WO2024040447A1 - 显示面板及其制造方法、显示装置 - Google Patents

显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2024040447A1
WO2024040447A1 PCT/CN2022/114347 CN2022114347W WO2024040447A1 WO 2024040447 A1 WO2024040447 A1 WO 2024040447A1 CN 2022114347 W CN2022114347 W CN 2022114347W WO 2024040447 A1 WO2024040447 A1 WO 2024040447A1
Authority
WO
WIPO (PCT)
Prior art keywords
packaging structure
inorganic
display panel
layer
organic
Prior art date
Application number
PCT/CN2022/114347
Other languages
English (en)
French (fr)
Inventor
杨宗顺
张云颢
余忠祥
杨超
张福爽
邹建明
苏冬冬
余洪涛
黄冠达
卜维亮
Original Assignee
京东方科技集团股份有限公司
云南创视界光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 云南创视界光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002801.4A priority Critical patent/CN117918041A/zh
Priority to PCT/CN2022/114347 priority patent/WO2024040447A1/zh
Publication of WO2024040447A1 publication Critical patent/WO2024040447A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate

Definitions

  • the present application relates to the field of display technology, and in particular to a display panel, a manufacturing method thereof, and a display device.
  • Silicon-based organic light-emitting diode (English: Organic Light-Emitting Diode; abbreviation: OLED) display panel is a new type of display panel using silicon wafer as the substrate.
  • the OLED light-emitting devices arranged in this display panel have the characteristics of small size. Therefore, this display panel has a high resolution and is widely used in near-eye display devices, virtual reality display devices and augmented reality display devices.
  • the current packaging structure will affect the light extraction effect of the silicon-based OLED display panel, which in turn leads to poor display effects of the silicon-based OLED display panel.
  • Embodiments of the present application provide a display panel and a display device.
  • the problem of poor display effect of existing silicon-based OLED display panels can be solved.
  • the technical solution is as follows:
  • a display panel including:
  • a driving backplane the driving backplane includes a base substrate
  • a light-emitting device located on one side of the driving backplane
  • a color resistance layer located on the side of the organic packaging structure facing away from the driving backplane, and the color resistance layer is attached to the organic packaging structure;
  • the maximum thickness of the organic packaging structure is smaller than the thickness of the inorganic packaging structure.
  • the inorganic packaging structure includes: a stacked first inorganic packaging structure and a second inorganic packaging structure, and the density of the second inorganic packaging structure is greater than the density of the first inorganic packaging structure.
  • the first inorganic packaging structure includes at least two stacked inorganic layers.
  • the material of the at least two inorganic layers includes one or both of silicon nitride and silicon oxynitride.
  • the at least two inorganic layers include: a first inorganic layer, a second inorganic layer, a third inorganic layer and a fourth inorganic layer that are stacked in a direction away from the driving backplane;
  • the material of the first inorganic layer and the third inorganic layer includes the silicon oxynitride
  • the material of the second inorganic layer and the fourth inorganic layer includes the silicon nitride
  • the material of the second inorganic packaging structure includes aluminum oxide.
  • the second inorganic encapsulation layer structure is located between two adjacent inorganic layers, or between the first inorganic encapsulation layer structure and the organic encapsulation structure.
  • the thickness of the second inorganic packaging structure is smaller than the thickness of any of the inorganic layers.
  • the light-emitting device and the color resist layer are both distributed in the display area of the display panel, and in the display area, the organic packaging structure covers the inorganic packaging structure.
  • a side of the organic packaging structure facing away from the driving backplane is parallel to the base substrate.
  • the display panel includes: a pixel defining layer, a first electrode layer, a light-emitting functional layer and a second electrode layer;
  • the first electrode layer has a plurality of first electrodes, and the first electrodes are electrically connected to the driving backplane;
  • the pixel definition layer has a plurality of pixel openings corresponding to the plurality of first electrodes
  • the first electrode, the light-emitting functional layer, and the part of the second electrode layer located in the same pixel opening constitute a light-emitting device.
  • the maximum thickness of the organic packaging structure is less than the thickness of the light-emitting functional layer.
  • the organic packaging structure includes: a first organic packaging structure and a second organic packaging structure, the orthographic projection of the first organic packaging structure on the driving backplane is located on the first electrode layer on the In the orthographic projection on the driving backplane, there is an overlapping area between the orthographic projection of the second organic packaging structure on the driving backplane and the orthographic projection of the pixel definition layer on the base substrate;
  • the thickness of the first organic packaging structure is greater than or equal to the thickness of the second organic packaging structure.
  • the orthographic projection of the first organic packaging structure on the driving backplane does not coincide with the orthographic projection of the pixel defining layer on the base substrate.
  • the side surfaces of the first organic encapsulation structure are in contact with the side surfaces of the second organic encapsulation structure, and the first organic encapsulation structure and the second organic encapsulation structure are arranged on the same layer and made of the same material.
  • the number of the light-emitting devices in the display panel is multiple, and the color resistance layer has color resistance blocks corresponding to the plurality of light-emitting devices, and the color resistance blocks are in the There is an overlapping area between the orthographic projection on the driving backplane and the orthographic projection of the corresponding light-emitting device on the driving backplane.
  • the display panel further includes: a plurality of microlenses located on a side of the color resistor layer facing away from the driving backplane, and the plurality of microlenses correspond to a plurality of the light-emitting devices in one-to-one correspondence. There is an overlapping area between the orthographic projection of the microlens on the driving backplane and the orthographic projection of the corresponding light-emitting device on the driving backplane.
  • the driving backplane further includes: a plurality of pixel driving circuits located on one side of the base substrate, and the plurality of pixel driving circuits are electrically connected to the plurality of first electrodes in a one-to-one correspondence.
  • a method for manufacturing a display panel includes:
  • a light-emitting device is formed on one side of the driving backplane
  • a packaging structure is formed on the side of the light-emitting device facing away from the driving backplane.
  • the packaging structure includes an inorganic packaging structure and an organic packaging structure, and the inorganic packaging structure is closer to the driving backplane than the organic packaging structure;
  • a color resistance layer is formed on the side of the organic packaging structure away from the driving backplane, and the color resistance layer is attached to the organic packaging structure;
  • the driving backplane includes a base substrate, and in a direction perpendicular to the base substrate, the maximum thickness of the organic packaging structure is smaller than the thickness of the inorganic packaging structure.
  • a display device including: a power supply component, and a display panel electrically connected to the power supply component, where the display panel is the above-mentioned display panel.
  • a display panel includes: a driving backplane, a light emitting device, a packaging structure and a color resist layer.
  • the packaging structure may include an inorganic packaging structure and an organic packaging structure.
  • the organic packaging structure is made of organic materials, and organic materials have better flatness. Therefore, the inorganic packaging structure can be planarized through the organic packaging structure, so that the side of the organic packaging structure facing away from the driving backplane has better flatness. In this way, after the color resist layer is arranged on the side of the organic packaging structure away from the driving backplane, the flatness of the color resist layer can be ensured, making the thickness of the color resist layer more uniform, thereby allowing the light emitted by the light-emitting device to pass through the color resist layer.
  • the uniformity of the resistive layer after emission is good, which can effectively improve the light emission effect of the display panel, making the display panel have a better display effect.
  • organic encapsulation structures made of organic materials have better support capabilities and better acid and alkali resistance.
  • the stability of the packaging structure in the display panel can be ensured, thereby ensuring that without this packaging structure, the light-emitting device can be effectively Encapsulation effectively improves the reliability of the display panel and can improve the product yield of the display panel.
  • Figure 1 is a schematic diagram of the film structure of a silicon-based OLED display panel
  • Figure 2 is a schematic diagram of the film structure of a display panel provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the film structure of another display panel provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the film structure of yet another display panel provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the film structure of yet another display panel provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the film structure of a display panel provided by another embodiment of the present application.
  • Figure 7 is a schematic diagram of the film structure of another display panel provided by another embodiment of the present application.
  • Figure 8 is a schematic diagram of the film structure of yet another display panel provided by another embodiment of the present application.
  • FIG. 9 is a flow chart of a manufacturing method of a display panel provided by an embodiment of the present application.
  • the silicon-based OELD display panel 00 may include: a driving backplane 01, a plurality of OLED light-emitting devices 02 located on one side of the driving backplane 01, a packaging structure 03 located on the side of the multiple OELD light-emitting devices 02 away from the driving backplane, and a packaging structure 03 located on the side of the driving backplane 01.
  • the structure 03 is facing away from the color resistor layer 04 on the side of the driving backplane 01.
  • the packaging structure 03 may include: a plurality of stacked inorganic packaging layers 03a covering the outside of the OLED light-emitting device 02.
  • the multi-layer inorganic encapsulation layer 03a is mainly used to isolate water and oxygen in the external environment, so as to prevent the water and oxygen in the external environment from corroding the OELD light-emitting device 02.
  • the stress of each inorganic encapsulation layer 03a is small, so that after the OELD light-emitting device 02 comes into contact with the inorganic encapsulation layer 03a, the inorganic encapsulation layer 03a will not cause damage to the OLED light-emitting device 02.
  • each inorganic packaging layer 03a in the packaging structure 03 is low, resulting in a low flatness of the side of the packaging structure 03 facing away from the driving backplane 01, which in turn results in the formation of
  • the color resist layer 04 has low flatness.
  • the light emitted by the light-emitting device 02 is emitted through the color resist layer 04 , due to the poor flatness of the color resist layer 04 , the light may pass through the color resist layers 04 of different thicknesses, which in turn causes the light-emitting device 02 to emit light.
  • the uniformity of the light emitted through the color resist layer 04 is poor. In this way, the current packaging structure 03 will affect the light extraction effect of the silicon-based OLED display panel 00, thereby causing the display effect of the silicon-based OLED display panel 00 to be poor.
  • the color resist layer 04 on the packaging structure 03 is formed through a patterning process, the stress of each inorganic packaging layer 03a is relatively small. Therefore, the support strength of the inorganic encapsulation layer 03a in contact with the color resistance layer 04 is low.
  • the inorganic encapsulation layer 03a is extremely susceptible to damage. Damage causes the packaging structure 03 to no longer be able to effectively package the OLED light-emitting device 02 . In this way, the current packaging structure 03 will affect the reliability of the silicon-based OLED display panel 00 , resulting in a low product yield of the silicon-based OLED display panel 00 .
  • FIG. 2 is a schematic diagram of the film structure of a display panel provided by an embodiment of the present application.
  • This display panel 000 may be a silicon-based OLED display panel.
  • the display panel 000 may include: a driving backplane 100, a light emitting device 200, a packaging structure 800 and a color resist layer 500.
  • the driving backplane 100 in the display panel 000 may include a base substrate 101 .
  • the light emitting device 200 in the display panel 000 may be located on one side of the driving backplane 100 .
  • the light emitting device 200 may be an OLED light emitting device.
  • the number of light-emitting devices 200 in the display panel 000 is multiple
  • the driving backplane 100 may also have multiple pixel driving circuits 102 located on the base substrate 101, and the multiple pixel driving circuits in the driving backplane 100
  • the circuit 102 can be electrically connected to a plurality of light emitting devices 200 in one-to-one correspondence. In this way, each pixel driving circuit 102 can drive the corresponding light-emitting device 200 to emit light, so that the display panel 000 displays a corresponding picture.
  • the packaging structure 800 in the display panel 000 is located on the side of the light-emitting device 200 away from the driving backplane 100 , and the packaging structure 800 is used to package the light-emitting device 200 .
  • the packaging structure 800 may include an inorganic packaging structure 300 and an organic packaging structure 400.
  • the inorganic packaging structure 300 is closer to the driving backplane 100 than the organic packaging structure 400.
  • the color resistance layer 500 in the display panel 000 is located on the side of the organic packaging structure 400 away from the driving backplane 100 , and the color resistance layer 500 is attached to the organic packaging structure 400 .
  • the maximum thickness of the organic packaging structure 400 is smaller than the thickness of the inorganic packaging structure 300 .
  • the inorganic packaging structure 300 is made of inorganic materials, and inorganic materials have good water and oxygen barrier capabilities. Therefore, the inorganic packaging structure 300 can provide a better water and oxygen barrier effect on the light-emitting device 200 in the display panel 000 .
  • the organic packaging structure 400 is made of organic materials, and organic materials have good flatness. Therefore, the inorganic packaging structure 300 can be planarized by the organic packaging structure 400, so that the side of the organic packaging structure 400 away from the driving backplane 100 has better flatness. In this way, after the color resistor layer 500 is disposed on the side of the organic packaging structure 400 away from the driving backplane 100, the color resistor layer 500 can be ensured to have good flatness, so that the thickness of the color resistor layer 500 is relatively uniform, thereby allowing the light-emitting device 200 to emit light. The uniformity of the light after passing through the color resist layer 500 is better, which can effectively improve the light extraction effect of the display panel 000, making the display panel 000 have a better display effect.
  • the organic encapsulation structure 400 made of organic materials has better support ability and better acid and alkali resistance.
  • the stability of the packaging structure in the display panel 000 can be ensured, thereby ensuring that this packaging structure can effectively control the light-emitting device. 200 is effectively packaged, which effectively improves the reliability of the display panel 000 and can improve the product yield of the display panel 000.
  • the portions of the inorganic packaging structure 300 and the organic packaging structure 400 located in the non-display area of the display panel 000 need to be removed to expose the parts of the display panel 000.
  • the binding structure provided in the non-display area enables the driver chip to be subsequently bound to the binding structure through the bonding process. Since the process difficulty of removing the portion of the organic packaging structure 400 located in the non-display area is relatively high, the process difficulty of removing the portion of the inorganic packaging structure 300 located in the non-display area is relatively low.
  • the thickness of the organic packaging structure 400 can be ensured to be smaller to reduce the process difficulty of removing the portion of the organic packaging structure 400 located in the non-display area.
  • the display panel provided by the embodiment of the present application includes: a driving backplane, a light-emitting device, a packaging structure and a color resist layer.
  • the packaging structure may include an inorganic packaging structure and an organic packaging structure.
  • the organic packaging structure is made of organic materials, and organic materials have better flatness. Therefore, the inorganic packaging structure can be planarized through the organic packaging structure, so that the side of the organic packaging structure facing away from the driving backplane has better flatness.
  • the flatness of the color resist layer can be ensured, making the thickness of the color resist layer more uniform, thereby allowing the light emitted by the light-emitting device to pass through the color resist layer.
  • the uniformity of the resistive layer after emission is good, which can effectively improve the light emission effect of the display panel, making the display panel have a better display effect.
  • organic encapsulation structures made of organic materials have better support capabilities and better acid and alkali resistance.
  • the stability of the packaging structure in the display panel can be ensured, thereby ensuring that without this packaging structure, the light-emitting device can be effectively Encapsulation effectively improves the reliability of the display panel and can improve the product yield of the display panel.
  • the main components of the organic encapsulation structure 400 may include: propylene glycol methyl ether acetate, hardening resin, etc.
  • the organic packaging structure 400 in the embodiment of the present application can be formed through an inkjet printing process.
  • the organic material Before forming the organic encapsulation structure 400 through the inkjet printing process, the organic material can be mixed with a certain solvent to form a liquid substance. In this way, during the process of forming the organic encapsulation structure 400 through the inkjet printing process, the liquid substance can fully fill the inorganic encapsulation structure.
  • the liquid substance is subsequently solidified to obtain an organic packaging structure 400 that can flatten the inorganic packaging structure 300.
  • a curing solvent may also be added to the liquid substance.
  • the curing solvent can be a thermal curing solvent, so that the liquid substance can be solidified into the organic packaging structure 400 by subsequent heating of the display panel;
  • the curing solvent can also be a light-curing solvent, so that the display panel can be subsequently subjected to ultraviolet irradiation processing. That is, the liquid substance can be solidified into the organic packaging structure 400 .
  • the inorganic packaging structure 300 includes: a stacked first inorganic packaging structure 300a and a second inorganic packaging structure 300b.
  • the density of the second inorganic packaging structure 300b is greater than the density of the first inorganic packaging structure 300a.
  • the stacked first inorganic packaging structure 300a and the second inorganic packaging structure 300b are mainly used to isolate water and oxygen in the external environment, so as to prevent water and oxygen in the external environment from corroding the OELD light-emitting device 200.
  • the density of the second inorganic packaging structure 300b is greater than the density of the first inorganic packaging structure 300a. Therefore, the ability of the second inorganic packaging structure 300b to isolate water and oxygen is better than the ability of the first inorganic packaging structure 300a to isolate water and oxygen. It can be The packaging effect of the inorganic packaging structure 300 on the light-emitting device 200 is further improved.
  • the first inorganic packaging structure 300a includes at least two stacked inorganic layers, and the material of the at least two inorganic layers includes one or both of silicon nitride and silicon oxynitride.
  • the embodiment of the present application will take the following two aspects as examples to describe the components of the first inorganic packaging structure 300a:
  • FIG. 4 is a schematic diagram of the film structure of yet another display panel provided by an embodiment of the present application.
  • the material of each inorganic layer in the first inorganic packaging structure 300a in the inorganic packaging structure 300 is silicon nitride, since silicon nitride has a strong barrier ability to water and oxygen, it can be ensured that the first inorganic packaging structure 300a can It has a better water and oxygen barrier effect on the light-emitting device 200 in the display panel 000.
  • FIG. 5 is a schematic diagram of the film structure of yet another display panel provided by an embodiment of the present application.
  • the materials of at least two inorganic layers in the first inorganic packaging structure 300a in the inorganic packaging structure 300 include both silicon nitride and silicon oxynitride
  • a part of the inorganic layers in the first inorganic packaging structure 300a is made of silicon nitride.
  • the other part of the inorganic layer is made of silicon oxynitride.
  • the first inorganic packaging structure 300a made of silicon nitride can play a better water and oxygen barrier role for the light-emitting device 200 in the display panel 000 . Since silicon oxynitride has good film layer adhesion, the first inorganic packaging structure 300a made of silicon oxynitride can ensure good stability of the inorganic packaging structure 300.
  • the first inorganic packaging structure 300a in the inorganic packaging structure 300 may include: a first inorganic layer 301, a second inorganic layer 302, a third inorganic layer 303 and a fourth inorganic layer stacked in a direction away from the driving backplane 100. 304.
  • the cathode in the light-emitting device 200 is closer to the inorganic packaging structure 300 than the anode. Therefore, the inorganic packaging structure 300 can be directly attached to the cathode in the light-emitting device 200 .
  • the first inorganic layer 301 in the inorganic packaging structure 300 that is closest to the light-emitting device 200 is made of silicon oxynitride, because the silicon oxynitride has good film adhesion, it can be closely connected to the cathode in the light-emitting device 200 Sticky. For this reason, the tightness of the first inorganic layer 301 and the light-emitting device 200 is relatively high, which can further improve the effect of the inorganic packaging structure 300 on packaging the light-emitting device 200 .
  • the third inorganic layer 303 located between the second inorganic layer 302 and the fourth inorganic layer 304 in the inorganic packaging structure 300 is made of silicon oxynitride
  • the third inorganic layer 303 can improve the relationship between it and the second inorganic layer. 302, and can provide tightness of adhesion with the fourth inorganic layer 304, making the inorganic packaging structure 300 more stable.
  • the second inorganic layer 302 and the fourth inorganic layer 304 in the inorganic packaging structure 300 are both made of silicon nitride, silicon nitride has better water and oxygen barrier capabilities. For this reason, through the second inorganic layer 302 and the fourth inorganic layer 304, the light-emitting device 200 in the display panel 000 can have a better water and oxygen barrier effect.
  • the material of the second inorganic packaging structure 300b includes aluminum oxide, because the ability of the aluminum oxide material to block water and oxygen is better than that of silicon nitride, and is better than that of silicon oxynitride. Water and oxygen barrier ability. Therefore, when the second inorganic packaging structure 300b in the inorganic packaging structure 300 is made of alumina material, the packaging effect of the inorganic packaging structure 300 for packaging the light-emitting device 200 can be further improved.
  • the display panel needs to be placed in a high-humidity environment. Therefore, in order to prevent the light-emitting device 200 provided in the display panel 000 from being corroded by water and oxygen, an inorganic layer needs to be formed in advance on the side of the light-emitting device 200 away from the driving backplane 100 to block the intrusion of water and oxygen into the light-emitting device 200 .
  • the second inorganic packaging structure 300b needs to be located between two adjacent first inorganic packaging structures 300a, or between the first inorganic packaging structure 300a and the organic packaging structure 400.
  • the first inorganic packaging structure 300a in the inorganic packaging structure 300 in the embodiment of the present application can be formed by chemical vapor deposition (English: Chemical Vapor Deposition; referred to as: CVD), and the second inorganic packaging structure 300b can be formed by Formed by atomic layer deposition. Because the thickness of the film layer formed by atomic layer deposition is smaller than the thickness of the film layer formed by CVD deposition. Therefore, in the direction perpendicular to the base substrate 101, the thickness of the second inorganic packaging structure 300b is smaller than the thickness of the first inorganic packaging structure 300a. For example, in the direction perpendicular to the base substrate 101, the thickness of the second inorganic packaging structure 300b is smaller than the thickness of any inorganic layer in the first inorganic packaging structure 300a.
  • the display panel 000 has a display area.
  • the light-emitting device 200 and the color resist layer 500 in the display panel 000 are both distributed in the display area of the display panel 000 .
  • the organic packaging structure 400 covers the inorganic packaging structure 300. In this way, the organic packaging structure 400 located in the display area can flatten the inorganic packaging structure 300 located in the display area, thereby making the color resist layer 500 in the display area more flat.
  • the side of the organic packaging structure 400 facing away from the driving backplane 100 may be parallel to the base substrate 101.
  • the color resistance layer 500 is formed on the side of the organic packaging structure 400 located in the display area away from the driving backside 100, it can be ensured that the side of the color resistance layer 500 close to the organic packaging structure 400 is coplanar, and the color resistance layer can be guaranteed to be coplanar.
  • 500 is coplanar with the side facing away from the organic packaging structure 400, thereby ensuring that the thickness of the color resist layer 500 is consistent at various positions, further improving the uniformity of the light emitted by the light emitting device 200 after passing through the color resist layer.
  • the side of the organic packaging structure 400 facing away from the driving backplane 100 and the base substrate 101 may not be parallel, but it is necessary to ensure that the side of the organic packaging structure 400 facing away from the driving backplane 100 and the base substrate 101 face the light emitting device.
  • the included angle between one side of 200 is small.
  • the included angle between the two surfaces may range from 0° to 10°.
  • FIG. 6 is a schematic diagram of the film structure of a display panel provided by another embodiment of the present application.
  • the display panel includes: a pixel defining layer 600, a first electrode layer 201, a light emitting functional layer 202 and a second electrode layer 203.
  • the first electrode layer 201 is usually also called an anode layer
  • the second electrode layer 203 is also usually called a cathode layer.
  • the first electrode layer 201 may have a plurality of first electrodes 2011, and each first electrode 2011 is electrically connected to the driving backplane 100.
  • the plurality of pixel driving circuits 102 in the driving backplane 100 may be connected to a plurality of first electrodes 2011.
  • the electrodes 2011 are electrically connected in one-to-one correspondence.
  • the pixel definition layer 600 may have a plurality of pixel openings K corresponding to the plurality of first electrodes 2011 in a one-to-one manner.
  • the first electrode 2011, the light-emitting functional layer 202, and the part of the second electrode layer 203 located in the same pixel opening K form a light-emitting device 200.
  • the portion of the first electrode 2011 located within the pixel opening K is the anode of the light-emitting device 200
  • the portion of the second electrode layer 203 located within the pixel opening K is the cathode of the light-emitting device 200 .
  • the second electrode layer 203 is made of a light-transmitting conductive material
  • the first electrode layer 201 is made of a light-transmitting conductive material.
  • Made of reflective conductive material the second electrode layer 203 can be made of indium zinc oxide (English: Indium Zinc Oxide; abbreviation: IZO) or indium tin oxide (English: Indium Tin Oxide; abbreviation: ITO);
  • the first electrode layer 201 can be made of metal, such as Made of metal materials such as aluminum, titanium metal or alloy.
  • the maximum thickness of the organic packaging structure 400 is smaller than the thickness of the light-emitting functional layer 202.
  • the organic packaging structure 400 includes: a first organic packaging structure 400a and a second organic packaging structure 400b.
  • the orthographic projection of the first organic packaging structure 400a on the driving backplane 100 is located within the orthographic projection of the first electrode layer 201 on the driving backplane 100, and the orthographic projection of the second organic packaging structure 400b on the driving backplane 100 is within the same area.
  • the first organic encapsulation structure 400a in the organic encapsulation structure 400 is directly opposite to the pixel opening K of the pixel definition layer 600
  • the second organic encapsulation structure 400b in the organic encapsulation structure 400 is directly opposite to the pixel definition layer 600.
  • the thickness in the area where the pixel opening K of the pixel defining layer 600 is located in the display panel 000 is smaller than the thickness at other locations.
  • the orthographic projection of the first organic packaging structure 400a on the driving backplane 100 does not coincide with the orthographic projection of the pixel defining layer 600 on the base substrate to ensure that the first organic packaging structure 400a can exactly align with the pixel defining layer 600
  • the pixel opening K is directly opposite. That is, the orthographic projection of the first organic packaging structure 400 a on the driving backplane 100 may be located within the orthographic projection of the pixel opening K on the driving backplane 100 .
  • the side surface of the first organic packaging structure 400a is attached to the side surface of the second organic packaging structure 400b, and the first organic packaging structure 400a and the second organic packaging structure 400b are arranged on the same layer and made of the same material. That is, the first organic packaging structure 400a and the second organic packaging structure 400b in the organic packaging structure 400 are an integrated structure and can be formed simultaneously through the same process.
  • FIG. 7 is a schematic diagram of the film structure of another display panel provided by another embodiment of the present application.
  • the color resistor layer 500 has color resistor blocks corresponding to the plurality of light-emitting devices 200.
  • the orthographic projection of the color resistor blocks on the driving backplane 100 corresponds to the corresponding luminescence.
  • the color resistor layer 500 may include color resistor blocks of three colors: a red color resistor block 500R, a green color resistor block 500G, and a blue color resistor block 500B.
  • the light emitted by the light emitting device 200 corresponding to the red color resist block 500R can emit red light after passing through the color resist layer 500
  • the light emitted by the light emitting device 200 corresponding to the green color resist block 500G can emit green light after passing through the color resist layer 500.
  • Light, the light emitted by the light-emitting device 200 corresponding to the blue color resist block 500B can emit blue light after passing through the color resist layer 500.
  • the display panel 000 can simultaneously emit red light, green light and blue light, so that the display panel 000 can display a color picture.
  • the display panel 000 may also include: a plurality of microlenses 700 located on the side of the color resistor layer 500 away from the driving backplane 100 , a plurality of microlenses 700 and a plurality of light emitting devices 200 In one-to-one correspondence, there is an overlapping area between the orthographic projection of each microlens 700 on the driving backplane 100 and the orthographic projection of the corresponding light-emitting device 200 on the driving backplane 100 .
  • the light emitted by the corresponding light-emitting device 200 can be condensed through the microlens 700, thereby improving the light extraction effect of the light emitted by the light-emitting device 200, so that the display effect of the display panel 000 is better.
  • FIG. 8 is a schematic diagram of the film structure of yet another display panel provided by another embodiment of the present application.
  • the pixel driving circuit 102 in the driving backplane 100 may include: a transfer electrode 1021 and a thin film transistor 1022.
  • the transfer electrode 1021 may be located on a side of the thin film transistor 1022 facing away from the substrate 101 .
  • the light emitting device 200 in the display panel 000 may be located on a side of the transfer electrode 1021 facing away from the substrate 101 .
  • the number of thin film transistors 1022 in the pixel driving circuit 102 is usually multiple.
  • the thin film transistor 1022 may include: a source electrode S, a drain electrode D, a gate electrode G, and an active layer Act. Wherein, both the source S and the drain D of the thin film transistor 1022 can be electrically connected to the active layer Act, and the gate G of the thin film transistor 1022 can be insulated from the active layer Act. For example, the gate G of the thin film transistor 1022 is insulated from the active layer Act.
  • the layers Act can be insulated by the gate insulating layer 1023.
  • One of the source S and the drain D of the thin film transistor 1022 may be electrically connected to the corresponding anode in the light emitting device 200 through the transfer electrode 1021 .
  • the source S and the drain D of the thin film transistor 1022 are arranged in the same layer and made of the same material.
  • the thin film transistor 1022 is a top-gate transistor, that is, the active layer Act of the thin film transistor 1022 is closer to the substrate 101 than the gate G.
  • the active layer Act of the thin film transistor 1022 may be located on the substrate 101
  • the gate G of the thin film transistor 1022 may be located on a side of the active layer Act facing away from the substrate 101
  • the source electrode S of the thin film transistor 1022 may be located on the substrate 101.
  • the drain D may be located on a side of the gate G facing away from the substrate 101 .
  • the thin film transistor 1022 may also be a bottom-gate transistor, which is not limited in this embodiment of the present application.
  • a first flat layer 1025 is provided between the conductive layer where the source and drain electrodes of the thin film transistor 1022 are located and the conductive layer where the transfer electrode 1021 is located, and between the conductive layer where the transfer electrode 1021 is located and the anode layer 201
  • the first flat layer 1025 can improve the flatness of the conductive layer where the transfer electrode 1021 is located, so that the signal transmission performance of the signal line provided in the conductive layer where the transfer electrode 1021 is located is better.
  • the second flat layer 1026 can improve the flatness of the subsequently formed light-emitting device 200, so that the light-emitting device 200 can emit light stably.
  • the display panel provided by the embodiment of the present application includes: a driving backplane, a light-emitting device, a packaging structure and a color resist layer.
  • the packaging structure may include an inorganic packaging structure and an organic packaging structure.
  • the organic packaging structure is made of organic materials, and organic materials have better flatness. Therefore, the inorganic packaging structure can be planarized through the organic packaging structure, so that the side of the organic packaging structure facing away from the driving backplane has better flatness.
  • the flatness of the color resist layer can be ensured, making the thickness of the color resist layer more uniform, thereby allowing the light emitted by the light-emitting device to pass through the color resist layer.
  • the uniformity of the resistive layer after emission is good, which can effectively improve the light emission effect of the display panel, making the display panel have a better display effect.
  • organic encapsulation structures made of organic materials have better support capabilities and better acid and alkali resistance.
  • the stability of the packaging structure in the display panel can be ensured, thereby ensuring that without this packaging structure, the light-emitting device can be effectively Encapsulation effectively improves the reliability of the display panel and can improve the product yield of the display panel.
  • FIG. 9 is a flow chart of a manufacturing method of a display panel provided by an embodiment of the present application. The method includes:
  • Step S1 Form a light-emitting device on one side of the driving backplane.
  • Step S2 Form a packaging structure on the side of the light-emitting device facing away from the driving backplane.
  • the packaging structure includes an inorganic packaging structure and an organic packaging structure.
  • the inorganic packaging structure is closer to the driving backplane than the organic packaging structure.
  • Step S3 Form a color resist layer on the side of the organic packaging structure facing away from the driving backplane.
  • the color resist layer is attached to the organic packaging structure.
  • the driving backplane includes a base substrate, and in a direction perpendicular to the base substrate, the maximum thickness of the organic packaging structure is smaller than the thickness of the inorganic packaging structure.
  • the manufacturing method of a display panel includes forming a plurality of light-emitting devices, a packaging structure and a color resist layer on a driving backplane.
  • the packaging structure includes inorganic packaging structure and organic packaging structure.
  • the organic packaging structure is made of organic materials, and organic materials have better flatness. Therefore, the inorganic packaging structure can be planarized through the organic packaging structure, so that the side of the organic packaging structure facing away from the driving backplane has better flatness.
  • the flatness of the color resist layer can be ensured, making the thickness of the color resist layer more uniform, thereby allowing the light emitted by the light-emitting device to pass through the color resist layer.
  • the uniformity of the resistive layer after emission is good, which can effectively improve the light emission effect of the display panel, making the display panel have a better display effect.
  • organic encapsulation structures made of organic materials have better support capabilities and better acid and alkali resistance.
  • the stability of the packaging structure in the display panel can be ensured, thereby ensuring that without this packaging structure, the light-emitting device can be effectively Encapsulation effectively improves the reliability of the display panel and can improve the product yield of the display panel.
  • Embodiments of the present application also provide a display device.
  • the display device can be: a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, or any other product or component with a display function. It can also be: Wearable display devices such as near-eye display devices, virtual reality display devices, and augmented reality display devices.
  • the display device may include: a power supply component and a display panel.
  • the display panel may be the display panel in the above embodiment. For example, it may be the display panel shown in FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7 or FIG. 8.
  • the power supply component is connected to the display panel and used to provide power to the display panel so that the display panel can display images.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • plurality refers to two or more than two, unless expressly limited otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请公开了一种显示面板及显示装置,属于显示技术领域。一种显示面板包括:驱动背板、多个发光器件、封装结构以及色阻层。其中,封装结构可以包括无机封装结构和有机封装结构。有机封装结构由有机材料制成,而有机材料具有较好的平坦性。因此,通过有机封装结构可以对无机封装结构进行平坦化,使得有机封装结构背离驱动背板的一面的平坦性较好。这样,在有机封装结构背离驱动背板的一侧设置色阻层后,可以保证色阻层的平坦性较好,使得色阻层的厚度较为均匀,进而使得发光器件发出的光线在穿过色阻层出射后的均匀性较好,可以有效的提高显示面板的出光效果,使得显示面板的显示效果较好。

Description

显示面板及其制造方法、显示装置 技术领域
本申请涉及显示技术领域,特别涉及一种显示面板及其制造方法、显示装置。
背景技术
硅基有机发光二极管(英文:Organic Light-Emitting Diode;简称:OLED)显示面板是一种以硅晶片作为衬底的新型显示面板。这种显示面板内排布的OLED发光器件具有体积小的特点,为此这种显示面板的分辨率较高,广泛应用于近眼显示设备、虚拟现实显示设备和增强现实显示设备内。
由于外界环境中的水氧(也即水汽和氧气等成分)可能会侵蚀OLED发光器件,进而会影响OLED发光器件的使用寿命。因此,通常需要采用封装结构对OLED发光器件进行封装,以隔离OLED发光器件与外界环境中的水氧,从而延长OLED发光器件的使用寿命。
然而,目前的封装结构会影响硅基OLED显示面板的出光效果,进而导致硅基OLED显示面板的显示效果较差。
发明内容
本申请实施例提供了一种显示面板及显示装置。可以解决现有技术的硅基OLED显示面板的显示效果较差问题,所述技术方案如下:
一方面,提供了一种显示面板,包括:
驱动背板,所述驱动背板包括衬底基板;
位于所述驱动背板一侧的发光器件;
位于所述发光器件背离所述驱动背板一侧的封装结构,所述封装结构包括无机封装结构和有机封装结构,所述无机封装结构相对于所述有机封装结构更靠近所述驱动背板;
以及,位于所述有机封装结构背离所述驱动背板一侧的色阻层,所述色阻层与所述有机封装结构贴接;
其中,在垂直于所述衬底基板的方向上,所述有机封装结构的最大厚度小于所述无机封装结构的厚度。
可选的,所述无机封装结构包括:层叠设置的第一无机封装结构和第二无机封装结构,所述第二无机封装结构的致密度大于所述第一无机封装结构的致密度。
可选的,所述第一无机封装结构包括层叠设置的至少两层无机层。
可选的,所述至少两层无机层的材料包括氮化硅和氮氧化硅中的一种或两种。
可选的,所述至少两层无机层包括:背离所述驱动背板的方向层叠设置的第一无机层、第二无机层、第三无机层和第四无机层;
其中,所述第一无机层和所述第三无机层的材料均包括所述氮氧化硅,所述第二无机层和所述第四无机层的材料均包括所述氮化硅。可选的,所述第二无机封装结构的材料包括氧化铝。
可选的,所述第二无机封装层结构位于两层相邻的所述无机层之间,或者,位于所述第一无机封装层结构和所述有机封装结构之间。
可选的,在垂直于所述衬底基板的方向上,所述第二无机封装结构的厚度小于任一所述无机层的厚度。
可选的,所述发光器件和所述色阻层均分布在所述显示面板的显示区内,在所述显示区内,所述有机封装结构覆盖所述无机封装结构。
可选的,在所述显示区内,所述有机封装结构背离所述驱动背板的一面与所述衬底基板平行。
可选的,所述显示面板包括:像素界定层、第一电极层、发光功能层和第二电极层;
所述第一电极层具有多个第一电极,所述第一电极与所述驱动背板电连接;
所述像素定义层具有与所述多个第一电极一一对应的多个像素开口;
其中,所述第一电极、所述发光功能层,以及所述第二电极层位于同一个所述像素开口的部分组成一个所述发光器件。
可选的,在垂直于所述衬底基板的方向上,所述有机封装结构的最大厚度小于所述发光功能层的厚度。
可选的,所述有机封装结构包括:第一有机封装结构和第二有机封装结构,所述第一有机封装结构在所述驱动背板上的正投影位于所述第一电极层在所述 驱动背板上的正投影内,所述第二有机封装结构在所述驱动背板上的正投影与所述像素界定层在所述衬底基板上的正投影存在交叠区域;
其中,在垂直于所述衬底基板的方向上,所述第一有机封装结构的厚度大于或等于所述第二有机封装结构的厚度。
可选的,所述第一有机封装结构在所述驱动背板上的正投影与所述像素界定层在所述衬底基板上的正投影不重合。
可选的,所述第一有机封装结构的侧面与所述第二有机封装结构的侧面贴合,且所述第一有机封装结构和第二有机封装结构同层设置且材料相同。
可选的,所述显示面板内的所述发光器件的个数为多个,所述色阻层具有与多个所述发光器件一一对应的色阻块,所述色阻块在所述驱动背板上的正投影与对应的发光器件在所述驱动背板上的正投影存在交叠区域。
可选的,所述显示面板还包括:位于所述色阻层背离所述驱动背板一侧的多个微透镜,所述多个微透镜与多个所述发光器件一一对应,所述微透镜在所述驱动背板上的正投影与对应的发光器件在所述驱动背板上的正投影存在交叠区域。
可选的,所述驱动背板还包括:位于所述衬底基板一侧的多个像素驱动电路,所述多个像素驱动电路与所述多个第一电极一一对应电连接。
另一方面,提供了一种显示面板的制造方法,所述方法包括:
在驱动背板的一侧形成发光器件;
在所述发光器件背离所述驱动背板一侧形成封装结构,所述封装结构包括无机封装结构和有机封装结构,所述无机封装结构相对于所述有机封装结构更靠近所述驱动背板;
在所述有机封装结构背离所述驱动背板一侧形成色阻层,所述色阻层与所述有机封装结构贴接;
其中,所述驱动背板包括衬底基板,在垂直于所述衬底基板的方向上,所述有机封装结构的最大厚度小于所述无机封装结构的厚度。
又一方面,提供了一种显示装置,包括:供电组件,以及与所述供电组件电连接的显示面板,所述显示面板为上述的显示面板。
本申请实施例提供的技术方案带来的有益效果至少包括:
一种显示面板包括:驱动背板、发光器件、封装结构以及色阻层。其中,封装结构可以包括无机封装结构和有机封装结构。有机封装结构由有机材料制 成,而有机材料具有较好的平坦性。因此,通过有机封装结构可以对无机封装结构进行平坦化,使得有机封装结构背离驱动背板的一面的平坦性较好。这样,在有机封装结构背离驱动背板的一侧设置色阻层后,可以保证色阻层的平坦性较好,使得色阻层的厚度较为均匀,进而使得发光器件发出的光线在穿过色阻层出射后的均匀性较好,可以有效的提高显示面板的出光效果,使得显示面板的显示效果较好。另外,由有机材料制成的有机封装结构具有较好的支撑能力,且具有较好的抗酸碱性。后续在有机封装结构背离驱动背板的一侧通过构图工艺形成色阻层的过程中,可以保证显示面板内的封装结构的稳定性较高,进而保证无这个封装结构能够对发光器件进行有效的封装,有效的提高了显示面板的可信赖性,且可以提高显示面板的产品良率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种硅基OLED显示面板的膜层结构示意图;
图2是本申请实施例提供的一种显示面板的膜层结构示意图;
图3是本申请实施例提供的另一种显示面板的膜层结构示意图;
图4是本申请实施例提供的又一种显示面板的膜层结构示意图;
图5是本申请实施例提供的再一种显示面板的膜层结构示意图;
图6是本申请另一实施例提供的一种显示面板的膜层结构示意图;
图7是本申请另一实施例提供的另一种显示面板的膜层结构示意图;
图8是本申请另一实施例提供的又一种显示面板的膜层结构示意图;
图9是本申请实施例提供的一种显示面板的制造方法流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
请参考图1,图1是一种硅基OLED显示面板的膜层结构示意图。硅基OELD显示面板00可以包括:驱动背板01,位于驱动背板01一侧的多个OLED发光 器件02,位于多个OELD发光器件02背离驱动背板一侧的封装结构03,以及位于封装结构03背离驱动背板01一侧的色阻层04。
其中,封装结构03可以包括:覆盖在OLED发光器件02外侧的多个层叠设置的无机封装层03a。这里,多层无机封装层03a主要是为了隔绝外界环境中的水氧,以阻隔外界环境中的水氧侵蚀OELD发光器件02。且各个无机封装层03a的应力较小,使得OELD发光器件02与无机封装层03a接触后,无机封装层03a不会对OLED发光器件02造成损害。
然而,封装结构03内的各个无机封装层03a的平坦性较低,导致封装结构03背离驱动背板01的一面的平坦性较低,进而导致在封装结构03背离驱动背板01的一侧形成色阻层04的平坦性较低。在发光器件02发出的光线在穿过色阻层04出射的过程中,因色阻层04的平坦性较差,导致光线可能会穿过不同厚度的色阻层04,进而导致发光器件02发出的光线穿过色阻层04出射后的均匀性较差。如此,目前的封装结构03会影响硅基OLED显示面板00的出光效果,进而导致硅基OLED显示面板00的显示效果较差。
另外,由于封装结构03上的色阻层04是通过构图工艺形成的,且各个无机封装层03a的应力均比较小。因此,与色阻层04接触的无机封装层03a的支撑强度较低,在这个无机封装层03a背离驱动背板01的一侧形成色阻层04的过程中,这个无机封装层03a极易受到损坏,导致封装结构03无法再对OLED发光器件02进行有效的封装。如此,目前的封装结构03会影响硅基OLED显示面板00的可信赖性,进而导致硅基OLED显示面板00的产品良率较低。
请参考图2,图2是本申请实施例提供的一种显示面板的膜层结构示意图。这种显示面板000可以为硅基OLED显示面板。该显示面板000可以包括:驱动背板100、发光器件200、封装结构800以及色阻层500。
显示面板000中驱动背板100可以包括衬底基板101。
显示面板000中的发光器件200可以位于驱动背板100的一侧。这里,发光器件200可以为OLED发光器件。示例的,显示面板000中的发光器件200的个数是多个,驱动背板100还可以具有位于衬底基板101上的多个像素驱动电路102,且驱动背板100内的多个像素驱动电路102可以与多个发光器件200一一对应电连接。这样,通过各个像素驱动电路102可以驱动相应的发光器件200发光,使得显示面板000显示相应的画面。
显示面板000中的封装结构800位于发光器件200背离驱动背板100的一侧,且封装结构800用于对发光器件200进行封装。这里,封装结构800可以包括无机封装结构300和有机封装结构400,无机封装结构300相对于有机封装结构400更靠近驱动背板100。
显示面板000中的色阻层500位于有机封装结构400背离驱动背板100一侧,色阻层500与有机封装结构400贴接。
其中,在垂直于衬底基板101的方向上,有机封装结构400的最大厚度小于无机封装结构300的厚度。
这里,无机封装结构300由无机材料制成,而无机材料具有较好的水氧阻隔能力。因此,通过无机封装结构300能够对显示面板000中的发光器件200起到较好的水氧阻隔作用。
有机封装结构400由有机材料制成,而有机材料具有较好的平坦性。因此,通过有机封装结构400可以对无机封装结构300进行平坦化,使得有机封装结构400背离驱动背板100的一面的平坦性较好。这样,在有机封装结构400背离驱动背板100的一侧设置色阻层500后,可以保证色阻层500的平坦性较好,使得色阻层500的厚度较为均匀,进而使得发光器件200发出的光线在穿过色阻层500出射后的均匀性较好,可以有效的提高显示面板000的出光效果,使得显示面板000的显示效果较好。
另外,由有机材料制成的有机封装结构400具有较好的支撑能力,且具有较好的抗酸碱性。后续在有机封装结构400背离驱动背板100的一侧通过构图工艺形成色阻层500的过程中,可以保证显示面板000内的封装结构的稳定性较高,进而保证这个封装结构能够对发光器件200进行有效的封装,有效的提高了显示面板000的可信赖性,且可以提高显示面板000的产品良率。
此外,在显示面板000上形成无机封装结构300和有机封装结构400后,需要去除无机封装结构300和有机封装结构400中位于显示面板000的非显示区内的部分,以暴露出在显示面板000的非显示区内设置的绑定结构,使得后续能够通过绑定工艺将驱动芯片绑定在绑定结构上。由于去除有机封装结构400位于非显示区内的部分的工艺难度的难度较高,而去除无机封装结构300位于非显示区内的部分的工艺难度较低。因此,当有机封装结构400的最大厚度小于无机封装结构300的厚度时,可以保证有机封装结构400的厚度较小,以降低去除有机封装结构400中位于非显示区内的部分的工艺难度。
综上所述,本申请实施例提供的显示面板,包括:驱动背板、发光器件、封装结构以及色阻层。其中,封装结构可以包括无机封装结构和有机封装结构。有机封装结构由有机材料制成,而有机材料具有较好的平坦性。因此,通过有机封装结构可以对无机封装结构进行平坦化,使得有机封装结构背离驱动背板的一面的平坦性较好。这样,在有机封装结构背离驱动背板的一侧设置色阻层后,可以保证色阻层的平坦性较好,使得色阻层的厚度较为均匀,进而使得发光器件发出的光线在穿过色阻层出射后的均匀性较好,可以有效的提高显示面板的出光效果,使得显示面板的显示效果较好。另外,由有机材料制成的有机封装结构具有较好的支撑能力,且具有较好的抗酸碱性。后续在有机封装结构背离驱动背板的一侧通过构图工艺形成色阻层的过程中,可以保证显示面板内的封装结构的稳定性较高,进而保证无这个封装结构能够对发光器件进行有效的封装,有效的提高了显示面板的可信赖性,且可以提高显示面板的产品良率。
可选的,有机封装结构400可以的主要成分包括:丙二醇甲醚醋酸酯和硬化树脂等。
需要说明的是,本申请实施例中的有机封装结构400可以通过喷墨打印工艺形成。在通过喷墨打印工艺形成有机封装结构400之前,可以将有机材料混合一定的溶剂形成液态物质,这样在通过喷墨打印工艺形成有机封装结构400的过程中,液态物质可以充分填充在无机封装结构300背离驱动背板100一侧存在的凹陷位置处,后续将液态物质固化后即可得到能够对无机封装结构300进行平坦的有机封装结构400。这里,在通过喷墨打印工艺形成有机封装结构400之前,还可以在液态物质中添加固化溶剂。例如,固化溶剂可以为热固化溶剂,这样后续对显示面板进行加热处理,即可将液态物质固化为有机封装结构400;固化溶剂也可以为光固化溶剂,这样后续对显示面板进行紫外线照射处理,即可将液态物质固化为有机封装结构400。
在本申请实施例中,请参考图3,图3是本申请实施例提供的另一种显示面板的膜层结构示意图。无机封装结构300包括:层叠设置的第一无机封装结构300a和第二无机封装结构300b,第二无机封装结构300b的致密度大于第一无机封装结构300a的致密度。这里,层叠设置的第一无机封装结构300a和第二无机封装结构300b主要是为了隔绝外界环境中的水氧,以阻隔外界环境中的水氧侵蚀OELD发光器件200。且第二无机封装结构300b的致密度大于第一无机封装结构300a的致密度,因此第二无机封装结构300b的隔绝水氧的能力优于第 一无机封装结构300a的隔绝水氧的能力,可进一步提高无机封装结构300对发光器件200的封装效果。
在本申请实施例中,第一无机封装结构300a包括层叠设置的至少两层无机层,且至少两层无机层的材料包括氮化硅和氮氧化硅中的一种或两种。为此,本申请实施例将以以下两个方面为例对第一无机封装结构300a的组成成分进行说明:
第一方面,请参考图4,图4是本申请实施例提供的又一种显示面板的膜层结构示意图。当无机封装结构300内的第一无机封装结构300a中的各层无机层的材料为氮化硅时,由于氮化硅对水氧阻隔能力较强,因此,可以保证第一无机封装结构300a能够对显示面板000中的发光器件200起到较好的水氧阻隔作用。
第二方面,请参考图5,图5是本申请实施例提供的再一种显示面板的膜层结构示意图。当无机封装结构300内的第一无机封装结构300a中的至少两层无机层的材料同时包括氮化硅和氮氧化硅时,第一无机封装结构300a中的一部分无机层采用氮化硅制成,另一部分无机层采用氮氧化硅制成。
这里,由于氮化硅对水氧阻隔能力较强,因此,通过由氮化硅制成的第一无机封装结构300a,能够对显示面板000中的发光器件200起到较好的水氧阻隔作用。又由于氮氧化硅具有较好的膜层粘附性,因此,通过由氮氧化硅制成的第一无机封装结构300a,能够保证无机封装结构300的稳定性较好。
示例的,无机封装结构300内的第一无机封装结构300a可以包括:背离驱动背板100的方向层叠设置的第一无机层301、第二无机层302、第三无机层303和第四无机层304。
其中,第一无机层301和第三无机层303的材料均包括氮氧化硅,第二无机层302和第四无机层304的材料均包括氮化硅。
由于显示面板000中的发光器件200可以包括:层叠设置的阳极、发光层和阴极,发光器件200内的阴极相对与阳极更靠近无机封装结构300。因此,无机封装结构300可以与发光器件200内的阴极直接贴接。而当无机封装结构300中最靠近发光器件200的第一无机层301采用氮氧化硅制成时,因氮氧化硅具有较好的膜层粘附性,其可以与发光器件200内的阴极紧密贴接。为此,第一无机层301与发光器件200贴接的紧密性较高,可以进一步的提高无机封装结构300对发光器件200进行封装的效果。
并且,当无机封装结构300中位于第二无机层302与第四无机层304之间的第三无机层303采用氮氧化硅制成时,通过第三无机层303可以提高其与第二无机层302贴接的紧密性,且可以提供其与第四无机层304贴接的紧密性,使得无机封装结构300的稳定性较高。
同时,当无机封装结构300中的第二无机层302和第四无机层304均采用氮化硅制成时,因氮化硅具有较好的水氧阻隔能力。为此,通过第二无机层302和第四无机层304,可以对显示面板000中的发光器件200起到较好的水氧阻隔作用。
在本申请实施例中,第二无机封装结构300b的材料包括氧化铝,由于氧化铝材料的对水氧阻隔的能力优于氮化硅的对水氧阻隔的能力,且优于氮氧化硅对水氧阻隔的能力。因此,当无机封装结构300内的第二无机封装结构300b由氧化铝材料制成时,可以进一步的提高无机封装结构300的对发光器件200进行封装的封装效果。
在本申请中,由于在形成由氧化铝制成的第二无机封装结构300b的过程中,需要让显示面板处于湿度较高的环境中。因此,为了避免显示面板000内设置的发光器件200被水氧侵蚀,需要预先在发光器件200背离驱动背板100的一侧形成无机层,以阻隔水氧侵入发光器件200。为此,第二无机封装结构300b需要位于两层相邻第一无机封装结构300a之间,或者,位于第一无机封装结构300a和有机封装结构400之间。
需要说明的是,本申请实施例中的无机封装结构300内的第一无机封装结构300a均可以通过化学气相沉积(英文:Chemical Vapor Deposition;简称:CVD)形成,第二无机封装结构300b可以通过原子层沉积的方式形成。由于通过原子层沉积方式形成的膜层厚度,小于通过CVD沉积方式形成的膜层厚度。因此,在垂直于衬底基板101的方向上,第二无机封装结构300b的厚度小于第一无机封装结构300a的厚度。示例的,在垂直于衬底基板101的方向上,第二无机封装结构300b的厚度小于第一无机封装结构300a内的任一无机层的厚度。
在本申请实施例中,显示面板000具有显示区。显示面板000内的发光器件200和色阻层500均分布在显示面板000的显示区内。在显示面板000的显示区内,有机封装结构400覆盖无机封装结构300。这样,位于显示区内的有机封装结构400可以对位于显示区内的无机封装结构300进行平坦化,进而使得显示区内的色阻层500的平坦性较好。
可选的,在显示面板000的显示区内,有机封装结构400背离驱动背板100的一面与衬底基板101可以平行。这样,在有机封装结构400中位于显示区内的部分背离驱动背面100的一面上形成色阻层500后,可以保证色阻层500靠近有机封装结构400的一面共面,且可以保证色阻层500背离有机封装结构400的一面共面,进而可以保证色阻层500在各个位置处的厚度是一致的,进一步的提高了发光器件200发出的光线在穿过色阻层出射后的均匀性。在其他可能的实现方式中,有机封装结构400背离驱动背板100的一面与衬底基板101可以不平行,但需要保证有机封装结构400背离驱动背板100的一面与衬底基板101朝向发光器件200的一面之间的夹角较小,例如,二者之间的夹角的范围可以为:0°至10°。
在本申请实施例中,请参考图6,图6是本申请另一实施例提供的一种显示面板的膜层结构示意图。显示面板包括:像素界定层600、第一电极层201、发光功能层202和第二电极层203。其中,第一电极层201通常也被称为阳极层,第二电极层203通常也背称为阴极层。这里,第一电极层201可以具有多个第一电极2011,各个第一电极2011均与驱动背板100电连接,例如,驱动背板100内的多个像素驱动电路102可以与多个第一电极2011一一对应电连接。像素定义层600可以具有与多个第一电极2011一一对应的多个像素开口K。
其中,第一电极2011、发光功能层202,以及第二电极层203位于同一个像素开口K的部分组成一个发光器件200。其中,第一电极2011位于像素开口K内的部分即为发光器件200的阳极,第二电极层203位于像素开口K内的部分即为发光器件200内的阴极。
这里,为了保证发光器件200内的发光功能层202发出的光线能够可以穿过第二电极层203,第二电极层203由具有透光性的导电材料制成,而第一电极层201由具有反光性的导电材料制成。例如,第二电极层203可以由氧化铟锌(英文:Indium Zinc Oxide;简称:IZO)或氧化铟锡(英文:Indium Tin Oxide;简称:ITO)制成;第一电极层201可以由诸如金属铝、金属钛或合金等金属材料制成。
在本申请实施例中,在垂直于衬底基板101的方向上,有机封装结构400的最大厚度小于发光功能层202的厚度。
可选的,有机封装结构400包括:第一有机封装结构400a和第二有机封装结构400b。这里,第一有机封装结构400a在驱动背板100上的正投影位于第一 电极层201在驱动背板100上的正投影内,第二有机封装结构400b在驱动背板100上的正投影与像素界定层600在衬底基板101上的正投影存在交叠区域。
在本申请中,有机封装结构400中的第一有机封装结构400a与像素界定层600的像素开口K正对,有机封装结构400中的第二有机封装结构400b与像素界定层600正对。这样,显示面板000中位于像素界定层600的像素开口K所在区域内的厚度小于其他位置处的厚度。为了保证有机封装结构400背离驱动背板100的一面能够与衬底基板101平行,需要保证在垂直于衬底基板101的方向上,第一有机封装结构400a的厚度大于或等于第二有机封装结构400b的厚度。
可选的,第一有机封装结构400a在驱动背板100上的正投影与像素界定层600在衬底基板上的正投影不重合,以保证第一有机封装结构400a能够正好与像素定义层600的像素开口K正对。也即是,第一有机封装结构400a在驱动背板100上的正投影可以位于像素开口K在驱动背板100上的正投影内。
在本申请中,第一有机封装结构400a的侧面与第二有机封装结构400b的侧面贴合,且第一有机封装结构400a和第二有机封装结构400b同层设置且材料相同。也即是,有机封装结构400内的第一有机封装结构400a与第二有机封装结构400b是一体结构,且可以通同一次工艺同时形成。
在本申请实施例中,请参考图7,图7是本申请另一实施例提供的另一种显示面板的膜层结构示意图。显示面板000内的发光器件200的个数为多个,色阻层500具有与多个发光器件200一一对应的色阻块,色阻块在驱动背板100上的正投影与对应的发光器件200在驱动背板100上的正投影存在交叠区域。
示例的,色阻层500可以包含三种颜色的色阻块,这三种颜色的色阻块分别为:红色色阻块500R、绿色色阻块500G和蓝色色阻块500B。这样,与红色色阻块500R对应的发光器件200发出的光线经过色阻层500后能够出射红光,与绿色色阻块500G对应的发光器件200发出的光线经过色阻层500后能够出射绿光,与蓝色色阻块500B对应的发光器件200发出的光线经过色阻层500后能够出射蓝光。如此,通过在显示面板000内设置的色阻层500,能够让显示面板000同时出射红光、绿光和蓝光,使得显示面板000能够显示出彩色画面
在本申请实施例中,如图7所示,显示面板000还可以包括:位于色阻层500背离驱动背板100一侧的多个微透镜700,多个微透镜700与多个发光器件200一一对应,每个微透镜700在驱动背板100上的正投影与对应的发光器件 200在驱动背板100上的正投影存在交叠区域。通过微透镜700可以将对应的发光器件200发出的光线进行汇聚,可以提高发光器件200发出的光线的出光效果,使得显示面板000的显示效果较好。
可选的,请参考图8,图8是本申请另一实施例提供的又一种显示面板的膜层结构示意图。驱动背板100中的像素驱动电路102可以包括:转接电极1021和薄膜晶体管1022。其中,转接电极1021可以位于薄膜晶体管1022背离衬底101的一侧。显示面板000内的发光器件200可以位于转接电极1021背离衬底101的一侧。需要说明的是,像素驱动电路102中的薄膜晶体管1022的个数通常为多个。
这里,薄膜晶体管1022可以包括:源极S、漏极D、栅极G和有源层Act。其中,薄膜晶体管1022的源极S和漏极D均可以与有源层Act电连接,薄膜晶体管1022的栅极G可以与有源层Act绝缘,例如,薄膜晶体管1022的栅极G与有源层Act之间可以通过栅极绝缘层1023绝缘。薄膜晶体管1022的源极S和漏极D中的一个可以通过转接电极1021与对应的发光器件200内的阳极电连接。
在本申请中,薄膜晶体管1022的源极S和漏极D是同层设置且材料相同的。且薄膜晶体管1022属于顶栅型晶体管,也即是,薄膜晶体管1022的有源层Act相对于栅极G更靠近衬底101。
在这种情况下,薄膜晶体管1022的有源层Act可以位于衬底101上,薄膜晶体管1022的栅极G可以位于有源层Act背离衬底101的一侧,薄膜晶体管1022的源极S和漏极D均可以位于栅极G背离衬底101的一侧。
并且,薄膜晶体管1022的源极S和漏极D所在的导电层与栅极G所在的导电层之间存在绝缘层,例如,该绝缘层可以为层间介电层1024。需要说明的是,在其他的可能的实现方式中,薄膜晶体管1022也可以为底栅型晶体管,本申请实施例在此不做限定。
在本申请中,薄膜晶体管1022的源漏极所在的导电层与转接电极1021所在的导电层之间设置有第一平坦层1025,转接电极1021所在的导电层与阳极层201之间设置有第二平坦层1026。通过第一平坦层1025可以提高转接电极1021所在的导电层的平坦性,使得转接电极1021所在的导电层内设置的信号线的信号传输性能较好。通过第二平坦层1026可以提高后续形成的发光器件200的平坦性,使得发光器件200能够稳定的进行发光。
综上所述,本申请实施例提供的显示面板,包括:驱动背板、发光器件、封装结构以及色阻层。其中,封装结构可以包括无机封装结构和有机封装结构。有机封装结构由有机材料制成,而有机材料具有较好的平坦性。因此,通过有机封装结构可以对无机封装结构进行平坦化,使得有机封装结构背离驱动背板的一面的平坦性较好。这样,在有机封装结构背离驱动背板的一侧设置色阻层后,可以保证色阻层的平坦性较好,使得色阻层的厚度较为均匀,进而使得发光器件发出的光线在穿过色阻层出射后的均匀性较好,可以有效的提高显示面板的出光效果,使得显示面板的显示效果较好。另外,由有机材料制成的有机封装结构具有较好的支撑能力,且具有较好的抗酸碱性。后续在有机封装结构背离驱动背板的一侧通过构图工艺形成色阻层的过程中,可以保证显示面板内的封装结构的稳定性较高,进而保证无这个封装结构能够对发光器件进行有效的封装,有效的提高了显示面板的可信赖性,且可以提高显示面板的产品良率。
本申请实施例中请参考图9,图9是本申请实施例提供的一种显示面板的制造方法流程图。该方法包括:
步骤S1,在驱动背板的一侧形成发光器件。
步骤S2,在发光器件背离驱动背板一侧形成封装结构,封装结构包括无机封装结构和有机封装结构。这里,无机封装结构相对于有机封装结构更靠近驱动背板。
步骤S3,在有机封装结构背离驱动背板一侧形成色阻层。这里,色阻层与有机封装结构贴接。
其中,驱动背板包括衬底基板,在垂直于衬底基板的方向上,有机封装结构的最大厚度小于无机封装结构的厚度。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的显示面板的制造方法的具体原理,可以参考前述显示面板结构的实施例中的对应内容,在此不再赘述。
综上所述,本申请实施例提供的显示面板的制造方法,包括:在驱动背板上形成多个发光器件、封装结构以及色阻层。其中,封装结构包括无机封装结构和有机封装结构。有机封装结构由有机材料制成,而有机材料具有较好的平坦性。因此,通过有机封装结构可以对无机封装结构进行平坦化,使得有机封装结构背离驱动背板的一面的平坦性较好。这样,在有机封装结构背离驱动背 板的一侧设置色阻层后,可以保证色阻层的平坦性较好,使得色阻层的厚度较为均匀,进而使得发光器件发出的光线在穿过色阻层出射后的均匀性较好,可以有效的提高显示面板的出光效果,使得显示面板的显示效果较好。另外,由有机材料制成的有机封装结构具有较好的支撑能力,且具有较好的抗酸碱性。后续在有机封装结构背离驱动背板的一侧通过构图工艺形成色阻层的过程中,可以保证显示面板内的封装结构的稳定性较高,进而保证无这个封装结构能够对发光器件进行有效的封装,有效的提高了显示面板的可信赖性,且可以提高显示面板的产品良率。
本申请实施例还提供了一种显示装置,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,也可以为:诸如近眼显示设备、虚拟现实显示设备和增强现实显示设备等可穿戴的显示设备。该显示装置可以包括:供电组件和显示面板。在本申请实施例中,显示面板可以为上述实施例中的显示面板。例如,其可以为图2、图3、图4、图5、图6、图7或图8示出的显示面板。该供电组件与显示面板连接,用于为显示面板提供电源,以使显示面板能够显示图像。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
在本申请中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅为本申请的可选的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种显示面板,其特征在于,包括:
    驱动背板,所述驱动背板包括衬底基板;
    位于所述驱动背板一侧的发光器件;
    位于所述发光器件背离所述驱动背板一侧的封装结构,所述封结构包括无机封装结构和有机封装结构,所述无机封装结构相对于所述有机封装结构更靠近所述驱动背板;
    以及,位于所述有机封装结构背离所述驱动背板一侧的色阻层,所述色阻层与所述有机封装结构贴接;
    其中,在垂直于所述衬底基板的方向上,所述有机封装结构的最大厚度小于所述无机封装结构的厚度。
  2. 根据权利要求1所述的显示面板,其特征在于,所述无机封装结构包括:层叠设置的第一无机封装结构和第二无机封装结构,所述第二无机封装结构的致密度大于所述第一无机封装结构的致密度。
  3. 根据权利要求2所述的显示面板,其特征在于,所述第一无机封装结构包括层叠设置的至少两层无机层。
  4. 根据权利要求3所述的显示面板,其特征在于,所述至少两层无机层的材料包括氮化硅和氮氧化硅中的一种或两种。
  5. 根据权利要求4所述的显示面板,其特征在于,所述至少两层无机层包括:背离所述驱动背板的方向层叠设置的第一无机层、第二无机层、第三无机层和第四无机层;
    其中,所述第一无机层和所述第三无机层的材料均包括所述氮氧化硅,所述第二无机层和所述第四无机层的材料均包括所述氮化硅。
  6. 根据权利要求4所述的显示面板,其特征在于,所述第二无机封装结构的材料包括氧化铝。
  7. 根据权利要求3所述的显示面板,其特征在于,所述第二无机封装结构位于两层相邻的所述无机层之间,或者,位于所述第一无机封装结构和所述有机封装结构之间。
  8. 根据权利要求3所述的显示面板,其特征在于,在垂直于所述衬底基板的方向上,所述第二无机封装结构的厚度小于任一所述无机层的厚度。
  9. 根据权利要求1至8任一所述的显示面板,其特征在于,所述发光器件和所述色阻层均分布在所述显示面板的显示区内,在所述显示区内,所述有机封装结构覆盖所述无机封装结构。
  10. 根据权利要求9所述的显示面板,其特征在于,在所述显示区内,所述有机封装结构背离所述驱动背板的一面与所述衬底基板平行。
  11. 根据权利要求1至8任一所述的显示面板,其特征在于,所述显示面板包括:像素界定层、第一电极层、发光功能层和第二电极层;
    所述第一电极层具有多个第一电极,所述第一电极与所述驱动背板电连接;
    所述像素定义层具有与所述多个第一电极一一对应的多个像素开口;
    其中,所述第一电极、所述发光功能层,以及所述第二电极层位于同一个所述像素开口的部分组成一个所述发光器件。
  12. 根据权利要求11所述的显示面板,其特征在于,在垂直于所述衬底基板的方向上,所述有机封装结构的最大厚度小于所述发光功能层的厚度。
  13. 根据权利要求11所述的显示面板,其特征在于,所述有机封装结构包括:第一有机封装结构和第二有机封装结构,所述第一有机封装结构在所述驱动背板上的正投影位于所述第一电极层在所述驱动背板上的正投影内,所述第二有机封装结构在所述驱动背板上的正投影与所述像素界定层在所述衬底基板上的正投影存在交叠区域;
    其中,在垂直于所述衬底基板的方向上,所述第一有机封装结构的厚度大 于或等于所述第二有机封装结构的厚度。
  14. 根据权利要求13所述的显示面板,其特征在于,所述第一有机封装结构在所述驱动背板上的正投影与所述像素界定层在所述衬底基板上的正投影不重合。
  15. 根据权利要求13所述的显示面板,其特征在于,所述第一有机封装结构的侧面与所述第二有机封装结构的侧面贴合,且所述第一有机封装结构和第二有机封装结构同层设置且材料相同。
  16. 根据权利要求12至15任一所述的显示面板,其特征在于,所述显示面板内的所述发光器件的个数为多个,所述色阻层具有与多个所述发光器件一一对应的色阻块,所述色阻块在所述驱动背板上的正投影与对应的发光器件在所述驱动背板上的正投影存在交叠区域。
  17. 根据权利要求16所述的显示面板,其特征在于,所述显示面板还包括:位于所述色阻层背离所述驱动背板一侧的多个微透镜,所述多个微透镜与多个所述发光器件一一对应,所述微透镜在所述驱动背板上的正投影与对应的发光器件在所述驱动背板上的正投影存在交叠区域。
  18. 根据权利要求12至15任一所述的显示面板,其特征在于,所述驱动背板还包括:位于所述衬底基板一侧的多个像素驱动电路,所述多个像素驱动电路与所述多个第一电极一一对应电连接。
  19. 一种显示面板的制造方法,其特征在于,所述方法包括:
    在驱动背板的一侧形成发光器件;
    在所述发光器件背离所述驱动背板一侧形成封装结构,所述封装结构包括无机封装结构和有机封装结构,所述无机封装结构相对于所述有机封装结构更靠近所述驱动背板;
    在所述有机封装结构背离所述驱动背板一侧形成色阻层,所述色阻层与所述有机封装结构贴接;
    其中,所述驱动背板包括衬底基板,在垂直于所述衬底基板的方向上,所述有机封装结构的最大厚度小于所述无机封装结构的厚度。
  20. 一种显示装置,其特征在于,包括:供电组件,以及与所述供电组件电连接的显示面板,所述显示面板为权利要求1至18任一所述的显示面板。
PCT/CN2022/114347 2022-08-23 2022-08-23 显示面板及其制造方法、显示装置 WO2024040447A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002801.4A CN117918041A (zh) 2022-08-23 2022-08-23 显示面板及其制造方法、显示装置
PCT/CN2022/114347 WO2024040447A1 (zh) 2022-08-23 2022-08-23 显示面板及其制造方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114347 WO2024040447A1 (zh) 2022-08-23 2022-08-23 显示面板及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2024040447A1 true WO2024040447A1 (zh) 2024-02-29

Family

ID=90012193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114347 WO2024040447A1 (zh) 2022-08-23 2022-08-23 显示面板及其制造方法、显示装置

Country Status (2)

Country Link
CN (1) CN117918041A (zh)
WO (1) WO2024040447A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170244066A1 (en) * 2016-02-19 2017-08-24 Japan Display Inc. Display device and method for manufacturing display device
CN108198837A (zh) * 2017-12-26 2018-06-22 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN109904212A (zh) * 2019-03-28 2019-06-18 昆山国显光电有限公司 一种有机发光显示面板及其制作方法
CN111628098A (zh) * 2019-02-28 2020-09-04 三星显示有限公司 显示装置
CN114447054A (zh) * 2020-11-03 2022-05-06 三星显示有限公司 显示装置
CN114649351A (zh) * 2022-03-24 2022-06-21 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170244066A1 (en) * 2016-02-19 2017-08-24 Japan Display Inc. Display device and method for manufacturing display device
CN108198837A (zh) * 2017-12-26 2018-06-22 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN111628098A (zh) * 2019-02-28 2020-09-04 三星显示有限公司 显示装置
CN109904212A (zh) * 2019-03-28 2019-06-18 昆山国显光电有限公司 一种有机发光显示面板及其制作方法
CN114447054A (zh) * 2020-11-03 2022-05-06 三星显示有限公司 显示装置
CN114649351A (zh) * 2022-03-24 2022-06-21 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN117918041A (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
US11581461B2 (en) Display substrate, preparation method thereof, and display device
KR102611500B1 (ko) 유기발광표시장치와 그의 제조방법
TWI396464B (zh) 有機電致發光顯示裝置及其製作方法
JP6733203B2 (ja) 電気光学装置、電子機器
US20050155704A1 (en) Method of making an OLED display device with enhanced optical and mechanical properties
JP2010027504A (ja) 有機el装置及び電子機器
US11183111B2 (en) Pixel unit and method for manufacturing the same, and double-sided OLED display device
JP2004342432A (ja) 有機el表示装置
US11889715B2 (en) Display substrate and manufacturing method thereof, and display device
US20230006178A1 (en) Display panel, display apparatus, and method for manufacturing display panel
KR20130031092A (ko) 유기전계발광 표시소자 및 그 제조방법
JP2012209215A (ja) 有機el装置の製造方法、電子機器
CN111146215A (zh) 一种阵列基板、其制作方法及显示装置
TWI670844B (zh) 發光顯示裝置及其製造方法
KR20160092826A (ko) 유기전계발광 표시소자
WO2021035530A1 (zh) 显示装置及制备方法、电子设备
CN114613811A (zh) 电致发光显示装置
WO2021189480A1 (zh) 显示基板及其制备方法、显示装置
WO2024040447A1 (zh) 显示面板及其制造方法、显示装置
CN117082943A (zh) 显示面板及其制备方法
JP2004349061A (ja) 表示装置、その製造方法および電子機器
KR101948173B1 (ko) 유기전계발광 표시소자
US20220068899A1 (en) Display panel and preparation method thereof
US11251405B2 (en) Organic light emitting diode display panel with barrier film package bag and fabricating method thereof
WO2023019646A1 (zh) 显示面板和电子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002801.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955996

Country of ref document: EP

Kind code of ref document: A1