WO2024037339A1 - 信道状态信息处理方法、装置、通信节点及存储介质 - Google Patents

信道状态信息处理方法、装置、通信节点及存储介质 Download PDF

Info

Publication number
WO2024037339A1
WO2024037339A1 PCT/CN2023/110685 CN2023110685W WO2024037339A1 WO 2024037339 A1 WO2024037339 A1 WO 2024037339A1 CN 2023110685 W CN2023110685 W CN 2023110685W WO 2024037339 A1 WO2024037339 A1 WO 2024037339A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
information
sets
state information
channel state
Prior art date
Application number
PCT/CN2023/110685
Other languages
English (en)
French (fr)
Inventor
鲁照华
肖华华
刘文丰
李伦
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024037339A1 publication Critical patent/WO2024037339A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • This application relates to the field of communication technology, for example, to channel state information processing methods, devices, communication nodes and storage media.
  • Multi-antenna technology can improve the performance of wireless communication systems, therefore, multi-antenna technology is widely used in various wireless communication systems.
  • the network side needs to obtain more accurate channel state information (Channel State Information, CSI).
  • CSI Channel State Information
  • AI artificial intelligence
  • the N channel information before the reference time slot the M channel state information after the reference time slot is obtained using AI.
  • the terminal side cannot effectively obtain the N channel information before the reference time slot, and only obtains K channel information, where K is less than N.
  • Embodiments of the present application provide a channel state information processing method, device, communication node, and storage medium.
  • embodiments of the present application provide a channel state information processing method, which is applied to a first communication node.
  • the method includes:
  • Receive N sets of reference signal configuration information and K sets of reference signals obtain K channel information based on the K sets of reference signals; determine M channel status information based on the K channel information; where K, N, and M are all A positive integer, and K is less than N and M is greater than or equal to 1.
  • embodiments of the present application provide a channel state information processing method, which is applied to the second communication node.
  • the method includes:
  • embodiments of the present application provide a channel state information processing device integrated in a first communication node.
  • the device includes:
  • the receiving module is used to receive N sets of reference signal configuration information and K sets of reference signals; the acquisition module is used to acquire K channel information according to the K sets of reference signals; the determination module is used to obtain K channel information according to the K sets of reference signals.
  • the channel information determines M pieces of channel status information; among them, K, N, and M are all positive integers, and K is less than N, and M is greater than or equal to 1.
  • embodiments of the present application provide a channel state information processing device integrated in a second communication node.
  • the device includes:
  • the sending module is used to send N sets of reference signal configuration information; the sending module is also used to send K sets of reference signals; wherein the K sets of reference signals are used by the first communication node to obtain K channel information, and according to the K Channel information determines M channel status information.
  • K, N, and M are all positive integers, and K is less than N, and M is greater than or equal to 1.
  • embodiments of the present application provide a communication node, including a memory and a processor.
  • the memory stores a computer program.
  • the processor executes the computer program, the first and second aspects of the embodiments of the present application are implemented.
  • the channel state information processing method provided.
  • embodiments of the present application provide a storage medium that stores a computer program.
  • the computer program is executed by a processor, the channel state provided in the first and second aspects of the embodiments of the present application is realized.
  • Information processing methods are described in detail below.
  • Figure 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the channel state information processing process provided by the embodiment of the present application.
  • Figure 3 is a schematic flow chart of a channel state information processing method provided by an embodiment of the present application.
  • Figure 4 is another schematic flowchart of a channel state information processing method provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a channel state information processing device provided by an embodiment of the present application.
  • Figure 6 is another structural schematic diagram of a channel state information processing device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication node provided by an embodiment of the present application.
  • the channel state information processing method provided by the embodiments of the present application can be applied to various wireless communication systems, such as long term evolution (LTE) systems, fourth generation mobile communication technology (4th-generation, 4G) systems, fifth generation 5th-generation mobile communication technology (5th-generation, 5G) system, LTE and 5G hybrid architecture system, 5G New Radio (NR) system, and new communication systems emerging in future communication development, such as the sixth-generation mobile communication technology (6th-generation, 6G) system etc.
  • Figure 1 shows a schematic networking diagram of a wireless communication system provided by an embodiment. As shown in Figure 1, the wireless communication system includes a terminal device 110, an access network device 120 and a core network device 130.
  • the terminal device 110 can be a device with wireless transceiver function, and can be deployed on land (such as indoor or outdoor, handheld, wearable or vehicle-mounted, etc.); it can also be deployed on water (such as ships, etc.); it can also be deployed in the air. (such as aircraft, balloons and satellites, etc.).
  • land such as indoor or outdoor, handheld, wearable or vehicle-mounted, etc.
  • water such as ships, etc.
  • it can also be deployed in the air. (such as aircraft, balloons and satellites, etc.).
  • terminal devices 110 are: UE, mobile phone, mobile station, tablet computer, notebook computer, ultra-mobile personal computer (UMPC), handheld computer, netbook, personal digital assistant (Personal Digital Assistant, PDA) and other user equipment that can be connected to the Internet, or virtual reality (VR) terminals, augmented reality (AR) terminals, wireless terminals in industrial control (industrial control), and wireless terminals in self-driving (self-driving) , wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home ), or IoT nodes in the Internet of Things, or vehicle-mounted communication devices in the Internet of Vehicles, or entertainment and game equipment or systems, or global positioning system equipment, etc.
  • the embodiment of the present application does not limit the form of the terminal device.
  • the terminal device 110 may be referred to as a terminal.
  • the access network device 120 is an access device through which the terminal device 110 wirelessly accesses the wireless communication system, and may be a base station or an evolved base station (Long Term Evolution advanced, LTEA). evolved NodeB (eNB or eNodeB), transmission reception point (TRP), base station or gNB in 5G mobile communication system, base station in future mobile communication system or interface in Wireless Fidelity (WiFi) system Entry node, etc.
  • Base stations can include various macro base stations, micro base stations, home base stations, wireless remotes, routers, WIFI equipment, or various network-side equipment, location management functions, such as primary cells and secondary cells. , LMF) equipment. It can also be a module or unit that completes some functions of the base station.
  • the access network equipment may be referred to as a base station.
  • the core network device 130 may include an access and mobility management network element and a session management network element.
  • the terminal device 110 can access the core network through the access network device 120 to implement data transmission.
  • the reference signal includes but is not limited to the Channel-State Information reference signal (CSI-RS), which includes zero-power CSI-RS (Zero Power CSI-RS, ZP CSI-RS) and non-zero power CSI-RS (Non-Zero Power CSI-RS, NZP CSI-RS), channel state information interference measurement signal (Channel-State Information- Interference Measurement (CSI-IM), Sounding reference signal (SRS), Synchronization Signals Block (SSB), Physical Broadcast Channel (PBCH), Synchronization Signal Block/Physical Broadcast Channel (SSB) /PBCH).
  • CSI-RS Channel-State Information reference signal
  • CSI-IM Channel-State Information- Interference Measurement
  • SRS Synchronization Signals Block
  • PBCH Physical Broadcast Channel
  • SSB Synchronization Signal Block/Physical Broadcast Channel
  • NZP CSI-RS can be used to measure channels or interference; CSI-RS can also be used for tracking, so CSI-RS can also be called tracking reference signal (CSI-RS for Tracking, TRS); CSI-IM is generally used To measure interference, SRS is used for channel estimation or obtaining uplink precoding.
  • the set of resource elements (Resource Elements, RE) used to transmit reference signals is called reference signal resources, such as CSI-RS resource, SRS resource, CSI-IM resource, and SSB resource.
  • the SSB may include a synchronization signal block and/or a physical broadcast channel.
  • resources for transmitting reference signals may also be called reference signal resources.
  • multiple reference signal resources may be combined into a set (such as CSI-RS resource set, CSI-IM resource set, SRS resource set), a reference signal resource set includes at least one reference signal resource, and multiple reference signal resource sets can come from the same reference signal resource setting (such as CSI-RS resource setting, SRS resource setting, CSI- IM resource setting, among which, CSI-RS resource setting may be merged with CSI-IM resource setting, both are called CSI-RS resource setting), and the parameter information of the reference signal is configured through the reference signal resource setting.
  • the second communication node configures measurement resource information, and the measurement resource information is used to obtain channel state information.
  • the measurement resource information includes C N channel measurement resource (Channel Measurement Resource, CMR) information and C M interference measurement resource (Interference Measurement Resource, IMR) information, where C N and C M are positive integers.
  • the second communication node configures the measurement resource information in a reporting configuration (report config) or reporting setting (reporting setting).
  • the C N pieces of CMR information are used by the terminal for channel measurement
  • the C M pieces of IMR information are used by the terminal for measuring the interference received.
  • two antenna ports are called quasi co-located (QCL), which means: if the properties of the channel transmitted by the symbols on one antenna port can be determined from the properties of the symbols on the other antenna port, The channel through which the symbols are transmitted is inferred, then the two antenna ports are said to be quasi-co-located.
  • QCL quasi co-located
  • the two ports of QCL come from the same base station or node.
  • the channel attributes mentioned here include but are not limited to: average gain, delay spread, Doppler spread, Doppler shift, average delay parameters , spatial user reception parameters (spatial UE-Rx parameters), etc.
  • the antenna port includes but is not limited to a demodulation reference signal (DMRS) pilot port or index, an SRS port or index, and an SS block port or index.
  • the QCL relationship includes one of CSI-RS resource configuration information and synchronization signal block index (synchronization signal block index).
  • the number block index includes the primary synchronization signal block index and the secondary synchronization signal block index.
  • the channel state information reference signal resource configuration information includes at least one of the following information: CSI-RS starting symbol index, ending symbol index, pattern, density, pilot cyclic shift sequence, orthogonal code (Orthogonal Cover Code, OCC) and other information.
  • Quasi-colocation can include QCL type A, QCL type B, QCL type C, and QCL type D.
  • the two ports satisfying the quasi-colocation relationship means that the large-scale information of one port can be derived from the large-scale information of the other port.
  • the large-scale information includes but is not limited to: Doppler shift (Doppler shift), Doppler spread (Doppler spread), average delay, delay spread, Spatial Rx parameter.
  • Doppler shift Doppler shift
  • Doppler spread Doppler spread
  • average delay delay spread
  • Spatial Rx parameter Spatial Rx parameter.
  • a QCL Type is classified as follows:
  • the second communication node needs to obtain channel state information.
  • a way to obtain channel state information is provided.
  • the N time slots before reference time slot n such as slot n-8, slot n-6, slot n-4, slot n-2
  • channel information prediction reference time slot n and the M time slots after the reference time slot n (such as slot n, slot n+2, Channel status information of slot n+4).
  • the second communication node only transmits K sets of N sets of reference signals due to resource conflicts or other reasons. As a result, the terminal cannot effectively obtain the N channel information before reference time slot n. K pieces of channel information have been obtained.
  • the technical solution provided by the embodiment of the present application aims to receive less than The technical problem of obtaining channel state information is solved when the desired number of sets of reference signals is required.
  • Figure 3 is a schematic flowchart of a channel state information processing method provided by an embodiment of the present application. This method is applied to the first communication node.
  • the first communication node may be a terminal
  • the second communication node may be a base station.
  • the method may include:
  • S301 Receive N sets of reference signal configuration information and K sets of reference signals.
  • the second communication node transmitted N sets of reference signal configuration information. Due to conflicts between the reference signal resources configured by the second communication node or other reasons, the second communication node only transmitted K sets of reference signals, where K and N are positive Integer, and K is less than N. Therefore, the first communication node can only receive corresponding K sets of reference signals based on the received N sets of reference configuration information.
  • N sets of reference signal configuration information correspond to N sets of reference signals, and the K sets of reference signals may be part of the N sets of reference signals.
  • the K sets of reference signals can be the first K sets of reference signals, the last K sets of reference signals, and the intermediate continuous reference signals among the N sets of reference signals. K sets of reference signals or any non-continuous K sets of reference signals.
  • the reference signal configuration information includes a resource type (resourceType), where the resource type defines the time domain transmission characteristics of the reference signal.
  • the resource type may include one of the following: periodic (periodic) reference signal. , aperiodic reference signal, semi-persistent reference signal.
  • the resource categories included in the N sets of reference signal configuration information may be the same, that is, two of the values of K1, K2, and K3 are zero.
  • the N sets of reference signal configuration information may include all Periodic reference signals are either non-periodic reference signals or semi-continuous reference signals.
  • the N sets of reference signal configuration information include at least two resource categories of reference signals, for example, at least two of the values of K1, K2, and K3 are greater than zero.
  • the second communication node needs to configure and transmit four sets of reference signals, where these four sets of reference signals can be periodic, semi-persistent, or aperiodic.
  • these four sets of reference signals can be periodic, semi-persistent, or aperiodic.
  • Periodic reference signals in another configuration, there are two sets of periodic reference signals and two sets of aperiodic reference signals; in another configuration, there are two sets of semi-continuous reference signals and two sets of periodic reference signals etc.
  • N sets of reference signal configuration information have the same quasi-co-located parameters.
  • a set of reference signals may include one of the following: a reference signal resource, a group of reference signal resources, a reference signal resource set, and a reference signal resource corresponding to a reference signal resource configuration.
  • a set of reference signals can be a reference signal resource, such as a channel-state information reference signal (CSI-RS) resource, or a sounding reference signal (Sounding Reference Signal, SRS) resource. Or a Synchronization Signals Block (SSB) resource.
  • a set of reference signals may be a set of reference signal resources, such as a set of CSI-RS resources, or a set of SRS resources, or a set of SSB resources.
  • a set of reference signals may be a reference signal resource set, such as a CSI-RS resource set, or an SRS resource set, or an SSB resource set.
  • a set of reference signals may be a reference signal resource corresponding to a reference signal resource configuration, such as a CSI-RS resource config/setting, or an SRS resource config/setting, or an SSB resource config/setting.
  • the reference signals in a set of reference signals may also be reference signals of other concepts besides CSI-RS, SSB, and SRS, which may have different names in different systems, that is, the embodiment of the present application.
  • the reference signals in can also be other reference signals used to obtain channel state information, channel information, mobility management, and positioning management.
  • the reference signal is also called pilot signal, etc.
  • the set of reference signals may include a set of reference signals for channel measurements and a set of reference signals for interference measurements.
  • the channel information is information obtained based on a reference signal (for example, CSI-RS) and used to describe the channel environment between the first communication node and the second communication node, such as a time domain channel matrix and a frequency domain channel matrix.
  • CSI-RS reference signal
  • the channel information is a complex matrix related to the number of transmitting antennas Nt, the number of receiving antennas Nr, and resource elements (Resource Elements, RE). For example, there is at least one Nr*Nt channel matrix on a physical resource block (Physical Resource Block).
  • the second communication node sends reference signals for channel measurement in K time slots
  • the first communication node receives the reference signals for channel measurement sent in K time slots, and obtains the reference signals respectively based on the received reference signals of K time slots.
  • Channel information corresponding to the time slot thereby obtaining K channel information.
  • the K sets of reference signals are transmitted in no more than K time slots. For example, some time slots transmit more than one set of reference signals on different frequency domain resources.
  • the K pieces of channel information may be channel information before the reference time slot.
  • the reference time slot may include at least one of the following: a time slot agreed between the first communication node and the second communication node, a current time slot, a time slot indicated by the second communication node, the A time slot obtained by adding a fixed offset to a time slot indicated by the second communication node or a time slot obtained by adding a fixed offset to the time slot indicated by the first communication node receiving signaling from the second communication node.
  • M is a positive integer, and M is greater than or equal to 1.
  • the M pieces of channel state information are reference time slots and channel state information after the reference time slots.
  • the channel state information may include at least one of the following: channel state information-reference signal resource indicator (CSI-RS Resource Indicator, CRI), synchronization signal block resource indicator (Synchronization Signals Block Resource Indicator, SSBRI), reference signal received power (Reference Signal Received Power (RSRP), Differential RSRP (Differential RSRP), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Layer Indicator (LI), Rank Indicator , RI), Level 1 Signal to Interference plus Noise Ratio (L1-SINR), Differential L1-SINR (Differential L1-SINR), precoding information, etc.
  • CSI-RS Resource Indicator CRI
  • CRI channel state information-reference signal resource indicator
  • SSBRI Synchron Signal Received Power
  • RSRP Reference Signal Received Power
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • LI Layer Indicator
  • the precoding matrix indication is one type of precoding information, that is, the precoding information is implemented based on the codebook.
  • the precoding information also includes methods based on non-codebook implementation, for example, the second type of precoding information.
  • the CSI including the first type of precoding information is called the Type 1 CSI.
  • CSI including the second type of precoding information is called second type CSI.
  • the first communication node and the second communication node can transmit channel state information matching the channel through the first type of precoding information.
  • the first type of precoding information is based on the traditional channel characteristic matrix or the quantization of the characteristic matrix.
  • Precoding information composed of values.
  • the codebook here includes L codewords, and its main idea is that the first communication node and the second communication node save L codewords in advance according to a prescribed formula, table, or dictionary.
  • the codeword is a vector.
  • the codeword is a matrix, and the matrix includes r columns, each column is also a vector. Each column of the matrix is mutually orthogonal.
  • the vector that constitutes the codeword is a 0-1 vector, where only one value of the entire vector is 1 and the other values are zero.
  • the vector making up the codeword is a DFT vector (Discrete Fourier Transform, DFT).
  • the vectors constituting the codeword are two or more DFT vectors obtained through a tensor product (kronecker product).
  • the vectors that constitute the codeword are two or more DFT vectors that are connected by multiplying by different phase rotations.
  • the vectors constituting the codeword are two or more DFT vectors obtained by tensor product (kronecker product) and multiplication by phase rotation.
  • the first communication node or the second communication node transmits data or signals by searching for L codewords and finding the codeword that best matches the channel as the optimal codeword.
  • the codewords matching the channel here include but are not limited to at least one of the following: the distance between the codeword and the channel is the smallest, the correlation between the codeword and the channel is the largest, the distance between the codeword and the optimal right singular vector or matrix of the channel is the smallest, The optimal right singular vector or matrix correlation between the codeword and the channel is the largest, the calculated signal-to-noise ratio between the codeword and the channel is the largest, etc.
  • L is an integer greater than 1, which is generally greater than the number of transmitting antennas.
  • the first communication node and the second communication node may also transmit channel state information matching the channel through the second type of precoding information.
  • the second type of precoding information obtains channel state information based on AI.
  • the first communication node and the second communication node obtain channel state information through an encoder of an autoencoder, and the autoencoder includes an encoder and a decoder.
  • the encoder is deployed at a first communication node (such as a terminal), and the decoder is deployed at a second communication node (such as a base station).
  • the first communication node compresses the obtained channel H through the encoder to obtain the compressed H1, and quantizes the compressed channel H1 and feeds it back to the second communication node.
  • the second communication node receives the quantized H1, dequantizes it and inputs it for decoding.
  • the decoder decompresses it and restores H.
  • H includes K0 elements.
  • the first communication node selects K elements from H as H1 and provides feedback on the quantization of H1.
  • the second communication node receives the K quantized elements and dequantizes them, and then The quantized K elements are input to the AI module, and the AI module outputs K0 elements as the recovery of H, thereby obtaining the precoding matrix of H.
  • K and K0 are integers greater than 1, and K is less than K0.
  • through the compressor H1 or the K elements selected from H can be called the second type of precoding information.
  • the quantized H1 can also be called the second type of precoding information.
  • the second type of precoding information may also be a precoding matrix generated by other non-AI methods that is different from the first type of precoding information.
  • the second type of precoding information may also be a precoding matrix other than the first type of precoding information.
  • the first communication node can determine M pieces of channel information based on the K pieces of channel information, and quantize the M pieces of channel information to obtain M pieces of channel state information.
  • K pieces of channel information can be processed through AI mode to obtain M pieces of channel information.
  • K pieces of channel information are sequentially encoded and then input into the first AI network, and the M pieces of channel information are determined through the first AI network;
  • K channel information can also be filtered or averaged to obtain M channel information through linear mapping;
  • K channel information can also be processed into M channel information through nonlinear mapping.
  • M pieces of channel information can also be encoded and then input into the corresponding second AI network, and M pieces of channel state information corresponding to the M pieces of channel information can be output through the second AI network.
  • M pieces of channel state information can also be obtained directly based on K pieces of channel information.
  • determining M channel state information based on K channel information includes: determining one channel state information based on at least one channel information among the K channel information, wherein the channel state information is the first type of precoding information.
  • one channel state information may be determined based on the channel information corresponding to the reference signal with the largest transmission time slot among the K sets of reference signals.
  • the first communication node does not expect to receive less than N sets of reference signals.
  • determining M pieces of channel state information based on K pieces of channel information includes: when K is less than or equal to the first threshold X, determining one piece of channel state information based on at least one channel information among the K pieces of channel information, Wherein, the channel state information is the first type of precoding information, and X is an integer greater than 1 and less than N.
  • determining M channel state information based on K channel information includes: when K is less than or equal to the second threshold Y, the first communication node determines 0 channel state information or determines the channel state information. is the empty set, where Y is an integer greater than 1 and less than N.
  • determining M channel state information based on K channel information includes: obtaining N channel information based on K channel information; determining M1 channel state information based on the first acquisition method and N channel information, wherein, M1 is a positive integer less than or equal to M.
  • M1 is a positive integer less than or equal to M.
  • K pieces of channel information are zero-padded to obtain N pieces of channel information.
  • N channel information when K is greater than the first threshold X, obtain N channel information; M1 channel status information is determined based on the N channel information.
  • determining M pieces of channel state information based on K pieces of channel information includes: determining M2 pieces of channel state information based on the second acquisition method and K pieces of channel information, wherein M2 is a positive integer less than or equal to M. .
  • M2 is a positive integer less than or equal to M.
  • M2 pieces of channel state information are determined according to the second acquisition method and K pieces of channel information, where Z is an integer greater than 1 and less than N.
  • the first and second of the first acquisition method and the second acquisition method are only used to distinguish the method of acquiring channel state information.
  • the first acquisition method is channel state information using N pieces of channel information as input. method of obtaining.
  • the second acquisition method is a channel state information acquisition method that takes K pieces of channel information as input.
  • the first acquisition method is a method originally determined by the first communication node or the second communication node to obtain channel state information based on channel information
  • the second acquisition method is a newly determined method of obtaining channel state information by the first communication node or the second communication node. channel status information.
  • the threshold is determined according to the second communication node and is indicated to the first threshold through high-level signaling or physical layer signaling.
  • Communication node the first communication node determines the threshold by receiving the high-layer signaling or physical layer signaling.
  • the threshold is determined in a manner agreed upon by the first communication node and the second communication node.
  • the threshold is determined by the second communication node according to its own capabilities.
  • the obtained channel state information and/or the time slot corresponding to the feedback obtained channel state information may also be fed back to the second communication node.
  • a time slot can be a slot or a mini slot.
  • a slot or sub-slot includes at least one symbol.
  • the symbol here refers to the time unit in a subframe or frame or time slot, for example, it can be an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol, single carrier frequency division multiplexing multiple access (Single- Carrier Frequency Division Multiple Access (SC-FDMA) symbols or Orthogonal Frequency Division Multiple Access (OFDMA) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single- Carrier Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the first communication node and the second communication node need to define a CSI report (CSI report or CSI report congfig), where the CSI report defines at least one of the following parameters: time-frequency resources for feedback CSI, CSI It includes information such as report quality (reportQuantity), time domain category of CSI feedback (reportConfigType), channel measurement resources, interference measurement resources, and measured bandwidth size.
  • CSI report defines at least one of the following parameters: time-frequency resources for feedback CSI, CSI It includes information such as report quality (reportQuantity), time domain category of CSI feedback (reportConfigType), channel measurement resources, interference measurement resources, and measured bandwidth size.
  • the CSI report can be transmitted on the uplink transmission resources, and the uplink transmission resources can include a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH); at the same time, the CSI report It also includes time domain characteristics, including periodic CSI report (periodic CSI report, P-CSI), aperiodic CSI report (aperiodic CSI report, AP-CSI), semi-persistent CSI report (semi-persistent CSI report, SP- CSI).
  • periodic CSI report periodic CSI report
  • P-CSI periodic CSI report
  • aperiodic CSI report aperiodic CSI report
  • AP-CSI aperiodic CSI report
  • SP-CSI semi-persistent CSI report
  • P-CSI transmits a relatively small number of bits and can be transmitted on PUCCH
  • A-CSI transmits a larger number of bits and is generally transmitted on PUSCH
  • SP-CSI can be transmitted on PUSCH or Transmitted based on PUCCH.
  • P-CSI based on PUCCH transmission is generally configured using high-level signaling (Radio Resource Control, RRC), and SP-CSI based on PUCCH transmission is also configured or activated using high-level signaling (RRC and/or MAC CE).
  • DCI Downlink control information
  • PDCCH Physical downlink control channel
  • the above-mentioned channel state information and the time slot corresponding to the channel state information may be transmitted in uplink transmission resources.
  • the above channel state information may be carried and transmitted on at least one aperiodic PUSCH.
  • the above channel state information may be carried and transmitted on at least one semi-persistent PUSCH.
  • the above channel state information may be carried and transmitted on the PUCCH of at least one cycle.
  • the second communication node configures M CSI reports that need to be fed back to the first communication node through high-level signaling and/or physical layer signaling, and each CSI report has an index value (identity, ID). , called CSI reportID, the first communication node can select M C CSI reports among the M CSI reports according to its own computing power or processing power and the requirements of the second communication node. And according to the uplink feedback resources, at least one CSI report among the M C CSI reports is fed back, where M and M C are positive integers, and M C ⁇ M. In one example, M C CSI reports need to be fed back, but the feedback resources of at least two of the M C reports conflict.
  • the conflicting feedback resources of the two reports refer to the feedback resources used to feed back the two reports.
  • At least one symbol in the transmission resources (such as PUCCH or PUSCH) corresponding to the two reports is the same and/or at least one subcarrier is the same.
  • the first communication node needs to feed back multiple CSI reports, wherein transmission resources corresponding to at least L CSI reports among the multiple CSI reports conflict.
  • at least one of the L CSI reports with conflicts includes a report of the second type of precoding information, where L is a positive integer.
  • the priority value (PV) of L conflicting CSI reports can be calculated according to the priority calculation formula, and sorted according to the priority values from small to large, and at least one CSI report with a small priority is selected for uplink transmission. transferred in resources.
  • the high-level signaling includes but is not limited to Radio Resource Control (Radio Resource Control, RRC), Media Control Control Element (Media Access Control control element, MAC CE), the first communication node and the third communication node.
  • RRC Radio Resource Control
  • MAC CE Media Access Control control element
  • Physical layer signaling can also be transmitted between two communication nodes, for example, physical layer signaling is transmitted on the PDCCH or physical layer signaling is transmitted on the PUCCH.
  • the indicator of various parameters may also be called an index or an identifier (Identifier, ID), which are completely equivalent concepts.
  • the wireless system resource identifier may include Including but not limited to one of the following: a reference signal resource, reference signal resource group, reference signal resource configuration, channel status information report, CSI report set, terminal, base station, panel, neural network, sub-neural network, neural network layer, etc. index of.
  • the second communication node may indicate the identity of one or a group of resources to the first communication node through various high-layer signaling or physical layer signaling.
  • Figure 4 is another schematic flowchart of a channel state information processing method provided by an embodiment of the present application. This method can be applied to the second communication node, as shown in Figure 4, the method can include:
  • the K sets of reference signals are used by the first communication node to obtain K channel information and determine M channel state information based on the K channel information.
  • K, N, and M are positive integers, and K is less than N, and M is greater than or equal to 1.
  • a set of reference signals includes one of the following: a reference signal resource, a group of reference signal resources, a reference signal resource set, and a reference signal resource corresponding to a reference signal resource configuration.
  • the N sets of reference signal configuration information have the same quasi-co-located parameters.
  • the K pieces of channel information are channel information before the reference time slot, and/or the M pieces of channel state information are the reference time slot and channel state information after the reference time slot.
  • the K sets of reference signals are sent according to the N sets of reference signal configuration information.
  • the N sets of reference signal configuration information correspond to N sets of reference signals, and the K sets of reference signals are part of the N sets of reference signals.
  • the channel state information fed back by the first communication node and/or the time slot corresponding to the channel state information may be received.
  • the second communication node transmits only K sets of reference signals among N sets of reference signals due to resource conflicts or other reasons, where K is less than N.
  • the first communication node receives K sets of reference signals corresponding to N sets of reference signal configuration information and finds that the number of received reference signal sets is less than the expected number of sets. In this case, the first communication node can determine whether it is It has the ability to obtain M channel status information based on K channel information. If you do not have this ability power, then one channel state information can be determined based on at least one channel information among the K channel information.
  • the channel state information is the first type of precoding information, and the first type of precoding information may be information obtained by quantizing channel information in a codebook manner.
  • the first communication node may select at least one channel information among the K pieces of channel information, and obtain a channel state information corresponding to the at least one channel information in a predetermined manner.
  • the predetermined method may be a codebook-based method.
  • the above-mentioned predetermined method may be a method agreed between the first communication node and the second communication node, or may be a method determined by the first communication node based on the received signaling information, or it may be a method of the first communication node.
  • the node itself determines the method, and tells the second communication node the method it determines by feeding back the corresponding signaling information.
  • the above X is an integer greater than 1 and less than N.
  • the first communication node can based on slot n-6, slot n-4.
  • the reference signal in -4 determines the channel information of the corresponding time slot, processes the two obtained channel information into one channel information, and then quantizes the obtained one channel information through the preset codebook to obtain a channel state information , and feedback the channel status information.
  • the first communication node may determine a channel state information based on the channel information corresponding to the reference signal with the largest transmission time slot among the K sets of reference signals. For example, assuming that the time slots corresponding to the K sets of reference signals received by the first communication node are slot n-8, slot n-6, and slot n-4, the first communication node can based on the reference in slot n-4 The signal determines the channel information of the time slot, and quantizes the channel information of slot n-4 through the preset codebook, thereby obtaining a channel state information, and feeding back the channel state information.
  • the first communication node determines one channel state information based on at least one channel information among the K pieces of channel information. Therefore, , the first communication node can select one of the M transmission resources to feedback the obtained channel status information, and the remaining M-1 transmission resources do not feedback the channel status information, that is, the remaining M-1 transmission resources Resources can be used to transmit data or other signaling or signals.
  • the first communication node when the first communication node does not have the ability to obtain M channel state information based on K channel information, the first communication node can directly fall back to the traditional codebook method and select from the K channel information. At least one piece of channel information is used to determine a channel state information, so that the first communication node can effectively obtain the channel state when the number of received reference signal sets is less than the expected number of reference signal sets. information. Moreover, a channel state information is determined based on the channel information corresponding to the reference signal with the largest transmission time slot among the K sets of reference signals, which can better reflect the reference time slot and the channel state after the reference time slot, improving the accuracy of the channel state information.
  • the second communication node transmits only K sets of reference signals among N sets of reference signals due to resource conflicts or other reasons, where K is less than N.
  • the first communication node receives K sets of reference signals corresponding to N sets of reference signal configuration information and finds that the number of received reference signal sets is less than the expected number of sets. In this case, the first communication node can determine whether it is It has the ability to obtain M channel status information based on K channel information. If it has this capability, in one embodiment, the first communication node can perform a zero-padding operation on K channel information to obtain N channel information, and determine M1 channel state information based on the first acquisition method and the obtained N channel information. , wherein M1 is less than or equal to M.
  • the first communication node can determine which K channel information among the N channel information it has received based on the time slots of the reference signals corresponding to the K channel information, and fill the zero matrix for the channel information corresponding to the reference signal that has not been received, Therefore, the K pieces of channel information are processed into N pieces of channel information, and the N pieces of channel information are processed based on the first acquisition method, thereby determining M1 pieces of channel state information.
  • the zero matrix is a matrix of Nr*Nt dimensions, or a matrix of Nr*Nt*2 dimensions, where Nr, Nt are the number of antennas of the first communication node and the second communication node, and 2 is the number of channels.
  • the first acquisition method may be the original AI network.
  • the original AI network needs to input N pieces of channel information before it can output M pieces of channel status information. Therefore, if you continue to use the original AI network, you need to process K channel information into N channel information before you can continue to use the original AI network. In this embodiment, you can perform a zero-padding operation on the K channel information. , thereby obtaining N channel information.
  • determining whether M channel state information is less than M channel state information based on N channel information is also related to the capability of the first communication node.
  • the first communication node may directly determine M2 pieces of channel state information based on the second acquisition method and K pieces of channel information, where M2 is less than or equal to M.
  • the second acquisition method may be a new AI network, that is, the first communication node may search for a new AI network, and directly process K channel information into M2 channel state information through the new AI network.
  • the AI network is just a way to determine M1 channel state information from N channel information.
  • the AI network can be replaced with a processing module or other implementation methods.
  • the first communication node can process the K channel information into the desired N channel information, and then determine the M1 channel status information based on the first acquisition method and the N channel information. It can also directly process the K channel information based on the second acquisition method. K channel information is processed to obtain M2 channel status information. select Which processing method to choose can be based on the capabilities supported by the first communication node. For example, the first communication node only supports the first acquisition method, then the processing can be performed according to the first acquisition method. If the first communication node supports both methods, , you can choose any method for processing.
  • the first communication node may also determine whether K is greater than the first threshold X. If K is greater than the first threshold The information zero-filling operation obtains N pieces of channel information, and determines M1 channel status information based on the obtained N pieces of channel information. M2 channel status information may also be determined based on the second acquisition method and K pieces of channel information. In the case where K is less than or equal to the first threshold The communication node falls back to the traditional codebook method and selects at least one channel information from K channel information to determine a channel state information, so that the first communication node can receive less than the expected number of reference signal sets when the number of reference signal sets is to obtain more accurate channel status information.
  • the first communication node determines M2 channel state information based on the second acquisition method and K channel information, that is, when the amount of acquired historical channel information is large,
  • the second acquisition method is used to predict the channel state information, which improves the accuracy of the channel state information.
  • the first communication node when K is less than or equal to the second threshold Y, 0 channel state information is determined or the channel state information is determined to be an empty set, where Y is an integer greater than 1 and less than N. That is to say, when the number of received reference signal sets is far less than the expected number of sets, the first communication node does not perform the operation of determining M channel state information through K channel information.
  • the first communication node does not expect to receive less than N sets of reference signals.
  • the first communication node can perform a zero-padding operation on K channel information to obtain N channel information, and determine M1 channel status information based on the first acquisition method and the N channel information, or can also determine the second acquisition method. , and determine M2 channel state information based on the second acquisition method and K channel information, so that the first communication node can effectively obtain channel state information when the original feedback of determining M channel state information based on N channel information fails. . Moreover, by setting corresponding thresholds and selecting different channel state information processing methods, the determined channel state information is made more accurate.
  • Figure 5 is a schematic structural diagram of a channel state information processing device provided by an embodiment of the present application.
  • the device is integrated in the first communication node.
  • the method may include: a receiving module 501, an obtaining module 502 and a determining module 503.
  • the receiving module 501 is used to receive N sets of reference signal configuration information and K sets of reference signals; the acquisition module 502 is used to obtain K channel information according to the K sets of reference signals; the determination module 503 is used to determine M channel status information according to the K channel information; wherein K, N, M are positive integers, and K is less than N , M is greater than or equal to 1.
  • the receiving module 501 may include: a first receiving unit and a second receiving unit; the first receiving unit is used to receive N sets of reference signal configuration information; the second receiving unit is used to receive K set of reference signals.
  • a set of reference signals includes one of the following: a reference signal resource, a group of reference signal resources, a reference signal resource set, and a reference signal resource corresponding to a reference signal resource configuration.
  • the N sets of reference signal configuration information have the same quasi-colocation parameters.
  • the K pieces of channel information are channel information before the reference time slot, and/or the M pieces of channel state information are the reference time slot and the channel state information after the reference time slot.
  • the receiving module 501 is configured to receive the K sets of reference signals according to the N sets of reference signal configuration information. That is, the second receiving unit is configured to receive the K sets of reference signals according to the N sets of reference signal configuration information.
  • the N sets of reference signal configuration information correspond to N sets of reference signals
  • the K sets of reference signals are part of the N sets of reference signals.
  • the determining module 503 is configured to determine a channel state information based on at least one channel information among the K channel information, wherein the channel state information is the first type of precoding information. .
  • the determining module 503 is configured to determine a channel state information based on the channel information corresponding to the reference signal with the largest transmission time slot among the K sets of reference signals.
  • the first communication node does not expect to receive less than N sets of reference signals.
  • the determination module 503 is configured to determine a piece of channel state information based on at least one channel information among the K pieces of channel information when the K is less than or equal to the first threshold X. , wherein the channel state information is the first type of precoding information, and the X is an integer greater than 1 and less than N.
  • the determination module 503 is configured to determine 0 channel state information or determine the channel state information by the first communication node when the K is less than or equal to the second threshold Y.
  • the track status information is an empty set, where Y is an integer greater than 1 and less than N.
  • the determination module 503 is configured to obtain N channel information according to the K channel information; determine M1 channel status information according to the first acquisition method and the N channel information, wherein , the M1 is less than or equal to M.
  • the determining module 503 is configured to perform a zero-filling operation on the K channel information to obtain N channel information.
  • the K is greater than the first threshold X, and the X is an integer greater than 1 and less than N.
  • the determining module 503 is configured to determine M2 channel state information according to the second acquisition method and the K channel information, where the M2 is less than or equal to M.
  • the K is greater than the third threshold Z, and the Z is an integer greater than 1 and less than N.
  • the device further includes: a feedback module.
  • a feedback module configured to feed back the channel state information and/or feed back the time slot corresponding to the channel state information.
  • Figure 6 is another schematic structural diagram of a channel state information processing device provided by an embodiment of the present application. As shown in Figure 6, the device may include: a sending module 601.
  • the sending module 601 is used to send N sets of reference signal configuration information; the sending module 601 is also used to send K sets of reference signals; wherein the K sets of reference signals are used by the first communication node to obtain K channel information, and according to the K Channel information determines M channel status information, K, N, and M are positive integers, and K is less than N, and M is greater than or equal to 1.
  • the sending module 601 may include: a first sending unit and a second sending unit; the first sending unit is used to send N sets of reference signal configuration information; the second sending unit is used to send K set of reference signals.
  • a set of reference signals includes one of the following: a reference signal resource, a group of reference signal resources, a reference signal resource set, and a reference signal resource corresponding to a reference signal resource configuration.
  • the N sets of reference signal configuration information have the same quasi-co-located parameters.
  • the K pieces of channel information are channel information before the reference time slot, and/or the M pieces of channel state information are the reference time slot and channel state information after the reference time slot.
  • the sending module 601 is configured to send the K sets of reference signals according to the N sets of reference signal configuration information. That is, the second sending unit is configured to send the K sets of reference signals according to the N sets of reference signal configuration information.
  • the N sets of reference signal configuration information correspond to N sets of reference signals
  • the K sets of reference signals No. is part of the N sets of reference signals.
  • a receiving module is also included.
  • the receiving module is configured to receive the channel state information and/or receive the time slot corresponding to the channel state information.
  • a communication node in one embodiment, is provided, and its internal structure diagram can be shown in Figure 7.
  • the communication node includes a processor, memory, network interface and database connected through a system bus. Wherein, the processor of the communication node is used to provide computing and control capabilities.
  • the memory of the communication node includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems, computer programs and databases. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the database of the communication node is used to store data generated during the processing of channel status information.
  • the network interface of the communication node is used to communicate with external terminals through a network connection.
  • the computer program implements a channel state information processing method when executed by a processor.
  • FIG. 7 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the communication nodes to which the solution of the present application is applied.
  • the communication nodes may include The figures show more or fewer parts, or some parts combined, or with different parts arrangements.
  • a first communication node In one embodiment, a first communication node is provided.
  • the first communication node includes a memory and a processor.
  • a computer program is stored in the memory. When the processor executes the computer program, the following is implemented:
  • K, N, M are positive integers, and K is less than N, and M is greater than or equal to 1.
  • a second communication node in one embodiment, includes a memory and a processor.
  • a computer program is stored in the memory. When the processor executes the computer program, the following is implemented:
  • a storage medium stores a computer program, and when the computer program is executed by a processor, the following is achieved:
  • K, N, M are positive integers, and K is less than N, and M is greater than or equal to 1.
  • a storage medium storing a computer program
  • the computer program when executed by the processor achieves the following:
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to: an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof.
  • Computer-readable storage media include (non-exhaustive list): electrical connection with one or more wires, portable computer disk, hard drive, random access memory (RAM), read-only memory (Read-Only Memory) , ROM), electrically erasable, programmable Read-Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical memory components, magnetic storage devices, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, the data signal carrying computer-readable program code. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium can be transmitted using any appropriate medium, including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing operations of the present disclosure may be written in one or more programming languages, or a combination of programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, Ruby, Go), and also includes conventional procedural programming languages (such as the "C" language or similar programming languages).
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or may be connected to an external computer, such as Use an Internet service provider to network connection).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuitry, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source code or object code.
  • ISA Instruction Set Architecture
  • Any block diagram of a logic flow in the figures of this application may represent program operations, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program operations and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital versatile disc DVD or CD), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信道状态信息处理方法、装置、通信节点及存储介质。该信道状态信息处理方法包括:接收N套参考信号配置信息和K套参考信号;根据所述K套参考信号获取K个信道信息;根据所述K个信道信息确定M个信道状态信息;其中,K,N,M均为正整数,且K小于N,M大于或等于1。

Description

信道状态信息处理方法、装置、通信节点及存储介质 技术领域
本申请涉及通信技术领域,例如涉及信道状态信息处理方法、装置、通信节点及存储介质。
背景技术
多天线技术可以提高无线通信系统的性能,因此,多天线技术被广泛应用于各种无线通信系统。要获得多天线技术的性能,网络侧需要获取比较准确的信道状态信息(Channel State Information,CSI)。相关技术中,可以通过人工智能(Artificial Intelligence,AI)来高效反馈CSI。例如,基于参考时隙之前的N个信道信息,用AI的方式获取参考时隙之后的M个信道状态信息。但是,在有些场景下,终端侧并不能有效获得参考时隙之前的N个信道信息,仅获得了K个信道信息,其中,K小于N。
发明内容
本申请实施例提供一种信道状态信息处理方法、装置、通信节点及存储介质。
第一方面,本申请实施例提供一种信道状态信息处理方法,应用于第一通信节点,所述方法包括:
接收N套参考信号配置信息和K套参考信号;根据所述K套参考信号获取K个信道信息;根据所述K个信道信息确定M个信道状态信息;其中,K,N,和M均为正整数,且K小于N,M大于或等于1。
第二方面,本申请实施例提供一种信道状态信息处理方法,应用于第二通信节点,所述方法包括:
发送N套参考信号配置信息;发送K套参考信号;其中,所述K套参考信号用于第一通信节点获取K个信道信息,并根据所述K个信道信息确定M个信道状态信息,K,N,和M均为正整数,且K小于N,M大于或等于1。
第三方面,本申请实施例提供一种信道状态信息处理装置,集成于第一通信节点,所述装置包括:
接收模块,用于接收N套参考信号配置信息和K套参考信号;获取模块,用于根据所述K套参考信号获取K个信道信息;确定模块,用于根据所述K个 信道信息确定M个信道状态信息;其中,K,N,和M均为正整数,且K小于N,M大于或等于1。
第四方面,本申请实施例提供一种信道状态信息处理装置,集成于第二通信节点,所述装置包括:
发送模块,用于发送N套参考信号配置信息;发送模块,还用于发送K套参考信号;其中,所述K套参考信号用于第一通信节点获取K个信道信息,并根据所述K个信道信息确定M个信道状态信息,K,N,和M均为正整数,且K小于N,M大于或等于1。
第五方面,本申请实施例提供一种通信节点,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现本申请实施例第一方面和第二方面提供的所述信道状态信息处理方法。
第六方面,本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例第一方面和第二方面提供的所述信道状态信息处理方法。
附图说明
图1为本申请实施例提供的无线通信系统的一种结构示意图;
图2为本申请实施例提供的信道状态信息处理过程的一种示意图;
图3为本申请实施例提供的信道状态信息处理方法的一种流程示意图;
图4为本申请实施例提供的信道状态信息处理方法的另一种流程示意图;
图5为本申请实施例提供的信道状态信息处理装置的一种结构示意图;
图6为本申请实施例提供的信道状态信息处理装置的另一种结构示意图;
图7为本申请实施例提供的通信节点的一种结构示意图。
具体实施方式
此处所描述的具体实施例仅仅用以解释本申请。下文中将结合附图对本申请的实施例进行说明。
本申请实施例提供的信道状态信息处理方法可以应用于各类无线通信系统中,例如长期演进(long term evolution,LTE)系统、第四代移动通信技术(4th-generation,4G)系统、第五代移动通信技术(5th-generation,5G)系统、LTE与5G混合架构系统、5G新无线电(New Radio,NR)系统、以及未来通信发展中出现的新的通信系统,如第六代移动通信技术(6th-generation,6G) 系统等。图1示出了一实施例提供的一种无线通信系统的组网示意图。如图1所示,该无线通信系统包括终端设备110、接入网设备120和核心网设备130。
终端设备110可以是一种具有无线收发功能的设备,可以部署在陆地上(如室内或室外、手持、穿戴或车载等);也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星等)。一些终端设备110的举例为:UE、手机、移动台、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)等可以联网的用户设备,或虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等,或物联网中的物联网节点,或车联网中的车载通信装置,或娱乐、游戏设备或系统,或全球定位系统设备等。本申请实施例对终端设备的形态不做限定,另外,终端设备110可以简称终端。
接入网设备120是终端设备110通过无线方式接入到该无线通信系统中的接入设备,可以是基站(base station)、长期演进增强(Long Term Evolution advanced,LTEA)中的演进型基站(evolved NodeB,eNB或eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的基站或gNB、未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。基站可以包括各种宏基站、微基站、家庭基站、无线拉远、路由器、WIFI设备或者主小区(primary cell)和协作小区(secondary cell)等各种网络侧设备、定位管理功能(location management function,LMF)设备。也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对接入网设备所采用的技术和设备形态不做限定,另外,接入网设备可以简称基站。
核心网设备130可以包括接入与移动性管理网元和会话管理网元。示例性地,终端设备110可以通过接入网设备120接入核心网,从而实现数据传输。
为了便于本领域技术人员的理解,以下先对通信系统中涉及的相关概念进行介绍:
在本申请实施例中,为了计算信道状态信息或者进行信道估计,移动性管理,定位等,需要第二通信节点(如基站)或者第一通信节点(如终端)发送参考信号(Reference Signal,RS),参考信号包括但不限于信道状态信息参考信号(Channel-State Information reference signal,CSI-RS),它包括零功率的 CSI-RS(Zero Power CSI-RS,ZP CSI-RS)和非零功率的CSI-RS(Non-Zero Power CSI-RS,NZP CSI-RS),信道状态信息干扰测量信号(Channel-State Information-Interference Measurement,CSI-IM),探测参考信号(Sounding reference signal,SRS),同步信号块(Synchronization Signals Block,SSB)、物理广播信道(Physical Broadcast Channel,PBCH)、同步信号块/物理广播信道(SSB/PBCH)。其中,NZP CSI-RS可以用来测量信道或者干扰;CSI-RS也可以用来做跟踪,因此CSI-RS也可以叫做跟踪参考信号(CSI-RS for Tracking,TRS);CSI-IM一般用来测量干扰,SRS用来进行信道估计或获取上行预编码。另外,用于传输参考信号的资源元素(Resource Element,RE)集合称为参考信号资源,比如,CSI-RS resource,SRS resource,CSI-IM resource,SSB resource。在本申请实施例中,SSB可以包括同步信号块和/或物理广播信道。
在本申请实施例中,传输参考信号的资源也可以称为参考信号资源,为了节省信令开销等,可能会把多个参考信号资源组合成一个集合(比如CSI-RS resource set,CSI-IM resource set,SRS resource set),一个参考信号资源集合包括至少一个参考信号资源,而多个参考信号资源集合都可以来自同一个参考信号资源设置(比如CSI-RS resource setting,SRS resource setting,CSI-IM resource setting,其中,CSI-RS resource setting可能和CSI-IM resource setting合并,都称为CSI-RS resource setting),通过参考信号资源设置来配置参考信号的参数信息。
在本申请实施例中,第二通信节点配置测量资源信息,测量资源信息用于获取信道状态信息。其中,测量资源信息包括CN个信道测量资源(Channel Measurement Resource,CMR)信息和CM个干扰测量资源(Interference Measurement Resource,IMR)信息,CN和CM为正整数。第二通信节点在一个报告配置(report config)或报告设置(reporting setting)中配置测量资源信息。其中CN个CMR信息用于终端进行信道测量,CM个IMR信息用于终端对所受到的干扰进行测量。
在本申请实施例中,两个天线端口被称为准共位置(quasi co-located,QCL)的意思是:如果一个天线端口上的符号所传输的信道的属性可以从另一个天线端口上的符号所传输的信道推断出来,则这两个天线端口被称为准共位置。一般来说,QCL的两个端口来自同一个基站或节点。这里说的信道属性包括但不限于:平均增益(average gain),延迟扩展(delay spread),多普勒扩展(Doppler spread),多普勒平移(Doppler shift),平均延迟参数(average delay parameters),空间用户接收参数(spatial UE-Rx parameters)等。所述的天线端口包括但不限于解调参考信号(Demodulation Reference Signal,DMRS)导频端口或者索引,SRS端口或者索引,SS block端口或者索引。QCL关系包括CSI-RS资源配置信息和同步信号块索引(synchronization signal block index)之一。其中,同步信 号块索引包括主同步信号块索引和辅同步信号块索引。信道状态信息参考信号资源配置信息至少包括以下信息之一:CSI-RS的起始符号索引,结束符号索引,图样,密度,导频的循环移位序列,正交码(Orthogonal Cover Code,OCC)等信息。
准共位置(QCL)可以包括QCL type A、QCL type B、QCL type C和QCL Type D。两个端口满足准共位置关系表示一个端口的大尺度信息可以通过另外一个端口的大尺度信息推导出来,大尺度信息包括但不限于:多普勒平移(Doppler shift)、多普勒扩展(Doppler spread)、平均延迟(average delay)、延迟扩展(delay spread)、空间接收参数(Spatial Rx parameter)。其中,一种QCL Type的分类如下:
-'QCL-TypeA':{Doppler shift,Doppler spread,average delay,delay spread}
-'QCL-TypeB':{Doppler shift,Doppler spread}
-'QCL-TypeC':{Doppler shift,average delay}
-'QCL-TypeD':{Spatial Rx parameter}
为了更好地传输数据或者信号,第二通信节点需要获取信道状态信息,如图2所示,提供了一种获取信道状态信息的方式,例如,根据参考时隙n以前的N个时隙(如slot n-8,slot n-6,slot n-4,slot n-2)的信道信息预测参考时隙n及参考时隙n之后的M个时隙(如slot n,slot n+2,slot n+4)的信道状态信息。但是,在一些场景下,第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,导致终端不能有效获得参考时隙n之前的N个信道信息,仅获得了K个信道信息,此种情况会导致原来的根据N个信道信息确定M个信道状态信息的反馈的失效,为此,本申请实施例提供的技术方案旨在接收的参考信号套数少于期望的参考信号套数的情况下解决信道状态信息获取的技术问题。
图3为本申请实施例提供的信道状态信息处理方法的一种流程示意图。该方法应用于第一通信节点,在本实施例中,第一通信节点可以为终端,第二通信节点可以为基站,如图3所示,该方法可以包括:
S301、接收N套参考信号配置信息和K套参考信号。
第二通信节点传输了N套参考信号配置信息,由于第二通信节点配置参考信号资源之间有冲突或者其它原因,导致第二通信节点仅传输了K套参考信号,其中,K,N为正整数,且K小于N。因此,第一通信节点基于接收到的N套参考配置信息仅可以接收对应的K套参考信号。N套参考信号配置信息对应N套参考信号,所述K套参考信号可以为N套参考信号的一部分。例如,K套参考信号可以是N套参考信号中的前K套参考信号、后K套参考信号、中间连续 的K套参考信号或者任意非连续的K套参考信号。
在一个实施例中,参考信号配置信息包括资源类别(resourceType),在此资源类别定义了参考信号的时域传输特性,可选地,资源类别可以包括以下之一:周期的(periodic)参考信号,非周期的(aperiodic)参考信号,半持续的(semiPersistent)参考信号。
在一个实施例中,N套参考信号配置信息可以包括K1个周期的参考信号,K2个非周期的参考信号,K3个半持续的参考信号。其中,K1,K2,K3为非负整数,且K1+K2+K3=N。在一个实施例中,N套参考信号配置信息包括的资源类别可以是相同的,即,所述K1,K2,K3中有两个取值为零,比如N套参考信号配置信息可以包括都是周期的参考信号或都是非周期的参考信号或都是半持续的参考信号。在一个实施例中,N套参考信号配置信息中至少包括两种参考信号的资源类别,比如所述K1,K2,K3中至少两个取值大于零。示例性的,第二通信节点需要配置和传输4套参考信号,其中,这4套参考信号可以是周期的,半持续的,非周期中任意一种。例如,在一种配置下,有两套周期的参考信号,一套非周期的参考信号,一套半持续的参考信号;在另一种配置下,有三套半持续的参考信号,一套非周期的参考信号;在又一种配置下,有两套周期的参考信号,两套非周期的参考信号;在又一种配置下,有两套半持续的参考信号,两套周期的参考信号等等。
在一个实施例中,N套参考信号配置信息有相同的准共位置参数。
在一个实施例中,一套参考信号可以包括以下之一:一个参考信号资源、一组参考信号资源、一个参考信号资源集合以及一个参考信号资源配置对应的参考信号资源。
示例性的,一套参考信号可以是一个参考信号资源,比如一个信道状态信息参考信号(Channel-State Information reference signal,CSI-RS)resource,或一个探测参考信号(Sounding Reference Signal,SRS)resource,或者一个同步信号块(Synchronization Signals Block,SSB)resource。在一个实施例中,一套参考信号可以是一组参考信号资源,比如一组CSI-RS resource,或一组SRS resource,或者一组SSB resource。在一个实施例中,一套参考信号可以是一个参考信号资源集合,比如一个CSI-RS resource set,或一个SRS resource set,或者一个SSB resource set。在一个实施例中,一套参考信号可以是一个参考信号资源配置对应的参考信号资源,比如一个CSI-RS resource config/setting,或一个SRS resource config/setting,或者一个SSB resource config/setting。
示例性的,一套参考信号中的参考信号还可以是除CSI-RS、SSB、SRS外的其它概念的参考信号,可能在不同的系统中有不同的名字,即本申请实施例 中的参考信号也可以是用于获取信道状态信息、信道信息、移动性管理,定位管理的其它参考信号。可选地,参考信号也叫导频等。在一个实施例中,一套参考信号可以包括一套用于信道测量的参考信号和一套用于干扰测量的参考信号。
S302、根据所述K套参考信号获取K个信道信息。
信道信息为根据参考信号(例如,CSI-RS)获得的用于描述第一通信节点和第二通信节点之间信道环境的信息,比如时域信道矩阵、频域信道矩阵。在一个实施例中,信道信息是一个复数矩阵,与发送天线数目Nt、接收天线数目Nr以及资源元素(Resource Element,RE)有关。例如,在一个物理资源块(Physical Resource Block)上至少有一个Nr*Nt的信道矩阵。
第二通信节点在K个时隙发送用于信道测量的参考信号,第一通信节点接收K个时隙发送的用于信道测量的参考信号,并根据接收的K个时隙的参考信号分别获得对应时隙的信道信息,从而得到K个信道信息。在一个实施例中,所述K套参考信号在不多于K个时隙传输。例如,有的时隙在不同的频域资源上传输了多于一套的参考信号。
可选地,K个信道信息可以为参考时隙之前的信道信息。在一个实施例中,参考时隙可以包括以下至少之一:第一通信节点和第二通信节点之间约定的一个时隙、一个当前的时隙、第二通信节点指示的一个时隙、第二通信节点指示的一个时隙加一个固定偏置得到的时隙或者第一通信节点收到第二通信节点指示信令的时隙加一个固定的偏置得到的时隙。
S303、根据所述K个信道信息确定M个信道状态信息。
M为正整数,且M大于或等于1。在一个实施例中,所述M个信道状态信息为参考时隙以及参考时隙之后的信道状态信息。
信道状态信息可以包括以下至少之一:信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,CRI)、同步信号块资源指示(Synchronization Signals Block Resource Indicator,SSBRI)、参考信号接收功率(Reference Signal Received Power,RSRP)、差分RSRP(Differential RSRP)、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、层指示(Layer Indicator,LI)、秩指示(Rank Indicator,RI)、级1的信干噪比(Level 1 Signal to Interference plus Noise Ratio,L1-SINR)、差分L1-SINR(Differential L1-SINR)、预编码信息等。这里预编码矩阵指示是预编码信息中的一种,即基于码本实现预编码信息的情况。预编码信息还包括基于非码本实现的方式,例如,第二类预编码信息。在一个示例中,包括第一类预编码信息的CSI称为第 一类CSI。在一个示例中,包括第二类预编码信息的CSI称为第二类CSI。
在一个实施例中,第一通信节点和第二通信节点可以通过第一类预编码信息传输与信道匹配的信道状态信息,第一类预编码信息是基于传统的信道特征矩阵或者特征矩阵的量化值构成的预编码信息。例如,基于码本的方法,如LTE的中的N天线的码本,这里N=2,4,8,12,16,2432,新空口(New Radio,NR)中type I码本,type II码本,type II port selection码本,enhanced type II码本,enhanced type II selection码本,Further enhanced type II selection码本。这里的码本包括L个码字,它的主要思想是第一通信节点和第二通信节点预先根据规定的公式或者表格或者字典的方式保存L个码字。在一个示例中,码字是一个向量。在一个示例中,码字是矩阵,矩阵包括r列,每列也是一个向量。矩阵的每列是相互正交的。在一个示例中,构成码字的向量是一个0-1向量,其中整个向量只有一个值为1,其它的值为零。在一个示例中,构成码字的向量是一个DFT矢量(离散傅里叶变换,Discrete Fourier Transform,DFT)。在一个示例中,构成码字的向量是两个或者两个以上的DFT矢量通过张量积(kronecker积)获得。在一个示例中,构成码字的向量是两个或者两个以上的DFT矢量通过乘以不同的相位旋转连接得到。在一个示例中,构成码字的向量是两个或者两个以上的DFT矢量通过张量积(kronecker积)以及乘以相位旋转获得。第一通信节点或者第二通信节点通过查找L个码字,找到跟信道最匹配的码字作为最优码字来传输数据或者信号。这里跟信道匹配的码字包括但不限于以下至少之一:码字和信道的距离最小,码字和信道的相关性最大,码字和信道的最优的右奇异向量或者矩阵的距离最小,码字和信道的最优的右奇异向量或者矩阵相关性最大,码字和信道计算得到的信噪比最大等。其中,L为大于1的整数,一般来说大于发送天线数目。
在一个实施例中,第一通信节点和第二通信节点也可以通过第二类预编码信息传输与信道匹配的信道状态信息,第二类预编码信息是基于AI获得信道状态信息。在一个示例中,第一通信节点和第二通信节点通过自编码器的编码器获得的信道状态信息,自编码器包括一个编码器和一个解码器。其中,编码器部署在第一通信节点(如终端),解码器在部署第二通信节点(如基站)。第一通信节点通过编码器对获得的信道H进行压缩得到压缩后的H1,并将压缩后的信道H1量化反馈给第二通信节点,第二通信节点接收量化后的H1,去量化后输入解码器,解码器对其进行解压缩,从而恢复H。在一个示例中,H包括K0个元素,第一通信节点从H中选K个元素作为H1,对H1量化进行反馈,第二通信节点接收所述K个量化的元素并将它去量化,将去量化的K个元素输入AI模块,AI模块输出K0个元素作为对H的恢复,从而得到所述H的预编码矩阵。其中,K和K0为大于1的整数,且K小于K0。这里,通过压缩器的 H1或从H中选择的K个元素都可以称为第二类预编码信息。并且,为了简单起见,量化后的H1也可以称为第二类预编码信息。在一个示例中,第二类预编码信息也可以是通过其它非AI方式生成的与第一类预编码信息不同的预编码矩阵。在一个示例中,第二类预编码信息也可以是所述第一类预编码信息之外的预编码矩阵。
在得到K个信道信息之后,第一通信节点可以基于K个信道信息确定M个信道信息,并对M个信道信息进行量化,得到M个信道状态信息。示例性的,可以是通过AI方式对K个信道信息进行处理,得到M个信道信息,例如,将K个信道信息依次编码后输入第一AI网络,通过第一AI网络确定M个信道信息;也可以通过线性映射的方式,对K个信道信息做滤波或者平均得到M个信道信息;还可以通过非线性映射的方式将K个信道信息处理为M个信道信息。在一个实施例中,还可以对M个信道信息进行编码后输入对应的第二AI网络,通过第二AI网络输出M个信道信息对应的M个信道状态信息。在一个实施例中,还可以直接根据K个信道信息获取M个信道状态信息。
在一个实施例中,根据K个信道信息确定M个信道状态信息,包括:基于K个信道信息中的至少一个信道信息确定一个信道状态信息,其中,所述信道状态信息为第一类预编码信息。
在一个实施例中,可以基于所述K套参考信号中传输时隙最大的参考信号对应的信道信息确定一个信道状态信息。
在一个实施例中,第一通信节点不期望接收小于N套的参考信号。
在一个实施例中,根据K个信道信息确定M个信道状态信息,包括:在K小于或等于第一门限X的情况下,基于K个信道信息中的至少一个信道信息确定一个信道状态信息,其中,该信道状态信息为第一类预编码信息,X为大于1且小于N的整数。
在一个实施例中,根据K个信道信息确定M个信道状态信息,包括:在K小于或等于第二门限Y的情况下,第一通信节点确定0个信道状态信息或确定所述信道状态信息为空集,其中,Y为大于1且小于N的整数。
在一个实施例中,根据K个信道信息确定M个信道状态信息,包括:根据K个信道信息获取N个信道信息;根据第一获取方式和N个信道信息确定M1个信道状态信息,其中,M1为小于或等于M的正整数。这里,可以理解为还有M1个信道状态信息和M-M1个空集,或者此时的M为M1。
在一个实施例中,对K个信道信息补零操作获取N个信道信息。
在一个实施例中,在K大于第一门限X的情况下,根据K个信道信息获取 N个信道信息;根据N个信道信息确定M1个信道状态信息。
在一个实施例中,根据K个信道信息确定M个信道状态信息,包括:根据第二获取方式和K个信道信息确定M2个信道状态信息,其中,所述M2为小于或等于M的正整数。这里,可以理解为还有M2个信道状态信息和M-M2个空集,或者此时的M为M2。
在一个实施例中,在K大于第三门限Z的情况下,根据第二获取方式和K个信道信息确定M2个信道状态信息,其中,Z为大于1且小于N的整数。
在一个实施例中,第一获取方式和第二获取方式中的第一和第二只是用于区分获取信道状态信息的方式,比如第一获取方式为将N个信道信息作为输入的信道状态信息获取方式。第二获取方式为将K个信道信息作为输入的信道状态信息获取方式。比如第一获取方式为第一通信节点或者第二通信节点原来确定的根据信道信息获取信道状态信息的方式,而第二获取方式为第一通信节点或者第二通信节点新确定的根据信道信息获取信道状态信息的方式。
在一个实施例中,第一门限、第二门限、第三门限中的至少之一称为门限、所述门限根据第二通信节点确定,并通过高层信令或者物理层信令指示给第一通信节点,第一通信节点通过接收所述高层信令或者物理层信令确定的所述门限。在一个实施例中,所述门限根据第一通信节点和第二通信节点约定的方式确定。在一个实施例中,所述门限由第二通信节点根据自己的能力确定。
在一个实施例中,还可以向第二通信节点反馈得到的信道状态信息和/或反馈得到的信道状态信息对应的时隙。
时隙可以是时隙(slot)或子时隙(mini slot)。一个时隙或者子时隙包括至少一个符号。这里符号是指一个子帧或帧或时隙中的时间单位,比如可以为一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、单载波频分复用多址接入(Single-Carrier Frequency Division Multiple Access,SC-FDMA)符号或者正交多址频分复用接入(Orthogonal Frequency Division Multiple Access,OFDMA)符号。
为了传输信道状态信息,需要第一通信节点和第二通信节点定义一个CSI报告(CSI report或者CSI report congfig),其中CSI报告至少定义了如下参数之一:用于反馈CSI的时频资源,CSI包括的报告质量(reportQuantity),CSI反馈的时域类别(reportConfigType),信道测量资源,干扰测量资源以及测量的带宽大小等信息。其中,CSI报告可以在上行传输资源上传输,该上行传输资源可以包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和物理上行控制信道(Physical Uplink Control Channel,PUCCH);同时,CSI report 也包括时域特性,包括周期的CSI报告(periodic CSI report,P-CSI),非周期的CSI报告(aperiodic CSI report,AP-CSI),半持续的CSI报告(semi-persistent CSI report,SP-CSI)。一般来说,P-CSI传输的比特数目相对较小,可以在PUCCH上传输,而A-CSI传输的比特数较多,一般在PUSCH上传输,而SP-CSI可以基于PUSCH上传输,也可以基于PUCCH上传输。其中,基于PUCCH传输的P-CSI一般用高层信令(无线资源控制,Radio Resource Control,RRC)配置,基于PUCCH传输的SP-CSI也是用高层信令(RRC和/或MAC CE)配置或者激活,而基于PUSCH传输的SP-CSI或者A-CSI都是通过物理层信令(下行控制信息,Downlink control information,DCI)触发,而DCI一般在物理下行控制信道(Physical downlink control channel,PDCCH)上传输。即,可选地,可以在上行传输资源中传输上述信道状态信息和信道状态信息对应的时隙。在一个示例中,上述信道状态信息可以承载在至少一个非周期的PUSCH上进行传输。在一个示例中,上述信道状态信息可以承载在至少一个半持续的PUSCH上传输。在一个示例中,上述信道状态信息可以承载在至少一个周期的PUCCH上传输。
在一个实施例中,第二通信节点通过高层信令和/或物理层信令给第一通信节点配置了M个需要反馈的CSI报告,每个CSI报告都有一个索引值(identity,ID),称为CSI reportID,第一通信节点可以根据自己的计算能力或者处理能力,以及第二通信节点的要求选择M个CSI报告中的MC个CSI报告。并根据上行反馈的资源,反馈该MC个CSI报告中的至少一个CSI报告,其中M和MC为正整数,且MC<=M。在一个示例中,需要反馈MC个CSI报告,但所述MC个报告中至少有两个报告的反馈资源是冲突的,所述两个报告的反馈资源冲突是指用于反馈所述两个报告对应的传输资源(比如PUCCH或者PUSCH)中至少有一个符号是相同的和/或至少有一个子载波是相同的。在一个示例中,第一通信节点需要反馈多个CSI报告,其中,多个CSI报告中至少有L个CSI报告对应的传输资源存在冲突。在一个示例中,存在冲突的L个CSI报告中至少有一个包括第二类预编码信息的报告,其中,L为正整数。基于此,可以根据优先级计算公式计算L个冲突的CSI报告的优先级值(priority value,PV),并根据优先级值从小到大排序,选择其中优先级小的至少一个CSI报告在上行传输资源中传输。
可选地,在本实施例中,高层信令包括但不限于无线资源控制(Radio Resource Control,RRC),媒体控制-控制单元(Media Access Control control element,MAC CE),第一通信节点和第二通信节点之间还可以传输物理层信令,例如,在PDCCH上传输物理层信令或者在PUCCH上传输物理层信令。
在本实施例中,各种参数的指示Indicator,也可以称为索引Index,或者标识(Identifier,ID),它们是完全等价的概念。例如,无线系统资源标识可以包 括但不限于以下之一:一个参考信号资源、参考信号资源组,参考信号资源配置、信道状态信息报告、CSI报告集合、终端、基站、面板、神经网络、子神经网络、神经网络层等对应的索引。第二通信节点可以通过各种高层信令或者物理层信令指示一个或一组资源的标识给第一通信节点。
图4为本申请实施例提供的信道状态信息处理方法的另一种流程示意图。该方法可以应用于第二通信节点,如图4所示,该方法可以包括:
S401、发送N套参考信号配置信息。
S402、发送K套参考信号。
所述K套参考信号用于第一通信节点获取K个信道信息,并根据所述K个信道信息确定M个信道状态信息,K,N,M为正整数,且K小于N,M大于或等于1。
在一个实施例中,一套参考信号包括以下之一:一个参考信号资源、一组参考信号资源、一个参考信号资源集合以及一个参考信号资源配置对应的参考信号资源。
在一个实施例中,所述N套参考信号配置信息有相同的准共位置参数。
在一个实施例中,所述K个信道信息为参考时隙之前的信道信息,和/或所述M个信道状态信息为参考时隙以及参考时隙之后的信道状态信息。
在一个实施例中,根据所述N套参考信号配置信息,发送所述K套参考信号。
在一个实施例中,所述N套参考信号配置信息对应N套参考信号,所述K套参考信号为所述N套参考信号的一部分。
在一个实施例中,还可以接收第一通信节点反馈的所述信道状态信息和/或接收所述信道状态信息对应的时隙。
下面,罗列一些示例性实施方式,用于解释说明本申请上述实施例公开的信道状态信息处理方法,下述示例性实施方式可以单一执行,也可以组合执行。
在一个示例性实施方式中,第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,其中,K小于N。第一通信节点接收N套参考信号配置信息对应的K套参考信号,发现接收的参考信号的套数比期望的套数少,在此情况下,第一通信节点可以基于自身的处理能力,确定自身是否具有根据K个信道信息获取M个信道状态信息的能力。如果不具有该能 力,则可以基于K个信道信息中的至少一个信道信息确定一个信道状态信息。
所述信道状态信息为第一类预编码信息,第一类预编码信息可以是通过码本方式对信道信息进行量化后得到的信息。
在基于K套参考信号得到K个信道信息之后,第一通信节点可以选取K个信道信息中的至少一个信道信息,采用预定的方式获取所述至少一个信道信息对应的一个信道状态信息。其中,该预定的方式可以是基于码本的方式。
在一个实施例中,上述预定的方式可以为第一通信节点和第二通信节点之间约定的方式,也可以是第一通信节点根据接收的信令信息确定的方式,还可以是第一通信节点自身确定的方式,并通过反馈对应的信令信息告诉第二通信节点其自身确定的方式。
在一个实施例中,在K小于或等于第一门限X的情况下,第一通信节点基于K个信道信息中的至少一个信道信息确定一个信道状态信息,其中,该信道状态信息为第一类预编码信息,上述X为大于1且小于N的整数。
示例性的,假设第一通信节点接收到的K套参考信号对应的时隙为slot n-8,slot n-6,slot n-4,则第一通信节点可以基于slot n-6,slot n-4中的参考信号确定对应时隙的信道信息,并将得到的两个信道信息处理为一个信道信息,然后通过预设的码本对得到的一个信道信息进行量化,从而得到一个信道状态信息,并反馈该信道状态信息。
在一个实施例中,第一通信节点可以基于K套参考信号中传输时隙最大的参考信号对应的信道信息确定一个信道状态信息。示例性的,假设第一通信节点接收到的K套参考信号对应的时隙为slot n-8,slot n-6,slot n-4,则第一通信节点可以基于slot n-4中的参考信号确定该时隙的信道信息,并通过预设的码本对slot n-4的信道信息进行量化,从而得到一个信道状态信息,并反馈该信道状态信息。在第二通信节点配置了用于传输M个信道状态信息的传输资源的情况下,在本实施例中,第一通信节点基于K个信道信息中的至少一个信道信息确定一个信道状态信息,因此,第一通信节点可以选择M个传输资源中的一个传输资源反馈得到的一个信道状态信息,剩下的M-1个传输资源不做信道状态信息的反馈,即剩下的M-1个传输资源可以用于传输数据或者其它的信令或者信号。
在本实施例中,在第一通信节点不具备基于K个信道信息获取M个信道状态信息的能力时,第一通信节点可以直接回退到传统码本的方式,从K个信道信息中选取至少一个信道信息来确定一个信道状态信息,使得第一通信节点能够在接收的参考信号套数少于期望的参考信号套数的情况下有效获取信道状态 信息。并且,基于K套参考信号中传输时隙最大的参考信号对应的信道信息确定一个信道状态信息,其更能反应参考时隙及参考时隙之后的信道状态,提高了信道状态信息的准确性。
在另一个示例性实施方式中,第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,其中,K小于N。第一通信节点接收N套参考信号配置信息对应的K套参考信号,发现接收的参考信号的套数比期望的套数少,在此情况下,第一通信节点可以基于自身的处理能力,确定自身是否具有根据K个信道信息获取M个信道状态信息的能力。如果具有该能力,在其中一个实施方式中,第一通信节点可以对K个信道信息补零操作获取N个信道信息,并根据第一获取方式和获得的N个信道信息确定M1个信道状态信息,其中,所述M1小于或等于M。
第一通信节点可以根据K个信道信息对应的参考信号的时隙,确定自身接收了N个信道信息中的哪K个信道信息,并对没有接收到的参考信号对应的信道信息补零矩阵,从而将K个信道信息处理为N个信道信息,基于第一获取方式对N个信道信息进行处理,从而确定M1个信道状态信息。其中,所述零矩阵为Nr*Nt维度的矩阵,或者为Nr*Nt*2维度的矩阵,其中,Nr,Nt为第一通信节点和第二通信节点的天线数目,2为通道数目。示例性的,第一获取方式可以是原有的AI网络,原有的AI网络需要输入N个信道信息,才可以输出M个信道状态信息。因此,如果继续使用原有的AI网络,需要将K个信道信息处理成N个信道信息,才可以继续使用原有的AI网络,在本实施例中,可以对K个信道信息进行补零操作,从而得到N个信道信息。
在本实施例中基于N个信道信息确定M个信道状态信息还是小于M个信道状态信息,也是与第一通信节点的能力有关。
在另一种实施方式中,第一通信节点可以直接根据第二获取方式和K个信道信息确定M2个信道状态信息,其中,所述M2小于或等于M。
第二获取方式可以是新AI网络,即第一通信节点可以搜索一个新AI网络,通过该新AI网络直接将K个信道信息处理为M2个信道状态信息。
在本申请中,AI网络只是实现将N个信道信息确定M1个信道状态信息的一种方式,可以将AI网络替换成处理模块或者其它实现方式。
也就是说,第一通信节点可以将K个信道信息处理成期望的N个信道信息,再基于第一获取方式和N个信道信息确定M1个信道状态信息,也可以直接基于第二获取方式对K个信道信息进行处理,从而得到M2个信道状态信息。选 择哪种处理方式,可以基于第一通信节点所支持的能力,例如第一通信节点仅支持第一获取方式,则可以按照第一获取方式进行处理,如果第一通信节点对两种方式都支持,则可以任意选择一种方式进行处理即可。
可选地,在根据K个信道信息确定M个信道状态信息之前,第一通信节点还可以确定K是否大于第一门限X,在K大于第一门限X的情况下,可以根据对K个信道信息补零操作获取N个信道信息,并根据获得的N个信道信息确定M1个信道状态信息,也可以根据第二获取方式和K个信道信息确定M2个信道状态信息。在K小于或等于第一门限X的情况下,可以基于K个信道信息中的至少一个信道信息确定一个信道状态信息,即在接收到的参考信号的套数远远小于期望的套数时,第一通信节点回退到传统码本的方式,从K个信道信息中选取至少一个信道信息来确定一个信道状态信息,使得第一通信节点能够在接收的参考信号套数少于期望的参考信号套数的情况下获取更为准确的信道状态信息。
在一个实施例中,在K大于第三门限Z的情况下,第一通信节点才根据第二获取方式和K个信道信息确定M2个信道状态信息,即在获取的历史信道信息数量较多的情况下,才使用第二获取方式进行信道状态信息的预测,提高了信道状态信息的准确性。
在一个实施例中,在K小于或等于第二门限Y的情况下,确定0个信道状态信息或确定所述信道状态信息为空集,其中,所述Y为大于1且小于N的整数。也就是说,在接收到的参考信号的套数远远小于期望的套数时,第一通信节点不进行通过K个信道信息确定M个信道状态信息的操作。
在一个实施例中,所述第一通信节点不期望接收小于N套的参考信号。
在本实施例中,第一通信节点可以对K个信道信息补零操作获取N个信道信息,并根据第一获取方式和N个信道信息确定M1个信道状态信息,也可以确定第二获取方式,并基于第二获取方式和K个信道信息确定M2个信道状态信息,使得第一通信节点在原来的根据N个信道信息确定M个信道状态信息的反馈失效的情况下,有效获取信道状态信息。并且,通过设定相应的门限,选择不同的信道状态信息处理方式,使得确定的信道状态信息更加准确。
图5为本申请实施例提供的信道状态信息处理装置的一种结构示意图。该装置集成于第一通信节点,如图5所示,该方法可以包括:接收模块501、获取模块502和确定模块503。
接收模块501用于接收N套参考信号配置信息和K套参考信号;获取模块 502用于根据所述K套参考信号获取K个信道信息;确定模块503用于根据所述K个信道信息确定M个信道状态信息;其中,K,N,M为正整数,且K小于N,M大于或等于1。
在上述实施例的基础上,可选地,接收模块501可以包括:第一接收单元和第二接收单元;第一接收单元用于接收N套参考信号配置信息;第二接收单元用于接收K套参考信号。
在上述实施例的基础上,可选地,一套参考信号包括以下之一:一个参考信号资源、一组参考信号资源、一个参考信号资源集合以及一个参考信号资源配置对应的参考信号资源。
在上述实施例的基础上,可选地,所述N套参考信号配置信息有相同的准共位置参数。
在上述实施例的基础上,可选地,所述K个信道信息为参考时隙之前的信道信息,和/或所述M个信道状态信息为参考时隙以及参考时隙之后的信道状态信息。
在上述实施例的基础上,可选地,接收模块501用于根据所述N套参考信号配置信息,接收所述K套参考信号。也即,第二接收单元用于根据所述N套参考信号配置信息,接收所述K套参考信号。
在上述实施例的基础上,可选地,所述N套参考信号配置信息对应N套参考信号,所述K套参考信号为所述N套参考信号的一部分。
在上述实施例的基础上,可选地,确定模块503用于基于所述K个信道信息中的至少一个信道信息确定一个信道状态信息,其中,所述信道状态信息为第一类预编码信息。
在上述实施例的基础上,可选地,确定模块503用于基于所述K套参考信号中传输时隙最大的参考信号对应的信道信息确定一个信道状态信息。
在上述实施例的基础上,可选地,所述第一通信节点不期望接收小于N套的参考信号。
在上述实施例的基础上,可选地,确定模块503用于在所述K小于或等于第一门限X的情况下,基于所述K个信道信息中的至少一个信道信息确定一个信道状态信息,其中,所述信道状态信息为第一类预编码信息,所述X为大于1且小于N的整数。
在上述实施例的基础上,可选地,确定模块503用于在所述K小于或等于第二门限Y的情况下,所述第一通信节点确定0个信道状态信息或确定所述信 道状态信息为空集,其中,所述Y为大于1且小于N的整数。
在上述实施例的基础上,可选地,确定模块503用于根据所述K个信道信息获取N个信道信息;根据第一获取方式和所述N个信道信息确定M1个信道状态信息,其中,所述M1小于或等于M。
在上述实施例的基础上,可选地,确定模块503用于对所述K个信道信息补零操作获取N个信道信息。
可选地,所述K大于第一门限X,所述X为大于1且小于N的整数。
在上述实施例的基础上,可选地,确定模块503用于根据第二获取方式和所述K个信道信息确定M2个信道状态信息,其中,所述M2小于或等于M。
可选地,所述K大于第三门限Z,所述Z为大于1且小于N的整数。
在上述实施例的基础上,可选地,该装置还包括:反馈模块。
反馈模块,用于反馈所述信道状态信息和/或反馈所述信道状态信息对应的时隙。
图6为本申请实施例提供的信道状态信息处理装置的另一种结构示意图。如图6所示,该装置可以包括:发送模块601。
发送模块601用于发送N套参考信号配置信息;发送模块601还用于发送K套参考信号;其中,所述K套参考信号用于第一通信节点获取K个信道信息,并根据所述K个信道信息确定M个信道状态信息,K,N,M为正整数,且K小于N,M大于或等于1。
在上述实施例的基础上,可选地,发送模块601可以包括:第一发送单元和第二发送单元;第一发送单元用于发送N套参考信号配置信息;第二发送单元用于发送K套参考信号。
可选地,一套参考信号包括以下之一:一个参考信号资源、一组参考信号资源、一个参考信号资源集合以及一个参考信号资源配置对应的参考信号资源。
可选地,所述N套参考信号配置信息有相同的准共位置参数。
可选地,所述K个信道信息为参考时隙之前的信道信息,和/或所述M个信道状态信息为参考时隙以及参考时隙之后的信道状态信息。
在上述实施例的基础上,可选地,发送模块601用于根据所述N套参考信号配置信息,发送所述K套参考信号。也即,第二发送单元用于根据所述N套参考信号配置信息,发送所述K套参考信号。
可选地,所述N套参考信号配置信息对应N套参考信号,所述K套参考信 号为所述N套参考信号的一部分。
在上述实施例的基础上,可选地,还包括:接收模块。
接收模块用于接收所述信道状态信息和/或接收所述信道状态信息对应的时隙。
在一个实施例中,提供了一种通信节点,其内部结构图可以如图7所示。该通信节点包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该通信节点的处理器用于提供计算和控制能力。该通信节点的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该通信节点的数据库用于存储信道状态信息处理过程中产生的数据。该通信节点的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种信道状态信息处理方法。
本领域技术人员可以理解,图7中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的通信节点的限定,通信节点可以包括比图中所示更多或更少的部件,或者组合一些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种第一通信节点,该第一通信节点包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下:
接收N套参考信号配置信息和所述N套参考信号配置信息对应的K套参考信号;根据所述K套参考信号获取K个信道信息;根据所述K个信道信息确定M个信道状态信息;其中,K,N,M为正整数,且K小于N,M大于或等于1。
在一个实施例中,提供了一种第二通信节点,该第二通信节点包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下:
发送N套参考信号配置信息;发送K套参考信号;其中,所述K套参考信号用于第一通信节点获取K个信道信息,并根据所述K个信道信息确定M个信道状态信息,K,N,M为正整数,且K小于N,M大于或等于1。
在一个实施例中,提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现以下:
接收N套参考信号配置信息和所述N套参考信号配置信息对应的K套参考信号;根据所述K套参考信号获取K个信道信息;根据所述K个信道信息确定M个信道状态信息;其中,K,N,M为正整数,且K小于N,M大于或等于1。
在一个实施例中,提供了一种存储介质,所述存储介质存储有计算机程序, 所述计算机程序被处理器执行时实现以下:
发送N套参考信号配置信息;发送K套参考信号;其中,所述K套参考信号用于第一通信节点获取K个信道信息,并根据所述K个信道信息确定M个信道状态信息,K,N,M为正整数,且K小于N,M大于或等于1。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(electrically erasable,programmable Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言(诸如Java、Smalltalk、C++、Ruby、Go),还包括常规的过程式程序设计语言(诸如“C”语言或类似的程序设计语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络(包括网络(Local Area Network,LAN)或广域网(Wide Area Network,WAN))连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特 网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序操作,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序操作与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (28)

  1. 一种信道状态信息处理方法,应用于第一通信节点,包括:
    接收N套参考信号配置信息和K套参考信号;
    根据所述K套参考信号获取K个信道信息;
    根据所述K个信道信息确定M个信道状态信息;
    其中,K,N,和M均为正整数,且K小于N,M大于或等于1。
  2. 根据权利要求1所述的方法,其中,一套参考信号包括以下之一:一个参考信号资源、一组参考信号资源、一个参考信号资源集合、以及一个参考信号资源配置对应的参考信号资源。
  3. 根据权利要求1所述的方法,其中,所述N套参考信号配置信息有相同的准共位置参数。
  4. 根据权利要求1所述的方法,满足以下至少之一:
    所述K个信道信息为参考时隙之前的信道信息;
    所述M个信道状态信息为参考时隙的信道状态信息以及所述参考时隙之后的时隙的信道状态信息。
  5. 根据权利要求1所述的方法,其中,接收K套参考信号,包括:
    根据所述N套参考信号配置信息,接收所述K套参考信号。
  6. 根据权利要求1所述方法,其中,所述N套参考信号配置信息对应N套参考信号,所述K套参考信号为所述N套参考信号的一部分。
  7. 根据权利要求1所述的方法,其中,所述根据所述K个信道信息确定M个信道状态信息,包括:
    基于所述K个信道信息中的至少一个信道信息确定一个信道状态信息,其中,所述信道状态信息为第一类预编码信息。
  8. 根据权利要求7所述的方法,其中,所述基于所述K个信道信息中的至少一个信道信息确定一个信道状态信息,包括:
    基于所述K套参考信号中传输时隙最大的参考信号对应的信道信息确定一个信道状态信息。
  9. 根据权利要求1所述的方法,其中,所述第一通信节点不期望接收小于N套的参考信号。
  10. 根据权利要求1所述的方法,其中,所述根据所述K个信道信息确定M个信道状态信息,包括:
    在K小于或等于第一门限X的情况下,基于所述K个信道信息中的至少一个信道信息确定一个信道状态信息,其中,所述信道状态信息为第一类预编码信息,X为大于1且小于N的整数。
  11. 根据权利要求1所述的方法,其中,所述根据所述K个信道信息确定M个信道状态信息,包括:
    在所述K小于或等于第二门限Y的情况下,所述第一通信节点确定0个信道状态信息或确定所述信道状态信息为空集,其中,Y为大于1且小于N的整数。
  12. 根据权利要求1所述的方法,其中,所述根据所述K个信道信息确定M个信道状态信息,包括:
    根据所述K个信道信息获取N个信道信息;
    根据第一获取方式和所述N个信道信息确定M1个信道状态信息,其中,M1小于或等于M。
  13. 根据权利要求12所述的方法,其中,所述根据所述K个信道信息获取N个信道信息,包括:
    对所述K个信道信息补零操作获取所述N个信道信息。
  14. 根据权利要求12所述的方法,其中,K大于第一门限X,X为大于1且小于N的整数。
  15. 根据权利要求1所述的方法,其中,所述根据所述K个信道信息确定M个信道状态信息,包括:
    根据第二获取方式和所述K个信道信息确定M2个信道状态信息,其中,M2小于或等于M。
  16. 根据权利要求15所述的方法,其中,K大于第三门限Z,Z为大于1且小于N的整数。
  17. 根据权利要求1-16中任一项所述的方法,还包括以下至少之一:
    反馈所述信道状态信息;
    反馈所述信道状态信息对应的时隙。
  18. 一种信道状态信息处理方法,应用于第二通信节点,包括:
    发送N套参考信号配置信息;
    发送K套参考信号;其中,所述K套参考信号用于第一通信节点获取K个 信道信息,并根据所述K个信道信息确定M个信道状态信息,K,N,和M均为正整数,且K小于N,M大于或等于1。
  19. 根据权利要求18所述的方法,其中,一套参考信号包括以下之一:一个参考信号资源、一组参考信号资源、一个参考信号资源集合、以及一个参考信号资源配置对应的参考信号资源。
  20. 根据权利要求18所述的方法,其中,所述N套参考信号配置信息有相同的准共位置参数。
  21. 根据权利要求18所述的方法,满足以下至少之一:
    所述K个信道信息为参考时隙之前的信道信息;
    所述M个信道状态信息为参考时隙的信道状态信息以及所述参考时隙之后的时隙的信道状态信息。
  22. 根据权利要求18所述的方法,其中,所述发送K套参考信号,包括:
    根据所述N套参考信号配置信息,发送所述K套参考信号。
  23. 根据权利要求18所述的方法,其中,所述N套参考信号配置信息对应N套参考信号,所述K套参考信号为所述N套参考信号的一部分。
  24. 根据权利要求18-23中任一项所述的方法,还包括以下至少之一:
    接收所述信道状态信息;
    接收所述信道状态信息对应的时隙。
  25. 一种信道状态信息处理装置,集成于第一通信节点,包括:
    接收模块,设置为接收N套参考信号配置信息和K套参考信号;
    获取模块,设置为根据所述K套参考信号获取K个信道信息;
    确定模块,设置为根据所述K个信道信息确定M个信道状态信息;
    其中,K,N,M均为正整数,且K小于N,M大于或等于1。
  26. 一种信道状态信息处理装置,集成于第二通信节点,包括:
    发送模块,设置为发送N套参考信号配置信息;
    发送模块,还设置为发送K套参考信号;其中,所述K套参考信号用于第一通信节点获取K个信道信息,并根据所述K个信道信息确定M个信道状态信息,K,N,M均为正整数,且K小于N,M大于或等于1。
  27. 一种通信节点,包括存储器和处理器,所述存储器存储有计算机程序, 所述处理器执行所述计算机程序时实现权利要求1-24中任一项所述的信道状态信息处理方法。
  28. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-24中任一项所述的信道状态信息处理方法。
PCT/CN2023/110685 2022-08-19 2023-08-02 信道状态信息处理方法、装置、通信节点及存储介质 WO2024037339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210999347.6 2022-08-19
CN202210999347.6A CN117640019A (zh) 2022-08-19 2022-08-19 一种信道状态信息处理方法、装置、通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2024037339A1 true WO2024037339A1 (zh) 2024-02-22

Family

ID=89940668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110685 WO2024037339A1 (zh) 2022-08-19 2023-08-02 信道状态信息处理方法、装置、通信节点及存储介质

Country Status (2)

Country Link
CN (1) CN117640019A (zh)
WO (1) WO2024037339A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019212224A1 (ko) * 2018-04-30 2019-11-07 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치
CN113810090A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 通信方法和通信装置
CN113922936A (zh) * 2021-08-31 2022-01-11 中国信息通信研究院 一种ai技术信道状态信息反馈方法和设备
CN114337963A (zh) * 2020-10-10 2022-04-12 中兴通讯股份有限公司 信息反馈、接收方法、装置、设备和存储介质
CN114531696A (zh) * 2020-11-23 2022-05-24 维沃移动通信有限公司 Ai网络部分输入缺失的处理方法和设备
CN114731193A (zh) * 2020-02-13 2022-07-08 Lg 电子株式会社 用于在无线通信系统中发送和接收信道状态信息的方法和装置
CN114866202A (zh) * 2021-02-03 2022-08-05 展讯通信(上海)有限公司 Csi反馈方法及装置、存储介质、终端、网络设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019212224A1 (ko) * 2018-04-30 2019-11-07 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 채널 상태 정보를 송수신하는 방법 및 이를 지원하는 장치
CN114731193A (zh) * 2020-02-13 2022-07-08 Lg 电子株式会社 用于在无线通信系统中发送和接收信道状态信息的方法和装置
CN113810090A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 通信方法和通信装置
CN114337963A (zh) * 2020-10-10 2022-04-12 中兴通讯股份有限公司 信息反馈、接收方法、装置、设备和存储介质
CN114531696A (zh) * 2020-11-23 2022-05-24 维沃移动通信有限公司 Ai网络部分输入缺失的处理方法和设备
CN114866202A (zh) * 2021-02-03 2022-08-05 展讯通信(上海)有限公司 Csi反馈方法及装置、存储介质、终端、网络设备
CN113922936A (zh) * 2021-08-31 2022-01-11 中国信息通信研究院 一种ai技术信道状态信息反馈方法和设备

Also Published As

Publication number Publication date
CN117640019A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN110912665B (zh) 数据传输的方法和装置
US20200014455A1 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
CN105991231B (zh) 获取信道状态信息csi的方法及装置
WO2020238471A1 (zh) 信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质
CN111432479B (zh) 传输信道状态信息的方法和装置
US11581930B2 (en) Channel state information (CSI) feedback with multiple hypotheses
CN112672378B (zh) 资源测量的方法和装置
CN110521129B (zh) 用于无线通信网络中的预编码控制的方法和装置
US10594378B2 (en) Wireless device, a network node and methods therein for determining channel state measurements in a wireless communications network
WO2017096954A1 (zh) Cqi估计、sinr确定方法及相关设备
WO2017199097A1 (en) Communication method, network device and terminal device
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
WO2019034121A1 (en) METHOD, DEVICE AND COMPUTER-READABLE MEDIUM FOR MIMO COMMUNICATION
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2018023735A1 (zh) 一种终端、基站和获得信道信息的方法
WO2024037339A1 (zh) 信道状态信息处理方法、装置、通信节点及存储介质
US20220264584A1 (en) Measurement and reporting method and apparatus
WO2023123379A1 (en) Methods, devices, and computer readable medium for communication
WO2024041362A1 (zh) 信道状态信息处理方法、装置、通信节点及存储介质
WO2024037329A1 (zh) 波束参数信息的反馈、接收方法,通信节点及存储介质
WO2023207539A1 (zh) 资源传输方法、资源接收方法、通信节点及存储介质
WO2024016936A1 (zh) 信道状态信息的确定方法、电子设备和存储介质
WO2024017057A1 (zh) 传输方法、通信节点及存储介质
WO2024032469A1 (zh) 测量参数的反馈方法、装置、终端和存储介质
WO2024032319A1 (zh) 信道状态信息反馈方法、接收方法、装置及通信节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854243

Country of ref document: EP

Kind code of ref document: A1