WO2022266846A1 - 纹路识别装置以及显示装置 - Google Patents

纹路识别装置以及显示装置 Download PDF

Info

Publication number
WO2022266846A1
WO2022266846A1 PCT/CN2021/101561 CN2021101561W WO2022266846A1 WO 2022266846 A1 WO2022266846 A1 WO 2022266846A1 CN 2021101561 W CN2021101561 W CN 2021101561W WO 2022266846 A1 WO2022266846 A1 WO 2022266846A1
Authority
WO
WIPO (PCT)
Prior art keywords
base substrate
light
layer
recognition device
lens unit
Prior art date
Application number
PCT/CN2021/101561
Other languages
English (en)
French (fr)
Inventor
李重寰
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/101561 priority Critical patent/WO2022266846A1/zh
Priority to CN202180001574.9A priority patent/CN115735236A/zh
Priority to US17/784,706 priority patent/US20240185765A1/en
Priority to GB2305790.4A priority patent/GB2615439A/en
Publication of WO2022266846A1 publication Critical patent/WO2022266846A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1341Sensing with light passing through the finger

Definitions

  • Embodiments of the present disclosure relate to a texture recognition device and a display device.
  • texture recognition technology combined with optical imaging is gradually adopted by various electronic products for functions such as identity verification and electronic payment.
  • the display screens of current electronic products, such as mobile phones and tablet computers, are developing in the direction of large screen and full screen. For this, how to design a more optimized texture recognition device and improve the user's texture recognition experience is the focus of attention in this field. question.
  • the texture recognition device has a plurality of pixel units, and includes a base substrate, a driving circuit layer, a photosensitive element layer and a lens layer, and the driving circuit layer is disposed on the base substrate
  • the photosensitive element layer is arranged on the base substrate
  • the lens layer is arranged on the side of the photosensitive element layer away from the base substrate, wherein at least one pixel unit among the plurality of pixel units includes a The pixel driving circuit in the driving circuit layer, a plurality of photosensitive elements arranged in the photosensitive element layer, and a plurality of lens units arranged in the lens layer, the pixel driving circuit and the plurality of photosensitive elements Electrically connected to drive the plurality of photosensitive elements, in a direction perpendicular to the board surface of the base substrate, the plurality of photosensitive elements correspond to and overlap the plurality of lens units one by one.
  • the plurality of photosensitive elements included in the at least one pixel unit are arranged in an N*M array, where M is a positive integer greater than or equal to 1, and N is greater than or equal to A positive integer of 1.
  • the M is 2
  • the N is 2
  • the plurality of photosensitive elements included in the at least one pixel unit are arranged in a 2*2 array.
  • the texture recognition device provided in at least one embodiment of the present disclosure further includes at least one diaphragm layer, and the at least one diaphragm layer includes a first diaphragm layer, wherein the first diaphragm layer is arranged on the photosensitive element
  • a plurality of first light-transmitting openings are included between the lens layer and the lens layer.
  • the plurality of first light-transmitting openings and the plurality of photosensitive elements are One-to-one correspondence and at least partial overlap.
  • the diameter of each of the plurality of first light-transmitting openings is D1, then 2 ⁇ m ⁇ D1 ⁇ 50 ⁇ m.
  • the material of the first aperture layer is a light-absorbing material.
  • the thickness of the first diaphragm layer in the direction perpendicular to the board surface of the base substrate, is 1 ⁇ m-3 ⁇ m, and the first diaphragm layer The distance between the layer and the photosensitive element layer is 5 ⁇ m-20 ⁇ m.
  • the texture recognition device provided in at least one embodiment of the present disclosure further includes a second diaphragm layer, wherein the second diaphragm layer is arranged between the first diaphragm layer and the lens layer, and includes a plurality of For the second light-transmitting openings, in a direction perpendicular to the board surface of the base substrate, the plurality of second light-transmitting openings correspond to the plurality of photosensitive elements one by one and overlap at least partially.
  • the diameter of each of the plurality of first light-transmitting openings is D1
  • the plurality of The diameter of each of the second light-transmitting openings is D2, so 2 ⁇ m ⁇ D1 ⁇ D2 ⁇ 50 ⁇ m.
  • the thickness of the second diaphragm layer in the direction perpendicular to the board surface of the base substrate, is 1 ⁇ m-3 ⁇ m, and the second diaphragm layer The distance between the layer and the first diaphragm layer is 5 ⁇ m-20 ⁇ m.
  • the texture recognition device provided in at least one embodiment of the present disclosure further includes a light filter layer disposed between the photosensitive element layer and the first diaphragm layer, and the light filter layer is configured to transmit light with a wavelength of 580 nm. ⁇ 850nm light.
  • the texture recognition device provided in at least one embodiment of the present disclosure further includes a field stop layer disposed between the photosensitive element layer and the light filter layer, and the field stop layer includes a plurality of third transparent As for the light openings, in a direction perpendicular to the board surface of the base substrate, the plurality of third light-transmitting openings correspond to the plurality of photosensitive elements one by one and overlap at least partially.
  • the diameter of each of the plurality of third light-transmitting openings is D3, then 2 ⁇ m ⁇ D3 ⁇ 10 ⁇ m.
  • the thickness of the field stop layer in a direction perpendicular to the board surface of the base substrate, is 300nm ⁇ 500nm.
  • the material of the field diaphragm layer includes a metal material.
  • the orthographic projection of the center of the lens unit on the base substrate overlaps with the orthographic projection of the center of the first light-transmitting opening on the base substrate, and It overlaps with the orthographic projection of the center of the second light-transmitting opening on the base substrate, and overlaps with the orthographic projection of the third light-transmitting opening on the base substrate.
  • the light rays that pass through the edge of the lens unit and enter the lens unit in a direction perpendicular to the board surface of the base substrate are consistent with the lens at the incident place.
  • the included angle between the normal of the surface of the unit far away from the base substrate is ⁇ 1, and the light refracted by the lens unit enters the middle of the third light-transmitting opening, and the included angle with the normal is ⁇ 1.
  • the lens unit is close to the base substrate
  • the distance between the surface and the surface of the second aperture layer far away from the base substrate is h1, and the distance between the surface of the second aperture layer close to the base substrate and the first aperture layer is h1
  • the distance between the surface of the base substrate is h2, the distance between the surface of the first diaphragm layer close to the base substrate and the surface of the field diaphragm layer far away from the base substrate is h3, so The distance between the surface of the lens unit close to the base substrate and the surface of the field stop layer close to the base substrate is h4, then:
  • n1*sin ⁇ 1 n2*sin ⁇ 2;
  • the light that passes through the edge of the lens unit and enters the lens unit at an angle less than 90 degrees to the direction perpendicular to the board surface of the base substrate and The included angle between the normal of the surface of the lens unit far away from the base substrate at the incident place is ⁇ 4
  • the light refracted by the lens unit enters the edge of the third light-transmitting opening, and is in line with the normal
  • the included angle of the line is ⁇ 5
  • the included angle with the direction perpendicular to the surface of the substrate substrate is ⁇ 6, and the diameter of the lens unit is D0, then:
  • n1*sin ⁇ 4 n2*sin ⁇ 5;
  • the orthographic projection of the center of the lens unit on the base substrate does not overlap with the orthographic projection of the center of the first light-transmitting opening on the base substrate
  • the orthographic projection of the center of the second light-transmitting opening on the base substrate does not overlap, and does not overlap with the orthographic projection of the center of the third light-transmitting opening on the base substrate.
  • the orthographic projection of the center of the first light-transmitting opening on the base substrate and the center of the second light-transmitting opening on the base substrate The distance between the orthographic projections is 1 ⁇ m-5 ⁇ m; the orthographic projection of the center of the first light-transmitting opening on the base substrate and the orthographic projection of the center of the third light-transmitting opening on the base substrate The distance between them is 1 ⁇ m-5 ⁇ m.
  • the light that passes through the first edge of the lens unit and enters the lens unit at a first angle to the direction perpendicular to the board surface of the base substrate The included angle with the normal of the surface of the lens unit far away from the base substrate at the incident place is ⁇ 11, the light refracted by the lens unit enters the middle of the third light-transmitting opening, and is in contact with the The included angle of the normal line is ⁇ 12, and the included angle with the direction perpendicular to the board surface of the base substrate is ⁇ 13, passing through the second edge of the lens unit opposite to the first edge and perpendicular to the The direction of the plate surface of the base substrate is the angle ⁇ 14 between the light incident on the lens unit at the first angle and the normal line of the surface of the lens unit at the incident place far away from the base substrate.
  • the light refracted by the lens unit enters the middle of the third light-transmitting opening, and the included angle with the normal line is ⁇ 15, and the included angle with the direction perpendicular to the board surface of the base substrate is ⁇ 16.
  • the refractive index of the lens unit is n1, the refractive index of the lens unit is n2, and the distance between the surface of the lens unit close to the base substrate and the surface of the second diaphragm layer far away from the base substrate is h1 , the distance between the surface of the second aperture layer close to the base substrate and the surface of the first aperture layer far away from the base substrate is h2, and the surface of the first aperture layer close to the
  • the distance between the surface of the base substrate and the surface of the field diaphragm layer far away from the base substrate is h3, and the distance between the surface of the lens unit close to the base substrate and the field diaphragm layer is The distance between the surface of the base substrate is h4, and the diameter of the lens unit is D0, then
  • n1*sin ⁇ 11 n2*sin ⁇ 12;
  • n1*sin ⁇ 14 n2*sin ⁇ 15;
  • D1 D0-(h1+h2)*tan ⁇ 13-(h1+h2)*tan ⁇ 16.
  • D2 D0-h1*tan ⁇ 13-h1*tan ⁇ 16.
  • the light that passes through the first edge of the lens unit and enters the lens unit at a second angle to the direction perpendicular to the board surface of the base substrate After being refracted by the lens unit, it enters the edge of the third light-transmitting opening, and the angle between the refracted light and the direction perpendicular to the board surface of the base substrate is ⁇ 17, and the second angle is greater than
  • the light enters the edge of the third light-transmitting opening after being refracted by the lens unit, and the angle between the refracted light and the direction perpendicular to the board surface of the base substrate is ⁇ 18, then:
  • the texture recognition device provided in at least one embodiment of the present disclosure further includes a planarization layer disposed on a side of the lens layer away from the base substrate, and a material of the planarization layer has a refractive index of 1.35-1.45.
  • each of the plurality of lens units has a curvature radius of 5 ⁇ m-20 ⁇ m and a diameter of 25 ⁇ m-35 ⁇ m.
  • each of the plurality of lens units is substantially circular, square or rectangular in shape.
  • the refractive index of the material of the lens layer is 1.6-1.7.
  • At least one embodiment of the present disclosure further provides a display device, the display device includes a display panel and the texture recognition device provided by the embodiments of the present disclosure, the display panel has a display side and a non-display side, and allows light to pass through the display side To the non-display side, the texture recognition device is arranged on the non-display side of the display panel, configured to receive light transmitted from the display side to the non-display side for texture recognition, wherein the lens layer is closer to the display panel than the photosensitive element layer.
  • Fig. 1 is a schematic plan view of a texture recognition device provided by at least one embodiment of the present disclosure and a schematic cross-sectional view obtained by cutting along the M-M line in the schematic plan view;
  • Fig. 2 is a schematic plan view of the first diaphragm layer, the first diaphragm layer and the field diaphragm layer in the texture recognition device provided by at least one embodiment of the present disclosure
  • Fig. 3 is a schematic plan view of multiple lens units in a texture recognition device provided by at least one embodiment of the present disclosure
  • Fig. 4A is a schematic diagram of the propagation path of signal light in the texture recognition device in Fig. 1 and Fig. 2;
  • Fig. 4B is another schematic diagram of the signal light propagation path in the texture recognition device provided by at least one embodiment of the present disclosure.
  • FIG. 4C is another schematic diagram of the signal light propagation path in the texture recognition device provided by at least one embodiment of the present disclosure.
  • FIG. 5 is another schematic plan view of the texture recognition device provided by at least one embodiment of the present disclosure and a schematic cross-sectional view obtained by cutting along the M-M line in the above schematic plan view;
  • Fig. 6 is another schematic plan view of the first diaphragm layer, the first diaphragm layer and the field diaphragm layer in the texture recognition device provided by at least one embodiment of the present disclosure
  • Fig. 7A is a schematic diagram of the propagation path of signal light in the texture recognition device in Fig. 5 and Fig. 6;
  • Fig. 7B is another schematic diagram of the propagation path of the signal light in the texture recognition device in Fig. 5 and Fig. 6;
  • FIG. 7C is another schematic diagram of the propagation path of the signal light in the texture recognition device in FIG. 5 and FIG. 6;
  • FIG. 8 is a schematic cross-sectional view of a driving circuit layer and a photosensitive element layer in a texture recognition device provided by at least one embodiment of the present disclosure
  • Fig. 9 is a circuit diagram of a pixel driving circuit and a photosensitive element in a texture recognition device provided by at least one embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional view of a display device provided by at least one embodiment of the present disclosure.
  • the texture recognition device can be combined on the non-display side of the display panel, and the display panel is at least partially light-transmissive, so that the texture recognition device can receive signal light through the display panel, so that the display device has both display function and texture recognition function.
  • the texture recognition device used usually has multiple pixel units for identifying signal light and synthesizing texture images.
  • the multiple pixel units can respectively use collimating films with microlens structures as optical path systems.
  • the light entering the texture recognition device is collimated, so that the collimated light can be recognized more easily, and the utilization rate of light can be improved.
  • each pixel unit includes a photosensitive element, and the photosensitive element is correspondingly provided with a microlens structure, so as to use the microlens structure to specifically collimate the light incident on the photosensitive element.
  • the inventors of the present disclosure have found that due to the limitations of the structure and process of the collimating film, the light collimated by the microlens structure is prone to crosstalk between adjacent pixel units, so that the collimating film is Under a certain angle, it will affect the optical signal of the texture of a specific scene; on the other hand, because the optical transparent adhesive (OCA glue) is usually used inside the texture recognition device to attach each structure, there is air in some structures of the texture recognition device. This part is prone to deformation after testing such as performance testing, which causes the attenuation of the optical signal injected into the pattern recognition device, making the pattern recognition device unable to recognize or identify inaccurately.
  • OCA glue optical transparent adhesive
  • the texture recognition device has a plurality of pixel units and includes a base substrate, a driving circuit layer, a photosensitive element layer and a lens layer.
  • the drive circuit layer is arranged on the base substrate, the photosensitive element layer is arranged on the base substrate, the lens layer is arranged on the side of the photosensitive element layer away from the base substrate, and at least one pixel unit among the plurality of pixel units includes a The pixel driving circuit in the layer, a plurality of photosensitive elements arranged in the photosensitive element layer, and a plurality of lens units arranged in the lens layer, the pixel driving circuit is electrically connected with the plurality of photosensitive elements to drive the plurality of photosensitive elements, and vertically In the direction of the board surface of the base substrate, a plurality of photosensitive elements correspond to and overlap with a plurality of lens units.
  • At least one pixel unit includes a plurality of photosensitive elements, and the plurality of photosensitive elements are driven by the same pixel driving circuit, so that they are in the same working state.
  • the pixel unit can pass through multiple photosensitive elements.
  • the element receives enough signal light and synthesizes the texture image; on the other hand, a plurality of photosensitive elements have lens units corresponding to them, so that each lens unit can perform more accurate light collimation for a photosensitive element corresponding to it, thereby More precisely control the propagation direction of the signal light incident on each photosensitive element, avoid crosstalk and other undesirable phenomena between adjacent pixel units, and improve the texture recognition effect of the texture recognition device.
  • Fig. 1 is a schematic plan view of a texture recognition device provided by at least one embodiment of the present disclosure and a schematic cross-sectional view obtained by cutting along the M-M line in the schematic plan view.
  • Fig. 1 shows the corresponding relationship between the schematic plan view and the schematic cross-sectional view.
  • the texture recognition device has a plurality of pixel units PX (two pixel units PX are shown in the figure as an example), and includes a base substrate 10, a driving circuit layer 20, a photosensitive element layer 30 and a lens layer 40 .
  • the driving circuit layer 20 is arranged on the base substrate 10, and the photosensitive element layer 30 is arranged on the base substrate 10.
  • the photosensitive element layer 30 can also be arranged on the side of the driving circuit layer 20 close to the base substrate 10 or on the same layer as the driving circuit layer 20, as long as the driving circuit layer 20 does not affect the photosensitive element layer 30.
  • the photosensitive effect can be.
  • the lens layer 40 is disposed on the side of the photosensitive element layer 30 away from the base substrate 10, and at least one pixel unit PX among the plurality of pixel units PX includes a pixel driving circuit disposed in the driving circuit layer 20 (described in detail later). ), a plurality of photosensitive elements 301 arranged in the photosensitive element layer 30 (four photosensitive elements 301 are shown as an example in FIG.
  • the lens unit 401 is taken as an example), and the pixel driving circuit is electrically connected to the plurality of photosensitive elements 301 to drive the plurality of photosensitive elements 301 .
  • the plurality of photosensitive elements 301 correspond to and overlap with the plurality of lens units 401 one by one.
  • the multiple photosensitive elements included in at least one pixel unit are electrically connected to the same pixel driving circuit, so that they can be driven by the same pixel driving circuit, so that the multiple photosensitive elements are in the same Driven by the pixel driving circuit, it is in the same working state, and the pixel unit can receive enough signal light through multiple photosensitive elements and synthesize the texture image;
  • the multiple photosensitive elements have lens units corresponding to them, so that Each lens unit can perform more accurate light collimation for a photosensitive element corresponding to it, so as to more precisely control the propagation direction of the signal light incident on each photosensitive element, and avoid crosstalk and other defects between adjacent pixel units. phenomenon, improve the light utilization rate, and then improve the texture recognition effect of the texture recognition device.
  • At least one pixel unit PX includes a plurality of photosensitive elements 301 arranged in an N*M array, where M is a positive integer greater than or equal to 1, N is a positive integer greater than 1, and M and N may be the same or different.
  • a plurality of photosensitive elements 301 are arranged in a 2*2 array (that is, M and N are both 2, the situation shown in FIG. 1 ), a 3*3 array, a 4*4 array or 2*3 arrays etc.
  • each photosensitive element 301 is in the shape of an island, and in a direction parallel to the board surface of the base substrate 10 , its planar shape may be a square, a rectangle, or the like.
  • the side length of the square may be 10 ⁇ m-20 ⁇ m, such as 12 ⁇ m, 15 ⁇ m or 18 ⁇ m.
  • the photosensitive element 301 may be a photodiode, for example, the photodiode may be a PN type or a PIN type.
  • the photosensitive element 301 when the photodiode is a PN type, the photosensitive element 301 includes a stacked P-type semiconductor layer and an N-type semiconductor layer; when the photodiode is a PIN type, the photosensitive element 301 includes a stacked P-type semiconductor layer, an intrinsic semiconductor layer layer and N-type semiconductor layer.
  • the semiconductor material used in the photosensitive element 301 may be silicon, germanium, selenium, gallium arsenide, etc., which is not limited in the embodiments of the present disclosure.
  • the planar shape of a plurality of lens units 401 may be circular, and at this time, the radius of curvature R of each lens unit 401 may be 5 ⁇ m to 20 ⁇ m, such as 7 ⁇ m, 10 ⁇ m or 15 ⁇ m, etc., the diameter D0 of each lens unit 401 may be 25 ⁇ m-35 ⁇ m, such as 27 ⁇ m, 30 ⁇ m, or 32 ⁇ m.
  • the plane shape of the plurality of lens units 401 may also be a rectangle or a square.
  • Fig. 3 shows another schematic plan view of a plurality of lens units, as shown in Fig. 3, in this example, the plane shape of a plurality of lens units 401 is a rounded rectangle, at this time, the curvature of each lens unit 401
  • the radius R may be 5 ⁇ m-20 ⁇ m, such as 7 ⁇ m, 10 ⁇ m or 15 ⁇ m, etc.
  • the side length D01 of each lens unit 401 may be 25 ⁇ m-35 ⁇ m, such as 27 ⁇ m, 30 ⁇ m or 32 ⁇ m.
  • the refractive index of the material of the lens layer 40 may be 1.6 ⁇ 1.7, such as 1.65.
  • the plurality of lens units 401 can fully refract the light incident therein, thereby achieving an effective collimation effect and improving the utilization rate of the incident light.
  • the texture recognition device may further include a first diaphragm layer 50, the first diaphragm layer 50 is disposed between the photosensitive element layer 30 and the lens layer 40, and includes a plurality of first diaphragm layers.
  • a light-transmitting opening 501 In a direction perpendicular to the board surface of the base substrate 10 , the plurality of first light-transmitting openings 501 correspond one-to-one to the plurality of photosensitive elements 301 and at least partially overlap each other.
  • the plurality of first light-transmitting openings 501 are respectively used to transmit the signal light incident on the plurality of photosensitive elements 301, and block the light at a certain angle (a certain large angle with the plate surface of the base substrate) and the light for adjacent photosensitive elements.
  • Unnecessary light such as signal light, such as the light indicated by the dotted line in FIG. 1 , can further prevent undesirable phenomena such as signal crosstalk from occurring.
  • FIG. 2 shows a texture recognition device provided by at least one embodiment of the present disclosure.
  • each first light-transmitting opening 501 in a direction parallel to the plate surface of the base substrate 10, that is, in the horizontal direction in FIG. 1, the diameter of each first light-transmitting opening 501 If it is D1, then 2 ⁇ m ⁇ D1 ⁇ 50 ⁇ m, for example, D1 is 10 ⁇ m, 20 ⁇ m or 30 ⁇ m.
  • the shape of the plurality of first light-transmitting openings 501 may be a rectangle, a square, or a circle.
  • the above-mentioned D1 may be the side length of the square; in other examples, when the shape of the plurality of first light-transmitting openings 501 is a rectangle, The above D1 may be the length of a diagonal of a rectangle; when the shape of the plurality of first light-transmitting openings 501 is a circle, the above D1 may be a diameter of a circle.
  • the material of the first aperture layer 50 can be a light-absorbing material, such as a black matrix material, such as a black light-absorbing material formed by adding black dye to a resin material, etc., thereby reducing or even eliminating the first light.
  • the diaphragm layer 50 reflects light, thereby avoiding adverse effects of reflected light on texture recognition.
  • the plurality of first light-transmitting openings 501 are filled with a transparent resin material to prevent defects such as deformation inside the texture recognition device due to air gaps in the texture recognition device.
  • the thickness H1 of the first diaphragm layer 50 is 1 ⁇ m- 3 ⁇ m, such as 1.5 ⁇ m, 2 ⁇ m or 2.5 ⁇ m, etc.
  • the distance between the first aperture layer 50 and the photosensitive element layer 30 is 5 ⁇ m-20 ⁇ m, that is, the distance between the lower surface of the first aperture layer 50 and the upper surface of the photosensitive element layer 30
  • the distance is 5 ⁇ m-20 ⁇ m, such as 10 ⁇ m, 15 ⁇ m or 18 ⁇ m.
  • the first diaphragm layer 50 can effectively realize the anti-crosstalk function.
  • the texture recognition device may further include a second diaphragm layer 60, and the second diaphragm layer 60 is disposed between the first diaphragm layer 50 and the lens layer 40. , including a plurality of second light-transmitting openings 601 .
  • the plurality of second light-transmitting openings 601 correspond one-to-one to the plurality of photosensitive elements 301 and overlap at least partially.
  • the plurality of second light-transmitting openings 601 are respectively used to transmit the signal light incident on the plurality of photosensitive elements 301, and to block light at a certain angle (with a certain angle to the plate surface of the base substrate) and for adjacent photosensitive elements.
  • Unnecessary light such as signal light, such as the light indicated by the dotted line in FIG. 1 , can further prevent undesirable phenomena such as signal crosstalk from occurring.
  • each second light-transmitting opening 601 is D2, then 2 ⁇ m ⁇ D1 ⁇ D2 ⁇ 50 ⁇ m, for example, D2 It can be 20 ⁇ m, 30 ⁇ m or 40 ⁇ m, etc.
  • the shape of the second light-transmitting opening 601 may be a rectangle, a square, or a circle.
  • the above-mentioned D2 can be the side length of the square; in other examples, when the shape of the second light-transmitting openings 601 is a rectangle, the above-mentioned D2 It may be the diagonal length of a rectangle; when the shape of the second light-transmitting opening 601 is a circle, the above-mentioned D2 may be a diameter of a circle.
  • the material of the second diaphragm layer 60 can be a light-absorbing material, such as a black matrix material, such as a black light-absorbing material formed by adding black dye to a resin material, etc., thereby reducing or even eliminating the second light.
  • the diaphragm layer 60 reflects light, thereby preventing the reflected light from affecting texture recognition.
  • the plurality of second light-transmitting openings 601 are filled with a transparent resin material to prevent defects such as deformation inside the texture recognition device due to air gaps in the texture recognition device.
  • the thickness H2 of the second aperture layer 60 is 1 ⁇ m-3 ⁇ m, such as 1.5 ⁇ m, 2 ⁇ m or 2.5 ⁇ m, etc.
  • the second aperture layer 60 The distance between the layer 60 and the first diaphragm layer 50 is 5 ⁇ m-20 ⁇ m, such as 10 ⁇ m, 15 ⁇ m or 18 ⁇ m.
  • the photosensitive element 301 may also sense ambient light incident through the finger. Since the photosensitive element 301 receives light passively and does not actively distinguish the signal light from the ambient light, the ambient light may interfere with the texture recognition of the photosensitive element 301 . For example, when ambient light is irradiated directly above the finger, the ambient light can pass through the finger and stimulate the biological tissue in the finger to emit pigment light, which may interfere with fingerprint recognition. Through detection, the pigment light mainly includes light with a wavelength in the range of 580nm to 850nm.
  • the texture recognition device may further include a light filter layer 70 disposed between the photosensitive element layer 30 and the first diaphragm layer 50, and the light filter layer 70 is configured to transmit Light with a wavelength of 580nm to 850nm does not allow light with a wavelength of 580nm to 850nm to pass through, thereby preventing the above-mentioned pigment light from affecting texture recognition, and can be used in outdoor scenes.
  • a light filter layer 70 disposed between the photosensitive element layer 30 and the first diaphragm layer 50, and the light filter layer 70 is configured to transmit Light with a wavelength of 580nm to 850nm does not allow light with a wavelength of 580nm to 850nm to pass through, thereby preventing the above-mentioned pigment light from affecting texture recognition, and can be used in outdoor scenes.
  • the optical filter layer 70 can also be configured to have a higher transmittance for the signal light that can be used for pattern recognition, for example, the optical filter layer 70 is configured to have a higher transmittance for visible light with a wavelength of 400nm-560nm , so that the photosensitive element 301 can fully receive the signal light.
  • the light filter layer 70 is a green photoresist layer.
  • between the light filter layer 70 and the first diaphragm layer 50, between the first diaphragm layer 50 and the second diaphragm layer 60, and between the second diaphragm layer 60 and the lens layer 40 Filled with a transparent resin material to ensure the distance between different structures without affecting the transmission of signal light.
  • the texture recognition device may further include a field stop layer 80 disposed between the photosensitive element layer 30 and the light filter layer 70, and the field stop layer 80 includes
  • the plurality of third light-transmitting openings 801 are in a one-to-one correspondence with the plurality of photosensitive elements 301 in a direction perpendicular to the board surface of the base substrate 10 and at least partially overlap each other.
  • the plurality of third light-transmitting openings 801 are respectively used to transmit the signal light entering the plurality of photosensitive elements 301, and block unnecessary light at a large angle (with a large angle to the plate surface of the substrate), as shown in FIG. 1
  • the light indicated by the dotted line further prevents the occurrence of undesirable phenomena such as signal crosstalk.
  • each third light-transmitting opening 801 is D3, then 2 ⁇ m ⁇ D3 ⁇ 10 ⁇ m, for example, D3 is 5 ⁇ m, 7 ⁇ m or 9 ⁇ m, etc.
  • the thickness H3 of the field stop layer 80 is 300nm-500nm, such as 350nm, 400nm or 450nm, in the direction perpendicular to the surface of the base substrate 10 .
  • the material of the field stop layer 80 includes metal materials, such as molybdenum, aluminum, titanium and other metal materials or their alloy materials.
  • the field diaphragm layer 80 can be formed together in the manufacturing process of the driving circuit layer 20 and the photosensitive element layer 30, thereby simplifying the manufacturing process of the texture recognition device.
  • the texture recognition device shown in FIG. 1 can effectively transmit signal light under the above-mentioned configuration, and effectively avoid unnecessary light from affecting the texture recognition. For example, by testing the light incident on the texture recognition device, it can be concluded that the texture recognition device can effectively block unnecessary light with a wavelength in the range of 400nm-850nm entering the texture recognition device, and the unnecessary light The transmittance is less than 1%, which can fully meet the requirements of the texture recognition device.
  • the texture recognition device may further include a planarization layer 90 disposed on the side of the lens layer 30 away from the base substrate 10, and the planarization layer 90 may planarize the lens layer 30 with It is not flat, and it is beneficial to combine the texture recognition device on other devices through the planarization layer 90, for example, on a display panel.
  • the planarization layer 90 can be bonded to the display panel through an optically transparent glue. powerful.
  • the material of the planarization layer 90 has a refractive index of 1.35 ⁇ 1.45, such as 1.40.
  • the planarization layer 90 includes an organic material having a refractive index of 1.35 ⁇ 1.45.
  • the orthographic projection of the center of the first light-transmitting opening 501 on the base substrate 10 overlaps the orthographic projection of the center of the second light-transmitting opening 601 on the base substrate 10 .
  • the orthographic projection of the center of the first light-transmitting opening 501 on the base substrate 10 and the orthographic projection of the center of the third light-transmitting opening 801 on the base substrate 10 also overlap.
  • the orthographic projection of the center of the first light-transmitting opening 501 on the base substrate 10 and the orthographic projection of the center of the photosensitive element 301 on the base substrate 10 also overlap.
  • FIG. 4A shows a schematic diagram of a propagation path of signal light in the texture recognition device shown in FIG. 1 and FIG. 2 .
  • the signal light used for pattern recognition enters the photosensitive element 301 through the second light transmission opening 601, the first light transmission opening 501 and the third light transmission opening 801 in sequence, and enters the photosensitive element 301 from various directions.
  • the signal light has a similar angular range.
  • FIG. 4B shows another schematic diagram of the propagation path of the signal light in the texture recognition device shown in FIG. 1 and FIG. 2 .
  • the light that passes through the edge of the lens unit 401 and is incident on the lens unit 401 in a direction perpendicular to the plate surface of the base substrate 10 is equal to the normal line of the surface of the lens unit 401 at the incident place far away from the base substrate 10.
  • the included angle is ⁇ 1
  • the light refracted by the lens unit 401 enters the middle of the third light-transmitting opening 801
  • the included angle with the normal is ⁇ 2
  • the included angle with the direction perpendicular to the board surface of the base substrate 10 is ⁇ 3
  • the refractive index of air is n1
  • the refractive index of the lens unit is n2.
  • the distance between the surface of the lens unit 401 close to the base substrate 10 and the surface of the second aperture layer 60 far away from the base substrate 10 is h1, and the surface of the second aperture layer 60 close to the base substrate 10 and the first aperture
  • the distance between the surface of the layer 50 away from the base substrate 10 is h2
  • the distance between the surface of the first diaphragm layer 50 close to the base substrate 10 and the surface of the field diaphragm layer 80 away from the base substrate 10 is h3
  • the lens The distance between the surface of the unit 401 close to the base substrate 10 and the surface of the field stop layer 80 close to the base substrate 10 is h4, then:
  • n1*sin ⁇ 1 n2*sin ⁇ 2;
  • FIG. 4C shows another schematic diagram of the propagation path of the signal light in the texture recognition device shown in FIG. 1 and FIG. 2 . As shown in FIG. 4C , pass through the edge of the lens unit 401 and enter the lens at an angle of less than 90 degrees (for example, 3 degrees to 10 degrees) with the direction perpendicular to the plate surface of the base substrate 10 (that is, the vertical direction in the figure).
  • the included angle between the light of the unit 401 and the normal of the surface of the lens unit 401 away from the base substrate 10 at the incident place is ⁇ 4, and the light refracted by the lens unit 401 enters the edge of the third light-transmitting opening 801, and is aligned with the normal
  • the included angle is ⁇ 5
  • the included angle with the direction perpendicular to the board surface of the base substrate 10 is ⁇ 6
  • the diameter of the lens unit 401 is D0
  • n1*sin ⁇ 4 n2*sin ⁇ 5;
  • FIG. 5 shows a schematic plan view and a schematic cross-sectional view of another texture recognition device
  • FIG. 6 shows the first light-transmitting opening and the second light-transmitting opening in the texture recognition device in FIG.
  • FIGS. 7A-7C show schematic diagrams of the signal light propagation path in the texture recognition device in FIG. 5 and FIG. 6 .
  • the orthographic projection of the center of the first light transmission opening 501 on the base substrate 10 and the center of the second light transmission opening 601 are at The orthographic projections on the base substrate 10 do not overlap.
  • the orthographic projection of the center of the first light-transmitting opening 501 on the base substrate 10 does not overlap with the orthographic projection of the center of the third light-transmitting opening 801 on the base substrate 10 .
  • the orthographic projection of the center of the second light-transmitting opening 601 on the base substrate 10 does not overlap with the orthographic projection of the center of the third light-transmitting opening 801 on the base substrate 10 .
  • the orthographic projection of the center of the third light-transmitting opening 801 on the base substrate 10 does not overlap with the orthographic projection of the center of the photosensitive element 301 on the base substrate 10 .
  • the first edge of the lens unit 401 (the left edge in the figure) and with the direction perpendicular to the plate surface of the base substrate 10 at a first angle ⁇ 10
  • the light incident on the lens unit 401 and The included angle between the normal of the surface of the lens unit 401 away from the substrate 10 at the incident point is ⁇ 11
  • the light refracted by the lens unit 401 enters the middle of the third light-transmitting opening 801
  • the included angle with the normal is ⁇ 12
  • the included angle with the direction perpendicular to the plate surface of the base substrate 10 is ⁇ 13
  • the second edge (right edge) of the lens unit 401 opposite to the first edge and with the direction perpendicular to the plate surface of the base substrate 10 is ⁇ 14
  • n1*sin ⁇ 11 n2*sin ⁇ 12;
  • n1*sin ⁇ 14 n2*sin ⁇ 15;
  • D1 D0-(h1+h2)*tan ⁇ 13-(h1+h2)*tan ⁇ 16;
  • D2 D0-h1*tan ⁇ 13-h1*tan ⁇ 16.
  • the light rays entering the lens unit 401 at a second angle ⁇ 20 through the first edge (the left edge in the figure) of the lens unit 401 and the direction perpendicular to the plate surface of the base substrate 10 are After being refracted by the lens unit 401 , it enters the edge of the third light transmission opening 801 , and the angle between the refracted light and the direction perpendicular to the surface of the base substrate 10 is ⁇ 17.
  • the second angle ⁇ 20 is greater than the first angle ⁇ 10, for example, the second angle ⁇ 20 is 5°-15°, and the first angle ⁇ 10 is 3°-10°.
  • the light that passes through the second edge of the lens unit 401 opposite to the first edge (the right edge in the figure) and forms a second angle ⁇ 20 with the direction perpendicular to the plate surface of the base substrate 10 and enters the lens unit 401 passes through the lens
  • the unit 401 enters the edge of the third light-transmitting opening 801 after being refracted, and the angle between the refracted light and the direction perpendicular to the surface of the base substrate 10 is ⁇ 18, then:
  • the orthographic projection position O1 of the center of the first light-transmitting opening 501 on the base substrate 10 is O1
  • the orthographic projection position of the center of the second light-transmitting opening 601 on the base substrate 10 is
  • the distance L1 between O2, O1 and O2 is 1 ⁇ m-5 ⁇ m, such as 2 ⁇ m, 3 ⁇ m or 4 ⁇ m.
  • the orthographic projection position O3 of the center of the third light-transmitting opening 801 on the base substrate 10 the distance L2 between the orthographic projections O1 and O3 of the center of the first light-transmitting opening 501 on the base substrate 10 is 1 ⁇ m- 5 ⁇ m, such as 2 ⁇ m, 3 ⁇ m or 4 ⁇ m, etc.
  • the signal light that forms a certain angle with the plate surface of the base substrate 10 can enter the photosensitive element through the second light transmission opening 601 , the first light transmission opening 501 and the third light transmission opening 801 in sequence. 301, so that the texture recognition device can filter the light incident on the texture recognition device at a specific angle by configuring the distance between O1, O2 and O3 to perform texture recognition.
  • FIG. 8 is a schematic cross-sectional view of a driving circuit layer and a photosensitive element layer in a texture recognition device provided by at least one embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a pixel driving circuit and a photosensitive element in a texture recognition device provided by at least one embodiment of the present disclosure. circuit diagram.
  • the multiple photosensitive elements included in each pixel unit PX are arranged on the same first electrode E1 to be connected to the same pixel driving circuit for driving through the same first electrode E1.
  • the hole (that is, the via hole V1 in the figure) is electrically connected to the pixel driving circuit to realize the electrical connection between multiple photosensitive elements P and the same pixel driving circuit, thereby reducing the number of via holes V1 for electrical connection, which is convenient
  • the selection of the position of the via hole V1 is beneficial to the flatness of the pixel driving circuit; on the other hand, the multiple photosensitive elements P included in at least one pixel unit PX are driven by the same pixel driving circuit, so they are in the same working state. PX can receive enough signal light through multiple photosensitive elements P and synthesize texture images.
  • the pixel driving circuit of each pixel unit PX includes at least one thin film transistor, and may also include structures such as capacitors. As shown in FIG. 8 and FIG. 9 , in this example, the pixel driving circuit includes structures such as a first thin film transistor T1 , a second thin film transistor T2 , a third thin film transistor T3 , and a capacitor C.
  • the first thin film transistor T1 is used as a switching transistor, its control terminal is connected to the signal scanning line Vr, and the first source and drain terminal S1 and the second source and drain terminal D1 are respectively connected to the signal reading line Vout and the second The first source and drain terminals S2 of the thin film transistor T2 are connected.
  • the second thin-film transistor T2 is used as a drive transistor, and its control terminal is connected to the first source-drain terminal S3 of the third thin-film transistor T3, the first capacitive plate C1 of the capacitor C, and the first electrode E1 of the photosensitive element 301, and the second source-drain Terminal D2 is connected to power line Vdd.
  • the third thin film transistor T3 is used as a reset transistor, its control terminal is connected to the reset signal line Vrst, and the second source and drain terminal D3 is connected to the power line Vdd.
  • the second capacitive plate C2 of the capacitor C and the second electrode E2 of the photosensitive element 301 are connected to the bias line Vb.
  • the working process of the photosensitive element 301 includes: first, in the reset phase, a reset signal is input to the control terminal of the third thin film transistor T3 through the reset signal line Vrst to turn on the third thin film transistor T3.
  • the reset signal is written into the first electrode E1 of the photosensitive element 301 and the control terminal of the second thin film transistor T2; then, in the photosensitive stage, the photosensitive element 301 generates photo-generated carriers under the irradiation of signal light to generate a photo-generated leakage current, and The capacitor C is charged so that the capacitor C generates and stores an electrical signal; finally, in the detection stage, input a scanning signal to the control terminal of the first thin film transistor T1 through the signal scanning line Vr to turn on the first thin film transistor T1, and the pattern recognition chip passes the signal
  • the reading line Vout reads the electric signal stored in the capacitor C from the first thin film transistor T1 and the second thin film transistor T2, and then forms a texture image.
  • FIG. 8 only one thin film transistor is shown in FIG. 8 , for example, it is the above-mentioned second thin film transistor T2 , which includes structures such as an active layer AT, a gate G, a source S, and a drain D.
  • the gate G serves as the control terminal of the second TFT T2
  • the source S serves as the first source-drain terminal of the second TFT T2
  • the drain D serves as the second source-drain terminal of the second TFT T2.
  • another gate G2 is shown in FIG. 2 , which is the gate of the first thin film transistor T1 .
  • Other structures of the first thin film transistor T1 and the third thin film transistor T3 are not shown in FIG. 2 .
  • the first thin film transistor T1 and the third thin film transistor T3 have a structure similar to that of the second thin film transistor T2, the embodiments of the present disclosure have specific structures of the first thin film transistor T1, the second thin film transistor T2 and the third thin film transistor T3 No limit.
  • the texture identification device further includes an interlayer insulating layer IL, and the interlayer insulating layer IL is disposed between the driving circuit layer 20 and the first electrode layer, and the interlayer insulating layer IL includes
  • the first electrode E1 is electrically connected to the pixel driving circuit through the via V1 , for example, is electrically connected to the gate G of the second thin film transistor T2 in the pixel driving circuit.
  • the orthographic projection of the via hole V1 on the base substrate 10 does not overlap with the orthographic projection of the plurality of photosensitive elements 301 on the base substrate 10 .
  • the position of the via hole V1 is relatively uneven, by setting the via hole V1 and the plurality of photosensitive elements 301 so as not to overlap in a direction perpendicular to the board surface of the base substrate 10, the uneven part can be avoided from being arranged on the photosensitive element 301.
  • the bottom part deforms the structure of the photosensitive element, thereby ensuring the structural accuracy of the photosensitive element and improving the photosensitive effect of the photosensitive element.
  • the interlayer insulating layer is a planarization layer, which is used to planarize the pixel driving circuit for the arrangement of the first electrode layer thereon.
  • the interlayer insulating layer may include a stack of multiple insulating sublayers, for example, including a planarization layer IL1 and a first passivation layer IL2, and the planarization layer IL1 has a via hole V10, a via hole V11 is provided in the first passivation layer IL2, and the via hole V10 and the via hole V11 are connected to form the via hole V1 in the interlayer insulating layer IL.
  • the interlayer insulating layer may also include a stack of more insulating sublayers, and the embodiment of the present disclosure does not limit the specific form of the interlayer insulating layer IL.
  • the first electrode E1 of each pixel unit PX is a monolithic structure disposed under a plurality of photosensitive elements; or, in other embodiments, referring to FIG. 1 , the first electrode E1 includes At least one first hollow part E10 between two adjacent photosensitive elements 301 among the plurality of photosensitive elements 301, for example, the first electrode E1 includes every adjacent two photosensitive elements 301 disposed among the plurality of photosensitive elements 301 A plurality of first hollow parts E10 between them.
  • the first hollow part E10 can prevent coupling capacitance between the first electrode E1 and the circuit above or below it, thereby avoiding undesirable phenomena such as signal crosstalk.
  • the texture recognition device further includes a second electrode layer, and the second electrode layer is disposed on a side of the photosensitive element layer away from the base substrate 10 .
  • at least one pixel unit PX further includes a plurality of second electrodes E2 disposed in the second electrode layer, and the plurality of second electrodes E2 are respectively disposed on a side of the plurality of photosensitive elements 301 away from the base substrate 10 .
  • the first electrode E1 and the plurality of second electrodes E2 jointly drive the plurality of photosensitive elements 301 ; on the other hand, the first electrode E1 and the plurality of second electrodes E2 can also form the capacitance C mentioned above.
  • the orthographic projections of the plurality of second electrodes E2 on the base substrate 10 do not overlap with the orthographic projections of the vias V1 on the base substrate 10 .
  • a plurality of second electrodes E2 are arranged at intervals in the second electrode layer, and the orthographic projection of the second electrodes E2 arranged on each photosensitive element 301 on the base substrate 10 is located at the position of the photosensitive element 301 on the base substrate 10 In the orthographic projection, to ensure the flatness of the second electrode E2, thereby ensuring the accuracy of the electrical signal transmitted by the second electrode E2.
  • the texture recognition device may further include a third electrode layer E3, the third electrode layer E3 is arranged on the side of the second electrode layer away from the base substrate 10, and a plurality of first electrode layers
  • the second electrode E2 is electrically connected to the third electrode layer E3.
  • the third electrode layer E3 is connected to the bias voltage line Vb, thus, each second electrode E2 obtains the same electrical signal from the bias voltage line Vb through the third electrode layer E3.
  • the third electrode layer E3 includes at least one second hollow part E30 disposed between two adjacent pixel units PX among the plurality of pixel units PX.
  • the third electrode layer E3 includes a plurality of second hollow parts E30 disposed between every two adjacent pixel units PX among the plurality of pixel units PX.
  • the second hollow part E30 can prevent coupling capacitance between the third electrode layer E3 and the circuit above or below it, thereby avoiding adverse phenomena such as signal crosstalk.
  • the texture recognition device may further include a first buffer layer 101 disposed on the base substrate 10, a first gate insulating layer 102 disposed on the active layer AT, and a first gate insulating layer 102 disposed on the gate G.
  • the second buffer layer 104 there are multiple via holes V2 in the second buffer layer 104 , the organic insulating layer 105 and the second passivation layer 106 , and the multiple second electrodes E2 are connected to the third electrode layer E3 through the multiple via holes V2 respectively.
  • the texture recognition device may further include an electrostatic shielding layer 108, and the electrostatic shielding layer 108 is disposed on the side of the third electrode layer E3 away from the base substrate 10.
  • the third electrode layer The orthographic projection of E3 on the base substrate 10 is located within the orthographic projection of the electrostatic shielding layer 108 on the base substrate 10 .
  • the electrostatic shielding layer 108 can provide electrostatic shielding for the third electrode layer E3 and the circuit below it.
  • the electrostatic shielding layer 108 can be formed on the entire surface of the third electrode layer E3, or have the same pattern as the third electrode layer E3, for example, the electrostatic shielding layer 108 can have The third hollow portion between adjacent pixel units PX is not shown in the figure.
  • the field diaphragm layer 80 is disposed on the side of the electrostatic shielding layer 108 away from the base substrate 10 , and an insulating adhesive layer may be provided between the field diaphragm layer 80 and the electrostatic shielding layer 108 .
  • the base substrate 10 may include flexible insulating materials such as polyimide (PI) or rigid insulating materials such as glass substrates.
  • the first buffer layer 101 and the second buffer layer 104 may include inorganic materials such as silicon nitride, silicon oxide, and silicon oxynitride.
  • the active layer AT may be made of materials such as polysilicon and metal oxide.
  • the first gate insulating layer 102 and the second gate insulating layer 103 can be made of inorganic insulating materials such as silicon oxide, silicon nitride or silicon oxynitride.
  • the gate G can be made of metal materials such as copper, aluminum, titanium, cobalt, etc., and can be formed as a single-layer structure or a multi-layer structure, such as a multi-layer structure such as titanium/aluminum/titanium, molybdenum/aluminum/molybdenum.
  • the first passivation layer IL2, the second passivation layer 106 and the third passivation layer 107 can be made of inorganic insulating materials such as silicon oxide, silicon nitride or silicon oxynitride.
  • the source-drain electrodes S/D can be made of metal materials such as copper, aluminum, titanium, cobalt, etc., and can be formed into a single-layer structure or a multi-layer structure, such as titanium/aluminum/titanium, molybdenum/aluminum/molybdenum, and other multi-layer structures.
  • the first electrode layer includes, for example, metal oxides such as ITO and IZO or metals such as Ag, Al and Mo or alloys thereof.
  • the second electrode layer, the second electrode layer and the electrostatic shielding layer 108 include transparent metal oxides such as ITO and IZO, for example.
  • the planarization layer IL1 can be made of organic insulating materials such as polyimide. The embodiments of the present disclosure do not specifically limit the material of each functional layer.
  • the texture recognition device provided by the embodiments of the present disclosure may also have other structures, and for details, reference may be made to related technologies, which will not be repeated here.
  • FIG. 10 shows a schematic cross-sectional view of the display device.
  • the panel 200 has a display side 201 and a non-display side 202 , and allows light to pass through from the display side 201 to the non-display side 202 .
  • the texture recognition device is disposed on the non-display side 202 of the display panel 200 and configured to receive light transmitted from the display side 201 to the non-display side 202 for texture recognition.
  • the lens layer 40 is closer to the display panel 20 than the photosensitive element layer 30 .
  • the display device provided by the embodiment of the present disclosure adopts the texture recognition device provided by the embodiment of the present disclosure to perform texture recognition, which has better texture recognition effect, for example, has higher texture recognition speed and texture recognition accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供一种纹路识别装置以及显示装置,纹路识别装置具有多个像素单元(PX),且包括衬底基板(10)、驱动电路层(20)、感光元件层(30)和透镜层(40)。驱动电路层(20)设置在衬底基板上,感光元件层(30)设置在衬底基板上,透镜层(40)设置在感光元件层(30)的远离衬底基板(10)的一侧,多个像素单元(PX)中至少一个像素单元(PX)包括设置在驱动电路层(20)中的像素驱动电路、设置在感光元件层(30)中的多个感光元件(301)以及设置在透镜层(40)中的多个透镜单元(401),像素驱动电路与多个感光元件(301)电连接,以驱动多个感光元件(301),在垂直于衬底基板(10)的板面的方向上,多个感光元件(301)与多个透镜单元(401)一一对应且重叠;纹路识别装置具有更好的纹路识别效果。

Description

纹路识别装置以及显示装置 技术领域
本公开的实施例涉及一种纹路识别装置以及显示装置。
背景技术
由于皮肤纹路例如指纹图案或掌纹图案的唯一性,结合光学成像的纹路识别技术逐渐被各种电子产品采用以用于身份验证、电子支付等功能。目前的电子产品,例如手机、平板电脑等具有的显示屏正往大屏化、全屏化方向发展,对此,如何设计更加优化的纹路识别装置,提升用户的纹路识别体验是本领域关注的焦点问题。
发明内容
本公开至少一实施例提供一种纹路识别装置,该纹路识别装置具有多个像素单元,且包括衬底基板、驱动电路层、感光元件层和透镜层,驱动电路层设置在所述衬底基板上,感光元件层设置在所述衬底基板上,透镜层设置在所述感光元件层的远离所述衬底基板的一侧,其中,所述多个像素单元中至少一个像素单元包括设置在所述驱动电路层中的像素驱动电路、设置在所述感光元件层中的多个感光元件以及设置在所述透镜层中的多个透镜单元,所述像素驱动电路与所述多个感光元件电连接,以驱动所述多个感光元件,在垂直于所述衬底基板的板面的方向上,所述多个感光元件与所述多个透镜单元一一对应且重叠。
例如,本公开至少一实施例提供的纹路识别装置中,所述至少一个像素单元包括的多个感光元件排布为N*M的阵列,其中,M为大于等于1的正整数,N为大于1的正整数。
例如,本公开至少一实施例提供的纹路识别装置中,所述M为2,所述N为2,所述至少一个像素单元包括的多个感光元件排布为2*2的阵列。
例如,本公开至少一实施例提供的纹路识别装置还包括至少一个光阑层,所述至少一个光阑层包括第一光阑层,其中,所述第一光阑层设置在所述感光元件层与所述透镜层之间,包括多个第一透光开口,在垂直于所述衬底基板的板面的方向上,所述多个第一透光开口与所述多个感光元件一一对应且至少部分重叠。
例如,本公开至少一实施例提供的纹路识别装置中,在平行于所述衬底基板的板面的方向上,所述多个第一透光开口的每个的直径为D1,则2μm≤D1≤50μm。
例如,本公开至少一实施例提供的纹路识别装置中,所述第一光阑层的材料为吸光材料。
例如,本公开至少一实施例提供的纹路识别装置中,在垂直于所述衬底基板的板面的方向上,所述第一光阑层的厚度为1μm-3μm,所述第一光阑层与所述感 光元件层的距离为5μm-20μm。
例如,本公开至少一实施例提供的纹路识别装置还包括第二光阑层,其中,所述第二光阑层设置在所述第一光阑层与所述透镜层之间,包括多个第二透光开口,在垂直于所述衬底基板的板面的方向上,所述多个第二透光开口与所述多个感光元件一一对应且至少部分重叠。
例如,本公开至少一实施例提供的纹路识别装置中,在平行于所述衬底基板的板面的方向上,所述多个第一透光开口的每个的直径为D1,所述多个第二透光开口的每个的直径为D2,则2μm≤D1≤D2≤50μm。
例如,本公开至少一实施例提供的纹路识别装置中,在垂直于所述衬底基板的板面的方向上,所述第二光阑层的厚度为1μm-3μm,所述第二光阑层与所述第一光阑层的距离为5μm-20μm。
例如,本公开至少一实施例提供的纹路识别装置还包括设置在所述感光元件层和所述第一光阑层之间的光过滤层,所述光过滤层配置为透过掉波长为580nm~850nm的光。
例如,本公开至少一实施例提供的纹路识别装置还包括设置在所述感光元件层和所述光过滤层之间的视场光阑层,所述视场光阑层包括多个第三透光开口,在垂直于所述衬底基板的板面的方向上,所述多个第三透光开口与所述多个感光元件一一对应且至少部分重叠。
例如,本公开至少一实施例提供的纹路识别装置中,在平行于所述衬底基板的板面的方向上,多个第三透光开口的每个的直径为D3,则2μm≤D3≤10μm。
例如,本公开至少一实施例提供的纹路识别装置中,在垂直于所述衬底基板的板面的方向上,所述视场光阑层的厚度为300nm~500nm。
例如,本公开至少一实施例提供的纹路识别装置中,所述视场光阑层的材料包括金属材料。
例如,本公开至少一实施例提供的纹路识别装置中,对于在垂直于所述衬底基板的板面的方向上与同一感光元件对应的一个透镜单元、一个第一透光开口、一个第二透光开口和一个第三透光开口,所述透镜单元的中心在所述衬底基板上的正投影与所述第一透光开口的中心在所述衬底基板上的正投影重叠,且与所述第二透光开口中心在所述衬底基板上的正投影重叠,且与所述第三透光开口在所述衬底基板上的正投影重叠。
例如,本公开至少一实施例提供的纹路识别装置中,通过所述透镜单元的边缘且沿垂直于所述衬底基板的板面的方向射入所述透镜单元的光线与入射处所述透镜单元的远离所述衬底基板的表面的法线的夹角为θ1,经过所述透镜单元折射后的光线射入所述第三透光开口的中部,且与所述法线的夹角为θ2,与垂直于所述衬底基板的板面的方向的夹角为θ3,空气的折射率为n1,所述透镜单元的折射率为n2,所述透镜单元的靠近所述衬底基板的表面与所述第二光阑层的远离所述 衬底基板的表面的距离为h1,所述第二光阑层的靠近所述衬底基板的表面与所述第一光阑层的远离所述衬底基板的表面的距离为h2,所述第一光阑层的靠近所述衬底基板的表面与所述视场光阑层的远离所述衬底基板的表面的距离为h3,所述透镜单元的靠近所述衬底基板的表面与所述视场光阑层的靠近所述衬底基板的表面的距离为h4,则:
n1*sinθ1=n2*sinθ2;
D1=(h4-h1-h2)*tanθ3*2。
例如,本公开至少一实施例提供的纹路识别装置中,
D2=(h4-h1)*tanθ3*2。
例如,本公开至少一实施例提供的纹路识别装置中,通过所述透镜单元的边缘且与垂直于所述衬底基板的板面的方向呈小于90度角射入所述透镜单元的光线与入射处所述透镜单元的远离所述衬底基板的表面的法线的夹角为θ4,经过所述透镜单元折射后的光线射入所述第三透光开口的边缘,且与所述法线的夹角为θ5,与垂直于所述衬底基板的板面的方向的夹角为θ6,所述透镜单元的直径为D0,则:
n1*sinθ4=n2*sinθ5;
D3=(h4*tanθ6-D0/2)*2。
例如,本公开至少一实施例提供的纹路识别装置中,对于在垂直于所述衬底基板的板面的方向上与同一感光元件对应的一个透镜单元、第一透光开口、一个第二透光开口和一个第三透光开口,所述透镜单元的中心在所述衬底基板上的正投影与所述第一透光开口的中心在所述衬底基板上的正投影不重叠,与所述第二透光开口中心在所述衬底基板上的正投影不重叠,且与所述第三透光开口中心在所述衬底基板上的正投影不重叠。
例如,本公开至少一实施例提供的纹路识别装置中,所述第一透光开口的中心在所述衬底基板上的正投影与所述第二透光开口中心在所述衬底基板上的正投影之间的距离为1μm-5μm;所述第一透光开口的中心在所述衬底基板上的正投影与所述第三透光开口中心在所述衬底基板上的正投影之间的距离为1μm-5μm。
例如,本公开至少一实施例提供的纹路识别装置中,通过所述透镜单元的第一边缘且与垂直于所述衬底基板的板面的方向呈第一角度射入所述透镜单元的光线与入射处所述透镜单元的远离所述衬底基板的表面的法线的夹角为θ11,经过所述透镜单元折射后的光线射入所述第三透光开口的中部,且与所述法线的夹角为θ12,与垂直于所述衬底基板的板面的方向的夹角为θ13,通过所述透镜单元的与所述第一边缘相对的第二边缘且与垂直于所述衬底基板的板面的方向呈所述第一角度射入所述透镜单元的光线与入射处所述透镜单元的远离所述衬底基板的表面的法线的夹角为θ14,经过所述透镜单元折射后的光线射入所述第三透光开口的中部,且与所述法线的夹角为θ15,与垂直于所述衬底基板的板面的方向的夹角为θ16,空气的折射率为n1,所述透镜单元的折射率为n2,所述透镜单元的靠近所 述衬底基板的表面与所述第二光阑层的远离所述衬底基板的表面的距离为h1,所述第二光阑层的靠近所述衬底基板的表面与所述第一光阑层的远离所述衬底基板的表面的距离为h2,所述第一光阑层的靠近所述衬底基板的表面与所述视场光阑层的远离所述衬底基板的表面的距离为h3,所述透镜单元的靠近所述衬底基板的表面与所述视场光阑层的靠近所述衬底基板的表面的距离为h4,所述透镜单元的直径为D0,则:
n1*sinθ11=n2*sinθ12;
n1*sinθ14=n2*sinθ15;
D1=D0-(h1+h2)*tanθ13-(h1+h2)*tanθ16。
例如,本公开至少一实施例提供的纹路识别装置中,
D2=D0-h1*tanθ13-h1*tanθ16。
例如,本公开至少一实施例提供的纹路识别装置中,通过所述透镜单元的第一边缘且与垂直于所述衬底基板的板面的方向呈第二角度射入所述透镜单元的光线在经过所述透镜单元折射后射入所述第三透光开口的边缘,且折射后的光线与垂直于所述衬底基板的板面的方向的夹角为θ17,所述第二角度大于所述第一角度,通过所述透镜单元的与所述第一边缘相对的第二边缘且与垂直于所述衬底基板的板面的方向呈所述第二角度射入所述透镜单元的光线在经过所述透镜单元折射后射入所述第三透光开口的边缘,且折射后的光线与垂直于所述衬底基板的板面的方向的夹角为θ18,则:
D3=h4*(tanθ17+tanθ18)-D0。
例如,本公开至少一实施例提供的纹路识别装置还包括设置在所述透镜层的远离所述衬底基板一侧的平坦化层,所述平坦化层的材料的折射率为1.35~1.45。
例如,本公开至少一实施例提供的纹路识别装置中,所述多个透镜单元的每个的曲率半径为5μm~20μm,直径为25μm-35μm。
例如,本公开至少一实施例提供的纹路识别装置中,所述多个透镜单元的每个的形状基本呈圆形、正方形或者长方形。
例如,本公开至少一实施例提供的纹路识别装置中,所述透镜层的材料的折射率为1.6~1.7。
本公开至少一实施例还提供一种显示装置,该显示装置包括显示面板和本公开实施例提供的纹路识别装置,显示面板具有显示侧和非显示侧,且允许光从所述显示侧透过至所述非显示侧,纹路识别装置设置在所述显示面板的非显示侧,配置为可接收从所述显示侧透过至所述非显示侧的光以进行纹路识别,其中,所述透镜层相对于所述感光元件层更靠近所述显示面板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍, 显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开至少一实施例提供的纹路识别装置的平面示意图以及沿平面示意图中的M-M线剖切得到的截面示意图;
图2为本公开至少一实施例提供的纹路识别装置中第一光阑层、第一光阑层和视场光阑层的平面示意图;
图3为本公开至少一实施例提供的纹路识别装置中多个透镜单元的平面示意图;
图4A为图1和图2中的纹路识别装置中信号光的传播路径示意图;
图4B为本公开至少一实施例提供的纹路识别装置中信号光传播路径的另一示意图;
图4C为本公开至少一实施例提供的纹路识别装置中信号光传播路径的再一示意图;
图5为本公开至少一实施例提供的纹路识别装置的另一平面示意图以及沿上述平面示意图中的M-M线剖切得到的截面示意图;
图6为本公开至少一实施例提供的纹路识别装置中第一光阑层、第一光阑层和视场光阑层的另一平面示意图;
图7A为图5和图6中的纹路识别装置中信号光的传播路径的示意图;
图7B为图5和图6中的纹路识别装置中信号光的传播路径的另一示意图;
图7C为图5和图6中的纹路识别装置中信号光的传播路径的再一示意图;
图8为本公开至少一实施例提供的纹路识别装置中驱动电路层和感光元件层的截面示意图;
图9为本公开至少一实施例提供的纹路识别装置中像素驱动电路以及感光元件的电路图;以及
图10为本公开至少一实施例提供的显示装置的截面示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于 物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在显示装置中,纹路识别装置可以结合在显示面板的非显示侧,显示面板至少部分透光,以使纹路识别装置可以通过显示面板接受信号光,从而显示装置同时具有显示功能和纹路识别功能。在目前的显示装置中,采用的纹路识别装置通常具有用于识别信号光并合成纹路图像的多个像素单元,多个像素单元可以分别采用带有微透镜结构的准直膜材作为光路系统,以对射入纹路识别装置的光进行准直,以使准直后的光更容易被识别,提高光利用率。例如,每个像素单元包括一个感光元件,该感光元件对应设置微透镜结构,以利用该微透镜结构针对性地对射入该感光元件的光进行准直。
但是,本公开的发明人发现,由于准直膜材的结构、工艺等限制,经微透镜结构准之后的光在相邻的像素单元之间容易产生串扰(crosstalk),使得准直膜材在一定角度下会影响特定场景纹路的光信号;另一方面,由于纹路识别装置内部通常使用光学透明胶(OCA胶)贴合各个结构,使纹路识别装置的部分结构内部存有空气,在经过信赖性测试等测试实验后该部分容易发生形变,造成射入纹路识别装置的光信号的衰减,使得纹路识别装置无法进行识别或者识别不准确。
本公开至少一实施例提供一种纹路识别装置以及显示装置,该纹路识别装置具有多个像素单元,且包括衬底基板、驱动电路层、感光元件层和透镜层。驱动电路层设置在衬底基板上,感光元件层设置在衬底基板上,透镜层设置在感光元件层的远离衬底基板的一侧,多个像素单元中至少一个像素单元包括设置在驱动电路层中的像素驱动电路、设置在感光元件层中的多个感光元件以及设置在透镜层中的多个透镜单元,像素驱动电路与多个感光元件电连接,以驱动多个感光元件,在垂直于衬底基板的板面的方向上,多个感光元件与多个透镜单元一一对应且重叠。
在本公开实施例提供的上述纹路识别装置中,至少一个像素单元包括多个感光元件,该多个感光元件由同一像素驱动电路驱动,从而处于相同的工作状态,该像素单元可以通过多个感光元件接收足够的信号光并合成纹路图像;另一方面,多个感光元件分别具有与其对应设置的透镜单元,使得每个透镜单元可以为与其对应的一个感光元件进行更精确的光准直,从而更精确地控制射入至每个感光元件的信号光的传播方向,避免相邻的像素单元之间发生串扰等不良现象,提高纹路识别装置的纹路识别效果。
下面,通过几个具体的实施例来详细介绍本公开至少一实施例提供的纹路识别装置以及显示装置。
图1为本公开至少一实施例提供的纹路识别装置的平面示意图以及沿平面示意图中的M-M线剖切得到的截面示意图,图1中示出了上述平面示意图和截面示 意图的对应关系。如图1所示,该纹路识别装置具有多个像素单元PX(图中示出两个像素单元PX作为示例),且包括衬底基板10、驱动电路层20、感光元件层30和透镜层40。
例如,如图1所示,驱动电路层20设置在衬底基板10上,感光元件层30设置在衬底基板10上,图1中示出为感光元件层30设置在驱动电路层20的远离衬底基板10的一侧。例如,在其他实施例中,感光元件层30也可以设置在驱动电路层20的靠近衬底基板10的一侧或者与驱动电路层20同层设置,只要驱动电路层20不影响感光元件层30的感光效果即可。
例如,透镜层40设置在感光元件层30的远离衬底基板10的一侧,多个像素单元PX中的至少一个像素单元PX包括设置在驱动电路层20中的像素驱动电路(稍后详细介绍)、设置在感光元件层30中的多个感光元件301(图1中示出四个感光元件301作为示例)以及设置在透镜层40中的多个透镜单元401(图1中示出四个透镜单元401作为示例),像素驱动电路与多个感光元件301电连接,以驱动多个感光元件301。在垂直于衬底基板10的板面的方向上,即图1中的竖直方向上,多个感光元件301与多个透镜单元401一一对应且重叠。
由此,在本公开实施例提供的上述纹路识别装置中,至少一个像素单元包括的多个感光元件电连接至同一像素驱动电路,从而可以由同一像素驱动电路驱动,使得多个感光元件在相同的像素驱动电路驱动下处于相同的工作状态,该像素单元可以通过多个感光元件接收足够的信号光并合成纹路图像;另一方面,多个感光元件分别具有与其对应设置的透镜单元,使得每个透镜单元可以为与其对应的一个感光元件进行更精确的光准直,从而更精确地控制射入至每个感光元件的信号光的传播方向,避免相邻的像素单元之间发生串扰等不良现象,提高光利用率,进而提高纹路识别装置的纹路识别效果。
例如,在一些实施例中,至少一个像素单元PX包括的多个感光元件301排布为N*M的阵列,其中,M为大于等于1的正整数,N为大于1的正整数,M与N可以相同也可以不同。例如,在一些示例中,多个感光元件301排布为2*2的阵列(即M与N均为2,图1中示出的情况)、3*3的阵列、4*4的阵列或者2*3的阵列等。
例如,每个感光元件301呈孤岛状,在平行于衬底基板10的板面的方向上,其平面形状可以为正方形、矩形等形状。例如,当感光元件301的平面形状为正方形时,正方形的边长可以为10μm-20μm,例如12μm、15μm或者18μm等。
例如,本公开的实施例中,感光元件301可以为光电二极管,例如,该光电二极管可以为PN型或PIN型等。例如,当光电二极管为PN型时,感光元件301包括叠层的P型半导体层和N型半导体层;当光电二极管为PIN型时,感光元件301包括叠层的P型半导体层、本征半导体层和N型半导体层。例如,感光元件301采用的半导体材料可以为硅、锗、硒、砷化镓等,本公开的实施例对此不做限定。
例如,在一些实施例中,如图1所示,多个透镜单元401的平面形状可以为圆形,此时,每个透镜单元401的曲率半径R可以为5μm~20μm,例如7μm、10μm或者15μm等,每个透镜单元401的直径D0可以为25μm-35μm,例如27μm、30μm或者32μm等。
例如,在其他实施例中,多个透镜单元401的平面形状也可以为矩形或者正方形等。例如,图3示出了多个透镜单元的另一平面示意图,如图3所示,该示例中,多个透镜单元401的平面形状为圆角矩形,此时,每个透镜单元401的曲率半径R可以为5μm~20μm,例如7μm、10μm或者15μm等,每个透镜单元401的边长D01可以为25μm-35μm,例如27μm、30μm或者32μm等。
例如,在一些实施例中,透镜层40的材料的折射率可以为1.6~1.7,例如1.65等。由此,多个透镜单元401可以对射入其中的光进行充分的折射作用,进而实现有效的准直效果,提高射入光的利用率。
例如,如图1所示,在一些实施例中,纹路识别装置还可以包括第一光阑层50,第一光阑层50设置在感光元件层30与透镜层40之间,包括多个第一透光开口501。在垂直于衬底基板10的板面的方向上,多个第一透光开口501与多个感光元件301一一对应且至少部分重叠。多个第一透光开口501分别用于透过射入多个感光元件301的信号光,并遮挡一定角度(与衬底基板的板面一定大角度)的光以及用于相邻感光元件的信号光等不必要的光,例如图1中虚线所指示的光,从而进一步防止信号串扰等不良现象的发生。
为图示清楚且简洁,图1的平面图中未示出第一光阑层50的多个第一透光开口501的平面示意图,图2示出了本公开至少一实施例提供的纹路识别装置中第一光阑层50的多个第一透光开口501的平面示意图。
例如,如图1和图2所示,在一些实施例中,在平行于衬底基板10的板面的方向上,即图1中的水平方向上,每个第一透光开口501的直径为D1,则2μm≤D1≤50μm,例如D1为10μm、20μm或者30μm等。
例如,在平行于衬底基板10的板面的方向上,多个第一透光开口501的形状可以为矩形、正方形或者圆形等。如图1所示,当多个第一透光开口501的形状为正方形时,上述D1可以为正方形的边长;在其他示例中,当多个第一透光开口501的形状为矩形时,上述D1可以为矩形的对角线长度;当多个第一透光开口501的形状为圆形时,上述D1可以为圆形的直径。
例如,在一些实施例中,第一光阑层50的材料可以为吸光材料,例如黑矩阵材料,例如在树脂材料中添加黑色染料形成的黑色吸光材料等,由此可以减少甚至消除第一光阑层50对光的反射,进而避免反射光对纹路识别造成不良影响。例如,多个第一透光开口501中填充有透明树脂材料,以防止纹路识别装置中因存在空气间隙导致纹路识别装置内部发生变形等不良现象。
例如,在一些实施例中,如图1所示,在垂直于衬底基板10的板面的方向上, 即图1中的竖直方向上,第一光阑层50的厚度H1为1μm-3μm,例如1.5μm、2μm或者2.5μm等,第一光阑层50与感光元件层30的距离为5μm-20μm,即第一光阑层50的下表面到感光元件层30的上表面之间的距离为5μm-20μm,例如10μm、15μm或者18μm等。在上述配置下,第一光阑层50可有效实现防串扰功能。
例如,在一些实施例中,如图1和图2所示,纹路识别装置还可以包括第二光阑层60,第二光阑层60设置在第一光阑层50与透镜层40之间,包括多个第二透光开口601。在垂直于衬底基板10的板面的方向上,多个第二透光开口601与多个感光元件301一一对应且至少部分重叠。多个第二透光开口601分别用于透过射入多个感光元件301的信号光,并遮挡一定角度(与衬底基板的板面呈一定角度)的光以及用于相邻感光元件的信号光等不必要的光,例如图1中虚线所指示的光,从而可以进一步防止信号串扰等不良现象的发生。
例如,如图1和图2所示,在平行于衬底基板10的板面的方向上,每个第二透光开口601的直径为D2,则2μm≤D1≤D2≤50μm,例如,D2可以为20μm、30μm或者40μm等。
类似地,在平行于衬底基板10的板面的方向上,第二透光开口601的形状可以为矩形、正方形或者圆形等。如图1所示,当多个第二透光开口601的形状为正方形时,上述D2可以为正方形的边长;在其他示例中,当第二透光开口601的形状为矩形时,上述D2可以为矩形的对角线长度;当第二透光开口601的形状为圆形时,上述D2可以为圆形的直径。
例如,在一些实施例中,第二光阑层60的材料可以为吸光材料,例如黑矩阵材料,例如在树脂材料中添加黑色染料形成的黑色吸光材料等,由此可以减少甚至消除第二光阑层60对光的反射,进而避免反射光对纹路识别造成影响。例如,多个第二透光开口601中填充有透明树脂材料,以防止纹路识别装置中因存在空气间隙导致纹路识别装置内部发生变形等不良现象。
例如,在一些实施例中,在垂直于衬底基板10的板面的方向上,第二光阑层60的厚度H2为1μm-3μm,例如1.5μm、2μm或者2.5μm等,第二光阑层60与第一光阑层50的距离为5μm-20μm,例如10μm、15μm或者18μm等。
由于在纹路识别的过程中,除了用于纹路识别的信号光可被感光元件301感应外,感光元件301还可能感应通过手指射入的环境光。由于感光元件301对光的接收是被动的,不会主动将信号光与环境光相区分,因此,环境光可能对感光元件301的纹路识别产生干扰。例如,当环境光照射在手指的正上方时,环境光可透过手指并激发手指内生物组织发出色素光,该色素光可能会对指纹识别产生干扰。通过检测,该色素光主要包括波长在580nm~850nm范围的光。
例如,在一些实施例中,如图1所示,纹路识别装置还可以包括设置在感光元件层30和第一光阑层50之间的光过滤层70,光过滤层70配置为透过掉波长为580nm~850nm的光,即不允许波长为580nm~850nm的光透过,从而防止上述色素 光对纹路识别造成影响,并且可以用于室外等场景。例如,光过滤层70还可以配置为对可用于纹路识别的信号光具有较高的透过率,例如,光过滤层70配置为可以对波长为400nm~560nm的可见光具有较高的透过率,以使感光元件301充分接收到信号光。例如,在一些实施例中,光过滤层70为绿色光阻层。
例如,在一些实施例中,光过滤层70与第一光阑层50之间、第一光阑层50与第二光阑层60之间以及第二光阑层60与透镜层40之间填充有透明树脂材料,以保证不同结构之间的距离,且不影响信号光的传播。
例如,在一些实施例中,如图1和图2所示,纹路识别装置还可以包括设置在感光元件层30和光过滤层70之间的视场光阑层80,视场光阑层80包括多个第三透光开口801,在垂直于衬底基板10的板面的方向上,多个第三透光开口801与多个感光元件301一一对应且至少部分重叠。多个第三透光开口801分别用于透过射入多个感光元件301的信号光,并遮挡大角度(与衬底基板的板面呈大角度)的不必要的光,例如图1中虚线所指示的光,从而进一步防止信号串扰等不良现象的发生。
例如,如图1和图2所示,在平行于衬底基板10的板面的方向上,每个第三透光开口801的直径为D3,则2μm≤D3≤10μm,例如D3为5μm、7μm或者9μm等。
例如,在一些实施例中,如图1所示,在垂直于衬底基板10的板面的方向上,视场光阑层80的厚度H3为300nm~500nm,例如350nm、400nm或者450nm等。
例如,在一些实施例中,视场光阑层80的材料包括金属材料,例如钼、铝、钛等金属材料或其合金材料。此时,在纹路识别装置的制备过程中,视场光阑层80可以在驱动电路层20和感光元件层30的制程中一起形成,从而简化纹路识别装置的制备工艺。
通过测试,图1所示的纹路识别装置在上述配置下,纹路识别装置可有效透过信号光,且有效避免不必要的光对纹路识别造成影响。例如,通过对射入纹路识别装置的光进行测试,可以得出,纹路识别装置可有效遮挡波长在400nm-850nm范围内射入纹路识别装置的不必要的光,且对该不必要的光的透过率小于1%,由此可以充分满足纹路识别装置的要求。
例如,在一些实施例中,如图1所示,纹路识别装置还可以包括设置在透镜层30的远离衬底基板10一侧的平坦化层90,平坦化层90可平坦化透镜层30带来的不平坦,并且有利于将纹路识别装置通过平坦化层90结合在其他装置上,例如结合在显示面板上等。例如,在一些示例中,可以通过光学透明胶将平坦化层90结合在显示面板上,此时,由于平坦化层90较为平坦,光学透明胶对平坦化层90和显示面板的粘结性更强。
例如,在一些实施例中,平坦化层90的材料的折射率为1.35~1.45,例如1.40等。例如,平坦化层90包括折射率为1.35~1.45的有机材料。本公开的实施例中, 通过使用低折射率的材料形成平坦化层90,可以避免平坦化层90对信号光的传播造成不良影响,例如避免对信号光产生不必要的折射、反射等现象。
例如,在一些实施例中,如图1和图2所示,对于在垂直于衬底基板10的板面的方向上与同一感光元件301对应的一个第一透光开口501、一个第二透光开口601和一个第三透光开口801,第一透光开口501的中心在衬底基板10上的正投影与第二透光开口601的中心在衬底基板10上的正投影重叠。例如,第一透光开口501的中心在衬底基板10上的正投影与第三透光开口801的中心在衬底基板10上的正投影也重叠。例如,第一透光开口501的中心在衬底基板10上的正投影与感光元件301的中心在衬底基板10上的正投影也重叠。
例如,图4A示出了图1和图2所示的纹路识别装置中,信号光的传播路径示意图。如图4A所示,用于纹路识别的信号光依次通过第二透光开口601、第一透光开口501和第三透光开口801射入感光元件301,并且从各个方向射入感光元件301的信号光具有相似的角度范围。
图4B示出了图1和图2所示的纹路识别装置中,信号光的传播路径的另一示意图。如图4B所示,通过透镜单元401的边缘且沿垂直于衬底基板10的板面的方向射入透镜单元401的光线与入射处透镜单元401的远离衬底基板10的表面的法线的夹角为θ1,经过透镜单元401折射后的光线射入第三透光开口801的中部,且与法线的夹角为θ2,与垂直于衬底基板10的板面的方向的夹角为θ3,空气的折射率为n1,所述透镜单元的折射率为n2。透镜单元401的靠近衬底基板10的表面与第二光阑层60的远离衬底基板10的表面的距离为h1,第二光阑层60的靠近衬底基板10的表面与第一光阑层50的远离衬底基板10的表面的距离为h2,第一光阑层50的靠近衬底基板10的表面与视场光阑层80的远离衬底基板10的表面的距离为h3,透镜单元401的靠近衬底基板10的表面与视场光阑层80的靠近衬底基板10的表面的距离为h4,则:
n1*sinθ1=n2*sinθ2;
D1=(h4-h1-h2)*tanθ3*2;
D2=(h4-h1)*tanθ3*2。
图4C示出了图1和图2所示的纹路识别装置中,信号光的传播路径的再一示意图。如图4C所示,通过透镜单元401的边缘且与垂直于衬底基板10的板面的方向(即图中的竖直方向)呈小于90度角(例如3度-10度)射入透镜单元401的光线与入射处透镜单元401的远离衬底基板10的表面的法线的夹角为θ4,经过透镜单元401折射后的光线射入第三透光开口801的边缘,且与法线的夹角为θ5,与垂直于衬底基板10的板面的方向的夹角为θ6,透镜单元401的直径为D0,则:
n1*sinθ4=n2*sinθ5;
D3=(h4*tanθ6-D0/2)*2。
例如,在另一些实施例中,图5示出了另一种纹路识别装置的平面示意图以 及截面示意图,图6示出了图5中的纹路识别装置中第一透光开口、第二透光开口和第三透光开口的平面示意图,图7A-图7C示出了图5和图6中的纹路识别装置中信号光的传播路径示意图。
与图1-图4C所示的实施例不同的是,在图5-图7C所示的实施例中,对于在垂直于衬底基板10的板面的方向上与同一感光元件301对应的一个第一透光开口501、一个第二透光开口601和一个第三透光开口801,第一透光开口501的中心在衬底基板10上的正投影与第二透光开口601的中心在衬底基板10上的正投影不重叠。第一透光开口501的中心在衬底基板10上的正投影与第三透光开口801的中心在衬底基板10上的正投影不重叠。第二透光开口601的中心在衬底基板10上的正投影与第三透光开口801的中心在衬底基板10上的正投影也不重叠。例如,第三透光开口801的中心在衬底基板10上的正投影与感光元件301的中心在衬底基板10上的正投影也不重叠。
例如,如图7B所示,通过透镜单元401的第一边缘(图中的左侧边缘)且与垂直于衬底基板10的板面的方向呈第一角度θ10射入透镜单元401的光线与入射处透镜单元401的远离衬底基板10的表面的法线的夹角为θ11,经过透镜单元401折射后的光线射入第三透光开口801的中部,且与法线的夹角为θ12,与垂直于衬底基板10的板面的方向的夹角为θ13,通过透镜单元401的与第一边缘相对的第二边缘(右侧边缘)且与垂直于衬底基板10的板面的方向呈第一角度θ10射入透镜单元401的光线与入射处透镜单元401的远离衬底基板10的表面的法线的夹角为θ14,经过透镜单元401折射后的光线射入第三透光开口801的中部,且与法线的夹角为θ15,与垂直于衬底基板10的板面的方向的夹角为θ16。则:
n1*sinθ11=n2*sinθ12;
n1*sinθ14=n2*sinθ15;
D1=D0-(h1+h2)*tanθ13-(h1+h2)*tanθ16;
D2=D0-h1*tanθ13-h1*tanθ16。
例如,如图7C所示,通过透镜单元401的第一边缘(图中的左侧边缘)且与垂直于衬底基板10的板面的方向呈第二角度θ20射入透镜单元401的光线在经过透镜单元401折射后射入第三透光开口801的边缘,且折射后的光线与垂直于衬底基板10的板面的方向的夹角为θ17。第二角度θ20大于所述第一角度θ10,例如,第二角度θ20为5度-15度,第一角度θ10为3度-10度。通过透镜单元401的与第一边缘相对的第二边缘(图中的右侧边缘)且与垂直于衬底基板10的板面的方向呈第二角度θ20射入透镜单元401的光线在经过透镜单元401折射后射入第三透光开口801的边缘,且折射后的光线与垂直于衬底基板10的板面的方向的夹角为θ18,则:
D3=h4*(tanθ17+tanθ18)-D0。
例如,在一些示例中,如图6所示,第一透光开口501的中心在衬底基板10 上的正投影位O1,第二透光开口601中心在衬底基板10上的正投影位O2,O1与O2之间的距离L1为1μm-5μm,例如2μm、3μm或者4μm等。
例如,第三透光开口801的中心在衬底基板10上的正投影位O3,第一透光开501的中心在衬底基板10上的正投影O1与O3之间的距离L2为1μm-5μm,例如2μm、3μm或者4μm等。由此,如图7所示,与衬底基板10的板面呈一定角度的信号光可依次通过第二透光开口601、第一透光开口501和第三透光开口801射入感光元件301,从而该纹路识别装置可以通过配置O1、O2和O3之间的距离,来筛选以特定角度射入纹路识别装置的光来进行纹路识别。
例如,图8为本公开至少一实施例提供的纹路识别装置中驱动电路层和感光元件层的截面示意图,图9为本公开至少一实施例提供的纹路识别装置中像素驱动电路与感光元件的电路图。
例如,每个像素单元PX包括的多个感光元件设置在同一第一电极E1上,以通过同一第一电极E1连接至同一像素驱动电路驱动,此时,该第一电极E1可以通过一处过孔(即图中的过孔V1)与像素驱动电路电连接以实现多个感光元件P与同一像素驱动电路之间的电连接,由此可减少用于电连接的过孔V1的数量,便于过孔V1位置的选择,进而有利于像素驱动电路的平坦性;另一方面,至少一个像素单元PX包括的多个感光元件P由同一像素驱动电路驱动,从而处于相同的工作状态,该像素单元PX可以通过多个感光元件P接收足够的信号光并合成纹路图像。
例如,每个像素单元PX的像素驱动电路包括至少一个薄膜晶体管,且还可以包括电容等结构。如图8和图9所示,该示例中,像素驱动电路包括第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3以及电容C等结构。
例如,如图9所示,第一薄膜晶体管T1作为开关晶体管,其控制端与信号扫描线Vr连接,第一源漏端S1和第二源漏端D1分别与信号读取线Vout和第二薄膜晶体管T2的第一源漏端S2连接。第二薄膜晶体管T2作为驱动晶体管,其控制端与第三薄膜晶体管T3的第一源漏端S3以及电容C的第一电容极板C1和感光元件301的第一电极E1连接,第二源漏端D2与电源线Vdd连接。第三薄膜晶体管T3作为复位晶体管,其控制端与复位信号线Vrst连接,第二源漏端D3与电源线Vdd连接。电容C的第二电容极板C2和感光元件301的第二电极E2与偏压线Vb连接。
例如,在图9所示的电路下,感光元件301的工作过程包括:首先,在复位阶段,通过复位信号线Vrst向第三薄膜晶体管T3的控制端输入复位信号使第三薄膜晶体管T3导通,复位信号写入感光元件301的第一电极E1和第二薄膜晶体管T2的控制端;然后,在感光阶段,感光元件301在信号光的照射下产生光生载流子产生光生漏电流,并对电容C充电,使得电容C产生并存储电信号;最后,在检测阶段,通过信号扫描线Vr对第一薄膜晶体管T1的控制端输入扫描信号使 第一薄膜晶体管T1导通,纹路识别芯片通过信号读取线Vout从第一薄膜晶体管T1和第二薄膜晶体管T2读取电容C存储的电信号,之后形成纹路图像。
例如,图8中仅示出了一个薄膜晶体管,例如其为上述第二薄膜晶体管T2,包括有源层AT、栅极G、源极S和漏极D等结构。例如,栅极G作为第二薄膜晶体管T2的控制端,源极S作为第二薄膜晶体管T2的第一源漏端,漏极D作为第二薄膜晶体管T2的第二源漏端。例如,图2中示出了另一栅极G2,其为第一薄膜晶体管T1的栅极,第一薄膜晶体管T1的其他结构以及第三薄膜晶体管T3未在图2中未示出。例如,第一薄膜晶体管T1以及第三薄膜晶体管T3具有与第二薄膜晶体管T2相似的结构,本公开的实施例对第一薄膜晶体管T1、第二薄膜晶体管T2以及第三薄膜晶体管T3的具体结构不做限定。
例如,在一些实施例中,如图8所示,纹路识别装置还包括层间绝缘层IL,层间绝缘层IL设置在驱动电路层20和第一电极层之间,层间绝缘层IL包括过孔V1,第一电极E1通过过孔V1与像素驱动电路电连接,例如与像素驱动电路中第二薄膜晶体管T2的栅极G电连接。例如,过孔V1在衬底基板10上的正投影与多个感光元件301在衬底基板10上的正投影不重叠。
由于过孔V1所在位置较为不平坦,通过将过孔V1与多个感光元件301设置为在垂直于衬底基板10的板面的方向不重叠,可以避免该不平坦的部分设置在感光元件301下方使感光元件的结构发生变形,进而保证感光元件的结构准确性,提高感光元件的感光效果。
例如,在一些实施例中,层间绝缘层为平坦化层,用于平坦化像素驱动电路,以便其上方第一电极层的设置。例如,在一些实施例中,如图8所示,层间绝缘层可以包括多个绝缘子层的叠层,例如包括平坦化层IL1和第一钝化层IL2,平坦化层IL1中具有过孔V10,第一钝化层IL2中具有过孔V11,过孔V10和过孔V11连通形成层间绝缘层IL中的过孔V1。例如,在其他实施例中,层间绝缘层也可以包括更多个绝缘子层的叠层,本公开的实施例对层间绝缘层IL的具体形式不做限定。
例如,在一些实施例中,每个像素单元PX的第一电极E1为设置在多个感光元件下方的整片结构;或者,在另一些实施例中,参考图1,第一电极E1包括设置在多个感光元件301中相邻的两个感光元件301之间的至少一个第一镂空部E10,例如,第一电极E1包括设置在多个感光元件301中每相邻的两个感光元件301之间的多个第一镂空部E10。第一镂空部E10可以防止第一电极E1与其上方或者下方的电路产生耦合电容,进而避免产生信号串扰等不良现象。
例如,在一些实施例中,如图8所示,纹路识别装置还包括第二电极层,第二电极层设置在感光元件层的远离衬底基板10的一侧。例如,至少一个像素单元PX还包括设置在第二电极层中的多个第二电极E2,多个第二电极E2分别设置在多个感光元件301的远离衬底基板10的一侧。第一电极E1和多个第二电极E2共同驱动多个感光元件301;另一方面,第一电极E1还可以与多个第二电极E2 一起组成上述电容C。
例如,在一些实施例中,多个第二电极E2在衬底基板10上的正投影与过孔V1在衬底基板10上的正投影不重叠。例如,多个第二电极E2在第二电极层中间隔设置,每个感光元件301上设置的第二电极E2在衬底基板10上的正投影位于该感光元件301在衬底基板10上的正投影内,以保证第二电极E2的平坦性,进而保证第二电极E2传输电信号的准确性。
例如,在一些实施例中,如图8所示,纹路识别装置还可以包括第三电极层E3,第三电极层E3设置在第二电极层的远离衬底基板10的一侧,多个第二电极E2与第三电极层E3电连接。例如,第三电极层E3与偏压线Vb连接,由此,每个第二电极E2通过第三电极层E3从偏压线Vb获取相同的电信号。
例如,在一些实施例中,第三电极层E3包括设置在多个像素单元PX中相邻的两个像素单元PX之间的至少一个第二镂空部E30。例如,第三电极层E3包括设置在多个像素单元PX中每相邻的两个像素单元PX之间的多个第二镂空部E30。第二镂空部E30可以防止第三电极层E3与其上方或者下方的电路产生耦合电容,进而避免产生信号串扰等不良现象。
例如,如图8所示,纹路识别装置还可以包括设置在衬底基板10上的第一缓冲层101、设置在有源层AT上的第一栅绝缘层102、设置在栅极G上的第二栅绝缘层103、设置在第二电极层上的第二缓冲层104、设置在第二缓冲层104上的有机绝缘层105、设置在有机绝缘层105上的第二钝化层106以及设置在第三电极层E3上的第三钝化层107等结构。例如,第二缓冲层104、有机绝缘层105和第二钝化层106中具有多个过孔V2,多个第二电极E2通过分别通过多个过孔V2与第三电极层E3连接。
例如,在一些实施例中,如图8所示,纹路识别装置还可以包括静电屏蔽层108,静电屏蔽层108设置在第三电极层E3的远离衬底基板10的一侧,第三电极层E3在衬底基板10上的正投影位于静电屏蔽层108在衬底基板10上的正投影内。静电屏蔽层108可以为第三电极层E3及其下方的电路提供静电屏蔽的作用。
例如,在一些实施例中,如图8所示,静电屏蔽层108可以整面形成在第三电极层E3上,或者与第三电极层E3具有相同的图案,例如,静电屏蔽层108可以具有在相邻的像素单元PX之间的第三镂空部,图中未示出。
例如,视场光阑层80设置在静电屏蔽层108的远离衬底基板10的一侧,且视场光阑层80和静电屏蔽层108之间可以具有绝缘粘结层。
例如,本公开的实施例中,衬底基板10可以包括聚酰亚胺(PI)等柔性绝缘材料或者玻璃基板等刚性绝缘材料。例如,第一缓冲层101和第二缓冲层104可以包括氮化硅、氧化硅、氮氧化硅等无机材料。有源层AT可以采用多晶硅和金属氧化物等材料。第一栅绝缘层102和第二栅绝缘层103可以采用氧化硅、氮化硅或者氮氧化硅等无机绝缘材料。栅极G可以采用铜、铝、钛、钴等金属材料,例如可以形成为单层结构或者多层结构,例如钛/铝/钛、钼/铝/钼等多层结构。第一钝 化层IL2、第二钝化层106以及第三钝化层107可以采用氧化硅、氮化硅或者氮氧化硅等无机绝缘材料。源漏电极S/D可以采用铜、铝、钛、钴等金属材料,例如可以形成为单层结构或者多层结构,例如钛/铝/钛、钼/铝/钼等多层结构。第一电极层例如包括ITO、IZO等金属氧化物或者Ag、Al、Mo等金属或其合金。第二电极层、第二电极层以及静电屏蔽层108例如包括ITO、IZO等透明金属氧化物。平坦化层IL1可以采用聚酰亚胺等有机绝缘材料。本公开的实施例对各个功能层的材料不做具体限定。
例如,本公开实施例提供的纹路识别装置还可以具有其他结构,具体可以参考相关技术,在此不再赘述。
本公开至少一实施例还提供一种显示装置,图10示出了该显示装置的截面示意图,如图10所示,该显示装置包括显示面板200和本公开实施例提供的纹路识别装置,显示面板200具有显示侧201和非显示侧202,且允许光从显示侧201透过至非显示侧202。纹路识别装置设置在显示面板200的非显示侧202,配置为可接收从显示侧201透过至非显示侧202的光以进行纹路识别。在设置纹路识别装置时,透镜层40相对于感光元件层30更靠近显示面板20。
本公开实施例提供的显示装置采用本公开实施例提供的纹路识别装置进行纹路识别,具有更好的纹路识别效果,例如具有较高的纹路识别速度以及纹路识别准确性。
还有以下几点需要说明:
(1)本公开实施例的附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (29)

  1. 一种纹路识别装置,具有多个像素单元,且包括:
    衬底基板,
    驱动电路层,设置在所述衬底基板上,
    感光元件层,设置在所述衬底基板上,以及
    透镜层,设置在所述感光元件层的远离所述衬底基板的一侧,
    其中,所述多个像素单元中至少一个像素单元包括设置在所述驱动电路层中的像素驱动电路、设置在所述感光元件层中的多个感光元件以及设置在所述透镜层中的多个透镜单元,所述像素驱动电路与所述多个感光元件电连接,以驱动所述多个感光元件,在垂直于所述衬底基板的板面的方向上,所述多个感光元件与所述多个透镜单元一一对应且重叠。
  2. 根据权利要求1所述的纹路识别装置,其中,所述至少一个像素单元包括的多个感光元件排布为N*M的阵列,
    其中,M为大于等于1的正整数,N为大于1的正整数。
  3. 根据权利要求2所述的纹路识别装置,其中,所述M为2,所述N为2,所述至少一个像素单元包括的多个感光元件排布为2*2的阵列。
  4. 根据权利要求1-3任一所述的纹路识别装置,还包括至少一个光阑层,所述至少一个光阑层包括第一光阑层,其中,所述第一光阑层设置在所述感光元件层与所述透镜层之间,包括多个第一透光开口,
    在垂直于所述衬底基板的板面的方向上,所述多个第一透光开口与所述多个感光元件一一对应且至少部分重叠。
  5. 根据权利要求4所述的纹路识别装置,其中,在平行于所述衬底基板的板面的方向上,所述多个第一透光开口的每个的直径为D1,则2μm≤D1≤50μm。
  6. 根据权利要求4或5所述的纹路识别装置,其中,所述第一光阑层的材料为吸光材料。
  7. 根据权利要求4-6任一所述的纹路识别装置,其中,在垂直于所述衬底基板的板面的方向上,所述第一光阑层的厚度为1μm-3μm,所述第一光阑层与所述感光元件层的距离为5μm-20μm。
  8. 根据权利要求4-7任一所述的纹路识别装置,其中,所述至少一个光阑层还包括第二光阑层,其中,所述第二光阑层设置在所述第一光阑层与所述透镜层之间,包括多个第二透光开口,
    在垂直于所述衬底基板的板面的方向上,所述多个第二透光开口与所述多个感光元件一一对应且至少部分重叠。
  9. 根据权利要求8所述的纹路识别装置,其中,在平行于所述衬底基板的板面的方向上,所述多个第一透光开口的每个的直径为D1,所述多个第二透光开口 的每个的直径为D2,则2μm≤D1≤D2≤50μm。
  10. 根据权利要求8或9所述的纹路识别装置,其中,在垂直于所述衬底基板的板面的方向上,所述第二光阑层的厚度为1μm-3μm,所述第二光阑层与所述第一光阑层的距离为5μm-20μm。
  11. 根据权利要求8-10任一所述的纹路识别装置,还包括设置在所述感光元件层和所述第一光阑层之间的光过滤层,所述光过滤层配置为透过掉波长为580nm~850nm的光。
  12. 根据权利要求11所述的纹路识别装置,还包括设置在所述感光元件层和所述光过滤层之间的视场光阑层,所述视场光阑层包括多个第三透光开口,
    在垂直于所述衬底基板的板面的方向上,所述多个第三透光开口与所述多个感光元件一一对应且至少部分重叠。
  13. 根据权利要求12所述的纹路识别装置,其中,在平行于所述衬底基板的板面的方向上,多个第三透光开口的每个的直径为D3,则2μm≤D3≤10μm。
  14. 根据权利要求12或13所述的纹路识别装置,其中,在垂直于所述衬底基板的板面的方向上,所述视场光阑层的厚度为300nm~500nm。
  15. 根据权利要求12-14任一所述的纹路识别装置,其中,所述视场光阑层的材料包括金属材料。
  16. 根据权利要求12-15任一所述的纹路识别装置,其中,对于在垂直于所述衬底基板的板面的方向上与同一感光元件对应的一个透镜单元、一个第一透光开口、一个第二透光开口和一个第三透光开口,
    所述透镜单元的中心在所述衬底基板上的正投影与所述第一透光开口的中心在所述衬底基板上的正投影重叠,且与所述第二透光开口中心在所述衬底基板上的正投影重叠,且与所述第三透光开口在所述衬底基板上的正投影重叠。
  17. 根据权利要求12-15任一所述的纹路识别装置,其中,通过所述透镜单元的边缘且沿垂直于所述衬底基板的板面的方向射入所述透镜单元的光线与入射处所述透镜单元的远离所述衬底基板的表面的法线的夹角为θ1,经过所述透镜单元折射后的光线射入所述第三透光开口的中部,且与所述法线的夹角为θ2,与垂直于所述衬底基板的板面的方向的夹角为θ3,空气的折射率为n1,所述透镜单元的折射率为n2,
    所述透镜单元的靠近所述衬底基板的表面与所述第二光阑层的远离所述衬底基板的表面的距离为h1,所述第二光阑层的靠近所述衬底基板的表面与所述第一光阑层的远离所述衬底基板的表面的距离为h2,所述第一光阑层的靠近所述衬底基板的表面与所述视场光阑层的远离所述衬底基板的表面的距离为h3,所述透镜单元的靠近所述衬底基板的表面与所述视场光阑层的靠近所述衬底基板的表面的距离为h4,则:
    n1*sinθ1=n2*sinθ2;
    D1=(h4-h1-h2)*tanθ3*2。
  18. 根据权利要求17所述的纹路识别装置,其中,
    D2=(h4-h1)*tanθ3*2。
  19. 根据权利要求17或18所述的纹路识别装置,其中,通过所述透镜单元的边缘且与垂直于所述衬底基板的板面的方向呈小于90度角射入所述透镜单元的光线与入射处所述透镜单元的远离所述衬底基板的表面的法线的夹角为θ4,经过所述透镜单元折射后的光线射入所述第三透光开口的边缘,且与所述法线的夹角为θ5,与垂直于所述衬底基板的板面的方向的夹角为θ6,所述透镜单元的直径为D0,则:
    n1*sinθ4=n2*sinθ5;
    D3=(h4*tanθ6-D0/2)*2。
  20. 根据权利要求12-15任一所述的纹路识别装置,其中,对于在垂直于所述衬底基板的板面的方向上与同一感光元件对应的一个透镜单元、第一透光开口、一个第二透光开口和一个第三透光开口,
    所述透镜单元的中心在所述衬底基板上的正投影与所述第一透光开口的中心在所述衬底基板上的正投影不重叠,与所述第二透光开口中心在所述衬底基板上的正投影不重叠,且与所述第三透光开口中心在所述衬底基板上的正投影不重叠。
  21. 根据权利要求20所述的纹路识别装置,其中,所述第一透光开口的中心在所述衬底基板上的正投影与所述第二透光开口中心在所述衬底基板上的正投影之间的距离为1μm-5μm;
    所述第一透光开口的中心在所述衬底基板上的正投影与所述第三透光开口中心在所述衬底基板上的正投影之间的距离为1μm-5μm。
  22. 根据权利要求20所述的纹路识别装置,其中,通过所述透镜单元的第一边缘且与垂直于所述衬底基板的板面的方向呈第一角度射入所述透镜单元的光线与入射处所述透镜单元的远离所述衬底基板的表面的法线的夹角为θ11,经过所述透镜单元折射后的光线射入所述第三透光开口的中部,且与所述法线的夹角为θ12,与垂直于所述衬底基板的板面的方向的夹角为θ13,
    通过所述透镜单元的与所述第一边缘相对的第二边缘且与垂直于所述衬底基板的板面的方向呈所述第一角度射入所述透镜单元的光线与入射处所述透镜单元的远离所述衬底基板的表面的法线的夹角为θ14,经过所述透镜单元折射后的光线射入所述第三透光开口的中部,且与所述法线的夹角为θ15,与垂直于所述衬底基板的板面的方向的夹角为θ16,
    空气的折射率为n1,所述透镜单元的折射率为n2,
    所述透镜单元的靠近所述衬底基板的表面与所述第二光阑层的远离所述衬底基板的表面的距离为h1,所述第二光阑层的靠近所述衬底基板的表面与所述第一光阑层的远离所述衬底基板的表面的距离为h2,所述第一光阑层的靠近所述衬底 基板的表面与所述视场光阑层的远离所述衬底基板的表面的距离为h3,所述透镜单元的靠近所述衬底基板的表面与所述视场光阑层的靠近所述衬底基板的表面的距离为h4,所述透镜单元的直径为D0,则:
    n1*sinθ11=n2*sinθ12;
    n1*sinθ14=n2*sinθ15;
    D1=D0-(h1+h2)*tanθ13-(h1+h2)*tanθ16。
  23. 根据权利要求22所述的纹路识别装置,其中,
    D2=D0-h1*tanθ13-h1*tanθ16。
  24. 根据权利要求22或23所述的纹路识别装置,其中,通过所述透镜单元的第一边缘且与垂直于所述衬底基板的板面的方向呈第二角度射入所述透镜单元的光线在经过所述透镜单元折射后射入所述第三透光开口的边缘,且折射后的光线与垂直于所述衬底基板的板面的方向的夹角为θ17,所述第二角度大于所述第一角度,
    通过所述透镜单元的与所述第一边缘相对的第二边缘且与垂直于所述衬底基板的板面的方向呈所述第二角度射入所述透镜单元的光线在经过所述透镜单元折射后射入所述第三透光开口的边缘,且折射后的光线与垂直于所述衬底基板的板面的方向的夹角为θ18,则:
    D3=h4*(tanθ17+tanθ18)-D0。
  25. 根据权利要求1-24任一所述的纹路识别装置,还包括设置在所述透镜层的远离所述衬底基板一侧的平坦化层,所述平坦化层的材料的折射率为1.35~1.45。
  26. 根据权利要求1-25任一所述的纹路识别装置,其中,所述多个透镜单元的每个的曲率半径为5μm~20μm,直径为25μm-35μm。
  27. 根据权利要求1-26任一所述的纹路识别装置,其中,所述多个透镜单元的每个的形状基本呈圆形、正方形或者长方形。
  28. 根据权利要求1-27任一所述的纹路识别装置,其中,所述透镜层的材料的折射率为1.6~1.7。
  29. 一种显示装置,包括:
    显示面板,具有显示侧和非显示侧,且允许光从所述显示侧透过至所述非显示侧,以及
    权利要求1-28任一所述的纹路识别装置,设置在所述显示面板的非显示侧,配置为可接收从所述显示侧透过至所述非显示侧的光以进行纹路识别,
    其中,所述透镜层相对于所述感光元件层更靠近所述显示面板。
PCT/CN2021/101561 2021-06-22 2021-06-22 纹路识别装置以及显示装置 WO2022266846A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/101561 WO2022266846A1 (zh) 2021-06-22 2021-06-22 纹路识别装置以及显示装置
CN202180001574.9A CN115735236A (zh) 2021-06-22 2021-06-22 纹路识别装置以及显示装置
US17/784,706 US20240185765A1 (en) 2021-06-22 2021-06-22 Texture recognition device and display apparatus
GB2305790.4A GB2615439A (en) 2021-06-22 2021-06-22 Texture recognition apparatus and display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101561 WO2022266846A1 (zh) 2021-06-22 2021-06-22 纹路识别装置以及显示装置

Publications (1)

Publication Number Publication Date
WO2022266846A1 true WO2022266846A1 (zh) 2022-12-29

Family

ID=84543823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101561 WO2022266846A1 (zh) 2021-06-22 2021-06-22 纹路识别装置以及显示装置

Country Status (4)

Country Link
US (1) US20240185765A1 (zh)
CN (1) CN115735236A (zh)
GB (1) GB2615439A (zh)
WO (1) WO2022266846A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035629A1 (ko) * 2017-08-17 2019-02-21 주식회사 하이딥 지문인식센서가 결합된 디스플레이 장치
CN110720106A (zh) * 2019-01-22 2020-01-21 深圳市汇顶科技股份有限公司 指纹识别的装置和电子设备
US20200293738A1 (en) * 2019-03-12 2020-09-17 Shenzhen GOODIX Technology Co., Ltd. Under-screen fingerprint identification apparatus and electronic device
CN112699761A (zh) * 2020-12-24 2021-04-23 厦门天马微电子有限公司 一种指纹识别面板和指纹识别显示模组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035629A1 (ko) * 2017-08-17 2019-02-21 주식회사 하이딥 지문인식센서가 결합된 디스플레이 장치
CN110720106A (zh) * 2019-01-22 2020-01-21 深圳市汇顶科技股份有限公司 指纹识别的装置和电子设备
US20200293738A1 (en) * 2019-03-12 2020-09-17 Shenzhen GOODIX Technology Co., Ltd. Under-screen fingerprint identification apparatus and electronic device
CN112699761A (zh) * 2020-12-24 2021-04-23 厦门天马微电子有限公司 一种指纹识别面板和指纹识别显示模组

Also Published As

Publication number Publication date
US20240185765A1 (en) 2024-06-06
GB202305790D0 (en) 2023-06-07
GB2615439A (en) 2023-08-09
CN115735236A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US10332929B2 (en) Integrated sensing module and integrated sensing assembly using the same
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
US10762326B2 (en) Fingerprint identification device and manufacturing method thereof, and electronic device
WO2020151159A1 (zh) 指纹识别的装置和电子设备
US20220293657A1 (en) Integrated optical sensor and method of manufacturing the same
US10296777B2 (en) Display panel and display apparatus
JP7413021B2 (ja) 表示モジュール及び表示装置
CN111291710B (zh) 指纹识别模组及显示装置
US20230251404A1 (en) Texture image acquiring device, display device, and collimator
CN112236774B (zh) 纹路识别装置以及纹路识别装置的驱动方法
US20230215211A1 (en) Display Panel and Display Device
CN112420791B (zh) 指纹识别基板及其制备方法、显示装置
TW202213175A (zh) 用於感測手指生物特徵的光學感測裝置及使用其的電子裝置
CN115552488A (zh) 纹路识别装置及其制造方法、彩膜基板及其制造方法
WO2021213037A1 (zh) 显示面板、显示装置和显示面板的制作方法
CN211506528U (zh) 屏下光学指纹识别组件及电子设备
WO2022266846A1 (zh) 纹路识别装置以及显示装置
CN114019707B (zh) 一种显示基板、显示面板及显示装置
WO2022266847A1 (zh) 纹路识别装置以及显示装置
US20220285654A1 (en) Display panel and display apparatus
WO2022016547A1 (zh) 指纹识别装置和电子设备
US20230063838A1 (en) Light-receiving cell and optical biometrics sensor using the same
WO2021258941A1 (zh) 纹路识别装置以及电子装置
WO2023108688A1 (zh) 显示面板及电子设备
CN114695495A (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17784706

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202305790

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210622

NENP Non-entry into the national phase

Ref country code: DE