WO2021258798A1 - 一种确定波束对的方法及装置 - Google Patents

一种确定波束对的方法及装置 Download PDF

Info

Publication number
WO2021258798A1
WO2021258798A1 PCT/CN2021/083318 CN2021083318W WO2021258798A1 WO 2021258798 A1 WO2021258798 A1 WO 2021258798A1 CN 2021083318 W CN2021083318 W CN 2021083318W WO 2021258798 A1 WO2021258798 A1 WO 2021258798A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
beam pair
parameter information
network device
beams
Prior art date
Application number
PCT/CN2021/083318
Other languages
English (en)
French (fr)
Inventor
王世鹏
张宝
杨建华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021258798A1 publication Critical patent/WO2021258798A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and in particular, to a method and device for determining a beam pair.
  • the millimeter wave mmWave with a higher carrier frequency is used for wireless communication. Due to the high carrier frequency, the signal transmitted by the transmitting device experiences more severe fading during the space propagation process, and it is even difficult for the receiving device to detect the signal. Based on this, the transmitting device can use multi-antenna technology to transmit signals using narrow beams. The narrow beams can cover longer distances through the beam gain of the antenna, and because the signal coverage is narrow, there is less interference in directions other than the signal.
  • Network equipment can generate multiple beams in different directions, and terminal equipment can also generate multiple beams in different directions.
  • both parties can perform beam selection.
  • the transmit and receive beams between devices are aligned, the transmit and receive gains are better, and better communication quality can be achieved.
  • the aligned transmit beam and receive beam are defined as an optimal beam pair.
  • the embodiments of the present application provide a method and device for determining a beam pair, so as to determine an optimal beam pair between a network device and a terminal device.
  • a method for determining a beam pair which can be applied to a communication system with a terminal device and a network device, wherein the terminal device can generate M beams in different directions, where M is greater than or equal to An integer of 2.
  • the network device can generate N beams in different directions, where N is an integer greater than or equal to 2.
  • the method includes: a terminal device acquires first parameter information, the first parameter information includes at least the following information: whether there is an obstruction between the terminal device and the network device, and the measurement signal sent by the network device reaches the end of the terminal device. Arrival angle.
  • the terminal device determines an optimal beam pair between the terminal device and the network device according to the first parameter information, and the optimal beam pair includes the first beam generated by the terminal device and the network device A second beam generated; the first beam is one of the M beams, and the second beam is one of the N beams.
  • the communication quality when the terminal device uses the first beam to communicate with the network device using the second beam is better than that of the terminal device using the M beams other than the first beam Any beam, the communication quality when communicating with the network device using any beam other than the second beam among the N beams.
  • the terminal device can determine the optimal beam between the terminal device and the network device by determining whether there is an obstruction between the terminal device and the network device and the angle of arrival at which the measurement signal sent by the network device reaches the terminal device. right.
  • the first parameter information may also include, but is not limited to, one or more of the following: the temperature of the antenna element on the terminal device, the temperature of the environment where the terminal device is located, The signal quality of the measurement signal, the signal strength of the measurement signal, the modulation and demodulation order of the terminal device, the number of resource blocks occupied by the network device to send the measurement signal, and the rank of the transmission channel.
  • more parameter information is used to determine the optimal beam pair, which can better improve the accuracy of determining the optimal beam pair.
  • the terminal device when it determines the optimal beam pair between the terminal device and the network device according to the first parameter information, it may query a preset according to the first parameter information A relationship database to obtain an optimal beam pair between the terminal device and the network device, the relationship database includes a plurality of different parameter information and the corresponding relationship between the optimal beam pair or different parameter information ranges, respectively Correspondence between and the optimal beam pair.
  • the relationship database includes a plurality of different parameter information and the corresponding relationship between the optimal beam pair or different parameter information ranges, respectively Correspondence between and the optimal beam pair.
  • the terminal device when the terminal device determines the optimal beam pair between the terminal device and the network device according to the first parameter information, it may also input the first parameter information into
  • the optimal beam pair between the terminal device and the network device is determined according to the identification of the beam generated by the terminal device and the identification of the beam generated by the network device output by the beam pair model
  • the beam pair model is a relationship model between different parameter information and the identifiers of different beams in the terminal device and the identifiers of different beams in the network device.
  • the terminal device may train the beam pair model in the following manner: the terminal device obtains multiple sets of information, any of which may include but is not limited to: parameter information, the terminal device and the network Optimal beam pair between devices. The multiple sets of information are used to train the beam pair model.
  • the parameter information may include: whether there is an obstruction between the terminal device and the network device, and the angle of arrival at which the measurement signal sent by the network device reaches the terminal device; further, the parameter information may also include but is not limited to the following One or more of: the temperature of the antenna element on the terminal device, the ambient temperature of the terminal device, the signal quality of the measurement signal, the signal strength of the measurement signal, the temperature of the terminal device The modulation and demodulation order, the number of resource blocks occupied by the network device to send the measurement signal, and the rank of the transmission channel. Training the beam pair model with more parameter information can better improve the accuracy of determining the optimal beam pair.
  • the terminal device may determine the optimal beam pair between the terminal device and the network device according to the first parameter information and the identifier of the area where the terminal device is currently located.
  • the terminal device may first determine the relation library corresponding to the identifier of the area where the terminal device is currently located according to the identifier of the area where the terminal device is currently located, and then determine the relationship library corresponding to the identifier of the area where the terminal device is currently located, and then according to the first parameter information Query a preset relationship database corresponding to the identifier of the area where the terminal device is currently located, and obtain the optimal beam pair between the terminal device and the network device.
  • the identifier of the area may be the identifier of the network device, the identifier of the cell, the identifier of the macro cell, and so on.
  • a relational library is configured with fine granularity, which can better improve the accuracy of determining the optimal beam pair.
  • the terminal device may first determine the pre-trained beam pair model corresponding to the identifier of the area where the terminal device is currently located according to the identifier of the area where the terminal device is currently located, and then combine all The first parameter information is input into the pre-trained beam pair model corresponding to the identifier of the area where the terminal device is currently located, to obtain the optimal beam pair between the terminal device and the network device.
  • the identifier of the area may be the identifier of the network device, the identifier of the cell, the identifier of the macro cell, and so on. For a region, training a beam pair model with fine granularity can better improve the accuracy of determining the optimal beam pair.
  • a communication device (which can also be understood as a device for determining a beam pair), and the device has the function of realizing the foregoing first aspect and any one of the possible implementations of the first aspect.
  • These functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more functional modules corresponding to the above-mentioned functions.
  • a computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes any of the above-mentioned first aspect and any possible aspect of the first aspect Implementation of the method executed by the terminal device.
  • the present application provides a chip system that includes a processor and a memory, and the processor and the memory are electrically coupled; the memory is used to store computer program instructions; the processor , Used to execute part or all of the computer program instructions in the memory, when the part or all of the computer program instructions are executed, used to implement the first aspect and the terminal device in any possible implementation method of the first aspect Function.
  • the chip system may further include a transceiver, and the transceiver is configured to send a signal processed by the processor or receive a signal input to the processor.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1a is a schematic structural diagram of a measurement signal provided in an embodiment of this application.
  • FIG. 1b is a schematic diagram of a process of sending a measurement signal according to an embodiment of this application
  • FIG. 2 is a schematic diagram of a communication system architecture provided in an embodiment of the application.
  • FIG. 3 is a schematic diagram of an application scenario provided in an embodiment of the application.
  • FIG. 4 is a schematic diagram of a process for determining an optimal beam pair provided in an embodiment of this application.
  • FIG. 5 is a schematic diagram of a process for determining an optimal beam pair provided in an embodiment of this application.
  • FIG. 6 is a schematic diagram of a process for determining an optimal beam pair provided in an embodiment of this application.
  • FIG. 7 is a communication device provided in an embodiment of this application.
  • FIG. 8 is a communication device provided in an embodiment of this application.
  • Fig. 9 is a schematic structural diagram of a terminal device provided in an embodiment of the application.
  • Beam scanning a certain time unit concentrates energy in a certain direction, this direction can send the signal farther, but the signal can not be received in other directions, the next time unit is sent in another direction, and finally passes through the beam Continuously change direction to achieve coverage of multiple areas.
  • Measurement signal One measurement signal occupies multiple orthogonal frequency division multiplexing (OFDM) symbols.
  • Measurement signals such as synchronization signal block SSB (SS/PBCH block), or primary synchronization signal (PSS) in SSB, or channel state information reference signal (channel state information reference signal, CSI-RS), or secondary synchronization Signal or second synchronization signal (secondary synchronization signal, SSS).
  • the synchronization signal block SSB (SS/PBCH block) is composed of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • the SSB is sent in a periodic form, and the period of the SSB can be 20 ms (the 20 ms is generally a default value).
  • the SSB of multiple beam directions in a period can be limited to 5 ms (the transmission window of the SSB), and the SSB of multiple beam directions can be referred to as SSB Set in FIG. 1b.
  • a 15kHz subcarrier spacing SCS is used, so the number of symbols within 1ms is 14.
  • Each SSB occupies 4 consecutive OFDM symbols, including two SSBs within 1ms, and there is a certain symbol interval between adjacent SSBs.
  • Signal quality can be expressed as signal-to-interference-to-noise ratio, which means the ratio of useful signal to interference + noise floor.
  • the unit of signal quality is usually dB.
  • RS SINR reference signal-signal to interference plus noise ratio
  • PDSCH physical downlink shared channel
  • RSRP is usually used in the LTE system. RSRP refers to the average value of the signal power received on all REs carrying reference signals in a certain OFDM symbol; it is used to identify the downlink pilot strength (power of a single pilot subcarrier) of the cell. Does not contain noise and interference. RSRP measurement provides a measurement of the signal strength of a cell, and distinguishes the priority of LTE candidate cells based on the signal strength of the cell, as an input for cell reselection and cell handover decisions.
  • Angle of arrival a measure of the propagation direction of wave radiation reaching the observation point, generally the angle between the wave ray and a certain direction (usually the horizontal plane or the normal of the horizontal plane) is called the angle of arrival.
  • the transmission channel can be identified by a matrix, and RI identifies the transmission channel in the MIMO system It can be regarded as the number of independent parallel channels on the transmission path between the transceiver equipment.
  • the RI information can identify the direct correlation of multiple transmission channels between the transmitting end and the receiving end. If RI is 1, it indicates that multiple transmission paths are completely correlated, and the transmitted signals are likely to interfere with each other, making it difficult for the receiving end to receive accurately. If the RI is greater than 1, multiple independent and unrelated channels are identified, and the terminal can receive signals on different channels and decode them independently or jointly according to the precoding rules, thereby increasing transmission reliability and channel capacity.
  • Resource block the smallest unit of resources allocated to users on the downlink.
  • the resources that can be allocated to users on the downlink include frequency domain resources, time domain resources, and space domain resources, including frequency division multiplexing, time division multiplexing, and space division multiplexing.
  • Modulation and demodulation order which is related to modulation and coding scheme (MCS). It is a quantized modulation method and an indicator of coding efficiency. The higher the order, the higher the modulation method and the higher the coding efficiency. Generally 0-28 steps.
  • Antenna is a kind of converter that transforms the guided waves propagating on the transmission line into electromagnetic waves propagating in an unbounded medium (usually free space), or vice versa.
  • all those that use electromagnetic waves to transmit information rely on antennas for their work.
  • non-signal energy radiation also requires an antenna.
  • antennas are reversible, that is, the same antenna can be used as both a transmitting antenna and a receiving antenna. The basic characteristic parameters of the same antenna as transmitting or receiving are the same.
  • the antenna element is a component on the antenna, which has the function of guiding and amplifying the electromagnetic wave, so that the electromagnetic signal received by the antenna is stronger.
  • the main lobe direction is the direction corresponding to the lobe with the largest radiation intensity in the antenna pattern.
  • the antenna pattern is generally petal-shaped, so it is also called the lobe pattern, which is within the first zero radiation direction line on both sides of the maximum radiation direction.
  • the beam is called the main lobe, that is, the lobe with the highest radiation intensity is called the main lobe, and the remaining lobes are called side lobes or side lobes.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5th generation fifth generation
  • 5G new radio access technology
  • NR new radio access technology
  • FIG. 2 a schematic diagram of a communication system suitable for an embodiment of the present application, the communication system includes a network device 11 and a terminal device 12. in:
  • Network equipment which is a device capable of providing random access for terminal equipment or a chip that can be installed in the device.
  • This equipment includes but is not limited to: evolved Node B (eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point ( transmission and reception point, TRP or transmission point, TP, etc., and can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations in the 5G system (including (Multiple Antenna Panels) Antenna panels may also be network nodes that constitute a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (DU,
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), terminal, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal devices include handheld devices with wireless connection functions, vehicle-mounted devices, and so on.
  • terminal devices can be: mobile phones (mobile phones), tablets, notebook computers, handheld computers, mobile Internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality ( Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids
  • the network device 11 can generate beams in multiple directions, and the terminal device 12 can also generate beams in multiple directions.
  • the terminal device 12 and the network device 11 can perform beam selection, and send beams (beams for sending information) and receive beams between devices. (Beams for receiving information)
  • Beams for receiving information When aligned, the transmit and receive gains are better, and better communication quality can be achieved.
  • the transmit beam alignment here means that the transmit beam has directivity, and the main lobe direction of the transmit beam points to the receiving device; the receive beam alignment means that the receive beam has directivity, and the main lobe direction of the receive beam points to the transmit device.
  • the aligned transmit beam and receive beam as an optimal beam pair. That is, the communication quality when the terminal device 12 and the network device 11 use the optimal beam pair for communication is better than the communication quality when the optimal beam pair is not used for communication.
  • the optimal beam pair between the terminal device and the network device may also change.
  • the optimal beam pair between the terminal device and the network device can be Is a pair of beams in the normal direction.
  • the optimal beam pair between the terminal device and the network device changes from the beam pair in the normal direction to the leftmost beam pair. Then with the movement of the terminal device or other reasons, the obstruction between the terminal device and the network device is removed (that is, the scene is restored to an unobstructed scene). At this time, the optimal beam pair between the terminal device and the network device is changed back to Pair of beams in the normal direction.
  • the terminal device may need to determine the optimal beam pair between the terminal device and the network device from time to time.
  • the following describes a manner in which a terminal device uses its own multiple beams to perform beam scanning to determine the optimal beam pair.
  • the terminal device first uses the beam A generated by itself to receive the measurement signal sent by the network device using multiple beams in different directions of the network device. Then, the terminal device uses the beam B generated by itself to receive the measurement signal sent by the network device using multiple beams in different directions of the network device, .... The terminal device repeats this step until the terminal device finishes receiving the measurement signals sent by the network device using multiple beams in different directions of the network device on all beams generated by the terminal device.
  • the optimal beam pair between the terminal device and the network device can be selected according to the signal quality or signal strength or other performance parameters. This method of beam scanning to determine the optimal beam pair needs to traverse all the beams that can be generated by the terminal device and the network device, and the power consumption of the terminal device is relatively high.
  • this application proposes a method for the terminal device to autonomously learn the optimal beam pair in each scenario.
  • the terminal device recognizes some parameter information of the scene where the terminal device and the network device are located, such as whether there is an obstruction between the terminal device and the network device, and the angle of arrival AoA at which the measurement signal of the network device reaches the terminal device, and Measure the signal quality, signal strength, current temperature, etc. of the signal.
  • the terminal device automatically learns the optimal beam pair between the terminal device and the network device in different scenarios according to the parameter information in different scenarios.
  • the terminal device can obtain the parameter information of the current scene in real time to determine the optimal beam pair. In this manner, the terminal device can quickly and accurately find the optimal beam pair without scanning all beams, reduce the power consumption of the terminal, and ensure the communication quality of the beam pair.
  • a method for determining a beam pair which specifically includes the following steps:
  • Step 501 The terminal device obtains first parameter information.
  • the first parameter information may include: whether there is an obstruction between the terminal device and the network device, and the angle of arrival at which the measurement signal sent by the network device reaches the terminal device.
  • a period may be set in the terminal device, and the terminal device may periodically obtain the first parameter information.
  • the terminal device may also obtain the first parameter information in any of the following situations. For example, the terminal device determines that the communication quality has deteriorated, or the terminal device has just accessed the network, or the area where the terminal device is located has changed.
  • the area may be a cell-level area or an area under the jurisdiction of a network device.
  • the terminal device usually has received the measurement signal sent by the network device before obtaining the first parameter information, and can subsequently determine the optimum value according to the performance of the measurement signal. Excellent beam pair.
  • the terminal device may be provided with a sensor that detects whether there is an obstruction, and the sensor is used to determine whether there is an obstruction between the terminal device and the network device.
  • the sensor can be, for example, an infrared sensor, or an ultrasonic sensor, or a laser sensor.
  • a modem device may be provided in the terminal device, and the modem device can determine the arrival angle of the measurement signal sent by the network device to the terminal device according to some performance parameters of the measurement signal sent by the network device. These performance parameters can be, for example, signal strength, signal quality, and so on.
  • the process of determining the angle of arrival according to the performance parameters of the measured signal can be referred to the existing determination process, which will not be described in detail here.
  • the arrival angle may be, for example, 1 degree, 2 degrees, 30 degrees, and so on.
  • the first parameter information may also include one or more of the following: the temperature of the antenna element on the terminal device, the ambient temperature where the terminal device is located, the signal quality of the measurement signal, The signal strength of the measurement signal, the modulation and demodulation order of the terminal device, the number of resource blocks occupied by the network device to send the measurement signal, and the rank of the transmission channel. Using these more parameter information to determine the optimal beam pair can improve the accuracy of determining the optimal beam pair.
  • the temperature of the antenna element in the antenna set in the terminal device has some influence on the strength of the signal, thereby affecting the selection of the optimal beam pair.
  • the terminal device may also obtain the temperature of the antenna element as a reference factor for determining the optimal beam pair.
  • the temperature sensor in the RFIC radio frequency integrated circuit chip in the terminal equipment can measure the temperature of the antenna element. For example, the temperature of the antenna element is 25 degrees Celsius, 22.5 degrees Celsius, and so on.
  • the ambient temperature sensor set in the terminal device can also obtain the ambient temperature of the scene in which the terminal device is located, and the ambient temperature will also affect the temperature of the antenna element to a certain extent.
  • the ambient temperature is 24 degrees Celsius, 22.2 degrees Celsius, and so on.
  • the modem device in the terminal equipment can also determine the signal quality of the measurement signal, the signal strength of the measurement signal and other performance parameters.
  • the signal quality can be, for example, 20db, 30db, etc., and can also be converted to a level, for example, it can be excellent, medium, or poor.
  • the signal strength can be, for example, -70dbm, -50dbm, etc., and can also be converted to a level, for example, it can be excellent, medium, or poor.
  • the modem in the terminal equipment can determine the modem order.
  • the range of modulation and demodulation order is generally 1-28, for example, it can be 10, 15 and so on.
  • the modem device in the terminal device can determine the number of resource blocks occupied by the network device to send the measurement signal.
  • the number of resource blocks is generally 1-132, for example, 32, 64, 66, 128, and so on.
  • the modem in the terminal equipment can determine the rank of the transmission channel.
  • the rank of the transmission channel may be 1, 2, 3, and so on, for example.
  • Step 502 The terminal device determines an optimal beam pair between the terminal device and the network device according to the first parameter information, and the optimal beam pair includes the first beam generated by the terminal device and the network The second beam generated by the device.
  • the terminal device can generate M beams in different directions, the first beam is one of the M beams, and the M is an integer greater than or equal to 2.
  • the network device can generate N beams in different directions, the second beam is one of the N beams, and the N is an integer greater than or equal to 2.
  • the communication quality when the terminal device uses the first beam to communicate with the network device using the second beam is better than that of the terminal device using the M beams other than the first beam Any beam, the communication quality when communicating with the network device using any beam other than the second beam among the N beams.
  • the terminal device can generate beams in 3 directions, and the network device can generate beams in 3 directions.
  • the first beam is a beam in the middle direction generated by a terminal device
  • the second beam is a beam in the middle direction generated by a network device.
  • the first beam is the beam in the leftmost direction generated by the terminal device
  • the second beam is the beam in the leftmost direction generated by the network device.
  • the transmitting beam (the beam for sending information) and the receiving beam (the beam for sending information) on the terminal device side may be different beams, and the network device side
  • the transmit beam and receive beam of may also be different beams.
  • the above-mentioned optimal beam pair may refer to an optimal beam pair composed of a transmitting beam on the terminal device side and a receiving beam on the network device side, and the first beam generated by the terminal device is used by the terminal device to send information.
  • the second beam generated by the network device is the beam used by the network device to receive information.
  • the above-mentioned optimal beam pair may refer to the optimal beam pair composed of the receiving beam on the terminal device side and the transmitting beam on the network device side, and the first beam generated by the terminal device is used by the terminal device for receiving The information beam, the second beam generated by the network device is the beam used by the network device to send information.
  • the transmitting beam and the receiving beam on the terminal device side may be the same beam, and the transmitting beam and the receiving beam on the network device side may also be the same beam.
  • the first beam generated by the terminal device may be a beam used by the terminal device to receive information and send information
  • the second beam generated by the network device may be a beam used by the network device to send information and receive information.
  • Manner 1 A relational library can be saved in advance, and the relational library includes correspondences between multiple different parameter information and optimal beam pairs.
  • the relationship database includes a plurality of different parameter information ranges and corresponding relationships between the optimal beam pairs.
  • the arrival angle in the relational database can be divided into multiple angle ranges, for example, it can be 0-5 degrees, 5-9 degrees, 9-13 degrees, and so on.
  • the temperature of the antenna element in the relational library is divided into multiple temperature ranges, such as 0-5 degrees Celsius, 5-11 degrees Celsius, and so on.
  • Parameter information such as the rank of the transmission channel can be divided into multiple ranges, which are similar to the way of dividing the range of the angle of arrival and the temperature of the antenna element, and will not be introduced one by one.
  • the terminal device may query a preset relationship database according to the first parameter information to obtain the optimal beam pair between the terminal device and the network device.
  • the beam pair that completely matches the first parameter information may be determined as the optimal beam pair.
  • the beam pair with the highest degree of matching with the first parameter information is determined as the optimal beam pair.
  • the exact match here means that the parameter information is exactly the same, and the highest matching degree can be understood as the closest numerical value.
  • the relationship database includes two angles of arrival x1 and x2 (the rest of the parameter information is identical by default), x1 corresponds to the beam pair (B, b), and x2 corresponds to the beam pair (C, c).
  • the actual obtained arrival angle x3 is different from x1 and x2, but x3 is closer to x1, and the matching degree of x1 is considered to be higher, and the beam pair (B, b) corresponding to x1 is taken as the optimal beam pair.
  • the beam pair corresponding to the parameter information range where the first parameter information is located may be determined as the optimal beam pair.
  • the current optimal beam pair can be queried through the first parameter information, which can improve the efficiency of determining the optimal beam pair And accuracy.
  • the corresponding relationship included in the relationship library is shown in Table 1:
  • the first parameter information currently acquired by the terminal device is 15 degrees of arrival angle
  • the temperature of the antenna element is 23 degrees Celsius
  • the modulation and demodulation order is 18 (and The 17th order in Table 1 is the closest)
  • the optimal beam pair determined at this time is the beam C on the terminal device side and the beam c on the network device side.
  • a relational library can be specific to one area, and relational libraries in different areas can be used separately.
  • This area can be at the cell level, network equipment jurisdiction level, or macro base station level.
  • the terminal device may first determine the relationship library corresponding to the identifier of the area where the terminal device is currently located according to the identifier of the area where the terminal device is currently located, and then query the corresponding relationship library according to the first parameter information, to Determine the optimal beam pair.
  • the identifier of the area where the terminal device is currently located here may be the identifier of the network device, the identifier of the cell, the identifier of the macro cell, and so on.
  • a relational library is configured with fine granularity, which can improve the accuracy of determining the optimal beam pair.
  • the beam pair model can be pre-trained.
  • the beam pair model is a model of the relationship between different parameter information and the identification of different beams in the terminal device and the identification of different beams in the network device, which can also be understood as a neural network model .
  • the terminal device may input the first parameter information into the pre-trained beam pair model, and determine the terminal device according to the identifier of the beam generated by the terminal device and the identifier of the beam generated by the network device output by the beam pair model The optimal beam pair with the network device.
  • the beam pair model output format is a two-tuple of (UE-side beam ID, base station RS-side beam ID), the UE-side beam ID in the two-tuple is the identification of the first beam generated by the terminal device, and the RS in the two-tuple
  • the side beam ID is the identification of the second beam generated by the network device.
  • one beam pair model can be for one area, and beam pair models for different areas can be used separately.
  • This area can be at the cell level, network equipment jurisdiction level, or macro base station level.
  • the terminal device may first determine the pre-trained beam pair model corresponding to the identifier of the area where the terminal device is currently located according to the identifier of the area where the terminal device is currently located, and then input the first parameter information into the preset In the trained beam pair model, determine the optimal beam pair.
  • the identifier of the area where the terminal device is currently located here may be the identifier of the network device, the identifier of the cell, the identifier of the macro cell, and so on. For a region, training a beam pair model with fine granularity can improve the accuracy of determining the optimal beam pair.
  • multiple sets of information can be obtained first, any of which includes: parameter information, the optimal beam pair between the terminal device and the network device; the terminal device uses The multiple sets of information train the beam pair model.
  • the parameter information includes: whether there is an obstruction between the terminal device and the network device, and the angle of arrival at which the measurement signal sent by the network device reaches the terminal device.
  • the first parameter information further includes one or more of the following: the temperature of the antenna element on the terminal device, the ambient temperature where the terminal device is located, the signal quality of the measurement signal, and the The signal strength of the measurement signal, the modulation and demodulation order of the terminal device, the number of resource blocks occupied by the network device to send the measurement signal, and the rank of the transmission channel.
  • the terminal device can start the optimal beam pair learning when it first accesses the network, or when the optimal beam pair changes, or when the scene changes.
  • the process of model training is similar to the process of model use. If the parameter information used during model training is specific values (such as temperature values), then when using the model, Specific values should be entered. If the parameter information used during model training is a range (such as temperature range) or level (medium, high, low), then when using the model, you should also enter a range (such as temperature range) or level (medium). , High, low).
  • the above-mentioned method 1 saves the corresponding relationship between the parameter information and the optimal beam pair in the relation database, or the above-mentioned method 2 adopts the parameter information and the optimal beam pair.
  • the parameter information may be The parameter information obtained each time may also be the parameter information obtained by taking the average value or the median value of the multiple parameter information obtained for the same optimal beam.
  • the temperature of the antenna element is acquired three times, respectively, 22 degrees Celsius, 23 degrees Celsius, and 22 degrees Celsius, and then the average value of these three times is 22.33 degrees Celsius and saved in the relation database of method 1, or Use 22.33 degrees Celsius to train the beam pair model. In this way, errors caused by extreme values can be avoided, and the accuracy of determining the optimal beam pair can be further improved.
  • the terminal device includes A core, modem device and various sensors.
  • the modem device can obtain the identification of the beam pair and some parameter information and send it to the A core, and the sensor can also obtain some parameter information and send it to the A core.
  • the A core can perform the learning of the optimal beam pair according to various parameter information and the identification of the beam pair, for example, determine the relation database in the method 1 or determine the beam pair model in the training method 2.
  • the A core can also determine the optimal beam pair according to the parameter information, and send the identification of the optimal beam pair to the modem device, so that the modem device uses the optimal beam pair to communicate with the network device.
  • the foregoing describes the method for determining a beam pair in an embodiment of the present application, and the communication device for determining a beam pair in an embodiment of the present application will be introduced below.
  • the method and the device are based on the same technical idea. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • a communication device 700 is provided, and the device 700 can execute the steps performed by the terminal device in the foregoing methods of FIG. 4, FIG. 5, and FIG.
  • the apparatus 700 may be a terminal device or a chip applied to the terminal device.
  • the apparatus 700 may include an obtaining module 710 for obtaining first parameter information, where the first parameter information includes: whether there is an obstruction between the apparatus and the network device, and the measurement signal sent by the network device arrives The angle of arrival of the device; a decision module 720, configured to determine an optimal beam pair between the device and the network device according to the first parameter information, the optimal beam pair including the first generated by the device A beam and a second beam generated by the network device; wherein the device can generate M beams in different directions, the first beam is one of the M beams, and the M is greater than or equal to 2
  • the network device can generate N beams in different directions, the second beam is one of the N beams, and the N is an integer greater than or equal to 2; the device uses the first The communication quality when a beam communicates with the network equipment using the second beam is better than that when the device uses any beam other than the first beam among the M beams, and the network equipment Communication quality when using any other beam among the N beams except for the second beam to communicate.
  • the decision module 720 when configured to determine the optimal beam pair between the apparatus and the network device according to the first parameter information, it is specifically configured to: according to the first parameter information Information query a preset relationship database to obtain the optimal beam pair between the device and the network device, the relationship database includes a plurality of different parameter information or the correspondence between the parameter information range and the optimal beam pair relation.
  • the decision module 720 when configured to determine the optimal beam pair between the apparatus and the network device according to the first parameter information, it is specifically configured to: The information is input into the pre-trained beam pair model, and the optimum between the device and the network device is determined based on the identification of the beam generated by the device and the identification of the beam generated by the network device output by the beam pair model A beam pair, the beam pair model is a relationship model between different parameter information and the identities of different beams in the device and the identities of different beams in the network device.
  • the obtaining module 710 is further configured to: obtain multiple sets of information, any one of which includes: parameter information, an optimal beam pair between the device and the network device; the parameter information It includes: whether there is an obstruction between the device and the network device, and the angle of arrival at which the measurement signal sent by the network device reaches the device.
  • the device further includes: a learning module 730, and the learning module 730 is further configured to use the multiple sets of information to train the beam pair model.
  • the decision module 720 is used to query the preset relational database according to the first parameter information, it is also used to: determine the current location according to the identifier of the area where the device is currently located The relation database corresponding to the identifier of the area where it is located.
  • the decision module 720 before the decision module 720 is used to input the first parameter information into the pre-trained beam pair model, it is also used to: determine according to the identifier of the area where the device is currently located The pre-trained beam pair model corresponding to the identifier of the current area.
  • FIG. 8 is a schematic block diagram of a communication device 800 according to an embodiment of the present application. It should be understood that the apparatus 800 can execute each step executed by the terminal device in the methods of FIG. 4, FIG. 5, and FIG. 6 described above.
  • the device 800 includes a processor 810, and optionally, a transceiver 820 and a memory 830.
  • the transceiver can be used to receive program instructions and transmit them to the processor, or the transceiver can be used to communicate and interact with other communication devices, such as interactive control signaling and/or service data.
  • the transceiver may be a code and/or data read-write transceiver, or the transceiver may be a signal transmission transceiver between the communication processor and the transceiver.
  • the transceiver can also be replaced with a transceiver, an interface circuit, and so on.
  • the processor 810 and the memory 830 are electrically coupled.
  • the memory 830 is configured to store a computer program; the processor 810 may be configured to call a computer program or instruction stored in the memory to execute the above-mentioned method for determining a beam pair.
  • the processor 810 is configured to obtain first parameter information, where the first parameter information includes: whether there is an obstruction between the device and the network device, and the measurement signal sent by the network device reaches the The angle of arrival of the device; according to the first parameter information, determine the optimal beam pair between the device and the network device, the optimal beam pair including the first beam generated by the device and the network device generated The second beam; wherein the device can generate M beams in different directions, the first beam is one of the M beams, and the M is an integer greater than or equal to 2; the network device can N beams in different directions are generated, the second beam is one of the N beams, and N is an integer greater than or equal to 2; the apparatus adopts the first beam and the network equipment adopts The communication quality during the second beam communication is better than that when the device uses any of the M beams except the first beam, and the network device uses any of the N beams except for The communication quality of any beam other than the second beam during communication.
  • the first parameter information includes: whether there is an obstruction between the device and the network device,
  • the processor 810 when the processor 810 is configured to determine the optimal beam pair between the apparatus and the network device according to the first parameter information, it is specifically configured to: according to the first parameter information Information queries a preset relationship database to obtain an optimal beam pair between the device and the network device, and the relationship database includes a plurality of different parameter information and the corresponding relationship between the optimal beam pair.
  • the processor 810 when configured to determine the optimal beam pair between the apparatus and the network device according to the first parameter information, it is specifically configured to: The information is input into the pre-trained beam pair model, and the optimum between the device and the network device is determined based on the identification of the beam generated by the device and the identification of the beam generated by the network device output by the beam pair model A beam pair, the beam pair model is a relationship model between different parameter information or parameter information ranges and the identifiers of different beams in the apparatus and the identifiers of different beams in the network device.
  • the processor 810 is further configured to: obtain multiple sets of information, where any set of information includes: parameter information, an optimal beam pair between the device and the network device; the parameter information It includes: whether there is an obstruction between the device and the network device, and the angle of arrival at which the measurement signal sent by the network device reaches the device. And using the multiple sets of information to train the beam pair model.
  • the processor 810 before the processor 810 is configured to query a preset relational database according to the first parameter information, it is further configured to: determine a relationship with the current The relation database corresponding to the identifier of the area where it is located.
  • the processor 810 before the processor 810 is used to input the first parameter information into the pre-trained beam pair model, it is also used to: determine according to the identifier of the area where the device is currently located The pre-trained beam pair model corresponding to the identifier of the current area.
  • the transceiver 820 is used to receive measurement signals sent by a network device.
  • the foregoing processor may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip or other general-purpose processors.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL) and other programmable logic devices , Discrete gates or transistor logic devices, Discrete hardware components, etc. or any combination thereof.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the transceiver device, interface circuit, or transceiver described in the embodiments of the present application may include a separate transmitter, and/or a separate receiver, or the transmitter and the receiver may be integrated.
  • the transceiver, the interface circuit, or the transceiver can work under the instruction of the corresponding processor.
  • the transmitter may correspond to the transmitter in the physical device
  • the receiver may correspond to the receiver in the physical device.
  • the embodiment of the present application also provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a computer, the computer can be used to execute the above-mentioned method for determining a beam pair.
  • the embodiment of the present application also provides a computer program product containing instructions, which when running on a computer, enables the computer to execute the method for determining a beam pair provided above.
  • An embodiment of the present application also provides a communication system.
  • the communication system includes: a terminal device that executes the above method for determining a beam pair and a network device that communicates with the terminal device.
  • FIG. 9 shows a simplified schematic diagram of a possible design structure of the terminal device involved in the foregoing embodiment.
  • the terminal device includes a transmitter 901, a receiver 902, a controller/processor 903, a memory 904, and a modem processor 905.
  • the transmitter 901 is used to transmit an uplink signal, and the uplink signal is transmitted to the network device described in the foregoing embodiment via an antenna.
  • the antenna receives the downlink signal (DCI) transmitted by the network device in the above embodiment.
  • the receiver 902 is used to receive a downlink signal (DCI) received from an antenna.
  • the encoder 906 receives service data and signaling messages to be sent on the uplink, and processes the service data and signaling messages.
  • the modulator 907 further processes (for example, symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 909 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 908 processes (e.g., decodes) the symbol estimation and provides decoded data and signaling messages sent to the terminal device.
  • the encoder 906, the modulator 907, the demodulator 909, and the decoder 908 may be implemented by a synthesized modem processor 905. These units are processed according to the wireless access technology adopted by the wireless access network.
  • the controller/processor 903 controls and manages the actions of the terminal device, and is used to execute the processing performed by the terminal device in the foregoing embodiment. For example, it is used to determine the optimal beam pair according to the first parameter information, for example, to train the beam pair model and determine the relation library.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • this application can be provided as a method, a system, or a computer program product. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

本申请涉及无线通信技术领域,公开了一种确定波束对的方法及装置,用以确定出网络设备与终端设备之间的最优波束对。方法包括:终端设备获取以下信息:所述终端设备与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述终端设备的到达角等。终端设备根据这些信息,确定所述终端设备与所述网络设备间的最优波束对,所述最优波束对包括所述终端设备产生的第一波束和所述网络设备产生的第二波束;所述终端设备采用所述第一波束与所述网络设备采用所述第二波束通信时的通信质量,优于所述终端设备采用除所述第一波束之外的其它任一波束,与所述网络设备采用除所述第二波束之外的其它任一波束通信时的通信质量。

Description

一种确定波束对的方法及装置
相关申请的交叉引用
本申请要求在2020年06月22日提交中国专利局、申请号为202010575894.2、申请名称为“一种确定波束对的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信技术领域,尤其涉及一种确定波束对的方法及装置。
背景技术
在5G(第五代)移动通信系统中采用相对于长期演进技术(long term evolution,LTE)移动通信系统更高的载波频率,来实现更大带宽、更高传输速率的无线通信。例如采用载波频率更高的毫米波mm Wave进行无线通信。由于载波频率较高,使发送设备发射的信号在空间传播过程中经历更加严重的衰落,甚至接收设备难以检测出该信号。基于此,发送设备可以通过多天线技术,使用窄波束发送信号,窄波束可以通过天线的波束增益覆盖更远距离,而且由于信号覆盖宽度窄,对信号之外的方向的干扰更少。
网络设备可以产生多个不同方向的波束,终端设备也可以产生多个不同方向的波束。网络设备和终端设备在进行通信时,双方可以进行波束选择。设备间的发送波束和接收波束在对准时,发射和接收增益较好,可以实现较好的通信质量。现有将对准时的发送波束和接收波束定义为最优波束对。
如何确定网络设备与终端设备之间的最优波束对是需要解决的技术问题。
发明内容
本申请实施例提供一种确定波束对的方法及装置,用以确定出网络设备与终端设备之间的最优波束对。
第一方面,提供了一种确定波束对的方法,可以应用于具备终端设备和网络设备的通信系统中,其中,所述终端设备能够产生M个不同方向的波束,所述M为大于或等于2的整数。所述网络设备能够产生N个不同方向的波束,所述N为大于或等于2的整数。所述方法包括:终端设备获取第一参数信息,所述第一参数信息至少包括以下信息:所述终端设备与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述终端设备的到达角。进而,终端设备根据所述第一参数信息,确定所述终端设备与所述网络设备间的最优波束对,所述最优波束对包括所述终端设备产生的第一波束和所述网络设备产生的第二波束;所述第一波束为所述M个波束中的一个,所述第二波束为所述N个波束的中的一个。所述终端设备采用所述第一波束与所述网络设备采用所述第二波束通信时的通信质量,优于所述终端设备采用所述M个波束中除所述第一波束之外的其它任一波束,与所述网络设备采用所述N个波束中除所述第二波束之外的其它任一波束通信时的通信质量。
在该实施例中,终端设备可以通过确定终端设备和网络设备之间是否存在遮挡物和网 络设备发送的测量信号到达所述终端设备的到达角,来确定终端设备与网络设备间的最优波束对。
在一种可能的实现中,所述第一参数信息还可以包括但不限于以下中的一项或多项:所述终端设备上的天线阵子的温度、所述终端设备所处的环境温度、所述测量信号的信号质量、所述测量信号的信号强度、所述终端设备的调制解调阶数、所述网络设备发送所述测量信号所占用的资源块的数目、传输信道的秩。该实施例中,通过更多的参数信息来确定最优波束对,可以更好提高确定最优波束对的准确性。
在一种可能的实现中,终端设备在根据所述第一参数信息,确定所述终端设备与所述网络设备间的最优波束对时,可以是根据所述第一参数信息查询预设的关系库,得到所述终端设备与所述网络设备间的最优波束对,所述关系库中包括多个不同的参数信息分别和最优波束对之间的对应关系或者不同的参数信息范围分别和最优波束对之间的对应关系。通过在关系库中预先保存各种参数信息或参数信息范围与最优波束对的对应关系,以实现通过第一参数信息查询到当前的最优波束对,可以提高确定最优波束对的效率和准确性。
在另一种可能的实现中,终端设备在根据所述第一参数信息,确定所述终端设备与所述网络设备间的最优波束对时,还可以是将所述第一参数信息输入到预先训练好的波束对模型中,根据所述波束对模型输出的终端设备产生的波束的标识和网络设备产生的波束的标识,确定所述终端设备与所述网络设备间的最优波束对,所述波束对模型为不同的参数信息分别与终端设备中的不同波束的标识和网络设备中的不同波束的标识之间的关系模型。通过预先训练波束对模型,来表征各种参数信息与最优波束对的对应关系,也可以实现通过第一参数信息查询到当前的最优波束对,可以提高确定最优波束对的效率和准确性。
在一种可能的实现中,终端设备可以采用以下方式训练所述波束对模型:终端设备获取多组信息,其中任一组信息可以但不限于包括:参数信息、所述终端设备与所述网络设备间的最优波束对。采用所述多组信息,训练所述波束对模型。所述参数信息可以包括:所述终端设备与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述终端设备的到达角;进一步的,所述参数信息还可以包括但不限于以下中的一项或多项:所述终端设备上的天线阵子的温度、所述终端设备所处的环境温度、所述测量信号的信号质量、所述测量信号的信号强度、所述终端设备的调制解调阶数、所述网络设备发送所述测量信号所占用的资源块的数目、传输信道的秩。通过更多的参数信息来训练波束对模型,可以较好提高确定最优波束对的准确性。
在一种可能的实现中,所述终端设备可以根据所述第一参数信息以及所述终端设备当前所在的区域的标识,确定所述终端设备与所述网络设备间的最优波束对。
在一种可能的实现中,终端设备可以先根据所述终端设备当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述关系库,然后再根据所述第一参数信息查询预设的所述终端设备当前所在的区域的标识对应的关系库,得到所述终端设备与所述网络设备间的最优波束对。所述区域的标识可以是网络设备的标识,也可以是小区的标识,宏小区的标识等。针对一个区域,配置一个关系库,粒度精细,可以较好提高确定最优波束对的准确性。
在一种可能的实现中,终端设备可以先根据所述终端设备当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述预先训练好的波束对模型,然后再将所述第一参数信息输入到预先训练好的所述终端设备当前所在的区域的标识对应的波束对模型中, 得到所述终端设备与所述网络设备间的最优波束对。所述区域的标识可以是网络设备的标识,也可以是小区的标识,宏小区的标识等。针对一个区域,训练一个波束对模型,粒度精细,可以较好提高确定最优波束对的准确性。
第二方面,提供了一种通信装置(也可以理解为确定波束对的装置),所述装置具有实现上述第一方面及第一方面任一可能的实现中的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的功能模块。
第三方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及第一方面任一可能的实现中由终端设备执行的方法。
第四方面,本申请提供了一种芯片系统,该芯片系统包括处理器和存储器,所述处理器、所述存储器之间电耦合;所述存储器,用于存储计算机程序指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中终端设备的功能。
在一种可能的设计中,所述芯片系统还可以包括收发器,所述收发器,用于发送所述处理器处理后的信号,或者接收输入给所述处理器的信号。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
上述第二方面至第四方面的技术效果可以参照第一方面中的描述,重复之处不再赘述。
附图说明
图1a为本申请实施例中提供的一种测量信号的结构示意图;
图1b为本申请实施例中提供的一种发送测量信号的过程示意图;
图2为本申请实施例中提供的一种通信系统架构示意图;
图3为本申请实施例中提供的一种应用场景示意图;
图4为本申请实施例中提供的一种确定最优波束对的过程示意图;
图5为本申请实施例中提供的一种确定最优波束对的过程示意图;
图6为本申请实施例中提供的一种确定最优波束对的过程示意图;
图7为本申请实施例中提供的一种通信装置;
图8为本申请实施例中提供的一种通信装置;
图9为本申请实施例中提供的一种终端设备结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
为便于理解本申请实施例,以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)波束扫描,某一个时间单元将能量集中在某一个方向,这个方向就可以把信号发送的更远,但是其他方向接收不到信号,下一个时间单元朝着另一个方向发送,最终通过波束不断的改变方向,实现多个区域的覆盖。
2)测量信号,一个测量信号占用多个正交频分多路复用(orthogonal frequency division multiplexing,OFDM)符号。测量信号例如同步信号块SSB(SS/PBCH block)、或者SSB中的主同步信号(primary synchronization signal,PSS)、或者信道状态信息参考信号(channel state information reference signal,CSI-RS)、或者辅同步信号或第二同步信号(secondary synchronization signal,SSS)。其中,如图1a所示,同步信号块SSB(SS/PBCH block)由主同步信号(PSS)、辅同步信号(SSS)和物理广播信道(physical broadcast channel,PBCH)组成。如图1b所示,SSB采用周期形式发送,SSB的周期可以为20ms(该20ms一般为预设值(default))。一个周期内的多个波束方向的SSB可以限定在5ms(SSB的发送窗口)内,多个波束方向的SSB在图1b中可以称为SSB Set。图1b中采用了15kHz的子载波间隔SCS,因此1ms内的符号个数为14个。每个SSB占用了4个连续的OFDM符号,1ms内包含两个SSB,相邻SSB之间有一定的符号间隔。
3)信号质量,可以表示为信号干扰噪声比,表示有用信号相对干扰+底噪的比值,信号质量的单位通常为dB。在LTE中又可分为参考信号-信号与干扰加噪声比(reference signal-signal to interference plus noise ratio,RS SINR)和物理下行共享信道(physical downlink shared channel,PDSCH)SINR。
4)信号强度,不包含噪声和干扰。LTE系统内通常用RSRP表示,RSRP指在某个OFDM符号内承载参考信号的所有RE上接收到的信号功率的平均值;用来标识小区下行导频强度(单个导频子载波的功率),不包含噪声和干扰。RSRP测量提供小区信号强度的测量,主要根据小区的信号强度来区分LTE候选小区的优先级,作为小区重选和小区切换判决的输入。
5)到达角,到达观测点的波辐射传播方向的量度,一般是波射线与某一方向(一般为水平面或水平面法线)之间的夹角称为到达角。
6)秩,采用x个发送天线和y个接收天线的多输入多输出(Multiple-Input Multiple-Out-put,MIMO)系统中,传输信道可以采用矩阵进行标识,RI标识MIMO系统中的传输信道的秩(rank),它可以看作收发设备间传输通路上独立的并行信道的数目。RI信息可以标识发射端与接收端之间多条传输信道直接的相关性。如果RI为1,则标识多条传输通路完全相关,所传送的信号之间很可能会互相干扰,使得接收端难以准确接收。如果RI大于1,则标识多条独立不相关信道,终端可以接收不同通路上的信号,并根据预编码规则独立或者联合解码,从而增加传输可靠性,提高信道容量。
7)资源块,下行链路分配给用户的资源的最小单位。下行链路能够分配给用户的资源包括频域资源、时域资源和空域资源,既有频分复用,又有时分复用,还有空分复用。
8)调制解调阶数,与调制与编码策略(modulation and coding scheme,MCS)相关,为量化调制方式,编码效率的指示,阶数越高,调制方式越高,编码效率越高。一般为0-28阶。
9)天线(antenna),是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。
天线阵子,是天线上的元器件,具有导向和放大电磁波的作用,使天线接收到的电磁信号更强。
10)主瓣方向,为天线方向图中辐射强度最大的瓣对应的方向.天线方向图一般呈花瓣状,故又称为波瓣图,最大辐射方向两侧第一个零辐射方向线以内的波束就称为主瓣,即辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣。
另外,本申请中的“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th Generation,5G)系统,如无线接入技术(new radio access technology,NR),及未来的通信系统等。
为便于理解本申请实施例,接下来对本请的应用场景进行介绍,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图2所示的适用于本申请实施例的一种通信系统示意图,该通信系统包括网络设备11和终端设备12。其中:
1)网络设备,为具有能够为终端设备提供随机接入功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等。
2)终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端,或具有车与车(Vehicle-to-Vehicle,V2V)公共的无线终端等。
网络设备11可以产生多个方向的波束,终端设备12也可以产生多个方向的波束,终端设备12与网络设备11间可以进行波束选择,设备间的发送波束(发送信息的波束)和接收波束(接收信息的波束)在对准时,发射和接收增益较好,可以实现较好的通信质量。此处的发送波束对准是指:发送波束具有方向性,发送波束的主瓣方向指向接收设备;接收波束对准是指:接收波束具有方向性,接收波束的主瓣方向指向发送设备。将对准时的发送波束和接收波束定义为最优波束对。也就是终端设备12和网络设备11采用最优波束对进行通信时的通信质量优于未采用最优波束对进行通信时的通信质量。
如图2中的(a)所示,如果选择左侧的波束对,主瓣方向未对齐,不是最优波束对,会影响接收和发射增益。如图2中的(b)所示,如果选择右侧的波束对,主瓣方向可以对齐,可以获得较好的接收和发射增益。
在实际场景中,由于终端设备的移动或其它原因,终端设备与网络设备之间的遮挡情况可能会发生变化,则终端设备与网络设备之间的最优波束对也会发生变化。例如,如图3所示,终端设备与网络设备之间一开始可能没有遮挡(即无遮挡场景,也称为los路径场景),此时,终端设备与网络设备之间的最优波束对可以是法线方向的波束对。随着终端设备的移动或者其它原因,终端设备与网络设备之间存在遮挡物(即有遮挡场景),则之前的最优波束对已经不适用。此时,终端设备与网络设备之间的最优波束对由法线方向的波束对变为最左侧的波束对。再随着终端设备的移动或者其它原因,终端设备与网络设备之间的遮挡物撤除(即恢复为无遮挡场景),此时,终端设备与网络设备之间的最优波束对又变回了法线方向的波束对。
为了保证终端设备与网络设备之间的较好通信,终端设备可能需要时常确定终端设备与网络设备之间的最优波束对。
以下介绍一种终端设备采用自身的多个波束进行波束扫描,来确定最优波束对的方式。
首先,终端设备先采用自身产生的波束A接收网络设备采用网络设备的多个不同方向的波束发送的测量信号。然后,终端设备采用自身产生的波束B接收网络设备采用网络设备的多个不同方向的波束发送的测量信号,……。终端设备重复该步骤,直至终端设备在终端设备产生的全部波束上执行完接收网络设备采用网络设备的多个不同方向的波束发送的测量信号。这样就可以从多个波束扫描结果中,根据信号质量或信号强度或者其他性能参数,选取出终端设备与网络设备之间的最优波束对。这种波束扫描确定最优波束对的方式,需要遍历终端设备与网络设备能够产生的所有波束,终端设备的功耗较高。
基于此,本申请有提出了一种终端设备自主学习各个场景下的最优波束对的方式。如图4所示,终端设备识别终端设备与网络设备所处场景的一些参数信息,例如终端设备与网络设备之间是否存在遮挡物,以及网络设备的测量信号到达终端设备的到达角AoA,以及测量信号的信号质量,信号强度,当前温度等等。终端设备根据不同场景下的参数信息,自动学习在不同场景下的终端设备与网络设备间的最优波束对。进而,终端设备就可以实时来获取到当前场景的参数信息,以确定出最优波束对。在该方式中,终端设备无需扫描全部的波束,就可以快速准确地找到最优波束对,减少终端的功耗,并且可以保证波束对的通信质量。
接下来将结合附图对方案进行详细介绍。附图中以虚线标识的特征或内容可理解为本申请实施例的可选操作或者可选结构。
如图5所示,提供了一种确定波束对的方法,具体包括以下步骤:
步骤501:终端设备获取第一参数信息,所述第一参数信息可以包括:所述终端设备与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述终端设备的到达角。
终端设备中可以设置有周期,终端设备可以周期性的获取第一参数信息。
终端设备还可以是在以下任一情况下,获取第一参数信息。例如终端设备确定通信质量变差,或者终端设备刚刚接入网络,或者终端设备所在的区域发生了变化,区域可以是小区级别的区域,也可以是网络设备管辖级别的区域。
需要说明的是,不管在以上哪种情况下获取第一参数信息,终端设备在获取第一参数信息之前,通常已经接收到网络设备发送的测量信号了,后续可以根据测量信号的性能来确定最优波束对。
以下介绍终端设备获取参数信息的方式:
终端设备中可以设置有检测是否有遮挡物的传感器,通过该传感器来确定终端设备与网络设备之间是否存在遮挡物。该传感器例如可以是红外传感器,或超声波传感器、或激光传感器等。
终端设备中可以设置有调制解调器件modem,该调制解调器件可以根据网络设备发送的测量信号的一些性能参数,确定网络设备发送的测量信号到达所述终端设备的到达角。这些性能参数例如可以是信号强度,信号质量等。根据测量信号的性能参数确定到达角的过程可以参见现有的确定过程,此处不再详细赘述。该到达角例如可以是1度、2度、30度等等。
进一步地,所述第一参数信息还可以包括以下中的一项或多项:所述终端设备上的天线阵子的温度、所述终端设备所处的环境温度、所述测量信号的信号质量、所述测量信号的信号强度、所述终端设备的调制解调阶数、所述网络设备发送所述测量信号所占用的资源块的数目和传输信道的秩。通过这些更多的参数信息来确定最优波束对,可以提高确定最优波束对的准确性。
终端设备中设置的天线中的天线阵子的温度对信号的强度有一些影响,从而影响最优波束对的选择。终端设备可以还可以获取天线阵子的温度,以作为确定最优波束对的参考因素。终端设备中的RFIC射频集成电路芯片内的温度传感器可以测量天线阵子的温度。例如,天线阵子的温度为25摄氏度、22.5摄氏度等。
另外,终端设备中设置的环境温度传感器也可以获取该终端设备所处场景的环境温度,环境温度在一定程度上也会影响天线阵子的温度。例如,环境温度为24摄氏度、22.2摄氏度等。
终端设备中的调制解调器件还可以确定测量信号的信号质量,测量信号的信号强度等性能参数。信号质量例如可以是20db、30db等等,也可以换算为等级,例如可以是优、中、差等。信号强度例如可以是-70dbm、-50dbm等等,也可以换算为等级,例如可以是优、中、差等。
终端设备中的调制解调器件可以确定调制解调阶数。调制解调阶数的范围一般为1-28,例如可以是10、15等等。
终端设备中的调制解调器件可以确定所述网络设备发送所述测量信号所占用的资源块的数目。资源块的数目一般为1-132,例如可以是,32、64、66、128等等。
终端设备中的调制解调器件可以确定传输信道的秩。传输信道的秩例如可以是1、2、3等等。
步骤502:终端设备根据所述第一参数信息,确定所述终端设备与所述网络设备间的最优波束对,所述最优波束对包括所述终端设备产生的第一波束和所述网络设备产生的第二波束。
所述终端设备能够产生M个不同方向的波束,所述第一波束为所述M个波束中的一个,所述M为大于或等于2的整数。所述网络设备能够产生N个不同方向的波束,所述第二波束为所述N个波束的中的一个,所述N为大于或等于2的整数。所述终端设备采用所述第一波束与所述网络设备采用所述第二波束通信时的通信质量,优于所述终端设备采用所述M个波束中除所述第一波束之外的其它任一波束,与所述网络设备采用所述N个波束中除所述第二波束之外的其它任一波束通信时的通信质量。如图3所示,终端设备可以产生3个方向的波束,网络设备可以产生3个方向的波束。在无遮挡场景下,第一波束为终端设备产生的中间方向的波束,第二波束为网络设备产生的中间方向的波束。在有遮挡场景中,第一波束为终端设备产生的最左侧方向的波束,第二波束为网络设备产生的最左侧方向的波束。
另外,需要说明的是,在终端设备与网络设备的通信质量较好时,终端设备侧的发送波束(发送信息的波束)和接收波束(发送信息的波束)可以是不同的波束,网络设备侧的发送波束和接收波束也可以是不同的波束。
在一种示例中,上述的最优波束对可以是指终端设备侧的发送波束和网络设备侧的接收波束组成的最优波束对,则终端设备产生的第一波束为终端设备用于发送信息的波束,网络设备产生的第二波束为网络设备用于接收信息的波束。
在另一种示例中,上述的最优波束对可以是指终端设备侧的接收波束和网络设备侧的发送波束组成的最优波束对,则终端设备产生的第一波束为终端设备用于接收信息的波束,网络设备产生的第二波束为网络设备用于发送信息的波束。
在终端设备与网络设备的通信质量较好时,终端设备侧的发送波束和接收波束可以是相同的波束,网络设备侧的发送波束和接收波束也可以是相同的波束。则终端设备产生的第一波束可以是终端设备用于接收信息以及发送信息的波束,网络设备产生的第二波束可以是网络设备用于发送信息以及接收信息的波束。
接下来介绍终端设备根据所述第一参数信息,确定所述终端设备与所述网络设备间的最优波束对的多种方式:
方式1:可以预先保存关系库,该关系库中包括多个不同的参数信息分别和最优波束对之间的对应关系。或者,该关系库中包括多个不同的参数信息的范围分别和最优波束对之间的对应关系。例如关系库中的到达角可以划分多个角度范围,例如可以是0-5度,5-9度,9-13度等等。例如关系库中的天线阵子的温度以划分多个温度范围,例如可以是0-5摄氏度,5-11摄氏度等等。关系库中的环境温度、所述测量信号的信号质量、所述测量信号的信号强度、所述终端设备的调制解调阶数、所述网络设备发送所述测量信号所占用的资源块的数目、传输信道的秩等等参数信息均可以划分多个范围,与到达角和天线阵子的温度划分范围的方式类似,不再一一介绍。
这些对应关系为终端设备在实际场景中获取到的参数信息以及根据参数信息确定出最优波束对后,保存下来的。这些实际场景例如可以是终端设备刚刚接入网络,可以是最优波束对发送变化,也可以是场景发生变化。
终端设备可以根据所述第一参数信息查询预设的关系库,得到所述终端设备与所述网 络设备间的最优波束对。
在一种示例中,可以是将与第一参数信息完全匹配的波束对,确定为最优波束对。
在另一种示例中,将与第一参数信息匹配度最高的波束对,确定为最优波束对。此处的完全匹配是指参数信息完全相同,匹配度最高可以理解为数值最接近。例如,针对到达角这个参数信息,关系库中包括两个到达角x1和x2(默认其余参数信息完全相同),x1对应波束对(B,b),x2对应波束对(C,c)。实际获取到的到达角x3与x1和x2均不相同,但x3更接近x1,则认为x1的匹配度更高,则将x1对应的波束对(B,b)作为最优波束对。
又一种示例中,可以是将第一参数信息所在的参数信息范围对应的波束对,确定为最优波束对。
通过在关系库中预先保存各种参数信息或参数信息范围分别与最优波束对的对应关系,以实现通过第一参数信息查询到当前的最优波束对,可以提高确定最优波束对的效率和准确性。
例如,该关系库中包括的对应关系如表1所示:例如,终端设备当前获取到的第一参数信息为到达角15度,天线阵子的温度23摄氏度,调制解调阶数为18(与表1中的17阶最接近),此时确定的最优波束对为终端设备侧的波束C和网络设备侧的波束c。
Figure PCTCN2021083318-appb-000001
表1
可选的,一个关系库可以是针对一个区域的,不同区域的关系库可以分开使用。该区域可以是小区级别的,也可以是网络设备管辖级别的,也可以是宏基站级别的等。终端设备可以先根据所述终端设备当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述关系库,然后再根据所述第一参数信息查询该对应的关系库,以确定最优波束对。此处的终端设备当前所在的区域的标识可以是网络设备的标识,也可以是小区的标识,宏小区的标识等。针对一个区域,配置一个关系库,粒度精细,可以提高确定最优波束对的准确性。
方式2:可以预先训练波束对模型,波束对模型为不同的参数信息分别与终端设备中的不同波束的标识和网络设备中的不同波束的标识之间的关系模型,也可以理解为神经网络模型。终端设备可以将所述第一参数信息输入到预先训练好的波束对模型中,根据所述波束对模型输出的终端设备产生的波束的标识和网络设备产生的波束的标识,确定所述终端设备与所述网络设备间的最优波束对。例如波束对模型输出格式为(UE侧波束ID,基站RS侧波束ID)的二元组,二元组中的UE侧波束ID即终端设备产生的第一波束的标识,二元组中的RS侧波束ID即网络设备产生的第二波束的标识。
可选的,一个波束对模型可以是针对一个区域的,不同区域的波束对模型可以分开使 用。该区域可以是小区级别的,也可以是网络设备管辖级别的,也可以是宏基站级别的等。终端设备可以先根据所述终端设备当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述预先训练好的波束对模型,然后再将所述第一参数信息输入到预先训练好的波束对模型中,确定最优波束对。此处的终端设备当前所在的区域的标识可以是网络设备的标识,也可以是小区的标识,宏小区的标识等。针对一个区域,训练一个波束对模型,粒度精细,可以提高确定最优波束对的准确性。
接下来介绍训练所述波束对模型的过程:可以先获取多组信息,其中任一组信息包括:参数信息、所述终端设备与所述网络设备间的最优波束对;所述终端设备采用所述多组信息,训练所述波束对模型。所述参数信息包括:所述终端设备与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述终端设备的到达角。进一步地,所述第一参数信息还包括以下中的一项或多项:所述终端设备上的天线阵子的温度、所述终端设备所处的环境温度、所述测量信号的信号质量、所述测量信号的信号强度、所述终端设备的调制解调阶数、所述网络设备发送所述测量信号所占用的资源块的数目和传输信道的秩。通过这些更多的参数信息来确定最优波束对,可以提高确定最优波束对的准确性。
终端设备可以在刚接入网络时启动最优波束对学习,也可以在最优波束对发生改变时启动最优波束对学习,也可以是当场景发生改变时启动最优波束对学习。
另外,需要注意的是,在模型训练的过程与模型使用的过程是类似的,如果在进行模型训练时,采用的参数信息为具体的数值(例如温度值),则在使用该模型时,也应输入具体的数值。如果在进行模型训练时,采用的参数信息为一个范围(例如温度范围)或等级(中、高、低),则在使用该模型时,也应输入一个范围(例如温度范围)或等级(中、高、低)。
可选的,上述的方式1在关系库中保存参数信息与最优波束对的对应关系,或者上述的方式2采用参数信息与最优波束对,对波束对模型进行训练时,参数信息可以是每次获取到的参数信息,也可以是针对同一最优波束对获取到的多个参数信息取平均值或中值后的参数信息。例如针对某一最优波束对,天线阵子的温度这个参数获取到3次,分别为22摄氏度,23摄氏度,22摄氏度,然后取这三次的平均值22.33摄氏度保存到方式1的关系库中,或者采用22.33摄氏度进行波束对模型的训练。这样可以避免极值带来的误差,进一步提高确定最优波束对的准确性。
如图6的示例,终端设备包括A核、调制解调器件以及各种传感器。调制解调器件可以获取波束对的标识,以及一些参数信息,并发送给A核,传感器也可以获取一些参数信息发送给A核。A核可以根据各种参数信息,以及波束对的标识,进行最优波束对的学习,例如确定方式1中关系库或者确定训练方式2中波束对模型。A核还可以根据参数信息确定出最优波束对,并将最优波束对的标识发送给调制解调器件,以便调制解调器件采用最优波束对与网络设备通信。
前文介绍了本申请实施例的确定波束对的方法,下文中将介绍本申请实施例中的确定波束对的通信装置。方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
基于与上述通信方法的同一技术构思,如图7所示,提供了一种通信装置700,装置700能够执行上述图4、图5和图6的方法中由终端设备执行的各个步骤。装置700可以 为终端设备,也可以为应用于终端设备中的芯片。
在一种示例中,装置700可以包括获取模块710,用于获取第一参数信息,所述第一参数信息包括:所述装置与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述装置的到达角;决策模块720,用于根据所述第一参数信息,确定所述装置与所述网络设备间的最优波束对,所述最优波束对包括所述装置产生的第一波束和所述网络设备产生的第二波束;其中,所述装置能够产生M个不同方向的波束,所述第一波束为所述M个波束中的一个,所述M为大于或等于2的整数;所述网络设备能够产生N个不同方向的波束,所述第二波束为所述N个波束的中的一个,所述N为大于或等于2的整数;所述装置采用所述第一波束与所述网络设备采用所述第二波束通信时的通信质量,优于所述装置采用所述M个波束中除所述第一波束之外的其它任一波束,与所述网络设备采用所述N个波束中除所述第二波束之外的其它任一波束通信时的通信质量。
在一种示例中,所述决策模块720,在用于根据所述第一参数信息,确定所述装置与所述网络设备间的最优波束对时,具体用于:根据所述第一参数信息查询预设的关系库,得到所述装置与所述网络设备间的最优波束对,所述关系库中包括多个不同的参数信息或者参数信息范围分别和最优波束对之间的对应关系。
在一种示例中,所述决策模块720,在用于根据所述第一参数信息,确定所述装置与所述网络设备间的最优波束对时,具体用于:将所述第一参数信息输入到预先训练好的波束对模型中,根据所述波束对模型输出的所述装置产生的波束的标识和网络设备产生的波束的标识,确定所述装置与所述网络设备间的最优波束对,所述波束对模型为不同的参数信息分别与所述装置中的不同波束的标识和网络设备中的不同波束的标识之间的关系模型。
在一种示例中,所述获取模块710,还用于:获取多组信息,其中任一组信息包括:参数信息、所述装置与所述网络设备间的最优波束对;所述参数信息包括:所述装置与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述装置的到达角。所述装置还包括:学习模块730,所述学习模块730还用于采用所述多组信息,训练所述波束对模型。
在一种示例中,所述决策模块720,在用于根据所述第一参数信息查询预设的关系库之前,还用于:根据所述装置当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述关系库。
在一种示例中,所述决策模块720,在用于将所述第一参数信息输入到预先训练好的波束对模型中之前,还用于:根据所述装置当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述预先训练好的波束对模型。
图8是本申请实施例的通信装置800的示意性框图。应理解,所述装置800能够执行上述图4、图5和图6的方法中由终端设备执行的各个步骤。装置800包括:处理器810,可选的,还包括收发器820和存储器830。该收发器,可以用于接收程序指令并传输至所述处理器,或者,该收发器可以用于该装置与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。该收发器可以为代码和/或数据读写收发器,或者,该收发器可以为通信处理器与收发机之间的信号传输收发器。该收发器也可以替换为收发装置、接口电路等。所述处理器810和所述存储器830之间电耦合。
示例的,所述存储器830,用于存储计算机程序;所述处理器810,可以用于调用所述存储器中存储的计算机程序或指令,执行上述的确定波束对的方法。
在一种示例中,所述处理器810,用于获取第一参数信息,所述第一参数信息包括:所述装置与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述装置的到达角;根据所述第一参数信息,确定所述装置与所述网络设备间的最优波束对,所述最优波束对包括所述装置产生的第一波束和所述网络设备产生的第二波束;其中,所述装置能够产生M个不同方向的波束,所述第一波束为所述M个波束中的一个,所述M为大于或等于2的整数;所述网络设备能够产生N个不同方向的波束,所述第二波束为所述N个波束的中的一个,所述N为大于或等于2的整数;所述装置采用所述第一波束与所述网络设备采用所述第二波束通信时的通信质量,优于所述装置采用所述M个波束中除所述第一波束之外的其它任一波束,与所述网络设备采用所述N个波束中除所述第二波束之外的其它任一波束通信时的通信质量。
在一种示例中,所述处理器810,在用于根据所述第一参数信息,确定所述装置与所述网络设备间的最优波束对时,具体用于:根据所述第一参数信息查询预设的关系库,得到所述装置与所述网络设备间的最优波束对,所述关系库中包括多个不同的参数信息分别和最优波束对之间的对应关系。
在一种示例中,所述处理器810,在用于根据所述第一参数信息,确定所述装置与所述网络设备间的最优波束对时,具体用于:将所述第一参数信息输入到预先训练好的波束对模型中,根据所述波束对模型输出的所述装置产生的波束的标识和网络设备产生的波束的标识,确定所述装置与所述网络设备间的最优波束对,所述波束对模型为不同的参数信息或者参数信息范围分别与所述装置中的不同波束的标识和网络设备中的不同波束的标识之间的关系模型。
在一种示例中,所述处理器810,还用于:获取多组信息,其中任一组信息包括:参数信息、所述装置与所述网络设备间的最优波束对;所述参数信息包括:所述装置与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述装置的到达角。以及采用所述多组信息,训练所述波束对模型。
在一种示例中,所述处理器810,在用于根据所述第一参数信息查询预设的关系库之前,还用于:根据所述装置当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述关系库。
在一种示例中,所述处理器810,在用于将所述第一参数信息输入到预先训练好的波束对模型中之前,还用于:根据所述装置当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述预先训练好的波束对模型。
在一种示例中,所述收发器820,用于接收网络设备发送的测量信号。
上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处 理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例所述的收发装置、接口电路、或者收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发装置、接口电路、或者收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被计算机执行时,可以使得所述计算机用于执行上述确定波束对的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述提供的确定波束对的方法。
本申请实施例还提供了一种通信的系统,所述通信系统包括:执行上述确定波束对的方法的终端设备和与终端设备通信的网络设备。
图9示出了上述实施例中所涉及的终端设备的一种可能的设计结构的简化示意图。所述终端设备包括发射器901,接收器902,控制器/处理器903,存储器904和调制解调处理器905。
发射器901用于发送上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的网络设备。在下行链路上,天线接收上述实施例中网络设备发射的下行链路信号(DCI)。接收器902用于接收从天线接收到的下行链路信号(DCI)。在调制解调处理器905中,编码器906接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理。调制器907进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器909处理(例如,解调)该输入采样并提供符号估计。解码器908处理(例如,解码)该符号估计并提供发送给终端设备的已解码的数据和信令消息。编码器906、调制器907、解调器909和解码器908可以由合成的调制解调处理器905来实现。这些单元根据无线接入网采用的无线接入技术来进行处理。
控制器/处理器903对终端设备的动作进行控制管理,用于执行上述实施例中由终端设备进行的处理。例如用于根据第一参数信息,确定最优波束对,例如训练波束对模型,确定关系库。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件, 可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包括有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (12)

  1. 一种确定波束对的方法,其特征在于,所述方法包括:
    终端设备获取第一参数信息,所述第一参数信息包括:所述终端设备与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述终端设备的到达角;
    所述终端设备根据所述第一参数信息,确定所述终端设备与所述网络设备间的最优波束对,所述最优波束对包括所述终端设备产生的第一波束和所述网络设备产生的第二波束;
    其中,所述终端设备能够产生M个不同方向的波束,所述第一波束为所述M个波束中的一个,所述M为大于或等于2的整数;所述网络设备能够产生N个不同方向的波束,所述第二波束为所述N个波束的中的一个,所述N为大于或等于2的整数;所述终端设备采用所述第一波束与所述网络设备采用所述第二波束通信时的通信质量,优于所述终端设备采用所述M个波束中除所述第一波束之外的其它任一波束,与所述网络设备采用所述N个波束中除所述第二波束之外的其它任一波束通信时的通信质量。
  2. 如权利要求1所述的方法,其特征在于,所述第一参数信息还包括以下中的一项或多项:
    所述终端设备上的天线阵子的温度、所述终端设备所处的环境温度、所述测量信号的信号质量、所述测量信号的信号强度、所述终端设备的调制解调阶数、所述网络设备发送所述测量信号所占用的资源块的数目、传输信道的秩。
  3. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一参数信息,确定所述终端设备与所述网络设备间的最优波束对,包括:
    所述终端设备根据所述第一参数信息查询预设的关系库,得到所述终端设备与所述网络设备间的最优波束对,所述关系库中包括多个不同的参数信息或者不同的参数信息范围分别和最优波束对之间的对应关系;或者,
    所述终端设备将所述第一参数信息输入到预先训练好的波束对模型中,根据所述波束对模型输出的终端设备产生的波束的标识和网络设备产生的波束的标识,确定所述终端设备与所述网络设备间的最优波束对,所述波束对模型为不同的参数信息分别与终端设备中的不同波束的标识和网络设备中的不同波束的标识之间的关系模型。
  4. 如权利要求3所述的方法,其特征在于,预先训练所述波束对模型的过程,包括:
    所述终端设备获取多组信息,其中任一组信息包括:参数信息、所述终端设备与所述网络设备间的最优波束对;所述参数信息包括:所述终端设备与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述终端设备的到达角;
    所述终端设备采用所述多组信息,训练所述波束对模型。
  5. 如权利要求3所述的方法,其特征在于,根据所述第一参数信息查询预设的关系库之前,还包括:
    所述终端设备根据所述终端设备当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述关系库;或者
    将所述第一参数信息输入到预先训练好的波束对模型中之前,还包括:
    所述终端设备根据所述终端设备当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述预先训练好的波束对模型。
  6. 一种确定波束对的装置,其特征在于,所述装置包括:
    获取模块,用于获取第一参数信息,所述第一参数信息包括:所述装置与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述装置的到达角;
    决策模块,用于根据所述第一参数信息,确定所述装置与所述网络设备间的最优波束对,所述最优波束对包括所述装置产生的第一波束和所述网络设备产生的第二波束;
    其中,所述装置能够产生M个不同方向的波束,所述第一波束为所述M个波束中的一个,所述M为大于或等于2的整数;所述网络设备能够产生N个不同方向的波束,所述第二波束为所述N个波束的中的一个,所述N为大于或等于2的整数;所述装置采用所述第一波束与所述网络设备采用所述第二波束通信时的通信质量,优于所述装置采用所述M个波束中除所述第一波束之外的其它任一波束,与所述网络设备采用所述N个波束中除所述第二波束之外的其它任一波束通信时的通信质量。
  7. 如权利要求6所述的装置,其特征在于,所述第一参数信息还包括以下中的一项或多项:
    所述装置上的天线阵子的温度、所述装置所处的环境温度、所述测量信号的信号质量、所述测量信号的信号强度、所述装置的调制解调阶数、所述网络设备发送所述测量信号所占用的资源块的数目、传输信道的秩。
  8. 如权利要求6或7所述的装置,其特征在于,所述决策模块,在用于根据所述第一参数信息,确定所述装置与所述网络设备间的最优波束对时,具体用于:
    根据所述第一参数信息查询预设的关系库,得到所述装置与所述网络设备间的最优波束对,所述关系库中包括多个不同的参数信息或者不同的参数信息范围分别和最优波束对之间的对应关系;或者,
    将所述第一参数信息输入到预先训练好的波束对模型中,根据所述波束对模型输出的所述装置产生的波束的标识和网络设备产生的波束的标识,确定所述装置与所述网络设备间的最优波束对,所述波束对模型为不同的参数信息分别与所述装置中的不同波束的标识和网络设备中的不同波束的标识之间的关系模型。
  9. 如权利要求8所述的装置,其特征在于,所述获取模块,还用于:获取多组信息,其中任一组信息包括:参数信息、所述装置与所述网络设备间的最优波束对;所述参数信息包括:所述装置与网络设备之间是否存在遮挡物,网络设备发送的测量信号到达所述装置的到达角;
    所述装置还包括:学习模块,所述学习模块还用于采用所述多组信息,训练所述波束对模型。
  10. 如权利要求8所述的装置,其特征在于,所述决策模块,在用于根据所述第一参数信息查询预设的关系库之前,还用于:
    根据所述装置当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述关系库;或者
    所述决策模块,在用于将所述第一参数信息输入到预先训练好的波束对模型中之前,还用于:
    根据所述装置当前所在的区域的标识,确定与所述当前所在的区域的标识对应的所述预先训练好的波束对模型。
  11. 一种确定波束对的装置,其特征在于,所述装置包括:处理器和存储器;
    所述存储器,用于存储计算机程序指令;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,用于实现如权利要求1-5任一项所述的方法。
  12. 一种计算机可读存储介质,其特征在于,存储有计算机程序,所述计算机程序被计算机执行时,使得所述计算机执行如权利要求1-5任一项所述的方法。
PCT/CN2021/083318 2020-06-22 2021-03-26 一种确定波束对的方法及装置 WO2021258798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010575894.2 2020-06-22
CN202010575894.2A CN113905393B (zh) 2020-06-22 2020-06-22 一种确定波束对的方法及装置

Publications (1)

Publication Number Publication Date
WO2021258798A1 true WO2021258798A1 (zh) 2021-12-30

Family

ID=79186442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083318 WO2021258798A1 (zh) 2020-06-22 2021-03-26 一种确定波束对的方法及装置

Country Status (2)

Country Link
CN (1) CN113905393B (zh)
WO (1) WO2021258798A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020747A1 (zh) * 2022-07-25 2024-02-01 北京小米移动软件有限公司 一种模型的生成方法及装置
WO2024077460A1 (zh) * 2022-10-10 2024-04-18 北京小米移动软件有限公司 一种波束预测方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206163A1 (zh) * 2022-04-27 2023-11-02 Oppo广东移动通信有限公司 无线通信的方法、网络设备和终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110110453A1 (en) * 2009-11-06 2011-05-12 Nec Laboratories America, Inc. Systems and methods for prioritizing beams to enable efficient determination of suitable communication links
CN106162673A (zh) * 2015-04-17 2016-11-23 华为技术有限公司 波束选择方法及终端设备
CN107612602A (zh) * 2017-08-28 2018-01-19 清华大学 毫米波通信系统的波束恢复方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931348B2 (en) * 2008-04-05 2021-02-23 Samsung Electronics Co., Ltd Method and system for sensor-based beam management by user equipment
CN112532283B (zh) * 2016-11-04 2023-11-28 Oppo广东移动通信有限公司 波束测量的方法和终端
CN116321202A (zh) * 2017-03-08 2023-06-23 索尼公司 无线通信系统中的电子设备和方法
US10638482B2 (en) * 2017-12-15 2020-04-28 Qualcomm Incorporated Methods and apparatuses for dynamic beam pair determination
CN110753388B (zh) * 2018-07-23 2021-08-20 华为技术有限公司 一种波束管理方法和相关设备
US11870530B2 (en) * 2018-09-28 2024-01-09 Nokia Technologies Oy Beam alignment
WO2020186441A1 (zh) * 2019-03-19 2020-09-24 北京小米移动软件有限公司 传输信息的方法、装置、用户设备及基站
US10666342B1 (en) * 2019-05-01 2020-05-26 Qualcomm Incorporated Beam management using adaptive learning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110110453A1 (en) * 2009-11-06 2011-05-12 Nec Laboratories America, Inc. Systems and methods for prioritizing beams to enable efficient determination of suitable communication links
CN106162673A (zh) * 2015-04-17 2016-11-23 华为技术有限公司 波束选择方法及终端设备
CN107612602A (zh) * 2017-08-28 2018-01-19 清华大学 毫米波通信系统的波束恢复方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020747A1 (zh) * 2022-07-25 2024-02-01 北京小米移动软件有限公司 一种模型的生成方法及装置
WO2024077460A1 (zh) * 2022-10-10 2024-04-18 北京小米移动软件有限公司 一种波束预测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113905393B (zh) 2023-03-24
CN113905393A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
EP3593507B1 (en) System and method for beam management in high frequency multi-carrier operations with spatial quasi co-locations
US11277244B2 (en) Signaling sending method and device, and signaling receiving method and device
WO2021258798A1 (zh) 一种确定波束对的方法及装置
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
US10985829B2 (en) Beam management systems and methods
US10454560B2 (en) Beam management systems and methods
WO2021142754A1 (en) Method and apparatus for uplink transmission
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
CA3066297C (en) Signal processing method and apparatus
EP3829243B1 (en) Resource management method and communication apparatus
US20230254030A1 (en) Beam-based communication method and related apparatus
US11444677B2 (en) Communication devices for efficient beam management
CN112543443A (zh) 通信方法和通信装置
CN110351058B (zh) 一种信号传输方法及通信设备
CN116601886A (zh) 用于在下一代无线通信系统中执行改进的波束跟踪的方法和设备
CN112312460B (zh) 测量上报的方法与装置
WO2023207822A1 (zh) 通信方法、设备和存储介质
WO2023097564A1 (en) Method and apparatus for transmit and receive beam determination
WO2021168863A1 (zh) 一种滤波器系数的确定方法及装置
WO2024093638A1 (zh) 一种信息处理的方法和装置
WO2023077323A1 (en) Method, apparatus, and system for environment aware mimo for high frequency
CN117042135A (zh) 通信方法及装置
WO2024046586A1 (en) Enhanced determination of transmit beam during beam sweeping
CN117939683A (zh) 边链路信道选择方法、设备及存储介质
CN115882916A (zh) 波束确定方法、节点和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829888

Country of ref document: EP

Kind code of ref document: A1