WO2024037656A1 - 液冷装置、托盘以及电池模组 - Google Patents

液冷装置、托盘以及电池模组 Download PDF

Info

Publication number
WO2024037656A1
WO2024037656A1 PCT/CN2023/114132 CN2023114132W WO2024037656A1 WO 2024037656 A1 WO2024037656 A1 WO 2024037656A1 CN 2023114132 W CN2023114132 W CN 2023114132W WO 2024037656 A1 WO2024037656 A1 WO 2024037656A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery core
boss
chamber
liquid cooling
battery
Prior art date
Application number
PCT/CN2023/114132
Other languages
English (en)
French (fr)
Inventor
张国江
任朝举
徐宇虹
江吉兵
Original Assignee
湖北亿纬动力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222201465.6U external-priority patent/CN218300063U/zh
Priority claimed from CN202210998407.2A external-priority patent/CN115224393A/zh
Priority claimed from CN202210999408.9A external-priority patent/CN115275428A/zh
Priority claimed from CN202222189618.XU external-priority patent/CN218299932U/zh
Priority claimed from CN202222189344.4U external-priority patent/CN218031996U/zh
Priority claimed from CN202222964561.6U external-priority patent/CN218568991U/zh
Priority claimed from CN202211389108.5A external-priority patent/CN116093403A/zh
Application filed by 湖北亿纬动力有限公司 filed Critical 湖北亿纬动力有限公司
Publication of WO2024037656A1 publication Critical patent/WO2024037656A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids

Definitions

  • the present application relates to the field of battery technology, and in particular, to a liquid cooling device, a tray and a battery module.
  • battery modules are equipped with a liquid cooling system to perform thermal management of the battery core, thereby avoiding thermal runaway of the battery core during charging and discharging, as well as safety accidents such as spontaneous combustion; however, the current battery modules
  • the liquid cooling system in the group is usually installed at the top or bottom of the battery core, which makes the heat generated in the middle part of the battery core difficult to dissipate.
  • the heat exchange efficiency of the liquid cooling system is low and the cooling effect is poor.
  • This application provides a liquid cooling device, a tray and a battery module to solve the above technical problems.
  • the present application provides a liquid cooling device.
  • the liquid cooling device includes a casing, a first inlet and a first outlet; a plurality of installation positions are formed in the casing, and a battery core is inserted into each installation position; a cooling chamber is formed in the casing. , a cooling medium circulates in the cooling chamber, and the cooling chamber is configured to cool the electric core in the installation position; the first inlet and the first outlet are both formed on the shell, and are both connected to the cooling chamber.
  • the application also provides a pallet, which includes a liquid cooling device and a plurality of electric cores; an installation position is formed in the liquid cooling device; and each electric core is installed in a corresponding installation position.
  • the application also provides a battery module.
  • the battery module includes a tray, a busbar and a liquid cooling plate; the tray contains multiple cells; the busbar electrically connects the multiple cells, and the liquid cooling plate is located on the busbar. Above, it is set up to cool multiple cells.
  • the liquid cooling device provided by this application is used to cool multiple battery cores.
  • the shell of the liquid cooling device is provided with an installation position, and the battery core is inserted into the installation position.
  • the interior of the shell is hollow.
  • a cooling chamber is formed, and a cooling medium circulates in the cooling chamber.
  • the cooling chamber can wrap the sides and bottom of the battery core, thereby increasing the contact area between the cooling chamber and the battery core.
  • the cooling effect is good, and because the cooling chamber can separately The side and bottom surfaces of the battery core are cooled down, reducing the temperature difference along the height direction of the battery core.
  • the tray provided by this application includes multiple battery cores and the above-mentioned liquid cooling device.
  • the multiple battery cores are arranged on the liquid cooling device.
  • the liquid cooling device can have a good cooling effect on the battery cores, and the thermal management effect is good.
  • the battery module provided by this application includes the above-mentioned tray, bus bar and liquid cooling plate.
  • Figure 1 is a schematic structural diagram of a liquid cooling device provided in Embodiment 1 of the present application.
  • Figure 2 is a schematic structural diagram of Figure 1 from another perspective
  • FIG. 3 is an enlarged schematic diagram of C in Figure 2;
  • Figure 4 is a schematic side view of Figure 1;
  • Figure 5 is a cross-sectional view along line A-A in Figure 4.
  • Figure 6 is an enlarged schematic diagram of B in Figure 5;
  • Figure 7 is a cross-sectional view along B-B in Figure 4.
  • Figure 8 is a schematic diagram of the pipeline joint structure in Figure 1;
  • Figure 9 is a schematic diagram of the first pipeline joint in Figure 8.
  • Figure 10 is a schematic diagram of the second pipeline joint in Figure 8.
  • FIG 11 is a schematic structural diagram of a battery core provided in Embodiment 1 of the present application.
  • Figure 12 is a schematic structural diagram of the first bracket in Figure 11;
  • Figure 13 is a schematic structural diagram of the second bracket in Figure 11;
  • FIG 14 is a schematic structural diagram of the battery module provided in Embodiment 1 of the present application.
  • Figure 15 is a schematic structural diagram of a liquid cooling device provided in Embodiment 2 of the present application.
  • Figure 16 is a bottom view of the battery core provided in Embodiment 2 of the present application installed on the cooling body;
  • Figure 17 is a schematic diagram of the battery core provided in the second embodiment of the present application being installed on the cooling body.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral body.
  • It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • the specific meanings of the above terms in this application may be understood based on specific circumstances.
  • the term “above” or “below” a first feature on a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • this embodiment provides a liquid cooling device for cooling multiple battery cores 3e.
  • the liquid cooling device includes a housing 100, a first inlet 102 and a first outlet 103.
  • a plurality of installation positions 101 are formed in the housing 100, and a battery core 3e is inserted into each installation position 101 (see Figure 11).
  • a cooling chamber is formed in the housing 100, and a cooling medium circulates in the cooling chamber. The cooling chamber is used to cool the electric core 3e in the installation position 101.
  • the first inlet 102 and the first outlet 103 are both formed on the housing 100, and both are connected to the cooling chamber.
  • the liquid cooling device provided in this embodiment is used to cool multiple battery cores 3e.
  • the housing 100 of the liquid cooling device is provided with an installation position 101, and a battery core 3e is inserted into the installation position 101.
  • the interior of the housing 100 is hollow to form a cooling chamber, and a cooling medium circulates in the cooling chamber.
  • the cooling chamber can wrap the sides and bottom of the battery core 3e, thereby increasing the contact area between the cooling chamber and the battery core 3e, and the cooling effect is good. And because the cooling chamber can respectively cool down the side and bottom surfaces of the battery core 3e, the temperature difference along the height direction of the battery core 3e is reduced.
  • the shell 100 has a hollow interior to form a cooling chamber.
  • the shell 100 is provided with a first inlet 102 and a first outlet 103.
  • the first inlet 102 and the first outlet 103 are both connected to the cooling chamber.
  • the cooling medium flows into the cooling chamber from the first inlet 102 and then flows out of the cooling chamber through the first outlet 103 .
  • the cooling chamber wraps the sides and bottom of the battery core 3e, thereby increasing the contact area between the cooling chamber and the battery core 3e, and achieving a good cooling effect.
  • the liquid cooling device in this embodiment can also position the battery core 3e.
  • the battery core 3e can be directly inserted into the installation position 101 along the third direction.
  • the first direction in this embodiment is the X-axis direction in Figure 1
  • the second direction is the Y-axis direction in Figure 1
  • the third direction is the Z-axis direction in Figure 1 .
  • the interior of the housing 100 is hollow to form a cooling chamber.
  • a partition 140 is provided inside the housing 100, and the partition 140 divides the cooling chamber into a plurality of connected compartments.
  • multiple partition chambers are arranged in sequence along the height direction of the battery core 3e, so that each partition chamber can cool different positions of the battery core 3e respectively, which is beneficial to reducing the temperature difference of the battery core 3e in the height direction and reducing the heat.
  • the management effect is good.
  • the plurality of separated chambers in this embodiment include a first chamber and a second chamber.
  • the first chamber is connected with the second chamber, and the first chamber is used for electrical
  • the side surface of the core 3e is cooled
  • the second chamber is used to cool the bottom surface of the battery core 3e, thereby reducing the temperature difference in the height direction of the battery core 3e.
  • the housing 100 includes an upper housing 110 and a lower housing 120 , and a partition 140 is provided between the upper housing 110 and the lower housing 120 .
  • the upper housing 110 and the upper end surface of the partition 140 are connected.
  • a first chamber is formed between the upper housing 110 and the partition 140 .
  • the first inlet 102 and the first outlet 103 are provided on the upper housing 110 .
  • the lower housing 120 is connected to the lower end surface of the partition 140 , and a second chamber is formed between the lower housing 120 and the partition 140 .
  • the partition 140 is provided with a second inlet 141 and a second outlet 142.
  • the second inlet 141 is connected to the first chamber and the second chamber, and the second outlet 142 is also connected to the first chamber and the second chamber.
  • the upper housing 110 in this embodiment includes a plurality of first cylinders 111. One end of the first cylinders 111 is connected to the end surface of the upper housing 110, and the other end of the first cylinders 111 is connected to the partition. The upper end surfaces of 140 are connected to form a closed first chamber.
  • the battery core 3e is arranged in the first cylinder 111.
  • the lower housing 120 includes a plurality of second cylinders 121. One end of the second cylinders 121 is connected to the end surface of the lower housing 120, and the other end of the second cylinders 121 is connected to the lower end surface of the partition 140, thereby forming a closed Second chamber.
  • the second cylinder 121 and the first cylinder 111 are arranged in one-to-one correspondence, and the axis of the second cylinder 121 coincides with the axis of the first cylinder 111.
  • the diameter of the second cylinder 121 is smaller than the diameter of the first cylinder 111.
  • a first baffle 143 is provided on the side of the partition 140 close to the first chamber.
  • the top of the first baffle 143 Connected to the end surface of the upper housing 110, the bottom end of the first baffle 143 is connected to the upper end surface of the partition 140, and the side end of the first baffle 143 is connected to the inner wall of the upper housing 110 and/or the first cylinder 111,
  • the first chamber is thereby divided into a plurality of parallel serpentine flow channels.
  • the serpentine flow channels are surrounded by the side wall of the first cylinder 111, the upper shell 110 and the partition 140.
  • the serpentine flow channels are in a wavy shape. shape, which can effectively increase the heat exchange area and enhance the cooling effect. Furthermore, after the cooling medium flows into the first chamber from the first inlet 102, it enters two serpentine flow channels in opposite directions. The cooling medium enters the serpentine flow channel. Finally, it first comes into contact with the battery core 3e located in the middle position. Since the battery core 3e in the middle position has poor heat dissipation and a relatively high temperature, the cooling medium that initially enters the first chamber has a lower temperature.
  • the cooling medium with a lower temperature in a chamber cools down the battery core 3e in the middle position, which can reduce the temperature difference between the battery core 3e in the middle position and the battery core 3e in the edge position, so that the temperature difference between the battery core 3e
  • the temperature consistency is better, which is beneficial to extending the service life of battery core 3e.
  • a second baffle 144 is provided on the side of the partition 140 close to the second chamber.
  • the top end of the second baffle 144 is connected to the lower end surface of the partition 140.
  • the second baffle 144 is The bottom end is connected to the end surface of the lower housing 120, and the side end of the second baffle 144 is connected to the inner wall of the lower housing 120 and/or the second cylinder 121.
  • the second baffle 144 divides the second chamber into multiple Parallel labyrinth flow channels. For example, there are two labyrinth-shaped flow channels in this embodiment. After the cooling medium flows into the second chamber from the second inlet 141, it enters the two labyrinth-shaped flow channels in opposite directions.
  • the cooling medium After the cooling medium enters the labyrinth flow channel, it first contacts the battery core 3e located in the middle. Since the cooling medium has a longer flow time in the labyrinth flow channel, the heat exchange time between the cooling medium and the battery core 3e located in the middle can be increased. , thereby reducing the temperature difference between the battery core 3e at the middle position and the battery core 3e at the edge position. Moreover, the cooling medium that initially enters the second chamber has a lower temperature. By using the lower temperature cooling medium that first enters the second chamber to cool down the battery core 3e in the middle position, the temperature of the middle position can be further reduced. The temperature difference between the battery core 3e and the battery core 3e located at the edge makes the temperature consistency between the bottoms of the battery core 3e better.
  • thermoly conductive structural adhesive between the battery core 3e and the casing 100.
  • the battery core 3e and the casing 100 can be fixed through the thermally conductive structural adhesive.
  • the thermally conductive structural adhesive can also The heat exchange efficiency between the casing 100 and the battery core 3e is improved, and the cooling effect is better.
  • the housing 100 is provided with a fixing plate 130 , and a plurality of positioning holes 131 are provided on the fixing plate 130 .
  • the arrangement of the fixing plate 130 facilitates the assembly of the liquid cooling device into the battery module, and the arrangement of the positioning holes 131 facilitates the transportation and movement of the liquid cooling device during the assembly process, thereby improving assembly accuracy.
  • the housing 100 is provided with at least one pipe joint structure 200 , and the pipe joint structure 200 is used to connect with the first inlet 102 and/or the first outlet 103 .
  • Each pipe joint structure 200 includes a first pipe joint 1 and a second pipe joint 2.
  • a slider 11 is provided on the inner wall of one of the first pipe joint 1 and the second pipe joint 2, and the slider 11 is provided on the inner wall of the other one.
  • the outer wall is provided with a guide chute 25 into which the slider 11 can be inserted. The slider 11 can slide along the guide chute 25 to screw the first pipe joint 1 to the second pipe joint 2 .
  • the second pipe joint 2 has a cylindrical structure with a through hole in the center along the axial direction.
  • the first pipe joint 1 is a stepped pipe with a through hole in the center along the axial direction.
  • the end with the smaller outer diameter is used to connect to the external water pipe, and the end with the larger outer diameter is sealed on the second pipe joint. 2 on.
  • the pipeline joint structure 200 provided in this embodiment has a simple structure and is easy to disassemble and assemble.
  • a slider 11 is provided on the inner wall of one of the first pipeline joint 1 and the second pipeline joint 2 , and a guide chute 25 into which the slider 11 can be inserted is provided on the outer wall of the other.
  • the operator When in use, the operator only needs to rotate the first pipe joint 1 or the second pipe joint 2 so that the slider 11 slides along the guide chute 25 to its end, so as to screw the first pipe joint 1 to the second pipe joint 2.
  • the pipe joint 2 is easy to operate and improves the disassembly and assembly efficiency.
  • the pipeline joint structure 200 provided by this embodiment also includes a sealing member 3 a , and the sealing member 3 a is sealingly connected between the first pipeline joint 1 and the second pipeline joint 2 .
  • the sealing member 3a is disposed on the end surface of the second pipe joint 2 close to the first pipe joint 1.
  • the first pipe joint 1 is sleeved behind the second pipe joint 2.
  • the first pipe joint 1 The stepped surface of the inner hole can be pressed against the seal 3a to ensure sealing reliability and prevent coolant leakage.
  • the sealing member 3a is preferably a sealing ring.
  • a slider 11 is provided on the inner wall of one of the first pipe joint 1 and the second pipe joint 2, and a slider 11 is provided on the outer wall of the other.
  • the slider 11 is inserted into the guide chute 25, and the slider 11 can slide along the guide chute 25 to screw the first pipe joint 1 to the second pipe joint 2.
  • the slider 11 is disposed on the inner wall of the first pipe joint 1
  • the guide chute 25 is disposed on the outer wall of the second pipe joint 2 .
  • the second pipe joint 2 includes a body 21 and a plurality of boss structures arranged at intervals along the axial direction of the body 21 .
  • the plurality of boss structures are protruding on the body 21 to A guide chute 25 is formed.
  • the plurality of boss structures are respectively the first boss 22, the second boss 23 and the third boss 24.
  • the first boss 22, the second boss 23 and the third boss 24 are all along the circumference. It is arranged outside the main body 21 in a direction surrounding.
  • the first boss 22 is located at the top of the body 21
  • the second boss 23 is located at the middle of the body 21
  • the third boss 24 is located at the bottom of the body 21 .
  • the first pipeline joint 1 needs to be screwed to the position of the second boss 23 and completely cover the second boss 23 to ensure the compression amount of the seal 3a and increase the airtight reliability.
  • the first boss 22 is provided with a first slide groove 251 for the slider 11 to be inserted.
  • the first boss 22 and the second boss 23 are spaced apart to form a second slide.
  • Groove 252 a third chute 253 is provided on the second boss 23, the second boss 23 and the third boss 24 are spaced apart to form a fourth chute 254, the first chute 251, the second chute 252, and the third chute 254.
  • the three chute 253 and the fourth chute 254 are connected in a stepped shape to form the guide chute 25 .
  • the first slide groove 251 and the third slide groove 253 are parallel and extend along the axial direction of the body 21
  • the second slide groove 252 and the fourth slide groove 254 are parallel and extend along the circumferential direction of the body 21 .
  • the first slide groove 251 extends along the axial direction of the body 21 and penetrates the first boss 22 to facilitate the insertion of the slider 11 .
  • the second slide groove 252 extends along the circumferential direction of the body 21 and is connected to the end of the first slide groove 251 .
  • the second slide groove 252 is formed by the first boss 22 and the second boss 23 being spaced apart.
  • the third slide groove 253 extends along the axial direction of the body 21 and penetrates the third boss 24 , and is connected to the end of the second slide groove 252 .
  • the fourth slide groove 254 extends along the circumferential direction of the body 21 and is connected to the end of the third slide groove 253 .
  • the fourth slide groove 254 is formed by the second boss 23 and the third boss 24 being spaced apart.
  • the first chute 251, the second chute 252, the third chute 253 and the fourth chute 254 are connected end to end in order to form a ladder-shaped guide chute 25, which is easy to install and has a stable connection, which can avoid the first pipe Road connector 1 has fallen off.
  • two sliders 11 are provided on the inner wall of the first pipeline joint 1, and the two sliders 11 are arranged oppositely.
  • two guide chute 25 are provided on the outer wall of the second pipeline joint 2 , and the two slide blocks 11 can slide and cooperate with the corresponding guide chute 25 .
  • the structures of the two guide chute 25 are exactly the same, and the two guide chute 25 are centrally symmetrical with respect to the axis of the second pipeline joint 2 .
  • a first limiting member 27 is connected between the first boss 22 and the second boss 23, and a second limiting member 27 is connected between the second boss 23 and the third boss 24.
  • the first limiting member 27 and the second limiting member 28 are arranged in parallel and spaced apart.
  • the first limiting member 27 is connected to one side wall of the third chute 253
  • the second limiting member 28 is connected to the other side wall of the third chute 253 .
  • the slider 11 slides along the guide chute 25
  • first the slider 11 is placed in the first chute 251 and slides along the first chute 251.
  • the first pipeline joint 1 moves along the axial direction of the body 21. After moving a certain distance, the slider 11 slides into the second slide groove 252 . Then, the first pipeline joint 1 is rotated around the axis, so that the slider 11 slides along the second slide groove 252 .
  • the first pipe joint 1 is pushed to move axially along the body 21 , so that the slider 11 slides along the third slide groove 253 .
  • the first pipe joint 1 is rotated around the axis, so that the slider 11 slides along the fourth slide groove 254 until the slider 11 slides to the end of the fourth slide groove 254.
  • the slider 11 is in contact with the second limiting member 28 provided on the other guide chute 25 .
  • the second limiting member 28 and the second boss 23 can limit the circumferential and axial movement of the slider 11 along the body 21 to ensure the stability, accuracy and sealing of the connection.
  • first arc chamfer 221 the end surface edge of the first boss 22 away from the second boss 23 is provided with a first arc chamfer 221 .
  • second boss 23 is provided close to the end surface edge of the first boss 22 .
  • second arc chamfer 23 There is a second arc chamfer 231. Both the first arc chamfer 221 and the second arc chamfer 231 have a guiding function to facilitate the installation and screwing-in of the first pipeline joint 1 .
  • the second pipeline joint 2 further includes a limiting portion 26 , the limiting portion 26 has a circular cross-section, and the limiting portion 26 is close to the end of the body 21 and circumferentially arranged along the outside of the body 21 .
  • the outer diameter of the limiting portion 26 is larger than the outer diameter of the main body 21 .
  • the main body 21 is inserted into the housing 100 , and the limiting portion 26 is in contact with the outer surface of the housing 100 .
  • the limiting portion 26 is used to limit the movement of the second pipe joint 2 relative to the housing 100 .
  • the second pipe joint 2 is an integrally formed structure, which is more stable in structure, saves assembly links between components, and saves installation time and workload.
  • the embodiment of the present application also proposes a pallet.
  • the pallet includes the liquid cooling device of Embodiment 1 and a plurality of battery cores 3e.
  • An installation position 101 is formed in the liquid cooling device; each battery core 3e is installed in a corresponding installation position 101.
  • multiple battery cores 3e are arranged on a liquid cooling device.
  • the liquid cooling device can have a good cooling effect on the battery cores 3e, and the thermal management effect is good.
  • the embodiment of the present application also provides a battery module 1000.
  • the battery module includes a tray, a busbar 200a and a liquid cooling plate 300.
  • the tray contains a plurality of battery cells 3e; the busbar 200a contains multiple cells 3e; Each battery core 3e is electrically connected, and the liquid cooling plate 300 is disposed above the busbar to cool the multiple battery cores 3e.
  • the battery cell holder adopts an integral bracket, that is, the integral bracket supports multiple battery cells 3e in the battery module 1000 at the same time.
  • the size of the integral bracket is larger, the mold cost is high, and the production cost is high;
  • embodiments of the present application also provide a battery core 3e.
  • Each battery cell 3e includes a battery core body 32 and a battery core bracket.
  • the battery core bracket includes a first bracket 1a.
  • the first bracket 1a is formed with a first sleeve cavity 111a with openings at both ends.
  • the first sleeve cavity 111a is sleeved on one end of the cell body 32 where the positive pole 31 is provided.
  • An opening at one end of the first sleeve cavity 111a is provided with an edge.
  • At least one cell connecting piece carrier 12a extending radially of the first bracket 1a.
  • the battery core connection piece carrier 12a can cover part of the surface of one end of the battery body 32 where the positive pole 31 is provided.
  • the battery core connection piece carrier 12a is provided with a thermally conductive glue hole 121a.
  • the battery core holder provided in this embodiment only supports one battery core body 32, thereby making the battery core holder smaller in size, reducing the mold cost of the battery core holder, and thus reducing the production cost of the product.
  • first sleeve cavity 111a of the first bracket 1a of the battery holder is sleeved on one end of the battery body 32 where the positive pole 31 is provided.
  • the battery cell holder further includes a second bracket 2a, and the second bracket 2a is configured to be installed on the other end of the battery core body 32.
  • the second bracket 2a of the battery core bracket is installed on an end of the battery core body 32 away from the positive pole 31.
  • the first sleeve 111a of the first bracket 1a of the battery holder is set on one end of the battery body 32 where the positive pole 31 is provided, and the second bracket 2a of the battery holder is installed on the battery core.
  • the other end of the body 32 Specifically, taking the orientation shown in FIG. 11 as an example, the first bracket 1a is disposed at the upper end of the battery core body 32, and the second bracket 2a is disposed at the lower end of the battery core body 32.
  • the cell holder provided in this embodiment only supports one cell body 32, thereby making the cell holder smaller in size, reducing the mold cost of the cell holder, and thus reducing the production cost of the product.
  • the series and parallel connection between different battery core bodies 32 is realized through the battery core metal connecting piece.
  • the arrangement of the first sleeve cavity 111a ensures the stability of the installation of the battery core body 32 on the first bracket 1a.
  • the cell connection piece carrier 12a extends along the radial direction of the first bracket 1a and can cover part of the surface of one end of the cell body 32 where the positive pole 31 is provided. That is, the cell connection piece carrier 12a can partially cover the cell. body 32, so that the surface of the battery core body 32 with the positive pole 31 can be partially exposed, ensuring that the battery core body 32 has a certain heat dissipation area.
  • the battery core connection piece carrier 12a can also limit the installation of the battery core body 32 in the first sleeve cavity 111a; when the upper surface of the battery core 3e extends into the first sleeve cavity 111a and connects with the battery core connection piece carrier After 12a abuts, it indicates that the battery core body 32 is installed in the first housing cavity 111a.
  • the size of the battery core connecting piece carrier 12a can be set according to the size of the battery core metal connecting piece to ensure that the surface of the battery core 3e with the positive pole 31 is exposed as much as possible, so that the heat dissipation area of the battery core body 32 is as large as possible. big.
  • the remaining part of the battery core metal connecting piece is mounted on the battery core connecting piece carrier 12a and is isolated from the battery core body 32, that is, The metal connecting piece of the cell only contacts the positive pole 31 of the cell body 32 and does not contact the positive pole 31 and the negative pole of the same cell body 32 at the same time, thereby avoiding short circuit.
  • a thermally conductive glue hole 121a is provided on the battery core connecting piece carrier 12a. After the battery core 3e is assembled, thermally conductive structural glue is put into the thermally conductive glueing hole 121a.
  • the battery core metal connection piece When installing the battery core metal connecting piece on the battery core 3e , the battery core metal connection piece is mounted on the battery core connection piece carrier 12a and contacts with the thermally conductive structural adhesive, so that the heat of the battery core body 32 is transferred to the battery core metal connection piece through the thermally conductive structural adhesive, thereby accelerating the heat dissipation of the battery core body 32 .
  • the thermally conductive structural glue is heat-dissipating silicone.
  • the battery core 3e provided in this embodiment uses the above-mentioned battery core bracket to support the battery core body 32.
  • the battery core bracket only supports one battery core body 32, thereby making the battery core bracket smaller in size and reducing the mold of the battery core bracket. cost, thereby reducing the production cost of battery cell 3e components.
  • first bracket 1a is made of plastic
  • second bracket 2a is made of plastic
  • both the first bracket 1a and the second bracket 2a are made of plastic.
  • a plurality of battery core connecting piece carriers 12a are provided at intervals in the first housing cavity 111a to meet the requirements of the battery core body.
  • 32 is equipped with the required quantity of battery cell metal connecting pieces.
  • the number of battery core connection piece carriers 12a is set according to needs, and one battery core connection piece carrier 12a corresponds to one battery core metal connection piece.
  • the battery core connecting piece carrier 12a has a sheet-like structure.
  • a first bracket body reinforcing structure 112a is provided on the outer side of the first bracket body 11a to ensure the structural strength of the first bracket body 11a.
  • the first bracket body 11a is an annular structure, which surrounds the first sleeve cavity 111a.
  • the battery core connecting piece carrier 12a is disposed at the upper opening of the first sleeve cavity 111a and extends toward the axial direction of the first bracket body 11a.
  • the reinforcing structure 112a of the first bracket body 11a is provided on the outer side of the first bracket body 11a. More specifically, a plurality of first bracket body 11a reinforcing structures 112a are provided at circumferential intervals along the outer side of the first bracket body 11a.
  • the second bracket 2a is provided with a second sleeve cavity 213a, and the second sleeve cavity 213a is configured to be sleeved on the other end of the battery core body 32.
  • the second sleeve cavity 213a is sleeved on the other end of the battery core body 32, thereby ensuring the stability of the battery core body 32 being installed on the second bracket 2a.
  • the second bracket 2a includes a second bracket body 211a.
  • the second bracket body 211a includes a bottom plate 211a and a side plate 212a surrounding the outside of the bottom plate 211a.
  • the bottom plate 211a and the side plate 212a form a third bracket.
  • Two sets of chambers 213a After the lower end of the battery core body 32 is installed in the second sleeve cavity 213a and contacts the bottom plate 211a, it means that the lower end of the battery cell body 32 is installed in the second sleeve cavity 213a.
  • the bottom plate 211a has an annular structure, and a structural glue filling hole 2111a is provided on the bottom plate 211a.
  • the structural glue filling hole 2111a is provided so that excess glue can overflow from the structural glue filling hole 2111a, ensuring that the lower end of the battery core body 32 can be smoothly bonded to the base plate.
  • the second bracket 2a also includes a second bracket seat 22a. The second bracket seat 22a is coaxially connected to the bottom plate 211a to support the bottom plate 211a.
  • the battery body 32 is installed on the battery tray.
  • a second The bracket base 22a supports the bottom plate 211a to avoid direct contact between the bottom plate 211a and the cell tray.
  • the second support base 22a includes a support base 221a and a first support column 222a coaxially connected to the support base 221a.
  • the bottom plate 211a is connected to an end of the first support column 222a away from the support base 221a.
  • a through-hole structure is coaxially provided in the first support column 222a.
  • the inner diameter of the first support column 222a is the same as the inner diameter of the bottom plate 211a.
  • the outer diameter of the first support column 222a is smaller than the outer diameter of the bottom plate 211a.
  • the structural glue filling hole 2111a is suspended. , thereby avoiding direct contact between the structural adhesive filling hole 2111a and the cell tray. Furthermore, the arrangement of the through-hole structure in the first support column 222a allows the lower end surface of the battery core body 32 to be partially exposed, further ensuring the heat dissipation performance of the battery core body 32.
  • some battery modules 1000 use serpentine tubes to cool the battery core 3e.
  • the cooling effect of the serpentine tube is limited by the width of the serpentine tube and the contact area with the battery core 3e. Increase the contact area between the serpentine tube and the battery core 3e.
  • the cooling effect is improved, the distance between battery cells 3e will increase.
  • the number of installed battery cells 3e is limited, which reduces the battery energy density.
  • the number of installed battery cells 3e is increased, it will lead to The spacing between the cores 3e is reduced, which reduces the contact area between the battery core 3e and the serpentine tube, affecting the cooling effect of the battery core 3e.
  • embodiments of the present application also provide a liquid cooling device.
  • the liquid cooling device includes a housing 100.
  • the housing 100 includes a cooling body 1b.
  • the cooling body 1b includes an interconnected accommodation cavity and a limiting hole 111b.
  • the battery core 3e is accommodated in the accommodation cavity. And limited in the limiting hole 111b, the cooling body 1b and the battery core 3e form a flow channel F, and the water inlet and the water outlet are connected to the flow channel F respectively.
  • the accommodating cavity and the limiting hole 111b constitute the installation position 101.
  • the cooling liquid is supplied to the flow channel F through the water inlet, and the cooling liquid is discharged outward through the water outlet, thereby realizing the cooling liquid circulation in the flow channel F.
  • the battery core 3e forms a flow channel F in the accommodation cavity.
  • the coolant is directly used to cool the battery core 3e, which enhances heat exchange and reduces the temperature of the battery core 3e. temperature difference between.
  • the structure between the cooling body 1b and the battery core 3e is compact.
  • the cooling effect of the serpentine tube is affected by the contact area between the serpentine tube and the battery core 3e.
  • the cooling effect is improved. Cooling effect of battery cell 3e. Since the battery cores 3e are always immersed in the cooling liquid, the spacing between the battery cores 3e can be set according to the actual situation to facilitate adjustment of the spacing between the battery cores 3e, thereby increasing the energy density.
  • the cooling body 1b of an integrated structure replaces the serpentine tube and the nylon tube. , simplifying the structure, optimizing the assembly process, improving production efficiency and structural stability, and ensuring the reliability of the cooling body 1b.
  • the limiting hole 111b limits the position of the battery core 3e, improves the installation stability of the battery core 3e, and improves the verticality of the battery core 3e.
  • the cooling liquid is an insulating cooling liquid, and the cooling liquid can directly contact the surface of the battery core 3e to achieve efficient cooling of the battery core 3e.
  • the cooling body 1b includes a base plate 11b and a frame 15b connected to the base plate 11b.
  • the limiting hole 111b is opened in the base plate 11b.
  • the base plate 11b and the frame 15b form a receiving cavity.
  • the structure is simple and easy to form. .
  • the cooling body 1b also includes a plurality of second support columns 12b.
  • the plurality of second support columns 12b are provided in the frame 15b and are supported and connected to the substrate 11b.
  • the second support columns 12b are provided between adjacent cells 3e.
  • the base plate 11b, the second support column 12b and the outer periphery of the battery core 3e form a flow channel F.
  • the structural strength of the cooling body 1b is improved by arranging the second support column 12b, and the cooling liquid in the accommodation cavity is disturbed.
  • the cooling liquid flows in a preset direction, thereby improving the uniform cooling of the battery core 3e. sex.
  • the cooling body 1b includes a base plate 11b and a plurality of second support columns 12b.
  • the frame 15b and the plurality of second support columns 12b are provided at one end of the base plate 11b.
  • the cooling body 1b includes multiple rows of second support pillars 12b arranged along the third direction. Two adjacent rows of second support pillars 12b are spaced apart. The second support pillars 12b and the battery cores 3e form multiple rows along the third direction.
  • the flow channel F extends in the second direction. The arrangement, shape and size of the flow channel F are regular, which improves the cooling effect. Furthermore, two adjacent rows of second support columns 12b are staggered along the second direction, which enables more cells 3e to be arranged in a limited space, thereby increasing compactness.
  • the side of the second support column 12b along the second direction is provided with a profiling surface 121b that is adapted to the shape of the battery core 3e.
  • the profiling surface 121b fits the battery core 3e, which improves installation. Stability and compactness. More specifically, the battery core 3e is a cylindrical battery core, and accordingly, the contoured surface 121b is an arc surface.
  • the width of the flow channel F is related to the spacing of the battery cores 3e along the third direction.
  • the distance between two battery cores 3e in two adjacent rows is not less than 1 mm, so as to avoid the width of the flow channel F being too large and reducing the number of installed batteries 3e, and also to avoid the width of the flow channel F being too small and reducing the number of batteries.
  • the amount of coolant introduced affects the cooling effect.
  • the base area of the battery core 3e and the two adjacent second support pillars 12b along the second direction accounts for less than 40% of the side wall surface area of the battery core 3e, so that the cooling liquid and the battery core 3e
  • the contact area accounts for more than 60% of the surface area of the side wall of the cell 3e.
  • the height of the flow channel F is not greater than the height of the battery core 3e, and the end of the battery core 3e protrudes from the flow channel F to prevent the end of the battery core 3e from being disposed in the coolant and affecting the service life. , and it is also convenient to disassemble and install battery cell 3e.
  • the cooling body 1b also includes two main channels 13b.
  • One main channel 13b connects the first inlet 102 and the plurality of flow channels F, and the other main channel 13b connects the first outlet 103 with the plurality of flow channels F.
  • multiple flow channels F are connected to the first inlet 102 or the water outlet through the main channel 13b, and the flow is collected through the main channel 13b to prevent the multiple flow channels F from being connected to the first inlet 102 and the water outlet respectively.
  • the cooling body 1b and the main channel 13b are an integrated structure.
  • the main channel 13b is provided between the ends of the plurality of rows of second support columns 12b along the second direction and the frame 15b.
  • the first inlet 102 and the first outlet 103 are respectively provided on the frame 15b. It is convenient for production and molding and reduces assembly steps. By setting two main channels 13b, multiple flow channels F are connected in parallel, the length of the flow channels F is reduced, and the cooling uniformity of different rows of battery cores 3e is improved; in another embodiment, the main channel 13b can also be connected with the cooling
  • the main body 1b has a split structure and is not limited.
  • the flow channel F is provided on one side of the battery core 3e along the third direction, or the flow channel F is provided on both sides of the battery core 3e along the third direction.
  • the configuration is not limited to the actual situation.
  • two adjacent rows of battery cores 3e are provided with flow channels F.
  • the cooling liquid in the flow channels F is used to cool the two adjacent rows of battery cores 3e, so that both sides of the battery cores 3e can be cooled. Cooling; the two rows of battery cores 3e located at both ends along the third direction are only provided with a flow channel F on the side close to the middle row of battery cores 3e for unilateral cooling.
  • the interference fit between the battery core 3e and the limit hole 111b ensures the installation strength of the battery core 3e on the one hand and ensures the sealing of the flow channel F on the other hand to avoid Coolant leak.
  • first inlet 102 and the first outlet 103 are each provided with a pipeline joint structure 200.
  • the pipeline joint structure 200 is the same as that of the first embodiment and will not be described again.
  • the embodiment of the present application also provides a tray, including the liquid cooling device of Embodiment 2 and a plurality of battery cores 3e.
  • the structure of each battery core 3e is the same as that of Embodiment 1, and will not be described again here. .
  • Embodiments of the present application also provide a pallet manufacturing process, which includes the following steps:
  • a plurality of electric cores 3e are accommodated in the tray.
  • a plurality of limiting holes 111b are provided on the base plate 11b.
  • the cooling body 1b has a molded structure. The cooling body 1b is first shaped, and then the battery core 3e is installed in the limiting hole 111b of the cooling body 1b.
  • the integrated cooling body 1b replaces the serpentine tube and the nylon tube, which simplifies the structure, optimizes the assembly process, and improves production. efficiency and structural stability.
  • the cooling body 1b Since the cooling body 1b has a molded structure, it avoids complicated processing and assembly processes like the serpentine tube, which affects the insulation of the surface of the serpentine tube.
  • the cooling body 1b reduces intermediate processing or assembly steps, avoids affecting product quality, and ensures cooling. Reliability of ontology 1b.
  • the limiting hole 111b limits the position of the battery core 3e, improves the installation stability of the battery core 3e, and improves the verticality of the battery core 3e.
  • a flow channel F is formed between the second support column 12b and the battery core 3e. When the coolant flows into the flow channel F, the battery core 3e is immersed in the coolant. The coolant is directly used to cool the battery core 3e, thereby enhancing heat exchange and reducing battery life. The temperature difference between core 3e.
  • the cooling body 1b is foam-molded in a mold using materials such as polyurethane foam to form the limiting holes 111b and the second support pillar 12b.
  • the process is simple and only one mold is needed for molding. This not only The price is cheap, and the cooling body 1b structure can be formed in one piece. The entire installation process is very convenient and the production efficiency is high.
  • the cooling body 1 b can also be machined or injection molded through a mold according to specific processing requirements, which is not limited.
  • the cooling body 1b may be integrally formed, or may be divided into two or more integrally formed parts for molding, and then bonded or connected in other ways.
  • the cooling body 1b may be configured according to requirements without limitation.
  • the cooling body 1b includes a base plate 11b and a frame 15b connected to the base plate 11b.
  • the limiting hole 111b is opened in the base plate 11b.
  • the base plate 11b and the frame 15b form a receiving cavity.
  • the structure is simple and easy to form.
  • the cooling body 1b also includes a plurality of second support pillars 12b.
  • the plurality of second support pillars 12b are provided in the frame 15b and are supported and connected to the substrate 11b.
  • the second support pillars 12b are filled between adjacent battery cores 3e.
  • the base plate 11b, the second support column 12b and the outer periphery of the battery core 3e form a flow channel F.
  • the battery core 3e is placed in front of the limiting hole 111b.
  • the manufacturing process of the tray also includes:
  • the battery core 3e and the second support pillar 12b can form a plurality of parallel flow channels F.
  • the tray The production process also includes:
  • S21 Connect the current collector assembly 3b to the cooling body 1b.
  • the current collector assembly 3b is connected to the flow channel F.
  • the current collector assembly 3b is used to connect to external cooling equipment.
  • the number of connections can be reduced and the structure simplified.
  • the current collector assembly 3b is connected to a plurality of flow channels F, so that the plurality of flow channels F are connected in parallel.
  • the cooling liquid of the external cooling device enters the current collector assembly 3b through the first inlet 102, then enters the flow channel F, and then flows back to the external cooling device from the flow channel F through the first outlet 103 of the current collector assembly 3b.
  • the current collector assembly 3b can be installed on the cooling body 1b before the electric core 3e is installed in the limiting hole 111b, or the current collector assembly 3b can be installed on the cooling body after the electric core 3e is installed in the limiting hole 111b. On the main body 1b, this is not limited.
  • the manufacturing process of the tray before or after placing the battery core 3e in the limiting hole 111b, the manufacturing process of the tray also includes:
  • the manufacturing process of the tray also includes:
  • the cooling body 1b, battery core 3e and current collector assembly 3b fix them in the box to ensure the stable installation of the internal structure of the box.
  • the current collector assembly 3b is connected to the external equipment to ensure that the connection between the box and the external equipment is stable. , and finally pass in the coolant to ensure reliability and prevent coolant leakage.
  • the embodiment of the present application also provides a battery module 1000, including the liquid cooling device of Embodiment 2 and a plurality of battery cells 3e.
  • the structure of each battery cell 3e is the same as that of Embodiment 1, and is no longer repeated here. Let’s not go into details.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种液冷装置、托盘以及电池模组,该液冷装置包括外壳,外壳上形成有多个安装位置、第一进口和第一出口,每一安装位置内插设有电芯,外壳内形成有冷却腔室,第一进口和第一出口均与冷却腔室连通,冷却腔室内流通有冷却介质,冷却腔室设置为冷却安装位置内的电芯。

Description

液冷装置、托盘以及电池模组
本申请要求在2022年08月19日提交中国专利局、申请号分别为202210999408.9、202222189344.4、202222201465.6、202222189618.X以及202210998407.2的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
本申请要求在2022年11月08日提交中国专利局、申请号分别为202211389108.5以及202222964561.6的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种液冷装置、托盘以及电池模组。
背景技术
相关技术中,电池模组内均设有液冷系统来对电芯进行热管理,从而避免电芯在充、放电时发生热失控的现象,以及自燃等安全事故;然而目前现有的电池模组内的液冷系统通常设置在电芯的顶部或底部,导致电芯中间部分产生的热量不容易导出,液冷系统的热交换效率较低,冷却降温效果较差。
发明概述
本申请提供一种液冷装置、托盘以及电池模组来解决上述技术问题。
本申请提供一种液冷装置,液冷装置包括外壳、第一进口和第一出口;外壳内形成有多个安装位置,每一安装位置内插设有电芯,外壳内形成有冷却腔室,冷却腔室内流通有冷却介质,冷却腔室设置为冷却安装位置内的电芯;第一进口和第一出口均形成在外壳上,且均与冷却腔室连通。
本申请还提供一种托盘,托盘包括液冷装置和多个电芯;液冷装置内形成有安装位置;每一电芯安装在对应的安装位置内。
本申请还提供一种电池模组,电池模组包括托盘、汇流排和液冷板;托盘内容纳有多个电芯;汇流排将多个电芯电连接,液冷板设于汇流排的上方,设置为为多个电芯降温。
有益效果
本申请的有益效果为:本申请提供的液冷装置,用于对多个电芯进行冷却,该液冷装置的外壳上设有安装位置,安装位置内插设有电芯,外壳的内部中空形成冷却腔室,冷却腔室内流通有冷却介质,冷却腔室能够将电芯的侧面和底面包裹,从而提高冷却腔室与电芯的接触面积,冷却降温效果良好,并且由于冷却腔室能够分别电芯的侧面和底面进行降温,减小了电芯沿高度方向上的温度差。
本申请提供的托盘,包括多个电芯、以及上述液冷装置,多个电芯设置在液冷装置上,通过液冷装置能够对电芯起到良好的冷却降温作用,热管理效果良好。
本申请提供的电池模组,包括上述的托盘、汇流排以及液冷板,通过设置液冷板和液冷装置同时对电芯进行降温,有效避免电池包内温度过高导致的电芯热失控。
附图说明
图1是本申请实施例一提供的液冷装置的结构示意图;
图2是图1中另外一视角的结构示意图;
图3是图2中C的放大示意图;
图4是图1的侧视示意图;
图5是图4中A-A的剖视图;
图6是图5中B的放大示意图;
图7是图4中B-B的剖视图;
图8是图1中管路接头结构的示意图;
图9是图8中第一管路接头的示意图;
图10是图8中第二管路接头的示意图;
图11是本申请实施例一提供的电芯的结构示意图;
图12是图11中第一支架的结构示意图;
图13是图11中第二支架的结构示意图;
图14本申请实施例一提供的电池模组的结构示意图;
图15是本申请实施例二提供的液冷装置的结构示意图;
图16是本申请实施例二提供的电芯安装于冷却本体的仰视图;
图17是本申请实施例二提供的电芯安装于冷却本体的示意图。
本发明的实施方式
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
实施例一
请参阅图1、图2和图3,本实施例提供了一种液冷装置,用于对多个电芯3e进行冷却。该液冷装置包括外壳100、第一进口102和第一出口103。外壳100内形成有多个安装位置101,每一安装位置101内插设有电芯3e(请见图11)。外壳100内形成有冷却腔室,冷却腔室内流通有冷却介质,冷却腔室用于冷却安装位置101内的电芯3e。第一进口102和第一出口103均形成在外壳100上,且均与冷却腔室连通。
本实施例提供的液冷装置用于对多个电芯3e进行冷却。该液冷装置的外壳100上设有安装位置101,安装位置101内插设有电芯3e。外壳100的内部中空形成冷却腔室,冷却腔室内流通有冷却介质,冷却腔室能够将电芯3e的侧面和底面包裹,从而提高冷却腔室与电芯3e的接触面积,冷却降温效果良好,并且由于冷却腔室能够分别对电芯3e的侧面和底面进行降温,减小了电芯3e沿高度方向上的温度差。
示例性地,安装位置101可以设有多个,且多个安装位置101沿第一方向和第二方向阵列排布,相邻的两行安装位置101之间错位设置,从而在相同的空间内设置更多数量的安装位置101。每个安装位置101内固定有一个电芯3e。外壳100的内部中空形成冷却腔室,外壳100上设有第一进口102和第一出口103,第一进口102与第一出口103均与冷却腔室连通。冷却介质从第一进口102流入冷却腔室,之后通过第一出口103流出冷却腔室。冷却腔室将电芯3e的侧面和底面包裹,从而提高冷却腔室与电芯3e的接触面积,冷却降温效果良好。本实施例中的液冷装置除了起到冷却降温的作用外,还能够定位电芯3e的位置。在组装时,将电芯3e沿第三方向直接插入安装位置101即可。需要说明的是,本实施例中的第一方向为图1中的X轴方向,第二方向为图1中的Y轴方向,第三方向为图1中的Z轴方向。
请一并参阅图1、图4至图6,在本实施例中,外壳100的内部中空形成冷却腔室。外壳100内部设有隔板140,隔板140将冷却腔室分隔成多个连通的分隔腔室。具体地,多个分隔腔室沿电芯3e的高度方向依次设置,从而各个分隔腔室能够分别对电芯3e的不同位置进行降温,有利于减小电芯3e在高度方向的温度差,热管理效果良好。
进一步地,作为一种可选地方案,本实施例中的多个分隔腔室包括第一腔室和第二腔室,第一腔室与第二腔室连通,通过第一腔室为电芯3e的侧面进行降温,通过第二腔室为电芯3e的底面进行降温,从而减小了电芯3e在高度方向的温差。外壳100包括上壳体110和下壳体120,隔板140设置在上壳体110和下壳体120之间。上壳体110和隔板140的上端面连接,上壳体110与隔板140之间形成第一腔室,第一进口102和第一出口103设置在上壳体110上。下壳体120与隔板140的下端面连接,下壳体120与隔板140之间形成第二腔室。隔板140上设有第二进口141和第二出口142,第二进口141与第一腔室和第二腔室连通,第二出口142也与第一腔室和第二腔室连通。冷却介质通过第一进口102流入第一腔室后,一部分冷却介质在第一腔室内流通,另一部分冷却介质通过隔板140上的第二进口141流入第二腔室,并在第二腔室内流通,之后通过隔板140上的第二出口142流出第二腔室,与第一腔室内的部分冷却介质汇合,共同从第一出口103流出。
请参阅图3,本实施例中的上壳体110包括多个第一筒体111,第一筒体111的一端与上壳体110的端面连接,第一筒体111的另一端与隔板140的上端面连接,从而形成封闭的第一腔室。电芯3e设置在第一筒体111内。下壳体120包括多个第二筒体121,第二筒体121的一端与下壳体120的端面连接,第二筒体121的另一端与隔板140的下端面连接,从而形成封闭的第二腔室。第二筒体121与第一筒体111一一对应设置,且第二筒体121的轴线与第一筒体111的轴线重合,第二筒体121的直径小于第一筒体111的直径,从而在第一筒体111和隔板140之间形成电芯3e的安装位置101。电芯3e的底面与隔板140上靠近第一筒体111的一侧连接。
作为一种可选地方案,请参阅图4、图5和图6,本实施例中隔板140上靠近第一腔室的一侧设有第一挡板143,第一挡板143的顶端与上壳体110的端面连接,第一挡板143的底端与隔板140的上端面连接,第一挡板143侧端与上壳体110的内壁和/或第一筒体111连接,从而将第一腔室分隔为多个并联的蛇形流道。示例性地,本实施例中的蛇形流道设置有两条,蛇形流道由第一筒体111的侧壁,以及上壳体110和隔板140围成,蛇形流道呈波浪形,能够有效增加换热面积,增强冷却效果,进一步地,冷却介质从第一进口102流入第一腔室后,分别沿相反的方向进入两条蛇形流道内,冷却介质进入蛇形流道后与位于中间位置的电芯3e首先接触,由于中间位置的电芯3e散热较差,温度相对较高,而一开始进入第一腔室内的冷却介质的温度较低,通过使用最先进入第一腔室内的温度较低的冷却介质来为中间位置的电芯3e进行降温,能够减小中间位置的电芯3e与位于边缘位置的电芯3e之间的温度差,使得电芯3e之间的温度一致性较好,有利于延长电芯3e的使用寿命。
请参阅图4和图7,隔板140上靠近第二腔室的一侧设有第二挡板144,第二挡板144的顶端与隔板140的下端面连接,第二挡板144的底端与下壳体120的端面连接,第二挡板144的侧端与下壳体120的内壁和/或第二筒体121连接,第二挡板144将第二腔室分隔为多个并联的迷宫形流道。示例性地,本实施例中的迷宫形流道设置有两条,冷却介质从第二进口141流入第二腔室后,分别沿相反的方向进入两条迷宫形流道内。冷却介质进入迷宫形流道后与位于中间位置的电芯3e首先接触,由于冷却介质在迷宫形流道内的过流时间较长,能够增加冷却介质与位于中间位置的电芯3e的换热时间,从而减小中间位置的电芯3e与位于边缘位置的电芯3e之间的温度差。并且一开始进入第二腔室内的冷却介质的温度较低,通过使用最先进入第二腔室内的温度较低的冷却介质来为中间位置的电芯3e进行降温,能够进一步减小中间位置的电芯3e与位于边缘位置的电芯3e之间的温度差,使得电芯3e的底部之间的温度一致性较好。
请继续参见图1,本实施例中的电芯3e与外壳100之间设有导热结构胶,一方面,通过导热结构胶能够固定电芯3e和外壳100,另一方面,导热结构胶也能够提高外壳100与电芯3e之间的换热效率,降温效果更好。
进一步地,外壳100上设有固定板130,且在固定板130上设有多个定位孔131。通过固定板130的设置,方便液冷装置装配到电池模组内,通过定位孔131的设置,方便液冷装置在成组过程中的搬运和移动,提高组装的精度。
请参阅图8,外壳100上设有至少一个管路接头结构200,管路接头结构200用以与第一进口102和/或第一出口103连接。每一管路接头结构200包括第一管路接头1和第二管路接头2,第一管路接头1和第二管路接头2中一者的内壁上设置有滑块11,另一个的外壁上开设有可供滑块11置入的导向滑槽25,滑块11能够沿导向滑槽25滑动,以将第一管路接头1旋拧于第二管路接头2上。在本实施中,第二管路接头2为圆柱形结构,其中心位置沿轴向开设有通孔,第二管路接头2的一端伸入外壳100内,以向冷却腔室内传输冷却液。第一管路接头1为阶梯形管,其中心位置沿轴向也开设有通孔,外径较小的一端用于连接外界水管,外径较大的一端密封套设于第二管路接头2上。本实施例所提供的管路接头结构200,结构简单,拆装方便。第一管路接头1和第二管路接头2中一者的内壁上设置有滑块11,另一个的外壁上开设有可供滑块11置入的导向滑槽25。在使用时,操作人员只需转动第一管路接头1或者第二管路接头2,使得滑块11沿导向滑槽25滑动至其末端,以将第一管路接头1旋拧于第二管路接头2上,操作方便,提高了拆装效率。
进一步地,如图8和图9所示,本实施例提供的管路接头结构200还包括密封件3a,密封件3a密封连接于第一管路接头1和第二管路接头2之间。具体而言,密封件3a设置于第二管路接头2靠近第一管路接头1一端的端面上,第一管路接头1套设于第二管路接头2后,第一管路接头1内孔的阶梯面能够压紧于密封件3a上,以确保密封可靠性,防止冷却液泄漏。更为具体地,密封件3a优选为密封圈。
进一步地,如图8和图9所示,为了安装方便,第一管路接头1和第二管路接头2中一者的内壁上设置有滑块11,另一个的外壁上开设有可供滑块11置入的导向滑槽25,滑块11能够沿导向滑槽25滑动,以将第一管路接头1旋拧于第二管路接头2上。具体而言,在本实施例中,滑块11设置于第一管路接头1的内壁上,导向滑槽25设置于第二管路接头2的外壁上。在使用时,操作人员先将滑块11置入导向滑槽25内,只需转动第一管路接头1,使得滑块11沿导向滑槽25滑动至其末端,即可将第一管路接头1旋拧于第二管路接头2上,操作方便,提高了拆装效率。
具体而言,如图8和图9所示,第二管路接头2包括本体21和沿本体21的轴向间隔设置的多个凸台结构,多个凸台结构凸设于本体21上以形成导向滑槽25。更为具体地,多个凸台结构分别为第一凸台22、第二凸台23和第三凸台24,第一凸台22、第二凸台23和第三凸台24均沿周向环绕设置于本体21外。第一凸台22位于本体21的最顶端,第二凸台23位于本体21的中间位置,第三凸台24位于本体21的底部。需要说明的是,第一管路接头1需要旋到第二凸台23的位置,并将第二凸台23完全覆盖,以保证密封件3a的压缩量,增加气密可靠性。
进一步地,如图8和图10所示,第一凸台22上开设有供滑块11置入的第一滑槽251,第一凸台22和第二凸台23间隔设置形成第二滑槽252,第二凸台23上开设有第三滑槽253,第二凸台23和第三凸台24间隔设置形成第四滑槽254,第一滑槽251、第二滑槽252、第三滑槽253和第四滑槽254呈阶梯形状依次连通形成导向滑槽25。其中,第一滑槽251和第三滑槽253平行且沿本体21的轴向延伸,第二滑槽252和第四滑槽254平行且沿本体21的周向延伸。
参考图8、图9和图10,需要说明的是,第一滑槽251沿本体21的轴向延伸且贯穿第一凸台22,以方便滑块11置入。第二滑槽252沿本体21的周向延伸且连通于第一滑槽251的末端,第二滑槽252由第一凸台22和第二凸台23间隔设置形成。第三滑槽253沿本体21的轴向延伸且贯穿第三凸台24,并且连通于第二滑槽252的末端。第四滑槽254沿本体21的周向延伸且连通于第三滑槽253的末端,第四滑槽254由第二凸台23和第三凸台24间隔设置形成。第一滑槽251、第二滑槽252、第三滑槽253和第四滑槽254依次首尾相连通,以形成阶梯形状的导向滑槽25,安装方便,且连接稳定,能够避免第一管路接头1脱落。
优选地,如图9所示,第一管路接头1的内壁上设置有两个滑块11,两个滑块11相对设置。相对应地,第二管路接头2的外壁上设置有两个导向滑槽25,两个滑块11能够与对应的导向滑槽25滑动配合。其中,两个导向滑槽25的结构完全相同,两个导向滑槽25关于第二管路接头2的轴线呈中心对称设置。通过采用这种设置,能够进一步保证第一管路接头1和第二管路接头2之间连接的稳定性。
进一步地,如图10所示,第一凸台22和第二凸台23之间连接有第一限位件27,第二凸台23和第三凸台24之间连接有第二限位件28,第一限位件27与第二限位件28平行间隔设置。第一限位件27与第三滑槽253的一侧槽壁连接,第二限位件28与第三滑槽253的另一侧槽壁连接。
需要说明的是,当滑块11沿导向滑槽25滑动时,首先滑块11置入第一滑槽251内并沿第一滑槽251滑动,第一管路接头1沿本体21的轴向移动一段距离后,滑块11滑入第二滑槽252内。然后绕轴线转动第一管路接头1,使得滑块11沿第二滑槽252滑动。当滑块11抵接于第一限位件27上时,推动第一管路接头1沿本体21轴向移动,使得滑块11沿第三滑槽253滑动。当滑块11抵接于第三凸台24上时,再绕轴线转动第一管路接头1,使得滑块11沿第四滑槽254滑动,直至滑块11滑动至第四滑槽254的末端,此时滑块11与另一个导向滑槽25上设置的第二限位件28抵接。滑块11到位后,第二限位件28和第二凸台23能够限制滑块11沿本体21周向和轴向的移动,以保证连接的稳定性、准确性和密封性。
进一步地,继续参考图10,第一凸台22的远离第二凸台23的端面边缘设置有第一圆弧倒角221,同时,第二凸台23靠近第一凸台22的端面边缘设置有第二圆弧倒角231。第一圆弧倒角221和第二圆弧倒角231均具有导向作用,方便第一管路接头1的安装和旋入。
优选地,第二管路接头2还包括限位部26,限位部26的截面为圆形,限位部26靠近本体21的端部且沿本体21外侧周向环绕设置。限位部26的外径大于本体21的外径,本体21穿设于外壳100,限位部26抵接于外壳100的外表面。限位部26用于限制第二管路接头2相对于外壳100的移动。
优选地,第二管路接头2为一体成型结构,结构上更加稳定,且节省了各部件之间组装的环节,节省了安装时间和工作量。
本申请的实施例还提出了一种托盘,托盘包括实施例一的液冷装置和多个电芯3e,液冷装置内形成有安装位置101;每一电芯3e安装在对应的安装位置101内;在本实施例中,多个电芯3e设置在液冷装置上,通过液冷装置能够对电芯3e起到良好的冷却降温作用,热管理效果良好。
请参阅图17,本申请的实施例还提供了一种电池模组1000,电池模组包括托盘、汇流排200a和液冷板300,托盘内容纳有多个电芯3e;汇流排200a将多个电芯3e电连接,液冷板300设于汇流排的上方,用以为多个电芯3e降温。
现有技术中,电芯支架采用整体式支架,即整体式支架同时对电池模组1000中的多个电芯3e进行支撑,整体式支架的尺寸较大,模具费用高,生产成本较高;为解决上述问题,本申请的实施例还提供一种电芯3e。
具体地,请参阅图11,每一电芯3e包括电芯本体32和电芯支架,电芯支架包括第一支架1a。第一支架1a形成有两端具有开口的第一套装腔111a,第一套装腔111a套设于电芯本体32的设有正极柱31的一端,第一套装腔111a的一端开口处设置有沿第一支架1a的径向延伸的至少一个电芯连接片承载件12a。电芯连接片承载件12a能够覆盖电芯本体32的设有正极柱31的一端的部分表面,电芯连接片承载件12a上设置有导热打胶孔121a。本实施例提供的电芯支架,仅对一个电芯本体32进行支撑,从而使得电芯支架的尺寸较小,降低电芯支架的模具费用,从而降低产品的生产成本。
进一步地,电芯支架的第一支架1a的第一套装腔111a套设于电芯本体32的设有正极柱31的一端。
进一步地,本实施例中,电芯支架还包括第二支架2a,第二支架2a被配置为安装于电芯本体32的另一端。在本实施例所提供的电芯3e中,电芯支架的第二支架2a安装于电芯本体32的背离正极柱31的一端。
具体地,本实施例中,电芯支架的第一支架1a的第一套装腔111a套设于电芯本体32的设有正极柱31的一端,电芯支架的第二支架2a安装于电芯本体32的另一端。具体地,以图11所示方位为例,第一支架1a设置于电芯本体32的上端,第二支架2a设置于电芯本体32的下端。
本实施例提供的电芯支架,仅对一个电芯本体32进行支撑,从而使得电芯支架的尺寸较小,降低电芯支架的模具费用,从而降低产品的生产成本。
具体地,不同的电芯本体32之间的串并联通过电芯金属连接片实现。
第一套装腔111a的设置保证电芯本体32在第一支架1a上安装的稳定性。电芯连接片承载件12a沿第一支架1a的径向延伸且能够覆盖电芯本体32的设有正极柱31的一端的部分表面,也即电芯连接片承载件12a能够部分盖住电芯本体32,从而使得电芯本体32的设有正极柱31的表面能够部分外露出来,保证电芯本体32具有一定的散热面积。
电芯连接片承载件12a还能够对电芯本体32在第一套装腔111a内的安装进行限位;当电芯3e的上表面伸入第一套装腔111a内并与电芯连接片承载件12a抵接后,表明电芯本体32在第一套装腔111a内安装到位。
具体地,可根据电芯金属连接片的尺寸设置电芯连接片承载件12a的尺寸,保证电芯3e的设有正极柱31的表面尽可能外露,从而使得电芯本体32的散热面积尽可能大。
当安装电芯金属连接片时,电芯金属连接片与正极柱31电连接后,电芯金属连接片的其余部分搭载在电芯连接片承载件12a上并与电芯本体32隔绝,也即电芯金属连接片仅与电芯本体32的正极柱31接触,而不会与同一电芯本体32的正极柱31和负极柱同时接触,从而避免发生短路。在电芯连接片承载件12a上设置有导热打胶孔121a,在电芯3e组装完成后,在导热打胶孔121a内打上导热结构胶,在向电芯3e上安装电芯金属连接片时,电芯金属连接片搭载在电芯连接片承载件12a上并与导热结构胶接触,从而使得电芯本体32的热量通过导热结构胶传递至电芯金属连接片上,加速电芯本体32的散热。
可选地,导热结构胶为散热硅胶。
本实施例提供的电芯3e,采用上述的电芯支架支撑电芯本体32,电芯支架仅对一个电芯本体32进行支撑,从而使得电芯支架的尺寸较小,降低电芯支架的模具费用,从而降低电芯3e组件的生产成本。
在一实施例中,第一支架1a的材质为塑胶,第二支架2a的材质为塑胶。另外一实施例中,第一支架1a和第二支架2a的材质均为塑胶。
参见图12和图13,可选地,本实施例中,沿第一套装腔111a的周向,于第一套装腔111a内间隔设置有多个电芯连接片承载件12a,满足电芯本体32配备的电芯金属连接片的数量需求。具体地,电芯连接片承载件12a的数量根据需要进行设置,一个电芯连接片承载件12a对应一个电芯金属连接片。
具体地,本实施例中,沿第一套装腔111a的周向,于第一套装腔111a内间隔设置有两个电芯连接片承载件12a,两个电芯连接片承载件12a相对设置。电芯连接片承载件12a为片状结构。
进一步地,本实施例中,第一支架本体11a的外侧面设置有第一支架本体加强结构112a保证第一支架本体11a的结构强度。具体地,本实施例中,第一支架本体11a为环形结构,其围设形成第一套装腔111a。电芯连接片承载件12a设置于第一套装腔111a的上端开口处且朝向第一支架本体11a的轴心方向延伸。第一支架本体11a加强结构112a设置于第一支架本体11a的外侧面。更为具体地,沿第一支架本体11a的外侧的周向间隔设置有多个第一支架本体11a加强结构112a。
具体地,参见图11、图12和图13,本实施例中,第二支架2a上设置有第二套装腔213a,第二套装腔213a被配置为套设于电芯本体32的另一端。第二套装腔213a套设于电芯本体32的另一端,从而保证电芯本体32在第二支架2a上安装的稳定性。
具体地,本实施例中,第二支架2a包括第二支架本体211a,第二支架本体211a包括底板211a和绕底板211a的外侧围设的侧板212a,底板211a和侧板212a围设形成第二套装腔213a。电芯本体32的下端安装至第二套装腔213a内并与底板211a抵接后,说明电芯本体32的下端在第二套装腔213a内安装到位。
优选地,本实施例中,底板211a呈环形结构,底板211a上设置有结构胶填充孔2111a。当电芯本体32的下端通过胶水与底板211a连接,结构胶填充孔2111a的设置,使得多余的胶水能够从结构胶填充孔2111a处溢出,保证电芯本体32的下端能够平整地粘接在底板211a上。进一步地,第二支架2a还包括第二支架座22a,第二支架座22a与底板211a同轴连接以支撑底板211a。
电芯本体32安装于电芯托盘上,为避免底板211a直接与电芯托盘接触后多余的胶水从结构胶填充孔2111a处溢出并胶粘于电芯托盘上,本实施例中,设置第二支架座22a来支撑底板211a避免底板211a与电芯托盘直接接触。本实施例中,第二支架座22a包括支撑底座221a和与支撑底座221a同轴连接的第一支撑柱222a,底板211a连接于第一支撑柱222a的远离支撑底座221a的一端。第一支撑柱222a内同轴设置有通孔结构,第一支撑柱222a的内径与底板211a的内径相同,第一支撑柱222a的外径小于底板211a的外径,结构胶填充孔2111a悬空设置,从而避免结构胶填充孔2111a与电芯托盘直接接触。进一步地,第一支撑柱222a内的通孔结构的设置,使得电芯本体32的下端表面能够部分外露,进一步保证电芯本体32的散热性能。
实施例二
现有技术中,一些电池模组1000采用蛇形管对电芯3e进行冷却,蛇形管冷却效果受蛇形管宽度及与电芯3e接触面积限制,增加蛇形管与电芯3e接触面积提高冷却效果时,则会导致电芯3e间距增大,在同样包络空间下,安装电芯3e的数量受限,降低了电池能量密度;当增加安装电芯3e的数量,则会导致电芯3e的间距减小,减小了电芯3e和蛇形管之间的接触面积,影响了电芯3e的冷却效果;为解决上述问题,本申请的实施例还提供一种液冷装置。
请参阅图15,在本实施例中,液冷装置包括外壳100,外壳100包括冷却本体1b,冷却本体1b包括相互连通的容置腔和限位孔111b,电芯3e容置于容置腔且限位于限位孔111b内,冷却本体1b和电芯3e形成流道F,进水口和出水口分别与流道F连通。容置腔和限位孔111b构成安装位置101。具体地,在本实施例中,通过进水口向流道F供入冷却液,通过出水口向外排出冷却液,从而实现流道F内的冷却液循环。通过冷却液与电芯3e换热,实现对电芯3e的冷却作用。电芯3e在容置腔内形成流道F,冷却液通入流道F时,则电芯3e浸没在冷却液中,冷却液直接用于电芯3e冷却,增强换热,降低电芯3e之间的温差。冷却本体1b和电芯3e之间的结构紧凑。相较于传统结构中,蛇形管冷却效果受蛇形管与电芯3e接触面积影响,本实施例中,在同样包络空间下,在包括相同安装电芯3e数量的情况下,提高了电芯3e的冷却效果。由于电芯3e始终浸没在冷却液中,可以根据实际情况设置电芯3e之间的间隔,方便调节电芯3e之间的间距,进而可以提高能量密度。
进一步地,在本实施例中,通过上述结构,相较于传统的蛇形管形式,无需蛇形管与尼龙管之间胀接等,通过一体结构的冷却本体1b替代蛇形管和尼龙管,简化了结构,优化了组装过程,提高了生产效率和结构稳定性,保证冷却本体1b的可靠性。限位孔111b对电芯3e进行限位,提高电芯3e的安装稳定性,提高电芯3e垂直度。
更进一步地,在本实施方式中,冷却液为绝缘冷却液,冷却液可以直接接触电芯3e表面,实现对电芯3e的高效冷却。
在一实施例中,请参阅图15,冷却本体1b包括基板11b和连接于基板11b的边框15b,限位孔111b开设于基板11b,基板11b和边框15b形成容置腔,结构简单,便于成型。
进一步地,冷却本体1b还包括多个第二支撑柱12b,多个第二支撑柱12b设于边框15b内且支撑连接于基板11b,第二支撑柱12b设于相邻电芯3e之间。基板11b、第二支撑柱12b和电芯3e外周形成流道F。在本实施例中,通过设置第二支撑柱12b提高冷却本体1b的结构强度,对容置腔内的冷却液进行扰流,冷却液按预设方向进行流动,提高了电芯3e的冷却均匀性。
如图14所示,基板11b上开设多个限位孔111b。在一种实施方式中,冷却本体1b包括一个基板11b和多个第二支撑柱12b,边框15b和多个第二支撑柱12b设于基板11b的一端。当冷却本体1b直接安装于箱体中时,基板11b、边框15b和箱体共同形成容置腔。冷却本体1b结构简单,方便成型。
如图15所示,冷却本体1b包括沿第三方向排布的多排第二支撑柱12b,相邻两排第二支撑柱12b间隔设置,第二支撑柱12b和电芯3e形成多个沿第二方向延伸的流道F。流道F排布及形状尺寸规则,提高了冷却效果。进一步地,相邻两排第二支撑柱12b沿第二方向交错设置,能够在有限的空间内布置更多的电芯3e,增加了紧凑性。
请继续参阅图16和图17,第二支撑柱12b沿第二方向的侧面设有与电芯3e外形相适应的仿形面121b,仿形面121b与电芯3e相贴合,提高了安装稳定性以及结构紧凑性。更为具体地,电芯3e为圆柱电芯,相应地,仿形面121b为圆弧面。
需要说明的是,流道F的宽度与电芯3e沿第三方向的间距有关。在本实施方式中,位于相邻两排的两个电芯3e之间的间距不小于1mm,避免流道F宽度过大而减少电芯3e安装数量,也避免流道F宽度过小而减少冷却液通入量,影响冷却效果。
进一步地,在本实施例中,电芯3e与沿第二方向相邻两个第二支撑柱12b的基础面积占电芯3e侧壁表面积的40%以下,从而使冷却液与电芯3e的接触面积占电芯3e侧壁表面积的60%以上。通过增加冷却液与电芯3e的接触面积,减少第二支撑柱12b与电芯3e的接触面积,提高冷却效果。
更进一步地,在本实施方式中,流道F的高度不大于电芯3e的高度,电芯3e的端部伸出于流道F,避免电芯3e端部设于冷却液内而影响寿命,同时也方便拆装电芯3e。
请参阅图15、图16和图17,冷却本体1b还包括两个主通道13b,一个主通道13b连通第一进口102与多个流道F,另一个主通道13b连通第一出口103与多个流道F。在本实施例中,多个流道F通过主通道13b与第一进口102或出水口连接,通过主通道13b进行集流,避免多个流道F分别与第一进口102和出水口连接,简化了结构。冷却本体1b和主通道13b为一体结构,主通道13b设于多排第二支撑柱12b沿第二方向的端部和边框15b之间,第一进口102和第一出口103分别设于边框15b上,方便制作成型,减少组装步骤。通过设置两个主通道13b,使多个流道F并联,减小流道F的长度,提高不同排电芯3e的冷却均匀性;在另一种实施例中,主通道13b也可以与冷却本体1b为分体结构,不进行限定。
具体地,流道F设于电芯3e沿第三方向的单侧,或流道F设于电芯3e沿第三方向的两侧,根据实际情况进行设置,不作限定。本实施例中,如图15所示,相邻两排电芯3e设置设有流道F,流道F内的冷却液用于相邻两排电芯3e冷却,实现电芯3e的两侧冷却;位于沿第三方向两端的两排电芯3e,只在靠近中间排电芯3e的一侧设有流道F进行单侧冷却。
限位孔111b和电芯3e之间设有胶层,电芯3e与限位孔111b过盈配合,一方面保证电芯3e的安装强度,另一方面,保证流道F的密封性,避免冷却液泄漏。
进一步地,第一进口102和第一出口103上均设有管路接头结构200,管路接头结构200与实施例一的结构均相同,不再赘述。
本申请的实施例还提供了一种托盘,包括实施例二的液冷装置和多个电芯3e,每一电芯3e的结构与实施例一的结构均相同,此处不再一一赘述。
本申请的实施例还提供了一种托盘的制作工艺,包括以下步骤:
S1:将冷却本体1b通过成型方式进行成型,使冷却本体1b形成包括容置腔和与容置腔连通的限位孔111b;
S2:将电芯3e容置于容置腔且限位于限位孔111b内,电芯3e和冷却本体1b之间形成供冷却液通入的流道F。
托盘中容纳有多个电芯3e,相应地基板11b上设有多个限位孔111b,冷却本体1b为成型结构。先将冷却本体1b进行成型,之后电芯3e安装于冷却本体1b的限位孔111b内。相较于传统的蛇形管形式,无需蛇形管与尼龙管之间涨接等,通过一体结构的冷却本体1b替代蛇形管和尼龙管,简化了结构,优化了组装过程,提高了生产效率和结构稳定性。
由于冷却本体1b为成型结构,避免像蛇形管采用复杂的加工和组装工艺,影响蛇形管表面的绝缘性,该冷却本体1b减少了中间加工或者组装等步骤,避免影响产品质量,保证冷却本体1b的可靠性。限位孔111b对电芯3e进行限位,提高电芯3e的安装稳定性,提高电芯3e垂直度。第二支撑柱12b和电芯3e之间形成流道F,冷却液通入流道F时,则电芯3e浸没在冷却液中,冷却液直接用于电芯3e冷却,增强换热,降低电芯3e之间的温差。
在一种实施方式中,冷却本体1b采用如聚氨酯发泡胶等材料在模具中发泡成型,形成限位孔111b和第二支撑柱12b,工艺简单,只需一个模具即可成型,这样不仅价格便宜,又能实现冷却本体1b结构一体成型,整个安装工艺非常便捷,生产效率高。其他实施例中,冷却本体1b也可以根据具体加工需求选择机加工或通过模具进行注塑成型等,不进行限定。进一步地,冷却本体1b可以是一体成型,也可以是分成两个或多个一体成型的部分进行成型,之后粘接或其他方式连接,根据需求进行设置,不进行限定。
在一种实施方式中,冷却本体1b包括基板11b和连接于基板11b的边框15b,限位孔111b开设于基板11b,基板11b和边框15b形成容置腔,结构简单,便于成型。进一步地,冷却本体1b还包括多个第二支撑柱12b,多个第二支撑柱12b设于边框15b内且支撑连接于基板11b,第二支撑柱12b填充于相邻电芯3e之间,基板11b、第二支撑柱12b和电芯3e外周形成流道F,通过设置第二支撑柱12b提高冷却本体1b的结构强度,对容置腔内的冷却液进行扰流,冷却液按预设方向进行流动,提高电芯3e冷却均匀性。
在一种实施方式中,将电芯3e容置于限位孔111b之前,托盘的制作工艺还包括:
S11:在电芯3e表面或限位孔111b的孔壁打胶,或者在电芯3e表面和限位孔111b的孔壁上均打胶,使电芯3e容置于限位孔111b时与限位孔111b粘接。
一方面保证电芯3e的安装强度,另一方面,保证流道F的密封性,避免冷却液泄漏。
进一步地,可通过对第二支撑柱12b和电芯3e的排布,使电芯3e、第二支撑柱12b形成多个相并列的流道F。当电芯3e与冷却本体1b之间形成多个流道F时,为减少冷却本体1b与外部冷却设备连接的接头数量,在一种实施方式中,将冷却液通入流道F内之前,托盘的制作工艺还包括:
S21:将集流体组件3b连接在冷却本体1b,集流体组件3b与流道F连通,集流体组件3b用于与外部冷却设备连接。
通过集流体组件3b与外部冷却设备连接,具体地,在集流体组件3b与外部冷却设备之间设置一个第一进口102和第一出口103,可以减少连接数量,简化结构。集流体组件3b与多个流道F连通,使多个流道F相并联。外部冷却设备的冷却液经第一进口102进入集流体组件3b,再进入流道F,之后从流道F经集流体组件3b的第一出口103流回至外部冷却设备。
具体地,可以在电芯3e安装于限位孔111b之前,将集流体组件3b安装在冷却本体1b上,也可以将电芯3e安装于限位孔111b之后,将集流体组件3b安装在冷却本体1b上,对此不进行限定。
在一种实施方式中,将电芯3e容置于限位孔111b内之前或之后,托盘的制作工艺还包括:
S3:将冷却本体1b安装于电池模组的箱体内。
具体地,可以先将冷却本体1b安装在箱体内,再将电芯3e安装在限位孔111b内,也可以先将电芯3e与冷却本体1b组装再安装在箱体内,根据实际需求进行安装即可,对此不进行限定。
在一种实施方式中,将冷却本体1b及电芯3e安装于箱体之后,托盘的制作工艺还包括:
S4:向流道F通入冷却液。
先将冷却本体1b、电芯3e和集流体组件3b固定后,再安装于箱体内,保证箱体内部结构安装稳定,之后,集流体组件3b与外部设备连接,保证箱体与外部设备连接稳定,最后通入冷却液,可以保证可靠性,防止冷却液泄漏。
本申请的实施例还提供了一种电池模1000,包括实施例二的液冷装置和多个电芯3e,每一电芯3e的结构与实施例一的结构均相同,此处不再一一赘述。

Claims (22)

  1. 一种液冷装置,包括:
    外壳(100),所述外壳(100)上形成有多个安装位置(101)、第一进口(102)和第一出口(103),每一所述安装位置(101)内插设有电芯(3e),所述外壳(100)内形成有冷却腔室,第一进口(102)和第一出口(103)均与所述冷却腔室连通,所述冷却腔室内流通有冷却介质,所述冷却腔室设置为冷却所述安装位置(101)内的电芯(3e)。
  2. 根据权利要求1所述的液冷装置,其中,所述外壳(100)内部设有第一隔板(140),所述第一隔板(140)将所述冷却腔室分隔成多个连通的分隔腔室。
  3. 根据权利要求2所述的液冷装置,其中,多个所述分隔腔室包括第一腔室和第二腔室,所述外壳(100)包括上壳体(110)和下壳体(120),所述上壳体(110)和所述第一隔板(140)的上端面连接,所述上壳体(110)与所述第一隔板(140)之间形成所述第一腔室,所述下壳体(120)与所述第一隔板(140)的下端面连接,所述下壳体(120)与所述第一隔板(140)之间形成所述第二腔室,所述第一隔板(140)上设有第二进口(141)和第二出口(142),所述第二进口(141)与所述第一腔室和所述第二腔室连通,所述第二出口(142)与所述第一腔室和所述第二腔室连通。
  4. 根据权利要求3所述的液冷装置,其中,所述上壳体(110)设有多个第一筒体(111),所述第一筒体(111)的一端与所述上壳体(110)的端面连接,所述第一筒体(111)的另一端与所述第一隔板(140)的上端面连接,所述电芯(3e)设置在所述第一筒体(111)内。
  5. 根据权利要求4所述的液冷装置,其中,所述第一隔板(140)上靠近所述第一腔室的一侧设有第一挡板(143),所述第一挡板(143)与所述上壳体(110)的内壁和/或所述第一筒体(111)连接,所述第一挡板(143)将所述第一腔室分隔为多个并联的蛇形流道。
  6. 根据权利要求4所述的液冷装置,其中,所述下壳体(120)设有多个第二筒体(121),所述第二筒体(121)的一端与所述下壳体(120)的端面连接,所述第二筒体(121)的另一端与所述第一隔板(140)的下端面连接,所述第二筒体(121)与所述第一筒体(111)一一对应设置,且所述第二筒体(121)的轴线与所述第一筒体(111)的轴线重合。
  7. 根据权利要求6所述的液冷装置,其中,所述第二筒体(121)的直径小于所述第一筒体(111)的直径,所述电芯(3e)的底部与所述第一隔板(140)的上端面连接。
  8. 根据权利要求7所述的液冷装置,其中,所述第一隔板(140)上靠近所述第二腔室的一侧设有第二挡板(144),所述第二挡板(144)与所述下壳体(120)的内壁和/或所述第二筒体(121)连接,以将所述第二腔室分隔为多个并联的迷宫形流道。
  9. 根据权利要求1所述的液冷装置,其中,所述外壳(100)包括冷却本体(1b),所述冷却本体(1b)设有相互连通的容置腔和限位孔(111b),所述容置腔和所述限位孔(111b)构成所述安装位置(101),所述电芯(3e)容置于所述容置腔且限位于所述限位孔(111b)内,所述冷却本体(1b)和所述电芯(3e)之间形成流道(F),所述流道(F)构成所述冷却腔室。
  10. 根据权利要求9所述的液冷装置,其中,所述冷却本体(1b)包括基板(11b)和连接于所述基板(11b)的边框(15b),所述限位孔(111b)开设于所述基板(11b),所述基板(11b)和所述边框(15b)形成所述容置腔。
  11. 根据权利要求10所述的液冷装置,其中,所述冷却本体(1b)还包括多个第二支撑柱(12b),多个所述第二支撑柱(12b)设于所述边框(15b)内且支撑连接于所述基板(11b),所述第二支撑柱(12b)设于相邻所述电芯(3e)之间,所述基板(11b)、所述第二支撑柱(12b)和所述电芯(3e)外周形成所述流道(F)。
  12. 根据权利要求11所述的液冷装置,其中,还包括集流体组件(3),所述集流体组件(3b)连接于所述边框(15b)背离所述第二支撑柱(12b)的一侧,所述集流体组件(3b)与多个所述流道(F)连通,所述第一进口(102)和所述第一出口(103)分别设于所述集流体组件(3b)。
  13. 根据权利要求10所述的液冷装置,其中,所述冷却本体(1b)还包括两个主通道(13b),一个所述主通道(13b)连通所述第一进口(102)与多个所述流道(F),另一个所述主通道(13b)连通所述第一出口(103)与多个所述流道(F)。
  14. 根据权利要求1-8任一项所述的液冷装置,其中,所述外壳(100)上设有至少一个管路接头结构(200),所述管路接头结构(200)用以与所述第一进口(102)和/或所述第一出口(103)连接,每一所述管路接头结构(200)包括:
    第一管路接头(1);以及,
    第二管路接头(2),所述第一管路接头(1)和第二管路接头(2)中一者的内壁上设置有滑块(11),另一个的外壁上开设有可供所述滑块(11)置入的导向滑槽(25),所述滑块(11)能够沿所述导向滑槽(25)滑动,以将所述第一管路接头(1)旋拧于所述第二管路接头(2)上。
  15. 根据权利要求14所述的液冷装置,其中,所述第二管路接头(2)包括:
    本体;以及,
    多个凸台结构,沿所述本体的轴向间隔设置在所述本体上,所述凸台结构之间形成有所述导向滑槽(25)。
  16. 根据权利要求15所述的液冷装置,其中,多个所述凸台结构包括第一凸台(22)、第二凸台(23)和第三凸台(24),所述第一凸台(22)上开设有供所述滑块(11)置入的第一滑槽(251),所述第一凸台(22)和所述第二凸台(23)间隔设置形成第二滑槽(252),所述第二凸台(23)上开设有第三滑槽(253),所述第二凸台(23)和所述第三凸台(24)间隔设置形成第四滑槽(254),所述第一滑槽(251)、所述第二滑槽(252)、所述第三滑槽(253)和所述第四滑槽(254)呈阶梯形状依次连通形成所述导向滑槽(25)。
  17. 根据权利要求16所述的液冷装置,其中,所述第一凸台(22)和所述第二凸台(23)之间连接有第一限位件(27),所述第二凸台(23)和所述第三凸台(24)之间连接有第二限位件(28),所述第一限位件(27)与所述第二限位件(28)平行间隔设置,所述第一限位件(27)与所述第三滑槽(253)的一侧槽壁连接,所述第二限位件(28)与所述第三滑槽(253)的另一侧槽壁连接。
  18. 一种托盘,包括:
    如权利要求1至17任意一项所述的液冷装置,所述液冷装置上形成有多个安装位置(101);以及,
    多个电芯(3e),每一所述电芯(3e)安装在对应的所述安装位置(101)内。
  19. 根据权利要求18所述的托盘,其中,每一所述电芯(3e)包括:
    电芯本体;以及,
    电芯支架,所述电芯支架包括第一支架,所述第一支架形成有两端开口的第一套装腔(111a),所述第一套装腔(111a)被配置为套设于所述电芯本体的设有正极柱(31)的一端,所述第一套装腔(111a)的一端开口处设置有沿所述第一支架的径向延伸的至少一个电芯连接片承载件(12a),所述电芯连接片承载件(12a)覆盖所述电芯本体的设有所述正极柱(31)的一端的部分表面,所述电芯连接片承载件(12a)上设置有导热打胶孔(121a)。
  20. 根据权利要求18所述的托盘,其中,所述电芯支架还包括第二支架,所述第二支架包括底板(211a)和绕所述底板(211a)的外侧围设的侧板(212a),所述底板(211a)和所述侧板(212a)围合形成第二套装腔(213a),所述第二套装腔(213a)套设在所述电芯本体的另一端。
  21. 根据权利要求20所述的托盘,其中,所述底板(211a)上设置有结构胶填充孔(2111a)。
  22. 一种电池模组(1000),包括:
    如权利要求18至21任一项所述的托盘,所述托盘内容纳有多个电芯(3e);以及,
    汇流排(200a),所述汇流排(200a)将多个所述电芯(3e)电连接;
    液冷板(300),位于所述托盘的一侧,设置为为多个所述电芯(3e)和所述汇流排散热。
PCT/CN2023/114132 2022-08-19 2023-08-21 液冷装置、托盘以及电池模组 WO2024037656A1 (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN202222201465.6U CN218300063U (zh) 2022-08-19 2022-08-19 一种电芯支架及电芯组件
CN202210999408.9 2022-08-19
CN202210998407.2A CN115224393A (zh) 2022-08-19 2022-08-19 一种液冷装置及电池模组
CN202222189618.X 2022-08-19
CN202222201465.6 2022-08-19
CN202210999408.9A CN115275428A (zh) 2022-08-19 2022-08-19 电池模组及电池包
CN202222189344.4 2022-08-19
CN202222189618.XU CN218299932U (zh) 2022-08-19 2022-08-19 一种液冷装置及电池模组
CN202210998407.2 2022-08-19
CN202222189344.4U CN218031996U (zh) 2022-08-19 2022-08-19 一种管路接头结构及液冷系统
CN202222964561.6U CN218568991U (zh) 2022-11-08 2022-11-08 电池模组及电池包
CN202211389108.5 2022-11-08
CN202211389108.5A CN116093403A (zh) 2022-11-08 2022-11-08 一种电池模组的制作工艺及电池模组
CN202222964561.6 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024037656A1 true WO2024037656A1 (zh) 2024-02-22

Family

ID=89940780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114132 WO2024037656A1 (zh) 2022-08-19 2023-08-21 液冷装置、托盘以及电池模组

Country Status (1)

Country Link
WO (1) WO2024037656A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293824A (zh) * 2017-07-26 2017-10-24 浙江众泰汽车制造有限公司 一种动力电池液冷装置
CN107910614A (zh) * 2017-11-08 2018-04-13 福建省汽车工业集团云度新能源汽车股份有限公司 一种动力电池液冷装置
CN217158320U (zh) * 2022-02-14 2022-08-09 湖北亿纬动力有限公司 一种冷却组件及电池模组
CN115224393A (zh) * 2022-08-19 2022-10-21 湖北亿纬动力有限公司 一种液冷装置及电池模组
CN218031996U (zh) * 2022-08-19 2022-12-13 湖北亿纬动力有限公司 一种管路接头结构及液冷系统
CN218299932U (zh) * 2022-08-19 2023-01-13 湖北亿纬动力有限公司 一种液冷装置及电池模组
CN218300063U (zh) * 2022-08-19 2023-01-13 湖北亿纬动力有限公司 一种电芯支架及电芯组件
CN218568986U (zh) * 2022-10-24 2023-03-03 湖北亿纬动力有限公司 模组托盘以及电池模组
CN218568991U (zh) * 2022-11-08 2023-03-03 湖北亿纬动力有限公司 电池模组及电池包
CN116093403A (zh) * 2022-11-08 2023-05-09 湖北亿纬动力有限公司 一种电池模组的制作工艺及电池模组

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293824A (zh) * 2017-07-26 2017-10-24 浙江众泰汽车制造有限公司 一种动力电池液冷装置
CN107910614A (zh) * 2017-11-08 2018-04-13 福建省汽车工业集团云度新能源汽车股份有限公司 一种动力电池液冷装置
CN217158320U (zh) * 2022-02-14 2022-08-09 湖北亿纬动力有限公司 一种冷却组件及电池模组
CN115224393A (zh) * 2022-08-19 2022-10-21 湖北亿纬动力有限公司 一种液冷装置及电池模组
CN218031996U (zh) * 2022-08-19 2022-12-13 湖北亿纬动力有限公司 一种管路接头结构及液冷系统
CN218299932U (zh) * 2022-08-19 2023-01-13 湖北亿纬动力有限公司 一种液冷装置及电池模组
CN218300063U (zh) * 2022-08-19 2023-01-13 湖北亿纬动力有限公司 一种电芯支架及电芯组件
CN218568986U (zh) * 2022-10-24 2023-03-03 湖北亿纬动力有限公司 模组托盘以及电池模组
CN218568991U (zh) * 2022-11-08 2023-03-03 湖北亿纬动力有限公司 电池模组及电池包
CN116093403A (zh) * 2022-11-08 2023-05-09 湖北亿纬动力有限公司 一种电池模组的制作工艺及电池模组

Similar Documents

Publication Publication Date Title
KR100667943B1 (ko) 이차 전지 모듈
KR20210025293A (ko) 셀 프레임을 포함한 배터리 모듈
US11557818B2 (en) Battery pack
WO2024037655A1 (zh) 电池模组上盖结构、电池模组及电池包
CN112490569B (zh) 一种微流道式电池液体冷却结构
WO2024037656A1 (zh) 液冷装置、托盘以及电池模组
CN219739123U (zh) 电池包及动力设备
CN218299932U (zh) 一种液冷装置及电池模组
US11329329B2 (en) Systems and methods for cooling battery cells
CN116666829A (zh) 一种锂电池模组
WO2022135169A1 (zh) 电池模组、电池包及车辆
CN115224393A (zh) 一种液冷装置及电池模组
CN209786146U (zh) 一种电池模组热管理系统
CN114128014A (zh) 用于冷却一个或多个电力存储模块的装置
CN216354446U (zh) 电池模组
WO2024103555A1 (zh) 冷却装置、电池模组以及电池包
CN219163517U (zh) 一种动力电池散热结构
WO2023006094A1 (zh) 电池包充电系统和充电装置
CN219801003U (zh) 电池包
CN221126046U (zh) 电池单元及电池包
CN219778992U (zh) 液冷装置、电池包及储能电源
CN110233310B (zh) 便于长期使用的电池结构
CN216288617U (zh) 冷却结构、电池模组及电池包
CN221304795U (zh) 电池液冷系统及电池包
CN219917301U (zh) 电芯模块及电池组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854551

Country of ref document: EP

Kind code of ref document: A1