the via holes are shown)
  • Figure 19D is a schematic plan view of the source and drain electrodes (21 and 22)
  • Figure 19E is a schematic plan view of the first flat layer 10
  • Figure 19F is a schematic plan view of the first passivation layer 11
  • FIG. 19G is a schematic plan view of the bottom electrode 31
  • FIG. 19H is a schematic plan view of the photosensitive layer 32, FIG.
  • FIG. 19I is a schematic plan view of the second flat layer 13
  • FIG. 19J is a schematic plan view of the second passivation layer.
  • a schematic plan view of the layer 14 Figure 19K is a schematic plan view of the first transparent electrode layer 15
  • Figure 19L is a schematic plan view of the barrier layer 16
  • Figure 19M is a schematic plan view of the second transparent electrode layer 17
  • Figure 19N is the plane of the light outlet V1 Schematic diagram
  • FIG. 19O is a schematic plan view of the light entrance hole V2
  • FIG. 19P is a schematic plan view of the light condensing element 4.
  • the optical channel 51 is configured to allow incident light within the range of the incident angle ( ⁇ - ⁇ , ⁇ + ⁇ ) to hit the photosensitive device 3, And it can also block ambient light.
  • D 2P-t; where, t is the distance between two adjacent light condensing elements 4, D is the light aperture of the light condensing element 4, and P is the photosensitive device 3 (sub pixel) size; wherein, t is 0.2 ⁇ m ⁇ 10 ⁇ m, D is 1.8 ⁇ m ⁇ 190 ⁇ m, and P is 1 ⁇ m ⁇ 100 ⁇ m.
  • H1+H2 (D ⁇ 2+4hs ⁇ 2)*(nt/(ns-1))-nt*hs/ns; where nt is the transparent layer (521 and 531) refractive index of 1.65 ⁇ 2.1, hs is 0.5 ⁇ m ⁇ 20 ⁇ m;
  • d1 (D ⁇ 2+4hs ⁇ 2)*(nt/(ns-1))*(cot( ⁇ + ⁇ )-cot( ⁇ - ⁇ )); among them, d1 is the size of the opening (light exit hole V1) of the light shielding layer 522 close to the photosensitive device 3; d1 is 0.2 ⁇ m to 7.3 ⁇ m;
  • d2 H2*D/((D ⁇ 2+4hs ⁇ 2)*(nt/(ns-1))-nt*hs/ns); where d2 is far away from the photosensitive device
  • the overall thickness H3 of the display panel 6 may be 0.1 mm to 1.4 mm, and the distance H4 between the upper surface of the optical sensor device (the upper surface of the light condensing element 4 ) and the lower surface of the display panel 6 may be 100 ⁇ m. ⁇ 600 ⁇ m.
  • an embodiment of the present invention also provides a display device, as shown in FIG. 20 , including a display panel 6 and the above-mentioned optical sensing device located on the back of the display panel 6 as provided in the embodiment of the present disclosure.
  • the display device can be: a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, or any other product or component with a display function.
  • the display panel 6 includes a glass cover plate, an optical adhesive layer (OCA), a polarizer, a TFE encapsulation layer, a cathode, an EL light-emitting layer, an anode, a driving backplane and other film layers that are stacked in sequence.
  • OCA optical adhesive layer
  • polarizer polarizer
  • TFE polarizer
  • TFE polarizer
  • cathode a cathode
  • an EL light-emitting layer an anode
  • driving backplane and other film layers that are stacked in sequence.
  • the above display device provided by the embodiment of the present disclosure, as shown in FIG. 20 , it also includes: a third flat layer 30 located between the light condensing element 4 and the display panel 6; The optical adhesive layer 40 (OCA) between 30 and the display panel 6.
  • a third flattening layer 30 is formed to have a planarizing effect and protect the light condensing element 4 from being worn.
  • the entire module of the optical sensor device is bonded to the display panel 6 with the optical adhesive layer 40 (OCA), and the third flat layer 30 is provided.
  • OCA optical adhesive layer 40
  • the refractive index of the third flat layer 30 is between 1.0 and 1.5, and the material of the third flat layer 30 can be OC, poly(1,1,1,3,3,3-hexafluoroisopropyl acrylate). ), poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate), poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate), Poly(2,2,3,3,3-pentafluoropropyl acrylate), poly(1,1,1,3,3,3-hexafluoroisopropyl methacrylate), poly(2,2 ,3,4,4,4-hexafluorobutyl acrylate), poly(2,2,3,4,4,4-hexafluorobutyl methacrylate), poly(methacrylic acid 2,2,3, 3,3-pentafluoropropyl ester).
  • Embodiments of the present disclosure provide an optical sensor device and a display device.
  • the light channel can reflect the fingerprint of the finger into a small ( ⁇ - ⁇ , ⁇ + ⁇ )
  • the light at an angle is nearly collimated and filtered out, allowing it to reach the photosensitive device below.
  • the photosensitive device can detect the intensity of the light. The energy of the light diffusely reflected downward from the valleys and ridges of the fingerprint is different.
  • the light detected by the photosensitive device array Strongly different, fingerprint information can be obtained to achieve large-area fingerprint recognition; in addition, by setting up an oblique optical channel, and by adjusting the optimal matching relationship between the parameters in the light constraint structure and the size and position of the photosensitive device below, the light
  • the constraint structure can control the light collection angle within the range of ( ⁇ - ⁇ , ⁇ + ⁇ ), only allow part of the light to enter the photosensitive device, and block the light within a certain angle range to solve the problem of strong ambient light from the outside on the optical sensing performance. influence to further improve recognition performance.
  • one light condensing element to cover at least two photosensitive devices, that is, the size of the light condensing element is larger than the size of the photosensitive devices, so that large-sized light condensing elements can be produced and the process difficulty is reduced.
  • the photosensitive device is made into a large-area array, since the two adjacent light channels are arranged symmetrically about the central axis of the light condensing element, the two adjacent light constraint structures can image the fingerprint twice.
  • the collected image They can complement each other to improve the accuracy of fingerprint recognition.
  • the number of photosensitive devices can be reduced, and the space required for optical sensing devices in electronic devices can be reduced. Therefore, embodiments of the present disclosure can realize fingerprint alignment scheme design by using multiple photosensitive devices to share the same light-concentrating element without reducing the resolution.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种光学传感器件及显示装置,其中光学传感器件包括:衬底基板(1);检测电路(2),位于衬底基板(1)上;多个感光器件(3),位于检测电路(2)背离衬底基板(1)的一侧;多个聚光元件(4),位于感光器件(3)背离衬底基板(1)的一侧;一个聚光元件(4)在衬底基板(1)上的正投影至少覆盖两个感光器件(3)在衬底基板(1)上的正投影;光线约束结构(5),位于感光器件(3)和聚光元件(4)之间;光线约束结构(5)具有与感光器件(3)一一对应的多个光通道(51),各光通道(51)倾斜设置,且相邻两个光通道(51)关于聚光元件(4)的中心轴线对称设置;光通道(51)被配置为允许入射角为(φ-θ,φ+θ)范围内的入射光线射到感光器件(3)上,其中φ为光通道(51)的中心轴线与聚光元件(4)的中心轴线之间的夹角。

Description

一种光学传感器件及显示装置 技术领域
本公开涉及传感技术领域,特别涉及一种光学传感器件及显示装置。
背景技术
由于未来手持电子产品日益小型化,急需向着厚度更薄、体积更小、集成化程度更高的方向发展。当前使用树脂材料直接在传感器表面集成多层光阑、微透镜,可有效降低准直膜贴合方案的三个痛点:大角度串扰、膜材斜纹/摩尔纹、信赖性NG,从而在光学指纹识别过程中提高识别出的指纹信息的准确性。
发明内容
本公开实施例提供了一种光学传感器件及显示装置,具体方案如下:
本公开实施例提供了一种光学传感器件,包括:
衬底基板;
检测电路,位于所述衬底基板上;
多个感光器件,位于所述检测电路背离所述衬底基板的一侧;
多个聚光元件,位于所述感光器件背离所述衬底基板的一侧;一个所述聚光元件在所述衬底基板上的正投影至少覆盖两个所述感光器件在所述衬底基板上的正投影;
光线约束结构,位于所述感光器件和所述聚光元件之间;所述光线约束结构具有与所述感光器件一一对应的多个光通道,各所述光通道倾斜设置,且相邻两个所述光通道关于所述聚光元件的中心轴线对称设置;所述光通道被配置为允许入射角为(φ-θ,φ+θ)范围内的入射光线射到所述感光器件上,其中,φ为所述光通道的中心轴线与所述聚光元件的中心轴线之间的夹角。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,一个所述聚光元件在所述衬底基板上的正投影覆盖k 2个所述感光器件在所述衬底基板上的正投影,其中,k为正偶数。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,φ的取值范围为42°~70°,θ的取值范围为0.5°~12°。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,所述光线约束结构包括层叠设置的至少两层光阑层,每一所述光阑层具有与所述感光器件一一对应的多个开孔,每一所述感光器件上方层叠设置的至少两个所述开孔交错设置形成与所述感光器件对应的所述光通道。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,所述光线约束结构包括层叠设置的至少两层光阑层,最靠近所述聚光元件的所述光阑层具有多个第一开孔,靠近所述感光器件的所述光阑层具有与所述感光器件一一对应的多个第二开孔,一个所述第一开孔在所述衬底基板上的正投影至少覆盖两个所述第二开孔在所述衬底基板上的正投影,所述第一开孔的中心点与所述第二开孔的中心点连线倾斜设置,每一所述感光器件上方层叠设置的所述第一开孔和所述第二开孔形成所述光通道。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,一个所述第一开孔在所述衬底基板上的正投影覆盖k 2个所述第二开孔在所述衬底基板上的正投影,其中,k为正偶数。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,每一所述光阑层包括透明层和设置在所述透明层背离所述聚光元件一侧表面上的遮光层,所述遮光层上设置有所述开孔。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,还包括滤光膜层;其中,
所述滤光膜层复用为任意所述光阑层的透明层;
或,所述滤光膜层设置在任意所述光阑层的透明层内部,所述滤光膜层在所述衬底基板上的正投影至少覆盖所述开孔在所述衬底基板上的正投影。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,所述开孔的形状为三角形、方形或者圆形。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,满足如下关系式:
D=2P-t;其中,t为相邻两个所述聚光元件之间的距离,D为所述聚光元件的通光口径,P为所述感光器件的尺寸;
H1+H2=(D^2+4hs^2)*(nt/(ns-1))-nt*hs/ns;其中,nt为所述透明层的折射率,ns为所述聚光元件的折射率,hs为所述聚光元件的拱高,H1和H2分别为各所述透明层的厚度;
d1=(D^2+4hs^2)*(nt/(ns-1))*(cot(φ+θ)-cot(φ-θ));其中,d1为靠近所述感光器件的遮光层的开孔大小;
d2=H2*D/((D^2+4hs^2)*(nt/(ns-1))-nt*hs/ns);其中,d2为远离所述感光器件的遮光层的开孔大小;
d1y=H1+H2,d1x=d1y*tanφ;其中,d1y为靠近所述感光器件的遮光层的开孔中心相对所述聚光元件的中心在Y方向上的偏移量,d1x为靠近所述感光器件的遮光层的开孔中心相对所述聚光元件的中心在X方向上的偏移量;
d2y=H1,d2x=d2y*tanφ;其中,d2y为远离所述感光器件的遮光层的开孔中心相对所述聚光元件的中心在Y方向上的偏移量,d2x为远离所述感光器件的遮光层的开孔中心相对所述聚光元件的中心在X方向上的偏移量。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,所述聚光元件包括透镜、菲涅尔波带片、光栅、菲涅尔透镜至少其中之一。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,还包括位于所述光线约束结构背离所述衬底基板一侧的聚光层,所述聚光层具有多个通孔,所述通孔构成所述聚光元件。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,还包括:位于所述检测电路和所述感光器件之间的第一平坦层,位于所述第一平坦层和所述感光器件之间的第一钝化层;
所述感光器件包括层叠设置在所述第一钝化层上的底电极、感光层和顶电极,所述底电极通过贯穿所述第一钝化层和所述第一平坦层的第一过孔与所述检测电路电连接,所述感光层在所述衬底基板上的正投影与所述第一过孔在所述衬底基板上的正投影不交叠。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,所述感光器件包括层叠设置的底电极、感光层和顶电极,所述底电极与所述检测电路的源漏极同层设置,且所述底电极与所述检测电路的漏极为一体结构。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,所述检测电路包括第一晶体管、第二晶体管和第三晶体管,所述第一晶体管的栅极与第一控制线电连接,所述第一晶体管的第一极与信号读取端电连接,所述第一晶体管的第二极与所述第二晶体管的第一极电连接,所述第二晶体管的第二极与第一电源端电连接,所述第二晶体管的栅极和所述第三晶体管的第一极均与所述感光器件电连接,所述第三晶体管的第二极与复位信号线电连接,所述第三晶体管的栅极与第二控制线电连接;其中,
所述第一晶体管、所述第二晶体管和所述第三晶体管均为双栅结构。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,所述第二晶体管的宽长比大于所述第三晶体管的宽长比,所述第三晶体管的宽长比大于或等于所述第一晶体管的宽长比。
在一种可能的实现方式中,在本公开实施例提供的上述光学传感器件中,还包括:位于所述感光器件和所述光线约束结构之间的覆盖层,位于所述覆盖层和所述光线约束结构之间的第二平坦层,位于所述第二平坦层和所述光线约束结构之间的第二钝化层,位于所述第二钝化层和所述光线约束结构之间的第一透明电极层,位于所述第一透明电极层和所述光线约束结构之间的阻挡层,以及位于所述阻挡层和所述光线约束结构之间的第二透明电极层;其中,
所述第一透明电极层通过贯穿所述第二钝化层、所述第二平坦层和所述 覆盖层的第二过孔与所述感光器件的顶电极电连接。
相应地,本公开实施例还提供了一种显示装置,包括显示面板以及位于所述显示面板的背面如本公开实施例提供的上述任一项所述的光学传感器件。
在一种可能的实现方式中,在本公开实施例提供的上述显示装置中,还包括:位于所述聚光元件和所述显示面板之间的第三平坦层,以及位于所述第三平坦层和所述显示面板之间的光学胶层。
附图说明
图1为本公开实施例提供的一种光学传感器件的结构示意图;
图2为本公开实施例提供的又一种光学传感器件的结构示意图;
图3为图1所示的结构中部分膜层的一种平面示意图;
图4为图1所示的结构中部分膜层的又一种平面示意图;
图5为本公开实施例提供的又一种光学传感器件的结构示意图;
图6为本公开实施例提供的又一种光学传感器件的结构示意图;
图7为本公开实施例提供的又一种光学传感器件的结构示意图;
图8为图7所示的结构中部分膜层的平面示意图;
图9为本公开实施例提供的又一种光学传感器件的结构示意图;
图10为本公开实施例提供的又一种光学传感器件的结构示意图;
图11为滤光膜层在可见光范围内的透过率光谱图;
图12A为本公开实施例提供的又一种光学传感器件的结构示意图;
图12B为菲涅尔波带片的结构示意图;
图13A为本公开实施例提供的又一种光学传感器件的结构示意图;
图13B为光栅的平面示意图;
图13C为光栅的截面示意图;
图14A为本公开实施例提供的又一种光学传感器件的结构示意图;
图14B为菲涅尔透镜的平面示意图;
图15A为本公开实施例提供的又一种光学传感器件的结构示意图;
图15B为图15A中部分膜层的平面示意图;
图16为本公开实施例提供的又一种光学传感器件的结构示意图;
图17为检测电路的等效电路示意图;
图18为检测电路的layout示意图;
图19A-图19P分别为图5所示的结构中部分膜层的平面示意图;
图20为本公开实施例提供的一种显示装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
现有的光学传感器件结构,环境光不能严格完全滤除,实际光谱与理想光谱还有一定差距,从而使得指纹SNR(信噪比)较低,即指纹性能较差。另外, 小尺寸(D<100nm)微透镜主要适用于硅基CIS制程中,对玻璃工艺来说工艺难度、成本加大、无法大面积制作。而大尺寸(D≥100nm)微透镜业内比较成熟,可以对应玻璃基需求。因此,如何利用大尺寸微透镜实现光学传感器件集成方案,兼顾光学传感器件的高分辨率(PPI)不发生变化是一项亟待解决的技术问题。
有鉴于此,本公开实施例提供了一种光学传感器件,如图1和图2所示,包括:
衬底基板1;
检测电路2,位于衬底基板1上;
多个感光器件3,位于检测电路2背离衬底基板1的一侧;
多个聚光元件4,位于感光器件3背离衬底基板1的一侧;一个聚光元件4在衬底基板1上的正投影至少覆盖两个感光器件3在衬底基板1上的正投影;
光线约束结构5,位于感光器件3和聚光元件4之间;光线约束结构5具有与感光器件3一一对应的多个光通道51,各光通道51倾斜设置,且相邻两个光通道51关于聚光元件4的中心轴线对称设置;光通道51被配置为允许入射角为(φ-θ,φ+θ)范围内的入射光线射到感光器件3上,其中,φ为光通道51的中心轴线与聚光元件4的中心轴线之间的夹角。
本公开实施例提供的上述光学传感器件,在指纹识别时,当手指触摸到显示面板6的屏幕时,光线约束结构5可将指纹7反射后的(φ-θ,φ+θ)小角度的光线近于准直化的筛选出,使其到达下方感光器件3,感光器件3可以探测取出光线的强度,由指纹的谷与脊向下漫反射光的能量不同,感光器件3阵列探测得到的光强不同,由此获取指纹信息;另外,通过设置倾斜设置的光通道51,通过调整光线约束结构5内各参数与下方感光器件3的大小、位置的设计最佳匹配关系,使得光线约束结构5可以控制其收光角在(φ-θ,φ+θ)范围内,仅允许部分光线进入感光器件3,并将(0~φ-θ,φ+θ~90°)角度范围内的外界强环境光进行遮挡,解决外界强环境光对光学传感性能的影响,进一步提高识别性能。另外,通过设置一个聚光元件4至少覆盖两个感光器 件3,即聚光元件4的尺寸大于感光器件3的尺寸,这样可以制作大尺寸的聚光元件4,降低工艺难度。并且,当感光器件3做大面积阵列时,由于相邻两个光通道51关于聚光元件4的中心轴线对称设置,因此相邻两个光线约束结构5可以对指纹进行两次成像,一方面采集后的图像可以互补以提升指纹识别准确性,另一方面在实现相同分辨率的基础上可以减少感光器件3的数量,兼顾降低光学传感器件在电子设备中所需占用的空间。因此本公开实施例可以实现在不降低分辨率的基础上,利用多个感光器件3共用同一聚光元件4来实现指纹准直方案设计。
具体地,衬底基板可以为刚性基板或柔性基板,其中刚性基板的材质可为透明玻璃、透明塑料等,柔性基板的材质可为聚酰亚胺(PI)、聚醚砜(PES)、聚碳酸脂(PC)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、多芳基化合物(PAR)、玻璃纤维增强塑料(FRP)等聚合物材料。
具体地,感光器件可以为PIN型光电二极管。
在具体实施时,在本公开实施例提供的上述光学传感器件中,φ的取值范围可以为42°~70°,θ的取值范围可以为0.5°~12°。
在本公开实施例中,如图1和图2所示,在定义光通道51的中心轴线时,光通道51包括靠近聚光元件4的入光孔V2以及靠近感光器件3的出光孔V1,定义光通道51的中心轴线为入光孔V2的中心与出光孔V1的中心的连线。在本申请实施例中并不限制入光孔V2和出光孔V1的形状,可以为三角形、方形、圆形等。
在具体实施时,当感光器件做大面积阵列时,为了保证相邻两个光通道可以对指纹进行两次成像,使得采集后的图像可以互补提升指纹识别准确性,在本公开实施例提供的上述光学传感器件中,一个聚光元件在衬底基板上的正投影覆盖k 2个感光器件在衬底基板上的正投影,其中,k为正偶数。例如,以图1所示的结构为例,如图3所示,图3为图1所示的结构中部分膜层的一种平面示意图,1个聚光元件4可以对应覆盖4个感光器件3(每个感光器件3和检测电路2对应一个子像素P,即1个聚光元件4可以对应覆盖4个子 像素P);如图4所示,图4为图1所示的结构中部分膜层的又一种平面示意图,1个聚光元件4可以对应覆盖16个感光器件3(子像素P),等等。
下面本公开提供的实施例均以1个聚光元件4覆盖4个子像素P为例进行说明。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图5和图6所示,图5和图6为图1对应的两种具体结构示意图,光线约束结构5可以包括层叠设置的至少两层光阑层,具体地,为保证指纹反射的光线近准直化的入射至感光器件3,如图5所示,光线约束结构5包括层叠设置的两层光阑层(52和53),光阑层52具有与感光器件3一一对应的多个开孔(即出光孔V1),光阑层53具有与感光器件3一一对应的多个开孔(即入光孔V2),每一感光器件3上方层叠设置的两个开孔(V2和V1)交错设置形成与感光器件3对应的光通道51;为保证最佳的指纹识别效果,光阑层可以是三层及以上,例如,如图6所示,光线约束结构5包括层叠设置的三层光阑层(52、53和54),光阑层52具有与感光器件3一一对应的多个开孔(即出光孔V1),光阑层53具有与感光器件3一一对应的多个开孔(即中间孔V3),光阑层54具有与感光器件3一一对应的多个开孔(即入光孔V2),每一感光器件3上方层叠设置的三个开孔(V2、V3和V1)交错设置形成与感光器件3对应的光通道51。
具体地,如图5和图6所示,出光孔V1、入光孔V2的开孔中心与聚光元件4的中心在一条直线上,且与聚光元件4的中心轴线的夹角为φ。另外,聚光元件4的中心与四个子像素组成的基本单元的中心重合。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图7所示,图7为图1对应的具体结构示意图,光线约束结构5包括层叠设置的至少两层光阑层(以包括两层光阑层为例,分别为52和53),最靠近聚光元件4的光阑层53具有多个第一开孔(即入光孔V2),靠近感光器件3的光阑层52具有与感光器件3一一对应的多个第二开孔(即出光孔V1),一个第一开孔(入光孔V2)在衬底基板1上的正投影至少覆盖两个第二开孔(出光孔 V1)在衬底基板1上的正投影,第一开孔(入光孔V2)的中心点与第二开孔(出光孔V1)的中心点连线倾斜设置,每一感光器件3上方层叠设置的第一开孔(入光孔V2)和第二开孔(出光孔V1)形成光通道51。如图8所述,图8为图7所示的结构中部分膜层的平面示意图,1个聚光元件4对应1个入光孔V2和4个出光孔V1,每个出光孔V1下方对应一个子像素P,同样可以使得光线约束结构5控制感光器件3接收的光线的收光角在(φ-θ,φ+θ)范围内。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图7所示,一个第一开孔(入光孔V2)在衬底基板1上的正投影可以覆盖k 2个第二开孔(出光孔V1)在衬底基板1上的正投影,其中,k为正偶数。例如,如图8所示,1个第一开孔(入光孔V2)可以对应覆盖4个子像素P;当然,也可以1个第一开孔(入光孔V2)对应覆盖16个子像素P,等等。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图5-图7所示,光阑层52包括透明层521和设置在透明层521背离聚光元件4一侧表面上的遮光层522,遮光层522上设置有开孔(出光孔V1);如图5和图7所示,光阑层53包括透明层531和设置在透明层531背离聚光元件4一侧表面上的遮光层532,遮光层532上设置有开孔(入光孔V2);如图6所示,光阑层53包括透明层531和设置在透明层531背离聚光元件4一侧表面上的遮光层532,遮光层532上设置有开孔(中间孔V3);如图6所示,光阑层54包括透明层541和设置在透明层541背离聚光元件4一侧表面上的遮光层542,遮光层542上设置有开孔(入光孔V2)。
可选地,上述遮光层可以是透过率较低的金属材料,如钼等,也可以是黑色树脂,如BM等;透明层的材料可以为透明材料的Resin(树脂)、SOG(Silicon On Glass,硅-玻璃键合结构材料)和BCB(苯并环丁烯)等。
在具体实施时,为了进一步滤除外界环境光,提高指纹识别性能,在本公开实施例提供的上述光学传感器件中,如图9和图10所示,还包括滤光膜层8;其中,
滤光膜层8可以复用为任意光阑层(52和/或53)的透明层;例如,如图9所示,滤光膜层8复用为光阑层52的透明层521;在设置时,可以视器件或应用场景的不同进行选择,本公开对此不做限制;
或,滤光膜层8设置在任意光阑层(52和/或53)的透明层(521和/或531)内部,滤光膜层8在衬底基板1上的正投影至少覆盖开孔(例如出光孔V1)在衬底基板1上的正投影;例如,如图10所示,滤光膜层8设置在光阑层52的透明层521内部;在设置时,可以视器件或应用场景的不同进行选择,本公开对此不做限制。
如图11所示,图11为滤光膜层在可见光范围内的透过率光谱图,其中曲线A为图9所示的滤光膜层的透过率,曲线B为图10所示的滤光膜层的透过率,图9和图10中的滤光膜层的区别在于厚度不一样,指纹识别信号一般在380nm~600nm之间,定义其透过率为Ts,Ts的取值范围在10%~50%即可满足指纹识别要求;环境光信号一般在600nm~780nm,定义其透过率为Ta。Ta的取值要求小于10%即可。从图11可以看出,本公开实施例提供的滤光膜层满足指纹识别性能以及滤除环境光的要求。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图5-图7、图9和图10所示,聚光元件4可以为透镜,透镜可以采用热回流工艺形成,由于本公开实施例提供的一个透镜对应覆盖4个子像素,因此透镜的尺寸较大,易于制作。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图12A所示,聚光元件4可以为菲涅尔波带片(FZP)。具体地,可以使用黑色树脂经过光刻工艺制作成菲涅尔波带片排布,实现准直聚光功能。如图12B所示,菲涅尔波带片的焦距f=(r1)^2/λ,λ为波长,rn=r1*(n)^(0.5),n为波带数(每一圈黑色遮光区域),n为1,2,3,…,n的大小与对应的感光器件3的尺寸有关。整个FZP的孔径D=2rn。一个FZP对应4个子像素或者多个子像素。当一个FZP对应4个子像素时,D=2rn=2*P,P为子像素的大小。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图13A 所示,聚光元件4可以为光栅。具体地,光栅可以对光线进行调制,使得指纹反射的光线近准直化的入射至感光器件,实现准直聚光功能。如图13B和图13C所示。图13B为光栅的平面示意图,图13C为光栅的截面示意图,光栅周期T=500nm,光栅的占空比为50%(遮光区域和透光区域1:1),光栅的槽深h=0.1μm~1μm。一个光栅对应4个子像素或者多个子像素。具体的可以使用PECVD沉积一层SiNx,使用干刻工艺在SINx上刻蚀形成光栅结构。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图14A所示,聚光元件4可以为菲涅尔透镜。具体地,可以使用压印工艺制作菲涅尔透镜,如图14B所示,图14B为菲涅尔透镜的平面示意图,菲涅尔透镜在实现lens聚焦功能的基础上,可以节省材料,降低制作成本。
需要说明的是,图12A、图13A、图14A均是在图5所示的结构的基础上将透镜替换成菲涅尔波带片、光栅、菲涅尔透镜,当然,也可以是在图6或图7所示的结构的基础上将透镜替换成菲涅尔波带片、光栅、菲涅尔透镜。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图15A所示,还包括位于光线约束结构5背离衬底基板1一侧的聚光层4’,聚光层4’具有多个通孔41’,通孔41’构成聚光元件4,即通孔41’实现准直聚光功能。如图15B所示,图15B为图15A中部分膜层的平面示意图,1个聚光元件4对应覆盖4个感光器件3(子像素P)。具体地,聚光层4’的材料和遮光层(例如522、532)的材料相同。
需要说明的是,图15A是在图5所示的结构的基础上将透镜替换成聚光层4’,当然,也可以是在图6或图7所示的结构的基础上将透镜替换成聚光层4’。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图5-图7、图9、图10、图12A、图13A、图14A和15A所示,还包括:位于检测电路2和感光器件3之间的第一平坦层10,位于第一平坦层10和感光器件3之间的第一钝化层11;
感光器件3包括层叠设置在第一钝化层11上的底电极31、感光层32(光 敏PIN)和顶电极33,底电极31通过贯穿第一钝化层11和第一平坦层10的第一过孔V4与检测电路2电连接,感光层3在衬底基板1上的正投影与第一过孔V4在衬底基板1上的正投影不交叠。这样感光层32(光敏PIN)避开第一过孔V4区域,即PIN在子像素中按异形结构设置(后续在layout示意图中体现),可以保证感光层3的平坦度,从而降低暗电流带来得的噪声。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图16所示,感光器件3包括层叠设置的底电极31、感光层32和顶电极33,底电极31与检测电路2的源漏极(源极21和漏极22)同层设置,且底电极31与检测电路2的漏极22为一体结构。这样在制作检测电路2的源漏极时,直接在源漏极层制作感光器件3的底电极31,可以节省一道单独制作底电极31的mask,节省量产成本。
可选地,底电极31的材料可以为金属材料,顶电极33的材料可以为透明导电材料。
需要说明的是,图16是在图5所示的结构的基础上将底电极31与检测电路2的源漏极(源极21和漏极22)同层设置,当然,也可以是在图6或图7所示的结构的基础上将底电极31与检测电路2的源漏极(源极21和漏极22)同层设置。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图5-图7、图9、图10、图12A、图13A、图14A、15A、图16、图17和图18所示,图17为检测电路的等效电路示意图,图18为检测电路的layout示意图,该检测电路包括第一晶体管T1、第二晶体管T2和第三晶体管T3,第一晶体管T1的栅极与第一控制线G电连接,第一晶体管T1的第一极与信号读取端Vread电连接,第一晶体管T1的第二极与第二晶体管T2的第一极电连接,第二晶体管T2的第二极与第一电源端Vdd电连接,第二晶体管T2的栅极和第三晶体管T3的第一极均与感光器件3电连接,第三晶体管T3的第二极与复位信号线Vrest电连接,第三晶体管T3的栅极与第二控制线Rst电连接;其中,
第一晶体管T1、第二晶体管T2和第三晶体管T3均为双栅结构,可以降 低漏电流,提升第一晶体管T1、第二晶体管T2和第三晶体管T3的稳定性。
具体地,如图17所示,第二晶体管T2用于将感光器件3(PIN)内电荷变化转换为电流变化;第三晶体管T3打开时,将PD点电位重置为复位电压(Vreset),实现感光器件3(PIN)复位;第三晶体管T3关闭时,开始进入信号读取阶段,PD点电位由于光电荷的积累而降低;第一晶体管T1控制信号输出,读取指纹识别信号。其中,Vrest可以与Vdd共用相同信号走线,减少走线增加带来的噪声干扰。如图18所示,为保证PIN平坦度以降低暗电流带来的噪声,PIN避开图5-图7、图9、图10、图12A、图13A、图14A和15A中第一平坦层10和第一钝化层11的第一过孔V4区域。第二晶体管T2实现将电荷变化转化为电流变化,根据公式I=1/2u*C_ox*(V_GS-V_th)^2,流经去base恒流源的电流I'大小固定,则读取的信号量为Is=I-I',在PD点电压变化一定的情况下,由公式可知信号量大小主要与u(迁移率)和C_ox(TFT电容特性)有关。这里第二晶体管T2取较大的宽长比W/L,例如W/L取5/(3.5+3.5)双栅设计。第一晶体管控制信号输出,切断行间干扰,要求I_off(关态电流)尽量小,以防止信号转换期间Is混入其它行漏电流,所以这里取较小的W/L,例如取2/(3.5+3.5)双栅设计。第三晶体管T3将PD点电位重置为Vreset,实现感光器件(PIN)复位,要求I_off尽量小,以防止在曝光阶段,Vreset向PD点漏电;第三晶体管T3的I_on(开态电流)尽量大,以提高Pd点复位速度,降低复位所需的时间,所以这里可以取大于或等于第一晶体管T1的宽长比,例如取5/(3.5+3.5)双栅设计。因此,在本公开实施例提供的上述光学传感器件中,第二晶体管T2的宽长比大于第三晶体管T3的宽长比,第三晶体管T3的宽长比大于或等于第一晶体管T1的宽长比。
具体地,第一晶体管T1、第二晶体管T2和第三晶体管T3可以为顶栅结构,还可以为底栅结构,本公开对此并不限制。在本公开实施例中以顶栅结构进行示例性说明,在应用时,可以根据不同的器件或者应用场景进行选择。
如图18所示,第一晶体管T1包括有源层Act1、源极S1、漏极D1、栅极G1和G1’,第二晶体管T2包括有源层23、源极21、漏极22、栅极24和 24’,第三晶体管T3包括有源层Act3、源极S3、漏极D3、栅极G3和G3’。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图5-图7、图9、图10、图12A、图13A、图14A、15A和图16所示,还包括:位于感光器件3和光线约束结构5之间的覆盖层12,位于覆盖层12和光线约束结构5间的第二平坦层13,位于第二平坦层13和光线约束结构5之间的第二钝化层14,位于第二钝化层14和光线约束结构5之间的第一透明电极层15,位于第一透明电极层15和光线约束结构5之间的阻挡层16,以及位于阻挡层16和光线约束结构5之间的第二透明电极层17;其中,
第一透明电极层15通过贯穿第二钝化层14、第二平坦层13和覆盖层12的第二过孔V5与感光器件3的顶电极33电连接。
具体地,第一透明电极层15作为顶电极33的引线,实现顶电极33与偏置电压的电连接;第二透明电极层17可以作为屏蔽层,覆盖整面显示面板6,可以防止产生寄生电容对感光器件(PIN)的影响。
在具体实施时,在本公开实施例提供的上述光学传感器件中,如图5-图7、图9、图10、图12A、图13A、图14A和15A所示,检测电路2还包括有源层23和栅极24,光学传感器件还包括:位于衬底基板1和检测电路2之间的缓冲层18,位于有源层23和栅极24之间的栅绝缘层19,位于栅极24和源漏极(21和22)之间的层间绝缘层20。
下面以图5所示的结构为例,示意出其中主要膜层的layout示意图,如图19A-图19P所示,图19A为有源层23的平面示意图,图19B为栅极24的屏,示意图,图19C为层间绝缘层20的平面示意图(仅示意出过孔),图19D为源漏极(21和22)的平面示意图,图19E为第一平坦层10的平面示意图,图19F为第一钝化层11的平面示意图,图19G为底电极31的平面示意图,图19H为感光层32的平面示意图,图19I为第二平坦层13的平面示意图,图19J为第二钝化层14的平面示意图,图19K为第一透明电极层15的平面示意图,图19L为阻挡层16的平面示意图,图19M为第二透明电极层17的平面示意图,图19N为出光孔V1的平面示意图,图19O为入光孔V2的平面 示意图,图19P为聚光元件4的平面示意图。
在本公开实施例中,以图5所示的结构为例,为了实现光通道51被配置为允许入射角为(φ-θ,φ+θ)范围内的入射光线射到感光器件3上,并且还能遮挡环境光,需要各参数满足如下关系式:
如图3和图5所示,D=2P-t;其中,t为相邻两个聚光元件4之间的距离,D为聚光元件4的通光口径,P为感光器件3(子像素)的尺寸;其中,t为0.2μm~10μm,D为1.8μm~190μm,P为1μm~100μm。
如图3和图5所示,H1+H2=(D^2+4hs^2)*(nt/(ns-1))-nt*hs/ns;其中,nt为透明层(521和531)的折射率,ns为聚光元件4的折射率,hs为聚光元件4的拱高,H1和H2分别为各透明层(531和521)的厚度;其中,nt为1.4~1.6,ns为1.65~2.1,hs为0.5μm~20μm;
如图3和图5所示,d1=(D^2+4hs^2)*(nt/(ns-1))*(cot(φ+θ)-cot(φ-θ));其中,d1为靠近感光器件3的遮光层522的开孔(出光孔V1)大小;d1为0.2μm~7.3μm;
如图3和图5所示,d2=H2*D/((D^2+4hs^2)*(nt/(ns-1))-nt*hs/ns);其中,d2为远离感光器件3的遮光层532的开孔(入光孔V2)大小;
如图3和图5所示,d1y=H1+H2,d1x=d1y*tanφ;其中,d1y为靠近感光器件3的遮光层522的开孔中心相对聚光元件4的中心在Y方向上的偏移量,d1x为靠近感光器件3的遮光层522的开孔中心相对聚光元件4的中心在X方向上的偏移量;其中,d1y为2μm~40μm;
如图3和图5所示,d2y=H1,d2x=d2y*tanφ;其中,d2y为远离感光器件3的遮光层532的开孔中心相对聚光元件4的中心在Y方向上的偏移量,d2x为远离感光器件3的遮光层532的开孔中心相对聚光元件4的中心在X方向上的偏移量;其中,d2y为1μm~20μm。
具体地,如图3和图5所示,由于入光孔V2和出光孔V1在空间上需要实现倾斜光线通过,因此需要满足入光孔V2和出光孔V1的坐标不能相同,由于出光孔V1在入光孔V2下方,因此d2x<d1x、d2y<d1y。
具体地,如图5所示,显示面板6的整体厚度H3可以为0.1mm~1.4mm,光学传感器件上表面(聚光元件4上表面)与显示面板6的下表面的距离H4可以为100μm~600μm。
基于同一发明构思,本发明实施例还提供了一种显示装置,如图20所示,包括显示面板6以及位于显示面板6的背面如本公开实施例提供的上述光学传感器件。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述光学传感器件的实施例,重复之处不再赘述。
具体地,显示面板6包括依次层叠设置的玻璃盖板、光学胶层(OCA)、偏光片、TFE封装层、阴极、EL发光层、阳极、驱动背板等膜层。
在具体实施时,在本公开实施例提供的上述显示装置中,如图20所示,还包括:位于聚光元件4和显示面板6之间的第三平坦层30,以及位于第三平坦层30和显示面板6之间的光学胶层40(OCA)。具体地,在聚光元件4制程后再制作一层第三平坦层30,起到平坦化作用,可以保护聚光元件4不被磨损。然后光学传感器件整个模组用光学胶层40(OCA)与显示面板6贴合,设置第三平坦层30相比于显示面板6与光学传感器件模组之间有Air Gap(空气间隙)的优势是:本公开防止指纹识别按压力度不同导致的指纹识别不准确的问题。
可选地,第三平坦层30的折射率在1.0~1.5之间,第三平坦层30的材料可以是OC、聚(丙烯酸1,1,1,3,3,3-六氟异丙酯)、聚(2,2,3,3,4,4,4-七氟丁基丙烯酸酯)、聚(2,2,3,3,4,4,4-七氟丁基甲基丙烯酸酯)、聚(2,2,3,3,3-五氟丙基丙烯酸酯)、聚(1,1,1,3,3,3-六氟异丙基甲基丙烯酸酯)、聚(2,2,3,4,4,4-六氟丁基丙烯酸酯)、聚(2,2,3,4,4,4-六氟丁基甲基丙烯酸酯)、聚(甲基丙烯酸2,2,3,3,3-五氟丙酯)。
本公开实施例提供了一种光学传感器件及显示装置,在指纹识别时,当手指触摸到显示面板的屏幕时,光通道可将手指的指纹反射后的(φ-θ,φ+θ)小角度的光线近于准直化的筛选出,使其到达下方感光器件,感光器件可以探测取出光线的强度,由指纹的谷与脊向下漫反射光的能量不同,感光器件 阵列探测得到的光强不同,由此获取指纹信息,实现大面积指纹识别;另外,通过设置倾斜设置的光通道,通过调整光线约束结构内各参数与下方感光器件的大小、位置的设计最佳匹配关系,使得光线约束结构可以控制其收光角在(φ-θ,φ+θ)范围内,仅允许部分光线进入感光器件,并对于一定角度范围内的光线进行遮挡,解决外界强环境光对光学传感性能的影响,进一步提高识别性能。另外,通过设置一个聚光元件至少覆盖两个感光器件,即聚光元件的尺寸大于感光器件的尺寸,这样可以制作大尺寸的聚光元件,降低工艺难度。并且,当感光器件做大面积阵列时,由于相邻两个光通道关于聚光元件的中心轴线对称设置,因此相邻两个光线约束结构可以对指纹进行两次成像,一方面采集后的图像可以互补以提升指纹识别准确性,另一方面在实现相同分辨率的基础上可以减少感光器件的数量,兼顾降低光学传感器件在电子设备中所需占用的空间。因此本公开实施例可以实现在不降低分辨率的基础上,利用多个感光器件共用同一聚光元件来实现指纹准直方案设计。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (19)

  1. 一种光学传感器件,其中,包括:
    衬底基板;
    检测电路,位于所述衬底基板上;
    多个感光器件,位于所述检测电路背离所述衬底基板的一侧;
    多个聚光元件,位于所述感光器件背离所述衬底基板的一侧;一个所述聚光元件在所述衬底基板上的正投影至少覆盖两个所述感光器件在所述衬底基板上的正投影;
    光线约束结构,位于所述感光器件和所述聚光元件之间;所述光线约束结构具有与所述感光器件一一对应的多个光通道,各所述光通道倾斜设置,且相邻两个所述光通道关于所述聚光元件的中心轴线对称设置;所述光通道被配置为允许入射角为(φ-θ,φ+θ)范围内的入射光线射到所述感光器件上,其中,φ为所述光通道的中心轴线与所述聚光元件的中心轴线之间的夹角。
  2. 根据权利要求1所述的光学传感器件,其中,一个所述聚光元件在所述衬底基板上的正投影覆盖k 2个所述感光器件在所述衬底基板上的正投影,其中,k为正偶数。
  3. 根据权利要求1所述的光学传感器件,其中,φ的取值范围为42°~70°,θ的取值范围为0.5°~12°。
  4. 根据权利要求1-3任一项所述的光学传感器件,其中,所述光线约束结构包括层叠设置的至少两层光阑层,每一所述光阑层具有与所述感光器件一一对应的多个开孔,每一所述感光器件上方层叠设置的至少两个所述开孔交错设置形成与所述感光器件对应的所述光通道。
  5. 根据权利要求1-3任一项所述的光学传感器件,其中,所述光线约束结构包括层叠设置的至少两层光阑层,最靠近所述聚光元件的所述光阑层具有多个第一开孔,靠近所述感光器件的所述光阑层具有与所述感光器件一一对应的多个第二开孔,一个所述第一开孔在所述衬底基板上的正投影至少覆 盖两个所述第二开孔在所述衬底基板上的正投影,所述第一开孔的中心点与所述第二开孔的中心点连线倾斜设置,每一所述感光器件上方层叠设置的所述第一开孔和所述第二开孔形成所述光通道。
  6. 根据权利要求5所述的光学传感器件,其中,一个所述第一开孔在所述衬底基板上的正投影覆盖k 2个所述第二开孔在所述衬底基板上的正投影,其中,k为正偶数。
  7. 根据权利要求4-6任一项所述的光学传感器件,其中,每一所述光阑层包括透明层和设置在所述透明层背离所述聚光元件一侧表面上的遮光层,所述遮光层上设置有所述开孔。
  8. 根据权利要求7所述的光学传感器件,其中,还包括滤光膜层;其中,
    所述滤光膜层复用为任意所述光阑层的透明层;
    或,所述滤光膜层设置在任意所述光阑层的透明层内部,所述滤光膜层在所述衬底基板上的正投影至少覆盖所述开孔在所述衬底基板上的正投影。
  9. 根据权利要求7所述的光学传感器件,其中,所述开孔的形状为三角形、方形或者圆形。
  10. 根据权利要求7-9任一项所述的光学传感器件,其中,满足如下关系式:
    D=2P-t;其中,t为相邻两个所述聚光元件之间的距离,D为所述聚光元件的通光口径,P为所述感光器件的尺寸;
    H1+H2=(D^2+4hs^2)*(nt/(ns-1))-nt*hs/ns;其中,nt为所述透明层的折射率,ns为所述聚光元件的折射率,hs为所述聚光元件的拱高,H1和H2分别为各所述透明层的厚度;
    d1=(D^2+4hs^2)*(nt/(ns-1))*(cot(φ+θ)-cot(φ-θ));其中,d1为靠近所述感光器件的遮光层的开孔大小;
    d2=H2*D/((D^2+4hs^2)*(nt/(ns-1))-nt*hs/ns);其中,d2为远离所述感光器件的遮光层的开孔大小;
    d1y=H1+H2,d1x=d1y*tanφ;其中,d1y为靠近所述感光器件的遮光层 的开孔中心相对所述聚光元件的中心在Y方向上的偏移量,d1x为靠近所述感光器件的遮光层的开孔中心相对所述聚光元件的中心在X方向上的偏移量;
    d2y=H1,d2x=d2y*tanφ;其中,d2y为远离所述感光器件的遮光层的开孔中心相对所述聚光元件的中心在Y方向上的偏移量,d2x为远离所述感光器件的遮光层的开孔中心相对所述聚光元件的中心在X方向上的偏移量。
  11. 根据权利要求1-10任一项所述的光学传感器件,其中,所述聚光元件包括透镜、菲涅尔波带片、光栅、菲涅尔透镜至少其中之一。
  12. 根据权利要求1-10任一项所述的光学传感器件,其中,还包括位于所述光线约束结构背离所述衬底基板一侧的聚光层,所述聚光层具有多个通孔,所述通孔构成所述聚光元件。
  13. 根据权利要求1-12任一项所述的光学传感器件,其中,还包括:位于所述检测电路和所述感光器件之间的第一平坦层,位于所述第一平坦层和所述感光器件之间的第一钝化层;
    所述感光器件包括层叠设置在所述第一钝化层上的底电极、感光层和顶电极,所述底电极通过贯穿所述第一钝化层和所述第一平坦层的第一过孔与所述检测电路电连接,所述感光层在所述衬底基板上的正投影与所述第一过孔在所述衬底基板上的正投影不交叠。
  14. 根据权利要求1-12任一项所述的光学传感器件,其中,所述感光器件包括层叠设置的底电极、感光层和顶电极,所述底电极与所述检测电路的源漏极同层设置,且所述底电极与所述检测电路的漏极为一体结构。
  15. 根据权利要求13或14所述的光学传感器件,其中,所述检测电路包括第一晶体管、第二晶体管和第三晶体管,所述第一晶体管的栅极与第一控制线电连接,所述第一晶体管的第一极与信号读取端电连接,所述第一晶体管的第二极与所述第二晶体管的第一极电连接,所述第二晶体管的第二极与第一电源端电连接,所述第二晶体管的栅极和所述第三晶体管的第一极均与所述感光器件电连接,所述第三晶体管的第二极与复位信号线电连接,所述第三晶体管的栅极与第二控制线电连接;其中,
    所述第一晶体管、所述第二晶体管和所述第三晶体管均为双栅结构。
  16. 根据权利要求15所述的光学传感器件,其中,所述第二晶体管的宽长比大于所述第三晶体管的宽长比,所述第三晶体管的宽长比大于或等于所述第一晶体管的宽长比。
  17. 根据权利要求1-16任一项所述的光学传感器件,其中,还包括:位于所述感光器件和所述光线约束结构之间的覆盖层,位于所述覆盖层和所述光线约束结构之间的第二平坦层,位于所述第二平坦层和所述光线约束结构之间的第二钝化层,位于所述第二钝化层和所述光线约束结构之间的第一透明电极层,位于所述第一透明电极层和所述光线约束结构之间的阻挡层,以及位于所述阻挡层和所述光线约束结构之间的第二透明电极层;其中,
    所述第一透明电极层通过贯穿所述第二钝化层、所述第二平坦层和所述覆盖层的第二过孔与所述感光器件的顶电极电连接。
  18. 一种显示装置,其中,包括显示面板以及位于所述显示面板的背面如权利要求1-17任一所述的光学传感器件。
  19. 根据权利要求18所述的显示装置,其中,还包括:位于所述聚光元件和所述显示面板之间的第三平坦层,以及位于所述第三平坦层和所述显示面板之间的光学胶层。
PCT/CN2022/114676 2022-08-25 2022-08-25 一种光学传感器件及显示装置 WO2024040492A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002820.7A CN118076983A (zh) 2022-08-25 2022-08-25 一种光学传感器件及显示装置
PCT/CN2022/114676 WO2024040492A1 (zh) 2022-08-25 2022-08-25 一种光学传感器件及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114676 WO2024040492A1 (zh) 2022-08-25 2022-08-25 一种光学传感器件及显示装置

Publications (1)

Publication Number Publication Date
WO2024040492A1 true WO2024040492A1 (zh) 2024-02-29

Family

ID=90011976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114676 WO2024040492A1 (zh) 2022-08-25 2022-08-25 一种光学传感器件及显示装置

Country Status (2)

Country Link
CN (1) CN118076983A (zh)
WO (1) WO2024040492A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111523440A (zh) * 2020-04-21 2020-08-11 上海思立微电子科技有限公司 屏下光学指纹识别装置
US20200394381A1 (en) * 2019-06-12 2020-12-17 Samsung Display Co., Ltd. Display device including photosensor units
CN212341879U (zh) * 2020-04-27 2021-01-12 北京迈格威科技有限公司 Oled显示屏及指纹识别模组
WO2021072753A1 (zh) * 2019-10-18 2021-04-22 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
WO2021082017A1 (zh) * 2019-11-01 2021-05-06 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN114255486A (zh) * 2021-12-09 2022-03-29 京东方科技集团股份有限公司 一种光学传感器件及其制备方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200394381A1 (en) * 2019-06-12 2020-12-17 Samsung Display Co., Ltd. Display device including photosensor units
WO2021072753A1 (zh) * 2019-10-18 2021-04-22 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
WO2021082017A1 (zh) * 2019-11-01 2021-05-06 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111523440A (zh) * 2020-04-21 2020-08-11 上海思立微电子科技有限公司 屏下光学指纹识别装置
CN212341879U (zh) * 2020-04-27 2021-01-12 北京迈格威科技有限公司 Oled显示屏及指纹识别模组
CN114255486A (zh) * 2021-12-09 2022-03-29 京东方科技集团股份有限公司 一种光学传感器件及其制备方法、显示装置

Also Published As

Publication number Publication date
CN118076983A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US10665631B1 (en) Display panel and display device
US10296777B2 (en) Display panel and display apparatus
US20230251404A1 (en) Texture image acquiring device, display device, and collimator
US11734946B2 (en) Fingerprint sensing module
WO2020192117A1 (en) Array substrate and fabricating method thereof, and display apparatus
CN111291710B (zh) 指纹识别模组及显示装置
JP2007304245A (ja) 液晶表示装置
WO2022068129A1 (zh) 感测手指生物特征的光学感测装置及使用其的电子装置
CN112420791B (zh) 指纹识别基板及其制备方法、显示装置
US20230215211A1 (en) Display Panel and Display Device
US20230181067A1 (en) In-cell optical biometrics sensor
WO2024040492A1 (zh) 一种光学传感器件及显示装置
CN114019707B (zh) 一种显示基板、显示面板及显示装置
WO2021042395A1 (zh) 指纹检测装置和电子设备
CN212391803U (zh) 光感测元及使用其的光学生物特征感测器
CN112666737B (zh) 液晶显示面板
CN212783451U (zh) 具有抗杂光干扰结构的光学生物特征感测器
TWI753603B (zh) 指紋感測裝置
WO2022061769A1 (zh) 指纹识别模组、其制作方法及显示装置
WO2022188161A1 (zh) 显示面板及显示装置
WO2023070498A1 (zh) 纹路识别模组及显示装置
US20240185765A1 (en) Texture recognition device and display apparatus
WO2022266846A1 (zh) 纹路识别装置以及显示装置
US20220375979A1 (en) Photosensitive device
CN115835733A (zh) 一种显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956040

Country of ref document: EP

Kind code of ref document: A1