WO2024037425A1 - 车载冰箱控制方法及相关设备 - Google Patents

车载冰箱控制方法及相关设备 Download PDF

Info

Publication number
WO2024037425A1
WO2024037425A1 PCT/CN2023/112311 CN2023112311W WO2024037425A1 WO 2024037425 A1 WO2024037425 A1 WO 2024037425A1 CN 2023112311 W CN2023112311 W CN 2023112311W WO 2024037425 A1 WO2024037425 A1 WO 2024037425A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
power
refrigerator
battery
response
Prior art date
Application number
PCT/CN2023/112311
Other languages
English (en)
French (fr)
Inventor
张子文
胡义凯
邱鹏
Original Assignee
北京车和家汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家汽车科技有限公司 filed Critical 北京车和家汽车科技有限公司
Publication of WO2024037425A1 publication Critical patent/WO2024037425A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles

Definitions

  • Embodiments of the present disclosure relate to the technical field of vehicle-mounted refrigerators, and specifically relate to a vehicle-mounted refrigerator control method, device, related equipment, storage media, computer program products, computer programs and vehicles.
  • the vehicle refrigerator continues to work and consumes power. Since the vehicle is unattended at this time, that is, the vehicle refrigerator continues to work without control, the vehicle battery power will continue to be consumed by the vehicle refrigerator. , until the vehicle battery is depleted.
  • embodiments of the present disclosure provide a vehicle-mounted refrigerator control method, device, related equipment, storage medium, computer program product, computer program and vehicle.
  • An embodiment of the first aspect of the present disclosure provides a vehicle-mounted refrigerator control method, including:
  • the vehicle-mounted refrigerator In response to determining that the battery power is less than or equal to the preset threshold power, and the vehicle status is one of power on or starting, the vehicle-mounted refrigerator is controlled to be closed. In response to closing the vehicle-mounted refrigerator, the vehicle is closed as described.
  • the delay switch of the vehicle refrigerator In response to determining that the battery power is greater than the threshold power and determining that the vehicle status is one of power on or starting, the delay switch of the vehicle refrigerator remains on;
  • the vehicle-mounted refrigerator In response to determining that the delay switch is on and setting the working time for the vehicle-mounted refrigerator, turning on the vehicle-mounted refrigerator when the vehicle status changes to power off, and according to the timing process of the working time, The vehicle-mounted refrigerator is controlled to be in one of an open state and a closed state.
  • controlling the vehicle-mounted refrigerator to be in one of an open state and a closed state according to the timing process of the working hours includes:
  • the delay switch is turned off.
  • controlling the vehicle-mounted refrigerator to be in one of an open state and a closed state according to the timing process of the working hours further includes:
  • the delay switch is turned off.
  • controlling the vehicle-mounted refrigerator to be in one of an open state and a closed state according to the timing process of the working hours further includes:
  • the delay switch In response to determining that the vehicle status changes from powered off to powered on, the delay switch is turned off.
  • controlling the vehicle-mounted refrigerator to be in one of an open state and a closed state according to the timing process of the working hours further includes:
  • the delay switch in response to determining that the vehicle status changes from powered off to powered on, the delay switch is kept in an on state;
  • the vehicle refrigerator In response to the delay switch being in an on state, the vehicle refrigerator is kept in an on state.
  • the method further includes:
  • the method further includes:
  • the vehicle-mounted refrigerator In response to determining that the current temperature is greater than or equal to the temperature threshold, the vehicle-mounted refrigerator is controlled to remain open.
  • the real-time determination of the battery power includes:
  • the remaining power of the power battery is regarded as the battery power.
  • the real-time determination of the battery power further includes:
  • the remaining power of the battery is regarded as the battery power.
  • the power battery provided in the vehicle is used to supply power to the battery, including:
  • the power battery In response to determining that the remaining power of the power battery is less than or equal to the power supply threshold, the power battery is caused to stop providing power to the storage battery.
  • the second embodiment of the present disclosure provides a vehicle-mounted refrigerator control device, including: a detection module, a first determination module, a second determination module and a delayed opening module;
  • the detection module is configured to determine the vehicle status and battery power of the vehicle in real time
  • the first determination module is configured to, in response to determining that the battery power is less than or equal to a preset threshold power, and the vehicle status is one of powered on or started, then control the vehicle refrigerator to turn off, in response to To close the vehicle-mounted refrigerator, close the delay switch that sets the working time of the vehicle-mounted refrigerator;
  • the second determination module is configured to, in response to determining that the battery power is greater than the threshold power and determining that the vehicle status is one of power on or starting, then causing the vehicle refrigerator to The delay switch remains on;
  • the delay opening module is configured to, in response to determining that the delay switch is on and setting the working time for the vehicle-mounted refrigerator, open the vehicle-mounted refrigerator when the vehicle status changes to power off, And according to the timing process of the working time, the vehicle-mounted refrigerator is controlled to be in an open state or a closed state.
  • a third embodiment of the present disclosure provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program Implement the vehicle-mounted refrigerator control method of the above-mentioned first aspect embodiment.
  • an embodiment of the fourth aspect of the present disclosure provides a non-transitory computer-readable storage medium, wherein the non-transitory computer-readable storage medium stores computer instructions, and the computer instructions are used to cause the The computer executes the vehicle-mounted refrigerator control method of the above-mentioned first aspect embodiment.
  • a fifth embodiment of the present disclosure provides a vehicle.
  • the vehicle includes the vehicle-mounted refrigerator control device of the second embodiment or the electronic device of the third embodiment.
  • the device or the The electronic device executes the vehicle-mounted refrigerator control method of the above-mentioned first aspect embodiment.
  • an embodiment of the sixth aspect of the present disclosure provides a computer program product, including a computer program that, when executed by a processor, implements the above-mentioned vehicle-mounted refrigerator control method of the first aspect embodiment.
  • a seventh embodiment of the present disclosure provides a computer program, including computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the above-mentioned vehicle-mounted refrigerator control of the first embodiment. method.
  • the vehicle refrigerator control method, device, related equipment, storage medium, computer program product, computer program and vehicle provided by the embodiment of the present disclosure are based on the detection of vehicle status and battery power, taking into account the above
  • the car refrigerator can be controlled according to the different vehicle states of power-on, power-off and startup, and combined with the set threshold power, so that when the battery power is less than or equal to the threshold power, the car refrigerator can be closed evenly, thus avoiding the risk of being damaged due to the work of the car refrigerator. Drain the battery.
  • the vehicle refrigerator can continue to work after the vehicle is powered off, provided that the battery power is greater than the threshold power, and can operate according to the settings. The time is controlled, and the car refrigerator is controlled to stay on or off according to the situation during the timing process.
  • this method combines different vehicle states and battery power to control the vehicle refrigerator, so that the vehicle refrigerator can not only continue to be used after power off, but also avoid running out of battery power in various vehicle states.
  • Figure 1 is a flow chart of a vehicle-mounted refrigerator control method according to an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of interaction logic according to an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a vehicle-mounted refrigerator control device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • the vehicle refrigerator continues to work and consumes power. Since the vehicle is unattended at this time, that is, the vehicle refrigerator continues to work without control, the vehicle battery power will continue to be consumed by the vehicle refrigerator. , until the vehicle battery is depleted.
  • the first embodiment of the present disclosure provides a vehicle-mounted refrigerator control method.
  • the embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
  • a vehicle-mounted refrigerator control method includes the following steps S101 to S104.
  • Step S101 Determine the vehicle status and battery power of the vehicle in real time.
  • the electric vehicle specifically includes: a vehicle-mounted interactive screen (referred to as HU in the embodiment of the present disclosure). ), domain controller (referred to as XCU in the embodiment of the present disclosure), power battery and vehicle refrigerator (also referred to as VFridge in the embodiment of the present disclosure).
  • HU vehicle-mounted interactive screen
  • XCU domain controller
  • VFridge power battery and vehicle refrigerator
  • the power battery is used as the vehicle battery of the vehicle in this embodiment, and is specifically used to provide power for various electrical appliances and electric vehicles;
  • a delay switch can be displayed in the HU, and the delay switch is used to set the working time of the vehicle refrigerator, or it can It is called the delay length;
  • the XCU in this embodiment is specifically used to control the HU and the on-board refrigerator.
  • the XCU can also be used to obtain the vehicle status of the vehicle, the status of the on-board refrigerator, the status of the delay switch and the status of the power battery.
  • the vehicle status of the vehicle can be specifically divided into power-off, power-on and startup.
  • power-off when the vehicle refrigerator is not set to continue working, all other electrical appliances will be completely powered off, which can be regarded as The vehicle stalling state
  • the vehicle state when the vehicle is powered off is expressed as: local OFF; when powered on, all electrical appliances of the vehicle will be fully The power supply is turned on.
  • the vehicle state when the vehicle is powered on is represented as: local ACC; in this embodiment, the vehicle state when the vehicle is powered on is represented as: local ON;
  • the three vehicle states of local OFF, local ACC and local ON in this embodiment respectively correspond to three different positions that the car key can be in after being inserted into the key socket of the vehicle.
  • the battery power is represented by the percentage of the currently available power of the vehicle battery (that is, the power battery) to the vehicle battery capacity, and the remaining battery power of the power battery is expressed as SOC, that is, the display of the power battery.
  • SOC the remaining battery power of the power battery.
  • Remaining battery power in some other embodiments, the current specific remaining power of the battery, for example, 20000mAh, may also be used to represent the battery power.
  • the battery power of the power battery can be obtained in real time through XCU.
  • XCU can also obtain the current vehicle status of the vehicle in real time.
  • XCU can use the obtained current battery power and vehicle status to control the car refrigerator and the delay switch of the car refrigerator by further integrating the current battery power and vehicle status.
  • Step S102 In response to determining that the battery power is less than or equal to a preset threshold power, and the vehicle status is one of powered on or started, control the vehicle-mounted refrigerator to close. In response to closing the vehicle-mounted refrigerator, close the vehicle-mounted refrigerator. Set a delay switch for the working time of the vehicle-mounted refrigerator.
  • a threshold power can be calibrated for the power battery, and the vehicle refrigerator and the delay switch can be controlled based on the threshold power.
  • the threshold power can be calibrated to 20%. That is to say, if the current power of the power battery is 20% of the total capacity of the power battery, it is considered that the threshold power of the power battery has been reached.
  • the threshold power level can also be calibrated to other percentages according to specific circumstances.
  • XCU can determine whether the power battery currently reaches the threshold power based on the battery power obtained in real time.
  • the vehicle refrigerator in any vehicle state can be controlled to stop working in time when the SOC of the power battery is insufficient to avoid the power battery being depleted.
  • Step S103 In response to determining that the battery power is greater than the threshold power and determining that the vehicle status is one of power on or starting, the delay switch of the vehicle refrigerator is kept on.
  • the delay switch can be turned on according to the specific vehicle status and the vehicle refrigerator can continue to operate.
  • the XCU when the XCU determines that the SOC is greater than the calibrated threshold power, it further determines the current vehicle status of the vehicle.
  • the user of the car refrigerator can control the car refrigerator through the delay switch when the vehicle is in the local ACC or local ON state, and when the SOC is greater than the threshold power, that is, the car refrigerator can be turned on continuously. .
  • Step S104 In response to determining that the delay switch is on and setting the working time for the vehicle-mounted refrigerator, when the vehicle status changes to power-off, the vehicle-mounted refrigerator is turned on, and the vehicle-mounted refrigerator is turned on according to the setting of the working time.
  • the timing process controls the vehicle refrigerator to be in an open state or a closed state.
  • the user can further control how long the vehicle refrigerator continues to work by setting the delay time.
  • the timing process is based on the delay time set above.
  • the timing process will end; for example, when If the set delay length is 3 hours, the timing process should last 3 hours.
  • the XCU will detect the SOC of the power battery in real time. If the SOC is always greater than the above-mentioned preset threshold power, the timing process will continue and the vehicle refrigerator will be controlled to continue working.
  • controlling the vehicle refrigerator to be in one of the on state and the off state according to the timing process of the working hours includes:
  • the delay switch is turned off.
  • the XCU will still detect the SOC of the power battery in real time. If the SOC is detected to be less than or equal to the above-mentioned preset threshold power, the XCU will terminate the timing process.
  • controlling the vehicle-mounted refrigerator to be in one of an open state and a closed state according to the timing process of the working hours further includes:
  • the delay switch In response to determining that the vehicle status changes from powered off to powered on, the delay switch is turned off.
  • the XCU will obtain the vehicle status of the vehicle in real time, and perform different controls on the delay switch and the vehicle refrigerator according to changes in the current vehicle status of the vehicle.
  • the timing process is based on the vehicle being in the local OFF state.
  • the XCU detects that the current vehicle status of the vehicle changes from local OFF to local ACC, then It can be considered that the current vehicle has not been started yet, and it is considered that the current vehicle may still be in an unmanaged state.
  • controlling the vehicle-mounted refrigerator to be in one of an open state and a closed state according to the timing process of the working hours further includes:
  • the delay switch in response to determining that the vehicle status changes from powered off to powered on, the delay switch is kept in an on state;
  • the vehicle refrigerator In response to the delay switch being in an on state, the vehicle refrigerator is kept in an on state.
  • the XCU will obtain the vehicle status of the vehicle in real time, and perform different controls on the delay switch and the vehicle refrigerator according to changes in the current vehicle status of the vehicle.
  • the timing process is based on the vehicle being in a local OFF state.
  • the XCU detects that the current vehicle status of the vehicle changes from local OFF to local ON, then It can be considered that the vehicle has changed from the power-off state of the vehicle to the started state. Therefore, it can be considered that the current vehicle has relevant personnel to manage it. Therefore, the delay switch can be turned off and the vehicle refrigerator can continue to work.
  • the HU serves as a visual on-vehicle interaction screen, which can not only interact with the user of the vehicle, but also interact with the XCU.
  • the XCU can also obtain the current status of the delay switch through the HU, and control the delay switch through the HU.
  • HU sends the current state of the delay switch and the related delay length setting instructions to XCU.
  • the HU will also receive the control instructions for the switch delay and delay duration fed back to it by the XCU in real time, and the HU will control the display of the delay switch and delay duration based on the control instructions.
  • the method further includes:
  • the reason why the vehicle refrigerator is closed can be displayed to the user of the vehicle refrigerator.
  • the HU determines the reason for the shutdown of the on-board refrigerator by determining that the SOC is too low; and turns off the delay switch in this case.
  • the delay switch ON and the vehicle status is local ACC or local ON
  • the reason for the refrigerator closing is determined to be the user's active shutdown; and in this case, the delay switch is turned off.
  • the reason for the refrigerator shutdown will be determined to be a malfunction of the on-board refrigerator; in this case, the shutdown will be delayed. switch.
  • the vehicle-mounted refrigerator control method is based on the detection of vehicle status and battery power, comprehensively considers the different vehicle states of power on, power off, and startup to control the vehicle refrigerator, and combines the set thresholds power, so that when the battery power is less than or equal to the threshold power, the car refrigerator can be shut down immediately, thereby avoiding the battery power being drained due to the work of the car refrigerator.
  • the vehicle refrigerator can continue to work after the vehicle is powered off, provided that the battery power is greater than the threshold power, and can operate according to the settings. The time is controlled, and the car refrigerator is controlled to stay on or off according to the situation during the timing process.
  • the method after turning on the vehicle refrigerator when the vehicle status changes to power off, the method further includes:
  • the vehicle-mounted refrigerator In response to determining that the current temperature is greater than or equal to the temperature threshold, the vehicle-mounted refrigerator is controlled to remain open.
  • the vehicle refrigerator can be made to work intermittently by real-time detection of the current temperature of the vehicle refrigerator, so as to save battery power and maintain the temperature inside the vehicle refrigerator.
  • the current temperature in the vehicle refrigerator can be detected in real time, and a temperature threshold for controlling the opening or closing of the vehicle refrigerator can be set.
  • the vehicle refrigerator when the vehicle changes from local ON or local ACC to local OFF, and after the delay time is set, the vehicle refrigerator can remain on when the battery power is greater than the threshold power.
  • the relationship between the current temperature and the temperature threshold is determined based on the current temperature determined in real time.
  • the vehicle-mounted refrigerator if it is detected that the current temperature is greater than or equal to the temperature threshold, the vehicle-mounted refrigerator is kept on; if it is detected that the current temperature is less than the temperature threshold, the vehicle-mounted refrigerator is turned off.
  • the current temperature can continue to be detected, and the above process can be repeated.
  • the real-time determination of the battery power may also include:
  • the remaining power of the battery is regarded as the battery power.
  • the vehicle's power battery is used to power the battery of the vehicle-mounted refrigerator, and the current remaining power of the battery determined in real time is used as the battery power.
  • the battery power is represented by the percentage of the current available power of the battery to the battery capacity, and the remaining battery power of the battery is expressed as SOC, that is, the remaining battery power is displayed on the battery meter; in some other embodiments, it can also be Use the current specific remaining capacity of the battery, for example, 20000mAh, to represent the battery capacity.
  • the battery power of the battery can be obtained in real time through XCU.
  • the power battery provided in the vehicle is used to power the battery, including:
  • the power battery In response to determining that the remaining power of the power battery is less than or equal to the power supply threshold, the power battery is caused to stop providing power to the storage battery.
  • a power supply threshold can be set for the power battery and the remaining power of the power battery can be detected in real time.
  • the power battery when the remaining power of the power battery is greater than the power supply threshold, the power battery is considered to be sufficient and can continue to provide power to the battery; when the remaining power of the power battery is less than or equal to the power supply threshold, the power battery is considered to be insufficient. Sufficient, it is difficult to supply power to the battery, and the power battery stops supplying power to the battery.
  • this method combines different vehicle states and battery power to control the vehicle refrigerator, so that the vehicle refrigerator can not only continue to be used after power off, but also avoid running out of battery power in various vehicle states.
  • the methods of the embodiments of the present disclosure can be executed by a single device, such as a computer or server.
  • the method of this embodiment can also be applied in a distributed scenario, and is completed by multiple devices cooperating with each other.
  • one of the multiple devices can only perform one or more steps in the method of the embodiment of the present disclosure, and the multiple devices will interact with each other to complete the method described.
  • the embodiment of the second aspect of the present disclosure also provides a vehicle-mounted refrigerator control device.
  • the vehicle-mounted refrigerator control device includes: a detection module 301, a first determination module 302, a second determination module 303 and a delayed opening module 304;
  • the detection module 301 is configured to determine the vehicle status and battery power of the vehicle in real time;
  • the first determination module 302 is configured to control the vehicle-mounted refrigerator to turn off in response to determining that the battery power is less than or equal to a preset threshold power and the vehicle status is one of powered on or started, In response to turning off the vehicle-mounted refrigerator, turn off the delay switch that sets the working time of the vehicle-mounted refrigerator;
  • the second determination module 303 is configured to, in response to determining that the battery power is greater than the threshold power, and determining that the vehicle status is one of power on or starting, then causing all of the on-board refrigerators to operate.
  • the delay switch remains on;
  • the delay opening module 304 is configured to, in response to determining that the delay switch is on and setting the working time for the vehicle-mounted refrigerator, open the vehicle-mounted refrigerator when the vehicle status changes to power off. , and according to the timing process of the working time, the vehicle-mounted refrigerator is controlled to be in one of the open state and the closed state.
  • the device of the above-mentioned embodiment is used to implement the vehicle-mounted refrigerator control method of the above-mentioned first aspect embodiment, and has the beneficial effects of the corresponding method embodiment, which will not be described again here.
  • the third aspect of the present disclosure also provides an electronic device, including a memory, a processor, and a computer stored in the memory and capable of running on the processor.
  • Program when the processor executes the program, the vehicle-mounted refrigerator control method of the above-mentioned first aspect embodiment is implemented.
  • Figure 4 shows a more specific hardware structure diagram of an electronic device provided in this embodiment.
  • the device may include: a processor 1010, a memory 1020, an input/output interface 1030, a communication interface 1040 and a bus 1050.
  • the processor 1010, the memory 1020, the input/output interface 1030 and the communication interface 1040 implement communication connections between each other within the device through the bus 1050.
  • the processor 1010 can be implemented using a general-purpose CPU (Central Processing Unit, central processing unit), a microprocessor, an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits, and is used to execute related Program to implement the technical solutions provided by the embodiments of the present disclosure.
  • a general-purpose CPU Central Processing Unit, central processing unit
  • a microprocessor an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits
  • ASIC Application Specific Integrated Circuit
  • the memory 1020 can be implemented in the form of ROM (Read Only Memory), RAM (Random Access Memory), static storage device, dynamic storage device, etc.
  • the memory 1020 can store operating systems and other application programs, and implement the technology provided by the embodiments of the present disclosure through software or firmware. When writing, the relevant program code is stored in the memory 1020 and is called and executed by the processor 1010.
  • the input/output interface 1030 is used to connect the input/output module to realize information input and output.
  • the input/output module can be configured in the device as a component (not shown in the figure), or can be externally connected to the device to provide corresponding functions.
  • Input devices can include keyboards, mice, touch screens, microphones, various sensors, etc., and output devices can include monitors, speakers, vibrators, indicator lights, etc.
  • the communication interface 1040 is used to connect a communication module (not shown in the figure) to realize communication interaction between this device and other devices.
  • the communication module can realize communication through wired means (such as USB, network cable, etc.) or wireless means (such as mobile network, WIFI, Bluetooth, etc.).
  • Bus 1050 includes a path that carries information between various components of the device (eg, processor 1010, memory 1020, input/output interface 1030, and communication interface 1040).
  • the above device only shows the processor 1010, the memory 1020, the input/output interface 1030, the communication interface 1040 and the bus 1050, during specific implementation, the device may also include necessary components for normal operation. Other components.
  • the above-mentioned device may also include only the components necessary to implement the embodiments of the present disclosure, and does not necessarily include all the components shown in the figures.
  • the devices of the above embodiments are used to implement the corresponding vehicle-mounted refrigerator control method in any of the foregoing embodiments, and have the beneficial effects of the corresponding method embodiments, which will not be described again here.
  • an embodiment of the fourth aspect of the present disclosure provides a non-transitory computer-readable storage medium, where the non-transitory computer-readable storage medium stores computer instructions, The computer instructions are used to cause the computer to execute the vehicle-mounted refrigerator control method of the above-mentioned first aspect embodiment.
  • the embodiment of the fifth aspect of the present disclosure provides a vehicle.
  • the vehicle includes the vehicle-mounted refrigerator control device of the embodiment of the second aspect or the implementation of the third aspect.
  • the device or the electronic device executes the vehicle-mounted refrigerator control method of the first embodiment.
  • the embodiment of the sixth aspect of the present disclosure provides a computer program product, including a computer program, which implements the above first aspect when executed by a processor.
  • the vehicle-mounted refrigerator control method of the embodiment is not limited to the vehicle-mounted refrigerator control method of the embodiment.
  • the embodiment of the seventh aspect of the present disclosure provides a computer program, including computer program code.
  • the computer program code When the computer program code is run on the computer, the computer executes The above-mentioned vehicle-mounted refrigerator control method according to the first aspect embodiment.
  • the computer-readable media in this embodiment include permanent and non-permanent, removable and non-removable media, and information storage can be implemented by any method or technology.
  • Information may be computer-readable instructions, data structures, modules of programs, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), and read-only memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • compact disc read-only memory CD-ROM
  • DVD digital versatile disc
  • Magnetic tape cassettes tape disk storage or other magnetic storage devices or any other non-transmission medium can be used to store information that can be accessed by a computing device.
  • the computer instructions stored in the storage medium of the above embodiments are used to cause the computer to execute the vehicle refrigerator control method as described in any of the above embodiments, and have the beneficial effects of the corresponding method embodiments, which will not be described again here.
  • DRAM dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种车载冰箱控制方法、装置、相关设备、存储介质、计算机程序产品、计算机程序和车辆。方法包括:分别实时确定车辆的车辆状态和电池电量;响应于确定电池电量小于等于预设的门限电量,且车辆状态为上电或启动中的一种,则控制车载冰箱关闭,响应于关闭车载冰箱,关闭为车载冰箱设置工作时长的延时开关;响应于确定电池电量大于预设的门限电量,且确定车辆状态为上电或启动中的一种,则为车载冰箱开启延时开关;响应于确定为车载冰箱设置工作时长,在车辆状态变为下电时开启车载冰箱,并根据对设置的工作时长的计时过程,控制车载冰箱处于开启状态和关闭状态中的一种。

Description

车载冰箱控制方法及相关设备
相关申请的交叉引用
本申请要求在2022年08月15日在中国提交的中国专利申请号202210977430.3的优先权,其全部内容通过引用并入本文。
技术领域
本公开的实施例涉及车载冰箱的技术领域,具体涉及一种车载冰箱控制方法、装置、相关设备、存储介质、计算机程序产品、计算机程序和车辆。
背景技术
相关的车载冰箱在其使用过程中,由于车载冰箱耗电量大,因此,在工作时,极容易将车辆电池的电量耗尽。
具体来说,车辆在下电的情况下,车载冰箱持续工作并持续消耗电量,由于此时车辆无人看管,也即,车载冰箱不被控制地持续工作,车辆电池的电量将不断被车载冰箱消耗,直至车辆电池耗尽电量。
然而,不仅仅在车辆下电的情况下,车辆在上电和启动的状态下,尤其是对于电动汽车来说,车载冰箱无条件地持续工作,或者仅仅依靠使用者凭经验来开启或关闭车载冰箱,也极其容易将导致车辆电池的电量被耗尽。
因此,在相关的车载冰箱的控制方式中,并不能够结合车辆的不同状态和电池电量来对车载冰箱进行有效合理的控制。
基于此,需要一种能够实现综合考虑车辆的不同状态,并结合电池电量来智能化合理控制车载冰箱的方案。
发明内容
有鉴于此,本公开实施例提出一种车载冰箱控制方法、装置、相关设备、存储介质、计算机程序产品、计算机程序和车辆。
本公开第一方面的实施例提供了车载冰箱控制方法,包括:
分别实时确定车辆的车辆状态和电池电量;
响应于确定所述电池电量小于等于预设的门限电量,且所述车辆状态为上电或启动中的一种,则控制所述车载冰箱关闭,响应于关闭所述车载冰箱,关闭为所述车载冰箱设置工作时长的延时开关;
响应于确定所述电池电量大于所述的门限电量,且确定所述车辆状态为上电或启动中的一种,则令所述车载冰箱的所述延时开关保持开启;和
响应于确定所述延时开关为开启,且为所述车载冰箱设置所述工作时长,在所述车辆状态变为下电时开启所述车载冰箱,并根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种。
在一些实施例中,根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,包括:
响应于确定所述电池电量小于等于所述门限电量,则控制所述车载冰箱关闭;和
响应于关闭所述车载冰箱,关闭所述延时开关。
在一些实施例中,根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,还包括:
响应于确定所述计时过程结束,控制所述车载冰箱关闭;和
响应于关闭所述车载冰箱,关闭所述延时开关。
在一些实施例中,根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,还包括:
响应于确定所述车辆状态从下电变为启动,关闭所述延时开关。
在一些实施例中,根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,还包括:
在对所述工作时长的计时过程中,响应于确定所述车辆状态从下电变为上电,则保持所述延时开关为开启状态;和
响应于所述延时开关为开启状态,保持所述车载冰箱为开启状态。
在一些实施例中,在所述控制所述车载冰箱关闭之后,还包括:
根据关闭所述车载冰箱时的车辆状态和电池电量,确定关闭所述车载冰箱的原因;和
可视化展示所述原因。
在一些实施例中,在所述车辆状态变为下电时开启所述车载冰箱之后,还包括:
实时确定所述车载冰箱内的当前温度,并设置温度阈值;
响应于确定所述当前温度低于所述温度阈值,控制所述车载冰箱关闭;和
响应于确定所述当前温度大于等于所述温度阈值,控制所述车载冰箱保持开启。
在一些实施例中,对所述电池电量的实时确定,包括:
将所述车辆中具备的动力电池作为所述车载冰箱的供电电池,并实时确定所述动力电池的剩余电量;和
将所述动力电池的剩余电量作为所述电池电量。
在一些实施例中,对所述电池电量的实时确定,还包括:
为所述车载冰箱设置提供电力的蓄电池;
利用所述车辆中具备的动力电池为所述蓄电池供电;
并实时确定所述蓄电池的剩余电量;和
将所述蓄电池的剩余电量作为所述电池电量。
在一些实施例中,利用所述车辆中具备的动力电池为所述蓄电池供电,包括:
为所述动力电池设置供电阈值;
实时确定所述动力电池的剩余电量;
响应于确定所述动力电池的剩余电量大于所述供电阈值,令所述动力电池持续为所述蓄电池供电;和
响应于确定所述动力电池的剩余电量小于等于所述供电阈值,令所述动力电池停止为所述蓄电池供电。
基于同一发明构思,本公开第二方面的实施例提供了一种车载冰箱控制装置,包括:检测模块、第一判定模块、第二判定模块和延时开启模块;
其中,所述检测模块,被配置为,分别实时确定车辆的车辆状态和电池电量;
所述第一判定模块,被配置为,响应于确定所述电池电量小于等于预设的门限电量,且所述车辆状态为上电或启动中的一种,则控制所述车载冰箱关闭,响应于关闭所述车载冰箱,关闭为所述车载冰箱设置工作时长的延时开关;
所述第二判定模块,被配置为,响应于确定所述电池电量大于所述的门限电量,且确定所述车辆状态为上电或启动中的一种,则令所述车载冰箱的所述延时开关保持开启;和
所述延时开启模块,被配置为,响应于确定所述延时开关为开启,且为所述车载冰箱设置所述工作时长,在所述车辆状态变为下电时开启所述车载冰箱,并根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种。
基于同一发明构思,本公开第三方面的实施例提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述第一方面实施例的车载冰箱控制方法。
基于同一发明构思,本公开第四方面的实施例提供了一种非暂态计算机可读存储介质,其中,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行上述第一方面实施例的车载冰箱控制方法。
基于同一发明构思,本公开第五方面的实施例提供了一种车辆,所述车辆包括上述第二方面实施例的车载冰箱控制装置或上述第三方面实施例的电子设备,所述装置或所述电子设备执行上述第一方面实施例的车载冰箱控制方法。
基于同一发明构思,本公开第六方面的实施例提供了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现上述第一方面实施例的车载冰箱控制方法。
基于同一发明构思,本公开第七方面的实施例提供了一种计算机程序,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面实施例的车载冰箱控制方法。
从上面所述可以看出,本公开实施例提供的车载冰箱控制方法、装置、相关设备、存储介质、计算机程序产品、计算机程序和车辆,基于对车辆状态和电池电量的检测,综合考虑了上电、下电和启动的不同车辆状态,来对车载冰箱进行控制,并结合设置的门限电量,使得在电池电量小于等于门限电量时,车载冰箱能够即使关闭,从而避免了因为车载冰箱的工作而耗尽电池电量。
在一些实施例中,通过在上电或启动状态下开启的延时开关,可以在电池电量大于门限电量的前提下,令车辆在下电后,实现车载冰箱的持续工作,并可以根据设置的工作时长对其进行控制,并具体根据计时过程中的情况,来控制车载冰箱保持开启或关闭。
可以看出,本方法结合了不同的车辆状态和电池电量,来对车载冰箱进行控制,使得车载冰箱不仅能够在下电后持续使用,还避免了在各种车辆状态下耗尽电池电量的情况。
附图说明
为了更清楚地说明本公开或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的车载冰箱控制方法的流程图;
图2为本公开实施例的交互逻辑示意图;
图3为本公开实施例的车载冰箱控制装置结构示意图;
图4为本公开实施例的电子设备结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
需要说明的是,除非另外定义,本公开的实施例使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开的实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的 组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
如背景技术部分所述,相关的车载冰箱控制方法还难以满足实际的使用需要。
申请人在实现本公开的过程中发现,相关的车载冰箱控制方法存在的主要问题在于:相关的车载冰箱在其使用过程中,由于车载冰箱耗电量大,因此,在工作时,极容易将车辆电池的电量耗尽。
具体来说,车辆在下电的情况下,车载冰箱持续工作并持续消耗电量,由于此时车辆无人看管,也即,车载冰箱不被控制地持续工作,车辆电池的电量将不断被车载冰箱消耗,直至车辆电池耗尽电量。
然而,不仅仅在车辆下电的情况下,车辆在上电和启动的状态下,尤其是对于电动汽车来说,车载冰箱无条件地持续工作,或者仅仅依靠使用者凭经验来开启或关闭车载冰箱,也极其容易将导致车辆电池的电量被耗尽。
因此,在相关的车载冰箱的控制方式中,并不能够结合车辆的不同状态和电池电量来对车载冰箱进行有效合理的控制。
基于此,本公开第一方面的实施例提供了一种车载冰箱控制方法,以下结合附图详细说明本公开的实施例。
参考图1,本公开一个实施例的车载冰箱控制方法,包括以下步骤S101至S104。
步骤S101、分别实时确定车辆的车辆状态和电池电量。
在本公开的实施例中,以控制电动汽车的车载冰箱作为一个具体的示例,如图2所示,在该电动汽车中,具体包括有:车载交互屏幕(在本公开的实施例中简称HU)、域控制器(在本公开的实施例中简称XCU)、动力电池和车载冰箱(在本公开的实施例中也可称作VFridge)。
其中,动力电池作为本实施例中车辆的车辆电池,具体用于为各个电器和电动汽车行驶提供电力;HU中可以显示延时开关,延时开关用于设置车载冰箱工作的工作时长,也可以称为延时时长;本实施例中的XCU具体用于控制HU和车载冰箱,XCU还可以用于获取车辆的车辆状态、车载冰箱的状态、延时开关的状态和动力电池的状态。
在本实施例中,车辆的车辆状态具体可以分为下电、上电和启动,其中,下电时,在车载冰箱未被设置继续工作时,其他所有电器将被全部断电,可以视为车辆熄火状态,在本实施例中将车辆处于下电的车辆状态表示为:本地OFF;上电时,车辆的所有电器将全 部接通供电,在本实施例中将车辆处于上电的车辆状态表示为:本地ACC;在本实施例中将车辆处于启动的车辆状态表示为:本地ON;
可以看出,本实施例中的本地OFF、本地ACC和本地ON三种车辆状态,分别对应车钥匙插入车辆的钥匙插孔后,可处于的三个不同位置。
在本实施例中,将车辆电池(也即动力电池)当前可用的电量占车辆电池容量的百分比来表示电池电量,并将动力电池的剩余电池电量表示为SOC,也即该动力电池的表显剩余电池电量;在一些其他实施例中,也可以使用电池当前的具体剩余电量,例如,20000mAh,来表示电池电量。
如图2所示,通过XCU可以实时获取动力电池的电池电量,同时,XCU还可以实时获取车辆当前所处的车辆状态。
在本实施例中,冰箱可以处于开启和关闭两种状态,并分别表示为:冰箱=ON和冰箱=OFF;在一些实施例中,延时开关也可以处于开启和关闭两种状态,并分别表示为:延时开关=ON和延时开关=OFF。
基于此,XCU利用所获取的当前电池电量和车辆状态,可以通过进一步综当前的电池电量和车辆状态,来对车载冰箱和车载冰箱所具有的延时开关进行控制。
步骤S102、响应于确定所述电池电量小于等于预设的门限电量,且所述车辆状态为上电或启动中的一种,则控制所述车载冰箱关闭,响应于关闭所述车载冰箱,关闭为所述车载冰箱设置工作时长的延时开关。
在本公开的实施例中,基于上述步骤S101中确定的电池电量和车辆状态,可以为动力电池标定门限电量,结合该门限电量,来对车载冰箱和延时开关进行控制。
在本实施例中,可以将门限电量标定为20%,也就是说,若动力电池当前所具备的电量为动力电池总容量的20%时,则认为达到动力电池的门限电量。
在一些其他实施例中,也可以根据具体的情况,将门限电量标定为其他百分比。
在一些实施例中,基于设定的门限,XCU可以根据实时获取的电池电量来判定动力电池当前是否达到门限电量。
在一些实施例中,当XCU判定动力电池当前的SOC小于等于门限电量时,则控制车载冰箱关闭,也即,将车载冰箱的状态控制为冰箱=OFF。
可以看出,由于车辆处于本地ACC、本地ON和本地OFF中的任意一种车辆状态下,当动力电池的SOC小于等于门限电量时,仍持续使用车载冰箱,均有可能耗尽动力电池的电量,因此,在本实施例中,当车辆处于任意车辆状态下,当XCU判定SOC小于等于门限电量时,均将车载冰箱控制为冰箱=OFF。
可以看出,当车辆处于本地ACC、本地ON和本地OFF中的任意车辆状态下,若冰箱=OFF时,则延时开关=OFF,也就是说,当冰箱=OFF时,则不需要对其进行延时时长的条件,因此,当冰箱=OFF,则延时开关=OFF,关闭设置延时时长的功能。
可以看出,基于设置的门限电量,可以对任意车辆状态下的车载冰箱进行控制,以令其在动力电池的SOC不足时,及时停止工作,避免动力电池的电量被耗尽。
步骤S103、响应于确定所述电池电量大于所述的门限电量,且确定所述车辆状态为上电或启动中的一种,则令所述车载冰箱的所述延时开关保持开启。
在本公开的实施例中,基于上述步骤S101中确定的电池电量,当电池电量大于所标定的门限电量时,则可以根据具体的车辆状态来开启延时开关,并令车载冰箱持续工作。
具体地,在本实施例中,当XCU判断SOC大于标定的门限电量时,则进一步判断车辆当前的车辆状态。
当XCU判断车辆当前处于本地ACC或本地ON中任一种车辆状态时,则XCU可以将延时开关控制为延时开关=ON,并通过延时开关设置具体的延时时长。
在另一些实施例中,当XCU判断车辆当前处于本地ACC或本地ON中任一种车辆状态后,也可以保持延时开关的状态为延时开关=OFF,也即,控制车载冰箱不持续工作。
可以看出,车载冰箱的使用者,可以在车辆处于本地ACC或本地ON的状态下,并且在SOC大于门限电量时,通过延时开关,对车载冰箱进行控制,也即,可以持续开启车载冰箱。
步骤S104、响应于确定所述延时开关为开启,且为所述车载冰箱设置所述工作时长,在所述车辆状态变为下电时开启所述车载冰箱,并根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种。
在本公开的实施例中,基于上述开启的延时开关,用户可以进一步通过设置延时时长,来控制车载冰箱继续工作的时长。
具体地,当车辆的车辆状态从上述的本地ACC或本地ON转为本地OFF时,也即,车辆熄火后,此时,若上述所设置的开启的延时开关仍未由使用者或者其他因素关闭,则车载冰箱将在车辆当前的本地OFF状态下持续工作。
同时,XCU在获知车辆状态为本地OFF后,将启动计时过程;其中,该计时过程针对上述所设置的延时时长,当计时过程记满设置的延时时长时,则结束计时;例如,当设置的延时时长为3个小时,则计时过程应计时3个小时。
在一些实施例中,在对工作时长的计时过程中,XCU将实时检测动力电池的SOC,若SOC始终大于上述预设的门限电量,则计时过程将持续进行,并控制车载冰箱持续工作。
当计时过程结束后,则停止车载冰箱的工作,也即,将车载冰箱的状态控制为冰箱 =OFF。
在一些实施例中,根据上述步骤所述,当车载冰箱的状态为冰箱=OFF时,XCU也同时将延时开关的状态控制为延时开关=OFF。
在一些其他实施例中,根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,包括:
响应于确定所述电池电量小于等于所述门限电量,则控制所述车载冰箱关闭;和
响应于关闭所述车载冰箱,关闭所述延时开关。
在本实施例中,在对工作时长的计时过程中,XCU仍将实时检测动力电池的SOC,若检测出SOC小于等于上述预设的门限电量,则XCU将终止计时过程。
在一些实施例中,当计时过程终止时,XCU将进一步关闭延时开关,并将车载冰箱的状态控制为:冰箱=OFF。
在本公开的另一实施例中,根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,还包括:
响应于确定所述车辆状态从下电变为启动,关闭所述延时开关。
在本实施例中,基于上述的计时过程中,XCU将实时获取车辆的车辆状态,并根据车辆当前车辆状态的变化,对延时开关和车载冰箱进行不同的控制。
具体地,基于前述实施例的计时过程,可以看出,该计时过程是基于车辆处于本地OFF的状态下进行的,当XCU检测到该车辆当前的车辆状态由本地OFF变为本地ACC时,则可以认为当前车辆仍未启动,并且认为当前车辆仍有可能处于无人管理的状况。
因此,在车辆状态由本地OFF变为本地ACC时,仍控制车载冰箱和延时开关保持在原先的状态不变。
具体地,XCU将延时开关的状态维持为延时开关=ON,将车载冰箱的状态维持为冰箱=ON。
在本公开的另一实施例中,根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,还包括:
在对所述工作时长的计时过程中,响应于确定所述车辆状态从下电变为上电,则保持所述延时开关为开启状态;和
响应于所述延时开关为开启状态,保持所述车载冰箱为开启状态。
在本实施例中,基于上述的计时过程中,XCU将实时获取车辆的车辆状态,并根据车辆当前车辆状态的变化,对延时开关和车载冰箱进行不同的控制。
具体地,基于前述实施例的计时过程,可以看出,该计时过程是基于车辆处于本地OFF的状态下进行的,当XCU检测到该车辆当前的车辆状态由本地OFF变为本地ON时,则 可以认为该车辆当前已经由车辆熄火的下电状态变为启动的状态,因此,可以认为当前的车辆已有相关人员对其进行管理,因此,可以关闭延时开关,并保持车载冰箱继续工作。
具体地,在XCU实时检测车辆状态的过程中,当XCU确定该车辆的车辆状态由本地OFF变为本地ON时,则控制延时开关的状态由延时开关=ON变为延时开关=OFF,并控制车载冰箱的状态保持冰箱=ON。
在本公开的一些其他实施例中,如图2所示,HU作为可视化的车载交互屏幕,不仅可以与车辆的使用者进行交互,还可以与XCU之间可以进行交互。
具体地,车载冰箱的使用者可以通过HU进行用户操作,例如,设置延时时长等;当延时开关=ON时,则HU显示延时开关为可点击状态,当延时开关=OFF时,则HU显示延时开关为不可点击的灰显示或不显示;在一些实施例中,当延时开关为可点击状态时,HU上可以显示出设置延时时长的功能,用户可以进一步在HU上为车载冰箱设置延时时长,而当延时开关=OFF时,则HU上显示设置延时时长的功能,或者将设置延时时长的功能置为灰显示。
在一些实施例中,XCU还可以通过HU来获取延时开关在当前的状态,并通过HU来控制延时开关。
具体地,当延时开关的状态根据用户操作,被设置为延时开关=ON或延时开关=OFF时,HU将延时开关当前的状态,以及,相关的延时时长的设置指令发送至XCU。
在一些实施例中,HU也将实时收到XCU向其反馈的、对开关时延和时延时长的控制指令,HU将根据该控制指令来控制延时开关和延时时长的显示。
在本公开的一些其他实施例中,控制所述车载冰箱关闭之后,还包括:
根据关闭所述车载冰箱时的车辆状态和电池电量,确定关闭所述车载冰箱的原因;和
可视化展示所述原因。
在本实施例中,基于前述实施例所设置的HU的可视化功能,可以向车载冰箱的使用者显示车载冰箱关闭的原因。
具体地,当车载冰箱关闭的原因为:XCU检测到动力电池SOC小于等于门限电量时,HU将SOC过低确定车载冰箱关闭的原因;并在该情况下关闭延时开关。
在一些实施例中,HU将可以显示例如:“冰箱不可开原因=SOC过低”的文字。
在一些实施例中,当XCU检测到延时开关=ON,并且,车辆的状态为本地ACC或者本地ON,若XCU在未收到任何故障码的情形下,检测到冰箱的工作状态被关闭,则将冰箱关闭的原因确定为用户主动关闭;并在该情况下关闭延时开关。
在一些实施例中,HU将可以显示例如:“冰箱不可开原因=冰箱关闭”的文字。
在一些实施例中,当XCU检测到延时开关=ON,并且,车辆的状态为本地OFF且动 力电池SOC大于门限电量时,若XCU收到任何冰箱故障码,或者,检测到冰箱的工作状态被关闭,则将冰箱关闭的原因确定为车载冰箱发生了故障;并在该情况下关闭延时开关。
在一些实施例中,HU将可以显示例如:“冰箱不可开原因=冰箱故障”的文字。
在一些实施例中,当XCU检测到延时开关=ON,并且,车辆的状态为本地OFF且动力电池SOC大于门限电量时,若XCU收到任何其他车辆故障码,或者,检测到整车均无法高压上电,则将冰箱关闭的原因确定为整车发生了故障;并在该情况下关闭延时开关。
在一些实施例中,HU将可以显示例如:“冰箱不可开原因=整车故障”的文字。
可见,本公开的实施例的车载冰箱控制方法,基于对车辆状态和电池电量的检测,综合考虑了上电、下电和启动的不同车辆状态,来对车载冰箱进行控制,并结合设置的门限电量,使得在电池电量小于等于门限电量时,车载冰箱能够即使关闭,从而避免了因为车载冰箱的工作而耗尽电池电量。
在一些实施例中,通过在上电或启动状态下开启的延时开关,可以在电池电量大于门限电量的前提下,令车辆在下电后,实现车载冰箱的持续工作,并可以根据设置的工作时长对其进行控制,并具体根据计时过程中的情况,来控制车载冰箱保持开启或关闭。
在本公开的一些其他实施例中,在所述车辆状态变为下电时开启所述车载冰箱之后,还包括:
实时确定所述车载冰箱内的当前温度,并设置温度阈值;
响应于确定所述当前温度低于所述温度阈值,控制所述车载冰箱关闭;和
响应于确定所述当前温度大于等于所述温度阈值,控制所述车载冰箱保持开启。
在本实施例中,可以通过对车载冰箱当前温度的实时检测,来令车载冰箱间断工作,以达到既节省电池电量,又保持车载冰箱内温度的目的。
具体地,可以对车载冰箱内的当前温度进行实时检测,并为其设置控制车载冰箱开启或关闭的温度阈值。
在一些实施例中,当车辆从本地ON或本地ACC变为本地OFF时,并且开启了延时时长后,车载冰箱可以在电池电量大于门限电量时保持开启。
在一些实施例中,在车载冰箱保持开启的状态下,基于实时确定的当前温度,来判断当前温度与温度阈值的大小关系。
在一些实施例中,若检测到当前温度大于等于温度阈值时,则持续保持所述车载冰箱的开启状态;若检测到当前温度小于温度阈值时,则关闭车载冰箱。
在一些实施例中,在车载冰箱关闭后,可继续对当前温度进行检测,并重复执行上述过程。
在本公开的一些其他实施例中,对所述电池电量的实时确定,还可以包括:
为所述车载冰箱设置提供电力的蓄电池;
利用所述车辆中具备的动力电池为所述蓄电池供电;
并实时确定所述蓄电池的剩余电量;和
将所述蓄电池的剩余电量作为所述电池电量。
在本实施例中,利用车辆的动力电池为车载冰箱的蓄电池进行供电,并将实时确定出的蓄电池当前的剩余电量作为电池电量。
具体地,以蓄电池当前可用的电量占蓄电池容量的百分比来表示电池电量,并将蓄电池的剩余电池电量表示为SOC,也即该蓄电池的表显剩余电池电量;在一些其他实施例中,也可以使用蓄电池当前的具体剩余电量,例如,20000mAh,来表示电池电量。
在一些实施例中,通过XCU可以实时获取蓄电池的电池电量。
在一些其他实施例中,利用所述车辆中具备的动力电池为所述蓄电池供电,包括:
为所述动力电池设置供电阈值;
实时确定所述动力电池的剩余电量;
响应于确定所述动力电池的剩余电量大于所述供电阈值,令所述动力电池持续为所述蓄电池供电;和
响应于确定所述动力电池的剩余电量小于等于所述供电阈值,令所述动力电池停止为所述蓄电池供电。
在本实施例中,在利用动力电池为蓄电池进行供电时,为了避免动力电池的电量耗尽,可以为动力电池设置供电阈值,并实时检测动力电池的剩余电量。
在一些实施例中,当动力电池的剩余电量大于供电阈值时,则认为动力电池的电量充足,可以持续为蓄电池供电;当动力电池的剩余电量小于等于供电阈值时,则认为动力电池的电量不充足,难以为蓄电池供电,并令动力电池停止为蓄电池供电。
可以看出,本方法结合了不同的车辆状态和电池电量,来对车载冰箱进行控制,使得车载冰箱不仅能够在下电后持续使用,还避免了在各种车辆状态下耗尽电池电量的情况。
需要说明的是,本公开的实施例的方法可以由单个设备执行,例如一台计算机或服务器等。本实施例的方法也可以应用于分布式场景下,由多台设备相互配合来完成。在这种分布式场景的情况下,这多台设备中的一台设备可以只执行本公开的实施例的方法中的某一个或多个步骤,这多台设备相互之间会进行交互以完成所述的方法。
需要说明的是,上述对本公开的一些实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于上述实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并 行处理也是可以的或者可能是有利的。
基于同一发明构思,与上述任意实施例方法相对应的,本公开第二方面的实施例还提供了一种车载冰箱控制装置。
参考图3,所述车载冰箱控制装置,包括:检测模块301、第一判定模块302、第二判定模块303和延时开启模块304;
其中,所述检测模块301,被配置为,分别实时确定车辆的车辆状态和电池电量;
所述第一判定模块302,被配置为,响应于确定所述电池电量小于等于预设的门限电量,且所述车辆状态为上电或启动中的一种,则控制所述车载冰箱关闭,响应于关闭所述车载冰箱,关闭为所述车载冰箱设置工作时长的延时开关;
所述第二判定模块303,被配置为,响应于确定所述电池电量大于所述的门限电量,且确定所述车辆状态为上电或启动中的一种,则令所述车载冰箱的所述延时开关保持开启;和
所述延时开启模块304,被配置为,响应于确定所述延时开关为开启,且为所述车载冰箱设置所述工作时长,在所述车辆状态变为下电时开启所述车载冰箱,并根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种。
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本公开的实施例时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
上述实施例的装置用于实现上述第一方面实施例的车载冰箱控制方法,并且具有相应的方法实施例的有益效果,在此不再赘述。
基于同一发明构思,与上述任意实施例方法相对应的,本公开第三方面的实施例还提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述第一方面实施例的车载冰箱控制方法。
图4示出了本实施例所提供的一种更为具体的电子设备硬件结构示意图,该设备可以包括:处理器1010、存储器1020、输入/输出接口1030、通信接口1040和总线1050。其中处理器1010、存储器1020、输入/输出接口1030和通信接口1040通过总线1050实现彼此之间在设备内部的通信连接。
处理器1010可以采用通用的CPU(Central Processing Unit,中央处理器)、微处理器、应用专用集成电路(Application Specific Integrated Circuit,ASIC)、或者一个或多个集成电路等方式实现,用于执行相关程序,以实现本公开实施例所提供的技术方案。
存储器1020可以采用ROM(Read Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、静态存储设备、动态存储设备等形式实现。存储器1020可以存储操作系统和其他应用程序,在通过软件或者固件来实现本公开实施例所提供的技术方 案时,相关的程序代码保存在存储器1020中,并由处理器1010来调用执行。
输入/输出接口1030用于连接输入/输出模块,以实现信息输入及输出。输入/输出模块可以作为组件配置在设备中(图中未示出),也可以外接于设备以提供相应功能。其中输入设备可以包括键盘、鼠标、触摸屏、麦克风、各类传感器等,输出设备可以包括显示器、扬声器、振动器、指示灯等。
通信接口1040用于连接通信模块(图中未示出),以实现本设备与其他设备的通信交互。其中通信模块可以通过有线方式(例如USB、网线等)实现通信,也可以通过无线方式(例如移动网络、WIFI、蓝牙等)实现通信。
总线1050包括一通路,在设备的各个组件(例如处理器1010、存储器1020、输入/输出接口1030和通信接口1040)之间传输信息。
需要说明的是,尽管上述设备仅示出了处理器1010、存储器1020、输入/输出接口1030、通信接口1040以及总线1050,但是在具体实施过程中,该设备还可以包括实现正常运行所必需的其他组件。此外,本领域的技术人员可以理解的是,上述设备中也可以仅包含实现本公开实施例方案所必需的组件,而不必包含图中所示的全部组件。
上述实施例的装置用于实现前述任一实施例中相应的车载冰箱控制方法,并且具有相应的方法实施例的有益效果,在此不再赘述。
基于同一发明构思,与上述任意实施例方法相对应的,本公开第四方面的实施例提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行上述第一方面实施例的车载冰箱控制方法。
基于同一发明构思,与上述任意实施例方法相对应的,本公开第五方面的实施例提供了一种车辆,所述车辆包括上述第二方面实施例的车载冰箱控制装置或上述第三方面实施例的电子设备,所述装置或所述电子设备执行上述第一方面实施例的车载冰箱控制方法。
基于同一发明构思,与上述任意实施例方法相对应的,本公开第六方面的实施例提供了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现上述第一方面实施例的车载冰箱控制方法。
基于同一发明构思,与上述任意实施例方法相对应的,本公开第七方面的实施例提供了一种计算机程序,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面实施例的车载冰箱控制方法。
需要说明的是,前述对车载冰箱控制方法实施例的解释说明也适用于本公开实施例的装置、电子设备、车辆、计算机可读存储介质、计算机程序产品和计算机程序,此处不再赘述。
本公开所有实施例均可以单独被执行,也可以与其他实施例相结合被执行,均视为本 公开要求的保护范围。
本实施例的计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
上述实施例的存储介质存储的计算机指令用于使所述计算机执行如上任一实施例所述的车载冰箱控制方法,并且具有相应的方法实施例的有益效果,在此不再赘述。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本公开的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本公开的实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。
另外,为简化说明和讨论,并且为了不会使本公开的实施例难以理解,在所提供的附图中可以示出或可以不示出与集成电路(IC)芯片和其它部件的公知的电源/接地连接。此外,可以以框图的形式示出装置,以便避免使本公开的实施例难以理解,并且这也考虑了以下事实,即关于这些框图装置的实施方式的细节是高度取决于将要实施本公开的实施例的平台的(即,这些细节应当完全处于本领域技术人员的理解范围内)。在阐述了具体细节(例如,电路)以描述本公开的示例性实施例的情况下,对本领域技术人员来说显而易见的是,可以在没有这些具体细节的情况下或者这些具体细节有变化的情况下实施本公开的实施例。因此,这些描述应被认为是说明性的而不是限制性的。
尽管已经结合了本公开的具体实施例对本公开进行了描述,但是根据前面的描述,这些实施例的很多替换、修改和变型对本领域普通技术人员来说将是显而易见的。例如,其它存储器架构(例如,动态RAM(DRAM))可以使用所讨论的实施例。
本公开的实施例旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本公开的实施例的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (16)

  1. 一种车载冰箱控制方法,包括:
    分别实时确定车辆的车辆状态和电池电量;
    响应于确定所述电池电量小于等于预设的门限电量,且所述车辆状态为上电或启动中的一种,则控制所述车载冰箱关闭,响应于关闭所述车载冰箱,关闭为所述车载冰箱设置工作时长的延时开关;
    响应于确定所述电池电量大于所述的门限电量,且确定所述车辆状态为上电或启动中的一种,则令所述车载冰箱的所述延时开关保持开启;和
    响应于确定所述延时开关为开启,且为所述车载冰箱设置所述工作时长,在所述车辆状态变为下电时开启所述车载冰箱,并根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种。
  2. 根据权利要求1所述的方法,其中,所述根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,包括:
    响应于确定所述电池电量小于等于所述门限电量,则控制所述车载冰箱关闭;和
    响应于关闭所述车载冰箱,关闭所述延时开关。
  3. 根据权利要求1或2所述的方法,其中,所述根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,还包括:
    响应于确定所述计时过程结束,控制所述车载冰箱关闭;和
    响应于关闭所述车载冰箱,关闭所述延时开关。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,还包括:
    响应于确定所述车辆状态从下电变为启动,关闭所述延时开关。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种,还包括:
    在对所述工作时长的计时过程中,响应于确定所述车辆状态从下电变为上电,则保持所述延时开关为开启状态;和
    响应于所述延时开关为开启状态,保持所述车载冰箱为开启状态。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述控制所述车载冰箱关闭之后,还包括:
    根据关闭所述车载冰箱时的车辆状态和电池电量,确定关闭所述车载冰箱的原因;和
    可视化展示所述原因。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述在所述车辆状态变为下电时开启所述车载冰箱之后,还包括:
    实时确定所述车载冰箱内的当前温度,并设置温度阈值;
    响应于确定所述当前温度低于所述温度阈值,控制所述车载冰箱关闭;和
    响应于确定所述当前温度大于等于所述温度阈值,控制所述车载冰箱保持开启。
  8. 根据权利要求1至7中任一项所述的方法,其中,对所述电池电量的实时确定,包括:
    将所述车辆中具备的动力电池作为所述车载冰箱的供电电池,并实时确定所述动力电池的剩余电量;和
    将所述动力电池的剩余电量作为所述电池电量。
  9. 根据权利要求1至8中任一项所述的方法,其中,对所述电池电量的实时确定,还包括:
    为所述车载冰箱设置提供电力的蓄电池;
    利用所述车辆中具备的动力电池为所述蓄电池供电;
    并实时确定所述蓄电池的剩余电量;和
    将所述蓄电池的剩余电量作为所述电池电量。
  10. 根据权利要求9所述的方法,其中,所述利用所述车辆中具备的动力电池为所述蓄电池供电,包括:
    为所述动力电池设置供电阈值;
    实时确定所述动力电池的剩余电量;
    响应于确定所述动力电池的剩余电量大于所述供电阈值,令所述动力电池持续为所述蓄电池供电;和
    响应于确定所述动力电池的剩余电量小于等于所述供电阈值,令所述动力电池停止为 所述蓄电池供电。
  11. 一种车载冰箱控制装置,包括:检测模块、第一判定模块、第二判定模块和延时开启模块;
    其中,所述检测模块,被配置为,分别实时确定车辆的车辆状态和电池电量;
    所述第一判定模块,被配置为,响应于确定所述电池电量小于等于预设的门限电量,且所述车辆状态为上电或启动中的一种,则控制所述车载冰箱关闭,响应于关闭所述车载冰箱,关闭为所述车载冰箱设置工作时长的延时开关;
    所述第二判定模块,被配置为,响应于确定所述电池电量大于所述的门限电量,且确定所述车辆状态为上电或启动中的一种,则令所述车载冰箱的所述延时开关保持开启;和
    所述延时开启模块,被配置为,响应于确定所述延时开关为开启,且为所述车载冰箱设置所述工作时长,在所述车辆状态变为下电时开启所述车载冰箱,并根据对所述工作时长的计时过程,控制所述车载冰箱处于开启状态和关闭状态中的一种。
  12. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可由所述处理器执行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至10中任一项所述的方法。
  13. 一种非暂态计算机可读存储介质,其中,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使计算机执行如权利要求1至10中任一项所述的方法。
  14. 一种车辆,包括如权利要求11所述的车载冰箱控制装置或权利要求12所述的电子设备。
  15. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如权利要求1至10中任一项所述的方法。
  16. 一种计算机程序,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至10中任一项所述的方法。
PCT/CN2023/112311 2022-08-15 2023-08-10 车载冰箱控制方法及相关设备 WO2024037425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210977430.3 2022-08-15
CN202210977430.3A CN115431768A (zh) 2022-08-15 2022-08-15 车载冰箱控制方法及相关设备

Publications (1)

Publication Number Publication Date
WO2024037425A1 true WO2024037425A1 (zh) 2024-02-22

Family

ID=84243216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112311 WO2024037425A1 (zh) 2022-08-15 2023-08-10 车载冰箱控制方法及相关设备

Country Status (2)

Country Link
CN (1) CN115431768A (zh)
WO (1) WO2024037425A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115431768A (zh) * 2022-08-15 2022-12-06 北京车和家汽车科技有限公司 车载冰箱控制方法及相关设备
CN116045598B (zh) * 2022-12-21 2023-11-07 阿维塔科技(重庆)有限公司 一种车载冰箱控制方法、装置及计算机可读存储介质
CN116749768A (zh) * 2023-08-21 2023-09-15 小米汽车科技有限公司 车载冰箱的供电控制方法、装置及电子设备
CN117458655A (zh) * 2023-10-26 2024-01-26 小米汽车科技有限公司 车载冰箱供电控制方法、装置、介质以及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206450005U (zh) * 2017-01-25 2017-08-29 安徽江淮汽车集团股份有限公司 一种车载冰箱控制系统
CN109442863A (zh) * 2018-09-29 2019-03-08 广东猛犸科技有限公司 一种车载冰箱控制方法、系统、设备和车载冰箱
JP2021052575A (ja) * 2019-09-18 2021-04-01 トヨタ自動車株式会社 電力システム
CN114593556A (zh) * 2022-03-17 2022-06-07 蔚来汽车科技(安徽)有限公司 车载冰箱控制方法、存储介质和车辆
CN115431768A (zh) * 2022-08-15 2022-12-06 北京车和家汽车科技有限公司 车载冰箱控制方法及相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206450005U (zh) * 2017-01-25 2017-08-29 安徽江淮汽车集团股份有限公司 一种车载冰箱控制系统
CN109442863A (zh) * 2018-09-29 2019-03-08 广东猛犸科技有限公司 一种车载冰箱控制方法、系统、设备和车载冰箱
JP2021052575A (ja) * 2019-09-18 2021-04-01 トヨタ自動車株式会社 電力システム
CN114593556A (zh) * 2022-03-17 2022-06-07 蔚来汽车科技(安徽)有限公司 车载冰箱控制方法、存储介质和车辆
CN115431768A (zh) * 2022-08-15 2022-12-06 北京车和家汽车科技有限公司 车载冰箱控制方法及相关设备

Also Published As

Publication number Publication date
CN115431768A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2024037425A1 (zh) 车载冰箱控制方法及相关设备
US7987376B2 (en) Power supply controller configured to supply power to external device and modules of computer system according to the selected power supply mode
US10817043B2 (en) System and method for entering and exiting sleep mode in a graphics subsystem
US9112372B2 (en) Power consumption reduction method for a stored battery
JP6113538B2 (ja) 制御装置、制御方法、プログラムおよび半導体装置
US20110185208A1 (en) Memory power reduction in a sleep state
US20150019893A1 (en) Standby power interception apparatus for computer and computer peripheral device
US9582064B2 (en) Information processing apparatus capable of being instructed to power off by a command from external apparatus, method of controlling the same, and storage medium
JP2014089711A (ja) 電子装置及びその制御方法
CN111475009A (zh) 一种服务器内gpu的降功耗电路及服务器
WO2018036238A1 (zh) 一种控制电路、方法及计算机存储介质
US20160091960A1 (en) Control systems for reducing current transients
CN106292987A (zh) 一种处理器掉电时序控制系统及方法
JP5691943B2 (ja) メモリ電圧制御装置
TW201541803A (zh) 可攜式電子裝置及其充電控制方法
US20190361515A1 (en) Low-Energy Operation of Motor Vehicle Functions During the Operation of the Motor Vehicle
KR20100050097A (ko) 영상처리장치 및 그 제어 방법
JP2011013915A (ja) 測定装置の制御方法
JP6231752B2 (ja) デバイス制御装置およびデバイス制御方法
EP2988391B1 (en) Mobile power supply terminal and power supply method therefor
CN105653380B (zh) 一种控制方法及电子设备
US9524015B2 (en) Device optimized power management
WO2023136158A1 (ja) 車載システム、管理装置及び管理方法
JP7261080B2 (ja) 制御装置および制御方法
CN107544659B (zh) 移动终端及传感器与显示屏共电源控制方法、及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854326

Country of ref document: EP

Kind code of ref document: A1