WO2024040384A1 - 电池单体、电池以及用电装置 - Google Patents

电池单体、电池以及用电装置 Download PDF

Info

Publication number
WO2024040384A1
WO2024040384A1 PCT/CN2022/113923 CN2022113923W WO2024040384A1 WO 2024040384 A1 WO2024040384 A1 WO 2024040384A1 CN 2022113923 W CN2022113923 W CN 2022113923W WO 2024040384 A1 WO2024040384 A1 WO 2024040384A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
insulating
housing
end cap
opening
Prior art date
Application number
PCT/CN2022/113923
Other languages
English (en)
French (fr)
Inventor
陈龙
林蹬华
黄守君
陈新祥
郑于炼
程启
雷育勇
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/113923 priority Critical patent/WO2024040384A1/zh
Publication of WO2024040384A1 publication Critical patent/WO2024040384A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery cell, a battery and an electrical device.
  • Battery cells are widely used in electronic devices, such as mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, electric tools, etc.
  • This application provides a battery, a battery and an electrical device, which can increase energy density.
  • some embodiments of the present application provide a battery cell, which includes a first case, a first electrode assembly, a second case, a second electrode assembly, and an end cap assembly.
  • the first housing has a first opening.
  • the first electrode assembly is accommodated in the first housing.
  • the second housing has a second opening opposite the first opening.
  • the second electrode assembly is accommodated in the second housing.
  • the end cap assembly is used to cover the first opening and the second opening.
  • the end cap assembly includes a connection assembly, and the connection assembly is used to electrically connect the first electrode assembly and the second electrode assembly.
  • the first case and the second case arranged in sequence can increase the overall size of the battery cell, thereby increasing the space utilization of the battery cell in the battery and improving the energy density.
  • the first electrode assembly and the second electrode assembly are accommodated in the first housing and the second housing respectively, which can reduce the size of a single electrode assembly and the size of a single housing, thereby simplifying the molding process of the housing and the electrode assembly. , reduce the internal resistance of the electrode assembly and the difficulty of electrolyte infiltration into the electrode assembly, and improve the cycle performance and service life of the battery cells.
  • the end cap assembly can cover the first opening and the second opening at the same time and achieve sealing of the battery cell, thereby simplifying the structure of the battery cell.
  • the connection component can electrically connect the first electrode component and the second electrode component to realize the confluence and output of current and simplify the structure of the battery cell.
  • the battery cell further includes an insulating component covering at least part of the first case and at least part of the second case.
  • the insulating component can protect the first case and the second case from the outside, improve the insulation of the battery cells, and reduce the risk of short circuit.
  • the insulating component completely covers the outer peripheral surface of the first housing and the outer peripheral surface of the second housing.
  • the insulating component completely covers the outer peripheral surface of the first housing and the outer peripheral surface of the second housing to reduce the exposed area of the first housing and the exposed area of the second housing, thereby reducing the distance between the first housing and other components.
  • the risk of conduction between live parts and the risk of conduction between the second housing and other conductive parts improves safety.
  • At least a portion of the end cap assembly is located between the first opening and the second opening.
  • a portion of the insulating component surrounds the outside of the portion of the end cap assembly located between the first opening and the second opening.
  • the insulating component can block the portion of the end cover assembly located between the first opening and the second opening, so as to reduce the risk of the end cover assembly being connected to its live parts and improve safety.
  • the end cap assembly includes a first end cap and a second end cap, the first end cap is used to cover the first opening, and the second end cap is located on a side of the first end cap facing the second housing and used for Close the second opening.
  • the connecting component connects the first end cap and the second end cap.
  • the first end cover and the second end cover are connected to the first casing and the second casing respectively, which can reduce the difficulty of installing the end cover assembly on the first casing and the second casing and improve the end cap assembly.
  • the stability of the cover assembly improves the sealing of the battery cells.
  • the first end cover and the second end cover can fix the connecting component, thereby reducing the shaking of the connecting component when the battery cell vibrates, and reducing the risk of connection failure between the connecting component and the first electrode component and connection failure between the connecting component and the second electrode component. reduce risks and improve the reliability of battery cells.
  • the insulating component circumferentially surrounds the portion of the first end cap located between the first housing and the second housing and the portion of the second end cap located between the first housing and the second housing.
  • the insulating component can cover the first end cover and the second end cover, reduce the exposure of the first end cover and the second end cover, reduce the risk of short circuit, and improve safety.
  • the insulating component is attached to a portion of the first end cap between the first and second housings and a portion of the second end cap between the first and second housings.
  • the insulating component is attached to the first end cover and the second end cover to reduce the risk of deformation and deflection of the insulating component when the battery cell is subjected to external impact, so that the insulating component can effectively shield the first end cover. cover and second end cap to reduce the risk of short circuit and improve safety.
  • the end cap assembly further includes an insulating plate disposed between the first end cap and the second end cap.
  • the insulating component surrounds at least part of the insulating panel from the outer periphery.
  • the insulating plate can insulate the first end cover and the second end cover to reduce the risk of short circuit and improve safety.
  • the insulating component can cooperate with the insulating plate to cover the first end cover and the second end cover, thereby reducing the exposure of the first end cover and the second end cover.
  • the insulating component is attached to the outer circumference of the insulating plate.
  • the insulating component is attached to the outer peripheral surface of the insulating plate to reduce the risk of deformation and deflection of the insulating component when the battery cell is subjected to external impact, and to reduce the risk of the first end cap being exposed and the second end cap being exposed. Expose risks and improve safety.
  • the first housing and the second housing are arranged along a first direction.
  • the insulating component includes a first insulating part and a second insulating part spaced apart along the first direction.
  • the first insulating part is connected to the first housing, and the second insulating part is connected to the second housing.
  • One end of the first insulating part close to the second insulating part extends beyond the first end cap along the first direction and is connected to the insulating plate.
  • One end of the second insulating part close to the first insulating part extends beyond the second end cap along the first direction and is connected to the insulation board. plate.
  • the first insulating part covers the first end cap from the outside to reduce the risk of the first end cap being exposed; the second insulating part covers the second end cap from the outside to reduce the risk of the second end cap being exposed.
  • Both the first insulating part and the second insulating part are connected to the insulating plate to reduce the deflection of the first insulating part and the second insulating part when the battery cell is subjected to external impact, thereby reducing the risk of the first end cap being exposed and the second Reduces the risk of exposed end caps and improves safety.
  • the first insulating part and the second insulating part are provided separately to reduce interference between the two during assembly.
  • the dimension of one end of the first insulating part close to the second insulating part beyond the first end cap in the first direction is U1, and U1 ⁇ 0.01 mm.
  • setting U1 to be greater than or equal to 0.01mm can make the connection area between the first insulating part and the insulating plate meet the requirements and reduce the risk of separation of the first insulating part and the insulating plate.
  • the dimension of one end of the second insulating part close to the first insulating part beyond the second end cap in the first direction is U2, and U2 ⁇ 0.01 mm.
  • setting U2 to be greater than or equal to 0.01mm can make the connection area between the second insulating part and the insulating plate meet the requirements and reduce the risk of separation of the second insulating part and the insulating plate.
  • the end cap assembly further includes a conductive member electrically connected to the connection assembly, and the insulating plate covers at least part of the conductive member to insulate and isolate the conductive member from the first end cap and the second end cap.
  • An escape gap is formed between the first insulating part and the second insulating part, and the escape gap is used to expose at least part of the conductive member.
  • the avoidance gap can expose at least part of the conductive component, so that other components can pass through the insulating component and be electrically connected to the conductive component, thereby detecting the potential of the connected component.
  • the end cap assembly further includes a conductive member electrically connected to the connection assembly, at least a portion of the conductive member being located between the first opening and the second opening.
  • the insulating component is provided with an escape structure, and the escape structure is used to expose at least part of the conductive component.
  • the avoidance structure can expose at least part of the conductive component, so that other components can pass through the insulating component and be electrically connected to the conductive component, thereby detecting the potential of the connecting component.
  • the first housing and the second housing are arranged along a first direction.
  • the size of the portion of the conductive component exposed through the avoidance structure along the first direction is L1, and L1 ⁇ 0.01 mm.
  • L1 is limited to be greater than or equal to 0.01 mm, so that the size of the contact between the probe passing through the avoidance structure and the conductive member in the first direction meets the detection requirements.
  • the escape structure includes an escape hole. In the axial direction of the escape hole, the escape hole is arranged opposite to the conductive member to expose at least part of the conductive member.
  • the escape hole can expose at least part of the conductive component, so that other components can pass through the insulating component and be electrically connected to the conductive component, thereby detecting the potential of the connecting component.
  • the avoidance hole is simple to form and its size is small, which can effectively reduce the risk of insulation failure.
  • the size of the portion of the conductive member exposed through the escape hole along the second direction is L2, and L2 ⁇ 0.01 mm.
  • the first direction, the second direction and the axial direction are perpendicular to each other.
  • L2 is limited to be greater than or equal to 0.01 mm, so that the size of the contact between the probe passing through the escape hole and the conductive member in the second direction meets the detection requirements.
  • the size of the battery cell along the axial direction is greater than the size of the battery cell along the second direction.
  • the plurality of battery cells may be arranged in the second direction.
  • the above technical solution arranges the escape hole on one side of the battery cell along the axial direction, which can reduce the risk of the escape hole of a certain battery cell being blocked by an adjacent battery cell.
  • the escape structure includes an escape gap that surrounds the end cap assembly.
  • the avoidance gap surrounds the end cover assembly so that the exposed position of the conductive parts can be flexibly set.
  • the battery cell further includes a first electrode terminal and a second electrode terminal.
  • the first electrode terminal is located on a side of the first electrode assembly away from the first opening and is electrically connected to the first electrode assembly.
  • the second electrode terminal It is located on a side of the second electrode assembly away from the second opening and is electrically connected to the second electrode assembly.
  • the first electrode terminal and the second electrode terminal are used to electrically connect the first electrode assembly and the second electrode assembly to an external circuit, thereby realizing charging and discharging of the electrode assembly.
  • the first electrode terminal and the second electrode terminal are respectively provided at two opposite ends of the battery cells to facilitate series-parallel connection between multiple battery cells.
  • some embodiments of the present application provide a battery, including a plurality of battery cells provided in any embodiment of the first aspect.
  • some embodiments of the present application provide an electrical device, including the battery cell provided in any embodiment of the first aspect, and the battery cell is used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic three-dimensional structural diagram of a battery cell provided by some embodiments of the present application.
  • Figure 4 is an exploded schematic diagram of the battery cell shown in Figure 3;
  • Figure 5 is a schematic side view of the battery cell shown in Figure 3;
  • Figure 6 is a schematic cross-sectional view of the battery cell shown in Figure 5 taken along line A-A;
  • Figure 7 is an enlarged schematic diagram of Figure 6 at circular frame C;
  • Figure 8 is an enlarged schematic diagram of the battery cell shown in Figure 5 at circular frame B;
  • Figure 9 is a schematic top view of the end cap assembly of a battery cell provided by some embodiments of the present application.
  • Figure 10 is a schematic cross-sectional view taken along line D-D in Figure 9;
  • Figure 11 is an exploded schematic diagram of the end cover assembly shown in Figure 9;
  • Figure 12 is a schematic front view of a battery cell provided by other embodiments of the present application.
  • Figure 13 is an enlarged schematic diagram of Figure 12 at the circular frame E;
  • Figure 14 is a schematic three-dimensional structural diagram of a battery cell provided by other embodiments of the present application.
  • Figure 15 is an enlarged schematic diagram of Figure 14 at the circular frame F;
  • Figure 16 is a schematic cross-sectional view of the battery cell shown in Figure 14;
  • Figure 17 is an enlarged schematic view of Figure 16 at the circular frame G.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • parallel includes not only the absolutely parallel situation, but also the roughly parallel situation that is conventionally recognized in engineering; at the same time, the term “perpendicular” includes not only the absolutely vertical situation, but also the roughly parallel situation that is conventionally recognized in engineering. vertical situation.
  • battery cells may include lithium-ion battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells or magnesium-ion battery cells, etc.
  • the embodiments of this application are not limited to this. .
  • the battery mentioned in the embodiments of this application refers to a single physical module including multiple battery cells to provide higher voltage and capacity.
  • a battery may generally include a case for enclosing one or more battery cells.
  • the box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly includes a positive electrode piece, a negative electrode piece and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector includes a positive electrode current collector and a positive electrode tab.
  • the positive electrode current collector is coated with the positive electrode active material layer.
  • the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the cathode current collector can be aluminum, and the cathode active material layer includes cathode active materials.
  • the cathode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode piece includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector includes a negative electrode current collector and a negative electrode tab.
  • the negative electrode current collector is coated with the negative electrode active material layer.
  • the negative electrode tab is not coated with the negative electrode active material layer.
  • the negative electrode current collector may be made of copper, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material may be carbon or silicon.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the battery cell also includes a casing, the casing has a receiving cavity, and the electrode assembly and the electrolyte are received in the receiving cavity.
  • the shell can protect the electrode assembly and reduce the risk of other foreign matter affecting the electrode assembly.
  • a battery includes a case and a plurality of battery cells accommodated in the case.
  • the box is usually provided with a fixed structure for supporting and fixing the battery cells.
  • the space utilization rate is low, resulting in the energy density of the battery being unable to meet the requirements.
  • the inventor tried to increase the size of a single battery cell to reduce the number of battery cells in the battery, simplify the fixed structure in the box, and improve the space utilization inside the battery.
  • the size of the case and the size of the electrode assembly need to be adaptively increased.
  • the conductive paths of large-sized electrode assemblies are relatively long and the internal resistance is relatively large, resulting in low power of the battery cells.
  • Large-sized electrode components will also increase the difficulty for the electrolyte to penetrate into the interior of the electrode components, thereby affecting the cycle performance and service life of the battery cells.
  • the battery cell includes a first case, a first electrode assembly, a second case, a second electrode assembly and an end cap assembly.
  • the first housing has a first opening.
  • the first electrode assembly is accommodated in the first housing.
  • the second housing has a second opening opposite the first opening.
  • the second electrode assembly is accommodated in the second housing.
  • the end cap assembly is used to cover the first opening and the second opening.
  • the end cap assembly includes a connection assembly, and the connection assembly is used to electrically connect the first electrode assembly and the second electrode assembly.
  • the first case and the second case arranged in sequence can increase the overall size of the battery cell, thereby increasing the space utilization of the battery cell in the battery and improving the energy density.
  • the first electrode assembly and the second electrode assembly are accommodated in the first housing and the second housing respectively, which can reduce the size of a single electrode assembly and the size of a single housing, thereby simplifying the molding process of the housing and the electrode assembly. , reduce the internal resistance of the electrode assembly and the difficulty of electrolyte infiltration into the electrode assembly, and improve the cycle performance and service life of the battery cells.
  • the end cap assembly can cover the first opening and the second opening at the same time and achieve sealing of the battery cell, thereby simplifying the structure of the battery cell.
  • the connection component can electrically connect the first electrode component and the second electrode component to realize the confluence and output of current and simplify the output structure of the battery cell.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electric device as a vehicle as an example.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2 is provided inside the vehicle 1 , and the battery 2 can be provided at the bottom, head, or tail of the vehicle 1 .
  • the battery 2 may be used to power the vehicle 1 , for example, the battery 2 may be used as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4.
  • the controller 3 is used to control the battery 2 to provide power to the motor 4, for example, to meet the power requirements for starting, navigation and driving of the vehicle 1.
  • the battery 2 can not only be used as the operating power source of the vehicle 1, but also can be used as the driving power source of the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • Figure 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a case 5 and a battery cell 6 , and the battery cell 6 is accommodated in the case 5 .
  • the box 5 is used to accommodate the battery cells 6, and the box 5 can be of various structures.
  • the box body 5 may include a first box body part 5a and a second box body part 5b.
  • the first box body part 5a and the second box body part 5b cover each other.
  • the first box body part 5a and the second box body part 5b cover each other.
  • the two box portions 5b jointly define an accommodating space 5c for accommodating the battery cells 6.
  • the second box part 5b can be a hollow structure with one end open, and the first box part 5a is a plate-like structure.
  • the first box part 5a is covered with the opening side of the second box part 5b to form a receiving space 5c.
  • the box body 5; the first box body part 5a and the second box body part 5b can also be a hollow structure with one side open, and the opening side of the first box body part 5a is covered with the opening side of the second box body part 5b , to form a box 5 having an accommodation space 5c.
  • the first box part 5a and the second box part 5b can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a sealing member may also be provided between the first box part 5a and the second box part 5b, such as sealant, sealing ring, etc. .
  • the first box part 5a can also be called an upper box cover, and the second box part 5b can also be called a lower box.
  • the battery 2 there may be one battery cell 6 or a plurality of battery cells 6 . If there are multiple battery cells 6 , the multiple battery cells 6 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 6 are connected in series and in parallel. Multiple battery cells 6 can be directly connected in series or in parallel or mixed together, and then the whole composed of multiple battery cells 6 can be accommodated in the box 5; of course, multiple battery cells 6 can also be connected in series first. They are connected in parallel or mixed to form a battery module, and multiple battery modules are connected in series, parallel or mixed to form a whole, and are accommodated in the box 5 .
  • Figure 3 is a schematic three-dimensional structural view of a battery cell provided by some embodiments of the present application
  • Figure 4 is an exploded schematic view of the battery cell shown in Figure 3
  • Figure 5 is a schematic side view of the battery cell shown in Figure 3
  • Figure 6 is a schematic cross-sectional view of the battery cell shown in Figure 5 taken along line A-A
  • Figure 7 is an enlarged schematic view of Figure 6 at the circular frame C.
  • the battery cell 6 in some embodiments of the present application includes a first case 10 , a first electrode assembly 20 , a second case 30 , a second electrode assembly 40 and an end cap assembly 50 .
  • the first housing 10 has a first opening 11 .
  • the first electrode assembly 20 is accommodated in the first housing 10 .
  • the second housing 30 has a second opening 31 opposite to the first opening 11 .
  • the second electrode assembly 40 is accommodated in the second housing 30 .
  • the end cap assembly 50 is used to cover the first opening 11 and the second opening 31 .
  • the end cap assembly 50 includes a connection assembly 51 , and the connection assembly 51 is used to electrically connect the first electrode assembly 20 and the second electrode assembly 40 .
  • the electrode assembly (eg, first electrode assembly 20 and second electrode assembly 40) includes a positive electrode plate and a negative electrode plate.
  • the electrode assembly generates electrical energy through oxidation and reduction reactions during the insertion/extraction of ions in the positive electrode piece and the negative electrode piece.
  • the electrode assembly further includes an isolation film, which is used to insulate and isolate the positive electrode piece and the negative electrode piece.
  • the electrode assembly may be a wound electrode assembly, a laminated electrode assembly, or other types of electrode assemblies.
  • the positive electrode piece, the isolation film and the negative electrode piece of the electrode assembly are rolled and form a rolled structure.
  • first electrode assembly 20 There may be one first electrode assembly 20 or multiple first electrode components 20 , which is not limited in this embodiment. For example, there are multiple first electrode assemblies 20 , and the multiple first electrode assemblies 20 are stacked.
  • the first electrode assembly 20 and the second electrode assembly 40 may adopt the same structure, or may adopt different structures.
  • the first electrode assembly 20 may be a rolled electrode assembly
  • the second electrode assembly 40 may be a laminated electrode assembly.
  • both the first electrode assembly 20 and the second electrode assembly 40 are laminated electrode assemblies, or both are wound electrode assemblies.
  • the first electrode assembly 20 and the second electrode assembly 40 may have the same size or different sizes. Exemplarily, along the arrangement direction of the first electrode assembly 20 and the second electrode assembly 40, the size of the first electrode assembly 20 is equal to the size of the second electrode assembly 40.
  • the housings may be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc.
  • the housing can be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc. This application does not impose special restrictions on this.
  • the shape of the first housing 10 can be determined according to the specific formation and size of the first electrode assembly 20 .
  • a cylindrical shell can be used; if the first electrode assembly 20 has a rectangular parallelepiped structure, a rectangular parallelepiped shell can be used.
  • the shape of the second housing 30 can be determined according to the specific formation and size of the second electrode assembly 40 .
  • the first housing 10 may have a structure with one side open or two sides open. In some examples, the first housing 10 forms the first opening 11 only on a side facing the second housing 30 . In other examples, the first housing 10 forms the first opening 11 on a side facing the second housing 30 and the third opening 12 on a side facing away from the second housing 30 .
  • the second housing 30 may have a structure with one side open or two sides open. In some examples, the second housing 30 forms the second opening 31 only on the side facing the first housing 10 . In other examples, the second housing 30 forms a second opening 31 on a side facing the first housing 10 and a fourth opening 32 on a side facing away from the first housing 10 .
  • the first housing 10 has a first accommodation cavity for accommodating the first electrode assembly 20
  • the second housing 30 has a second accommodation cavity for accommodating the second electrode assembly 40
  • the end cover assembly 50 can separate the first receiving cavity of the first housing 10 and the second receiving cavity of the second housing 30 .
  • the end cap assembly 50 may also be provided with a channel communicating the first accommodation cavity and the second accommodation cavity.
  • connection assembly 51 may connect the first electrode assembly 20 and the second electrode assembly 40 in series, or may connect the first electrode assembly 20 and the second electrode assembly 40 in parallel.
  • first housing 10 and the second housing 30 may be separated by a certain distance, or may directly offset each other. This is not limited in the embodiment of the present application.
  • the first housing 10 and the second housing 30 arranged in sequence can increase the overall size of the battery cell 6, thereby increasing the space utilization of the battery cell 6 in the battery and improving the energy density.
  • the first electrode assembly 20 and the second electrode assembly 40 are accommodated in the first housing 10 and the second housing 30 respectively, which can reduce the size of a single electrode assembly and the size of a single housing, thereby simplifying the housing and the
  • the molding process of the electrode assembly reduces the internal resistance of the electrode assembly and the difficulty of electrolyte infiltration into the electrode assembly, and improves the cycle performance and service life of the battery cell 6 .
  • the end cap assembly 50 can cover the first opening 11 and the second opening 31 at the same time and achieve sealing of the battery cell 6 , thereby simplifying the structure of the battery cell 6 .
  • the connection component 51 can electrically connect the first electrode component 20 and the second electrode component 40 to realize the confluence and output of current and simplify the structure of the battery cell 6 .
  • the battery cell 6 further includes a first electrode terminal 61 and a second electrode terminal 62 with opposite polarities.
  • the first electrode terminal 61 and the second electrode terminal 62 are used to electrically connect the first electrode assembly 20 and the second electrode assembly 40 to an external circuit, thereby realizing charging and discharging of the electrode assembly.
  • the first electrode terminal 61 may be disposed on the first housing 10 or at other locations on the battery cell 6 .
  • the second electrode terminal 62 may be disposed on the second housing 30 , or may be disposed at other locations on the battery cell 6 .
  • the first electrode terminal 61 is electrically connected to the first electrode assembly 20 and the second electrode terminal 62 is electrically connected to the second electrode assembly 40 .
  • the first electrode assembly 20 and the second electrode assembly 40 are connected in series.
  • the first electrode assembly 20 includes a first positive electrode tab and a first negative electrode tab
  • the second electrode assembly 40 includes a second positive electrode tab and a second negative electrode tab.
  • the first negative electrode tab is electrically connected to the second positive electrode tab through the connecting component 51
  • the first electrode terminal 61 is electrically connected to the first positive electrode tab
  • the second electrode terminal 62 is electrically connected to the second negative electrode tab.
  • the first positive electrode tab is electrically connected to the second negative electrode tab through the connecting component 51
  • the first electrode terminal 61 is electrically connected to the first negative electrode tab
  • the second electrode terminal 62 is electrically connected to the second positive electrode tab. Ear.
  • the battery cell 6 further includes a first electrode terminal 61 and a second electrode terminal 62.
  • the first electrode terminal 61 is located on a side of the first electrode assembly 20 away from the first opening 11 and is electrically connected to the first electrode.
  • the second electrode terminal 62 is located on a side of the second electrode assembly 40 away from the second opening 31 and is electrically connected to the second electrode assembly 40 .
  • the first electrode terminal 61 and the second electrode terminal 62 are respectively provided at opposite ends of the battery cells 6 to facilitate series-parallel connection between multiple battery cells 6 .
  • the first housing 10 has a third opening 12 at an end away from the first opening 11 .
  • the battery cell 6 also includes a first cover 71 for covering the third opening 12 .
  • the first electrode terminal 61 is provided on the first cover 71 .
  • the second housing 30 has a fourth opening 32 at an end away from the second opening 31 , and the battery cell 6 further includes a second cover 72 for covering the fourth opening 32 .
  • the second electrode terminal 62 is provided on the second cover 72 .
  • the battery cell 6 further includes an insulating component 80 covering at least part of the first case 10 and at least part of the second case 30 .
  • the insulating component 80 may cover the exposed surface of the first housing 10 .
  • the insulating component 80 may completely cover the exposed surface of the first housing 10 , or may only include a part of the exposed surface of the first housing 10 .
  • the insulating component 80 may cover the exposed surface of the second housing 30 .
  • the insulating component 80 may completely cover the exposed surface of the second housing 30 , or may only include a part of the exposed surface of the second housing 30 .
  • the insulating component 80 can protect the first case 10 and the second case 30 from the outside, improve the insulation of the battery cell 6 and reduce the risk of short circuit.
  • the insulating component 80 completely covers the outer peripheral surface 13 of the first housing 10 and the outer peripheral surface 33 of the second housing 30 .
  • the outer peripheral surface 13 of the first housing 10 may be an outer surface of the first housing 10 that is parallel to the axial direction of the first opening 11 and surrounds the first opening 11 .
  • the outer peripheral surface 33 of the second housing 30 may be an outer surface of the second housing 30 that is parallel to the axial direction of the second opening 31 and surrounds the second opening 31 .
  • the insulating component 80 completely covers the outer peripheral surface 13 of the first housing 10 and the outer peripheral surface 33 of the second housing 30 to reduce the exposed area of the first housing 10 and the second housing 30 , thereby reducing the first
  • the risk of conduction between the housing 10 and other live components and the risk of conduction between the second housing 30 and other conductive components improve safety.
  • the insulating component 80 is bonded to the outer peripheral surface 13 of the first housing 10 and the outer peripheral surface 33 of the second housing 30 .
  • At least part of the end cap assembly 50 is located between the first opening 11 and the second opening 31 .
  • a portion of the insulating member 80 surrounds the outside of the portion of the end cap assembly 50 between the first opening 11 and the second opening 31 .
  • At least part of the end cap assembly 50 is located between the first opening 11 and the second opening 31 means that at least part of the end cap assembly 50 is located between the plane where the first opening 11 is located and the plane where the second opening 31 is located.
  • the end cap assembly 50 may be only partially located between the first opening 11 and the second opening 31 , or may be entirely located between the first opening 11 and the second opening 31 .
  • the insulating component 80 may completely surround the portion of the end cover assembly 50 located between the first opening 11 and the second opening 31 from the outside, or may partially surround the portion of the end cover assembly 50 located between the first opening 11 and the second opening 31 from the outside. the part in between.
  • the insulating component 80 can cover the portion of the end cover assembly 50 between the first opening 11 and the second opening 31 to reduce the risk of the end cover assembly 50 being electrically connected to its live parts and improve safety.
  • the end cap assembly 50 includes a first end cap 52 and a second end cap 53 , the first end cap 52 is used to cover the first opening 11 , and the second end cap 53 is located between the first end cap 52 and the second end cap 53 .
  • One side of the second housing 30 is used to cover the second opening 31 .
  • the connecting component 51 connects the first end cap 52 and the second end cap 53 .
  • connection component 51 can be insulated from the first end cap 52 or electrically connected to the first end cap 52 .
  • the connection component 51 can be insulated from the second end cover 53 , or can be electrically connected to the second end cover 53 .
  • the first end cover 52 and the second end cover 53 are connected to the first housing 10 and the second housing 30 respectively, which can reduce the installation difficulty of the end cover assembly 50 on the first housing 10 and the second housing 30 and improve The stability of the end cap assembly 50 improves the sealing performance of the battery cell 6 .
  • the first end cover 52 and the second end cover 53 can fix the connection assembly 51, thereby reducing the shaking of the connection assembly 51 when the battery cell 6 vibrates, and reducing the risk of connection failure between the connection assembly 51 and the first electrode assembly 20 and the connection assembly. 51 and the second electrode assembly 40 to avoid the risk of connection failure, thereby improving the reliability of the battery cell 6 .
  • the first end cap 52 is welded to the first housing 10 .
  • the second end cap 53 is welded to the second housing 30 .
  • the insulating component 80 circumferentially surrounds the portion of the first end cover 52 located between the first housing 10 and the second housing 30 and the portion of the second end cover 53 located between the first housing 10 and the second housing 10 . between the housings 30 .
  • the portion of the first end cover 52 located between the first housing 10 and the second housing 30 can be understood as: the portion of the first end cover 52 located between the plane where the first opening 11 is located and the plane where the second opening 31 is located. part.
  • the portion of the second end cover 53 located between the first housing 10 and the second housing 30 can be understood as: the portion of the second end cover 53 located between the plane where the first opening 11 is located and the plane where the second opening 31 is located. part.
  • the insulating component 80 can cover the first end cover 52 and the second end cover 53, reduce the exposure of the first end cover 52 and the second end cover 53, reduce the risk of short circuit, and improve safety.
  • the insulating component 80 is attached to a portion of the first end cap 52 between the first housing 10 and the second housing 30 and to a portion of the second end cap 53 between the first housing 10 and the second housing 10 . between the housings 30 .
  • Attaching can mean attaching and connecting.
  • the insulating component 80 is bonded to the first end cap 52 and the second end cap 53 .
  • the insulating component 80 is attached to the first end cover 52 and the second end cover 53 to reduce the risk of deformation and deflection of the insulating component 80 when the battery cell 6 is subjected to external impact, so that the insulating component 80 can effectively shield the first end cover.
  • the cover 52 and the second end cover 53 reduce the risk of short circuit and improve safety.
  • the end cap assembly 50 further includes an insulating plate 54 disposed between the first end cap 52 and the second end cap 53 .
  • the insulating member 80 surrounds at least part of the insulating plate 54 from the outer periphery.
  • the insulating plate 54 can insulate and isolate the first end cover 52 and the second end cover 53 to reduce the risk of short circuit and improve safety.
  • the insulating component 80 can cooperate with the insulating plate 54 to cover the first end cap 52 and the second end cap 53 and reduce the exposure of the first end cap 52 and the second end cap 53 .
  • the insulating plate 54 may be a plastic plate.
  • insulating component 80 is attached to the outer perimeter of insulating plate 54 .
  • the insulating component 80 is bonded to the insulating plate 54 .
  • the insulating component 80 is attached to the outer peripheral surface of the insulating plate 54 to reduce the risk of deformation and deflection of the insulating component 80 when the battery cell 6 is subjected to external impact, and to reduce the risk of the first end cap 52 and the second end cap 53 being exposed. Expose risks and improve safety.
  • the portion of the insulating member 80 attached to the outer peripheral surface of the insulating plate 54 goes around the insulating plate 54 .
  • the insulating component 80 can play a sealing role, reducing the risk of external impurities passing between the insulating plate 54 and the insulating component 80 , reducing the impurities falling onto the first end cap 52 and the second end cap 53 impurities, reducing the risk of corrosion of the first end cap 52 and the second end cap 53 and improving safety.
  • the first housing 10 and the second housing 30 are arranged along the first direction X.
  • the first opening 11 and the second opening 31 face each other along the first direction X.
  • the axial direction of the first opening 11 is parallel to the first direction X
  • the axial direction of the second opening 31 is parallel to the first direction X.
  • the end cap assembly 50 further includes a conductive member 55 electrically connected to the connection assembly 51 , and at least part of the conductive member 55 is located between the first opening 11 and the second opening 31 .
  • the insulating component 80 is provided with an escape structure 81 for exposing at least part of the conductive member 55 .
  • the conductive member 55 is electrically connected to the first electrode assembly 20 and the second electrode assembly 40 through the connection assembly 51 .
  • the portion of the conductive member 55 located between the first housing 10 and the second housing 30 can be understood as: the portion of the conductive member 55 located between the plane where the first opening 11 is located and the plane where the second opening 31 is located.
  • the conductive member 55 may be entirely located between the first opening 11 and the second opening 31 , or may be only partially located between the first opening 11 and the second opening 31 .
  • the avoidance structure 81 is used to avoid at least part of the conductive member 55 , and may include holes, gaps or other structures that pass through the insulating member 80 .
  • the avoidance structure 81 can expose at least part of the conductive component 55 so that other components can pass through the insulating component 80 and be electrically connected to the conductive component 55 to detect the potential of the connection component 51 .
  • the voltage of the first electrode assembly 20 and the voltage of the second electrode assembly 40 can be detected through the conductive member 55 .
  • the voltage detection device may be electrically connected to the conductive member 55 and the first electrode terminal 61 respectively through probes to detect the voltage of the first electrode assembly 20 .
  • the avoidance structure 81 can avoid the probe and provide a passage for the probe to pass through the insulating component 80 .
  • the voltage detection device may be electrically connected to the conductive member 55 and the second electrode terminal 62 respectively through probes to detect the voltage of the second electrode assembly 40 .
  • the avoidance structure 81 can avoid the probe and provide a passage for the probe to pass through the insulating component 80 .
  • the first housing 10 and the second housing 30 are arranged along the first direction X.
  • the size of the portion of the conductive member 55 exposed through the avoidance structure 81 along the first direction X is L1, and L1 ⁇ 0.01 mm.
  • the minimum size of the conductive member 55 along the first direction X may be recorded as L1 .
  • Some embodiments of the present application make L1 greater than or equal to 0.01 mm, so that the size of the contact between the probe passing through the avoidance structure 81 and the conductive member 55 in the first direction X meets the detection requirements.
  • the relief structure 81 includes a relief hole 81a.
  • the escape hole 81a is arranged opposite to the conductive member 55 so as to expose at least part of the conductive member 55.
  • the projection of the relief hole 81a and the projection of the conductive member 55 at least partially overlap.
  • the conductive member 55 can be observed.
  • the escape hole 81 a can expose at least part of the conductive member 55 so that other components can pass through the insulating component 80 and be electrically connected to the conductive member 55 , thereby detecting the potential of the connection component 51 .
  • the escape hole 81a is formed in a simple manner and has a small size, which can effectively reduce the risk of insulation failure.
  • the size of the portion of the conductive member 55 exposed through the escape hole 81 a along the first direction X is greater than or equal to 0.01 mm.
  • Figure 8 is an enlarged schematic view of the battery cell shown in Figure 5 at circular frame B.
  • the size of the portion of the conductive member 55 exposed through the escape hole 81 a along the second direction Y is L2, and L2 ⁇ 0.01 mm.
  • the first direction X, the second direction Y and the axial direction Z are two perpendicular to each other.
  • the minimum size of the portion of the conductive member 55 exposed through the escape hole 81 a along the second direction Y can be recorded as L2.
  • Some embodiments of the present application make L2 greater than or equal to 0.01 mm, so that the size of the contact between the probe passing through the escape hole 81a and the conductive member 55 in the second direction Y meets the detection requirements.
  • the size of the battery cell 6 along the axial direction Z is larger than the size of the battery cell 6 along the second direction Y.
  • a plurality of battery cells 6 may be arranged along the second direction Y. Disposing the escape hole 81 a on one side of the battery cell 6 along the axial direction Z can reduce the risk that the escape hole 81 a of a certain battery cell 6 is blocked by an adjacent battery cell 6 .
  • the outer surface of the insulating component 80 includes two first surfaces 82 oppositely arranged along the axial direction Z and two second surfaces 83 oppositely arranged along the second direction Y.
  • Each second surface 83 connects two First surface 82.
  • the area of the first surface 82 is smaller than the area of the second surface 83 .
  • the escape hole 81a is opened in the first surface 82 with a smaller area.
  • At least one first surface 82 is provided with an escape hole 81a.
  • both first surfaces 82 are provided with escape holes 81a.
  • Each first surface 82 may be provided with one escape hole 81a or multiple escape holes 81a.
  • Figure 9 is a schematic top view of the end cover assembly of a battery cell provided by some embodiments of the present application;
  • Figure 10 is a schematic cross-sectional view taken along line D-D in Figure 9;
  • Figure 11 is an exploded schematic view of the end cover assembly shown in Figure 9.
  • the connection assembly 51 includes a pole 511 and a connecting plate 512.
  • the pole 511 includes a pole body 5111 and a flange 5112 arranged around the pole body 5111.
  • the pole body 5111 passes through Through the first end cover 52, the insulating plate 54 and the second end cover 53, the flange 5112 is located on the side of the second end cover 53 away from the first end cover 52, and the connecting plate 512 is located on the first end cover 52 away from the second end cover.
  • the connecting plate 512 is fixed to the pole body 5111.
  • the connecting plate 512 and the flange 5112 clamp the first end cover 52 , the second end cover 53 and the insulating plate 54 from both sides to fix the three.
  • the pole body 5111 is riveted to the connecting plate 512 .
  • the pole body 5111 includes a first section 511a and a second section 511b arranged along the first direction X.
  • the first section 511a is connected to the connecting plate 512
  • the second section 511b is connected to the flange 5112.
  • the second section 511b and the flange 5112 are integrally formed.
  • the base metal of the first section 511a is different from the base metal of the second section 511b.
  • the base metal of the first section 511a is the main component of the material of the first section 511a
  • the base metal of the second section 511b is the main component of the material of the second section 511b.
  • one of the base metal of the first section 511a and the second section 511b is copper and the other is aluminum.
  • the first section 511a is connected to the second section 511b through a composite process.
  • the end cap assembly 50 further includes a first insulating member 56 for insulating isolation between the first end cap 52 and the connecting plate 512 .
  • a first insulating member 56 for insulating isolation between the first end cap 52 and the connecting plate 512 .
  • at least a portion of the first insulating member 56 is sandwiched between the first end cap 52 and the connecting plate 512 .
  • the end cap assembly 50 further includes a second insulating member 57 for insulating isolation between the second end cap 53 and the flange 5112 .
  • a second insulating member 57 for insulating isolation between the second end cap 53 and the flange 5112 .
  • at least part of the second insulating member 57 is sandwiched between the second end cap 53 and the flange 5112 .
  • the first end cover 52 includes a first through hole 521
  • the second end cover 53 includes a second through hole 531
  • the insulating plate 54 includes a third through hole 541 .
  • the pole body 5111 passes through the second through hole 531, the third through hole 541 and the first through hole 521 in sequence.
  • the end cap assembly 50 further includes a first sealing ring 58 for sealing the first through hole 521 .
  • a first sealing ring 58 for sealing the first through hole 521 .
  • at least part of the first sealing ring 58 is clamped between the connecting plate 512 and the first end cover 52 to seal the first through hole 521 .
  • At least part of the first sealing ring 58 is received in the first through hole 521 to insulate and separate the hole wall of the first through hole 521 from the pole body 5111 .
  • the end cap assembly 50 further includes a second sealing ring 59 for sealing the second through hole 531 .
  • a second sealing ring 59 for sealing the second through hole 531 .
  • at least part of the second sealing ring 59 is clamped between the flange 5112 and the second end cover 53 to seal the second through hole 531 .
  • At least part of the second sealing ring 59 is received in the second through hole 531 to insulate and separate the hole wall of the second through hole 531 from the pole body 5111 .
  • the insulating plate 54 covers at least part of the conductive member 55 to insulate the conductive member 55 from the first end cap 52 and the second end cap 53 .
  • the insulating plate 54 is provided with a channel 542, and at least part of the conductive member 55 is embedded in the channel 542.
  • the channel 542 exposes at least one end of the conductive member 55 to facilitate connection between the conductive member 55 and the probe.
  • an end of the conductive member 55 close to the escape hole 81 a is flush with an end of the insulating plate 54 close to the escape hole 81 a. In other embodiments, an end of the conductive member 55 close to the escape hole 81 a may be recessed into the channel 542 of the insulating plate 54 .
  • the channel 542 is connected to the third through hole 541 . At least part of the conductive member 55 is received in the third through hole 541 and is electrically connected to the pole body 5111 .
  • the conductive member 55 can be connected to the pole body 5111 by welding, bonding, snapping or other methods.
  • the conductive member 55 is provided with a mounting hole, and the pole body 5111 passes through the mounting hole and interferes with the mounting hole to achieve the snap connection between the pole body 5111 and the conductive member 55.
  • Figure 12 is a schematic front view of a battery cell provided by other embodiments of the present application;
  • Figure 13 is an enlarged schematic view of Figure 12 at the circular frame E.
  • the size of the battery cell 6 along the axial direction Z of the escape hole 81 a is smaller than the size of the battery cell 6 along the second direction Y.
  • the outer surface of the insulating component 80 includes two first surfaces 82 oppositely arranged along the axial direction Z and two second surfaces 83 oppositely arranged along the second direction Y.
  • Each second surface 83 connects two First surface 82.
  • the area of the first surface 82 is greater than the area of the second surface 83 .
  • the escape hole 81a can also be opened on the first surface 82 with a larger area.
  • Figure 14 is a schematic three-dimensional structural view of a battery cell provided by other embodiments of the present application;
  • Figure 15 is an enlarged schematic view of Figure 14 at the circular frame F;
  • Figure 16 is a schematic cross-sectional view of the battery cell shown in Figure 14;
  • Figure 17 This is an enlarged schematic diagram of Figure 16 at the circular frame G.
  • the first housing 10 and the second housing 30 are arranged along the first direction X.
  • the insulating component 80 includes a first insulating part 84 and a second insulating part 85 spaced apart along the first direction X.
  • the first insulating part 84 is connected to the first housing 10 and the second insulating part 85 is connected to the second housing 30 .
  • One end of the first insulating part 84 close to the second insulating part 85 extends beyond the first end cover 52 along the first direction
  • the second end cap 53 is connected to the insulating plate 54 .
  • the first insulating part 84 covers the first end cap 52 from the outside to reduce the risk of the first end cap 52 being exposed; the second insulating part 85 covers the second end cap 53 from the outside to reduce the risk of the second end cap 53 being exposed.
  • the first insulating part 84 and the second insulating part 85 are both connected to the insulating plate 54 to reduce the deflection of the first insulating part 84 and the second insulating part 85 and lower the first end cover when the battery cell 6 is subjected to external impact. 52 is exposed and the second end cap 53 is exposed, thereby improving safety.
  • the first insulating part 84 and the second insulating part 85 are provided separately to reduce interference between the two during assembly.
  • the first insulating part 84 completely covers the outer peripheral surface 13 of the first housing 10
  • the second insulating part 85 completely covers the outer peripheral surface 33 of the second housing 30 .
  • the first insulating part 84 is bonded to the outer peripheral surface of the insulating plate 54 , and the bonding surface between the first insulating part 84 and the insulating plate 54 goes around the insulating plate 54 .
  • the second insulating part 85 is bonded to the outer peripheral surface of the insulating plate 54 , and the bonding surface between the second insulating part 85 and the insulating plate 54 goes around the insulating plate 54 .
  • the dimension of one end of the first insulating part 84 close to the second insulating part 85 beyond the first end cap 52 along the first direction X is U1, and U1 ⁇ 0.01 mm.
  • Setting U1 to be greater than or equal to 0.01 mm can make the connection area between the first insulating part 84 and the insulating plate 54 meet the requirements and reduce the risk of separation of the first insulating part 84 and the insulating plate 54 .
  • the dimension of the end of the second insulating part 85 close to the first insulating part 84 beyond the second end cap 53 along the first direction X is U2, and U2 ⁇ 0.01 mm.
  • Setting U2 to be greater than or equal to 0.01 mm can make the connection area between the second insulating part 85 and the insulating plate 54 meet the requirements and reduce the risk of separation of the second insulating part 85 and the insulating plate 54 .
  • the dimension of one end of the first insulating part 84 close to the second insulating part 85 beyond the first end cap 52 along the first direction X is U1, and U1 ⁇ 0.01 mm.
  • the dimension of one end of the second insulating part 85 close to the first insulating part 84 beyond the second end cap 53 along the first direction X is U2, and U2 ⁇ 0.01 mm.
  • the end cap assembly 50 further includes a conductive member 55 electrically connected to the connection assembly 51 , and the insulating plate 54 covers at least a portion of the conductive member 55 to connect the conductive member 55 to the first end cap 52 and the second end cap 52 .
  • the end cap 53 is insulated.
  • An escape gap 81 b is formed between the first insulating part 84 and the second insulating part 85 , and the escape gap 81 b is used to expose at least part of the conductive member 55 .
  • the avoidance gap 81 b can expose at least part of the conductive member 55 so that other components can pass through the insulating component 80 and be electrically connected to the conductive member 55 , thereby detecting the potential of the connection component 51 .
  • the distance between the first insulating part 84 and the second insulating part 85 is greater than or equal to 0.01 mm. In other words, the size of the relief gap 81b along the first direction X is greater than or equal to 0.01 mm.
  • the relief structure 81 of the insulating component 80 includes a relief gap 81b.
  • the relief gap 81b surrounds the end cover assembly 50 .
  • the avoidance gap 81b surrounds the end cover assembly 50 so that the exposed position of the conductive member 55 can be flexibly set.
  • a battery including a plurality of battery cells according to any of the above embodiments.
  • an electrical device including the battery cell of any of the above embodiments, and the battery cell is used to provide electrical energy to the electrical device.
  • the power-consuming device can be any of the aforementioned devices or systems using battery cells.
  • the battery cell 6 includes a first case 10 , a first electrode assembly 20 , a second case 30 , a second electrode assembly 40 , an end cap assembly 50 , A cover plate 71 , a second cover plate 72 , first electrode terminals 61 , second electrode terminals 62 and an insulating member 80 .
  • the first housing 10 is provided with a first opening 11 and a third opening 12 at both ends along the first direction X
  • the second housing 30 is provided with a second opening 31 and a fourth opening 32 at both ends along the first direction X.
  • the first opening 11 is opposite to the second opening 31 .
  • the first electrode assembly 20 is accommodated in the first housing 10 .
  • the second electrode assembly 40 is accommodated in the second housing 30 .
  • the end cap assembly 50 is used to cover the first opening 11 and the second opening 31 .
  • the first cover 71 is used to cover the third opening 12
  • the second cover 72 is used to cover the fourth opening 32 .
  • the end cap assembly 50 includes a connection assembly 51 for connecting the first electrode assembly 20 and the second electrode assembly 40 in series.
  • the first electrode terminal 61 is provided on the first cover plate 71 and is electrically connected to the first electrode assembly 20 .
  • the second electrode terminal 62 is provided on the second cover plate 72 and is electrically connected to the second electrode assembly 40 .
  • the insulating member 80 covers at least part of the first housing 10 and at least part of the second housing 30 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池单体(6)、电池(2)以及用电装置。电池单体(6)包括第一壳体(10)、第一电极组件(20)、第二壳体(30)、第二电极组件(40)以及端盖组件(50)。第一壳体(10)具有第一开口(11)。第一电极组件(20)容纳于第一壳体(10)内。第二壳体(30)具有与第一开口(11)相对的第二开口(31)。第二电极组件(40)容纳于第二壳体(30)内。端盖组件(50)用于盖合第一开口(11)和第二开口(31),端盖组件(50)包括连接组件(51),连接组件(51)用于电连接第一电极组件(20)和第二电极组件(40)。依次布置的第一壳体(10)和第二壳体(30)可以增大电池单体(6)整体的尺寸,从而增大电池单体(6)在电池(2)中的空间利用率,提高能量密度。

Description

电池单体、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
在电池技术的发展中,如何提高能量密度,是电池技术中的一个研究方向。
发明内容
本申请提供了一种电池、电池以及用电装置,其能提高能量密度。
第一方面,本申请一些实施例提供了一种电池单体,其包括第一壳体、第一电极组件、第二壳体、第二电极组件以及端盖组件。第一壳体具有第一开口。第一电极组件容纳于第一壳体内。第二壳体具有与第一开口相对的第二开口。第二电极组件容纳于第二壳体内。端盖组件用于盖合第一开口和第二开口,端盖组件包括连接组件,连接组件用于电连接第一电极组件和第二电极组件。
在上述技术方案中,依次布置的第一壳体和第二壳体可以增大电池单体整体的尺寸,从而增大电池单体在电池中的空间利用率,提高能量密度。第一电极组件和第二电极组件分别容置于第一壳体和第二壳体内,这样可以减小对单个电极组件的尺寸和单个壳体的尺寸,从而简化壳体和电极组件的成型工艺,降低电极组件的内阻和电解液浸润电极组件的难度,改善电池单体的循环性能和使用寿命。端盖组件能够同时盖合第一开口和第二开口并实现电池单体的密封,从而简化电池单体的结构。连接组件可以将第一电极组件和第二电极组件电连接,以实现电流的汇流和输出,简化电池单体的结构。
在一些实施例中,电池单体还包括绝缘部件,绝缘部件包覆第一壳体的至少部分和第二壳体的至少部分。
在上述技术方案中,绝缘部件可以起到从外侧保护第一壳体和第二壳体,提高电池单体的绝缘性,降低短路风险。
在一些实施例中,绝缘部件完全覆盖第一壳体的外周面和第二壳体的外周面。
在上述技术方案中,绝缘部件完全覆盖第一壳体的外周面和第二壳体的外周面,以减小第一外壳的外露面积和第二外壳的外露面积,从而降低第一外壳与其它带电部件导通的风险和第二外壳与其它导电部件导通的风险,提高安全性。
在一些实施例中,端盖组件的至少部分位于第一开口和第二开口之间。绝缘部件的一部分环绕在端盖组件的位于第一开口和第二开口之间的部分的外侧。
在上述技术方案中,绝缘部件可以遮挡端盖组件的位于第一开口和第二开口之间的部分,以降低端盖组件与它带电部件导通的风险,提高安全性。
在一些实施例中,端盖组件包括第一端盖和第二端盖,第一端盖用于盖合第一开口,第二端盖位于第一端盖面向第二壳体的一侧并用于盖合第二开口。连接组件连接第一端盖和第二端盖。
在上述技术方案中,第一端盖和第二端盖分别与第一壳体和第二壳体连接,可降低端盖组件在第一壳体和第二壳体上的安装难度,提高端盖组件的稳定性,改善电池单体的密封性。第一端盖和第二端盖可以固定连接组件,从而在电池单体震动时减小连接组件的晃动,降低连接组件与第一电极组件连接失效的风险和连接组件与第二电极组件连接失效的风险,提高电池单体的可靠性。
在一些实施例中,绝缘部件从外周围绕第一端盖的位于第一壳体和第二壳体之间的部分以及第二端盖的位于第一壳体和第二壳体之间的部分。
在上述技术方案中,绝缘部件可以遮挡第一端盖和第二端盖,减少第一端盖的外露和第二端盖的外露,降低短路风险,提高安全性。
在一些实施例中,绝缘部件附接于第一端盖的位于第一壳体和第二壳体之间的部分以及第二端盖的位于第一壳体和第二壳体之间的部分。
在上述技术方案中,绝缘部件附接于第一端盖和第二端盖,以在电池单体受到外部冲击时降低绝缘部件变形、偏移的风险,使绝缘部件能够有效地遮挡第一端盖和第二端盖,降低短路风险,提高安全性。
在一些实施例中,端盖组件还包括绝缘板,绝缘板设置于第一端盖和第二端盖之间。绝缘部件从外周围绕绝缘板的至少部分。
在上述技术方案中,绝缘板可以将第一端盖和第二端盖绝缘隔离,以降低短路风险,提高安全性。绝缘部件可与绝缘板配合,遮挡第一端盖和第二端盖,减少第一端盖的外露和第二端盖的外露。
在一些实施例中,绝缘部件附接于绝缘板的外周面。
在上述技术方案中,绝缘部件附接于绝缘板的外周面,以在电池单体受到外部冲击时减小绝缘部件变形、偏移的风险,降低第一端盖外露的风险和第二端盖外露的风险,提高安全性。
在一些实施例中,第一壳体和第二壳体沿第一方向布置。绝缘部件包括沿第一方向间隔设置的第一绝缘部和第二绝缘部,第一绝缘部连接于第一壳体,第二绝缘部连接于第二壳体。第一绝缘部靠近第二绝缘部的一端沿第一方向超出第一端盖并连接于绝缘板,第二绝缘部靠近第一绝缘部的一端沿第一方向超出第二端盖并连接于绝缘板。
在上述技术方案中,第一绝缘部从外侧覆盖第一端盖,以降低第一端盖外露的风险;第二绝缘部从外侧覆盖第二端盖,以降低第二端盖外露的风险。第一绝缘部和第二绝缘部均连接于绝缘板,以在电池单体受到外部冲击时减小第一绝缘部和第二绝 缘部的偏移,降低第一端盖外露的风险和第二端盖外露的风险,提高安全性。第一绝缘部和第二绝缘部分离设置,以减少两者在装配过程中的干涉。
在一些实施例中,第一绝缘部靠近第二绝缘部的一端沿第一方向超出第一端盖的尺寸为U1,U1≥0.01mm。
在上述技术方案中,将U1设置为大于或等于0.01mm,可使第一绝缘部与绝缘板之间的连接面积满足要求,降低第一绝缘部与绝缘板分离的风险。
在一些实施例中,第二绝缘部靠近第一绝缘部的一端沿第一方向超出第二端盖的尺寸为U2,U2≥0.01mm。
在上述技术方案中,将U2设置为大于或等于0.01mm,可使第二绝缘部与绝缘板之间的连接面积满足要求,降低第二绝缘部与绝缘板分离的风险。
在一些实施例中,端盖组件还包括电连接于连接组件的导电件,且绝缘板包覆导电件的至少部分,以将导电件与第一端盖和第二端盖绝缘隔离。第一绝缘部和第二绝缘部之间形成避让间隙,避让间隙用于将导电件的至少部分露出。
在上述技术方案中,避让间隙可将导电件的至少部分露出,以使其它构件能够穿过绝缘部件并与导电件的电连接,进而检测出连接组件的电位。
在一些实施例中,端盖组件还包括电连接于连接组件的导电件,导电件的至少部分位于第一开口和第二开口之间。绝缘部件设有避让结构,避让结构用于将导电件的至少部分露出。
在上述技术方案中,避让结构可将导电件的至少部分露出,以使其它构件能够穿过绝缘部件并与导电件的电连接,进而检测出连接组件的电位。
在一些实施例中,第一壳体和第二壳体沿第一方向布置。导电件的经由避让结构露出的部分沿第一方向的尺寸为L1,L1≥0.01mm。
在上述技术方案中,将L1限定为大于或等于0.01mm,以使穿过避让结构的探针与导电件在第一方向上接触的尺寸满足检测要求。
在一些实施例中,避让结构包括避让孔,在避让孔的轴向上,避让孔与导电件相对设置,以将导电件的至少部分露出。
在上述技术方案中,避让孔可将导电件的至少部分露出,以使其它构件能够穿过绝缘部件并与导电件的电连接,进而检测出连接组件的电位。避让孔成型方式简单,且其尺寸较小,可以有效地降低绝缘失效的风险。
在一些实施例中,导电件的经由避让孔露出的部分沿第二方向的尺寸为L2,L2≥0.01mm。第一方向、第二方向以及轴向两两垂直。
在上述技术方案中,将L2限定为大于或等于0.01mm,以使穿过避让孔的探针与导电件在第二方向上接触的尺寸满足检测要求。
在一些实施例中,电池单体沿轴向的尺寸大于电池单体沿第二方向的尺寸。
在电池中,多个电池单体可沿第二方向布置。上述技术方案将避让孔设置在电池单体沿轴向的一侧,可以降低某个电池单体的避让孔被相邻的电池单体遮挡的风险。
在一些实施例中,避让结构包括避让间隙,避让间隙环绕端盖组件一周。避让间隙环绕端盖组件一周,这样可以使导电件露出的位置可以灵活设置。
在一些实施例中,电池单体还包括第一电极端子和第二电极端子,第一电极端子位于第一电极组件背离第一开口的一侧并电连接于第一电极组件,第二电极端子位于第二电极组件背离第二开口的一侧并电连接于第二电极组件。
在上述技术方案中,第一电极端子和第二电极端子用于将第一电极组件和第二电极组件电连接到外部电路,从而实现电极组件的充放电。第一电极端子和第二电极端子分别设于电池单体相对的两端,以便于实现多个电池单体之间的串并联。
第二方面,本申请一些实施例提供了一种电池,包括多个第一方面任一实施例提供的电池单体。
第三方面,本申请一些实施例提供了一种用电装置,包括第一方面任一实施例提供的电池单体,电池单体用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为本申请一些实施例提供的电池单体的立体结构示意图;
图4为图3所示的电池单体的爆炸示意图;
图5为图3所示的电池单体的侧视示意图;
图6为图5所示的电池单体沿线A-A作出的剖视示意图;
图7为图6在圆框C处的放大示意图;
图8为图5所示的电池单体在圆框B处的放大示意图;
图9为本申请一些实施例提供的电池单体的端盖组件的俯视示意图;
图10为图9沿线D-D作出的剖视示意图;
图11为图9所示的端盖组件的爆炸示意图;
图12为本申请另一些实施例提供的电池单体的正视示意图;
图13为图12在圆框E处的放大示意图;
图14为本申请另一些实施例提供的电池单体的立体结构示意图;
图15为图14在圆框F处的放大示意图;
图16为图14所示的电池单体剖视示意图;
图17为图16在圆框G处的放大示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施 例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中术语“平行”不仅包括绝对平行的情况,也包括了工程上常规认知的大致平行的情况;同时,“垂直”也不仅包括绝对垂直的情况,还包括工程上常规认知的大致垂直的情况。
本申请中,电池单体可以包括锂离子电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。
本申请的实施例所提到的电池是指包括多个电池单体以提供更高的电压和容量的单一的物理模块。电池一般可包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极极片、负极极片和隔离膜。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和正极极耳,正极集流部涂覆有正极活性物质层,正极极耳未涂覆正 极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和负极极耳,负极集流部涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池单体还包括壳体,壳体具有容纳腔,电极组件和电解液容纳于容纳腔。壳体可以保护电极组件,降低其他异物影响电极组件的风险。
随着电池技术的发展,用户对电池的容量的需求越来越高。例如,随着新能源车的不断普及,对新能源车中的电池的使用要求变得越来越高。用户对新能源车续航里程要求的不断提高,对新能源车使用的电池而言,其容量需要不断的提高;同时,在电池的使用过程中,因内阻导致的内耗和发热则要求尽量减少。
一般而言,电池包括箱体和容纳于箱体内的多个电池单体。箱体通常设置有用于支撑和固定电池单体的固定结构。对于电池而言,在电池容量一定的前提下,电池单体的尺寸越小,电池单体的数量越多,箱体需要设置更多的固定结构来固定电池单体,这会造成电池内部的空间利用率低,导致电池的能量密度无法满足要求。
为了简化电池的结构,提高电池的能量密度,发明人尝试增大单个电池单体的尺寸,以减少电池中的电池单体的数量,简化箱体内的固定结构,提高电池内部的空间利用率。
为了适配电池单体的尺寸,需要适应性地增大壳体的尺寸和电极组件的尺寸。发明人注意到,随着壳体尺寸的增大,壳体的制造难度逐渐增大,壳体产生缺陷的风险也逐渐增高。大尺寸的电极组件的导电路径偏长,内阻偏大,导致电池单体的功率较低。大尺寸的电极组件还会增大电解液浸润到电极组件内部的难度,从而影响电池单体的循环性能和使用寿命。
鉴于此,本申请一些实施例提供了一种技术方案,在该技术方案中,电池单体包括第一壳体、第一电极组件、第二壳体、第二电极组件和端盖组件。第一壳体具有第一开口。第一电极组件容纳于第一壳体内。第二壳体具有与第一开口相对的第二开口。第二电极组件容纳于第二壳体内。端盖组件用于盖合第一开口和第二开口,端盖组件包括连接组件,连接组件用于电连接第一电极组件和第二电极组件。
在上述技术方案中,依次布置的第一壳体和第二壳体可以增大电池单体整体的尺寸,从而增大电池单体在电池中的空间利用率,提高能量密度。第一电极组件和第二电极组件分别容置于第一壳体和第二壳体内,这样可以减小对单个电极组件的尺寸和单个壳体的尺寸,从而简化壳体和电极组件的成型工艺,降低电极组件的内阻和电解液浸润电极组件的难度,改善电池单体的循环性能和使用寿命。端盖组件能够同时盖合第一开口和第二开口并实现电池单体的密封,从而简化电池单体的结构。连接组件可以将第一电极组件和第二电极组件电连接,以实现电流的汇流和输出,简化电池单体的输出结构。
本申请实施例描述的技术方案适用于电池和使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。
如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。
如图2所示,电池2包括箱体5和电池单体6,电池单体6容纳于箱体5内。
箱体5用于容纳电池单体6,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部5a和第二箱体部5b,第一箱体部5a与第二箱体部5b相互盖合,第一箱体部5a和第二箱体部5b共同限定出用于容纳电池单体6的容纳空间5c。第二箱体部5b可以是一端开口的空心结构,第一箱体部5a为板状结构,第一箱体部5a盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5;第一箱体部5a和第二箱体部5b也均可以是一侧开口的空心结构,第一箱体部5a的开口侧盖合于第二箱体部5b的开口侧,以形成具有容纳空间5c的箱体5。当然,第一箱体部5a和第二箱体部5b可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部5a与第二箱体部5b连接后的密封性,第一箱体部5a与第二箱体部5b之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部5a盖合于第二箱体部5b的顶部,第一箱体部5a亦可称之为上箱盖,第二箱体部5b亦可称之为下箱体。
在电池2中,电池单体6可以是一个,也可以是多个。若电池单体6为多个,多个电池单体6之间可串联或并联或混联,混联是指多个电池单体6中既有串联又有并联。多个电池单体6之间可直接串联或并联或混联在一起,再将多个电池单体6构成的整体容纳于箱体5内;当然,也可以是多个电池单体6先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为本申请一些实施例提供的电池单体的立体结构示意图;图4为图3所示 的电池单体的爆炸示意图;图5为图3所示的电池单体的侧视示意图;图6为图5所示的电池单体沿线A-A作出的剖视示意图;图7为图6在圆框C处的放大示意图。
如图3至图7所示,本申请一些实施例的电池单体6包括第一壳体10、第一电极组件20、第二壳体30、第二电极组件40和端盖组件50。第一壳体10具有第一开口11。第一电极组件20容纳于第一壳体10内。第二壳体30具有与第一开口11相对的第二开口31。第二电极组件40容纳于第二壳体30内。端盖组件50用于盖合第一开口11和第二开口31,端盖组件50包括连接组件51,连接组件51用于电连接第一电极组件20和第二电极组件40。
电极组件(例如第一电极组件20和第二电极组件40)包括正极极片和负极极片。示例性地,电极组件通过离子在正极极片和负极极片中的嵌入/脱出时的氧化和还原反应来产生电能。可选地,电极组件还包括隔离膜,隔离膜用于将正极极片和负极极片绝缘隔离。
电极组件可以是卷绕式电极组件、叠片式电极组件或其它类型的电极组件。示例性地,电极组件的正极极片、隔离膜和负极极片卷绕并形成卷绕结构。
第一电极组件20可以是一个,也可以是多个,本实施例对此不作限制。示例性地,第一电极组件20为多个,多个第一电极组件20层叠设置。
第二电极组件40可以是一个,也可以是多个,本申请对此不作限制。
第一电极组件20可以和第二电极组件40采用相同的结构,也可以采用不同的结构。在一些示例中,第一电极组件20可为卷绕式电极组件,第二电极组件40可为叠片式电极组件。在另一些示例中,第一电极组件20和第二电极组件40均为叠片式电极组件,或均为卷绕式电极组件。
第一电极组件20和第二电极组件40可以具有相同的尺寸,也可以具有不同的尺寸。示例性地,沿第一电极组件20和第二电极组件40的布置方向,第一电极组件20的尺寸等于第二电极组件40的尺寸。
壳体(例如第一壳体10和第二壳体30)可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。壳体的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请对此不作特殊限制。
第一壳体10的形状可根据第一电极组件20的具体形成和尺寸大小来确定。比如,第一电极组件20为圆柱体结构,则可选用为圆柱体壳体;若第一电极组件20为长方体结构,则可选用长方体壳体。
第二壳体30的形状可根据第二电极组件40的具体形成和尺寸大小来确定。
第一壳体10可以为一侧开口的结构,也可为两侧开口的结构。在一些示例中,第一壳体10仅在面向第二壳体30的一侧形成第一开口11。在另一些示例中,第一壳体10在面向第二壳体30的一侧形成第一开口11,在背离第二壳体30的一侧形成第三开口12。
第二壳体30可以为一侧开口的结构,也可为两侧开口的结构。在一些示例中,第二壳体30仅在面向第一壳体10的一侧形成第二开口31。在另一些示例中,第二壳体30在面向第一壳体10的一侧形成第二开口31,在背离第一壳体10的一侧形成第四 开口32。
第一壳体10具有用于容纳第一电极组件20的第一容纳腔,第二壳体30具有用于容纳第二电极组件40的第二容纳腔。端盖组件50可以将第一壳体10的第一容纳腔和第二壳体30的第二容纳腔隔开。可替代地,端盖组件50也可设有将第一容纳腔和第二容纳腔连通的通道。
连接组件51可以将第一电极组件20和第二电极组件40串联,也可以将第一电极组件20和第二电极组件40并联。
在第一壳体10和第二壳体30的布置方向上,第一壳体10和第二壳体30可以间隔一定的距离,也可以直接相抵,本申请实施例对此不作限制。
依次布置的第一壳体10和第二壳体30可以增大电池单体6整体的尺寸,从而增大电池单体6在电池中的空间利用率,提高能量密度。第一电极组件20和第二电极组件40分别容置于第一壳体10和第二壳体30内,这样可以减小对单个电极组件的尺寸和单个壳体的尺寸,从而简化壳体和电极组件的成型工艺,降低电极组件的内阻和电解液浸润电极组件的难度,改善电池单体6的循环性能和使用寿命。端盖组件50能够同时盖合第一开口11和第二开口31并实现电池单体6的密封,从而简化电池单体6的结构。连接组件51可以将第一电极组件20和第二电极组件40电连接,以实现电流的汇流和输出,简化电池单体6的结构。
在一些实施例中,电池单体6还包括极性相反的第一电极端子61和第二电极端子62。
第一电极端子61和第二电极端子62用于将第一电极组件20和第二电极组件40电连接到外部电路,从而实现电极组件的充放电。
第一电极端子61可设置于第一壳体10,也可设置于电池单体6的其它位置。第二电极端子62可设置于第二壳体30,也可设置于电池单体6的其它位置。
在一些实施例中,第一电极端子61电连接于第一电极组件20,第二电极端子62电连接于第二电极组件40。
在一些实施例中,第一电极组件20和第二电极组件40串联。第一电极组件20包括第一正极极耳和第一负极极耳,第二电极组件40包括第二正极极耳和第二负极极耳。
在一些示例中,第一负极极耳通过连接组件51电连接于第二正极极耳,第一电极端子61电连接于第一正极极耳,第二电极端子62电连接于第二负极极耳。在另一些示例中,第一正极极耳通过连接组件51电连接于第二负极极耳,第一电极端子61电连接于第一负极极耳,第二电极端子62电连接于第二正极极耳。
在一些实施例中,电池单体6还包括第一电极端子61和第二电极端子62,第一电极端子61位于第一电极组件20背离第一开口11的一侧并电连接于第一电极组件20,第二电极端子62位于第二电极组件40背离第二开口31的一侧并电连接于第二电极组件40。
第一电极端子61和第二电极端子62分别设于电池单体6相对的两端,以便于实现多个电池单体6之间的串并联。
在一些实施例中,第一壳体10在背离第一开口11的一端具有第三开口12。电池单体6还包括用于盖合第三开口12的第一盖板71。在一些实施例中,第一电极端子61设置于第一盖板71。
在一些实施例中,第二壳体30在背离第二开口31的一端具有第四开口32,电池单体6还包括用于盖合第四开口32的第二盖板72。在一些实施例中,第二电极端子62设置于第二盖板72。
在一些实施例中,电池单体6还包括绝缘部件80,绝缘部件80包覆第一壳体10的至少部分和第二壳体30的至少部分。
绝缘部件80可包覆第一壳体10外露的表面。绝缘部件80可完全包覆第一壳体10外露的表面,也可以仅包括第一壳体10外露的表面的一部分。
绝缘部件80可包覆第二壳体30外露的表面。绝缘部件80可完全包覆第二壳体30外露的表面,也可以仅包括第二壳体30外露的表面的一部分。
绝缘部件80可以起到从外侧保护第一壳体10和第二壳体30,提高电池单体6的绝缘性,降低短路风险。
在一些实施例中,绝缘部件80完全覆盖第一壳体10的外周面13和第二壳体30的外周面33。
示例性地,第一壳体10的外周面13可为第一壳体10的平行于第一开口11的轴向且环绕第一开口11一周的外表面。第二壳体30的外周面33可为第二壳体30的平行于第二开口31的轴向且环绕第二开口31一周的外表面。
绝缘部件80完全覆盖第一壳体10的外周面13和第二壳体30的外周面33,以减小第一壳体10的外露面积和第二壳体30的外露面积,从而降低第一壳体10与其它带电部件导通的风险和第二壳体30与其它导电部件导通的风险,提高安全性。
在一些实施例中,绝缘部件80粘接于第一壳体10的外周面13和第二壳体30的外周面33。
在一些实施例中,端盖组件50的至少部分位于第一开口11和第二开口31之间。绝缘部件80的一部分环绕在端盖组件50的位于第一开口11和第二开口31之间的部分的外侧。
端盖组件50的至少部分位于第一开口11和第二开口31之间指的是:端盖组件50的至少部分位于第一开口11所在的平面和第二开口31所在的平面之间。
端盖组件50可以仅部分位于第一开口11和第二开口31之间,也可以整体位于第一开口11和第二开口31之间。
绝缘部件80可以从外侧完全包围端盖组件50的位于第一开口11和第二开口31之间的部分,也可以从外侧部分地包围端盖组件50的位于第一开口11和第二开口31之间的部分。
绝缘部件80可以遮挡端盖组件50的位于第一开口11和第二开口31之间的部分,以降低端盖组件50与它带电部件导通的风险,提高安全性。
在一些实施例中,端盖组件50包括第一端盖52和第二端盖53,第一端盖52用于盖合第一开口11,第二端盖53位于第一端盖52面向第二壳体30的一侧并用于盖 合第二开口31。连接组件51连接第一端盖52和第二端盖53。
连接组件51可以与第一端盖52绝缘,也可以与第一端盖52电连接。连接组件51可以与第二端盖53绝缘,也可以与第二端盖53电连接。
第一端盖52和第二端盖53分别与第一壳体10和第二壳体30连接,可降低端盖组件50在第一壳体10和第二壳体30上的安装难度,提高端盖组件50的稳定性,改善电池单体6的密封性。第一端盖52和第二端盖53可以固定连接组件51,从而在电池单体6震动时减小连接组件51的晃动,降低连接组件51与第一电极组件20连接失效的风险和连接组件51与第二电极组件40连接失效的风险,提高电池单体6的可靠性。
在一些实施例中,第一端盖52焊接于第一壳体10。
在一些实施例中,第二端盖53焊接于第二壳体30。
在一些实施例中,绝缘部件80从外周围绕第一端盖52的位于第一壳体10和第二壳体30之间的部分以及第二端盖53的位于第一壳体10和第二壳体30之间的部分。
第一端盖52的位于第一壳体10和第二壳体30之间的部分可理解为:第一端盖52的位于第一开口11所在的平面和第二开口31所在的平面之间的部分。第二端盖53的位于第一壳体10和第二壳体30之间的部分可理解为:第二端盖53的位于第一开口11所在的平面和第二开口31所在的平面之间的部分。
绝缘部件80可以遮挡第一端盖52和第二端盖53,减少第一端盖52的外露和第二端盖53的外露,降低短路风险,提高安全性。
在一些实施例中,绝缘部件80附接于第一端盖52的位于第一壳体10和第二壳体30之间的部分以及第二端盖53的位于第一壳体10和第二壳体30之间的部分。
附接可指贴附并连接。示例性地,绝缘部件80粘接于第一端盖52和第二端盖53。
绝缘部件80附接于第一端盖52和第二端盖53,以在电池单体6受到外部冲击时降低绝缘部件80变形、偏移的风险,使绝缘部件80能够有效地遮挡第一端盖52和第二端盖53,降低短路风险,提高安全性。
在一些实施例中,端盖组件50还包括绝缘板54,绝缘板54设置于第一端盖52和第二端盖53之间。绝缘部件80从外周围绕绝缘板54的至少部分。
绝缘板54可以将第一端盖52和第二端盖53绝缘隔离,以降低短路风险,提高安全性。绝缘部件80可与绝缘板54配合,遮挡第一端盖52和第二端盖53,减少第一端盖52的外露和第二端盖53的外露。
在一些实施例中,绝缘板54可为塑胶板。
在一些实施例中,绝缘部件80附接于绝缘板54的外周面。可选地,绝缘部件80粘接于绝缘板54。
绝缘部件80附接于绝缘板54的外周面,以在电池单体6受到外部冲击时减小绝缘部件80变形、偏移的风险,降低第一端盖52外露的风险和第二端盖53外露的风险,提高安全性。
绝缘部件80的附接于绝缘板54的外周面的部分绕绝缘板54一周。绝缘部件 80可以起到密封作用,降低外部杂质从绝缘板54和绝缘部件80之间穿过的风险,减少掉落到第一端盖52上的杂质和掉落到第二端盖53上的杂质,降低第一端盖52和第二端盖53被腐蚀的风险,提高安全性。
在一些实施例中,第一壳体10和第二壳体30沿第一方向X布置。第一开口11和第二开口31沿第一方向X相对。示例性地,第一开口11的轴向平行于第一方向X,第二开口31的轴向平行于第一方向X。
在一些实施例中,端盖组件50还包括电连接于连接组件51的导电件55,导电件55的至少部分位于第一开口11和第二开口31之间。绝缘部件80设有避让结构81,避让结构81用于将导电件55的至少部分露出。
导电件55通过连接组件51电连接于第一电极组件20和第二电极组件40。
导电件55的位于第一壳体10和第二壳体30之间的部分可理解为:导电件55的位于第一开口11所在的平面和第二开口31所在的平面之间的部分。导电件55可以整体位于第一开口11和第二开口31之间,也可以仅部分位于第一开口11和第二开口31之间。
避让结构81用于避让导电件55的至少部分,其可以包括孔、缝隙或其它贯通绝缘部件80的结构。
避让结构81可将导电件55的至少部分露出,以使其它构件能够穿过绝缘部件80并与导电件55的电连接,进而检测出连接组件51的电位。
在一些实施例中,可通过导电件55对第一电极组件20的电压和第二电极组件40的电压进行检测。
示例性地,电压检测设备可通过探针分别电连接到导电件55和第一电极端子61,以检测出第一电极组件20的电压。避让结构81可以避让探针,为探针穿过绝缘部件80提供通道。
示例性地,电压检测设备可通过探针分别电连接到导电件55和第二电极端子62,以检测出第二电极组件40的电压。避让结构81可以避让探针,为探针穿过绝缘部件80提供通道。
在一些实施例中,第一壳体10和第二壳体30沿第一方向X布置。导电件55的经由避让结构81露出的部分沿第一方向X的尺寸为L1,L1≥0.01mm。
沿垂直于第一方向X且能够经由避让结构81观察到导电件55的方向上观察,导电件55沿第一方向X的最小尺寸可记为L1。
本申请的一些实施例使L1大于或等于0.01mm,以使穿过避让结构81的探针与导电件55在第一方向X上接触的尺寸满足检测要求。
在一些实施例中,避让结构81包括避让孔81a。在避让孔81a的轴向Z上,避让孔81a与导电件55相对设置,以将导电件55的至少部分露出。
避让孔81a可以是一个,也可以是多个。在一些示例中,避让孔81a可为多个;多个避让孔81a可以分布于端盖组件50的同一侧,也可以分布于端盖组件50相反的两侧。
在避让孔81a的轴向Z上,避让孔81a的投影与导电件55的投影至少部分地重 叠。从绝缘部件80的外侧沿避让孔81a的轴向Z观察,可以观察到导电件55的至少部分。
避让孔81a可将导电件55的至少部分露出,以使其它构件能够穿过绝缘部件80并与导电件55的电连接,进而检测出连接组件51的电位。避让孔81a成型方式简单,且其尺寸较小,可以有效地降低绝缘失效的风险。
在一些实施例中,从绝缘部件80的外侧沿避让孔81a的轴向Z观察,导电件55的经由避让孔81a露出的部分沿第一方向X的尺寸大于或等于0.01mm。
图8为图5所示的电池单体在圆框B处的放大示意图。
请一并参照图5至图8,在一些实施例中,导电件55的经由避让孔81a露出的部分沿第二方向Y的尺寸为L2,L2≥0.01mm。第一方向X、第二方向Y以及轴向Z两两垂直。
示例性地,从绝缘部件80的外侧沿避让孔81a的轴向Z观察,导电件55的经由避让孔81a露出的部分沿第二方向Y的最小尺寸可记为L2。
本申请的一些实施例使L2大于或等于0.01mm,以使穿过避让孔81a的探针与导电件55在第二方向Y上接触的尺寸满足检测要求。
在一些实施例中,电池单体6沿轴向Z的尺寸大于电池单体6沿第二方向Y的尺寸。
在电池中,多个电池单体6可沿第二方向Y布置。将避让孔81a设置在电池单体6沿轴向Z的一侧,可以降低某个电池单体6的避让孔81a被相邻的电池单体6遮挡的风险。
在一些实施例中,绝缘部件80的外表面包括沿轴向Z相对设置的两个第一表面82和沿第二方向Y相对设置的两个第二表面83,各第二表面83连接两个第一表面82。第一表面82的面积小于第二表面83的面积。避让孔81a开设在面积较小的第一表面82。
至少一个第一表面82上设有避让孔81a。可选地,两个第一表面82上均设有避让孔81a。
各第一表面82上可以设置一个避让孔81a,也可以设置多个避让孔81a。
图9为本申请一些实施例提供的电池单体的端盖组件的俯视示意图;图10为图9沿线D-D作出的剖视示意图;图11为图9所示的端盖组件的爆炸示意图。
参照图7至图11,在一些实施例中,连接组件51包括极柱511和连接板512,极柱511包括极柱主体5111和环绕极柱主体5111设置的法兰5112,极柱主体5111穿过第一端盖52、绝缘板54和第二端盖53,法兰5112位于第二端盖53背离第一端盖52的一侧,连接板512位于第一端盖52背离第二端盖53的一侧,连接板512固定于极柱主体5111。
连接板512和法兰5112从两侧夹持第一端盖52、第二端盖53和绝缘板54,以将三者固定。
在一些实施例中,极柱主体5111铆接于连接板512。
在一些实施例中,极柱主体5111包括沿第一方向X设置的第一段511a和第二 段511b,第一段511a连接于连接板512,第二段511b连接于法兰5112。示例性地,第二段511b和法兰5112一体成型。
在一些实施例中,第一段511a的基体金属不同于第二段511b的基体金属。第一段511a的基体金属是第一段511a的材料的组分中的主要成分,第二段511b的基体金属是第二段511b的材料的组分中的主要成分。
在一些实施例中,第一段511a的基体金属和第二段511b的基体金属中的一者为铜,另一者为铝。
在一些实施例中,第一段511a通过复合工艺连接于第二段511b。
在一些实施例中,端盖组件50还包括第一绝缘件56,用于将第一端盖52和连接板512绝缘隔离。示例性地,第一绝缘件56的至少部分夹持于第一端盖52和连接板512之间。
在一些实施例中,端盖组件50还包括第二绝缘件57,用于将第二端盖53和法兰5112绝缘隔离。例性地,第二绝缘件57的至少部分夹持于第二端盖53和法兰5112之间。
在一些实施例中,第一端盖52包括第一通孔521,第二端盖53包括第二通孔531,绝缘板54包括第三通孔541。极柱主体5111依次穿过第二通孔531、第三通孔541和第一通孔521。
在一些实施例中,端盖组件50还包括第一密封圈58,用于密封第一通孔521。示例性地,第一密封圈58的至少部分夹持于连接板512和第一端盖52之间,以密封第一通孔521。
在一些实施例中,第一密封圈58的至少部分容纳于第一通孔521,以将第一通孔521的孔壁与极柱主体5111绝缘隔开。
在一些实施例中,端盖组件50还包括第二密封圈59,用于密封第二通孔531。示例性地,第二密封圈59的至少部分夹持于法兰5112和第二端盖53之间,以密封第二通孔531。
在一些实施例中,第二密封圈59的至少部分容纳于第二通孔531,以将第二通孔531的孔壁与极柱主体5111绝缘隔开。
在一些实施例中,绝缘板54包覆导电件55的至少部分,以将导电件55与第一端盖52和第二端盖53绝缘隔离。
在一些实施例中,绝缘板54设有通道542,导电件55的至少部分嵌入到通道542内。通道542将导电件55的至少一端露出,以便于导电件55与探针连接。
在一些实施例中,导电件55的靠近避让孔81a的一端与绝缘板54的靠近避让孔81a的一端齐平。在另一些实施例中,导电件55的靠近避让孔81a的一端可凹入绝缘板54的通道542内。
在一些实施例中,通道542连通于第三通孔541。导电件55的至少部分容纳于第三通孔541并电连接于极柱主体5111。
导电件55可通过焊接、粘接、卡接或其它方式连接于极柱主体5111。
在一些实施例中,导电件55设有安装孔,极柱主体5111穿过安装孔并与安装 孔过盈配合,以实现极柱主体5111和导电件55的卡接。
图12为本申请另一些实施例提供的电池单体的正视示意图;图13为图12在圆框E处的放大示意图。
如图12和图13所示,在一些实施例中,电池单体6沿避让孔81a的轴向Z的尺寸小于电池单体6沿第二方向Y的尺寸。
在一些实施例中,绝缘部件80的外表面包括沿轴向Z相对设置的两个第一表面82和沿第二方向Y相对设置的两个第二表面83,各第二表面83连接两个第一表面82。第一表面82的面积大于第二表面83的面积。避让孔81a也可以开设在面积较大的第一表面82。
图14为本申请另一些实施例提供的电池单体的立体结构示意图;图15为图14在圆框F处的放大示意图;图16为图14所示的电池单体剖视示意图;图17为图16在圆框G处的放大示意图。
如图14至图17所示,在一些实施例中,第一壳体10和第二壳体30沿第一方向X布置。绝缘部件80包括沿第一方向X间隔设置的第一绝缘部84和第二绝缘部85,第一绝缘部84连接于第一壳体10,第二绝缘部85连接于第二壳体30。第一绝缘部84靠近第二绝缘部85的一端沿第一方向X超出第一端盖52并连接于绝缘板54,第二绝缘部85靠近第一绝缘部84的一端沿第一方向X超出第二端盖53并连接于绝缘板54。
第一绝缘部84从外侧覆盖第一端盖52,以降低第一端盖52外露的风险;第二绝缘部85从外侧覆盖第二端盖53,以降低第二端盖53外露的风险。第一绝缘部84和第二绝缘部85均连接于绝缘板54,以在电池单体6受到外部冲击时减小第一绝缘部84和第二绝缘部85的偏移,降低第一端盖52外露的风险和第二端盖53外露的风险,提高安全性。第一绝缘部84和第二绝缘部85分离设置,以减少两者在装配过程中的干涉。
在一些实施例中,第一绝缘部84完全包覆第一壳体10的外周面13,第二绝缘部85完全包覆第二壳体30的外周面33。
在一些实施例中,第一绝缘部84粘接于绝缘板54的外周面,且第一绝缘部84与绝缘板54之间粘接面绕绝缘板54一周。第二绝缘部85粘接于绝缘板54的外周面,且第二绝缘部85与绝缘板54之间粘接面绕绝缘板54一周。
在一些实施例中,第一绝缘部84靠近第二绝缘部85的一端沿第一方向X超出第一端盖52的尺寸为U1,U1≥0.01mm。
将U1设置为大于或等于0.01mm,可使第一绝缘部84与绝缘板54之间的连接面积满足要求,降低第一绝缘部84与绝缘板54分离的风险。
在一些实施例中,第二绝缘部85靠近第一绝缘部84的一端沿第一方向X超出第二端盖53的尺寸为U2,U2≥0.01mm。
将U2设置为大于或等于0.01mm,可使第二绝缘部85与绝缘板54之间的连接面积满足要求,降低第二绝缘部85与绝缘板54分离的风险。
在一些实施例中,第一绝缘部84靠近第二绝缘部85的一端沿第一方向X超出第一端盖52的尺寸为U1,U1≥0.01mm。第二绝缘部85靠近第一绝缘部84的一端沿第 一方向X超出第二端盖53的尺寸为U2,U2≥0.01mm。
在一些实施例中,端盖组件50还包括电连接于连接组件51的导电件55,且绝缘板54包覆导电件55的至少部分,以将导电件55与第一端盖52和第二端盖53绝缘隔离。第一绝缘部84和第二绝缘部85之间形成避让间隙81b,避让间隙81b用于将导电件55的至少部分露出。
避让间隙81b可将导电件55的至少部分露出,以使其它构件能够穿过绝缘部件80并与导电件55的电连接,进而检测出连接组件51的电位。
在一些实施例中,在第一方向X上,第一绝缘部84与第二绝缘部85之间的间距大于或等于0.01mm。换言之,避让间隙81b沿第一方向X的尺寸大于或等于0.01mm。
在一些实施例中,绝缘部件80的避让结构81包括避让间隙81b。避让间隙81b环绕端盖组件50一周。
避让间隙81b环绕端盖组件50一周,这样可以使导电件55露出的位置可以灵活设置。
根据本申请的一些实施例,还提供了一种电池,包括多个以上任一实施例的电池单体。
根据本申请的一些实施例,还提供了一种用电装置,包括以上任一实施例的电池单体,电池单体用于为用电装置提供电能。用电装置可以是前述任一应用电池单体的设备或系统。
参照图3至图7,根据本申请的一些实施例的电池单体6包括第一壳体10、第一电极组件20、第二壳体30、第二电极组件40、端盖组件50、第一盖板71、第二盖板72、第一电极端子61、第二电极端子62和绝缘部件80。第一壳体10沿第一方向X的两端设有第一开口11和第三开口12,第二壳体30沿第一方向X的两端设有第二开口31和第四开口32,第一开口11与第二开口31相对。第一电极组件20容纳于第一壳体10内。第二电极组件40容纳于第二壳体30内。端盖组件50用于盖合第一开口11和第二开口31。第一盖板71用于盖合第三开口12,第二盖板72用于盖合第四开口32。
端盖组件50包括连接组件51,连接组件51用于将第一电极组件20和第二电极组件40串联。第一电极端子61设于第一盖板71并电连接于第一电极组件20,第二电极端子62设于第二盖板72并电连接于第二电极组件40。
绝缘部件80包覆第一壳体10的至少部分和第二壳体30的至少部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (21)

  1. 一种电池单体,包括:
    第一壳体,具有第一开口;
    第一电极组件,容纳于所述第一壳体内;
    第二壳体,具有与所述第一开口相对的第二开口;
    第二电极组件,容纳于所述第二壳体内;以及
    端盖组件,用于盖合所述第一开口和所述第二开口,所述端盖组件包括连接组件,所述连接组件用于电连接所述第一电极组件和所述第二电极组件。
  2. 根据权利要求1所述的电池单体,还包括绝缘部件,所述绝缘部件包覆所述第一壳体的至少部分和所述第二壳体的至少部分。
  3. 根据权利要求2所述的电池单体,其中,所述绝缘部件完全覆盖所述第一壳体的外周面和所述第二壳体的外周面。
  4. 根据权利要求2或3所述的电池单体,其中,所述端盖组件的至少部分位于所述第一开口和所述第二开口之间;
    所述绝缘部件的一部分环绕在所述端盖组件的位于所述第一开口和所述第二开口之间的部分的外侧。
  5. 根据权利要求4所述的电池单体,其中,所述端盖组件包括第一端盖和第二端盖,所述第一端盖用于盖合所述第一开口,所述第二端盖位于所述第一端盖面向所述第二壳体的一侧并用于盖合所述第二开口;
    所述连接组件连接所述第一端盖和所述第二端盖。
  6. 根据权利要求5所述的电池单体,其中,所述绝缘部件从外周围绕所述第一端盖的位于所述第一壳体和所述第二壳体之间的部分以及所述第二端盖的位于所述第一壳体和所述第二壳体之间的部分。
  7. 根据权利要求6所述的电池单体,其中,所述绝缘部件附接于所述第一端盖的位于所述第一壳体和所述第二壳体之间的部分以及所述第二端盖的位于所述第一壳体和所述第二壳体之间的部分。
  8. 根据权利要求5-7中任一项所述的电池单体,其中,所述端盖组件还包括绝缘板,所述绝缘板设置于所述第一端盖和所述第二端盖之间;
    所述绝缘部件从外周围绕所述绝缘板的至少部分。
  9. 根据权利要求8所述的电池单体,其中,所述绝缘部件附接于所述绝缘板的外周面。
  10. 根据权利要求8或9所述的电池单体,其中,所述第一壳体和所述第二壳体沿第一方向布置;
    所述绝缘部件包括沿所述第一方向间隔设置的第一绝缘部和第二绝缘部,所述第一绝缘部连接于所述第一壳体,所述第二绝缘部连接于所述第二壳体;
    所述第一绝缘部靠近所述第二绝缘部的一端沿所述第一方向超出所述第一端盖并 连接于所述绝缘板,所述第二绝缘部靠近所述第一绝缘部的一端沿所述第一方向超出所述第二端盖并连接于所述绝缘板。
  11. 根据权利要求10所述的电池单体,其中,所述第一绝缘部靠近所述第二绝缘部的一端沿所述第一方向超出所述第一端盖的尺寸为U1,U1≥0.01mm;和/或,
    所述第二绝缘部靠近所述第一绝缘部的一端沿所述第一方向超出所述第二端盖的尺寸为U2,U2≥0.01mm。
  12. 根据权利要求10或11所述的电池单体,其中,所述端盖组件还包括电连接于所述连接组件的导电件,且所述绝缘板包覆所述导电件的至少部分,以将所述导电件与所述第一端盖和所述第二端盖绝缘隔离;
    所述第一绝缘部和所述第二绝缘部之间形成避让间隙,所述避让间隙用于将所述导电件的至少部分露出。
  13. 根据权利要求2-9任一项所述的电池单体,其中,所述端盖组件还包括电连接于所述连接组件的导电件,所述导电件的至少部分位于所述第一开口和所述第二开口之间;
    所述绝缘部件设有避让结构,所述避让结构用于将所述导电件的至少部分露出。
  14. 根据权利要求13所述的电池单体,其中,所述第一壳体和所述第二壳体沿第一方向布置;
    所述导电件的经由所述避让结构露出的部分沿所述第一方向的尺寸为L1,L1≥0.01mm。
  15. 根据权利要求14所述的电池单体,其中,所述避让结构包括避让孔,在所述避让孔的轴向上,所述避让孔与所述导电件相对设置,以将所述导电件的至少部分露出。
  16. 根据权利要求15所述的电池单体,其中,所述导电件的经由所述避让孔露出的部分沿第二方向的尺寸为L2,L2≥0.01mm;
    所述第一方向、所述第二方向以及所述轴向两两垂直。
  17. 根据权利要求16所述的电池单体,其中,所述电池单体沿所述轴向的尺寸大于所述电池单体沿所述第二方向的尺寸。
  18. 根据权利要求13或14所述的电池单体,其中,所述避让结构包括避让间隙,所述避让间隙环绕所述端盖组件一周。
  19. 根据权利要求1-18任一项所述的电池单体,还包括第一电极端子和第二电极端子,所述第一电极端子位于所述第一电极组件背离所述第一开口的一侧并电连接于所述第一电极组件,所述第二电极端子位于所述第二电极组件背离所述第二开口的一侧并电连接于所述第二电极组件。
  20. 一种电池,包括多个根据权利要求1-19中任一项所述的电池单体。
  21. 一种用电装置,包括根据权利要求1-19中任一项所述的电池单体,所述电池单体用于提供电能。
PCT/CN2022/113923 2022-08-22 2022-08-22 电池单体、电池以及用电装置 WO2024040384A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113923 WO2024040384A1 (zh) 2022-08-22 2022-08-22 电池单体、电池以及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113923 WO2024040384A1 (zh) 2022-08-22 2022-08-22 电池单体、电池以及用电装置

Publications (1)

Publication Number Publication Date
WO2024040384A1 true WO2024040384A1 (zh) 2024-02-29

Family

ID=90012115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113923 WO2024040384A1 (zh) 2022-08-22 2022-08-22 电池单体、电池以及用电装置

Country Status (1)

Country Link
WO (1) WO2024040384A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352462A (zh) * 2015-09-30 2018-07-31 福西尔集团公司 使用导电壳体用于电池触点的系统、设备和方法
CN111697191A (zh) * 2020-06-23 2020-09-22 欣旺达电动汽车电池有限公司 一种拼接式长动力电池及其组装方法、电池包
CN216850245U (zh) * 2021-11-20 2022-06-28 宁德时代新能源科技股份有限公司 电池、用电装置及制备电池的装置
TW202228325A (zh) * 2021-01-12 2022-07-16 南韓商Lg新能源股份有限公司 電池模組

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352462A (zh) * 2015-09-30 2018-07-31 福西尔集团公司 使用导电壳体用于电池触点的系统、设备和方法
CN111697191A (zh) * 2020-06-23 2020-09-22 欣旺达电动汽车电池有限公司 一种拼接式长动力电池及其组装方法、电池包
TW202228325A (zh) * 2021-01-12 2022-07-16 南韓商Lg新能源股份有限公司 電池模組
CN216850245U (zh) * 2021-11-20 2022-06-28 宁德时代新能源科技股份有限公司 电池、用电装置及制备电池的装置

Similar Documents

Publication Publication Date Title
WO2023092758A1 (zh) 电池单体及其制造方法和制造设备、电池以及用电设备
WO2023279574A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
CN216213945U (zh) 电池单体、电池和用电装置
WO2023130924A1 (zh) 排气装置、电池单体、电池以及用电装置
WO2022247292A1 (zh) 电池单体、电池以及用电装置
WO2023025107A1 (zh) 电池单体、电池以及用电装置
CN218351639U (zh) 端盖组件、电池组件、电池及用电设备
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
CN218414808U (zh) 电池单体、电池以及用电装置
US20240154218A1 (en) Battery cell, battery, and electrical apparatus
US20240055705A1 (en) Battery cell, battery, power consuming apparatus, and method and apparatus for manufacturing battery cell
WO2023246152A1 (zh) 电池单体、电池及用电装置
US20230223669A1 (en) Battery cell, battery, electrical device, and method and device for manufacturing battery cell
US20230045904A1 (en) Battery cell, manufacturing method and manufacturing system of same, battery, and electric device
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2024040384A1 (zh) 电池单体、电池以及用电装置
CN114696012A (zh) 电池单体及其制造方法、电池以及用电装置
WO2023178483A1 (zh) 电池单体及其制造方法和制造设备、电池及用电装置
WO2024045058A1 (zh) 电池单体、电池及用电设备
WO2024021085A1 (zh) 端盖组件、电池组件、电池及用电设备
WO2023178600A1 (zh) 集流构件、电池单体、电池及用电设备
WO2023220883A1 (zh) 端盖、电池单体、电池及用电设备
WO2024044938A1 (zh) 电池单体、电池以及用电装置
US20240162579A1 (en) Battery cell, method and system for manufacturing battery cell, battery and electrical apparatus
WO2023173414A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955935

Country of ref document: EP

Kind code of ref document: A1