WO2018112701A1 - 盖板、生物识别装置及终端 - Google Patents
盖板、生物识别装置及终端 Download PDFInfo
- Publication number
- WO2018112701A1 WO2018112701A1 PCT/CN2016/110763 CN2016110763W WO2018112701A1 WO 2018112701 A1 WO2018112701 A1 WO 2018112701A1 CN 2016110763 W CN2016110763 W CN 2016110763W WO 2018112701 A1 WO2018112701 A1 WO 2018112701A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cover
- cover body
- columnar
- cover plate
- bodies
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1306—Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
Definitions
- the embodiments of the present invention relate to the field of biometrics, and in particular, to a cover, a biometric device, and a terminal.
- biometric sensors especially fingerprint recognition sensors
- biometric sensors are used on terminals such as mobile phones and tablets.
- biometric sensors need to be used in conjunction with a cover to identify the object to be identified on the cover. For example, when the object to be recognized touches the biometric cover, the biometric sensor transmits an identification signal to the object to be identified through the biometric cover, and the identification signal is reflected back to the object to be recognized, and the biometric sensor transmits the identification signal. The reflected signal is calculated and the identification data is obtained, and the object to be identified is identified based on the identification data.
- the identification signal has a scattering phenomenon when passing through a cover plate composed of a single non-conductive material of the same structure, the identification signal emitted and reflected back is distorted, resulting in a decrease in the recognition rate of the biometric sensor. .
- the cover, the biometric device and the terminal provided by the embodiments of the present application are used to solve at least the above problems in the prior art.
- a first aspect of the embodiment of the present application provides a cover plate, the cover plate includes: a cover body and a plurality of matching bodies;
- the mating body is dispersedly arranged in the cover body, the mating body does not extend beyond the cover body, the mating body and the cover body are both non-conductive materials, and the dielectric of the mating body The constant is different from the dielectric constant of the cover body.
- the complex is a columnar complex.
- the columnar body is parallel to the cover body in a thickness direction of the cover body in a height direction of the column-shaped body.
- one end of the columnar body is flush with the first surface of the cover body, and the other end is flush with the second surface of the cover body; or Said One end of the columnar body is flush with the first surface of the cover body, and the other end is inside the cover body; or both ends of the columnar body are in the cover body.
- the columnar ligands are regularly dispersedly arranged in the cover body.
- the columnar complexes are dispersedly arranged in the cover body in a matrix structure.
- the columnar complexes are uniformly dispersed in a matrix structure in the cover body.
- the thickness of the cover body is less than or equal to 600 micrometers.
- the outer diameter of the columnar complex is less than or equal to 100 micrometers.
- the spacing between the mating bodies is: 25 micrometers to 100 micrometers.
- the complex body is a cylindrical complex or a square column-shaped complex.
- the cover body is a glass, zirconia ceramic, sapphire or optical resin material.
- the complex is a glass fiber, air or optical resin material.
- a second aspect of the embodiments of the present application provides a biometric device including a biometric sensor, and a cover plate as described above, the cover plate being disposed above the biosensor.
- a third aspect of the embodiments of the present application provides a terminal including the biometric device as described above.
- the embodiment of the present application disperses and arranges the cover body through a plurality of matching bodies, so that the adjacent interface of the plurality of matching bodies and the cover body is formed in the cover body, and since the matching body and the cover body are different
- the dielectric constant is such that when the identification signal passes through the body of the mating body or the cover body, the identification signal does not substantially scatter or the degree of scattering is low, thereby reducing the degree of distortion of the identification signal, thereby increasing the recognition rate of the biometric sensor.
- Figure 1 is a schematic diagram showing the phenomenon that the identification signal is divergent
- FIG. 2A is a top plan view of a cover plate according to Embodiment 1 of the present application.
- FIG. 2B is a first front structural view of a cover plate according to Embodiment 1 of the present application.
- FIG. 2C is a second front structural view of a cover plate according to Embodiment 1 of the present application.
- 2D is a third front structural view of a cover plate according to Embodiment 1 of the present application.
- FIG. 3 is a schematic diagram of the identification signal passing through the columnar body of the first embodiment of the present application.
- FIG. 4 is a schematic diagram of the identification signal passing through the cover body of the first embodiment of the present application.
- Figure 1 is a schematic diagram showing the phenomenon that the identification signal is divergent.
- the identification signal 5 emitted by the biometric sensor for example, the capacitive fingerprint sensor
- the cover body 1 since the cover body 1 is a single structure.
- the conductive material inevitably, causes scattering phenomenon, which causes distortion of the identification signal 5, so that the identification data obtained by the biometric sensor according to the identification signal 5 emitted and reflected back is not accurate enough, thereby causing the biometric sensor to The recognition rate is reduced.
- 2A is a top plan view of a cover plate provided in Embodiment 1 of the present application.
- 2B is a first front structural view of a cover plate according to Embodiment 1 of the present application.
- the cover plate provided in the first embodiment of the present application specifically includes: a cover body 1 and a plurality of mating bodies 2 .
- the fitting body 2 for example, the columnar body 2 is dispersedly arranged in the cover body 1, the columnar body 2 does not extend beyond the cover body 1, and the columnar body 2 and the cover body 1 are both non-conductive materials, and the columnar body 2 is interposed.
- the electric constant is different from the dielectric constant of the cover body 1.
- the spacing between the columnar mating bodies 2 is typically between 25 micrometers and 100 micrometers.
- an identification signal emitted by a biometric sensor such as a capacitive fingerprint sensor, disposed under the cover plate, passes through the cover body 1 due to the presence of another area around the area through which it passes.
- a matching body having different dielectric constants, or another cover body 1 having a different dielectric constant around the region through which the through-body 2 passes so that scattering phenomenon is less likely to occur, thereby reducing recognition The degree of distortion of the signal.
- the columnar body 2 does not extend beyond the cover body 1, and generally includes the following cases:
- one end of the columnar body 2 is flush with the first surface of the cover body 1, for example, the lower surface, and the other end is flush with the second surface of the cover body 1, for example, the upper surface.
- the positional relationship between the columnar body 2 and the cover body 1 is similar to the positional relationship between the through hole and the cover body 1, that is, the columnar body 2 is inserted through the cover body 1, and both ends of the columnar body 2 do not extend beyond the cover.
- one end of the columnar body 2 is flush with the first surface of the cover body 1, and the other end is inside the cover body.
- the positional relationship between the columnar body 2 and the cover body 1 in this case is similar to the positional relationship between the blind hole and the cover body 1.
- both ends of the columnar body 2 are inside the cover body 1. That is, the columnar body 2 is completely inside the cover body 1.
- the columnar body 2 is dispersedly arranged in the cover body 1, so that a plurality of adjacent interfaces of the cover body 1 and the column-shaped body 2 are formed in the cover body 1, and it is experimentally proved that when disposed under the cover plate
- the identification signal 5 emitted by the biometric sensor such as the capacitive fingerprint sensor, passes through the column-shaped body 2 or the cover body 1 to reach the object to be recognized 3 on the cover body 1 and is reflected back, due to the columnar body 2 or An abutting interface between the columnar body 2 and the cover body 1 is present around the cover body 1, so that the identification signal 5 is not easily diverged or the degree of divergence is reduced, so that the biometric sensor is obtained according to the identification signal 5 emitted and reflected back.
- the identification data is more accurate, and the recognition rate of the biometric sensor is also increased.
- the columnar body 2 is dispersedly arranged in the cover body 1 , and a plurality of adjacent interfaces of the cover body 1 and the columnar body 2 are formed in the cover body 1 .
- a biometric sensor such as a signal transmitting/receiving unit 4 of a capacitive fingerprint sensor, for example, a Pixel transmitting identification signal 5, which is reflected back through the columnar body 2 to the object 3 to be identified on the cover body 1, due to the identification signal 5, the surrounding interface of the columnar body 2 and the cover body 1 exists around the columnar body 2, so that the identification signal 5 is less likely to diverge or diverge in the process of passing through the column body 2, and substantially no
- the distortion makes the recognition data calculated by the biometric sensor based on the identification signal 5 more accurate, and accordingly, the recognition rate of the biometric sensor is also increased.
- the columnar body 2 is dispersedly arranged in the cover body 1, and a plurality of adjacent interfaces of the cover body 1 and the columnar body 2 are formed in the cover body 1.
- a biometric sensor such as a signal transmitting/receiving unit 4 of a capacitive fingerprint sensor, for example, a Pixel transmitting identification signal 5, which is reflected back through the cover body 1 to the object 3 to be identified on the cover body 1, due to the identification signal 5
- the degree of dispersion is low, and there is basically no distortion, so that the identification data calculated by the biometric sensor based on the identification signal 5 is more accurate, and accordingly, the recognition rate of the biometric sensor is also increased.
- the identification signal passes through the columnar body 2, and another part of the identification signal passes through the cover body 1.
- the realization principle that the identification signal is substantially not scattered or the degree of scattering is low is similar to FIG. 3 or FIG. 4 examples are similar and will not be described here.
- the identification signal first passes through the columnar body 2 and then passes through the cover body 1, or first passes through the cover body 1 and then passes through the columnar body 2.
- the mating body 2 does not extend beyond the cover body 1, mainly for the purpose of practical application, that is, if the columnar mating body 2 is beyond the cover body 1, the surface of the cover body 1 is uneven. Causes inconvenience in use.
- the complex body 2 in this embodiment may be a columnar body 2 or a mixture of other shapes, but the columnar body 2 has a better application effect.
- the columnar body 2 is usually a cylindrical or square columnar body.
- the columnar body 2 is parallel to the cover body 1 in the thickness direction of the cover body 1 in its height direction, that is, the columnar body 2 is perpendicular to the cover body.
- the cylindrical fitting body 2 is perpendicular to the surface of the cover body 1 in the height direction thereof.
- the columnar mating bodies 2 are regularly dispersedly arranged in the cover body 1, for example, the columnar mating bodies 2 are maintained at a certain distance in the lateral direction or are fixedly advanced, and are also maintained at a certain distance or fixed in the longitudinal direction. The progressively longer distance is passed, or the columnar body 2 is regularly dispersed in a circular, elliptical or square area. That is, the more regular the columnar body 2 is dispersedly arranged in the cover body 1, and the less the degree of scattering generated when the identification signal is reciprocated. Further, as shown in FIG. 2B, the columnar body 2 may be dispersedly arranged in the cover body 1 in a matrix structure.
- the cover plate in this case can be overlaid on the biometric sensor so that the identification signal of the biometric sensor can pass through the columnar body 2 or the cover plate in the matrix structure.
- Body 1 thus ensuring that the identification signal does not scatter or the degree of scattering is low.
- the columnar body 2 is uniformly dispersed in the matrix body 1 in a matrix structure, and at this time, the degree of scattering of the identification signal is extremely low.
- the thickness of the cover body 1 is usually 600 ⁇ m or less.
- the outer diameter of the columnar body 2 is usually 100 ⁇ m or less.
- the material of the cover body 1 may be a non-conductive material having a dielectric constant greater than 3 such as glass, zirconia ceramic, sapphire or optical resin.
- the material of the complex 2 may be a non-conductive material such as glass fiber, air or optical resin, and it is necessary to satisfy the condition that the dielectric constant of the complex 2 is different from the dielectric constant of the cover body 1.
- Embodiment 2 of the present application provides a biometric identification device including a biometric sensor, and a cover plate in the first embodiment.
- the cover can be placed over the biometric sensor, such as by overlaying the cover over the biometric sensor.
- a third embodiment of the present application provides a terminal, where the terminal includes the biometric device in the second embodiment. That is, the biometric device is an integral part of the terminal.
- the terminal may include a mobile terminal such as a mobile phone, a tablet, a camera, etc., and may also include a non-mobile terminal such as a desktop computer, a server, or the like.
- Method 1 disposing, for example, a plurality of discretely arranged through holes or/and blind holes in the cover body, and then filling the through holes or/and the blind holes with non-conductive materials having different dielectric constants from the cover body The material is finished to complete the cover. That is to say, each of the through holes or blind holes corresponds to one of the mating bodies.
- Method 2 The cover body is used as a composite substrate, and the composite body is composited into the cover body in a dispersed arrangement manner, that is, the cover plate is completed.
- the cover body and the matching body are both non-conductive materials, and the dielectric constants of the cover body and the matching body are different.
- the device embodiments described above are merely illustrative, wherein the modules described as separate components may or may not be physically separate, and the components displayed as modules may or may not be physical modules, ie may be located A place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.
- a machine-readable medium includes read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash storage media, electrical, optical, acoustic, or other forms of propagation signals (eg, carrier waves) , an infrared signal, a digital signal, etc., etc., the computer software product comprising instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the various embodiments or portions of the embodiments described Methods.
- ROM read only memory
- RAM random access memory
- magnetic disk storage media e.g., magnetic disks, magnetic disk storage media, optical storage media, flash storage media, electrical, optical, acoustic, or other forms of propagation signals (eg, carrier waves) , an infrared signal, a digital signal, etc., etc.
- the computer software product comprising instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the various embodiments or portions of the embodiment
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Input (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
一种盖板、生物识别装置及终端,属于生物识别技术领域。所述盖板,包括:盖板本体(1)和多个配合体(2);所述配合体(2)分散排列在所述盖板本体(1)中,所述配合体(2)不超出所述盖板本体(1),所述配合体(2)和所述盖板本体(1)均为非导电性材料,所述配合体(2)的介电常数与所述盖板本体(1)的介电常数不相同。通过多个配合体(2)分散排列盖板本体(1)中,使得盖板本体(1)中形成多个配合体(2)与盖板本体(1)的邻接界面,并且由于配合体(2)与盖板本体(1)具有不同的介电常数,因此当识别信号(5)在穿过配合体(2)或盖板本体(1)时,识别信号(5)基本不发生散射或散射程度很低,从而提高生物识别传感器的识别率。
Description
本申请实施例涉及生物识别技术领域,尤其涉及一种盖板、生物识别装置及终端。
目前,随着科技的迅猛发展,生物识别传感器尤其是指纹识别传感的应用越来越广泛,例如手机、平板上等终端上都用到了生物识别传感器。
通常,生物识别传感器需要与盖板配合使用以对该盖板上的待识别物进行识别。例如,当待识别物触碰到生物识别盖板时,生物识别传感器通过生物识别盖板向待识别物发射识别信号,识别信号到达待识别物后反射回来,生物识别传感器对发射出去的识别信号和反射回来的识别信号进行运算,获得识别数据,进而根据识别数据对待识别物进行识别。
然而,由于识别信号在穿过同一种结构单一的非导电性材料构成的盖板时存在散射现象,因此,会使得发射出去和反射回来的识别信号出现失真,从而导致生物识别传感器的识别率下降。
发明内容
有鉴于此,本申请实施例提供的盖板、生物识别装置及终端,用以至少解决现有技术中存在的上述问题。
本申请实施例第一个方面提供一种盖板,该盖板包括:盖板本体和多个配合体;
所述配合体分散排列在所述盖板本体中,所述配合体不超出所述盖板本体,所述配合体和所述盖板本体均为非导电性材料,所述配合体的介电常数与所述盖板本体的介电常数不相同。
可选地,在本申请一具体实施例中,所述配合体为柱状配合体。
可选地,在本申请一具体实施例中,所述柱状配合体在所述柱状配合体的高度方向上与所述盖板本体在所述盖板本体的厚度方向上平行。
可选地,在本申请一具体实施例中,所述柱状配合体的一端与所述盖板本体的第一表面齐平,另一端与所述盖板本体的第二表面齐平;或者,所述
柱状配合体的一端与所述盖板本体的第一表面齐平,另一端在所述盖板本体内;或者,所述柱状配合体的两端均在所述盖板本体内。
可选地,所述柱状配合体规则分散排列在所述盖板本体中。
可选地,在本申请一具体实施例中,所述柱状配合体以矩阵结构规则分散排列在所述盖板本体中。
可选地,在本申请一具体实施例中,所述柱状配合体以矩阵结构均匀分散排列在所述盖板本体中。
可选地,在本申请一具体实施例中,所述盖板本体的厚度小于等于600微米。
可选地,在本申请一具体实施例中,所述柱状配合体的外径小于等于100微米。
可选地,在本申请一具体实施例中,所述配合体间的间距为:25微米~100微米。
可选地,在本申请一具体实施例中,所述配合体为圆柱状配合体或方柱状配合体。
可选地,在本申请一具体实施例中,所述盖板本体为玻璃、氧化锆陶瓷、蓝宝石或光学树脂材料。
可选地,在本申请一具体实施例中,所述配合体为玻璃纤维、空气或光学树脂材料。
本申请实施例第二个方面提供一种生物识别装置,该生物识别装置包括生物识别传感器,以及如上所述的盖板,所述盖板设置于所述生物传感器之上。
本申请实施例第三个方面提供一种终端,该终端包括如上所述的生物识别装置。
由以上技术方案可见,本申请实施例通过多个配合体分散排列盖板本体中,使得盖板本体中形成多个配合体与盖板本体的邻接界面,并且由于配合体与盖板本体具有不同的介电常数,因此当识别信号在穿过配合体或盖板本体时,识别信号基本不发生散射或散射程度很低,从而降低识别信号的失真程度,进而提高生物识别传感器的识别率。
图1为识别信号产生发散现象的示意图;
图2A为本申请实施例一提供的盖板的俯视结构图;
图2B为本申请实施例一提供的盖板的第一正视结构图;
图2C为本申请实施例一提供的盖板的第二正视结构图;
图2D为本申请实施例一提供的盖板的第三正视结构图;
图3为识别信号穿过本申请实施例一的柱状配合体的示意图;
图4为识别信号穿过本申请实施例一的盖板本体的示意图。
图1为识别信号产生发散现象的示意图。如图1所示,生物识别传感器例如电容式指纹识别传感器发射的识别信号5穿过盖板本体1到达盖板本体上的待识别物3例如手指后,由于盖板本体1是结构单一的非导电性材料,因此不可避免地会产生散射现象,从而导致识别信号5出现失真,从而使得生物识别传感器根据发射出去和反射回来的识别信号5所获得的识别数据不够准确,进而导致生物识别传感器的识别率降低。
图2A本申请实施例一提供的盖板的俯视结构图。图2B为本申请实施例一提供的盖板的第一正视结构图。如图2B所示,本申请实施例一提供的盖板具体包括:盖板本体1和多个配合体2。
配合体2例如柱状配合体2分散排列在盖板本体1中,柱状配合体2不超出盖板本体1,柱状配合体2和盖板本体1均为非导电性材料,柱状配合体2的介电常数与盖板本体1的介电常数不相同。
可选地,柱状配合体2间的间距通常在25微~100微米之间。
由此,在实际应用中,设置在所述盖板下方的生物识别传感器例如电容式指纹识别传感器发射的识别信号在穿过所述盖板本体1时由于其穿过的区域的周围存在另一种具有不同介电常数的配合体,或者在穿过配合体2时由于其穿过的区域周围存在另一种具有不同介电常数的盖板本体1,因此不易产生散射现象,从而可以降低识别信号的失真程度。
可选地,柱状配合体2不超出盖板本体1,通常包括以下几种情况:
①如图2B所示,柱状配合体2的一端与盖板本体1的第一表面例如下表面齐平,另一端与盖板本体1的第二表面例如上表面齐平。此种情况的
柱状配合体2与盖板本体1的位置关系,类似于通孔与盖板本体1的位置关系,即柱状配合体2贯穿于盖板本体1,且柱状配合体2的两端均不超出盖板本体1的表面。
②如图2C所示,柱状配合体2的一端与盖板本体1的第一表面齐平,另一端在所述盖板本体之内。此种情况的柱状配合体2与盖板本体1的位置关系,类似于盲孔与盖板本体1的位置关系。
③如图2D所示,柱状配合体2的两端均在盖板本体1内。即柱状配合体2完全在盖板本体1之内。
柱状配合体2分散排列在盖板本体1中,可使得盖板本体1中形成较多的盖板本体1与柱状配合体2的邻接界面,经实验证明,当设置在所述盖板下方的生物识别传感器例如电容式指纹传感器发射的识别信号5穿过柱状配合体2或盖板本体1到达盖板本体1上的待识别物3后反射回来时,由于其穿过的柱状配合体2或盖板本体1的周围存在有柱状配合体2与盖板本体1的邻接界面,从而使得识别信号5不易发散或者发散程度降低,进而使得生物识别传感器根据发射出去和反射回来的识别信号5所得到的识别数据更加准确,生物识别传感器的识别率也随之提升。
具体来说,以图3为例,柱状配合体2分散排列在盖板本体1中,盖板本体1中形成有较多的盖板本体1与柱状配合体2的邻接界面。生物识别传感器例如电容式指纹识别传感器的信号发射/接收单元4例如Pixel发射识别信号5,识别信号5穿过柱状配合体2到达盖板本体1上的待识别物3后反射回来,由于识别信号5穿过的柱状配合体2的周围存在着柱状配合体2与盖板本体1的邻接界面,因此识别信号5在穿过柱状配合体2的过程中不易发散或发散程度较低,基本上没有失真,从而使得生物识别传感器根据识别信号5运算得到的识别数据更加准确,相应地,生物识别传感器的识别率也随之提升。
以图4为例,柱状配合体2分散排列在盖板本体1中,盖板本体1中形成有较多的盖板本体1与柱状配合体2的邻接界面。生物识别传感器例如电容式指纹识别传感器的信号发射/接收单元4例如Pixel发射识别信号5,识别信号5穿过盖板本体1到达盖板本体1上的待识别物3后反射回来,由于识别信号5穿过的盖板本体1的周围存在着柱状配合体2与盖板本体1的邻接界面,因此识别信号5在穿过盖板本体1的过程中不易发散或发
散程度较低,基本上没有失真,从而使得生物识别传感器根据识别信号5运算得到的识别数据更加准确,相应地,生物识别传感器的识别率也随之提升。
此外,还存在着一部分识别信号穿过柱状配合体2,另一部分识别信号穿过盖板本体1的情况,这种情况下识别信号基本不散射或散射程度很低的实现原理与图3或图4示例类似,在此不再赘述。还存在着识别信号先穿过柱状配合体2再穿过盖板本体1,或者先穿过盖板本体1再穿过柱状配合体2的情况,这种情况下,实验表明当识别信号先后穿过不同的非导电材料时,具有不易散射或散射程度较低的特点;同时,识别信号穿过的区域的周围仍然存在着柱状配合体2与盖板本体1的邻接界面,这与图3或图4示例中所述原理类似,即识别信号依然不易散射或散射程度很低,在此不再赘述。
本实施例中,配合体2不超出盖板本体1,主要是为了满足实际应用的需要,即如果柱状配合体2超出了盖板本体1,则会造成盖板本体1的表面凸凹不平,进而导致使用不便。
当然,本实施例中的配合体2可以是柱状配合体2,也可以是其他形状的配合体,但柱状配合体2的应用效果更好一些。具体地,柱状配合体2通常为圆柱状配合体或者方柱状配合体。
同样,为了更好的应用效果,柱状配合体2在其高度方向上与盖板本体1在盖板本体1的厚度方向上平行,即相当于柱状配合体2与盖板本体垂直。例如,当盖板本体1的一个表面为平面时,柱状配合体2沿其高度方向上与盖板本体1的该表面垂直。此时,识别信号的往返方向与柱状配合体2的高度方向一致,因此可以更大程度地减少识别信号的散射问题。
可选地,柱状配合体2规则地分散排列在盖板本体1中,例如柱状配合体2之间在横向上保持一定的距离或者固定递进步长的距离,纵向上也保持一定的距离或者固定递进步长的距离,或者柱状配合体2规则地分散排列在圆形、椭圆形或方形区域中。即柱状配合体2在盖板本体1中分散排列地越规则,识别信号往返时所产生的散射程度就越低。进一步地,如图2B所示,柱状配合体2可以以矩阵结构规则分散排列在盖板本体1中。通常在使用时,可将此种情况下的盖板覆盖在生物识别传感器的上方,以使生物识别传感器的识别信号可穿过矩阵结构中的柱状配合体2或盖板本
体1,从而确保识别信号不发生散射或散射程度很低。更进一步地,柱状配合体2以矩阵结构均匀分散排列在盖板本体1中,此时,识别信号的散射程度极低。
具体应用中,为了提高识别信号的穿透能力,盖板本体1的厚度通常小于等于600微米。具体地,柱状配合体2的外径通常小于等于100微米。
具体应用中,盖板本体1的材料可以是玻璃、氧化锆陶瓷、蓝宝石或光学树脂等介电常数大于3的非导电性材料。
具体应用中,配合体2的材料可以是玻璃纤维、空气或光学树脂等非导电性材料,且需要满足配合体2的介电常数与盖板本体1的介电常数不相同的条件。
本申请实施例二提供一种生物识别装置,该生物识别装置包括生物识别传感器,以及实施例一中的盖板。通常,可将所述盖板置于所述生物识别传感器的上方,例如将所述盖板覆盖在生物识别传感器的上方。
本申请实施例三提供一种终端,该终端包括实施例二中的生物识别装置。即所述生物识别装置是所述终端的一个组成部分。所述终端可以包括移动终端例如手机、平板、相机等,也可以包括非移动终端例如台式计算机、服务器等。
上述实施例中所述盖板可以通过下述方法进行制作:
方法一:在盖板本体中设置例如钻出多个分散排列的通孔或/和盲孔,然后在所述通孔或/和盲孔中填充具有与盖板本体不同介电常数的非导电性材料,即制作完成所述盖板。也就是说每个所述通孔或盲孔对应一个配合体。
方法二:以盖板本体为复合基体,将配合体以分散排列方式复合到盖板本体中,即制作完成所述盖板。其中盖板本体与配合体均为非导电性材料,且盖板本体与配合体的介电常数不同。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,所述计算机可读记录介质包括用于以计算机(例如计算机)可读的形式存储或传送信息的任何机制。例如,机器可读介质包括只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪速存储介质、电、光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等)等,该计算机软件产品包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (15)
- 一种盖板,其特征在于,包括:盖板本体和多个配合体;所述配合体分散排列在所述盖板本体中,所述配合体不超出所述盖板本体,所述配合体和所述盖板本体均为非导电性材料,所述配合体的介电常数与所述盖板本体的介电常数不相同。
- 根据权利要求1所述的盖板,其特征在于,所述配合体为柱状配合体。
- 根据权利要求2所述的盖板,其特征在于,所述柱状配合体在所述柱状配合体的高度方向上与所述盖板本体在所述盖板本体的厚度方向上平行。
- 根据权利要求3所述的盖板,其特征在于,所述柱状配合体的一端与所述盖板本体的第一表面齐平,另一端与所述盖板本体的第二表面齐平;或者,所述柱状配合体的一端与所述盖板本体的第一表面齐平,另一端在所述盖板本体内;或者,所述柱状配合体的两端均在所述盖板本体内。
- 根据权利要求3或4所述的盖板,其特征在于,所述柱状配合体规则分散排列在所述盖板本体中。
- 根据权利要求5所述的盖板,其特征在于,所述柱状配合体以矩阵结构规则分散排列在所述盖板本体中。
- 根据权利要求6所述的盖板,其特征在于,所述柱状配合体以矩阵结构均匀分散排列在所述盖板本体中。
- 根据权利要求1所述的盖板,其特征在于,所述盖板本体的厚度小于等于600微米。
- 根据权利要求8所述的盖板,其特征在于,所述柱状配合体的外径小于等于100微米。
- 根据权利要求1所述的盖板,其特征在于,所述配合体间的间距为:25微米~100微米。
- 根据权利要求1所述的盖板,其特征在于,所述配合体为圆柱状配合体或方柱状配合体。
- 根据权利要求1所述的盖板,其特征在于,所述盖板本体为玻璃、氧化锆陶瓷、蓝宝石或光学树脂材料。
- 根据权利要求1所述的盖板,其特征在于,所述配合体为玻璃纤 维、空气光或学树脂材料。
- 一种生物识别装置,其特征在于,包括生物识别传感器,以及权利要求1至13任一项所述的盖板,所述盖板设置于所述生物传感器之上。
- 一种终端,其特征在于,包括权利要求14所述的生物识别装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/110763 WO2018112701A1 (zh) | 2016-12-19 | 2016-12-19 | 盖板、生物识别装置及终端 |
CN201680001954.1A CN107077611A (zh) | 2016-12-19 | 2016-12-19 | 盖板、生物识别装置及终端 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/110763 WO2018112701A1 (zh) | 2016-12-19 | 2016-12-19 | 盖板、生物识别装置及终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018112701A1 true WO2018112701A1 (zh) | 2018-06-28 |
Family
ID=59623544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/110763 WO2018112701A1 (zh) | 2016-12-19 | 2016-12-19 | 盖板、生物识别装置及终端 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107077611A (zh) |
WO (1) | WO2018112701A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108701213B (zh) * | 2017-04-20 | 2022-05-03 | 深圳市汇顶科技股份有限公司 | 生物识别装置和保护盖板的制作方法 |
WO2021042395A1 (zh) * | 2019-09-06 | 2021-03-11 | 深圳市汇顶科技股份有限公司 | 指纹检测装置和电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1417751A (zh) * | 2001-11-09 | 2003-05-14 | 日本电气株式会社 | 指纹输入装置及设有该指纹输入装置的电子设备 |
WO2009017853A2 (en) * | 2007-04-20 | 2009-02-05 | Ultra-Scan Corporation | Reliability improvement for piezoelectric imaging array device |
CN104700083A (zh) * | 2015-03-06 | 2015-06-10 | 南昌欧菲生物识别技术有限公司 | 指纹识别装置及其制造方法、触摸屏、终端设备 |
CN105378756A (zh) * | 2013-07-16 | 2016-03-02 | 加利福尼亚大学董事会 | Mut指纹id系统 |
CN105899983A (zh) * | 2013-12-23 | 2016-08-24 | 瑞士Csem电子显微技术研发中心 | 导模共振设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105928448B (zh) * | 2016-04-18 | 2018-06-22 | 北京理工大学 | 一种基于瑞利区解析散射建模的昆虫尺寸测量方法 |
-
2016
- 2016-12-19 CN CN201680001954.1A patent/CN107077611A/zh active Pending
- 2016-12-19 WO PCT/CN2016/110763 patent/WO2018112701A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1417751A (zh) * | 2001-11-09 | 2003-05-14 | 日本电气株式会社 | 指纹输入装置及设有该指纹输入装置的电子设备 |
WO2009017853A2 (en) * | 2007-04-20 | 2009-02-05 | Ultra-Scan Corporation | Reliability improvement for piezoelectric imaging array device |
CN105378756A (zh) * | 2013-07-16 | 2016-03-02 | 加利福尼亚大学董事会 | Mut指纹id系统 |
CN105899983A (zh) * | 2013-12-23 | 2016-08-24 | 瑞士Csem电子显微技术研发中心 | 导模共振设备 |
CN104700083A (zh) * | 2015-03-06 | 2015-06-10 | 南昌欧菲生物识别技术有限公司 | 指纹识别装置及其制造方法、触摸屏、终端设备 |
Also Published As
Publication number | Publication date |
---|---|
CN107077611A (zh) | 2017-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6553155B2 (ja) | 光学式イメージ認識センサー内蔵型平板表示装置 | |
US20170316243A1 (en) | Capacitive fingerprint sensing device and method for capturing a fingerprint using the sensing device | |
WO2015180355A1 (zh) | 内嵌式触摸屏的驱动方法、驱动装置及显示装置 | |
US10714543B2 (en) | Optical fingerprint identification device and display panel | |
EP3249573B1 (en) | Fingerprint recognition device and touch apparatus | |
WO2017173739A1 (zh) | 一种电容式指纹识别触摸面板 | |
WO2018112701A1 (zh) | 盖板、生物识别装置及终端 | |
US20170316249A1 (en) | On-screen fingerprint sensor and electronic device including the same | |
US9342727B2 (en) | Field shaping channels in a substrate above a biometric sensing device | |
US9449160B1 (en) | Methods and systems of adding a user account to a device | |
US20170032164A1 (en) | Electronic device, display screen, and panel | |
US20210255668A1 (en) | Display Stack Topologies for Under-Display Optical Transceivers | |
US20230351797A1 (en) | Geometric structures for acoustic impedance matching and improved touch sensing and fingerprint imaging | |
TW201640138A (zh) | 指紋識別裝置 | |
US20170066014A1 (en) | Release hole plus contact via for fine pitch ultrasound transducer integration | |
US10678378B2 (en) | Optical fingerprint sensor | |
JP2015088185A (ja) | タッチセンサ | |
CN111279357B (zh) | 控制电子装置的方法 | |
US9626547B2 (en) | Fingerprint recognition device and touch apparatus | |
US8785860B2 (en) | Sensor part for an infrared sensor and method for producing same | |
EP3331331B1 (en) | Avoiding reflections in pcb signal trace | |
US11288476B2 (en) | Fingerprint sensor package | |
US11398110B2 (en) | Biometric imaging device | |
KR102195498B1 (ko) | 초음파를 이용한 인증 정보 전송 장치 | |
EP4089512A1 (en) | Geometric structures for acoustic impedance matching and improved touch sensing and fingerprint imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16924774 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16924774 Country of ref document: EP Kind code of ref document: A1 |