WO2024037329A1 - 波束参数信息的反馈、接收方法,通信节点及存储介质 - Google Patents

波束参数信息的反馈、接收方法,通信节点及存储介质 Download PDF

Info

Publication number
WO2024037329A1
WO2024037329A1 PCT/CN2023/110513 CN2023110513W WO2024037329A1 WO 2024037329 A1 WO2024037329 A1 WO 2024037329A1 CN 2023110513 W CN2023110513 W CN 2023110513W WO 2024037329 A1 WO2024037329 A1 WO 2024037329A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter information
beam parameter
sets
reference signals
reference signal
Prior art date
Application number
PCT/CN2023/110513
Other languages
English (en)
French (fr)
Inventor
鲁照华
肖华华
王瑜新
刘锟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020257004553A priority Critical patent/KR20250034495A/ko
Priority to EP23854233.6A priority patent/EP4560930A1/en
Publication of WO2024037329A1 publication Critical patent/WO2024037329A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/328Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • This application relates to the field of communication technology, for example, to a feedback and reception method of beam parameter information, communication nodes and storage media.
  • AI Artificial Intelligence
  • the research content includes but is not limited to channel state information (Channel State Information, CSI) feedback, beam management, channel estimation, positioning, and interference management. , user scheduling, power control and other applications.
  • one of the applications is to use AI to use the first beam parameter information group before N reference time slots to obtain the second beam parameter information group after M reference time slots.
  • the communication node cannot effectively obtain N beam parameter information groups and can only obtain K beam parameter information groups, and K is less than N. Therefore, how to obtain the second beam parameter information group in this scenario is an urgent problem that needs to be solved.
  • the embodiment of the present application provides a feedback method for beam parameter information, which is applied to the first communication node and includes:
  • the embodiment of the present application provides a method for receiving beam parameter information, which is applied to the second communication node, including:
  • Receive at least one beam parameter information which is at least one beam parameter information among M beam parameter information groups determined by the first communication node based on K sets of reference signals; K, M, and N are all positive integers, and K is less than N.
  • An embodiment of the present application provides a first communication node, including: a processor; the processor is configured to implement the feedback method of beam parameter information in any of the above embodiments when executing a computer program.
  • An embodiment of the present application provides a second communication node, including: a processor; the processor is configured to implement the method for receiving beam parameter information in any of the above embodiments when executing a computer program.
  • Embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the method of any of the above embodiments is implemented.
  • Figure 1 is a schematic diagram of a network of a wireless communication system provided by an embodiment
  • Figure 2 is a schematic flowchart of a feedback method for beam parameter information provided by an embodiment
  • Figure 3 is a schematic flowchart of a method for receiving beam parameter information provided by an embodiment
  • Figure 4 is a schematic structural diagram of a feedback device for beam parameter information provided by an embodiment
  • Figure 5 is a schematic structural diagram of a device for receiving beam parameter information provided in an embodiment
  • Figure 6 is a schematic structural diagram of a base station provided in an embodiment
  • Figure 7 is a schematic structural diagram of a UE provided by an embodiment.
  • AI especially AI based on deep learning
  • the introduction of AI into wireless communication systems and deep integration with wireless communication systems to improve the performance of wireless communication systems has gained widespread consensus and research from multiple manufacturers, research institutions and researchers.
  • the research content includes but is not limited to CSI feedback, beam management, channel estimation, positioning, interference management, user scheduling, power control and other applications.
  • the transmitting end includes Nt transmitting beams
  • the receiving end includes Nr receiving beams.
  • the optimal beam can be selected after at most Nt*Nr beam scanning.
  • a staged beam scanning method can also be used: a fixed receiving beam scans the transmit beam or a fixed transmit beam scans the receive beam. This method may require Nt+Nr beam scans to select the suboptimal beam.
  • the resource overhead of the above two beam scanning methods is still very large.
  • AI can be used to use historical transmit beams to predict future transmit beams, and/or use historical receive beams to predict future receive beams, or use historical transmit and receive beam pairs to predict future transmit and receive beam pairs, such as
  • the beam groups of N historical moments beams in this application include transmitting beams, receiving beams, and transmitting and receiving beam pairs
  • the reference signal transmission of M future time slots can be reduced, thus The resource overhead of reference signals can be saved.
  • the first beam parameter information group before N reference time slots is used to obtain the second beam parameter information group after M reference time slots.
  • the communication node cannot effectively obtain N first beam parameter information groups, but can only obtain K first beam parameter information groups, and K is less than N. Therefore, how to obtain the second beam parameter information group in this scenario is an urgent problem that needs to be solved.
  • the feedback and reception method of beam parameter information provided by this application can be applied to many types of wireless communication systems, such as long-term evolution (LTE) systems, fourth-generation mobile communication technology (4th-generation, 4G) systems, and Fifth-generation mobile communication technology (5th-generation, 5G) system, LTE and 5G hybrid architecture system, 5G New Radio (NR) system, and new communication systems emerging in future communication development, such as sixth-generation mobile communication Technology (6th-generation, 6G) systems, etc.
  • Figure 1 shows a schematic networking diagram of a wireless communication system provided by an embodiment. As shown in Figure 1, the wireless communication system includes a terminal device 110, an access network device 120 and a core network device 130.
  • the terminal device 110 can be a device with wireless transceiver function, and can be deployed on land (such as indoor or outdoor, handheld, wearable or vehicle-mounted, etc.); it can also be deployed on water (such as ships, etc.); it can also be deployed in the air. (such as aircraft, balloons and satellites, etc.).
  • land such as indoor or outdoor, handheld, wearable or vehicle-mounted, etc.
  • water such as ships, etc.
  • it can also be deployed in the air. (such as aircraft, balloons and satellites, etc.).
  • Examples of some terminal devices 110 are: User Equipment (UE), mobile phones, mobile stations, tablets, notebook computers, Ultra-mobile Personal Computers (UMPC), handheld computers, netbooks, and personal digital assistants (Personal Digital Assistant, PDA) and other user equipment that can be connected to the Internet, or virtual reality (VR) terminals, augmented reality (AR) terminals, wireless terminals in industrial control (industrial control), driverless ( Wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city Terminals, wireless terminals in smart homes, etc., or IoT nodes in the Internet of Things, or vehicle-mounted communication devices in the Internet of Vehicles, or entertainment and game equipment or systems, or global positioning system equipment, etc.
  • the terminal equipment in the embodiments of this application may adopt a variety of technologies and equipment forms.
  • the terminal device may be referred to as a terminal.
  • the access network device 120 is an access device through which the terminal device 110 wirelessly accesses the wireless communication system, and may be a base station or an evolved base station (Long Term Evolution advanced, LTEA). evolved NodeB, eNB or eNodeB), transmission reception point (TRP), base station in 5G mobile communication system or next generation base station (next generation NodeB, gNB), base station or wireless fidelity in future mobile communication system ( Access nodes in Wireless Fidelity (WiFi) systems, etc.
  • Base stations can include macro base stations, micro base stations, home base stations, wireless remotes, routers, WIFI equipment, or various network-side devices such as primary cells and secondary cells, location management function (LMF) )equipment.
  • LMF location management function
  • the base station can also be a module or unit that completes some functions of the base station.
  • it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the access network equipment in the embodiments of this application may adopt a variety of technologies and equipment forms.
  • the access network equipment may be referred to as a base station.
  • the core network device 130 may include an access and mobility management network element and a session management network element.
  • the terminal device 110 can access the core network through the access network device 120 to implement data transmission.
  • a method, communication node and storage medium for feedback and receiving beam parameter information that can be operated in the above-mentioned wireless communication system are provided, which can perform beam parameter processing when the desired number of beam parameter information groups cannot be effectively obtained.
  • the prediction of information groups reduces the signaling overhead of the system and improves the performance of wireless communication systems.
  • the first communication node (may also be referred to as the first communication node device) may be a base station side device, and the second communication node (may also be referred to as the second communication node device) may be a terminal side device.
  • the first communication node in the uplink, may also be a terminal-side device, and the second communication node may also be a base-station-side device.
  • both the first communication node and the second communication node may be a base station or a terminal.
  • high-level signaling includes but is not limited to Radio Resource Control (RRC), Media Access Control control element (MAC CE), and physical layer signaling can also be transmitted between the base station and the terminal.
  • RRC Radio Resource Control
  • MAC CE Media Access Control control element
  • physical layer signaling can also be transmitted between the base station and the terminal.
  • physical layer signaling is transmitted on the physical downlink control channel (Physical Downlink Control CHannel, PDCCH)
  • physical layer signaling is transmitted on the physical uplink control channel (Physical Uplink Control CHannel, PUCCH).
  • the parameter indication Indicator may also be called an index, or an identifier (Identifier, ID), which are completely equivalent concepts.
  • ID an identifier
  • the wireless system resources here include but are not limited to one of the following: a reference signal resource, a reference signal resource group, a reference signal resource configuration, a channel state information (CSI) report, a CSI report set, Corresponding to terminals, base stations, panels, neural networks, sub-neural networks, neural network layers, etc. index.
  • the base station may indicate the identity of one or a group of resources to the terminal through various high-layer signaling and/or physical layer signaling.
  • AI includes devices, components, software, and modules with self-learning such as machine learning (ML), deep learning, reinforcement learning, transfer learning, deep reinforcement learning, and meta-learning.
  • artificial intelligence is implemented through an artificial intelligence network (or neural network).
  • the neural network includes multiple layers, each layer includes at least one node.
  • the neural network includes an input layer, an output layer, and at least One hidden layer, where each layer of the neural network includes but is not limited to using at least a fully connected layer, a dense layer, a convolutional layer, a transposed convolutional layer, a direct connection layer, an activation function, a normalization layer, a pooling layer, etc. one.
  • each layer of the neural network may include a sub-neural network, such as a residual block (Residual Network block, or Resnet block), a dense network (Densenet Block), a recurrent network (Recurrent Neural Network, RNN), etc.
  • An artificial intelligence network includes a neural network model and/or neural network parameters corresponding to the neural network model, where the neural network model can be referred to as a network model, and the neural network parameters can be referred to as network parameters.
  • a network model defines the number of layers of the neural network, the size of each layer, activation function, link status, convolution kernel and convolution step size, convolution type (such as 1D convolution, 2D convolution, 3D convolution, hollow convolution, transposed convolution, separable convolution, grouped convolution, expanded convolution, etc.), and the network parameters are the weights and/or biases of each layer of the network in the network model and their values .
  • a network model can correspond to multiple sets of different neural network parameter values to adapt to different scenarios.
  • a neural network model can correspond to multiple different neural network parameter values. Obtain the parameters of the neural network through online training or offline training. For example, by inputting at least one sample and label, the neural network model is trained to obtain the neural network parameters.
  • the time slot may be a time slot or a sub-slot mini slot.
  • a slot or sub-slot includes at least one symbol.
  • the symbol here refers to the time unit in a subframe or frame or time slot, for example, it can be an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol, single carrier frequency division multiplexing multiple access (Single- Carrier Frequency Division Multiple Access, SC-FDMA) symbols, Orthogonal Frequency Division Multiple Access, OFDMA) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single carrier frequency division multiplexing multiple access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • transmitting includes sending or receiving. Such as sending data or signals, receiving data or signals.
  • the base station or user in order to calculate channel state information or perform channel estimation, mobility management, positioning, etc., the base station or user needs to send a reference signal (RS).
  • the reference signal includes but is not limited to the channel state information reference signal (Channel -State Information reference signal, CSI-RS), which includes zero power CSI-RS (Zero Power CSI-RS, ZP CSI-RS) and non-zero power CSI-RS (Non-Zero Power CSI-RS, NZP CSI -RS), channel-state information-interference measurement signal (Channel-State Information-Interference Measurement, C SI-IM), detection reference Signal (Sounding Reference Signal, SRS), Synchronization Signals Block (SSB), Physical Broadcast Channel (PBCH), Synchronization Signal Block/Physical Broadcast Channel (SSB/PBCH), NZP CSI-RS can be used To measure the channel or interference, CSI-RS can also be used for tracking, called Tracking Reference Signal (CSI-RS for Tracking, TRS
  • reference signal resources such as CSI-RS resource, SRS resource, CSI-IM resource, and SSB resource.
  • SSB includes synchronization signal blocks and/or physical broadcast channels.
  • resources for transmitting reference signals may be called reference signal resources.
  • multiple reference signal resources may be combined into a set (such as CSI-RS resource set, CSI-IM resource set, SRS resource set), a reference signal resource set includes at least one reference signal resource, and multiple reference signal resource sets can all come from the same reference signal resource setting (such as CSI-RS resource setting, SRS resource setting , where CSI-RS resource setting may be merged with CSI-IM resource setting, both called CSI-RS resource setting) to configure reference signal parameter information.
  • the base station configures reference signal configuration information.
  • the reference signal configuration information is used to indicate the time-frequency location of the reference signal resource, time domain characteristics (such as periodic reference signal, aperiodic reference signal, semi-persistent reference signal). signal), a collection of reference signal resources, quasi-colocation information, a reference signal resource index, a reference signal resource collection index, etc.
  • a set of reference signal configuration information corresponds to a set of reference signal resources.
  • the reference signal resource is used to obtain channel state information, such as a beam parameter information group, where one beam parameter information group includes at least one beam parameter information.
  • a set of reference signal resources includes C N channel measurement resource (Channel Measurement Resource, CMR) information and/or C M interference measurement resource (Interference Measurement Resource, IMR) information, C N and C M are positive integers.
  • the base station configures measurement resource information in a reporting configuration (report config) or reporting setting (reporting setting).
  • one channel measurement resource information includes at least one channel reference signal resource setting, such as at least one CSI-RS resource setting or at least one SRS resource setting
  • one interference measurement resource information includes at least one interference reference signal resource setting, such as at least A CSI-IM resource setting.
  • one channel measurement resource information includes at least one channel reference signal resource set, such as at least one CSI-RS resource set or at least one SRS resource set, and one interference measurement resource information includes at least one interference reference signal resource set, such as at least A CSI-IM resource set.
  • one channel measurement resource information includes at least one channel reference signal resource, such as at least one CSI-RS resource or at least one SRS resource, and one interference measurement resource information includes at least one interference reference signal resource, such as at least one CSI-IM resource.
  • the beams include transmit beams, receive beams, precoding, precoding matrix, precoding Coding matrix index, receive beam and transmit beam pair, transmit beam and receive beam pair.
  • the beam can be a resource (such as originating precoding, receiving precoding, antenna port, antenna weight vector, antenna weight matrix, etc.), and the beam index can be replaced with a resource index, because the beam can be transmitted with some time-frequency resources. of binding.
  • the beam can also be a transmission (sending/receiving) method; the transmission method can include spatial division multiplexing, frequency domain/time domain diversity, etc.
  • a beam pair consists of a transmit beam and a receive beam.
  • the beam direction or beam angle may include at least one of the following: angle of arrival (Angle Of Arrival, AOA), angle of departure (Angle Of Departure, AOD), ZOD (Zenith angle Of Departure), ZOA (Zenith angle Of Arrival), vector or vector index constructed from at least one angle of AOA, AOD, ZOD, ZOA, Discrete Fourier Transformation (DFT) vector, codeword in the codebook, transmit beam index, receive beam index , transmit beam group index, receive beam group index.
  • the beam refers to a spatial filter or a spatial receiving/transmitting parameter.
  • the spatial filtering can be at least one of the following: DFT vector, precoding vector, DFT matrix, precoding matrix, or a linear combination of multiple DFTs.
  • vector a vector composed of a linear combination of multiple precoding vectors.
  • Beam management includes but is not limited to beam scanning, beam tracking and beam recovery.
  • the core problem that needs to be solved is how to obtain accurate beam pairs with the lowest possible control overhead.
  • beam scanning includes transmitting end beam scanning and/or receiving end beam scanning.
  • two-stage scanning can be used.
  • beam training may include a first stage, a second stage, and a third stage of training.
  • the transmitting end beam and the receiving end beam are scanned simultaneously; in the second stage of beam scanning, a receiving beam is fixed and different transmitting beams are scanned; in the third stage, a transmitting beam is fixed and different transmitting beams are scanned.
  • receiving beam In one example, for example, by sending NT beams, fixed reception, repeating parameter repetition is set to off, and then measuring the Reference Signal Received Power (RSRP) corresponding to the NT beams to find the optimal L are reported. In one example, one beam is sent, NR receiving beams are received, the repetition parameter value is on, and then the RSRP corresponding to the NR beams is measured, and the optimal L ones are found and reported.
  • RSRP Reference Signal Received Power
  • AI beam prediction includes spatial domain beam prediction and time domain beam prediction, or space-time beam prediction.
  • AI can be used to achieve spatial beam prediction, that is, only one beam parameter information group is input, where the beam parameter information group includes L0 beam parameter information, and another beam information group is predicted based on the L0 beam parameter information.
  • This beam The information group includes L1 beam parameter information.
  • L1 beam parameter information can include L0 beam parameter information, where L, L1, and L0 are all positive integers, L0 ⁇ L1, and they are all positive integers.
  • the beam can be sent beam, receive beam, or transmit-receive beam pair. Each beam can correspond to a beam direction.
  • spatial beam prediction can be implemented through AI modules, such as through a neural network.
  • the beam parameter information corresponding to L0 beams is combined into a beam parameter information array (the first beam parameter information array) and input into the neural network.
  • the neural network outputs the beam parameter information array corresponding to L1 beams (the second beam parameter information array), and Indexes corresponding to the K maximum values in the second beam parameter information array determine K preferred beams.
  • spatial beam prediction can also be implemented through non-AI methods, such as linear mapping or nonlinear mapping.
  • AI can be used to implement time domain beam prediction, that is, only N beam parameter information groups are input, where each beam parameter information group includes L0 beam parameter information, and prediction is performed based on the N first beam parameter information groups M second beam parameter information groups.
  • Each of the M second beam parameter information groups includes L1 pieces of beam parameter information.
  • N, M, L, L1, and L0 are all positive integers, L0 ⁇ L1, and they are all positive integers.
  • the beam can be a transmitting beam, a receiving beam, or a transmitting and receiving beam pair. Each beam can correspond to a beam direction.
  • the N first beam parameter information groups are beam parameter information before the reference time slot
  • the M second beam parameter information groups are beam parameter information after the reference time slot.
  • time-domain beam prediction can be implemented through AI modules, such as through a neural network.
  • L1 is generally greater than or equal to L0, and they are all positive integers.
  • time-domain beam prediction can also be implemented through non-AI methods, such as linear mapping or non-
  • the parameters of the neural network are obtained through online training or offline training. For example, by inputting at least one sample and label, the neural network model is trained to obtain the neural network parameters.
  • the sample is a first beam parameter information array measured by a terminal
  • the label is a second beam parameter information array corresponding to a first beam parameter information array measured by a terminal.
  • the first beam parameter information array and the second beam parameter information array have corresponding Relationship, for example, one-to-one correspondence.
  • a first beam parameter information array is input into the neural network to output a predicted second beam parameter information array, and the predicted second beam parameter information array is compared with the second beam parameter information corresponding to the tag.
  • Array you can know the prediction performance of the network, and train the neural network based on the loss function of both.
  • the transmit beam and/or receive beam index is numbered in an agreed manner to form a beam index.
  • a beam index includes one of the following: transmit beam index, receive beam index, transmit and receive beam pair index.
  • a beam index corresponds to a beam direction, or a vector or matrix corresponding to the beam direction.
  • the terminal receives reference signals (such as CSI-RS, SSB, etc.) and measures the beam parameter information corresponding to each beam, and combines the beam parameter information corresponding to multiple beams to obtain a beam parameter information array.
  • reference signals such as CSI-RS, SSB, etc.
  • the first beam parameter information array is a beam parameter information array formed by the beam parameter information corresponding to the first beam set
  • the second beam parameter information array is a beam parameter information array formed by the beam parameter information corresponding to the second beam set.
  • the first beam set is a subset of the second beam set.
  • the elements in the first beam parameter information array need to be normalized to facilitate faster convergence of the neural network.
  • the so-called normalization refers to normalizing the values of elements in an array to a value in the range greater than or equal to a and less than or equal to b.
  • normalization in one example, divide the elements in the array by the variance in the array elements to achieve normalization; in one example, divide the elements in the array by a fixed value (such as in all samples The maximum value of all elements) to achieve normalization; in one example, the elements in the array are divided by a statistical value (such as the statistical variance value of all elements in all samples) to achieve normalization.
  • index values such as beam index, CRI, SSBRI, etc.
  • normalization can be achieved through One-Hot Encoding.
  • the beam parameter information array is a one-dimensional array, such as a vector. In some examples, the beam parameter information array is a two-dimensional array, such as a matrix. In some examples, the beam parameter information array is an array larger than two dimensions, such as a tensor. Among them, vectors and matrices can also be regarded as a special case of tensors.
  • the beam parameter information is the reference signal received power (L1-RSRP or RSRP) of layer 1 corresponding to one beam; in one embodiment, the beam parameter information is the layer corresponding to one beam.
  • the beam parameter information is at least one of the beam angles (AOA, ZOA, AOD, ZOD, etc.) corresponding to a beam, sometimes also referred to as horizontal arrival angle, vertical arrival angle, horizontal departure angle, and vertical departure angle respectively.
  • the beam parameter information is the transmission wave corresponding to one beam. Beam index; in one embodiment, the beam parameter information is the receive beam index corresponding to one beam; in one embodiment, the beam parameter information is the transmit beam and receive beam pair index corresponding to one beam (referred to as beam pair index or beam Right); In one embodiment, the beam parameter information is the Beam Domain Receive Power Map (BDRPM) corresponding to one beam; In one embodiment, the beam parameter information is the channel state information reference corresponding to one beam Signal Resource Indicator (CSI-RS Resource Indicator, CRI); in one embodiment, the beam parameter information is a Synchronization Signals Block Resource Indicator (SSBRI) corresponding to one beam.
  • BDRPM Beam Domain Receive Power Map
  • the beam parameter information group is a combination of at least two of the following beam parameter information corresponding to at least one beam: RSRP, RSRQ, SINR, beam angle, transmit beam index, receive beam index, beam pair index, CRI, SSBRI, etc.
  • a beam parameter information group includes at least one beam parameter information.
  • the beam parameter information is a linear value of one of RSRP, RSRQ, and SINR.
  • the beam parameter information is a logarithmic value of one of RSRP, RSRQ, and SINR, or is called a decibel value (DB).
  • the beam parameter information may be obtained based on CSI-RS measurements. In one embodiment, beam parameter information may be obtained based on SSB measurements. In an embodiment, the beam parameter information may be obtained based on SRS measurements.
  • the base station receives the beam parameter information set.
  • the beam parameter information group is also a kind of channel state information and needs to be transmitted in the transmission resources defined by the CSI report.
  • the terminal and the base station define a CSI report (CSI report or CSI report congfig), in which the CSI report defines at least one of the following parameters: time-frequency resources used for feedback CSI, report quality included in the CSI reportQuantity, The time domain category reportConfigType of CSI feedback, channel measurement resources, interference measurement resources, measured bandwidth size and other information.
  • the CSI report can be transmitted on uplink transmission resources, where the uplink transmission resources include Physical Uplink Shared Channel (PUSCH) and PUCCH, and the CSI report also includes time domain characteristics, including periodic CSI report (periodic CSI report, P-CSI), aperiodic CSI report (aperiodic CSI report, AP-CSI), semi-persistent CSI report (semi-persistent CSI report, SP-CSI).
  • P-CSI transmits a relatively small number of bits and is transmitted on PUCCH
  • A-CSI transmits a larger number of bits and is generally transmitted on PUSCH.
  • SP-CSI can be transmitted on PUSCH or on PUSCH. transmitted on PUCCH.
  • P-CSI based on PUCCH transmission is generally configured using high-level signaling (Radio Resource Control, RRC), and SP-CSI based on PUCCH transmission is also configured or activated using high-level signaling (RRC and/or MAC CE).
  • RRC Radio Resource Control
  • SP-CSI or A-CSI based on PUSCH transmission are triggered by physical layer signaling (Downlink control information, DCI), and DCI is generally on the physical downlink control channel (Physical downlink control channel, PDCCH) transmission.
  • the feedback beam parameter information group may also be called transmission beam parameter information. group or send a beam parameter information group, such as carrying the beam parameter information group on the uplink transmission resource for feedback or transmission.
  • the uplink transmission resources and corresponding CSI are indicated by a channel status information report.
  • feeding back a CSI report means feeding back the beam parameter information group corresponding to the CSI report.
  • the base station configures the terminal with NC CSI reports (CSI reports) that need to be fed back to the base station through high-level signaling and/or physical layer signaling.
  • Each CSI report has an index value (identity, ID). , called CSI reportID, the terminal can select MC CSI reports among NC CSI reports according to its own computing power or processing power, and the requirements of the base station.
  • the uplink feedback resources at least one CSI report among the MC CSI reports is fed back, where NC and MC are positive integers, and MC ⁇ NC.
  • MC CSI reports need to be fed back, but the feedback resources of at least two of the MC reports conflict.
  • the conflict of feedback resources of the two reports refers to the transmission resources corresponding to the two reports (such as At least one symbol in PUCCH or PUSCH is the same and/or at least one subcarrier is the same.
  • Figure 2 shows a schematic flowchart of a feedback method for beam parameter information provided by an embodiment. As shown in Figure 2, the method provided by this embodiment is applicable to the first communication node. The method includes the following steps.
  • S110 Receive N sets of reference signal configuration information and K sets of reference signals.
  • a method of receiving K sets of reference signals may be: receiving K sets of reference signals according to N sets of reference signal configuration information.
  • the second communication node transmits N sets of reference signal configuration information and K sets of reference signals corresponding to K sets of reference signal configuration information.
  • the first communication node receives N sets of reference signal configuration information, and receives K sets of reference signals based on the N sets of reference signal configuration information.
  • K and N are both positive integers, and K is less than N.
  • K and N are both positive integers, and K is less than N, which means that the second communication node transmits K sets of reference signals with a number less than N due to conflicts between reference signal resources configured by the second communication node or other reasons, and the first communication node K sets of reference signals were received.
  • the second communication node can transmit N sets of reference signals, and the first communication node receives N sets of reference signals, that is, K equals N.
  • the second communication node transmits N sets of reference signals, and the first communication node can only effectively receive K sets of reference signals due to its own capabilities or poor signals.
  • the reference signal configuration information includes resource type resourceType, where the resource type defines the time domain transmission characteristics of the reference signal, where the time domain characteristics include but are not limited to aperiodic, periodic, semi-persistent ( semi-persistent) characteristics, respectively representing the transmission
  • the reference signal transmitted is a reference signal with aperiodic transmission, a reference signal with periodic transmission, or a reference signal with semi-continuous transmission, which are called periodic reference signal, aperiodic reference signal, and semi-continuous reference signal respectively.
  • the periodic reference signal or the semi-persistent reference signal will configure a period and/or slot offset information through high-level signaling.
  • the second communication node configures N sets of reference signal configuration information.
  • these N sets of reference signal configuration information there are K1 periodic reference signals, K2 aperiodic reference signals, and K3 semi-continuous reference signals.
  • K1, K2, K3 are non-negative integers
  • K1+K2+K3 N.
  • the second communication node configures N sets of reference signal configuration information.
  • the resource categories are all the same, that is, two of K1, K2, and K3 have values of zero, for example, they are all periodic reference signals or they are all aperiodic reference signals or they are all It is a semi-continuous reference signal.
  • the resource category of at least one reference signal is different from the resource category of another reference signal, such as at least two of K1, K2, and K3. The value is greater than zero.
  • Reference signal in one configuration, there are two sets of periodic reference signals and two sets of aperiodic reference signals; in one configuration, there are two sets of semi-continuous reference signals and two sets of periodic reference signals.
  • a set of reference signals includes one of the following: a reference signal resource, a group of reference signal resources, a reference signal resource set, and a reference signal resource corresponding to a reference signal resource configuration.
  • a set of reference signals includes a reference signal resource, such as a CSI-RS resource, or an SRS resource, or an SSB resource; in one embodiment, a set of reference signals includes a set of reference signal resources, such as a set of CSI -RS resource, or a set of SRS resources, or a set of SSB resources; in one embodiment, a set of reference signals includes a reference signal resource set, such as a CSI-RS resource set, or an SRS resource set, or an SSB resource set; In one embodiment, a set of reference signals includes a reference signal resource corresponding to a reference signal resource configuration, such as a reference signal resource corresponding to a CSI-RS resource config/setting, or a reference signal corresponding to an SRS resource config/setting.
  • Signal resource
  • S130 Feed back at least one beam parameter information among the M beam parameter information groups; K, M, and N are all positive integers, and K is less than N.
  • the communication node obtains a beam parameter information set by receiving a reference signal, where one beam parameter information set may include one or more beam parameter information, and one beam parameter information corresponds to one beam.
  • the beam parameter information includes at least one of the following parameters: received power (such as L1-RSRP, RSRP, differential L1-RSRP, differential RSRP), received signal-to-interference-to-noise ratio (such as L1-SINR, SINR, differential L1-SINR, differential SINR ), BDRPM, RSRQ, and the reference signal resource index (CRI, SSBRI, etc.) corresponding to the beam, the direction or angle of the beam, and the index of the beam (such as transmit beam index, receive beam index, transmit and receive beam index pair).
  • received power such as L1-RSRP, RSRP, differential L1-RSRP, differential RSRP
  • received signal-to-interference-to-noise ratio such as L1-SINR, SINR, differential L1-SINR,
  • the second communication node sends a reference signal for beam parameter information measurement in K time slots.
  • K time slots are time slots before the reference time slot.
  • the reference time slot includes one of the following: the reference time slot is a time slot agreed by the first communication node and the second communication node, or a current time slot; or a time slot indicated by the second communication node ; Or a time slot obtained by adding a fixed offset to a time slot indicated by the second communication node; or a time slot obtained by adding a fixed offset to the time slot indicated by the first communication node receiving signaling from the second communication node.
  • a beam parameter information group is obtained through a series of operations.
  • Obtain M beam parameter information groups (such as the second beam parameter information group) according to N beam parameter information groups (such as the first beam parameter information group).
  • N beam parameter information groups are sequentially encoded and then input to the first AI module, and the first AI module outputs M beam parameter information groups.
  • encoding the beam parameter information includes but is not limited to one of the following: normalizing the elements of the beam parameter information group (such as normalizing the range of an element to the interval [0, 1] or [- 0.5, 0.5]), sample the beam parameter information group, and perform joint operations on multiple beam parameter information groups.
  • the N beam parameter information groups are beam parameter information groups before the reference time slot.
  • the M beam parameter information groups are beam parameter information groups after the reference time slot.
  • N is an integer greater than 1
  • M is an integer greater than or equal to 1.
  • M beam parameter information groups are obtained according to N beam parameter information groups. They can also be obtained according to other non-AI methods, such as linear mapping, filtering or averaging the N beam parameter information groups to obtain M Beam parameter information group. For example, through nonlinear mapping, N beams The parameter information group is processed into M beam parameter information groups.
  • N is a positive integer greater than M.
  • M is a positive integer, which is related to the capability of the first communication node.
  • Some first communication nodes can obtain one beam parameter information group through N beam parameter information groups. Some first communication nodes may obtain more than one beam parameter information group based on N beam parameter information groups.
  • obtaining M beam parameter information groups based on N beam parameter information groups has one of the following equivalent descriptions: predicting M beam parameter information groups based on N beam parameter information groups; predicting M beam parameter information groups based on N beam parameter information groups The group is processed into M beam parameter information groups; N beam parameter information groups are mapped into M beam parameter information groups.
  • beam parameter information corresponding to M beam parameter information groups may also be determined.
  • the method includes: for the i-th beam parameter information group, selecting the beam corresponding to the Li beam information parameters with the largest beam parameter information of the i- th beam parameter information group as the preferred beam of the i-th beam information group.
  • n i is the time slot index after the reference time slot, and is sorted in ascending order as i increases.
  • M beam parameter information is processed into M CRIs and/or L1-RSRPs. In some examples, M beam parameter information is processed into M SSBRIs and/or L1-RSRPs. In some examples, M beam parameter information is processed into M CRIs and/or L1-SINRs. In some examples, M beam parameter information is processed into M SSBRIs and/or L1-SINRs.
  • M beam parameter information groups can be obtained according to N beam parameter information groups, and each of the M beam parameter information groups is processed into K 0 beam parameter information. Among them, 1 ⁇ K 0 ⁇ M.
  • K 0 channel state information can also be obtained directly based on N beam parameter information groups. That is, the first AI module and the second AI module are directly merged into a larger AI module.
  • M beam parameter information groups or their corresponding beam parameter information can be obtained directly according to N received reference signals.
  • the second communication node although the first communication node does not expect to receive less than N sets of reference signals, the second communication node only transmits K sets of reference signals among the N sets of reference signals due to resource conflicts or other reasons.
  • the communication node receives K sets of reference signals.
  • the first communication node may determine M beam parameter information groups based on K sets of reference signals.
  • N sets of reference signal configuration information correspond to N sets of reference signals, and K sets of reference signals are part of the N sets of reference signals.
  • determining the M beam parameter information groups can be implemented using AI beam prediction methods, which may include, for example, spatial domain beam prediction and time domain beam prediction, or space-time beam prediction.
  • N sets of reference signal configuration information correspond to N sets of reference signals, and the N sets of reference signals belong to the same reference signal set or the same reference signal configuration.
  • the first communication node determines M beam parameter information based on K sets of reference signals.
  • the group's rules include at least one of the following:
  • the first communication node determines that the M beam parameter information groups are empty. That is, the first communication node does not perform beam prediction.
  • the second communication node only transmits K sets of reference signals among N sets of reference signals, and K is less than N.
  • the first communication node receives K sets of reference signals and finds that the number of K sets of reference signals is less than the expected N sets of reference signals. It cannot obtain the M beam parameter information groups after the reference time slot through the beam parameter information groups corresponding to the K sets of reference signals. . Therefore, the first communication node does not perform the operation of obtaining M beam parameter information groups through the beam parameter information groups corresponding to the K sets of reference signals. The first communication node also does not feed back the preferred beam parameter information after the reference time slot.
  • the first communication node determines M beam parameter information groups based on at least one set of reference signals among the K sets of reference signals.
  • the second communication node only transmits K sets of reference signals among N sets of reference signals, and K is less than N.
  • the first communication node receives K sets of reference signals and obtains M beam parameter information groups based on at least one set of the K sets of reference signals.
  • the first communication node determines that the beam parameter information group of the reference signal with the largest transmission time slot is M beams based on the reference signal with the largest transmission time slot among the K sets of reference signals, that is, the reference signal closest to the reference time slot.
  • Parameter information group For example, the Lc beam parameter information with the largest beam parameter information value in the beam parameter information group of the reference signal with the largest transmission time slot is determined as the determined beam parameter information.
  • M 1, and the M beam parameter information groups only include Lc pieces of beam parameter information.
  • Lc is a positive integer.
  • the value of Lc can be 1.
  • the first communication node determines K first beam parameter information groups based on K sets of reference signals; and obtains M beam parameter information groups (such as second beam parameter information groups) based on the K first beam parameter information groups.
  • M is a positive integer.
  • the second communication node only transmits K sets of reference signals among N sets of reference signals, and K is less than N.
  • the first communication node receives K sets of reference signals and finds that the number of K sets of reference signals is less than the expected N sets of reference signals.
  • the first communication node determines whether M beams can be obtained based on K beam parameter information groups based on its own processing capabilities. Parameter information group. If possible, determine the K first beam parameter information groups based on the K sets of reference signals; and obtain M beam parameter information groups based on the K first beam parameter information groups. Otherwise, do not pass the beam corresponding to the K sets of reference signals.
  • the parameter information group obtains M beam parameter information groups, or obtains preferred beam parameter information corresponding to at least one beam parameter information group among the K beam parameter information groups according to an agreed method.
  • the first communication node searches for an AI model locally, and the AI model can obtain M beam parameter information groups based on K first beam parameter information groups, for example, using K first beam parameter information groups as input, And output M beam parameter information groups.
  • the first communication node determines K first beam parameter information groups based on K sets of reference signals; processes the K first beam parameter information groups into N second beam parameter information groups; based on the N second beam parameter information groups Information group, obtain M beam parameter information groups (such as the third beam parameter information group), M is a positive integer.
  • the second communication node only transmits K sets of reference signals among N sets of reference signals, and K is less than N.
  • the first communication node receives K sets of reference signals and finds that the number of K sets of reference signals is less than the expected N sets of reference signals.
  • the first communication node determines whether M beams can be obtained based on K beam parameter information groups based on its own processing capabilities. Parameter information group.
  • the first communication node determines K first beam parameter information groups based on K sets of reference signals; processes the K first beam parameter information groups into N second beam parameter information groups; based on the N second beam parameter information groups Information group, obtain M beam parameter information groups, otherwise, do not perform the operation of obtaining M beam parameter information groups through the beam parameter information groups corresponding to the K sets of reference signals, or obtain the K beam parameter information groups according to the agreed method.
  • Preferred beam parameter information corresponding to at least one beam parameter information group.
  • the number of elements included in the first beam parameter information group is less than the number of elements included in the second beam parameter information group, and the number of elements included in the second beam parameter information group is less than or equal to the beam parameter information group (such as the first beam parameter information group).
  • the number of elements included in the three-beam parameter information group is less than the number of elements included in the second beam parameter information group, and the number of elements included in the second beam parameter information group is less than or equal to the beam parameter information group (such as the first beam parameter information group). The number of elements included in the three-beam parameter information group).
  • the first communication node performs a zero-filling operation on K first beam parameter information groups to obtain N second beam parameter information groups. For example, based on the time slot in which the reference signals corresponding to the K first beam parameter information groups are transmitted, it is determined which beam parameter information groups among the N beam parameter information groups have been received, and the beam parameters corresponding to the reference signals that have not been received are determined.
  • the first communication node determines that the beam parameter information group is empty, or determines M beam parameter information groups based on at least one set of K sets of reference signals; when K is greater than K0, the first communication node A communication node determines K first beam parameter information groups based on K sets of reference signals, processes the K first beam parameter information groups into N second beam parameter information groups, and obtains M beam parameter information groups, or the first communication node determines K first beam parameter information groups based on K sets of reference signals, and determines M beam parameter information groups based on the K first beam parameter information groups, M, K0 is a positive integer.
  • the second communication node only transmits K sets of reference signals among N sets of reference signals, and K is less than N.
  • the first communication node receives K sets of reference signals and finds that the number of K sets of reference signals is less than the expected N sets of reference signals.
  • K is greater than K0
  • the first communication node Reference signal determine K first beam parameter information groups; process K first beam parameter information groups into N second beam parameter information groups; obtain M beam parameter information groups based on N second beam parameter information groups (For example, using the original AI model to achieve this operation), or the first communication node determines K first beam parameter information groups based on K sets of reference signals, and determines M based on the K first beam parameter information groups.
  • Beam parameter information group (for example, searching for a new AI model to implement this operation); when K is less than K0, the first communication node does not obtain M beam parameter information groups through the beam parameter information groups corresponding to the K sets of reference signals. Operation, or determining M beam parameter information groups based on at least one set of reference signals among the K sets of reference signals.
  • K0 is a positive integer greater than 0, which is obtained according to the configuration of the second communication node, or according to the agreement between the second communication node and the first communication node.
  • the first communication node receives the 1st, 2nd, ..., N-1 sets of reference signals among the N sets of reference signals, and the first communication node does not obtain M sets of beam parameter information based on the K sets of beam parameter information groups. Group operations.
  • the first communication node receives at least the Nth set of reference signals among the N sets of reference signals, and the first communication node obtains the beam parameter information group corresponding to the Nth set of reference signals based on the Nth set of reference signals and the agreed method. preferred beam parameter information.
  • the first communication node receives at least the Nth set of reference signals among the N sets of reference signals, the first communication node determines K first beam parameter information groups based on the K sets of reference signals, and combines the K first beams
  • the parameter information group is processed into N second beam parameter information groups, and M beam parameter information groups are obtained based on the N second beam parameter information groups.
  • a set of reference signals includes a set of reference signal resources. If one or more reference signal resources in one/several sets of reference signal resources are not transmitted, the first communication node may adopt a zero-filling method. Zero padding is performed on positions where reference signal resources are not transmitted.
  • the zero-filling operation in this embodiment is similar to the above-mentioned zero-filling operation of the beam parameter information group.
  • the first communication node sends a beam parameter information group
  • the first communication node is configured with M CSI reports, and is used to transmit M preferred beam parameter information.
  • the first communication node selects one of M transmission resources to transmit preferred beam parameter information (for example, determines a second beam parameter information group based on K first beam parameter information groups, and selects a second beam parameter information group based on the second beam parameter information group).
  • the Lc beam parameter information with the largest beam parameter information is the optimal beam parameter information).
  • the remaining M-1 transmission resources are not used for transmitting beam parameter information, but can be used for transmitting data or other signaling or signals.
  • At least one beam parameter information (eg, preferred beam parameter information) of the M beam parameter information groups is fed back.
  • preferred beam parameter information transmitted in uplink transmission resources e.g., preferred beam parameter information transmitted in uplink transmission resources.
  • the preferred beam parameter information corresponding to the M beam parameter information groups is carried and transmitted on at least one aperiodic PUSCH.
  • the preferred beams corresponding to the M beam parameter information groups Parameter information is carried and transmitted on at least one semi-persistent PUSCH.
  • the preferred beam parameter information corresponding to the M beam parameter information groups is carried and transmitted on the PUCCH of at least one cycle.
  • feeding back a channel state information means carrying CSI on an uplink transmission resource for transmission.
  • feedback of at least one channel state information through a channel state information report refers to carrying at least one channel state information on the uplink transmission resource indicated by the channel state information report, and transmitting the at least one channel state information to another through the uplink transmission resource.
  • the channel state information includes beam parameter information.
  • the first beam parameter information group, the second beam parameter information group, the third beam parameter information group, etc. are all beam parameter information groups, where the "first", “second” and “th "Three” is just to distinguish that they belong to different beam parameter information groups. There is no order of precedence.
  • the number of elements included in the first beam parameter information group, the second beam parameter information group and/or the third beam parameter information group may be different; in one example, the first beam parameter information group , the elements included in the second beam parameter information group and/or the third beam parameter information group may also be different.
  • the elements included in the first beam parameter information group are all first beam parameter information
  • the elements included in the second beam parameter information group are all first beam parameter information.
  • the elements are all second beam parameter information and/or the elements included in the third beam parameter information group are all third beam parameter information.
  • the first beam parameter information is L1-RSRP or L1-SINR.
  • the second beam parameter information and/or the third beam parameter information is L1-RSRP or L1-SINR.
  • the second beam parameter information and/or the third beam parameter information is a beam index (such as CRI or SSBRI).
  • the second beam parameter information and/or the third beam parameter information are CRI and L1-RSRP.
  • the second beam parameter information and/or the third beam parameter information is a beam index (such as CRI or SSBRI) and L1-SINR.
  • Figure 3 shows a schematic flowchart of a method for receiving beam parameter information provided by an embodiment. As shown in Figure 3, the method provided by this embodiment is applicable to the second communication node. The method includes the following steps.
  • S210 Send N sets of reference signal configuration information and K sets of reference signals.
  • a method of sending K sets of reference signals may be: sending K sets of reference signals according to N sets of reference signal configuration information.
  • the second communication node transmits N sets of reference signal configuration information and K sets of reference signals corresponding to K sets of reference signal configuration information.
  • the first communication node receives N sets of reference signal configuration information, and receives K sets of reference signals based on the N sets of reference signal configuration information.
  • K and N are both positive integers, and K is less than N.
  • K and N are both positive integers, and K is less than N, which means that the second communication node transmits K sets of reference signals with a number less than N due to conflicts between reference signal resources configured by the second communication node or other reasons, and the first communication node K sets of reference signals were received.
  • the second communication node can transmit N sets of reference signals, and the first communication node receives N sets of reference signals, that is, K equals N.
  • the second communication node transmits N sets of reference signals, and the first communication node can only effectively receive K sets of reference signals due to its own capabilities or poor signals.
  • the reference signal configuration information includes resource type resourceType, where the resource type defines the time domain transmission characteristics of the reference signal, where the time domain characteristics include but are not limited to aperiodic, periodic, semi-persistent ( semi-persistent) characteristics, respectively indicating that the transmitted reference signal is a non-periodic transmission reference signal, a periodic transmission reference signal, or a semi-persistent transmission reference signal, respectively called periodic reference signal, aperiodic reference signal, and semi-persistent reference signal.
  • the periodic reference signal or the semi-persistent reference signal will configure a period and/or slot offset (slot offset) information through high-level signaling.
  • the second communication node configures N sets of reference signal configuration information.
  • these N sets of reference signal configuration information there are K1 periodic reference signals, K2 aperiodic reference signals, and K3 semi-continuous reference signals.
  • K1, K2, K3 are non-negative integers
  • K1+K2+K3 N.
  • the second communication node configures N sets of reference signal configuration information.
  • the resource categories are all the same, that is, two of K1, K2, and K3 have values of zero, for example, they are all periodic reference signals or they are all aperiodic reference signals or they are all It is a semi-continuous reference signal.
  • the resource category of at least one reference signal is different from the resource category of another reference signal, such as at least two of K1, K2, and K3. The value is greater than zero.
  • Reference signal in one configuration, there are two sets of periodic reference signals and two sets of aperiodic reference signals; in one configuration, there are two sets of semi-continuous reference signals and two sets of periodic reference signals.
  • a set of reference signals includes one of the following: a reference signal resource, a group of reference signal resources, a reference signal resource set, and a reference signal resource corresponding to a reference signal resource configuration.
  • a set of reference signals includes a reference signal resource, such as a CSI-RS resource, or an SRS resource, or an SSB resource; in one embodiment, a set of reference signals includes a set of reference signal resources, such as a set of CSI -RS resource, or a set of SRS resources, or a set of SSB resources; in one embodiment, a set of reference signals includes a set of reference signal resources, such as a CSI-RS resource set, or an SRS resource set, or an SSB resource set; In one embodiment, a set of reference signals includes a reference signal resource corresponding to a reference signal resource configuration, such as a reference signal resource corresponding to a CSI-RS resource config/setting, or a reference signal corresponding to an SRS resource config/setting.
  • Signal resource
  • the beam parameter information is at least one beam parameter information among M beam parameter information groups determined by the first communication node based on K sets of reference signals; K, M, and N are all positive integers, and K is smaller than N.
  • the second communication node does not wish to send less than N sets of reference signals. That is to say, if the second communication node is configured with N sets of reference signal configuration information, then the second communication node does not expect to transmit less than N sets of reference signals corresponding to the N sets of reference signal configuration information.
  • N sets of reference signal configuration information correspond to N sets of reference signals, and K sets of reference signals are part of the N sets of reference signals.
  • determining the beam parameter information group can be implemented using AI's beam prediction method, which may include, for example, spatial domain beam prediction and time domain beam prediction, or space-time beam prediction.
  • N sets of reference signals corresponding to N sets of reference signal configuration information belong to the same reference signal set or the same reference signal configuration.
  • the first communication node determines M beam parameter information groups based on K sets of reference signals, and the rules include at least one of the following:
  • the first communication node determines that the M beam parameter information groups are empty. That is, the first communication node does not perform beam prediction.
  • the second communication node only transmits K sets of reference signals among N sets of reference signals, and K is less than N.
  • the first communication node receives K sets of reference signals and finds that the number of K sets of reference signals is less than the expected N sets of reference signals. It cannot obtain the M beam parameter information groups after the reference time slot through the beam parameter information groups corresponding to the K sets of reference signals. . Therefore, the first communication node does not perform the operation of obtaining M beam parameter information groups through the beam parameter information groups corresponding to the K sets of reference signals. The first communication node also does not feed back the preferred beam parameter information after the reference time slot.
  • the first communication node determines M beam parameter information groups based on at least one set of reference signals among the K sets of reference signals.
  • the second communication node only transmits K sets of reference signals among N sets of reference signals, and K is less than N.
  • the first communication node receives K sets of reference signals and obtains M beam parameter information groups based on at least one set of the K sets of reference signals.
  • the first communication node determines that the beam parameter information group of the reference signal with the largest transmission time slot is M beams based on the reference signal with the largest transmission time slot among the K sets of reference signals, that is, the reference signal closest to the reference time slot.
  • Parameter information group For example, the Lc beam parameter information with the largest beam parameter information value in the beam parameter information group of the reference signal with the largest transmission time slot is determined as the determined beam parameter information.
  • M 1, and the M beam parameter information groups only include Lc pieces of beam parameter information.
  • Lc is Positive integer.
  • the value of Lc can be 1.
  • the first communication node determines K first beam parameter information groups based on K sets of reference signals; and obtains M beam parameter information groups (such as second beam parameter information groups) based on the K first beam parameter information groups.
  • M is a positive integer.
  • the second communication node only transmits K sets of reference signals among N sets of reference signals, and K is less than N.
  • the first communication node receives K sets of reference signals and finds that the number of K sets of reference signals is less than the expected N sets of reference signals.
  • the first communication node determines whether M beams can be obtained based on K beam parameter information groups based on its own processing capabilities. Parameter information group. If possible, determine the K first beam parameter information groups based on the K sets of reference signals; and obtain M beam parameter information groups based on the K first beam parameter information groups. Otherwise, do not pass the beam corresponding to the K sets of reference signals.
  • the parameter information group obtains M beam parameter information groups, or obtains preferred beam parameter information corresponding to at least one beam parameter information group among the K beam parameter information groups according to an agreed method.
  • the first communication node locally searches for an AI model, and the AI model can obtain M beam parameter information groups based on K first beam parameter information groups, for example, taking K first beam parameter information groups as input, and Output M beam parameter information groups.
  • the first communication node determines K first beam parameter information groups based on K sets of reference signals; processes the K first beam parameter information groups into N second beam parameter information groups; based on the N second beam parameter information groups Information group, obtain M beam parameter information groups (such as the third beam parameter information group), M is a positive integer.
  • the second communication node only transmits K sets of reference signals among N sets of reference signals, and K is less than N.
  • the first communication node receives K sets of reference signals and finds that the number of K sets of reference signals is less than the expected N sets of reference signals.
  • the first communication node determines whether M beams can be obtained based on K beam parameter information groups based on its own processing capabilities. Parameter information group.
  • the first communication node determines K first beam parameter information groups based on K sets of reference signals; processes the K first beam parameter information groups into N second beam parameter information groups; based on the N second beam parameter information groups Information group, obtain M beam parameter information groups, otherwise, do not perform the operation of obtaining M beam parameter information groups through the beam parameter information groups corresponding to the K sets of reference signals, or obtain the K beam parameter information groups according to the agreed method.
  • Preferred beam parameter information corresponding to at least one beam parameter information group.
  • the number of elements included in the first beam parameter information group is less than the number of elements included in the second beam parameter information group, and the number of elements included in the second beam parameter information group is less than or equal to the beam parameter information group (such as the first beam parameter information group).
  • the number of elements included in the three-beam parameter information group is less than the number of elements included in the second beam parameter information group, and the number of elements included in the second beam parameter information group is less than or equal to the beam parameter information group (such as the first beam parameter information group). The number of elements included in the three-beam parameter information group).
  • the first communication node performs a zero-filling operation on K first beam parameter information groups to obtain N second beam parameter information groups. For example, based on the time slots in which the reference signals corresponding to the K first beam parameter information groups are transmitted, it is determined which beams among the N beam parameter information groups are received. Parameter information group, and fill the zero matrix for the beam parameter information group corresponding to the reference signal that has not been received.
  • the first communication node determines that the beam parameter information group is empty, or determines M beam parameter information groups based on at least one set of K sets of reference signals; when K is greater than K0, the first communication node A communication node determines K first beam parameter information groups based on K sets of reference signals, processes the K first beam parameter information groups into N second beam parameter information groups, and obtains M beam parameter information groups, or the first communication node determines K first beam parameter information groups based on K sets of reference signals, and determines M beam parameter information groups based on the K first beam parameter information groups, M, K0 is a positive integer.
  • the second communication node only transmits K sets of reference signals among N sets of reference signals, and K is less than N.
  • the first communication node receives K sets of reference signals and finds that the number of K sets of reference signals is less than the expected N sets of reference signals.
  • the first communication node determines K first beam parameter information groups based on K sets of reference signals; processes the K first beam parameter information groups into N second beam parameter information groups; Two beam parameter information groups are used to obtain M beam parameter information groups (for example, using the original AI model to achieve this operation), or the first communication node determines K first beam parameter information groups based on K sets of reference signals, and According to the K first beam parameter information groups, determine M beam parameter information groups (for example, search for a new AI model to achieve this operation); when K is less than K0, the first communication node does not perform correspondence through K sets of reference signals The operation of obtaining M beam parameter information groups from the beam parameter information group, or determining the M beam parameter information groups based on at least one set of reference signals among the K sets of reference signals.
  • K0 is a positive integer greater than 0, which is obtained according to the configuration of the second communication node, or according to the agreement between the second communication node and the first communication node.
  • the first communication node receives the 1st, 2nd, ..., N-1 sets of reference signals among the N sets of reference signals, and the first communication node does not obtain M sets of beam parameter information based on the K sets of beam parameter information groups. Group operations.
  • the first communication node receives at least the Nth set of reference signals among the N sets of reference signals, and the first communication node obtains the beam parameter information group corresponding to the Nth set of reference signals based on the Nth set of reference signals and the agreed method. preferred beam parameter information.
  • the first communication node receives at least the Nth set of reference signals among the N sets of reference signals, the first communication node determines K first beam parameter information groups based on the K sets of reference signals, and combines the K first beams
  • the parameter information group is processed into N second beam parameter information groups, and M beam parameter information groups are obtained based on the N second beam parameter information groups.
  • a set of reference signals includes a set of reference signal resources. If one/several sets of reference signals If one or more reference signal resources among the signal resources have not been transmitted, the first communication node may use a zero-filling method to perform a zero-filling operation on the positions where the reference signal resources have not been transmitted.
  • the zero-filling operation in this embodiment is similar to the above-mentioned zero-filling operation of the beam parameter information group.
  • the first communication node sends a beam parameter information group
  • the first communication node is configured with M CSI reports, and is used to transmit M preferred beam parameter information.
  • the first communication node selects one of M transmission resources to transmit preferred beam parameter information (for example, determines a second beam parameter information group based on K first beam parameter information groups, and selects a second beam parameter information group based on the second beam parameter information group).
  • the Lc beam parameter information with the largest beam parameter information is the optimal beam parameter information).
  • the remaining M-1 transmission resources are not used for transmitting beam parameter information, but can be used for transmitting data or other signaling or signals.
  • At least one beam parameter information (eg, preferred beam parameter information) of the M beam parameter information groups is fed back.
  • preferred beam parameter information transmitted in uplink transmission resources e.g., preferred beam parameter information transmitted in uplink transmission resources.
  • the preferred beam parameter information corresponding to the M beam parameter information groups is carried and transmitted on at least one aperiodic PUSCH.
  • the preferred beam parameter information corresponding to the M beam parameter information groups is carried and transmitted on at least one semi-persistent PUSCH.
  • the preferred beam parameter information corresponding to the M beam parameter information groups is carried and transmitted on the PUCCH of at least one cycle.
  • feeding back a channel state information means carrying CSI on an uplink transmission resource for transmission.
  • feedback of at least one channel state information through a channel state information report refers to carrying at least one channel state information on the uplink transmission resource indicated by the channel state information report, and transmitting the at least one channel state information to another through the uplink transmission resource.
  • the channel state information includes beam parameter information.
  • Figure 4 shows a schematic structural diagram of a feedback device for beam parameter information provided by an embodiment.
  • the device can be configured in the first communication node. As shown in Figure 4, the device includes: a receiving module 10 and a processing module 11 and sending module 12.
  • the receiving module 10 is configured to receive N sets of reference signal configuration information and K sets of reference signals;
  • the processing module 11 is configured to determine M beam parameter information groups based on K sets of reference signals;
  • the sending module 12 is configured to feed back at least one beam parameter information among the M beam parameter information groups; K, M, and N are all positive integers, and K is less than N.
  • the feedback device for beam parameter information provided by this embodiment implements the feedback method for beam parameter information in the embodiment shown in Figure 2.
  • the implementation principles and technical effects of the feedback device for beam parameter information provided by this embodiment are similar to those of the above embodiment.
  • the receiving module 10 may include a first receiving sub-module and a second receiving sub-module,
  • the first receiving sub-module is configured to receive N sets of reference signal configuration information
  • the second receiving sub-module is configured to receive K sets of reference signals.
  • a set of reference signals includes one of the following: a reference signal resource, a group of reference signal resources, a reference signal resource set, and a reference signal resource corresponding to a reference signal resource configuration.
  • the receiving module 10 is configured to receive K sets of reference signals according to N sets of reference signal configuration information.
  • N sets of reference signal configuration information correspond to N sets of reference signals
  • K sets of reference signals are part of the N sets of reference signals.
  • N sets of reference signals belong to the same reference signal set or N sets of reference signals belong to the same reference signal configuration.
  • the first communication node does not expect to receive less than N sets of reference signals corresponding to the N sets of reference signal configuration information.
  • the processing module 11 is configured to determine that the M beam parameter information groups are empty.
  • the processing module 11 is configured to determine M beam parameter information groups based on at least one set of K sets of reference signals.
  • the processing module 11 is configured to determine the beam parameter information group of the reference signal with the largest transmission time slot as M beam parameter information groups based on the reference signal with the largest transmission time slot among the K sets of reference signals.
  • K is smaller than K0, and K0 is a positive integer.
  • the processing module 11 is configured to determine K first beam parameter information groups based on K sets of reference signals; determine M beam parameter information groups based on the K first beam parameter information groups, where M is positive integer.
  • the processing module 11 is configured to determine K first beam parameter information groups based on K sets of reference signals; process the K first beam parameter information groups into N second beam parameter information groups; according to N second beam parameter information groups determine M beam parameter information groups, where M is a positive integer.
  • the number of elements included in the first beam parameter information group is less than the number of elements included in the second beam parameter information group, and the number of elements included in the second beam parameter information group is less than or equal to the number of elements included in the second beam parameter information group. The number of elements.
  • the processing module 11 is configured to zero-pad the K first beam parameter information groups to obtain N second beam parameter information groups.
  • K is greater than K0, and K0 is a positive integer.
  • Figure 5 shows a schematic structural diagram of a device for receiving beam parameter information provided in an embodiment.
  • the device can be configured in the second communication node.
  • the device includes: a sending module 20 and a receiving module 21 .
  • the sending module 20 is configured to send N sets of reference signal configuration information and K sets of reference signals.
  • the receiving module 21 is configured to receive at least one beam parameter information, which is at least one beam parameter information among M beam parameter information groups determined by the first communication node based on K sets of reference signals; K, M, and N are all Positive integer, and K is less than N.
  • the device for receiving beam parameter information provided by this embodiment implements the method for receiving beam parameter information in the embodiment shown in Figure 3.
  • the implementation principles and technical effects of the device for receiving beam parameter information provided by this embodiment are similar to those of the above embodiment.
  • the sending module 20 may include a first sending sub-module and a second sending sub-module.
  • the first sending sub-module is configured to send N sets of reference signal configuration information
  • the second sending sub-module is configured to send K sets of reference signals. .
  • a set of reference signals includes one of the following: a reference signal resource, a group of reference signal resources, a reference signal resource set, and a reference signal resource corresponding to a reference signal resource configuration.
  • the sending module 20 is configured to send K sets of reference signals according to N sets of reference signal configuration information.
  • N sets of reference signal configuration information correspond to N sets of reference signals
  • K sets of reference signals are part of the N sets of reference signals.
  • N sets of reference signals belong to the same reference signal set or N sets of reference signals belong to the same reference signal configuration.
  • the second communication node does not wish to send less than N sets of reference signals corresponding to the N sets of reference signal configuration information.
  • An embodiment of the present application also provides a communication node, including: a processor, and the processor is configured to implement the method provided by any embodiment of the present application when executing a computer program.
  • the communication node may be a first communication node or a second communication node.
  • the first communication node includes: a processor, the processor is configured to implement the feedback method of beam parameter information as provided in any embodiment of the present application when executing a computer program;
  • the second communication node includes: a processor, the processor is configured to execute
  • the computer program implements the method for receiving beam parameter information as provided in any embodiment of the present application.
  • Illustrative, First Communication Section The point may be a terminal device provided by any embodiment of the present application, and the second communication node may be an access network device provided by any embodiment of the present application, such as a base station.
  • the following embodiments respectively provide a schematic structural diagram in which the communication nodes are a base station and a UE.
  • Figure 6 shows a schematic structural diagram of a base station provided by an embodiment.
  • the base station includes a processor 60, a memory 61 and a communication interface 62; the number of processors 60 in the base station may be one or more
  • Figure 6 takes a processor 60 as an example; the processor 60, memory 61, and communication interface 62 in the base station can be connected through a bus or other means.
  • Figure 6 takes a bus connection as an example.
  • a bus represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • the memory 61 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 60 executes software programs, instructions and modules stored in the memory 61 to execute at least one functional application and data processing of the base station, that is, to implement the above method.
  • the memory 61 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required for at least one function; the storage data area may store data created according to the use of the terminal, etc.
  • the memory 61 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 61 may include memory located remotely relative to processor 60, and these remote memories may be connected to the base station through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, networks, mobile communication networks and combinations thereof.
  • the communication interface 62 may be configured to receive and send data.
  • FIG. 7 shows a schematic structural diagram of a UE provided by an embodiment.
  • the UE can be implemented in various forms.
  • the UE in this application can include but is not limited to mobile phones, smart phones, notebook computers, digital broadcast receivers, etc. , personal digital assistant (Personal Digital Assistant, PDA), tablet computer (Portable Device, PAD), portable multimedia player (Portable Media Player, PMP), navigation device, vehicle terminal equipment, vehicle display terminal, vehicle electronic rearview mirror, etc.
  • Mobile terminal equipment as well as fixed terminal equipment such as digital television (TV), desktop computers, etc.
  • the UE 50 may include a wireless communication unit 51, an audio/video (A/V) input unit 52, a user input unit 53, a sensing unit 54, an output unit 55, a memory 56, and an interface unit. 57. Processor 58 and power supply unit 59, etc.
  • Figure 7 illustrates a UE that includes a variety of components, but it should be understood that implementation of all illustrated components is not required. More or fewer components may alternatively be implemented.
  • the wireless communication unit 51 allows radio communication between the UE 50 and the base station or network.
  • A/V input unit 52 is arranged to receive audio or video signals.
  • the user input unit 53 may generate key input data according to commands input by the user to control various operations of the UE 50 .
  • the sensing unit 54 detects the current state of the UE 50 , the position of the UE 50 , the presence or absence of the user's touch input to the UE 50 , the orientation of the UE 50 , the acceleration or deceleration movement and direction of the UE 50 , etc., and generates a signal for controlling the UE 50 A command or signal for an operation.
  • the interface unit 57 serves as an interface through which at least one external device can connect to the UE 50 .
  • the output unit 55 is configured to provide an output signal in a visual, audio and/or tactile manner.
  • the memory 56 may store software programs and the like for processing and control operations executed by the processor 58, or may temporarily store data that has been output or is to be output.
  • Memory 56 may include at least one type of storage medium.
  • UE 50 may cooperate with a network storage device that performs the storage functions of memory 56 over a network connection.
  • Processor 58 generally controls the overall operation of UE 50.
  • the power supply unit 59 receives external power or internal power under the control of the processor 58 and provides appropriate power required to operate various elements and components.
  • the processor 58 executes at least one functional application and data processing by running the program stored in the memory 56, for example, implementing the method provided by the embodiment of the present application.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the method provided by any embodiment of the present application is implemented.
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to: an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof.
  • Computer-readable storage media include (non-exhaustive list): electrical connection with one or more wires, portable computer disk, hard drive, random access memory (RAM), read-only memory (Read-Only Memory) , ROM), electrically erasable, programmable Read-Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical memory components, magnetic storage devices, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, the data signal carrying computer-readable program code. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can be sent, propagated, or transmitted for execution by instructions to a system, device, or machine. software or used in conjunction with it.
  • Program code contained on a computer-readable medium can be transmitted using any appropriate medium, including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing operations of the present disclosure may be written in one or more programming languages, or a combination of programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, Ruby, Go), and also includes conventional procedural programming languages (such as the "C" language or similar programming languages).
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer (e.g. Use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuitry, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source code or object code.
  • ISA Instruction Set Architecture
  • Any block diagram of a logic flow in the figures of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital versatile disc DVD or CD), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FGPA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了波束参数信息的反馈、接收方法,通信节点及存储介质。波束参数信息的反馈方法包括:接收N套参考信号配置信息和K套参考信号;根据K套参考信号,确定M个波束参数信息组;反馈M个波束参数信息组中的至少一个波束参数信息;K、M、N均为正整数、且K小于N。

Description

波束参数信息的反馈、接收方法,通信节点及存储介质
本申请要求在2022年08月19日提交中国专利局、申请号为202211000598.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,例如涉及一种波束参数信息的反馈、接收方法,通信节点及存储介质。
背景技术
随着通信技术的不断发展,人工智能(Artificial Intelligence,AI)已经被立项研究,研究的内容包括但不限于信道状态信息(Channel State Information,CSI)反馈、波束管理、信道估计、定位、干扰管理、用户调度、功率控制等应用。例如,其中的一个应用就是采用AI的方式,利用N个参考时隙之前的第一波束参数信息组获取M个参考时隙之后的第二波束参数信息组。然而,在有些场景中,通信节点并不能有效地获得N个波束参数信息组,只能获得K个波束参数信息组,K小于N。因此,如何获取这种场景下的第二波束参数信息组,是一个亟需解决的问题。
发明内容
本申请实施例提供一种波束参数信息的反馈方法,应用于第一通信节点,包括:
接收N套参考信号配置信息和K套参考信号;
根据K套参考信号,确定M个波束参数信息组;
反馈M个波束参数信息组中的至少一个波束参数信息;K、M、N均为正整数、且K小于N。
本申请实施例提供一种波束参数信息的接收方法,应用于第二通信节点,包括:
发送N套参考信号配置信息和K套参考信号;
接收至少一个波束参数信息,波束参数信息是第一通信节点根据K套参考信号确定出的M个波束参数信息组中的至少一个波束参数信息;K、M、N均为正整数、且K小于N。
本申请实施例提供一种第一通信节点,包括:处理器;处理器设置为在执行计算机程序时实现上述任一实施例的波束参数信息的反馈方法。
本申请实施例提供一种第二通信节点,包括:处理器;处理器设置为在执行计算机程序时实现上述任一实施例的波束参数信息的接收方法。
本申请实施例还提供一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例的方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是一实施例提供的一种无线通信系统的组网示意图;
图2是一实施例提供的一种波束参数信息的反馈方法的流程示意图;
图3是一实施例提供的一种波束参数信息的接收方法的流程示意图;
图4是一实施例提供的一种波束参数信息的反馈装置的结构示意图;
图5是一实施例提供的一种波束参数信息的接收装置的结构示意图;
图6是一实施例提供的一种基站的结构示意图;
图7是一实施例提供的一种UE的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请。下文中将结合附图对本申请的实施例进行说明。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”后缀仅为了有利于本申请的说明,其本身没有特有的意义,因此,“模块”、“部件”或“单元”可以混合地使用。
目前,AI,特别是基于深度学习的AI,其具有极强的特征提取能力,能够根据已有的信息提取特征,再根据提取的特征预测未来的信息,已经被广泛应用于生产生活的方方面面。将AI引入无线通信系统,和无线通信系统深度融合,以提高无线通信系统的性能,已得到了多个厂家、研究结构和研究人员的广泛共识和研究。研究的内容包括但不限于CSI反馈、波束管理、信道估计、定位、干扰管理、用户调度、功率控制等应用。
高频拥有丰富的频谱资源,可以提高无线通信系统的传输效率。但是由于高频的载频高、路径损耗大,需要采用波束赋形将发送能量集中于接收端方向 以获得增益。一般来说,发送端包括Nt个发送波束,接收端包括Nr个接收波束,最多经过Nt*Nr次波束扫描就能选出最优波束。另外也可以采用分阶段波束扫描的方法:固定接收波束扫描发送波束或固定发送波束扫描接收波束,该方法可能需要Nt+Nr次波束扫描来选出次优波束。但是当Nt和Nr的取值较大时,上述两种波束扫描方法对资源的开销还是很大的。为此,可以采用AI的方式,利用历史发送波束来预测未来发送波束,和/或,利用历史接收波束来预测未来接收波束,或者,用历史发送接收波束对,预测未来发送接收波束对,比如用N个历史时刻的波束组(本申请中波束包括发送波束、接收波束、发送接收波束对)预测未来M个时刻的波束组,那么就可以减小M个未来时隙的参考信号发送,从而可以节省参考信号的资源开销。例如,利用N个参考时隙之前的第一波束参数信息组获取M个参考时隙之后的第二波束参数信息组。然而,在有些场景中,通信节点并不能有效地获得N个第一波束参数信息组,只能获得K个第一波束参数信息组,K小于N。因此,如何获取这种场景下的第二波束参数信息组,是一个亟需解决的问题。
本申请提供的波束参数信息的反馈、接收方法可以应用于多类无线通信系统中,例如长期演进(long term evolution,LTE)系统、第四代移动通信技术(4th-generation,4G)系统、第五代移动通信技术(5th-generation,5G)系统、LTE与5G混合架构系统、5G新无线电(New Radio,NR)系统、以及未来通信发展中出现的新的通信系统,如第六代移动通信技术(6th-generation,6G)系统等。图1示出了一实施例提供的一种无线通信系统的组网示意图。如图1所示,该无线通信系统包括终端设备110、接入网设备120和核心网设备130。
终端设备110可以是一种具有无线收发功能的设备,可以部署在陆地上(如室内或室外、手持、穿戴或车载等);也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星等)。一些终端设备110的举例为:用户设备(User Equipment,UE)、手机、移动台、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)等可以联网的用户设备,或虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等,或物联网中的物联网节点,或车联网中的车载通信装置,或娱乐、游戏设备或系统,或全球定位系统设备等。本申请实施例的终端设备所采用的技术和设备形态均可以有多种。另外,终端设备可以简称终端。
接入网设备120是终端设备110通过无线方式接入到该无线通信系统中的接入设备,可以是基站(base station)、长期演进增强(Long Term Evolution advanced,LTEA)中的演进型基站(evolved NodeB,eNB或eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的基站或下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。基站可以包括宏基站、微基站、家庭基站、无线拉远、路由器、WIFI设备或者主小区(primary cell)和协作小区(secondary cell)等多种网络侧设备、定位管理功能(location management function,LMF)设备。也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请实施例的接入网设备所采用的技术和设备形态均可以有多种。另外,接入网设备可以简称基站。
核心网设备130可以包括接入与移动性管理网元和会话管理网元。示例性地,终端设备110可以通过接入网设备120接入核心网,从而实现数据传输。
在本申请实施例中,提供一种可运行于上述无线通信系统的波束参数信息的反馈、接收方法,通信节点及存储介质,能够在不能有效地获得期望数量的波束参数信息组时进行波束参数信息组的预测,降低系统的信令开销,提升无线通信系统性能。
首先,对本申请下述实施例涉及的概念进行解释:
在本申请中,在下行链路中第一通信节点(也可以称为第一通信节点设备)可以是基站侧设备,第二通信节点(也可以称为第二通信节点设备)可以终端侧设备,当然,在上行链路中第一通信节点也可以是终端侧设备,第二通信节点也可以是基站侧设备。在两个通信节点是设备到设备通信中,第一通信节点和第二通信节点都可以是基站或者终端。
在本申请中,高层信令包括但不限于无线资源控制(Radio Resource Control,RRC),媒体控制-控制单元(Media Access Control control element,MAC CE),基站和终端间还可以传输物理层信令,比如在物理下行控制信道(Physical Downlink Control CHannel,PDCCH)上传输物理层信令,在物理上行控制信道(Physical Uplink Control CHannel,PUCCH)传输物理层信令。
在本申请中,参数的指示Indicator,也可以称为索引Index,或者标识(Identifier,ID),它们是完全等价的概念。比如无线系统的资源标识,这里无线系统资源包括但不限于以下之一:一个参考信号资源、参考信号资源组,参考信号资源配置、信道状态信息(Channel State Information,CSI)报告、CSI报告集合、终端、基站、面板、神经网络、子神经网络、神经网络层等对应的 索引。基站可以通过多种高层信令和/或者物理层信令指示一个或一组资源的标识给终端。
在一实施例中,AI包括机器学习(Machine Learning,ML),深度学习,强化学习,迁移学习,深度强化学习,元学习等具有自我学习的设备、组件、软件、模块。在一实施例中,人工智能通过人工智能网络(或称为神经网络)实现,神经网络包括多个层,每层包括至少一个节点,在一个示例中,神经网络包括输入层,输出层,至少一层隐藏层,其中每层神经网络包括但不限于使用了全连接层,稠密层,卷积层,转置卷积层,直连层,激活函数,归一化层,池化层等至少之一。在一实施例中,神经网络的每一层可以包括一个子神经网络,比如残差块(Residual Network block,或者Resnet block),稠密网络(Densenet Block),循环网络(Recurrent Neural Network,RNN)等。人工智能网络(AI网络)包括神经网络模型和/或神经网络模型对应的神经网络参数,其中,神经网络模型可以简称为网络模型,神经网络参数可以简称网络参数。一个网络模型定义了神经网络的层数,每层的大小,激活函数,链接情况,卷积核和大小卷积步长,卷积类型(比如1D卷积,2D卷积,3D卷积,空心卷积,转置卷积,可分卷积,分组卷积,扩展卷积等)等网络的架构,而网络参数是网络模型中每层网络的权值和/或偏置以及它们的取值。一个网络模型可以对应多套不同的神经网络参数取值以适应不同的场景。一个神经网络模型可以对应多个不同的神经网络参数取值。通过线上训练或者线下训练的方式获得神经网络的参数。比如通过输入至少一个样本和标签,训练神经网络模型以获得神经网络参数。
在一实施例中,时隙可以是时隙slot或子时隙mini slot。一个时隙或者子时隙包括至少一个符号。这里符号是指一个子帧或帧或时隙中的时间单位,比如可以为一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、单载波频分复用多址接入(Single-Carrier Frequency Division Multiple Access,SC-FDMA)符号、正交多址频分复用接入(Orthogonal Frequency Division Multiple Access,OFDMA)符号。
在一实施例中,传输包括发送或接收。比如发送数据或者信号,接收数据或者信号。
在一实施例中,为了计算信道状态信息或者进行信道估计,移动性管理,定位等,需要基站或者用户发送参考信号(Reference Signal,RS),参考信号包括但不限于信道状态信息参考信号(Channel-State Information reference signal,CSI-RS),它包括零功率的CSI-RS(Zero Power CSI-RS,ZP CSI-RS)和非零功率的CSI-RS(Non-Zero Power CSI-RS,NZP CSI-RS),信道状态信息干扰测量信号(Channel-State Information-Interference Measurement,C SI-IM),探测参考 信号(Sounding Reference Signal,SRS),同步信号块(Synchronization Signals Block,SSB)、物理广播信道(Physical Broadcast Channel,PBCH)、同步信号块/物理广播信道(SSB/PBCH),NZP CSI-RS可以用来测量信道或者干扰,CSI-RS也可以用来做跟踪,叫做跟踪参考信号(CSI-RS for Tracking,TRS),而CSI-IM一般用来测量干扰,SRS用来测量上行信道。另外,用于传输参考信号的时频资源包括的资源元素(Resource Element,RE)集合称为参考信号资源,比如,CSI-RS resource,SRS resource,CSI-IM resource,SSB resource。在本申请中,SSB包括同步信号块和/或物理广播信道。
在一实施例中,在通信系统中,传输参考信号的资源可以称为参考信号资源,为了节省信令开销等,可能会把多个参考信号资源组合成一个集合(比如CSI-RS resource set,CSI-IM resource set,SRS resource set),一个参考信号资源集合包括至少一个参考信号资源,而多个参考信号资源集合可以都来自同一个参考信号资源设置(比如CSI-RS resource setting,SRS resource setting,其中CSI-RS resource setting可能和CSI-IM resource setting合并,都称为CSI-RS resource setting)来配置参考信号参数信息。
在一实施例中,基站配置参考信号配置信息,所述参考信号配置信息用于指示参信号资源的时频位置,时域特性(比如周期的参考信号、非周期的参考信号,半持续的参考信号),参考信号资源的集合,准共位置信息,参考信号资源索引,参考信号资源集合索引等。一套参考信号配置信息对应一套参考信号资源。参考信号资源用于获取信道状态信息,比如波束参数信息组,其中一个波束参数信息组中包括至少一个波束参数信息。其中,一套参考信号资源(或者称为测量资源信息)包括CN个信道测量资源(Channel Measurement Resource,CMR)信息和/或CM个干扰测量资源(Interference Measurement Resource,IMR)信息,CN和CM为正整数。基站在一个报告配置(report config)或报告设置(reporting setting)中配置测量资源信息。在一些示例中,一个信道测量资源信息包括至少一个信道参考信号资源设置,比如至少一个CSI-RS resource setting或至少一个SRS resource setting,一个干扰测量资源信息包括至少一个干扰参考信号资源设置,比如至少一个CSI-IM resource setting。在一些示例中,一个信道测量资源信息包括至少一个信道参考信号资源集合,比如至少一个CSI-RS resource set或至少一个SRS resource set,一个干扰测量资源信息包括至少一个干扰参考信号资源集合,比如至少一个CSI-IM resource set。在一些示例中,一个信道测量资源信息包括至少一个信道参考信号资源,比如至少一个CSI-RS resource或至少一个SRS resource,一个干扰测量资源信息包括至少一个干扰参考信号资源,比如至少一个CSI-IM resource。
在一实施例中,波束包括发送波束、接收波束、预编码、预编码矩阵、预 编码矩阵索引,接收波束和发送波束对,发送波束和接收波束对。波束可以为一种资源(例如发端预编码,收端预编码、天线端口,天线权重矢量,天线权重矩阵等),波束索引可以被替换为资源索引,因为波束可以与一些时频资源进行传输上的绑定。波束也可以为一种传输(发送/接收)方式;传输方式可以包括空分复用、频域/时域分集等。接收波束指示是指,发送端可以通过当前参考信号资源(或参考信号资源索引)和天线端口,与UE反馈报告的参考信号资源(或基准参考信号资源,参考信号资源索引)和天线端口的准共址(Quasi-Co-Location Indicator,QCL)假设来进行指示。波束对包括一个发送波束和一个接收波束的组合。
在一实施例中,波束方向或者波束角度可以包括以下至少之一:到达角(Angle Of Arrival,AOA)、离开角(Angle Of Departure,AOD)、ZOD(Zenith angle Of Departure)、ZOA(Zenith angle Of Arrival)、由AOA,AOD,ZOD,ZOA至少一个角度构造的向量或者向量索引,离散傅里叶变化(Discrete Fourier Transformation,DFT)矢量、码本中的码字、发送波束索引、接收波束索引、发送波束组索引、接收波束组索引。在一实施例中,波束指一个空域滤波器或者一个空间接收/发送参数,空域滤波可以是以下至少之一:DFT矢量,预编码矢量,DFT矩阵,预编码矩阵,或者多个DFT线性组合构成的矢量,多个预编码矢量线性组合构成的矢量。
在一实施例中,特别是在高频传输时,由于载频比较高,路径损失大,需要用到波束赋形,将能量集中在朝终端的方向传播,从而需要用到波束管理。其中波束管理包括但不限于波束扫描、波束跟踪和波束恢复几个方面,需要解决的核心问题是如何通过尽可能低的控制开销获取准确的波束对。其中,波束扫描包括发送端波束扫描和/或接收端波束扫描。为了减小波束扫描的开销,可以通过两阶段的扫描。在一实施例中,波束训练可以包括第一阶段,第二阶段,第三阶段的训练。其中,在第一阶段中同时扫描发送端的波束和接收端的波束;而在第二阶段的波束扫描中会固定一个接收波束,并扫描不同的发送波束;第三阶段为固定一个发送波束,扫描不同的接收波束。在一个示例中,比如通过发送NT个波束,固定接收,重复参数repetition取值为off,然后测量其中的NT个波束对应的参考信号接收功率(Reference Signal Received Power,RSRP),找到优选的L个进行上报。在一个示例中,通过发送1个波束,NR个接收波束接收,重复参数取值为on,然后测量其中的NR个波束对应的RSRP,找到最优的L个进行上报。在NR和NT都很大的时候,开销是非常大的,所以需要非常大的参考信号开销。这里,NR,NT为正整数。可以用AI的波束预测功能来减小波束扫描时的参考信号开销。其中,AI的波束预测包括空域波束预测和时域波束预测,或者空时波束预测。
在一些示例中,可以用到AI来实现空域波束预测,即只输入一个波束参数信息组,其中波束参数信息组包括L0个波束参数信息,根据L0波束参数信息预测另外一个波束信息组,这个波束信息组包括L1个波束参数信息,这里,L1个波束参数信息可以包括L0个波束参数信息,其中,L,L1,L0均为正整数,L0<L1,且它们都是正整数,波束可以为发送波束、接收波束或发送接收波束对。每个波束可以对应一个波束方向。在一些示例中,空域波束预测可以通过AI模块实现,比如通过一个神经网络实现。L0个波束对应的波束参数信息组合成一个波束参数信息数组(第一波束参数信息数组)输入神经网络,神经网络输出L1个波束对应的波束参数信息数组(第二波束参数信息数组),并将第二波束参数信息数组中的K个最大值对应的索引确定K个优选的波束。在一些示例中,也可以通过非AI的方式来实现空域波束预测,比如线性映射或者非线性映射等方式来实现空域波束预测。
在一些示例中,可以用到AI来实现时域波束预测,即只输入N个波束参数信息组,其中每个波束参数信息组包括L0个波束参数信息,根据N个第一波束参数信息组预测M个第二波束参数信息组。其中,M个第二波束参数信息组的每个波束参数信息组包括L1个波束参数信息。其中,N、M,L,L1,L0均为正整数,L0≤L1,且它们都是正整数,波束可以为发送波束、接收波束或发送接收波束对。每个波束可以对应一个波束方向。这里,N个第一波束参数信息组为参考时隙之前的波束参数信息,而M个第二波束参数信息组为参考时隙之后的波束参数信息。这里,当L0=L1时为时域波束预测,当L0<L1时为空时波束预测。在一些示例中,时域波束预测可以通过AI模块实现,比如通过一个神经网络实现。输入N个波束参数信息组,其中每个波束参数信息组包括L0个波束参数信息,将N*L0个波束参数信息合成一个更大的波束参数信息数组(第一波束参数信息数组)输入神经网络,神经网络输出M个波束参数信息组,其中每个波束参数信息组包括L1个波束参数信息,也可以将M*L1个波束参数信息组合成一个波束参数信息数组(第二波束参数信息数组),对于M组波束里的每组波束,将其中K个最大波束参数信息对应的索引确定为该波束信息组的K个优选的波束。其中,L1一般来说大于等L0,且都为正整数。在一些示例中,也可以通过非AI的方式来实现时域波束预测,比如线性映射或者非线性映射等方式来实现时域波束预测。
在一些示例中,通过线上训练或者线下训练的方式获得神经网络的参数。比如通过输入至少一个样本和标签,训练神经网络模型获得神经网络参数。在一些示例中,样本为一个终端测量得到的一个第一波束参数信息数组,标签为一个终端测量得到的一个第一波束参数信息数组对应的第二波束参数信息数组。在训练网络时,第一波束参数信息数组和第二波束参数信息数组具有对应 关系,例如为一一对应关系。在进行神经网络部署或者测试阶段,通过将第一波束参数信息数组输入神经网络以输出一个预测的第二波束参数信息数组,比较预测的第二波束参数信息数组和标签对应的第二波束参数信息数组,就可以知道网络的预测性能,以及根据两者的损失函数来训练神经网络。
在一些示例中,将发送波束和/或接收波束索引按约定的方式编号,形成波束索引。其中,一个波束索引包括以下之一:发送波束索引,接收波束索引,发送接收波束对索引。一个波束索引对应着一个波束方向,或者波束方向对应的矢量或矩阵。终端接收参考信号(比如CSI-RS,SSB等)并测量每个波束对应的波束参数信息,组合多个波束对应的波束参数信息得到波束参数信息数组。一般来说,第一波束参数信息数组为第一波束集合对应的波束参数信息形成的波束参数信息数组,第二波束参数信息数组为第二波束集合对应的波束参数信息形成的波束参数信息数组。而第一波束集合为第二波束集合的一个子集合。
在一些示例中,需要对第一波束参数信息数组中的元素进归一化处理,以便于神经网络更快的收敛。所谓归一化是指将一个数组里的元素取值归一化到一个大于等于a,小于等于b的区间的一个值。在一个示例中,a=-0.5,b=0.5;在一个示例中,a=0,b=1;在一个示例中,将数组里的元素除以这个数组元素里的绝对值最大的数以实现归一化;在一个示例中,将数组里的元素除以这个数组元素里的方差以实现归一化;在一个示例中,将数组里的元素除以一个固定的值(比如所有样本里的所有元素的最大值)以实现归一化;在一个示例中,将数组里的元素除以一个统计的值(比如所有样本里的所有元素的统计的方差值)以实现归一化。对于索引值,比如波束索引,CRI,SSBRI等,可以通过独热编码(One-Hot Encoding)实现归一化。
在一些示例中,波束参数信息数组是一维的数组,比如是一个向量。在一些示例中,波束参数信息数组是二维的数组,比如是一个矩阵。在一些示例中,波束参数信息数组是大于二维的数组,比如是一个张量。其中,向量和矩阵也可以看成张量的一种特殊情况。
在一实施例中,波束参数信息为一个波束对应的层1的参考信号接收功率(L1 Reference Signal Received Power,L1-RSRP或RSRP);在一实施例中,波束参数信息为一个波束对应的层1的参考信号信干噪比(L1Signal-to-Interference Noise Ratio,L1-SINR或SINR);在一实施例中,波束参数信息为一个波束对应的参考信号接收质量(Reference Signal Received Quality,RSRQ);在一实施例中,波束参数信息为一个波束对应的波束角度(AOA,ZOA,AOD,ZOD等至少之一,有时也分别称为水平到达角度,垂直到达角,水平离开角,垂直离开角);在一实施例中,波束参数信息为一个波束对应的发送波 束索引;在一实施例中,波束参数信息为一个波束对应的接收波束索引;在一实施例中,波束参数信息为一个波束对应的发送波束和接收波束对索引(简称为波束对索引或波束对);在一实施例中,波束参数信息为一个波束对应的波束域接收功率映射(Beam Domain Receive Power Map,BDRPM);在一实施例中,波束参数信息为一个波束对应的信道状态信息参考信号资源指示(CSI-RS Resource Indicator,CRI);在一实施例中,波束参数信息为一个波束对应的同步信号块资源指示(Synchronization Signals Block Resource Indicator,SSBRI)。在一实施例中,波束参数信息组为至少一个波束对应的以下波束参数信息的至少两个的组合:RSRP、RSRQ、SINR、波束角度、发送波束索引,接收波束索引,波束对索引、CRI,SSBRI等,在一个实施例中,一个波束参数信息组包括至少一个波束参数信息。在一实施例中,波束参数信息为RSRP、RSRQ、SINR之一的线性值。在一实施例中,波束参数信息为RSRP、RSRQ、SINR之一的对数值或者叫分贝值(DB)。
在一实施例中,波束参数信息可基于CSI-RS测量得到。在一实施例中,波束参数信息可基于SSB测量得到。在一实施例中,波束参数信息可基于SRS测量得到。
在一示例中,为了传输波束参数信息组,比如终端反馈波束参数信息,基站接收波束参数信息组。在一些示例中,波束参数信息组也是一种信道状态信息,需要在CSI报告定义的传输资源中传输。为了传输波束参数信息组,终端和基站定义一个CSI报告(CSI report或者CSI report congfig),其中CSI报告至少定义了如下参数之一:用于反馈CSI的时频资源,CSI包括的报告质量reportQuantity,CSI反馈的时域类别reportConfigType,信道测量资源,干扰测量资源,测量的带宽大小等信息。其中CSI报告可以在上行传输资源上传输,其中上行传输资源包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和PUCCH,而CSI report也包括时域特性,包括周期的CSI报告(periodic CSI report,P-CSI),非周期的CSI报告(aperiodic CSI report,AP-CSI),半持续的CSI报告(semi-persistent CSI report,SP-CSI)。一般来说,P-CSI传输的比特数目相对较小,在PUCCH上传输,而A-CSI传输的比特数较多,一般在PUSCH上传输,而SP-CSI可以基于PUSCH上传输,也可以基于PUCCH上传输。其中,基于PUCCH传输的P-CSI一般用高层信令(无线资源控制,Radio Resource Control,RRC)配置,基于PUCCH传输的SP-CSI也是用高层信令(RRC和/或MAC CE)配置或者激活,而基于PUSCH传输的SP-CSI或者A-CSI都是通过物理层信令(下行控制信息,Downlink control information,DCI)触发,而DCI一般在物理下行控制信道(Physical downlink control channel,PDCCH)上传输。在本申请实施例中,反馈波束参数信息组也可以称为传输波束参数信息 组或者发送波束参数信息组,比如把波束参数信息组承载在上行传输资源上进行反馈或者传输。所述上行传输资源和对应的CSI都是通过一个信道状态信息报告指示。在本申请实施例中,反馈一个CSI报告是指反馈所述CSI报告对应的波束参数信息组。
在一实施例中,基站通过高层信令和/或物理层信令给终端配置了NC个需要向基站反馈的CSI报告(CSI report),每个CSI报告都有一个索引值(identity,ID),称为CSI reportID,终端可以根据自己的计算能力或者处理能力,以及基站的要求选择NC个CSI报告中的MC个CSI报告。并根据上行反馈的资源,反馈该MC个CSI报告中的至少一个CSI报告,其中NC和MC为正整数,且MC≤NC。在一个示例中,需要反馈MC个CSI报告,但MC个报告中至少有两个报告的反馈资源是冲突的,两个报告的反馈资源冲突是指用于反馈两个报告对应的传输资源(比如PUCCH或者PUSCH)中至少有一个符号是相同的和/或至少有一个子载波是相同的。
下面,对波束参数信息的反馈、接收方法,通信节点,存储介质及其技术效果进行描述。
图2示出了一实施例提供的一种波束参数信息的反馈方法的流程示意图,如图2所示,本实施例提供的方法适用于第一通信节点。该方法包括如下步骤。
S110、接收N套参考信号配置信息和K套参考信号。
在一实施例中,接收K套参考信号的方法可以为:根据N套参考信号配置信息,接收K套参考信号。
第二通信节点传输了N套参考信号配置信息,传输了K套参考信号配置信息对应的K套参考信号。第一通信节点接收N套参考信号配置信息,并根据N套参考信号配置信息,接收了K套参考信号,K、N均为正整数、且K小于N。
K、N均为正整数、且K小于N,表示由于第二通信节点配置参考信号资源之间有冲突或者其它原因导致第二通信节点传输了数量小于N的K套参考信号,第一通信节点接收了K套参考信号。在实际的应用中,如果配置参考信号资源之间不存在冲突、也不存在其他影响因素,那么第二通信节点可以传输N套参考信号,第一通信节点接收了N套参考信号,即K等于N。当然在有的示例中,第二通信节点传输了N套参考信号,第一通信节点由于自身的能力或者信号不好等原因,只能有效接收K套参考信号。
在一实施例中,参考信号配置信息包括资源类别resourceType,这里资源类别定义了参考信号的时域传输特性,其中时域特性包括但不限于非周期(aperiodic)、周期(periodic)、半持续(semi-persistent)特性,分别表示传 输的参考信号是非周期传输的参考信号,周期传输的参考信号,或者半持续传输的参考信号,分别叫做周期参考信号,非周期参考信号,半持续参考信号。其中,周期参考信号或者半持续的参考信号都会通过高层信令配置一个周期和/或时隙偏置(slot offset)信息,这两个参数可以是联合编码的(比如通过高层信令periodicityAndOffset配置,通过获取这个参数,用户就可以知道周期或者半持续参考信号的传输周期,以及传输的时隙偏置)。在一个示例中,第二通信节点配置了N套参考信号配置信息。在这N套参考信号配置信息中,有K1个周期的参考信号,K2个非周期的参考信号,K3个半持续的参考信号。其中,K1,K2,K3为非负整数,且K1+K2+K3=N。在一个示例中,第二通信节点配置了N套参考信号配置信息。在这N套参考信号配置信息中,资源的类别都是相同的,即,K1,K2,K3中有两个取值为零,比如都是周期的参考信号或都是非周期的参考信号或都是半持续的参考信号。在一个示例中,在这N套参考信号配置信息中,资源的类别至少有一个参考信号的资源类别和其它的另外一个参考信号的资源类别是不同的,比如K1,K2,K3中至少两个取值大于零。在一个示例中,第二通信节点需要配置和传输N=4个CSI-RS,其中,CSI-RS可以是周期的,半持续的,非周期中的至少一种。比如在一种配置下,有两套周期的参考信号,一套非周期的参考信号,一套半持续的参考信号;在一种配置下,有三套半持续的参考信号,一套非周期的参考信号;在一种配置下,有两套周期的参考信号,两套非周期的参考信号;在一种配置下,有两套半持续的参考信号,两套周期的参考信号。
在一实施例中,一套参考信号包括以下之一:一个参考信号资源,一组参考信号资源,一个参考信号资源集合,一个参考信号资源配置对应的参考信号资源。例如,一套参考信号包括一个参考信号资源,比如一个CSI-RS resource,或一个SRS resource,或者一个SSB resource;在一实施例中,一套参考信号包括一组参考信号资源,比如一组CSI-RS resource,或一组SRS resource,或者一组SSB resource;在一实施例中,一套参考信号包括一个参考信号资源集合,比如一个CSI-RS resource set,或一个SRS resource set,或者一个SSB resource set;在一实施例中,一套参考信号包括一个参考信号资源配置对应的参考信号资源,比如一个CSI-RS resource config/setting对应的参考信号资源,或一个SRS resource config/setting对应的参考信号资源,或者一个SSB resource config/setting对应的参考信号资源。在这里,一组参考信号包括至少一个参考信号资源,多组参考信号资源可以在同一个参考信号资源集合中。
S120、根据K套参考信号,确定M个波束参数信息组。
S130、反馈M个波束参数信息组中的至少一个波束参数信息;K、M、N均为正整数、且K小于N。
在一些示例中,通信节点通过接收参考信号获得波束参数信息组,其中一个波束参数信息组可以包括一个或多个波束参数信息,一个波束参数信息对应一个波束。波束参数信息包括以下至少之一的参数:接收功率(比如L1-RSRP,RSRP,差分L1-RSRP,差分RSRP),接收信干噪比(比如L1-SINR,SINR,差分L1-SINR,差分SINR),BDRPM,RSRQ,以及波束对应的参考信号资源索引(CRI,SSBRI等)、波束的方向或角度,波束的索引(比如发送波束索引,接收波束索引,发送接收波束索引对)。第二通信节点在K个时隙发送用于波束参数信息测量的参考信号。第一通信节点在至少一个时隙分别接收K个时隙发送的参考信号,并根据接收的K个时隙发送的参考信号分别获得对应时隙的一个波束参数信息组Bi,i=1,…,K。这里,K个时隙为参考时隙之前的时隙。在一实施例中,参考时隙包括以下之一:参考时隙为第一通信节点和第二通信节点约定的一个时隙,或者一个当前的时隙;或者第二通信节点指示的一个时隙;或者第二通信节点指示的一个时隙加一个固定偏置得到的时隙;或者第一通信节点收到第二通信节点指示信令的时隙加一个固定的偏置得到的时隙。
在一实施例中,第一通信节点不期望接收少于N套参考信号。也就是说,第二通信节点配置了N套参考信号配置信息,那么第一通信节点不期望第二通信节点传输少于N套参考信号配置信息对应的N套参考信号,或者第一通信节点期望能接收到N套参考信号。如果第一通信节点能收到N套参考信号,并根据N套参考信号获得其对应的N个波束参数信息组,根据N个波束参数信息组获取M个波束参数信息组。确定M个波束参数信息组的L个优选波束参数信息,M和N为正整数,且一般来说M不大于N,一个特例是M=1。比如第二通信节点配置了N=4套参考信号配置信息,那么就需要在一个或者多个时刻传输N=4套参考信号。第一通信节点在一个或者多个时隙接收N=4套参考信号。并通过获得的N=4套参考信号通过一些列操作获得一个波束参数信息组。
根据N个波束参数信息组(比如第一波束参数信息组)获取M个波束参数信息组(比如第二波束参数信息组)。比如将N个波束参数信息组依次编码后输入到第一AI模块,第一AI模块输出M个波束参数信息组。在一些示例中,将波束参数信息编码包括但不限于以下之一,对波束参数信息组的元素进行归一化处理(比如将一个元素的范围归一化到区间[0,1]或[-0.5,0.5]),对波束参数信息组进行采样,对多个波束参数信息组进行联合操作。这里,N个波束参数信息组为参考时隙之前的波束参数信息组。M个波束参数信息组为参考时隙之后的波束参数信息组。N为大于1的整数,M为大于或等于1的整数。在一些示例中,根据N个波束参数信息组获取M个波束参数信息组,也可以根据其它非AI的方式获取,比如通过线性映射的方式,对N个波束参数信息组做滤波或者平均得到M个波束参数信息组。比如通过非线性映射的方式将N个波束 参数信息组处理为M个波束参数信息组。在有的示例中,N为大于M的正整数。在有的示例中,M是正整数,跟第一通信节点的能力有关,有的第一通信节点可以通过N个波束参数信息组获取1个波束参数信息组。有的第一通信节点可以根据N个波束参数信息组获取大于1个波束参数信息组。在一些示例中,根据N个波束参数信息组获取M个波束参数信息组,有以下之一的等价描述:根据N个波束参数信息组预测M个波束参数信息组;根据N个波束参数信息组处理为M个波束参数信息组;将N个波束参数信息组映射为M个波束参数信息组。
在一实施例中,还可以确定M个波束参数信息组对应的波束参数信息。包括,对第i个波束参数信息组,选择第i个波束参数信息组的波束参数信息最大的Li个波束信息参数所对应的波束为第i个波束信息组的优选波束。比如预测的第ni个时隙的优选波束参数。这里,Li和ni为正整数,i=1,…,M。在一个示例中,所有的Li相同,比如为1,2,4,8等。在有的示例中,ni为参考时隙之后的时隙索引,随着i的增加升序排序。在一些示例中,将M个波束参数信息处理为M个CRI和/或L1-RSRP。在一些示例中,将M个波束参数信息处理为M个SSBRI和/或L1-RSRP。在一些示例中,将M个波束参数信息处理为M个CRI和/或L1-SINR。在一些示例中,将M个波束参数信息处理为M个SSBRI和/或L1-SINR。
在一实施例中,可以根据N个波束参数信息组获取M个波束参数信息组,并将M个波束参数信息组中的每个波束参数信息组分别处理为K0个波束参数信息。其中,1≤K0≤M。在有的示例中,也可以直接根据N个波束参数信息组获取K0个信道状态信息。即第一AI模块和第二AI模块直接合并为一个更大的AI模块。在一些示例中,可以直接根据N个接收的参考信号获取M个波束参数信息组或其对应的波束参数信息。
在一实施例中,虽然第一通信节点不期望接收少于N套参考信号,但是第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,第一通信节点接收K套参考信号。第一通信节点可以根据K套参考信号,确定M个波束参数信息组。
在一实施例中,N套参考信号配置信息对应N套参考信号,K套参考信号为N套参考信号的一部分。在一实施例中,确定M个波束参数信息组可以采用AI的波束预测方式来实现,例如可以包括空域波束预测和时域波束预测,或者空时波束预测。对于空域波束预测,N套参考信号配置信息对应N套参考信号,N套参考信号属于同一个参考信号集合或者属于同一个参考信号配置。
在一实施例中,第一通信节点根据K套参考信号,确定M个波束参数信息 组的规则包括以下至少之一:
规则1)第一通信节点确定M个波束参数信息组为空。即第一通信节点不进行波束预测。
第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,K小于N。第一通信节点接收K套参考信号,发现K套参考信号的套数比期望的N套参考信号少,无法通过K套参考信号对应的波束参数信息组获取参考时隙后的M个波束参数信息组。所以第一通信节点不进行通过K套参考信号对应的波束参数信息组获取M个波束参数信息组的操作。第一通信节点也不反馈参考时隙后的优选波束参数信息。
规则2)第一通信节点根据K套参考信号中的至少一套参考信号,确定M个波束参数信息组。
第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,K小于N。第一通信节点接收K套参考信号,根据K套参考信号的至少一套参考信号获取M个波束参数信息组。
在一示例中,第一通信节点根据K套参考信号中传输时隙最大的参考信号,即离参考时隙最近的参考信号,确定传输时隙最大的参考信号的波束参数信息组为M个波束参数信息组。比如,将确定传输时隙最大的参考信号的波束参数信息组中波束参数信息值最大的Lc个波束参数信息为确定的波束参数信息。这里,M=1,所述M个波束参数信息组中只包括Lc个波束参数信息。这里Lc为正整数。例如,Lc的取值可以为1。
规则3)第一通信节点根据K套参考信号,确定K个第一波束参数信息组;并根据K个第一波束参数信息组,获取M个波束参数信息组(比如第二波束参数信息组),M为正整数。
第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,K小于N。第一通信节点接收K套参考信号,发现K套参考信号的套数比期望的N套参考信号少,第一通信节点根据自身的处理能力,确定是否可以根据K个波束参数信息组获取M个波束参数信息组。如果可以,根据K套参考信号,确定K个第一波束参数信息组;并根据K个第一波束参数信息组,获取M个波束参数信息组,否则,不进行通过K套参考信号对应的波束参数信息组获取M个波束参数信息组的操作,或者根据约定的方式获取K个波束参数信息组中的至少一个波束参数信息组对应的优选波束参数信息。在一个示例中,第一通信节点在本地搜索一个AI模型,AI模型能根据K个第一波束参数信息组获取M个波束参数信息组,比如将K个第一波束参数信息组作为输入, 并输出M个波束参数信息组。
规则4)第一通信节点根据K套参考信号,确定K个第一波束参数信息组;将K个第一波束参数信息组处理为N个第二波束参数信息组;根据N个第二波束参数信息组,获取M个波束参数信息组(比如第三波束参数信息组),M为正整数。
第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,K小于N。第一通信节点接收K套参考信号,发现K套参考信号的套数比期望的N套参考信号少,第一通信节点根据自身的处理能力,确定是否可以根据K个波束参数信息组获取M个波束参数信息组。如果可以,第一通信节点根据K套参考信号,确定K个第一波束参数信息组;将K个第一波束参数信息组处理为N个第二波束参数信息组;根据N个第二波束参数信息组,获取M个波束参数信息组,否则,不进行通过K套参考信号对应的波束参数信息组获取M个波束参数信息组的操作,或者根据约定的方式获取K个波束参数信息组中的至少一个波束参数信息组对应的优选波束参数信息。
在一示例中,第一波束参数信息组包括的元素个数小于第二波束参数信息组包括的元素个数,第二波束参数信息组包括的元素个数小于或者等于波束参数信息组(比如第三波束参数信息组)包括的元素个数。
在一实例中,第一通信节点通过补零的方式,对K个第一波束参数信息组补零操作,获取N个第二波束参数信息组。比如根据传输K个第一波束参数信息组对应的参考信号的时隙,确定接收了N个波束参数信息组中的哪几个波束参数信息组,并对没有接收到的参考信号对应的波束参数信息组补零矩阵,一个零矩阵为L0*1维度的向量,或者为Lv*Lh维度的矩阵,其中L0,Lv,Lh为正整数,LvxLh=L0分别表示为波束参数信息组中的元素个数,或者波束参数信息组中波束参数信息对应的水平波束和垂直波束的个数。
规则5)当K小于K0时,第一通信节点确定波束参数信息组为空,或者根据K套参考信号中的至少一套参考信号,确定M个波束参数信息组;当K大于K0时,第一通信节点根据K套参考信号,确定K个第一波束参数信息组,将K个第一波束参数信息组处理为N个第二波束参数信息组,根据N个第二波束参数信息组,获取M个波束参数信息组,或者第一通信节点根据K套参考信号,确定K个第一波束参数信息组,并根据K个第一波束参数信息组,确定M个波束参数信息组,M、K0为正整数。
第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,K小于N。第一通信节点接收K套参考信号,发现K套参考信号的套数比期望的N套参考信号少。当K大于K0时,第一通信节点根据K套 参考信号,确定K个第一波束参数信息组;将K个第一波束参数信息组处理为N个第二波束参数信息组;根据N个第二波束参数信息组,获取M个波束参数信息组(比如,利用原始的AI模型以实现此操作),或者,第一通信节点根据K套参考信号,确定K个第一波束参数信息组,并根据K个第一波束参数信息组,确定M个波束参数信息组(比如,搜索一个新的AI模型以实现此操作);当K小于K0时,第一通信节点不进行通过K套参考信号对应的波束参数信息组获取M个波束参数信息组的操作,或者,根据K套参考信号中的至少一套参考信号,确定M个波束参数信息组。
K0为大于0的正整数,根据第二通信节点配置获得,或者根据第二通信节点和第一通信节点约定获得。
在一些示例中,第一通信节点接收到了N套参考信号中的第1,2,…,N-1套参考信号,第一通信节点不做根据K套波束参数信息组获取M套波束参数信息组的操作。在一些示例中,第一通信节点接收到了N套参考信号中的至少第N套参考信号,第一通信节点根据第N套参考信号以及约定的方式获取第N套参考信号对应的波束参数信息组的优选波束参数信息。在一些示例中,第一通信节点接收到了N套参考信号中的至少第N套参考信号,第一通信节点根据K套参考信号,确定K个第一波束参数信息组,将K个第一波束参数信息组处理为N个第二波束参数信息组,根据N个第二波束参数信息组,获取M个波束参数信息组。
在一实施例中,一套参考信号包括一组参考信号资源,如果一组/几组参考信号资源中有一个或多个参考信号资源没有被传输,则第一通信节点可以采用补零的方式对没有被传输参考信号资源的位置进行补零操作。本实施例补零操作与上述波束参数信息组补零操作类似。
在一实施例中,第一通信节点发送波束参数信息组,第一通信节点配置了M个CSI报告,以及用于传输M个优选波束参数信息。第一通信节点选择M个传输资源中的一个传输资源传输优选波束参数信息(比如,根据K个第一波束参数信息组确定了一个第二波束参数信息组,并根据第二波束参数信息组选择波束参数信息最大的Lc个波束参数信息为优选的波束参数信息)。并且剩下的M-1个传输资源不做波束参数信息传输,比如可以用于传输数据或者其它的信令或者信号。
在一些示例中,反馈M个波束参数信息组的至少一个波束参数信息(例如,优选波束参数信息)。比如在上行传输资源中传输的优选波束参数信息。在一些示例中,M个波束参数信息组对应的优选波束参数信息承载在至少一个非周期的PUSCH上进行传输。在一些示例中,M个波束参数信息组对应的优选波束 参数信息承载在至少一个半持续的PUSCH上传输。在一些示例中,M个波束参数信息组对应的优选波束参数信息承载在至少一个周期的PUCCH上传输。在一些实施例中,反馈一个信道状态信息是指将CSI承载在一个上行传输资源上进行传输。在一些实施例中,通过一个信道状态信息报告反馈至少一个信道状态信息,是指将至少一个信道状态信息承载在由信道状态信息报告指示的上行传输资源上,并通过上行传输资源传输给另外一个通信节点。其中,信道状态信息包括波束参数信息。
在本申请的实施例中,第一波束参数信息组、第二波束参数信息组、第三波束参数信息组等都是波束参数信息组,这里的“第一”、“第二”、“第三”只是为了区分他们属于不同的波束参数信息组。不构成先后顺序。在一个示例中,所述第一波束参数信息组、第二波束参数信息组和/或第三波束参数信息组包括的元素个数可以不同;在一个示例中,所述第一波束参数信息组、第二波束参数信息组和/或第三波束参数信息组包括的元素内容也可以不同,比如第一波束参数信息组包括的元素都为第一波束参数信息,第二波束参数信息组包括的元素都为第二波束参数信息和/或第三波束参数信息组包括的元素都为第三波束参数信息。在一个示例中,所述第一波束参数信息为L1-RSRP或L1-SINR。所述第二波束参数信息和/或所述第三波束参数信息为L1-RSRP或L1-SINR。在一个示例中,所述第二波束参数信息和/或所述第三波束参数信息为波束索引(比如为CRI或SSBRI)。在一个示例中,所述第二波束参数信息和/或所述第三波束参数信息为CRI和L1-RSRP。在一个示例中,所述第二波束参数信息和/或所述第三波束参数信息为波束索引(比如为CRI或SSBRI)和L1-SINR。
图3示出了一实施例提供的一种波束参数信息的接收方法的流程示意图,如图3所示,本实施例提供的方法适用于第二通信节点。该方法包括如下步骤。
S210、发送N套参考信号配置信息和K套参考信号。
在一实施例中,发送K套参考信号的方法可以为:根据N套参考信号配置信息,发送K套参考信号。
第二通信节点传输了N套参考信号配置信息,传输了K套参考信号配置信息对应的K套参考信号。第一通信节点接收N套参考信号配置信息,并根据N套参考信号配置信息,接收了K套参考信号,K、N均为正整数、且K小于N。
K、N均为正整数、且K小于N,表示由于第二通信节点配置参考信号资源之间有冲突或者其它原因导致第二通信节点传输了数量小于N的K套参考信号,第一通信节点接收了K套参考信号。在实际的应用中,如果配置参考信号资源之间不存在冲突、也不存在其他影响因素,那么第二通信节点可以传输N套参考信号,第一通信节点接收了N套参考信号,即K等于N。当然在有的示 例中,第二通信节点传输了N套参考信号,第一通信节点由于自身的能力或者信号不好等原因,只能有效接收K套参考信号。
在一实施例中,参考信号配置信息包括资源类别resourceType,这里资源类别定义了参考信号的时域传输特性,其中时域特性包括但不限于非周期(aperiodic)、周期(periodic)、半持续(semi-persistent)特性,分别表示传输的参考信号是非周期传输的参考信号,周期传输的参考信号,或者半持续传输的参考信号,分别叫做周期参考信号,非周期参考信号,半持续参考信号。其中,周期参考信号或者半持续的参考信号都会通过高层信令配置一个周期和/或时隙偏置(slot offset)信息,这两个参数可以是联合编码的(比如通过高层信令periodicityAndOffset配置,通过获取这个参数,用户就可以知道周期或者半持续参考信号的传输周期,以及传输的时隙偏置)。在一个示例中,第二通信节点配置了N套参考信号配置信息。在这N套参考信号配置信息中,有K1个周期的参考信号,K2个非周期的参考信号,K3个半持续的参考信号。其中,K1,K2,K3为非负整数,且K1+K2+K3=N。在一个示例中,第二通信节点配置了N套参考信号配置信息。在这N套参考信号配置信息中,资源的类别都是相同的,即,K1,K2,K3中有两个取值为零,比如都是周期的参考信号或都是非周期的参考信号或都是半持续的参考信号。在一个示例中,在这N套参考信号配置信息中,资源的类别至少有一个参考信号的资源类别和其它的另外一个参考信号的资源类别是不同的,比如K1,K2,K3中至少两个取值大于零。在一个示例中,第二通信节点需要配置和传输N=4个CSI-RS,其中,CSI-RS可以是周期的,半持续的,非周期中的至少一种。比如在一种配置下,有两套周期的参考信号,一套非周期的参考信号,一套半持续的参考信号;在一种配置下,有三套半持续的参考信号,一套非周期的参考信号;在一种配置下,有两套周期的参考信号,两套非周期的参考信号;在一种配置下,有两套半持续的参考信号,两套周期的参考信号。
在一实施例中,一套参考信号包括以下之一:一个参考信号资源,一组参考信号资源,一个参考信号资源集合,一个参考信号资源配置对应的参考信号资源。例如,一套参考信号包括一个参考信号资源,比如一个CSI-RS resource,或一个SRS resource,或者一个SSB resource;在一实施例中,一套参考信号包括一组参考信号资源,比如一组CSI-RS resource,或一组SRS resource,或者一组SSB resource;在一实施例中,一套参考信号包括一个参考信号资源集合,比如一个CSI-RS resource set,或一个SRS resource set,或者一个SSB resource set;在一实施例中,一套参考信号包括一个参考信号资源配置对应的参考信号资源,比如一个CSI-RS resource config/setting对应的参考信号资源,或一个SRS resource config/setting对应的参考信号资源,或者一个SSB resource config/setting 对应的参考信号资源。在这里,一组参考信号包括至少一个参考信号资源,多组参考信号资源可以包括在同一个参考信号资源集合中。
S220、接收至少一个波束参数信息,波束参数信息是第一通信节点根据K套参考信号确定出的M个波束参数信息组中的至少一个波束参数信息;K、M、N均为正整数、且K小于N。
在一实施例中,第二通信节点不期望发送少于N套参考信号。也就是说,第二通信节点配置了N套参考信号配置信息,那么第二通信节点不期望传输少于N套参考信号配置信息对应的N套参考信号。
在一实施例中,N套参考信号配置信息对应N套参考信号,K套参考信号为N套参考信号的一部分。在一实施例中,确定波束参数信息组可以采用AI的波束预测方式来实现,例如可以包括空域波束预测和时域波束预测,或者空时波束预测。对于空域波束预测,N套参考信号配置信息对应的N套参考信号属于同一个参考信号集合或者同一个参考信号配置。
在一实施例中,第一通信节点根据K套参考信号,确定M个波束参数信息组的规则包括以下至少之一:
规则1)第一通信节点确定M个波束参数信息组为空。即第一通信节点不进行波束预测。
第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,K小于N。第一通信节点接收K套参考信号,发现K套参考信号的套数比期望的N套参考信号少,无法通过K套参考信号对应的波束参数信息组获取参考时隙后的M个波束参数信息组。所以第一通信节点不进行通过K套参考信号对应的波束参数信息组获取M个波束参数信息组的操作。第一通信节点也不反馈参考时隙后的优选波束参数信息。
规则2)第一通信节点根据K套参考信号中的至少一套参考信号,确定M个波束参数信息组。
第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,K小于N。第一通信节点接收K套参考信号,根据K套参考信号的至少一套参考信号获取M个波束参数信息组。
在一示例中,第一通信节点根据K套参考信号中传输时隙最大的参考信号,即离参考时隙最近的参考信号,确定传输时隙最大的参考信号的波束参数信息组为M个波束参数信息组。比如,将确定传输时隙最大的参考信号的波束参数信息组中波束参数信息值最大的Lc个波束参数信息为确定的波束参数信息。这里,M=1,所述M个波束参数信息组中只包括Lc个波束参数信息。这里Lc为 正整数。例如,Lc的取值可以为1。
规则3)第一通信节点根据K套参考信号,确定K个第一波束参数信息组;并根据K个第一波束参数信息组,获取M个波束参数信息组(比如第二波束参数信息组),M为正整数。
第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,K小于N。第一通信节点接收K套参考信号,发现K套参考信号的套数比期望的N套参考信号少,第一通信节点根据自身的处理能力,确定是否可以根据K个波束参数信息组获取M个波束参数信息组。如果可以,根据K套参考信号,确定K个第一波束参数信息组;并根据K个第一波束参数信息组,获取M个波束参数信息组,否则,不进行通过K套参考信号对应的波束参数信息组获取M个波束参数信息组的操作,或者根据约定的方式获取K个波束参数信息组中的至少一个波束参数信息组对应的优选波束参数信息。在一个示例中,第一通信节点在本地搜索一个AI模型,AI模型能根据K个第一波束参数信息组获取M个波束参数信息组,比如将K个第一波束参数信息组作为输入,并输出M个波束参数信息组。
规则4)第一通信节点根据K套参考信号,确定K个第一波束参数信息组;将K个第一波束参数信息组处理为N个第二波束参数信息组;根据N个第二波束参数信息组,获取M个波束参数信息组(比如第三波束参数信息组),M为正整数。
第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,K小于N。第一通信节点接收K套参考信号,发现K套参考信号的套数比期望的N套参考信号少,第一通信节点根据自身的处理能力,确定是否可以根据K个波束参数信息组获取M个波束参数信息组。如果可以,第一通信节点根据K套参考信号,确定K个第一波束参数信息组;将K个第一波束参数信息组处理为N个第二波束参数信息组;根据N个第二波束参数信息组,获取M个波束参数信息组,否则,不进行通过K套参考信号对应的波束参数信息组获取M个波束参数信息组的操作,或者根据约定的方式获取K个波束参数信息组中的至少一个波束参数信息组对应的优选波束参数信息。
在一示例中,第一波束参数信息组包括的元素个数小于第二波束参数信息组包括的元素个数,第二波束参数信息组包括的元素个数小于或者等于波束参数信息组(比如第三波束参数信息组)包括的元素个数。
在一实例中,第一通信节点通过补零的方式,对K个第一波束参数信息组补零操作,获取N个第二波束参数信息组。比如根据传输K个第一波束参数信息组对应的参考信号的时隙,确定接收了N个波束参数信息组中的哪几个波束 参数信息组,并对没有接收到的参考信号对应的波束参数信息组补零矩阵,一个零矩阵为L0*1维度的向量,或者为Lv*Lh维度的矩阵,其中L0,Lv,Lh为正整数,LvxLh=L0分别表示为波束参数信息组中的元素个数,或者波束参数信息组中波束参数信息对应的水平波束和垂直波束的个数。
规则5)当K小于K0时,第一通信节点确定波束参数信息组为空,或者根据K套参考信号中的至少一套参考信号,确定M个波束参数信息组;当K大于K0时,第一通信节点根据K套参考信号,确定K个第一波束参数信息组,将K个第一波束参数信息组处理为N个第二波束参数信息组,根据N个第二波束参数信息组,获取M个波束参数信息组,或者第一通信节点根据K套参考信号,确定K个第一波束参数信息组,并根据K个第一波束参数信息组,确定M个波束参数信息组,M、K0为正整数。
第二通信节点由于资源冲突或者其它的原因,只传输了N套参考信号中的K套参考信号,K小于N。第一通信节点接收K套参考信号,发现K套参考信号的套数比期望的N套参考信号少。当K大于K0时,第一通信节点根据K套参考信号,确定K个第一波束参数信息组;将K个第一波束参数信息组处理为N个第二波束参数信息组;根据N个第二波束参数信息组,获取M个波束参数信息组(比如,利用原始的AI模型以实现此操作),或者,第一通信节点根据K套参考信号,确定K个第一波束参数信息组,并根据K个第一波束参数信息组,确定M个波束参数信息组(比如,搜索一个新的AI模型以实现此操作);当K小于K0时,第一通信节点不进行通过K套参考信号对应的波束参数信息组获取M个波束参数信息组的操作,或者,根据K套参考信号中的至少一套参考信号,确定M个波束参数信息组。
K0为大于0的正整数,根据第二通信节点配置获得,或者根据第二通信节点和第一通信节点约定获得。
在一些示例中,第一通信节点接收到了N套参考信号中的第1,2,…,N-1套参考信号,第一通信节点不做根据K套波束参数信息组获取M套波束参数信息组的操作。在一些示例中,第一通信节点接收到了N套参考信号中的至少第N套参考信号,第一通信节点根据第N套参考信号以及约定的方式获取第N套参考信号对应的波束参数信息组的优选波束参数信息。在一些示例中,第一通信节点接收到了N套参考信号中的至少第N套参考信号,第一通信节点根据K套参考信号,确定K个第一波束参数信息组,将K个第一波束参数信息组处理为N个第二波束参数信息组,根据N个第二波束参数信息组,获取M个波束参数信息组。
在一实施例中,一套参考信号包括一组参考信号资源,如果一组/几组参考 信号资源中有一个或多个参考信号资源没有被传输,则第一通信节点可以采用补零的方式对没有被传输参考信号资源的位置进行补零操作。本实施例补零操作与上述波束参数信息组补零操作类似。
在一实施例中,第一通信节点发送波束参数信息组,第一通信节点配置了M个CSI报告,以及用于传输M个优选波束参数信息。第一通信节点选择M个传输资源中的一个传输资源传输优选波束参数信息(比如,根据K个第一波束参数信息组确定了一个第二波束参数信息组,并根据第二波束参数信息组选择波束参数信息最大的Lc个波束参数信息为优选的波束参数信息)。并且剩下的M-1个传输资源不做波束参数信息传输,比如可以用于传输数据或者其它的信令或者信号。
在一些示例中,反馈M个波束参数信息组的至少一个波束参数信息(例如,优选波束参数信息)。比如在上行传输资源中传输的优选波束参数信息。在一些示例中,M个波束参数信息组对应的优选波束参数信息承载在至少一个非周期的PUSCH上进行传输。在一些示例中,M个波束参数信息组对应的优选波束参数信息承载在至少一个半持续的PUSCH上传输。在一些示例中,M个波束参数信息组对应的优选波束参数信息承载在至少一个周期的PUCCH上传输。在一些实施例中,反馈一个信道状态信息是指将CSI承载在一个上行传输资源上进行传输。在一些实施例中,通过一个信道状态信息报告反馈至少一个信道状态信息,是指将至少一个信道状态信息承载在由信道状态信息报告指示的上行传输资源上,并通过上行传输资源传输给另外一个通信节点。其中,信道状态信息包括波束参数信息。
图4示出了一实施例提供的一种波束参数信息的反馈装置的结构示意图,该装置可以配置于第一通信节点中,如图4所示,该装置包括:接收模块10、处理模块11和发送模块12。
接收模块10,设置为接收N套参考信号配置信息和K套参考信号;
处理模块11,设置为根据K套参考信号,确定M个波束参数信息组;
发送模块12,设置为反馈M个波束参数信息组中的至少一个波束参数信息;K、M、N均为正整数、且K小于N。
本实施例提供的波束参数信息的反馈装置为实现图2所示实施例的波束参数信息的反馈方法,本实施例提供的波束参数信息的反馈装置实现原理和技术效果与上述实施例类似。
在一实施例中,接收模块10可以包括第一接收子模块和第二接收子模块, 第一接收子模块设置为接收N套参考信号配置信息,第二接收子模块设置为接收K套参考信号。
在一实施例中,一套参考信号包括以下之一:一个参考信号资源,一组参考信号资源,一个参考信号资源集合,一个参考信号资源配置对应的参考信号资源。
在一实施例中,接收模块10,是设置为根据N套参考信号配置信息,接收K套参考信号。
在一实施例中,N套参考信号配置信息对应N套参考信号,K套参考信号为N套参考信号的一部分。
在一实施例中,N套参考信号属于同一个参考信号集合或N套参考信号属于同一个参考信号配置。
在一实施例中,第一通信节点不期望接收少于所述N套参考信号配置信息对应的N套参考信号。
在一实施例中,处理模块11,是设置为确定M个波束参数信息组为空。
在一实施例中,处理模块11,是设置为根据K套参考信号中的至少一套参考信号,确定M个波束参数信息组。
在一实施例中,处理模块11,是设置为根据K套参考信号中传输时隙最大的参考信号,确定传输时隙最大的参考信号的波束参数信息组为M个波束参数信息组。
在一实施例中,K小于K0,K0为正整数。
在一实施例中,处理模块11,是设置为根据K套参考信号,确定K个第一波束参数信息组;根据K个第一波束参数信息组,确定M个波束参数信息组,M为正整数。
在一实施例中,处理模块11,是设置为根据K套参考信号,确定K个第一波束参数信息组;将K个第一波束参数信息组处理为N个第二波束参数信息组;根据N个第二波束参数信息组,确定M个波束参数信息组,M为正整数。
在一实施例中,第一波束参数信息组包括的元素个数小于第二波束参数信息组包括的元素个数,第二波束参数信息组包括的元素个数小于或者等于波束参数信息组包括的元素个数。
在一实施例中,处理模块11,是设置为对K个第一波束参数信息组补零操作,获取N个第二波束参数信息组。
在一实施例中,K大于K0,K0为正整数。
图5示出了一实施例提供的一种波束参数信息的接收装置的结构示意图,该装置可以配置于第二通信节点中,如图5所示,该装置包括:发送模块20和接收模块21。
发送模块20,设置为发送N套参考信号配置信息和K套参考信号。
接收模块21,设置为接收至少一个波束参数信息,波束参数信息是第一通信节点根据K套参考信号确定出的M个波束参数信息组中的至少一个波束参数信息;K、M、N均为正整数、且K小于N。
本实施例提供的波束参数信息的接收装置为实现图3所示实施例的波束参数信息的接收方法,本实施例提供的波束参数信息的接收装置实现原理和技术效果与上述实施例类似。
在一实施例中,发送模块20可以包括第一发送子模块和第二发送子模块,第一发送子模块设置为发送N套参考信号配置信息,第二发送子模块设置为发送K套参考信号。
在一实施例中,一套参考信号包括以下之一:一个参考信号资源,一组参考信号资源,一个参考信号资源集合,一个参考信号资源配置对应的参考信号资源。
在一实施例中,发送模块20,是设置为根据N套参考信号配置信息,发送K套参考信号。
在一实施例中,N套参考信号配置信息对应N套参考信号,K套参考信号为N套参考信号的一部分。
在一实施例中,N套参考信号属于同一个参考信号集合或N套参考信号属于同一个参考信号配置。
在一实施例中,第二通信节点不期望发送少于所述N套参考信号配置信息对应的N套参考信号。
本申请实施例还提供了一种通信节点,包括:处理器,处理器设置为在执行计算机程序时实现如本申请任意实施例所提供的方法。例如,通信节点可以为第一通信节点或者第二通信节点。第一通信节点包括:处理器,处理器设置为在执行计算机程序时实现如本申请任意实施例所提供的波束参数信息的反馈方法;第二通信节点包括:处理器,处理器设置为在执行计算机程序时实现如本申请任意实施例所提供的波束参数信息的接收方法。示例性的,第一通信节 点可以为本申请任意实施例所提供的终端设备,第二通信节点可以为本申请任意实施例所提供的接入网设备,比如基站。
示例性的,下述实施例分别提供一种通信节点为基站和UE的结构示意图。
图6示出了一实施例提供的一种基站的结构示意图,如图6所示,该基站包括处理器60、存储器61和通信接口62;基站中处理器60的数量可以是一个或多个,图6中以一个处理器60为例;基站中的处理器60、存储器61、通信接口62可以通过总线或其他方式连接,图6中以通过总线连接为例。总线表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器61作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行基站的至少一种功能应用以及数据处理,即实现上述的方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可包括相对于处理器60远程设置的存储器,这些远程存储器可以通过网络连接至基站。上述网络的实例包括但不限于互联网、企业内部网、网络、移动通信网及其组合。
通信接口62可设置为数据的接收与发送。
图7示出了一实施例提供的一种UE的结构示意图,UE可以以多种形式来实施,本申请中的UE可以包括但不限于诸如移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、平板电脑(Portable Device,PAD)、便携式多媒体播放器(Portable Media Player,PMP)、导航装置、车载终端设备、车载显示终端、车载电子后视镜等的移动终端设备以及诸如数字电视(television,TV)、台式计算机等的固定终端设备。
如图7所示,UE 50可以包括无线通信单元51、音频/视频(Audio/Video,A/V)输入单元52、用户输入单元53、感测单元54、输出单元55、存储器56、接口单元57、处理器58和电源单元59等。图7示出了包括多种组件的UE,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少的组件。
本实施例中,无线通信单元51允许UE 50与基站或网络之间的无线电通信。 A/V输入单元52设置为接收音频或视频信号。用户输入单元53可以根据用户输入的命令生成键输入数据以控制UE 50的多种操作。感测单元54检测UE 50的当前状态、UE 50的位置、用户对于UE 50的触摸输入的有无、UE 50的取向、UE 50的加速或减速移动和方向等,并且生成用于控制UE 50的操作的命令或信号。接口单元57用作至少一个外部装置与UE 50连接可以通过的接口。输出单元55被构造为以视觉、音频和/或触觉方式提供输出信号。存储器56可以存储由处理器58执行的处理和控制操作的软件程序等,或者可以暂时地存储己经输出或将要输出的数据。存储器56可以包括至少一种类型的存储介质。而且,UE 50可以与通过网络连接执行存储器56的存储功能的网络存储装置协作。处理器58通常控制UE 50的总体操作。电源单元59在处理器58的控制下接收外部电力或内部电力并且提供操作多种元件和组件所需的适当的电力。
处理器58通过运行存储在存储器56中的程序,从而执行至少一种功能应用以及数据处理,例如实现本申请实施例所提供的方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所提供的方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(electrically erasable,programmable Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器 件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言(诸如Java、Smalltalk、C++、Ruby、Go),还包括常规的过程式程序设计语言(诸如“C”语言或类似的程序设计语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络(包括网络(Local Area Network,LAN)或广域网(Wide Area Network,WAN))连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (24)

  1. 一种波束参数信息的反馈方法,应用于第一通信节点,包括:
    接收N套参考信号配置信息和K套参考信号;
    根据所述K套参考信号,确定M个波束参数信息组;
    反馈所述M个波束参数信息组中的至少一个波束参数信息;K、M、N均为正整数、且K小于N。
  2. 根据权利要求1所述的方法,其中,一套所述参考信号包括以下之一:一个参考信号资源,一组参考信号资源,一个参考信号资源集合,一个参考信号资源配置对应的参考信号资源。
  3. 根据权利要求1所述的方法,其中,所述接收K套参考信号,包括:
    根据所述N套参考信号配置信息,接收所述K套参考信号。
  4. 根据权利要求1所述方法,其中,所述N套参考信号配置信息对应N套参考信号,所述K套参考信号为所述N套参考信号的一部分。
  5. 根据权利要求4所述方法,其中,所述N套参考信号属于同一个参考信号集合或所述N套参考信号属于同一个参考信号配置。
  6. 根据权利要求1所述的方法,其中,所述第一通信节点不期望接收少于所述N套参考信号配置信息对应的N套参考信号。
  7. 根据权利要求1所述的方法,其中,所述根据所述K套参考信号,确定M个波束参数信息组,包括:
    确定所述M个波束参数信息组为空。
  8. 根据权利要求1所述的方法,其中,所述根据所述K套参考信号,确定M个波束参数信息组,包括:
    根据所述K套参考信号中的至少一套参考信号,确定所述M个波束参数信息组。
  9. 根据权利要求8所述的方法,其中,所述根据所述K套参考信号中的至少一套参考信号,确定所述M个波束参数信息组,包括:
    根据所述K套参考信号中传输时隙最大的参考信号,确定所述传输时隙最大的参考信号的波束参数信息组为所述M个波束参数信息组。
  10. 根据权利要求7或8所述的方法,其中,K小于K0,K0为正整数。
  11. 根据权利要求1所述的方法,其中,所述根据所述K套参考信号,确定M个波束参数信息组,包括:
    根据所述K套参考信号,确定K个第一波束参数信息组;
    根据所述K个第一波束参数信息组,确定所述M个波束参数信息组,M为正整数。
  12. 根据权利要求1所述的方法,其中,所述根据所述K套参考信号,确定M个波束参数信息组,包括:
    根据所述K套参考信号,确定K个第一波束参数信息组;
    将所述K个第一波束参数信息组处理为N个第二波束参数信息组;
    根据所述N个第二波束参数信息组,确定所述M个波束参数信息组,M为正整数。
  13. 根据权利要求12所述的方法,其中,所述第一波束参数信息组包括的元素个数小于所述第二波束参数信息组包括的元素个数,所述第二波束参数信息组包括的元素个数小于或者等于所述波束参数信息组包括的元素个数。
  14. 根据权利要求12所述的方法,其中,所述将所述K个第一波束参数信息组处理为N个第二波束参数信息组,包括:
    对所述K个第一波束参数信息组补零操作,获取N个第二波束参数信息组。
  15. 根据权利要求11或12所述的方法,其中,K大于K0,K0为正整数。
  16. 一种波束参数信息的接收方法,应用于第二通信节点,包括:
    发送N套参考信号配置信息和K套参考信号;
    接收至少一个波束参数信息,所述波束参数信息是第一通信节点根据所述K套参考信号确定出的M个波束参数信息组中的至少一个波束参数信息;K、M、N均为正整数、且K小于N。
  17. 根据权利要求16所述的方法,其中,一套所述参考信号包括以下之一:一个参考信号资源,一组参考信号资源,一个参考信号资源集合,一个参考信号资源配置对应的参考信号资源。
  18. 根据权利要求16所述的方法,其中,所述发送K套参考信号,包括:
    根据所述N套参考信号配置信息,发送所述K套参考信号。
  19. 根据权利要求16所述的方法,其中,所述N套参考信号配置信息对应N套参考信号,所述K套参考信号为所述N套参考信号的一部分。
  20. 根据权利要求19所述方法,其中,所述N套参考信号属于同一个参考信号集合或所述N套参考信号属于同一个参考信号配置。
  21. 根据权利要求16所述的方法,其中,所述第二通信节点不期望发送少于所述N套参考信号配置信息对应的N套参考信号。
  22. 一种第一通信节点,包括:处理器;所述处理器设置为在执行计算机程序时实现如权利要求1-15中任一所述的波束参数信息的反馈方法。
  23. 一种第二通信节点,包括:处理器;所述处理器设置为在执行计算机程序时实现如权利要求16-21中任一所述的波束参数信息的接收方法。
  24. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-15中任一所述的波束参数信息的反馈方法;或者实现如权利要求16-21中任一所述的波束参数信息的接收方法。
PCT/CN2023/110513 2022-08-19 2023-08-01 波束参数信息的反馈、接收方法,通信节点及存储介质 WO2024037329A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020257004553A KR20250034495A (ko) 2022-08-19 2023-08-01 빔 파라미터 정보의 피드백 방법 및 수신 방법, 통신 노드 및 저장 매체
EP23854233.6A EP4560930A1 (en) 2022-08-19 2023-08-01 Beam parameter information feedback method, beam parameter information receiving method, communication node, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211000598.5A CN117639852A (zh) 2022-08-19 2022-08-19 波束参数信息的反馈、接收方法,通信节点及存储介质
CN202211000598.5 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024037329A1 true WO2024037329A1 (zh) 2024-02-22

Family

ID=89940678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110513 WO2024037329A1 (zh) 2022-08-19 2023-08-01 波束参数信息的反馈、接收方法,通信节点及存储介质

Country Status (4)

Country Link
EP (1) EP4560930A1 (zh)
KR (1) KR20250034495A (zh)
CN (1) CN117639852A (zh)
WO (1) WO2024037329A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288991A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 波束信息、配置信息的反馈方法及装置
CN111742497A (zh) * 2018-02-14 2020-10-02 Oppo广东移动通信有限公司 信号传输的方法和设备
WO2021174260A1 (en) * 2020-02-28 2021-09-02 Qualcomm Incorporated Beam switching upon negative acknowledgement reception
US20220021436A1 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Indications of selected beams for transmission and reception in full duplex operation
US20220190883A1 (en) * 2019-04-17 2022-06-16 Nokia Technologies Oy Beam prediction for wireless networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288991A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 波束信息、配置信息的反馈方法及装置
CN111742497A (zh) * 2018-02-14 2020-10-02 Oppo广东移动通信有限公司 信号传输的方法和设备
US20220190883A1 (en) * 2019-04-17 2022-06-16 Nokia Technologies Oy Beam prediction for wireless networks
WO2021174260A1 (en) * 2020-02-28 2021-09-02 Qualcomm Incorporated Beam switching upon negative acknowledgement reception
US20220021436A1 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Indications of selected beams for transmission and reception in full duplex operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION: "Discussion on potential enhancements for AI/ML based beam management", 3GPP DRAFT; R1-2203251, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052152893 *

Also Published As

Publication number Publication date
KR20250034495A (ko) 2025-03-11
CN117639852A (zh) 2024-03-01
EP4560930A1 (en) 2025-05-28

Similar Documents

Publication Publication Date Title
EP4050812A1 (en) Method and device for transmitting channel state information
WO2021258798A1 (zh) 一种确定波束对的方法及装置
US20250225443A1 (en) Method for obtaining training data in ai model training and communication apparatus
US20250068904A1 (en) Neural network generation method, indication information sending method, communication node, and medium
EP4277144A1 (en) Feedback mode determination method and apparatus, and devices and storage medium
WO2025035776A1 (zh) 信道状态信息的发送和接收方法、通信装置、及存储介质
WO2023207822A1 (zh) 通信方法、设备和存储介质
EP4485273A1 (en) Beam measurement parameter feedback method and device and receiving method and device
EP4550684A1 (en) Transmission method, communication node, and storage medium
WO2024037329A1 (zh) 波束参数信息的反馈、接收方法,通信节点及存储介质
EP4564699A1 (en) Information sending method, information receiving method, communication device, and storage medium
US12355531B2 (en) Channel data transmission method and apparatus, communication device, and storage medium
US20250119255A1 (en) Resource transmission method, resource receiving method, communication node, and storage medium
WO2024041362A1 (zh) 信道状态信息处理方法、装置、通信节点及存储介质
EP4546855A1 (en) Measurement parameter feedback method and device, terminal, and storage medium
EP4546835A1 (en) Information transmission method and device, and storage medium
EP4529060A1 (en) Channel state information processing methods and apparatus, communication node and storage medium
WO2024164638A1 (zh) 指示信息发送方法、指示信息接收方法、装置及存储介质
WO2025035777A1 (zh) 性能指示的发送和接收方法、通信装置、及存储介质
WO2025107651A1 (zh) 信道状态信息报告的发送方法、接收方法及装置
CN119948768A (zh) 无线通信系统中用于波束报告的方法和装置
WO2025066114A1 (zh) 信道状态信息报告配置的传输方法、装置及存储介质
WO2024016936A1 (zh) 信道状态信息的确定方法、电子设备和存储介质
WO2024207736A1 (zh) 数据集发送和接收方法、装置及存储介质
CN120130031A (zh) 无线通信系统中用于波束指示的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18993279

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20257004553

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020257004553

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023854233

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023854233

Country of ref document: EP

Effective date: 20250221

WWP Wipo information: published in national office

Ref document number: 1020257004553

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2023854233

Country of ref document: EP