WO2021042395A1 - 指纹检测装置和电子设备 - Google Patents

指纹检测装置和电子设备 Download PDF

Info

Publication number
WO2021042395A1
WO2021042395A1 PCT/CN2019/104799 CN2019104799W WO2021042395A1 WO 2021042395 A1 WO2021042395 A1 WO 2021042395A1 CN 2019104799 W CN2019104799 W CN 2019104799W WO 2021042395 A1 WO2021042395 A1 WO 2021042395A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
fingerprint
pixel
detection device
light
Prior art date
Application number
PCT/CN2019/104799
Other languages
English (en)
French (fr)
Inventor
张思超
蔡斐欣
柳玉平
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/104799 priority Critical patent/WO2021042395A1/zh
Priority to CN201980004259.4A priority patent/CN111095283B/zh
Publication of WO2021042395A1 publication Critical patent/WO2021042395A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms

Definitions

  • This application relates to the field of optical fingerprint technology, and more specifically, to a fingerprint detection device, method, and electronic device.
  • the traditional Organic Light-Emitting Diode (OLED) fingerprint optical system under the screen has been mass-produced in electronic products such as smart phones.
  • the principle is to use the OLED screen to illuminate the finger, and the light signal reflected by the finger is passed through the screen.
  • the fingerprint detection device receives and performs fingerprint identification.
  • the light signal reflected by the finger received by the traditional fingerprint detection device is weak, the fingerprint image quality is low, and the fingerprint recognition effect is poor.
  • the embodiments of the present application provide a fingerprint detection device and electronic equipment, which can increase the intensity of the light signal received by the fingerprint detection device, thereby improving the fingerprint image quality and recognition effect.
  • a fingerprint detection device configured to be installed under the display screen of an electronic device, including:
  • a microlens array includes a plurality of circular microlenses, each circular microlens of the plurality of circular microlenses is adjacent to six circular microlenses, and a line connecting the centers of the six circular microlenses is formed hexagon;
  • the pixel array is arranged under the microlens array and includes a plurality of pixels, the plurality of pixels correspond to the plurality of circular microlenses one-to-one, and the pixels are used to receive the light signals condensed by the corresponding circular microlenses.
  • the signal is the light signal reflected or scattered by the finger, which is used to detect the fingerprint information of the finger;
  • the plurality of pixels are N groups of pixels, each group of pixels in the N groups of pixels includes adjacent M pixels, and the light signals received by the M pixels are used to form a pixel value in the fingerprint image of the finger, where, M and N are positive integers greater than 1.
  • the area ratio of the plurality of circular microlenses in the microlens array can be increased, and the intensity of the optical signal received by the microlens array can be increased. , Thereby improving the quality of fingerprint images and fingerprint recognition performance.
  • the light signals received by multiple pixels are used to form a pixel value in the fingerprint image, which facilitates fingerprint image collection, and can further improve the quality of the fingerprint image and the performance of the fingerprint detection device.
  • the multiple pixels are multiple rectangular pixels.
  • the relative positional relationship of the M pixels in the adjacent two groups of pixels in the same row in the N groups of pixels is different; or, the N groups of pixels are in the same column
  • the relative positional relationship of the M pixels in the adjacent two sets of pixels is different.
  • N ⁇ M pixels in the N groups of pixels are used to receive light signals in the same direction to form a fingerprint image, and the sum of the light signals received by the M pixels is used to form the fingerprint image A pixel value in.
  • the reliability and production yield of the fingerprint detection device can be improved.
  • N ⁇ M pixels in the N groups of pixels are used to receive M light signals in different directions to form M fingerprint images, and N pixels in the N groups of pixels are used to receive one direction.
  • N pixels in the N groups of pixels are used to receive one direction.
  • the light signal received by one pixel in the M pixels is used to form a pixel value in a fingerprint image.
  • the M pixels include first pixels for receiving light signals in a first direction, and the sum of the light signals received by the X first pixels in the X groups of pixels in the N group of pixels is used To form a pixel value in a fingerprint image, where 1 ⁇ X ⁇ N, and X is a positive integer.
  • the distance between any two adjacent circular microlenses in the plurality of circular microlenses is equal.
  • the distance between any two adjacent circular microlenses in the plurality of circular microlenses is greater than or equal to zero.
  • the plurality of pixels are arranged in a staggered manner in contact with each other.
  • the width of the pixel is smaller than the diameter of the circular microlens.
  • the fingerprint detection device further includes: a processing unit;
  • the processing unit is used to perform interpolation processing on the fingerprint image to form an optimized fingerprint image.
  • the processing unit is used to:
  • the interpolation mode is adjusted, and the fingerprint image is subjected to interpolation processing to form a square optimized fingerprint image.
  • the square optimized fingerprint image obtained by difference processing has better quality and is more convenient for fingerprint identification.
  • the fingerprint detection device further includes: at least one light-blocking layer, the at least one light-blocking layer is disposed between the microlens array and the pixel array to form a plurality of light guide channels;
  • Each light guide channel in the plurality of light guide channels corresponds to a pixel in the pixel array and a circular micro lens in the micro lens array.
  • the multiple light guide channels are used to pass optical signals in the same direction, or,
  • the multiple light guide channels are N groups of light guide channels, and each group of light guide channels in the N groups of light guide channels includes M light guide channels, where the M light guide channels are used to pass light in M different directions. signal.
  • an electronic device including a display screen and a fingerprint detection device as in the first aspect or any possible implementation of the first aspect, wherein the fingerprint detection device is disposed under the display screen.
  • the fingerprint detection device by arranging the fingerprint detection device below the display screen, the fingerprint detection device can realize the fingerprint recognition under the screen, and can increase the intensity of the light signal received by the fingerprint detection device, thereby improving the fingerprint image quality and Recognition effect.
  • FIG. 1 is a schematic diagram of the structure of an electronic device to which an embodiment of the present application is applied.
  • Fig. 2 is a schematic structural diagram of a fingerprint detection device according to an embodiment of the present application.
  • FIG. 3 is a top view of the microlens array and the pixel array of the fingerprint detection device in FIG. 2.
  • FIG. 3 is a top view of the microlens array and the pixel array of the fingerprint detection device in FIG. 2.
  • Fig. 4 is a schematic structural diagram of a fingerprint detection device according to an embodiment of the present application.
  • FIG. 5 is a top view of the microlens array and the pixel array of the fingerprint detection device in FIG. 4.
  • FIG. 5 is a top view of the microlens array and the pixel array of the fingerprint detection device in FIG. 4.
  • FIG. 6 is another top view of the microlens array and the pixel array of the fingerprint detection device in FIG. 4.
  • FIG. 6 is another top view of the microlens array and the pixel array of the fingerprint detection device in FIG. 4.
  • FIG. 7 is a schematic diagram of an arrangement of four adjacent groups of pixels among N groups of pixels according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another arrangement of four adjacent groups of pixels among N groups of pixels according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another arrangement of four adjacent groups of pixels among N groups of pixels according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of another fingerprint detection device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the pixel positions of four adjacent groups of pixels among N groups of pixels according to an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of another fingerprint detection device according to an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of another fingerprint detection device according to an embodiment of the present application.
  • optical fingerprint systems including but not limited to optical fingerprint identification systems and products based on optical fingerprint imaging.
  • the embodiments of this application only take optical fingerprint systems as an example for illustration, but should not be implemented in this application.
  • the examples constitute any limitation, and the examples of this application are also applicable to other systems that use optical imaging technology.
  • the optical fingerprint system provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other electronic devices; more specifically, in the above electronic devices, fingerprint identification
  • the device may specifically be an optical fingerprint device, which may be arranged in a partial area or an entire area under the display screen, thereby forming an under-display optical fingerprint system.
  • the fingerprint identification device can also be partially or fully integrated into the display screen of the electronic device to form an in-display optical fingerprint system.
  • FIG. 1 is a schematic structural diagram of an electronic device to which the embodiment of the application can be applied.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed in a partial area under the display screen 120.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131, and the area where the sensing array 133 is located or its sensing area is the fingerprint detection area 103 of the optical fingerprint device 130. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the optical fingerprint device 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transmissive area at the edge of the electronic device 10, and at least part of the display area of the display screen 120 is designed through the optical path.
  • the optical signal of is guided to the optical fingerprint device 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130.
  • the optical fingerprint can be made The area of the fingerprint detection area 103 of the device 130 is larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the electronic device 10 with the above structure does not need to reserve space on the front side to set the fingerprint button (such as the Home button), so that a full-screen solution can be adopted, that is, the display area of the display screen 120 can be basically Extend to the front of the entire electronic device 10.
  • the optical fingerprint device 130 includes a light detecting portion 134 and an optical component 132, and the light detecting portion 134 includes the sensing array and a reader electrically connected to the sensing array.
  • the circuit and other auxiliary circuits can be fabricated on a chip (Die) by a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector array, which includes a plurality of arrays.
  • the photodetector can be used as the above-mentioned optical sensing unit; the optical component 132 can be arranged above the sensing array of the light detecting part 134, which can specifically include a filter layer and a light guide layer Or light path guide structure and other optical elements, the filter layer can be used to filter out the ambient light penetrating the finger, and the light guide layer or light path guide structure is mainly used to guide the reflected light reflected from the finger surface to the sensor The array performs optical inspection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the light detection part 134 is located, for example, the optical component 132 can be attached to the top of the chip, or the optical Part of the components of the component 132 are integrated in the above-mentioned chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer may be specifically a collimator layer made of a semiconductor silicon wafer, which has multiple collimators.
  • a straight unit or a micro-hole array, the collimating unit can be specifically a small hole.
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimating unit can pass through and be received by the optical sensor unit below it, and the incident angle Excessive light is attenuated by multiple reflections inside the collimating unit. Therefore, each optical sensor unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it, so that the sensor array can detect the fingerprint of the finger. image.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses, which is used for The reflected light reflected from the finger is condensed to the sensing array of the light detection part 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device, so as to improve the fingerprint imaging effect of the optical fingerprint device 130.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses. The process is formed above the sensing array of the light detecting part 134, and each microlens may correspond to one of the sensing units of the sensing array.
  • other optical film layers may be formed between the microlens layer and the sensing unit, such as a dielectric layer or a passivation layer. More specifically, a barrier with microholes may also be formed between the microlens layer and the sensing unit.
  • the light blocking layer can block the optical interference between the adjacent microlens and the sensing unit, and make the light corresponding to the sensing unit pass through the microlens Converge into the micropore and transmit to the sensing unit through the micropore for optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the micro lens layer, the specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the display screen 120 may adopt a display screen with a self-luminous display unit, such as an organic light-emitting diode (OLED) display screen or a micro-LED (Micro-LED) display screen.
  • a self-luminous display unit such as an organic light-emitting diode (OLED) display screen or a micro-LED (Micro-LED) display screen.
  • the optical fingerprint device 130 may use the display unit (ie, OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as the excitation light source for optical fingerprint detection.
  • OLED light source the display unit of the OLED display screen 120 located in the fingerprint detection area 103.
  • the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
  • the light 111 is reflected on the surface of the finger 140 to form reflected light or scattered inside the finger 140
  • the scattered light is formed.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge and the reflected light 152 from the fingerprint ridge have different light intensities. After the reflected light passes through the optical component 132, It is received by the sensor array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that the electronic device 10 Realize the optical fingerprint recognition function.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the electronic device 10 may also include an excitation light source for optical fingerprint detection.
  • the optical fingerprint device 130 can be specifically an infrared light source or a light source of invisible light of a specific wavelength, which can be arranged under the backlight module of the liquid crystal display or in the edge area under the protective cover of the electronic device 10, and the optical fingerprint device 130 can be provided with a liquid crystal panel Or under the edge area of the protective cover and guided by the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 can also be arranged under the backlight module, and the backlight module passes through the diffuser and increase
  • the film layers such as sequins, reflective sheets, etc. have holes or other optical designs to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130.
  • the optical fingerprint device 130 adopts a built-in light source or an external light source to provide an optical signal for fingerprint detection, the detection principle is the same as that described above.
  • the electronic device 10 further includes a transparent protective cover plate, which may be a glass cover plate or a sapphire cover plate, which is located above the display screen 120 and covers the front surface of the electronic device 10.
  • a transparent protective cover plate which may be a glass cover plate or a sapphire cover plate, which is located above the display screen 120 and covers the front surface of the electronic device 10.
  • the electronic device 10 may further include a circuit board 150 disposed under the optical fingerprint device 130.
  • the optical fingerprint device 130 can be adhered to the circuit board 150 through adhesive, and is electrically connected to the circuit board 150 through soldering pads and metal wires.
  • the optical fingerprint device 130 can realize electrical interconnection and signal transmission with other peripheral circuits or other components of the electronic device 10 through the circuit board 150.
  • the optical fingerprint device 130 can receive the control signal of the processing unit of the electronic device 10 through the circuit board 150, and can also output the fingerprint detection signal from the optical fingerprint device 130 to the processing unit or the control unit of the electronic device 10 through the circuit board 150 Wait.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position. Therefore, the user needs to perform fingerprint input Press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include a plurality of optical fingerprint sensors; the plurality of optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the sensing areas of the plurality of optical fingerprint sensors are common The fingerprint detection area 103 of the optical fingerprint device 130 is constituted.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint device 130 can be extended to display
  • the main area of the lower half of the screen is extended to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 103 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the sensing array in the optical fingerprint device may also be referred to as a pixel array
  • the optical sensing unit or sensing unit in the sensing array may also be referred to as a pixel unit or a pixel.
  • optical fingerprint device in the embodiments of the present application may also be referred to as an optical fingerprint identification module, fingerprint detection device, fingerprint identification device, fingerprint identification module, fingerprint detection module, fingerprint module, fingerprint acquisition device, etc. , The above terms are interchangeable.
  • FIG. 2 shows a schematic structural diagram of a fingerprint detection device 20.
  • the fingerprint detection device 20 includes:
  • the pixel array 230 includes a plurality of pixels
  • At least one light-blocking layer 220 is formed above the pixel array 230, wherein the at least one light-blocking layer 220 is provided with a plurality of light-passing holes, and the plurality of light-passing holes form a plurality of light-guiding channels.
  • the micro lens array 210 is disposed above at least one light blocking layer 220;
  • the microlens array 210 is used to converge the light signal reflected by the finger to a plurality of light guide channels of at least one light blocking layer 220, and the light signal is transmitted to the pixel through the plurality of light guide channels of at least one light blocking layer 220 Array 230.
  • the microlens array 210 is a microlens array composed of a plurality of circular microlenses. Each circular microlens corresponds to one pixel in the pixel array 230 and one light guide channel in the plurality of light guide channels. After the light signal reflected by the finger is condensed by the circular microlens, it is received by the pixel through the light guide channel, and the light signal received by the pixel is used to form a fingerprint image of the finger.
  • the first microlens 211 is any circular microlens in the microlens array 210, the corresponding pixel is the first pixel 231, and the corresponding light guide channel is the first light guide channel 221.
  • the light signal emitted by the display screen is reflected by the finger, converged by the first microlens 211, passes through the first light guide channel 221, and is received by the first pixel 231.
  • the first pixel 231 can be used to form a fingerprint image of the finger. Pixel values.
  • the light-incident surface of each circular microlens in the microlens array is a spherical surface or an aspherical surface.
  • the pixel array 230 may include the sensing array 134 in FIG. 1, and the plurality of pixels may include the optical sensing unit in FIG. 1.
  • Each pixel in the pixel array 230 includes a sensing area and a related circuit area.
  • the sensing area is used to receive light signals and convert the light signals into electrical signals of the fingerprint image. Specifically, the light signals converged by each circular microlens It is received by the sensing area in its corresponding pixel and converted into an electrical signal.
  • the relevant circuit area is used to control the output of the electrical signal.
  • the fingerprint detection device 20 can detect the optical signal in the vertical direction, and can also detect the optical signal in the oblique direction.
  • the center of the first pixel 231, the center of the plurality of light-passing holes on the first light guide channel 221, and the optical center of the first microlens 211 are in the vertical direction. On coincidence.
  • the center of the first pixel 231 and the centers of the multiple light-passing holes on the first light guide channel 221 are inclined in the same direction.
  • FIG. 3 is a top view of the micro lens array 210 and the pixel array 230 in FIG. 2.
  • a plurality of circular microlenses in the microlens array 210 are arranged at intervals in an array.
  • two adjacent circular microlenses are tangent to each other.
  • the gap is also called a critical dimension (CD).
  • CD critical dimension
  • the CD value is different. The smaller the CD, the higher the precision of the process and the higher the cost.
  • the effective light-condensing area in the microlens array 210 is the sum of the areas of the multiple circular microlenses. Compared with the non-light-condensing flat area, the circular microlens can increase the field of view and receive more light. A wide range of optical signals, thereby increasing the intensity of the received optical signals per unit area. However, the gaps between the plurality of circular microlenses in the microlens array 210 are not light-condensing areas, and have no light-gathering effect, which cannot increase the intensity of the received light signal per unit area.
  • the pixel array 230 is uniformly divided into a plurality of pixels, and the plurality of pixels are square and arranged in an array.
  • the sensing area in the pixel is shown as the shaded area in the figure.
  • the blank area in the pixel except the shaded area is the circuit area, which is used to connect multiple pixels in the pixel array and transmit the fingerprint electrical signal output by the sensing area.
  • a square pixel is arranged under each circular microlens, and the center of the sensing area in the pixel coincides with the optical center of the corresponding circular microlens in the vertical direction.
  • the side length A of the square pixel is equal to the sum of the diameter of the circular microlens and the CD between two adjacent circular microlenses.
  • the ratio of the sum of the areas of a plurality of circular microlenses to the area of the microlens array is also written as microlens
  • the duty cycle can be used to characterize the ability of the microlens array to receive light signals. The larger the duty cycle, the more areas the microlens array uses to condense light signals, and the light intensity increases.
  • the duty ratio of the microlens array 210 is the ratio of the area of one circular microlens to the area of one pixel in the unit period area.
  • D is the duty ratio of the microlens array
  • R is the radius of the circular microlens
  • a is the CD value between two adjacent circular microlenses.
  • the CD value between adjacent circular microlenses is 0, and the duty cycle of the microlens array 230 in the fingerprint detection device 20 is 78.54%, but not ideally, the adjacent circular microlenses have a duty ratio of 78.54%.
  • the CD value between the circular microlenses is greater than 0, the duty cycle of the microlens array 230 is less than 78.54% under ideal conditions, and the area of the microlenses used for condensing light is not large, so the received optical signal intensity is not large. .
  • the present application provides a fingerprint identification device. Based on the existing technology, by changing the arrangement of multiple circular microlenses in the microlens array, the duty cycle of the microlens array is increased, and the intensity of the received optical signal is improved. , Thereby improving fingerprint image quality and fingerprint recognition performance.
  • FIG. 4 is a schematic structural diagram of a fingerprint detection device 30 provided by an embodiment of the present application.
  • FIG. 5 and FIG. 6 are two top views of the fingerprint detection device 30 in FIG. Below the display screen to achieve fingerprint recognition.
  • the fingerprint detection device 30 includes:
  • the microlens array 310 includes a plurality of circular microlenses, each circular microlens of the plurality of circular microlenses is adjacent to six circular microlenses, and a line connecting the centers of the six circular microlenses Form a regular hexagon;
  • the pixel array 330 is arranged under the microlens array and includes a plurality of pixels, the plurality of pixels correspond to the plurality of circular microlenses one-to-one, and the pixels are used to receive the light signals condensed by the corresponding circular microlenses.
  • the light signal is the light signal reflected or scattered by the finger, which is used to detect the fingerprint information of the finger;
  • the plurality of pixels are N groups of pixels, each group of pixels in the N groups of pixels includes adjacent M pixels, and the light signals received by the M pixels are used to form a pixel value in the fingerprint image of the finger, where, M and N are positive integers greater than 1.
  • the microlens array 310 may be the same as the microlens array 210 in FIG. 2 or FIG. 3, and is used to condense the light signal reflected or scattered by the finger and transmit the light signal to the pixel array.
  • the optical signal is used to detect the fingerprint information of the finger.
  • the light-incident surfaces of the plurality of circular microlenses are spherical or aspherical.
  • the material of the microlens array is a transparent medium, and the light transmittance of the transparent medium is greater than 99%, such as resin.
  • the plurality of pixels may be a plurality of rectangular pixels.
  • the plurality of circular microlenses may be arranged in multiple rows or in multiple columns.
  • the multiple circular microlenses in each row are on the same horizontal line.
  • the multiple circular microlenses in each row are on the same vertical line.
  • FIG. 5 is a top view of the fingerprint detection device 30 when a plurality of circular microlenses are arranged in multiple rows.
  • FIG. 6 is a top view of the fingerprint detection device 30 when a plurality of circular microlenses are arranged in multiple rows.
  • the plurality of circular microlenses in the microlens array 310 are arranged in a close-packed hexagonal manner, that is, as shown in FIG. 5 and FIG. 6, each circular microlens in the plurality of circular microlenses
  • the lens is adjacent to six circular microlenses, and a line connecting the centers of the six circular microlenses forms a regular hexagon.
  • the distance between any two adjacent circular microlenses in the plurality of circular microlenses is equal.
  • any two adjacent circular microlenses in the plurality of circular microlenses are tangent, and the distance between the two adjacent circular microlenses is zero.
  • the plurality of circular microlenses are arranged alternately.
  • the pixel array 330 may include the sensing array 134 in FIG. 1, and the plurality of rectangular pixels may include the optical sensing unit in FIG. 1. Similar to the pixel array 230 in FIG. 2, each pixel in the pixel array 330 also includes a sensing area and a related circuit area. For related descriptions of the sensing area and the related circuit area, please refer to the related description in FIG. 2, which will not be omitted here. Go into details.
  • the pixel array 330 is evenly divided into a plurality of rectangular pixels, the plurality of rectangular pixels correspond to the plurality of circular microlenses one-to-one, and the sensing area in the rectangular pixels is used to receive the light condensed by the corresponding circular microlenses. And convert the light signal into the pixel value of the electrical signal of the fingerprint image of the finger, and then transmit the pixel value of the electrical signal to the processing unit for processing through the circuit structure in the relevant circuit area.
  • a plurality of rectangular pixels in the pixel array 330 are arranged alternately and adjacent to each other.
  • the horizontal length of the rectangular pixel corresponding to each circular microlens is equal to the diameter of the circular microlens and the two circles.
  • the sum of the gaps between the shaped microlenses, the side length in the vertical direction is smaller than the diameter of the circular microlenses.
  • the vertical side length of the rectangular pixel corresponding to each circular microlens is equal to the diameter of the circular microlens and two The sum of the gaps between the circular microlenses, the side length in the horizontal direction is smaller than the diameter of the circular microlenses.
  • the duty ratio of the microlens array 330 at this time is calculated by taking the diamond-shaped area in the figure as the periodic area.
  • the vertex of the rhombus is located at the center of the four circular microlenses, and the rhombus area includes a complete circular microlens.
  • the calculation formula for the duty cycle D of the microlens array 310 is :
  • R is the radius of the circular microlens
  • a is the CD value between two adjacent circular microlenses.
  • the duty cycle of the microlens array 310 in the fingerprint detection device 30 is:
  • the duty cycle of the microlens array 310 in the fingerprint detection device 30 is:
  • the duty cycle of the microlens array 310 is greater than the duty cycle of the microlens array 210 in FIG. 3.
  • the plurality of circular microlenses can be improved.
  • the area ratio in the microlens array increases the intensity of the light signal received by the microlens array, thereby improving the quality of fingerprint images and fingerprint recognition performance.
  • each pixel has a square shape, and the center points of multiple pixels are arranged in a square shape.
  • each pixel is rectangular, and the area of each pixel is smaller than the area of the pixels in the pixel array 220, and the center points of a plurality of pixels are arranged in a rhombus shape.
  • the space utilization of the pixel array can be improved, thereby improving the resolution of the pixel array and fingerprint images rate.
  • the plurality of rectangular pixels in the pixel array 330 are N groups of pixels, each group of pixels includes adjacent M pixels, and one pixel belongs to only one pixel group, where M, N Is a positive integer greater than 1.
  • Each group of pixels may include two pixels adjacent to each other up and down. The relative positional relationship of the two pixels in each group of pixels is the same.
  • the adjacent 4 groups of pixels in the N groups of pixels are shown in different shaded areas in the figure, and a form of shaded area identifies a group of pixels.
  • the center of the first group of pixels is shown at point A in the figure
  • the center of the second group of pixels is shown at point B in the figure
  • the center of the third group of pixels is shown at point C in the figure
  • the center of the fourth group of pixels As shown in Figure D.
  • the centers of the 4 groups of pixels are arranged in a rectangular period, the arrangement period in the horizontal direction is the same as the period of the pixels in the horizontal direction, and the arrangement period in the vertical direction is twice the period of the pixels in the vertical direction.
  • each group of pixels may include upper and lower adjacent pixels. Three pixels.
  • the relative positional relationship between the three pixels in each group of pixels is the first relative positional relationship or the second relative positional relationship.
  • the relative positional relationship of the three pixels in the adjacent two sets of pixels in the horizontal direction or the vertical direction is the same.
  • the four adjacent groups of pixels in the N groups of pixels are shown in different shaded areas in the figure.
  • the center of the first group of pixels is shown as point A in the figure, and the relative positional relationship of the three pixels It is the first positional relationship, that is, one pixel above, two pixels below, and the line connecting the centers of the three pixels constitutes a positive triangle.
  • the center of the second group of pixels is shown at point B in the figure, where the relative positional relationship of the three pixels is the same as the relative positional relationship of the first group of pixels, which is the first positional relationship.
  • the center of the third group of pixels is shown at point C in the figure, where the relative positional relationship of the three pixels is the second positional relationship, that is, two pixels above and one pixel below, and the connection between the centers of the three pixels constitutes the reverse direction. triangle.
  • the center of the fourth group of pixels is shown in Figure D, where the relative positional relationship of the three pixels is the same as the relative positional relationship of the third group of pixels, which is the second positional relationship.
  • the 4 groups of pixels are arranged in a rectangular period, the arrangement period in the horizontal direction is 1.5 times the period of the pixels in the horizontal direction, and the arrangement period in the vertical direction is 2 times the period of the pixels in the vertical direction.
  • each group of pixels may include upper and lower adjacent pixels.
  • the relative positional relationship of the four pixels in each group of pixels is the same, and the lines connecting the centers of the four pixels in each group of pixels form a rhombus.
  • FIG. 9 four adjacent groups of pixels in the N groups of pixels are shown in different shaded areas in the figure, where the center of the first pixel group is shown at point A in the figure, and the center of the second pixel group is shown in the figure. As shown by the midpoint B, the center of the third pixel group is shown as the point C in the figure, and the center of the fourth pixel group is shown in the figure D.
  • the 4 groups of pixels are arranged in a rectangular period, the arrangement period in the horizontal direction is twice the period of the pixels in the horizontal direction, and the arrangement period in the vertical direction is twice the period of the pixels in the vertical direction.
  • each group of pixels may also include any other number of pixels, and multiple groups of pixels may be arranged in a rectangular or square period, which is not limited in the embodiment of the present application.
  • first to fourth groups of pixels are any 4 groups of adjacent pixels among the N groups of pixels.
  • the other groups of pixels in the N groups of pixels may be arranged in the same manner and period as the above-mentioned first group of pixels to the fourth group of pixels.
  • N ⁇ M (N times M) pixels in the N groups of pixels are used to receive light signals in the same direction to form a fingerprint image, and the sum of the light signals received by the M pixels is used to form the fingerprint The value of a pixel in the image.
  • each pixel in the pixel array 330 is used to receive light signals in the same direction, and the light signals received by the pixel array 330 are used to form a fingerprint image.
  • the N ⁇ M pixels in the N groups of pixels are all used to receive optical signals in a vertical direction or optical signals in the same oblique direction.
  • the M pixels of each group of pixels in the N groups of pixels receive optical signals in the vertical direction or the same oblique direction, and convert the optical signals into M electric signals.
  • the sum of the M electric signals is the fingerprint image.
  • a pixel value is the M pixels of each group of pixels in the N groups of pixels.
  • any one of the multiple pixels is damaged, and there are other pixels that can work and still form a pixel value. Therefore, the fingerprint can be improved.
  • the reliability and production yield of the testing device when multiple pixels are used to form a pixel value in a fingerprint image, any one of the multiple pixels is damaged, and there are other pixels that can work and still form a pixel value. Therefore, the fingerprint can be improved. The reliability and production yield of the testing device.
  • the fingerprint detection device 30 further includes a processing unit 340 for summing the electrical signals obtained by converting the M pixels of each group of pixels in the N groups of pixels to form one of the fingerprint images. Pixel values.
  • the processing unit 340 may be a processor, and the processor may be a processor in the fingerprint detection device 30, and the pixel array 330 and the processing unit 340 are both located in the fingerprint detection device.
  • the processor may also be a processor in an electronic device where the fingerprint detection device 30 is located, such as a Microcontroller Unit (MCU) in a mobile phone, which is not limited in the embodiment of the present application.
  • MCU Microcontroller Unit
  • Pixel value, the aspect ratio of the formed fingerprint image is 2:1.
  • the processing unit 340 performs interpolation processing on the fingerprint image formed by multiple sets of pixels to obtain an optimized fingerprint image.
  • the optimized fingerprint image is an enlarged fingerprint image.
  • different interpolation methods are adjusted to obtain a square optimized fingerprint image, and the aspect ratio of the optimized fingerprint image is 1:1.
  • the pixels in the fingerprint image are interpolated in the direction of the short side of the fingerprint image, for example, two pixel values are inserted between two adjacent pixel values
  • the average value of is used as the interpolation pixel to obtain the optimized fingerprint image after interpolation and amplification, and the optimized fingerprint image is a square fingerprint image.
  • the square optimized fingerprint image obtained by difference processing has better quality and is more convenient for fingerprint identification.
  • N ⁇ M pixels in the N groups of pixels are used to receive M light signals in different directions to form M fingerprint images, and N pixels in the N groups of pixels are used to receive one
  • the optical signal of the direction is used to form one fingerprint image in the M fingerprint images, wherein the N pixels belong to N groups of pixels respectively.
  • the relative positional relationship of the M pixels in each group of pixels in the N groups of pixels is the same.
  • the pixels at the same relative position in each group of pixels in the N group of pixels receive light signals in the same direction, and M in each group of pixels Each pixel receives M light signals in different directions.
  • the first pixel group 331 includes first pixels 3311 to 3311.
  • the second pixel group 332 includes the fifth pixel 3321 to the eighth pixel 3324
  • the third pixel group 333 includes the ninth pixel 3331 to the twelfth pixel 3334
  • the fourth pixel group 334 includes the thirteenth pixel 3341 to the Sixteen pixels 3344.
  • the pixels in the upper left corner of each pixel group in the four pixel groups are the first pixel 3311, the fifth pixel 3321, the ninth pixel 3331, and the thirteenth pixel 3341.
  • the four pixels all receive light signals in the first direction.
  • the pixels located in the upper right corner of each pixel group in the four pixel groups are the second pixel 3312, the sixth pixel 3322, the tenth pixel 3332, and the fourteenth pixel 3342, and these four pixels all receive the second direction
  • the third pixel 3313, the seventh pixel 3323, the eleventh pixel 3333, and the fifteenth pixel 3343 are located in the lower left corner of each pixel group, and all receive the third-direction optical signal.
  • the fourth pixel 3314, the fourth pixel 3314, and the The eight pixel 3324, the twelfth pixel 3334, and the sixteenth pixel 3344 are located in the lower right corner of each pixel group, and all receive light signals in the fourth direction.
  • the other groups of pixels can refer to the light receiving direction of the 4 groups of pixels.
  • the pixel in the upper left corner of each group of pixels receives the light signal in the first direction, and the pixel in the upper right corner receives the light in the second direction.
  • Signal, the pixel located in the lower left corner receives the optical signal in the third direction, and the pixel located in the lower right corner receives the optical signal in the fourth direction.
  • N pixels that receive light signals in the same direction are used to form a fingerprint image. Therefore, N groups of pixels can form a total of 4 fingerprint images. For example, pixels that receive light signals in the first direction are used to form a first fingerprint image, and pixels that receive light signals in a second direction are used to form a second fingerprint image. The pixels of the optical signal in the third direction are used to form the third fingerprint image, and the pixels that receive the optical signal in the fourth direction are used to form the fourth fingerprint image.
  • one pixel is used to form one pixel value in a fingerprint image.
  • the light signals received by the first pixel 3311, the fifth pixel 3321, the ninth pixel 3331, and the thirteenth pixel 3341 are each used to form a pixel value in the first fingerprint image; the second pixel 3312, the sixth pixel 3322
  • the light signals received by the tenth pixel 3332 and the fourteenth pixel 3342 are each used to form a pixel value in the second fingerprint image;
  • the third pixel 3313, the seventh pixel 3323, the eleventh pixel 3333, and the fifteenth pixel 3343 are received
  • the light signals of each are used to form a pixel value in the third fingerprint image;
  • the light signals received by the fourth pixel 3314, the eighth pixel 3324, the twelfth pixel 3334, and the sixteenth pixel 3344 are each used to form the fourth fingerprint image A pixel value in.
  • multiple pixels are used to form a pixel value in a fingerprint image.
  • the plurality of pixels receive light signals in the same direction, and the plurality of pixels are pixels in X groups of pixels, where 1 ⁇ X ⁇ N, and X is a positive integer.
  • the sum of the light signals received by the sixth pixel 3322, the tenth pixel 3332, and the fourteenth pixel 3342 is used to form a pixel value in the second fingerprint image; the third pixel 3313, the seventh pixel 3323, and the eleventh pixel 3333
  • the sum of the light signals received by the fifteenth pixel 3343 is used to form a pixel value in the third fingerprint image;
  • the light signals received by the fourth pixel 3314, the eighth pixel 3324, the twelfth pixel 3334, and the sixteenth pixel 3344 The sum is used to form a pixel value in the fourth fingerprint image.
  • N groups of pixels to collect multiple light signals in different directions reflected or scattered by the finger, multiple corresponding fingerprint images can be obtained, thereby meeting the requirements of different scenarios.
  • multiple fingerprint images can be fused and optimized to obtain a new optimized fingerprint image, which can improve the quality of the fingerprint image and the performance of the fingerprint detection device.
  • the N groups of pixels can respectively receive oblique light signals in different directions
  • the amount of light received by the fingerprint identification device can be increased, thereby reducing the exposure time of the pixel array.
  • the oblique light signal can be received through N groups of pixels, and the fingerprint information of the dry finger can be detected by the oblique light signal.
  • the angle of view and the field of view of the N groups of pixels in the fingerprint detection device can also be enlarged.
  • FIG. 12 shows a schematic structural diagram of another fingerprint detection device 30. As shown in FIG. 12, the fingerprint detection device 30 further includes an optical component 320.
  • the optical component 320 includes at least one light-blocking layer, the at least one light-blocking layer is disposed above the pixel array 330 and disposed below the microlens array 310, wherein at least one light-blocking layer is formed with a plurality of guiding layers.
  • Optical channel
  • the microlens array 310 is used to converge optical signals into a plurality of light-guiding channels of at least one light-blocking layer 320, and the optical signals are transmitted to the pixel array 330 through a plurality of light-passing channels in the at least one light-blocking layer.
  • each light guide channel in the plurality of light guide channels corresponds to a rectangular pixel in the pixel array 330 and a circular micro lens in the micro lens array 310. That is, a circular microlens transmits the concentrated light signal to the corresponding light guide channel, and the light signal is received by the corresponding pixel through the light guide channel.
  • multiple light guide channels have the same direction and are used to pass optical signals in the same direction.
  • each pixel in the pixel array 330 receives light signals in the same direction. For example, receiving optical signals in the vertical direction or optical signals with the same tilt angle.
  • the directions of the multiple light guide channels may also be different.
  • the multiple light guide channels are N groups of light guide channels, and each group of light guide channels includes M light guide channels, where the M light guide channels are used to pass M light signals in different directions.
  • a group of light guide channels in the N groups of light guide channels corresponds to a group of pixels in the N groups of pixels.
  • the M light guide channels in each group of light guide channels respectively correspond to M pixels in a group of pixels.
  • two adjacent light guide channels are respectively two light guide channels in a group of light guide channels, which are used to respectively pass optical signals in two different directions.
  • the optical component 320 further includes a filter layer, which is disposed in the optical path between the microlens and the photoelectric sensor, and is used to filter out the optical signal in the non-target waveband and transmit the optical signal in the target waveband.
  • a filter layer which is disposed in the optical path between the microlens and the photoelectric sensor, and is used to filter out the optical signal in the non-target waveband and transmit the optical signal in the target waveband.
  • the filter layer may be arranged in the optical path between the micro lens array 310 and the pixel array 330.
  • the filter layer can be integrated with the pixel array 330 in the fingerprint detection device 30.
  • the filter layer can be formed by coating the pixel array 330 by using an evaporation process, for example, Atomic layer deposition, sputtering coating, electron beam evaporation coating, ion beam coating and other methods prepare a thin film of filter material above the pixel array.
  • the thickness of the filter layer in this technical solution is less than or equal to 20 ⁇ m.
  • the filter layer is an optical wavelength cut-off filter, which is used to filter out optical signals in a specific wavelength band, which is beneficial to reduce the influence of ambient light signals in a specific wavelength band, thereby improving fingerprint recognition performance.
  • the filter layer is used to pass optical signals in the 350-700 nm band.
  • the filter layer can also be used for optical signals passing through the 800-1000 nm band.
  • the filter layer can also be used to pass optical signals in the 350-700 nm waveband and 800-1000 nm waveband at the same time.
  • An embodiment of the present application also provides an electronic device, which may include a display screen and the fingerprint detection device in any of the above application embodiments, wherein the fingerprint detection device is disposed under the display screen.
  • the electronic device can be any electronic device with a display screen.
  • the units can be implemented by electronic hardware, computer software, or a combination of the two, in order to clearly illustrate the interchangeability of hardware and software.
  • the composition and steps of each example have been described generally in terms of function. Whether these functions are performed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the disclosed system and device may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)

Abstract

一种指纹检测装置和电子设备,能够增大装置接收的光信号强度,提高指纹图像质量和识别效果,该指纹检测装置用于设置在电子设备的显示屏下方,包括:微透镜阵列,包括多个圆形微透镜,多个圆形微透镜中的每个圆形微透镜与六个圆形微透镜相邻,六个圆形微透镜的中心的连线构成正六边形;像素阵列,设置在微透镜阵列下方,包括多个像素,多个像素与多个圆形微透镜一一对应,像素用于接收对应的圆形微透镜会聚的光信号,该光信号为经过手指反射或散射后的光信号,用于检测所述手指的指纹信息;多个像素为N组像素,N组像素中的每组像素包括相邻的M个像素,M个像素接收的光信号用于形成手指的指纹图像中的一个像素,M、N为大于1的正整数。

Description

指纹检测装置和电子设备 技术领域
本申请涉及光学指纹技术领域,并且更具体地,涉及一种指纹检测装置、方法和电子设备。
背景技术
传统有机发光二极管(Organic Light-Emitting Diode,OLED)屏下指纹光学系统已在智能手机等电子产品中实现量产,其原理是利用OLED屏幕发光照射手指,经过手指反射的光信号经过屏幕后被指纹检测装置接收并进行指纹识别。但由于OLED屏幕发光的强度有限,且手指对于光信号存在吸收和散射,传统指纹检测装置接收的经过手指反射后的光信号较弱,指纹图像质量较低且指纹识别效果差。
因此,如何增大指纹检测装置接收的光信号强度,提高指纹图像质量以及识别效果,是一项亟待解决的问题。
发明内容
本申请实施例提供了一种指纹检测装置和电子设备,能够增大指纹检测装置接收的光信号强度,从而提高指纹图像质量以及识别效果。
第一方面,提供了一种指纹检测装置,用于设置在电子设备的显示屏下方,包括:
微透镜阵列,包括多个圆形微透镜,该多个圆形微透镜中的每个圆形微透镜与六个圆形微透镜相邻,该六个圆形微透镜的中心的连线构成正六边形;
像素阵列,设置在该微透镜阵列下方,包括多个像素,该多个像素与该多个圆形微透镜一一对应,该像素用于接收对应的圆形微透镜会聚的光信号,该光信号为经过手指反射或散射后的光信号,用于检测该手指的指纹信息;
该多个像素为N组像素,该N组像素中的每组像素包括相邻的M个像素,该M个像素接收的光信号用于形成该手指的指纹图像中的一个像素值,其中,M、N为大于1的正整数。
本申请的技术方案中,通过设置多个圆形微透镜的特定的排列方式,能够提高多个圆形微透镜在微透镜阵列中的面积占比,增大微透镜阵列接收的光信号的强度,从而提高指纹图像的质量以及指纹识别性能。此外,多个像素接收的光信号用于形成指纹图像中的一个像素值,便于进行指纹图像的采集,能够进一步提高指纹图像的质量以及指纹检测装置的性能。
在一种可能的实现方式中,该多个像素为多个长方形像素。
在一种可能的实现方式中,M为偶数时,该N组像素中每组像素中的M个像素的相对位置关系相同。
在一种可能的实现方式中,M=4时,4个像素的中心的连线构成菱形。
在一种可能的实现方式中,M为奇数时,该N组像素中位于同一行的相邻的两组像素中的M个像素的相对位置关系不同;或者,该N组像素中位于同一列的相邻的两组像素中的M个像素的相对位置关系不同。
在一种可能的实现方式中,M=3时,3个像素的中心的连线构成正三角形。
在一种可能的实现方式中,该N组像素中N×M个像素用于接收相同方向的光信号以形成一张指纹图像,该M个像素接收的光信号之和用于形成该指纹图像中的一个像素值。
采用本申请实施例的方案,M个像素接收的光信号之和用于形成该指纹图像中的一个像素值时,可以提高指纹检测装置的可靠性和生产良率。
在一种可能的实现方式中,该N组像素中N×M个像素用于接收M个不同方向的光信号以形成M张指纹图像,该N组像素中的N个像素用于接收一个方向的光信号以形成该M张指纹图像中的一张指纹图像,其中,该N个像素分别属于N组像素。
采用本申请实施例的方案,通过N组像素采集不同方向的光信号,从而形成M张不同的指纹图像,满足不同场景的需求。此外,还可以对M张指纹图像进行融合优化,得到一个新的优化后的指纹图像,可以进一步提高指纹图像质量和指纹检测装置的识别性能。
在一种可能的实现方式中,该M个像素中一个像素接收的光信号用于形成一张指纹图像中的一个像素值。
在一种可能的实现方式中,该M个像素包括第一像素,用于接收第一方向的光信号,该N组像素中X组像素中的X个第一像素接收的光信号之 和用于形成一张指纹图像中的一个像素值,其中,1<X<N,且X为正整数。
在一种可能的实现方式中,该多个圆形微透镜中任意两个相邻的圆形微透镜之间的距离相等。
在一种可能的实现方式中,该多个圆形微透镜中任意两个相邻的圆形微透镜之间的距离大于等于0。
在一种可能的实现方式中,该多个像素相互相接交错排列。
在一种可能的实现方式中,该像素的宽小于该圆形微透镜的直径。
在一种可能的实现方式中,该指纹检测装置还包括:处理单元;
该处理单元用于对该指纹图像进行插值处理,以形成优化指纹图像。
在一种可能的实现方式中,该处理单元用于:
根据该指纹图像的大小,调整插值方式,对该指纹图像进行插值处理,以形成正方形的优化指纹图像。
经过差值处理得到的正方形的优化指纹图像质量更好,更加便于进行指纹识别。
在一种可能的实现方式中,该指纹检测装置还包括:至少一个阻光层,该至少一个阻光层设置在该微透镜阵列与该像素阵列之间,形成多个导光通道;
该多个导光通道中的每个导光通道对应该像素阵列中的一个像素和该微透镜阵列中的一个圆形微透镜。
在一种可能的实现方式中,该多个导光通道用于通过相同方向的光信号,或者,
该多个导光通道为N组导光通道,该N组导光通道中的每组导光通道包括M个导光通道,其中,该M个导光通道用于通过M个不同方向的光信号。
第二方面,提供了一种电子设备,包括显示屏以及如第一方面或第一方面的任一可能的实现方式中的指纹检测装置,其中,该指纹检测装置设置在该显示屏下方。
在本申请的电子设备中,通过将指纹检测装置设置在显示屏下方,能够基于该指纹检测装置实现屏下指纹识别,且可以增大指纹检测装置接收的光信号强度,从而提高指纹图像质量以及识别效果。
附图说明
图1是本申请实施例所适用的电子设备的结构示意图。
图2是根据本申请实施例的一种指纹检测装置的示意性结构图。
图3是图2中指纹检测装置的微透镜阵列以及像素阵列的俯视图。
图4是根据本申请实施例的一种指纹检测装置的示意性结构图。
图5是图4中指纹检测装置的微透镜阵列以及像素阵列的一种俯视图。
图6是图4中指纹检测装置的微透镜阵列以及像素阵列的另一种俯视图。
图7是根据本申请实施例的N组像素中相邻的4组像素的一种排列方式的示意图。
图8是根据本申请实施例的N组像素中相邻的4组像素的另一排列方式的示意图。
图9是根据本申请实施例的N组像素中相邻的4组像素的另一排列方式的示意图。
图10是根据本申请实施例的另一指纹检测装置的示意性结构图。
图11是根据本申请实施例的N组像素中相邻的4组像素的像素位置的示意图。
图12是根据本申请实施例的另一指纹检测装置的示意性结构图。
图13是根据本申请实施例的另一指纹检测装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指纹识别系统和基于光学指纹成像的产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他电子设备;更具体地,在上述电子设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。或者,指纹识别装置也可以部分或者全部集 成至该电子设备的显示屏内部,从而形成屏内(In-display)光学指纹系统。
如图1所示为本申请实施例可以适用的电子设备的结构示意图,该电子设备10包括显示屏120和光学指纹装置130,其中,光学指纹装置130设置在显示屏120下方的局部区域。光学指纹装置130包括光学指纹传感器,该光学指纹传感器包括具有多个光学感应单元131的感应阵列133,该感应阵列133所在区域或者其感应区域为光学指纹装置130的指纹检测区域103。如图1所示,指纹检测区域103位于该显示屏120的显示区域之中。在一种替代实施例中,光学指纹装置130还可以设置在其他位置,比如显示屏120的侧面或者电子设备10的边缘非透光区域,并通过光路设计来将显示屏120的至少部分显示区域的光信号导引到光学指纹装置130,从而使得指纹检测区域103实际上位于该显示屏120的显示区域。
应当理解,指纹检测区域103的面积可以与光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得光学指纹装置130的指纹检测区域103的面积大于光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,光学指纹装置130的指纹检测区域103也可以设计成与光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对电子设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
作为一种可选的实现方式,如图1所示,该光学指纹装置130包括光检测部分134和光学组件132,该光检测部分134包括该感应阵列以及与该感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,该感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,该光探测器可以作为如上该的光学感应单元;该光学组件132可以设置在光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,该滤光层可以用于滤除穿透手指的环境 光,而该导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至该感应阵列进行光学检测。
在具体实现上,光学组件132可以与光检测部分134封装在同一个光学指纹部件。比如,光学组件132可以与光学检测部分134封装在同一个光学指纹芯片,也可以将光学组件132设置在光检测部分134所在的芯片外部,比如将光学组件132贴合在芯片上方,或者将光学组件132的部分元件集成在上述芯片之中。
其中,该光学组件132的导光层或者光路引导结构有多种实现方案,比如,该导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,该准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得该感应阵列可以基于该反射光进行成像,从而得到手指的指纹图像。可选地,该光学透镜层在透镜单元的光路中还可以形成有针孔,该针孔可以配合光学透镜层扩大光学指纹装置的视场,以提高光学指纹装置130的指纹成像效果。
在其他实施例中,导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,该微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于该感应阵列的其中一个感应单元。并且,该微透镜层和该感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,该微透镜层和该感应单元之间还可以包括具有微孔的挡光层,其中该微孔形成在其对应的微透镜和感应单元之间,该挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得感应单元所对应的光线通过微透镜汇聚到微孔内部并经由该微孔传输到感应单元以进行光学指纹成像。应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使 用,比如,可以在准直器层或者光学透镜层下方进一步设置微透镜层。当然,在准直器层或者光学透镜层与微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
作为一种可选的实施例,显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,光学指纹装置130可以利用OLED显示屏120位于指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在该指纹检测区域103时,显示屏120向指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过手指140内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(valley)对于光的反射能力不同,因此,来自指纹嵴的反射光151和来自指纹峪的反射光152具有不同的光强,反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号,即指纹检测信号;基于该指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在电子设备10实现光学指纹识别功能。
在其他实施例中,光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,电子设备10的光学指纹系统还可以包括用于光学指纹检测的激励光源,该激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在液晶显示屏的背光模组下方或者设置在电子设备10的保护盖板下方的边缘区域,而该光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达光学指纹装置130;或者,光学指纹装置130也可以设置在背光模组下方,且该背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达光学指纹装置130。当采用光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
应当理解的是,在具体实现上,电子设备10还包括透明保护盖板,该盖板可以为玻璃盖板或者蓝宝石盖板,其位于显示屏120的上方并覆盖电子设备10的正面。因为,本申请实施例中,所谓的手指按压在显示屏120实际上是指按压在显示屏120上方的盖板或者覆盖该盖板的保护层表面。
还应当理解,电子设备10还可以包括电路板150,该电路板设置在光学指纹装置130的下方。光学指纹装置130可以通过背胶粘接在电路板150上,并通过焊盘及金属线焊接与电路板150实现电性连接。光学指纹装置130可以通过电路板150实现与其他外围电路或者电子设备10的其他元件的电性互连和信号传输。比如,光学指纹装置130可以通过电路板150接收电子设备10的处理单元的控制信号,并且还可以通过电路板150将来自光学指纹装置130的指纹检测信号输出给电子设备10的处理单元或者控制单元等。
另一方面,在某些实施例中,光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到该指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,光学指纹装置130可以具体包括多个光学指纹传感器;该多个光学指纹传感器可以通过拼接方式并排设置在显示屏120的下方,且该多个光学指纹传感器的感应区域共同构成该光学指纹装置130的指纹检测区域103。也即是说,光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将光学指纹装置130的指纹采集区域103可以扩展到显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当光学指纹传感器数量足够时,该指纹检测区域103还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
还应理解,在本申请实施例中,光学指纹装置中的感应阵列也可以称为像素阵列,感应阵列中的光学感应单元或感应单元也可称为像素单元或者像素。
需要说明的是,本申请实施例中的光学指纹装置也可以称为光学指纹识别模组、指纹检测装置、指纹识别装置、指纹识别模组、指纹检测模组、指纹模组、指纹采集装置等,上述术语可相互替换。
图2示出了一种指纹检测装置20的示意性结构图。
如图2所示,该指纹检测装置20包括:
像素阵列230,包括多个像素;
至少一个阻光层220,形成于像素阵列230上方,其中,至少一个阻光层220设置有多个通光小孔,该多个通光小孔形成多个导光通道。
微透镜阵列210,设置于至少一个阻光层220上方;
其中,该微透镜阵列210用于将经过手指反射的光信号会聚至至少一个阻光层220的多个导光通道,该光信号通过至少一个阻光层220的多个导光通道传输至像素阵列230。
具体地,该微透镜阵列210为多个圆形微透镜组成的微透镜阵列。每一个圆形微透镜对应像素阵列230中的一个像素以及多个导光通道中的一个导光通道。经过手指反射的光信号经过圆形微透镜会聚后,通过导光通道被像素接收,像素接收的光信号用于形成手指的指纹图像。
例如,如图2所示,第一微透镜211为微透镜阵列210中任意一个圆形微透镜,其对应的像素为第一像素231,且对应的导光通道为第一导光通道221。显示屏发出的光信号经过手指反射后,经过第一微透镜211的汇聚,通过第一导光通道221后,被第一像素231接收,该第一像素231可以用于形成手指指纹图像的一个像素值。
可选地,微透镜阵列中的每一个圆形微透镜的进光面为球面或者非球面。
可选地,像素阵列230可以包括图1中的感应阵列134,该多个像素可以包括图1中的光学感应单元。该像素阵列230中的每个像素中包括感应区域以及相关电路区域,感应区域用于接收光信号并将光信号转换为指纹图像的电信号,具体地,每一个圆形微透镜会聚的光信号被其对应的像素中的感应区域接收并转化为电信号。而相关电路区域用于控制输出该电信号。
可选地,该指纹检测装置20可以检测垂直方向的光信号,也可以检测倾斜方向的光信号。
当检测垂直方向的光信号时,如图2所示,第一像素231的中心、第一导光通道221上多个通光小孔的中心,以及第一微透镜211的光心在垂直方向上重合。
当检测非垂直方向的光信号时,与第一微透镜211的光心相比,第一像素231的中心、第一导光通道221上多个通光小孔的中心向同一方向倾斜。
图3为图2中微透镜阵列210以及像素阵列230的俯视图。
如图3所示,微透镜阵列210中的多个圆形微透镜呈阵列间隔排列。理想情况下,水平或者垂直方向上,两个相邻的圆形微透镜互相相切。但由于制造工艺的精度限制,两个相邻的圆形微透镜之间存在一定的间隙,该间隙也称为关键尺寸(Critical Dimension,CD),在不同的工艺制程条件下,CD值不同。CD越小,则表明工艺制程精度更高,同时成本也更高。
在此情况下,微透镜阵列210中有效的聚光区域面积为多个圆形微透镜的面积之和,相比于非聚光的平面区域,圆形微透镜能够增大视场,接收更大范围内的光信号,从而提高单位面积内接收的光信号的强度。而微透镜阵列210中多个圆形微透镜之间的空隙则不是聚光区域,无聚光作用,无法提高单位面积内接收的光信号的强度。
如图3所示,将像素阵列230均匀划分为多个像素,多个像素呈正方形,且阵列排列。像素中的感应区域如图中阴影区域所示,像素中除阴影区域外的空白区域为电路区域,用于连接像素阵列中的多个像素,并传输感应区域输出的指纹电信号。
具体地,每一个圆形微透镜下方设置一个正方形像素,像素中感应区域的中心与其对应的圆形微透镜的光心在垂直方向上重合。且正方形像素的边长A等于圆形微透镜的直径与相邻两个圆形微透镜的之间的CD之和。
在本申请实施例中,多个圆形微透镜的面积之和与微透镜阵列的面积之比,或者多个圆形微透镜的面积之和与像素阵列的面积之比,也写为微透镜的占空比,可以用来表征微透镜阵列接收光信号能力的强弱,占空比越大,则微透镜阵列用于会聚光信号的区域越多,光强增大。
在图2和图3所示的指纹检测装置20中,微透镜阵列210的占空比为单位周期区域上一个圆形微透镜的面积与一个像素的面积之比。具体的计算公式为:D=πR 2/(2R+a) 2
其中,D为微透镜阵列的占空比,R为圆形微透镜的半径,a为相邻的两个圆形微透镜之间的CD值。
当理想情况下,a为0时,若R为5.75μm,指纹检测装置20中微透镜阵列210的占空比D=π×5.75 2/(2×5.75) 2=π/4=78.54%。
当a为1μm,R为5.75μm时,指纹检测装置20中微透镜阵列210的占空比D=π×5.75 2/(2×5.75+1) 2=66.48%。
由上述说明与计算可知,理想情况下,相邻圆形微透镜之间的CD值为0,指纹检测装置20中微透镜阵列230的占空比为78.54%,而非理想情况下,相邻圆形微透镜之间的CD值大于0,微透镜阵列230的占空比小于理想情况下的78.54%,用于聚光的微透镜面积占比不大,因而接收的光信号强度也不大。
本申请提供一种指纹识别装置,在现有的工艺基础上,通过改变微透镜阵列中的多个圆形微透镜的排列方式,增大微透镜阵列的占空比,提高接收的光信号强度,从而提高指纹图像质量以及指纹识别性能。
以下,结合图4至图13,详细介绍本申请实施例的指纹识别装置。
需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
图4是本申请实施例提供的一种指纹检测装置30的示意性结构图,图5与图6是图4中指纹检测装置30的两种俯视图,该指纹检测装置30用于设置在电子设备的显示屏下方,以实现指纹识别。
如图4至图6所示,该指纹检测装置30包括:
微透镜阵列310,包括多个圆形微透镜,该多个圆形微透镜中的每个圆形微透镜与六个圆形微透镜相邻,该六个圆形微透镜的中心的连线构成正六边形;
像素阵列330,设置在该微透镜阵列下方,包括多个像素,该多个像素与该多个圆形微透镜一一对应,该像素用于接收对应的圆形微透镜会聚的光信号,该光信号为经过手指反射或散射后的光信号,用于检测该手指的指纹信息;
该多个像素为N组像素,该N组像素中的每组像素包括相邻的M个像素,该M个像素接收的光信号用于形成该手指的指纹图像中的一个像素值,其中,M、N为大于1的正整数。
在本申请实施例中,该微透镜阵列310可以与图2或图3中的微透镜阵列210相同,用于会聚经过手指反射或散射的光信号,并将该光信号传输至该像素阵列,该光信号用于检测手指的指纹信息。该多个圆形微透镜的进光面为球面或者非球面。该微透镜阵列的材料为透明介质,该透明介质的光透过率大于99%,例如树脂等。
可选地,该多个像素可以为多个长方形像素。
可选地,该多个圆形微透镜可以呈多行排列或者呈多列排列。当多个圆形微透镜呈多行排列时,每一行的多个圆形微透镜在同一水平线上。当多个圆形微透镜呈多列排列时,每一列的多个圆形微透镜在同一竖直线上。
具体地,图5为多个圆形微透镜呈多行排列时,指纹检测装置30俯视图。图6为多个圆形微透镜呈多列排列时,指纹检测装置30俯视图。
在本申请实施例中,微透镜阵列310中多个圆形微透镜按照密排六方的方式进行排列,即如图5和图6所示,多个圆形微透镜中的每个圆形微透镜与六个圆形微透镜相邻,该六个圆形微透镜的中心的连线构成正六边形。
可选地,该多个圆形微透镜中任意两个相邻的圆形微透镜之间的距离相等。
在一种可能的实施方式中,多个圆形微透镜中任意两个相邻的圆形微透镜相切,两个相邻的圆形微透镜的距离为0。该多个圆形微透镜交错相接排列。
在另一种可能的实施方式中,多个圆形微透镜中任意两个相邻的圆形微透镜之间存在一定的间隙距离,该间隙由制造工艺中的关键尺寸CD决定。此时,该多个圆形微透镜交错相间排列。
如图5和图6所示,多个圆形微透镜中任意两个相邻的圆形微透镜之间均存在一定的CD间隙,且多个圆形微透镜中任意两个相邻的圆形微透镜之间的CD间隙相等。
在本申请实施例中,像素阵列330可以包括图1中的感应阵列134,该多个长方形像素可以包括图1中的光学感应单元。与图2中的像素阵列230类似,该像素阵列330中的每个像素也包括感应区域以及相关电路区域,感应区域以及相关电路区域的相关描述可以参考图2中的相关描述,此处不再赘述。
具体地,像素阵列330平均划分为多个长方形像素,该多个长方形像素与该多个圆形微透镜一一对应,该长方形像素中的感应区域用于接收对应的圆形微透镜会聚的光信号,并将该光信号转换为手指的指纹图像的电信号的像素值,再经过相关电路区域中的电路结构将电信号的像素值传输给处理单元进行处理。
可选地,像素阵列330中的多个长方形像素相互相接交错排列。
可选地,如图5所示,多个圆形微透镜呈多行排列时,每个圆形微透镜 对应的长方形像素在水平方向上的边长等于圆形微透镜的直径与两个圆形微透镜之间的间隙之和,在竖直方向上的边长小于圆形微透镜的直径。
可选地,如图6所示,多个圆形微透镜呈多列排列时,每个圆形微透镜对应的长方形像素在竖直方向上的边长等于圆形微透镜的直径与两个圆形微透镜之间的间隙之和,在水平方向上的边长小于圆形微透镜的直径。
下面,以图5为例,计算说明指纹检测装置30中微透镜阵列310的占空比以及像素阵列330中像素的尺寸。
以图中菱形区域为周期区域计算此时微透镜阵列330的占空比。在该菱形的周期区域中,菱形的顶点位于四个圆形微透镜的圆心,该菱形区域包括一个完整的圆形微透镜,该情况下,微透镜阵列310的占空比D的计算公式为:
Figure PCTCN2019104799-appb-000001
其中,R为圆形微透镜的半径,a为相邻的两个圆形微透镜之间的CD值。
当理想情况下,a为0时,若R为5.75μm,指纹检测装置30中微透镜阵列310的占空比为:
Figure PCTCN2019104799-appb-000002
当a为1μm,R为5.75μm时,指纹检测装置30中微透镜阵列310的占空比为:
Figure PCTCN2019104799-appb-000003
通过计算可知,在此情况下,微透镜阵列310的占空比大于图3中微透镜阵列210的占空比,通过调整多个圆形微透镜的位置关系,能够提高多个圆形微透镜在微透镜阵列中的面积占比,增大微透镜阵列接收的光信号的强度,从而提高指纹图像的质量以及指纹识别性能。
需要说明的是,在微透镜阵列310中多个圆形微透镜的排列方式下,对应的像素阵列330的面积与周期与图2中像素阵列230的面积与周期不同,在像素阵列230中,每个像素呈正方形,多个像素的中心点呈正方形排列。而在像素阵列330中,每个像素呈长方形,且每个像素的面积小于像素阵列220中的像素面积,且多个像素的中心点呈菱形排列。
通过根据微透镜阵列中多个圆形微透镜的排列方式,适应性的调整像素阵列中多个像素的排列方式和面积,能够提高像素阵列的空间利用率,从而提高像素阵列和指纹图像的分辨率。
具体地,在本申请实施例中,该像素阵列330中的多个长方形像素为N组像素,每组像素包括相邻的M个像素,且一个像素只属于一个像素组,其中,M、N为大于1的正整数。
可选地,在一种可能的实现方式中,N组像素中的每组像素中包括两个像素,M=2,当微透镜阵列310和像素阵列330按照图5所示的方式排列时,每组像素可以包括上下相邻的两个像素。每组像素中的两个像素的相对位置关系相同。
如图7所示,N组像素中相邻的4组像素如图中不同的阴影区域所示,一种形式的阴影区域标识一组像素。其中,第一组像素的中心为图中点A所示,第二组像素的中心为图中点B所示,第三组像素的中心为图中点C所示,第四组像素的中心为图D所示。4组像素的中心按照长方形周期排列,在水平方向上的排列周期与像素在水平方向上的周期相同,在竖直方向上的排列周期为像素在竖直方向上的周期的2倍。
可选地,在另一种可能的实现方式中,每组像素中包括三个像素,M=3,当像素阵列330按照图5所示的方式排列时,每组像素可以包括上下相邻的三个像素。每组像素中的三个像素之间的相对位置关系为第一相对位置关系或者为第二相对位置关系。
可选地,在水平方向或者竖直方向上的相邻的两组像素中的三个像素的相对位置关系相同。
如图8所示,N组像素中相邻的4组像素如图中不同的阴影区域所示,其中,第一组像素的中心为图中点A所示,其中三个像素的相对位置关系为第一位置关系,即上方一个像素,下方两个像素,三个像素中心的连线构成正向的正三角形。第二组像素的中心为图中点B所示,其中三个像素的相对位置关系与第一组像素的相对位置关系相同,为第一位置关系。第三组像素的中心为图中点C所示,其中三个像素的相对位置关系为第二位置关系,即上方两个像素,下方一个像素,三个像素中心的连线构成倒向的正三角形。第四组像素的中心为图D所示,其中三个像素的相对位置关系与第三组像素的相对位置关系相同,为第二位置关系。
4组像素按照长方形周期排列,在水平方向上的排列周期为像素在水平方向上的周期的1.5倍,在竖直方向上的排列周期为像素在竖直方向上的周期的2倍。
可选地,在第三种可能的实现方式中,每组像素中包括四个像素,M=4,当像素阵列330按照图5所示的方式排列时,每组像素可以包括上下相邻的四个像素。每组像素中的四个像素的相对位置关系相同,每组像素中四个像素中心的连线构成菱形。
如图9所示,N组像素中相邻的4组像素如图中不同的阴影区域所示,其中,第一像素组的中心为图中点A所示,第二像素组的中心为图中点B所示,第三像素组的中心为图中点C所示,第四像素组的中心为图D所示。4组像素按照长方形周期排列,在水平方向上的排列周期为像素在水平方向上的周期的2倍,在竖直方向上的排列周期为像素在竖直方向上的周期的2倍。
应理解,每组像素还可以包括其它任意数量的像素,多组像素按照长方形或者正方形周期排列即可,本申请实施例对此不做限定。
还应理解,上述第一组像素至第四组像素为N组像素中任意4组相邻的像素。N组像素中其它组像素可以与上述第一组像素至第四组像素的排列方式以及排列周期相同。
还应理解,当像素阵列330按照图6所示的方式排列时,N组像素的中心点以及像素区域分布可以参考上述图7至图9以及相关描述,此处不再赘述。
可选地,该N组像素中N×M(N乘以M)个像素用于接收相同方向的光信号以形成一张指纹图像,该M个像素接收的光信号之和用于形成该指纹图像中的一个像素值。换言之,该像素阵列330中每个像素均用于接收相同方向的光信号,且该像素阵列330接受的光信号用于形成一张指纹图像。
可选地,该N组像素中N×M个像素均用于接收垂直方向的光信号或者同一倾斜方向的光信号。
具体地,N组像素中每一组像素的M个像素均接收垂直方向或者同一倾斜方向的光信号,并将光信号转换为M个电信号,该M个电信号之和为指纹图像中的一个像素值。
在本申请实施例中,当多个像素用于形成指纹图像中的一个像素值时, 多个像素中任意一个像素损坏,还有其他像素可以工作,仍旧能够形成像素值,因此,可以提高指纹检测装置的可靠性和生产良率。
可选地,如图10所示,该指纹检测装置30还包括处理单元340,用于将N组像素中每一组像素的M个像素转换得到的电信号求和,形成指纹图像中的一个像素值。
可选地,该处理单元340可以为处理器,该处理器可以为指纹检测装置30中的处理器,该像素阵列330和处理单元340均位于指纹检测装置中。该处理器还可以为该指纹检测装置30所在的电子设备中的处理器,例如手机中微控制单元(Microcontroller Unit,MCU),本申请实施例对此不做限定。
当像素阵列330沿水平方向和竖直方向上的像素数量相等时,若每组像素包括两个像素,M=2时,将每组两个像素的电信号求和输出作为指纹图像中的一个像素值,形成的指纹图像的长宽比为2:1。
若每组像素包括三个像素,M=3时,将每组三个像素的电信号求和输出作为指纹图像的一个像素值,形成的指纹图像的长宽比为4:3。
若每组像素包括四个像素,M=4时,将每组四个像素的电信号求和输出作为指纹图像的一个像素值,形成的指纹图像的长宽比为1:1。
可选地,该处理单元340对多组像素形成的指纹图像进行插值处理,以得到优化指纹图像。
可选地,该优化指纹图像为放大后的指纹图像。
可选地,根据指纹图像的大小,调整不同的插值方式以得到正方形的优化指纹图像,该优化指纹图像的长宽比为1:1。
例如,当指纹图像的长宽比为2:1时,在指纹图像的短边方向上对指纹图像中的像素进行插值处理,例如,在两个相邻的像素值之间插入两个像素值的平均值作为插值像素,得到插值放大后的优化指纹图像,该优化指纹图像为正方形的指纹图像。
经过差值处理得到的正方形的优化指纹图像质量更好,更加便于进行指纹识别。
可选地,当M为偶数时,该N组像素中N×M个像素用于接收M个不同方向的光信号以形成M张指纹图像,该N组像素中的N个像素用于接收一个方向的光信号以形成该M张指纹图像中的一张指纹图像,其中,该N个像素分别属于N组像素。
由于M为偶数,所以N组像素中每组像素中的M个像素的相对位置关系相同,N组像素中每组像素中相同相对位置上的像素接收相同方向的光信号,每组像素中M个像素接收M个不同方向的光信号。
下面,以M=4举例进行说明,如图11所示,N组像素中相邻的4组像素如图中不同的阴影区域所示,其中,第一像素组331包括第一像素3311至第四像素3314,第二像素组332包括第五像素3321至第八像素3324,第三像素组333包括第九像素3331至第十二像素3334,第四像素组334包括第十三像素3341至第十六像素3344。
四个像素组中位于每个像素组中左上角的像素分别为第一像素3311、第五像素3321、第九像素3331以及第十三像素3341,该四个像素均接收第一方向的光信号,此外,四个像素组中位于每个像素组中右上角的像素分别为第二像素3312、第六像素3322、第十像素3332以及第十四像素3342,该四个像素均接收第二方向的光信号,第三像素3313、第七像素3323、第十一像素3333以及第十五像素3343位于每个像素组中的左下角,均接收第三方向的光信号,第四像素3314、第八像素3324、第十二像素3334以及第十六像素3344位于每个像素组中的右下角,均接收第四方向的光信号。
在N组像素中,其它组像素均可以参考上述4组像素接收光方向的情况,每组像素中位于左上角的像素接收第一方向的光信号,位于右上角的像素接收第二方向的光信号,位于左下角的像素接收第三方向的光信号,位于右下角的像素接收第四方向的光信号。
N组像素中接收相同方向的光信号的N个像素用于形成一张指纹图像。因此,N组像素共可以形成4张指纹图像,例如,接收第一方向的光信号的像素用于形成第一指纹图像,接收第二方向的光信号的像素用于形成第二指纹图像,接收第三方向的光信号的像素用于形成第三指纹图像,接收第四方向的光信号的像素用于形成第四指纹图像。
可选地,在一种可能的实施方式中,一个像素用于形成一张指纹图像中的一个像素值。例如,第一像素3311、第五像素3321、第九像素3331以及第十三像素3341接收的光信号各自用于形成第一指纹图像中的一个像素值;第二像素3312、第六像素3322、第十像素3332以及第十四像素3342接收的光信号各自用于形成第二指纹图像中的一个像素值;第三像素3313、第七像素3323、第十一像素3333以及第十五像素3343接收的光信号各自用于形 成第三指纹图像中的一个像素值;第四像素3314、第八像素3324、第十二像素3334以及第十六像素3344接收的光信号各自用于形成第四指纹图像中的一个像素值。
可选地,在另一种可能的实施方式中,多个像素用于形成一张指纹图像中的一个像素值。具体地,该多个像素接收相同方向的光信号,该多个像素分别为X组像素中的像素,其中,1<X<N,且X为正整数。
例如,X=4,上述第一像素3311、第五像素3321、第九像素3331以及第十三像素3341接收的光信号之和用于形成第一指纹图像中的一个像素值;第二像素3312、第六像素3322、第十像素3332以及第十四像素3342接收的光信号之和用于形成第二指纹图像中的一个像素值;第三像素3313、第七像素3323、第十一像素3333以及第十五像素3343接收的光信号之和用于形成第三指纹图像中的一个像素值;第四像素3314、第八像素3324、第十二像素3334以及第十六像素3344接收的光信号之和用于形成第四指纹图像中的一个像素值。
应理解,除了上述接收同一方向光信号的4个像素用于形成一个指纹图像中的一个像素值外,还可以采用其它数量的接收同一方向光信号的像素形成一个指纹图像的一个像素值,本申请实施例对此不做限定。
在本申请实施例中,通过采用N组像素采集多个经过手指反射或散射的不同方向的光信号,可以得到多张对应的指纹图像,从而满足不同场景的需求。此外,还可以对多张指纹图像进行融合优化,得到一个新的优化后的指纹图像,可以提高指纹图像质量和指纹检测装置的性能。
特别地,当N组像素分别能够接收到不同方向的倾斜光信号时,可以提高指纹识别装置接收的进光量,由此可以降低像素阵列的曝光时长。此外,还可以通过N组像素接收倾斜光信号,并利用倾斜光信号检测干手指的指纹信息。并且,还能够扩大所述指纹检测装置中N组像素的视场角和视场。
图12示出了另一种指纹检测装置30的结构示意图。如图12所示,该指纹检测装置30还包括光学组件320。
可选地,该光学组件320包括至少一个阻光层,该至少一个阻光层设置于像素阵列330上方,并设置在该微透镜阵列310下方,其中,至少一个阻光层形成有多个导光通道;
该微透镜阵列310用于将光信号会聚至至少一个阻光层320的多个导光 通道中,该光信号通过至少一个阻光层中的多个通光通道传输至像素阵列330中。
具体地,该多个导光通道中的每个导光通道对应像素阵列330中的一个长方形像素和微透镜阵列310中的一个圆形微透镜。即,一个圆形微透镜将会聚的光信号传输至对应的导光通道,该光信号经过导光通道被对应的像素接收。
可选地,如图12所示,多个导光通道的方向相同,用于通过相同方向的光信号。此时,像素阵列330中的每个像素接收相同方向的光信号。例如,接收垂直方向的光信号或者同一倾斜角度的光信号。
可选地,多个导光通道的方向也可以不相同。例如,该多个导光通道为N组导光通道,每组导光通道包括M个导光通道,其中,该M个导光通道用于通过M个不同方向的光信号。
具体的,N组导光通道中的一组导光通道对应于N组像素中的一组像素。每组导光通道中的M个导光通道分别对应于一组像素中的M个像素。
例如,如图13所示,相邻的两个导光通道分别为一组导光通道中的两个导光通道,用于分别通过两个不同方向的光信号。
可选地,该光学组件320还包括滤波层,设置于该微透镜到该光电传感器之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
可选地,该滤波层可以设置于该微透镜阵列310到该像素阵列330之间的光路中。
在一种可能的实施方式中,该滤波层可以与该像素阵列330一起集成在指纹检测装置30中,具体的,可以采用蒸镀工艺在像素阵列330上进行镀膜形成该滤波层,例如,通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在像素阵列上方制备一层滤光材料薄膜。该技术方案中滤波层的厚度小于等于20μm。
可选地,该滤波层为光波长截止滤波片,用于滤除特定波段的光信号,有利于降低特定波段的环境光信号的影响,从而能够提升指纹识别性能。
可选地,该滤波层用于通过350~700nm波段范围的光信号。
可选地,该滤波层还可以用于通过800~1000nm波段范围的光信号。
可选地,该滤波层还可以用于同时通过350~700nm波段范围以及800~1000nm波段范围的光信号。
本申请实施例还提供了一种电子设备,该电子设备可以包括显示屏以及上述任一申请实施例中的指纹检测装置,其中,该指纹检测装置设置于显示屏下方。
该电子设备可以为任何具有显示屏的电子设备。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种指纹检测装置,其特征在于,用于设置在电子设备的显示屏下方,包括:
    微透镜阵列,包括多个圆形微透镜,所述多个圆形微透镜中的每个圆形微透镜与六个圆形微透镜相邻,所述六个圆形微透镜的中心的连线构成正六边形;
    像素阵列,设置在所述微透镜阵列下方,包括多个像素,所述多个像素与所述多个圆形微透镜一一对应,所述像素用于接收对应的圆形微透镜会聚的光信号,所述光信号为经过手指反射或散射后的光信号,用于检测所述手指的指纹信息;
    所述多个像素为N组像素,所述N组像素中的每组像素包括相邻的M个像素,所述M个像素接收的光信号用于形成所述手指的指纹图像中的一个像素值,其中,M、N为大于1的正整数。
  2. 根据权利要求1所述的指纹检测装置,其特征在于,所述多个像素为多个长方形像素。
  3. 根据权利要求1或2所述的指纹检测装置,其特征在于,M为偶数时,所述N组像素中每组像素中的M个像素的相对位置关系相同。
  4. 根据权利要求3所述的指纹检测装置,其特征在于,M=4时,4个像素的中心的连线构成菱形。
  5. 根据权利要求1或2所述的指纹检测装置,其特征在于,M为奇数时,所述N组像素中位于同一行的相邻的两组像素中的M个像素的相对位置关系不同;或者,
    所述N组像素中位于同一列的相邻的两组像素中的M个像素的相对位置关系不同。
  6. 根据权利要求5所述的指纹检测装置,其特征在于,M=3时,3个像素的中心的连线构成正三角形。
  7. 根据权利要求1-6中任一项所述的指纹检测装置,其特征在于,所述N组像素中N×M个像素用于接收相同方向的光信号以形成一张指纹图像,所述M个像素接收的光信号之和用于形成所述指纹图像中的一个像素值。
  8. 根据权利要求1-4中任一项所述的指纹检测装置,其特征在于,所 述N组像素中N×M个像素用于接收M个不同方向的光信号以形成M张指纹图像,所述N组像素中的N个像素用于接收一个方向的光信号以形成所述M张指纹图像中的一张指纹图像,其中,所述N个像素分别属于N组像素。
  9. 根据权利要求8所述的指纹检测装置,其特征在于,所述M个像素中一个像素接收的光信号用于形成一张指纹图像中的一个像素值。
  10. 根据权利要求8所述的指纹检测装置,其特征在于,所述M个像素包括第一像素,用于接收第一方向的光信号,所述N组像素中X组像素中的X个第一像素接收的光信号之和用于形成一张指纹图像中的一个像素值,其中,1<X<N,且X为正整数。
  11. 根据权利要求1-10中任一项所述的指纹检测装置,其特征在于,所述多个圆形微透镜中任意两个相邻的圆形微透镜之间的距离相等。
  12. 根据权利要求1-11中任一项所述的指纹检测装置,其特征在于,所述多个圆形微透镜中任意两个相邻的圆形微透镜之间的距离大于等于0。
  13. 根据权利要求1-12中任一项所述的指纹检测装置,其特征在于,所述多个像素相互相接交错排列。
  14. 根据权利要求1-13中任一项所述的指纹检测装置,其特征在于,所述像素的宽小于所述圆形微透镜的直径。
  15. 根据权利要求1-14中任一项所述的指纹检测装置,其特征在于,所述指纹检测装置还包括:处理单元;
    所述处理单元用于对所述指纹图像进行插值处理,以形成优化指纹图像。
  16. 根据权利要求15所述的指纹检测装置,其特征在于,所述处理单元用于:
    根据所述指纹图像的大小,调整插值方式,对所述指纹图像进行插值处理,以形成正方形的优化指纹图像。
  17. 根据权利要求1-16中任一项所述的指纹检测装置,其特征在于,所述指纹检测装置还包括:至少一个阻光层;
    所述至少一个阻光层设置在所述微透镜阵列与所述像素阵列之间,形成多个导光通道;
    所述多个导光通道中的每个导光通道对应所述像素阵列中的一个像素 和所述微透镜阵列中的一个圆形微透镜。
  18. 根据权利要求17所述的指纹检测装置,其特征在于,所述多个导光通道用于通过相同方向的光信号,或者,
    所述多个导光通道为N组导光通道,所述N组导光通道中的每组导光通道包括M个导光通道,其中,所述M个导光通道用于通过M个不同方向的光信号。
  19. 一种电子设备,其特征在于,包括:显示屏以及,
    如权利要求1至18中任一项所述的指纹检测装置,其中,所述指纹检测装置设置在所述显示屏下方。
PCT/CN2019/104799 2019-09-06 2019-09-06 指纹检测装置和电子设备 WO2021042395A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/104799 WO2021042395A1 (zh) 2019-09-06 2019-09-06 指纹检测装置和电子设备
CN201980004259.4A CN111095283B (zh) 2019-09-06 2019-09-06 指纹检测装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104799 WO2021042395A1 (zh) 2019-09-06 2019-09-06 指纹检测装置和电子设备

Publications (1)

Publication Number Publication Date
WO2021042395A1 true WO2021042395A1 (zh) 2021-03-11

Family

ID=70400323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104799 WO2021042395A1 (zh) 2019-09-06 2019-09-06 指纹检测装置和电子设备

Country Status (2)

Country Link
CN (1) CN111095283B (zh)
WO (1) WO2021042395A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113076854A (zh) * 2021-03-30 2021-07-06 武汉华星光电技术有限公司 显示面板
CN114445867A (zh) * 2022-02-21 2022-05-06 厦门天马微电子有限公司 一种指纹识别器及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130309802A1 (en) * 2009-03-12 2013-11-21 Sony Corporation Solid-state image pickup apparatus, method of manufacturing the same, and image pickup apparatus
CN104183612A (zh) * 2014-08-01 2014-12-03 上海集成电路研发中心有限公司 一种光路倾斜的cmos图像传感器的像素阵列
CN107728240A (zh) * 2017-08-28 2018-02-23 苏州端景光电仪器有限公司 一种用于指纹识别的自聚焦透镜阵列及移动终端
CN107820618A (zh) * 2017-09-30 2018-03-20 深圳市汇顶科技股份有限公司 传感像素单元及光学指纹传感器
CN109993051A (zh) * 2017-12-21 2019-07-09 指纹卡有限公司 生物特征成像装置以及用于制造生物特征成像装置的方法
CN110088768A (zh) * 2019-03-12 2019-08-02 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086523B2 (ja) * 2001-12-04 2008-05-14 キヤノン株式会社 画像読取装置、被写体照合システム、被写体認識システム及び画像読取方法
CN101473439B (zh) * 2006-04-17 2013-03-27 全视技术有限公司 阵列成像系统及相关方法
JP2011203792A (ja) * 2010-03-24 2011-10-13 Hitachi Displays Ltd 撮像装置
CN104182727B (zh) * 2014-05-16 2021-07-30 深圳印象认知技术有限公司 超薄型指纹、掌纹采集装置及指纹、掌纹图像采集方法
CN107004130B (zh) * 2015-06-18 2020-08-28 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
KR20180001055A (ko) * 2016-06-24 2018-01-04 삼성전자주식회사 지문 센서를 포함하는 전자 장치 및 이의 운용 방법
WO2018112701A1 (zh) * 2016-12-19 2018-06-28 深圳市汇顶科技股份有限公司 盖板、生物识别装置及终端
CN107563317B (zh) * 2017-08-23 2020-11-24 京东方科技集团股份有限公司 感光模组及感光装置
WO2019041756A1 (zh) * 2018-02-06 2019-03-07 深圳市汇顶科技股份有限公司 屏下生物特征识别装置、生物特征识别组件和终端设备
WO2019218308A1 (zh) * 2018-05-17 2019-11-21 深圳市汇顶科技股份有限公司 屏下指纹感测系统及电子装置
CN109284742A (zh) * 2018-10-30 2019-01-29 Oppo广东移动通信有限公司 屏下指纹模组、电子设备及指纹图像处理方法
WO2020118640A1 (zh) * 2018-12-13 2020-06-18 深圳市汇顶科技股份有限公司 光学采集装置和电子设备
CN210605735U (zh) * 2019-09-06 2020-05-22 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130309802A1 (en) * 2009-03-12 2013-11-21 Sony Corporation Solid-state image pickup apparatus, method of manufacturing the same, and image pickup apparatus
CN104183612A (zh) * 2014-08-01 2014-12-03 上海集成电路研发中心有限公司 一种光路倾斜的cmos图像传感器的像素阵列
CN107728240A (zh) * 2017-08-28 2018-02-23 苏州端景光电仪器有限公司 一种用于指纹识别的自聚焦透镜阵列及移动终端
CN107820618A (zh) * 2017-09-30 2018-03-20 深圳市汇顶科技股份有限公司 传感像素单元及光学指纹传感器
CN109993051A (zh) * 2017-12-21 2019-07-09 指纹卡有限公司 生物特征成像装置以及用于制造生物特征成像装置的方法
CN110088768A (zh) * 2019-03-12 2019-08-02 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备

Also Published As

Publication number Publication date
CN111095283A (zh) 2020-05-01
CN111095283B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
CN111095286B (zh) 指纹检测装置和电子设备
CN210038821U (zh) 光学指纹识别装置和电子设备
CN110088768B (zh) 屏下指纹识别装置和电子设备
WO2021073016A1 (zh) 指纹识别装置和电子设备
WO2020151159A1 (zh) 指纹识别的装置和电子设备
WO2021077259A1 (zh) 识别指纹的方法、指纹识别装置和电子设备
CN110720106B (zh) 指纹识别的装置和电子设备
WO2021036102A1 (zh) 指纹识别装置和电子设备
CN210295125U (zh) 指纹检测装置和电子设备
CN111108511A (zh) 指纹检测装置和电子设备
CN111095279B (zh) 指纹检测装置和电子设备
CN211349383U (zh) 指纹识别的装置和电子设备
CN111108510B (zh) 指纹检测装置和电子设备
CN111108509B (zh) 指纹检测装置和电子设备
CN210605739U (zh) 指纹检测装置和电子设备
WO2021077406A1 (zh) 指纹识别装置和电子设备
CN111598068B (zh) 指纹识别装置和电子设备
WO2021042395A1 (zh) 指纹检测装置和电子设备
CN210864747U (zh) 指纹检测装置和电子设备
CN213659463U (zh) 指纹识别装置和电子设备
CN210864757U (zh) 指纹检测装置和电子设备
WO2021008088A1 (zh) 指纹检测装置和电子设备
CN210605735U (zh) 指纹检测装置和电子设备
US11783619B2 (en) Fingerprint identification apparatus and electronic device
CN111837131A (zh) 指纹识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943903

Country of ref document: EP

Kind code of ref document: A1