WO2024016936A1 - 信道状态信息的确定方法、电子设备和存储介质 - Google Patents

信道状态信息的确定方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2024016936A1
WO2024016936A1 PCT/CN2023/101856 CN2023101856W WO2024016936A1 WO 2024016936 A1 WO2024016936 A1 WO 2024016936A1 CN 2023101856 W CN2023101856 W CN 2023101856W WO 2024016936 A1 WO2024016936 A1 WO 2024016936A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
information
channel information
pieces
state information
Prior art date
Application number
PCT/CN2023/101856
Other languages
English (en)
French (fr)
Inventor
鲁照华
肖华华
刘锟
王瑜新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024016936A1 publication Critical patent/WO2024016936A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to a method for determining channel state information, an electronic device, and a storage medium.
  • AI artificial intelligence
  • CSI channel state information
  • M time slots after the reference time slot n the channel information of M time slots after the reference time slot n is predicted based on the channel information of N time slots before the reference time slot n.
  • non-AI methods can also be used to predict the channel information of M time slots in the future from the channel information of N time slots. and process the M pieces of channel information into channel state information.
  • how to process the M channel information into channel state information and feed back the channel state information still needs to be studied.
  • Embodiments of the present application provide a method for determining channel state information, an electronic device, and a storage medium to determine the channel state information of predicted channel information, which can improve channel transmission quality and enhance user experience.
  • An embodiment of the present application provides a method for determining channel state information, wherein the method includes:
  • Embodiments of the present application also provide a method for determining channel state information, wherein the method includes:
  • M Determine the M channel information corresponding to the channel state information or the channel state information of the M channel information.
  • N is an integer greater than 1
  • M is an integer greater than or equal to 1.
  • An embodiment of the present application also provides an electronic device, wherein the electronic device includes:
  • processors one or more processors
  • a memory configured to store one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors implement as described in any one of the embodiments of this application method.
  • Embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the method described in any one of the embodiments of the present application is implemented.
  • Figure 1 is an example diagram of channel state information prediction provided by an embodiment of the present application.
  • Figure 2 is a flow chart of a method for determining channel state information provided by an embodiment of the present application
  • Figure 3 is a flow chart of another method for determining channel state information provided by an embodiment of the present application.
  • Figure 4 is a flow chart of another method for determining channel state information provided by an embodiment of the present application.
  • Figure 5 is a flow chart of another method for determining channel state information provided by an embodiment of the present application.
  • Figure 6 is a flow chart of another method for determining channel state information provided by an embodiment of the present application.
  • Figure 7 is a flow chart of another method for determining channel state information provided by an embodiment of the present application.
  • Figure 8 is a flow chart of a method for determining channel state information provided by an embodiment of the present application.
  • Figure 9 is an example diagram of encoding channel state information on time domain resources provided by an embodiment of the present application.
  • Figure 10 is an example diagram of encoding channel state information on frequency domain resources provided by an embodiment of the present application.
  • Figure 11 is an example diagram of encoding channel state information on time-frequency domain resources provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a device for determining channel state information provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of another device for determining channel state information provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • module means such as “module”, “part” or “unit” used to represent elements are used.
  • the suffix is only used to facilitate the description of the present application and has no special meaning in itself. Therefore, “module”, “component” or “unit” may be used interchangeably.
  • the mobile communication network may include network side equipment (for example, including but not limited to base stations) and receiving side equipment (for example, including but not limited to terminals).
  • the first communication node may also be referred to as the first communication node device
  • the second communication node may also be referred to as the second communication node The device
  • the first communication node may also be a terminal-side device
  • the second communication node may also be a base station-side device.
  • both the first communication node and the second communication node may be a base station or a terminal.
  • the base station may be a base station in Long Term Evolution (LTE), Long Term Evolution advanced (LTE-A) or an evolutionary base station (Evolutional Node B, eNB or eNodeB), or in a 5G network Base station equipment, or base stations in future communication systems, etc.
  • Base stations can include various macro base stations, micro base stations, home base stations, wireless remotes, reconfigurable intelligent surfaces (Reconfigurable Intelligent Surfaces, RISs), routers, wireless fidelity ( Wireless Fidelity (WIFI) equipment or various network side equipment such as primary cell and secondary cell.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution advanced
  • Evolutional Node B eNB or eNodeB
  • Base stations can include various macro base stations, micro base stations, home base stations, wireless remotes, reconfigurable intelligent surfaces (Reconfigurable Intelligent Surfaces, RISs), routers, wireless fidelity ( Wireless Fidelity (WIFI) equipment or various network side equipment such as primary cell and secondary cell.
  • the terminal is a device with wireless transceiver functions that can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (Virtual Reality, VR) terminal, an augmented reality (Augmented Reality, AR) terminal, or an industrial control (industrial control) Wireless terminals in autonomous driving (Self driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), wireless terminals in transportation safety (transportation safety), Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of this application do not limit application scenarios.
  • the terminal can sometimes also be called a user, user equipment (User Equipment, UE), access terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile equipment, UE terminal, wireless communication equipment, UE Agent or UE device, etc.
  • UE user equipment
  • access terminal UE unit
  • UE station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile equipment UE terminal
  • wireless communication equipment UE Agent or UE device
  • high-level signaling includes but is not limited to Radio Resource Control (Radio Resource Control, RRC), Media Access Control control element (MAC CE), physical layer signaling can also be transmitted between the base station and the terminal, such as physical layer signaling on the Physical Downlink Control CHannel (PDCCH). Order, physical layer signaling is transmitted on the Physical Uplink Control CHannel (PUCCH).
  • Radio Resource Control Radio Resource Control
  • MAC CE Media Access Control control element
  • PUCCH Physical Downlink Control CHannel
  • PUCCH Physical Uplink Control CHannel
  • the indicator of various parameters may also be called an index, or an identifier (Identifier, ID), which are completely equivalent concepts.
  • ID an identifier
  • the wireless system resources here include but are not limited to one of the following: a reference signal resource, a reference signal resource group, a reference signal resource configuration, a channel state information (CSI) report, a CSI report set, Corresponding indexes for terminals, base stations, panels, neural networks, sub-neural networks, neural network layers, etc.
  • the base station may indicate the identity of one or a group of resources to the terminal through various high-layer signaling or physical layer signaling.
  • artificial intelligence includes machine learning (ML), deep learning, reinforcement learning, transfer learning, deep reinforcement learning, meta-learning and other self-learning devices, components, software, module.
  • artificial intelligence is implemented through an artificial intelligence network (or neural network).
  • the neural network includes multiple layers, each layer includes at least one node.
  • the neural network includes an input layer, an output layer, and at least One hidden layer, each layer of the neural network includes but is not limited to using at least a fully connected layer, a dense layer, a convolutional layer, a transposed convolutional layer, a direct connection layer, an activation function, a normalization layer, a pooling layer, etc. one.
  • each layer of the neural network may include a sub-neural network, such as a residual block (Residual Network block, or Resnet block), a dense network (Densenet Block), a recurrent network (Recurrent Neural Network, RNN), etc.
  • the artificial intelligence network includes a neural network model and/or neural network parameters corresponding to the neural network model, where the neural network model may be referred to as a network model, and the neural network parameters may be referred to as network parameters.
  • a network model defines the number of layers of the neural network, the size of each layer, activation function, link status, convolution kernel and convolution step size, convolution type (such as 1D convolution, 2D convolution, 3D convolution, hollow convolution, transposed convolution, separable convolution, grouped convolution, expanded convolution, etc.), and the network parameters are the weights and/or biases of each layer of the network in the network model and their values .
  • a network model can correspond to multiple sets of different neural network parameter values to adapt to different scenarios.
  • a neural network model can correspond to multiple different neural network parameter values. Obtain the parameters of the neural network through online training or offline training. For example, by inputting at least one sample and a label, the neural network model is trained to obtain neural network parameters.
  • a time slot may be a time slot or a sub-slot mini slot.
  • a slot or sub-slot includes at least one symbol.
  • symbol refers to the time unit in a subframe or frame or time slot, than For example, it can be an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol, a single-carrier frequency division multiple access (Single-Carrier Frequency Division Multiple Access, SC-FDMA) symbol, an orthogonal multiple access frequency Orthogonal Frequency Division Multiple Access (OFDMA) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA single-carrier frequency division multiple access
  • OFDMA orthogonal multiple access frequency Orthogonal Frequency Division Multiple Access
  • transmitting includes sending or receiving. Such as sending data or signals, receiving data or signals.
  • the base station or user in order to calculate channel state information or perform channel estimation, mobility management, positioning, etc., the base station or user needs to send a reference signal (RS, Reference Signal).
  • the reference signal includes but is not limited to the channel state information reference signal (Channel State Information-reference signal, CSI-RS), which includes zero power CSI-RS (Zero Power CSI-RS, ZP CSI-RS) and non-zero power CSI-RS (Non-Zero Power CSI-RS, NZP CSI -RS), Channel State Information-Interference Measurement (CSI-IM), Sounding Reference Signal (SRS), Synchronization Signals Block (SSB), Physical Broadcast Channel (Physical Broadcast Channel, PBCH), Synchronous Broadcast Block/Physical Broadcast Channel (SSB/PBCH), NZP CSI-RS can be used to measure channels or interference, CSI-RS can also be used for tracking, called Tracking Reference Signal (CSI-RS for Tracking, TRS), while CSI-IM is generally used to measure
  • reference signal resources such as CSI-RS resource, SRS resource, CSI-IM resource, and SSB resource.
  • SSB includes synchronization signal blocks and/or physical broadcast channels.
  • resources for transmitting reference signals may be called reference signal resources.
  • multiple reference signal resources may be divided into multiple sets (such as CSI-RS resource set, CSI-IM resource set, SRS resource set), the reference signal resource set includes at least one reference signal resource, and multiple reference signal resource sets can all come from the same reference signal resource setting (such as CSI-RS resource setting, SRS resource setting, CSI-RS resource setting, where CSI-RS resource setting may be merged with CSI-IM resource setting, both are called CSI-RS resource setting) to configure parameter information.
  • CSI-RS resource setting such as CSI-RS resource setting, SRS resource setting, CSI-RS resource setting, where CSI-RS resource setting may be merged with CSI-IM resource setting, both are called CSI-RS resource setting
  • the base station configures measurement resource information, and the measurement resource information is used to obtain channel state information.
  • the measurement resource information includes CN channel measurement resource (Channel Measurement Resource, CMR) information and CM interference measurement resource (Interference Measurement Resource, IMR) information, where CN and CM are positive integers.
  • the base station configures measurement resource information in a reporting configuration (report config) or reporting setting (reporting setting).
  • the base station or terminal needs to obtain channel state information, where the channel state information may include at least one of the following: Channel State Information-Reference Signal Resource Indicator (CSI-RS Resource Indicator, CRI), Synchronization Signals Block Resource Indicator (SSBRI), Reference Signal Received Power (RSRP), Differential RSRP (Differential RSRP), Channel Quality Indicator (CQI), Preliminary Coding Matrix Indicator (Precoding Matrix Indicator, PMI), Layer Indicator (LI), Rank Indicator (RI), Level 1 Signal to Interference plus Noise Ratio (L1-SINR), Differential L1-SINR (Differential L1-SINR).
  • CSI-RS Resource Indicator CRI
  • SSBRI Synchronization Signals Block Resource Indicator
  • RSRP Reference Signal Received Power
  • CQI Channel Quality Indicator
  • Preliminary Coding Matrix Indicator Precoding Matrix Indicator, PMI
  • the precoding matrix indication is one type of precoding information, that is, the precoding information is implemented based on the codebook, such as the first type of precoding information.
  • the precoding information also includes methods based on non-codebook implementation.
  • the second type of precoding information For example, the second type of precoding information.
  • CSI that only includes the first type of precoding information is called the first type of CSI
  • CSI that includes the second type of precoding information is called the second type of CSI.
  • the terminal and the base station transmit channel state information matching the channel through the first type of precoding information.
  • the first type of precoding information is precoding information based on the traditional channel characteristic matrix or the quantized value of the characteristic matrix.
  • the codebook here includes L codewords, and its main idea is that the base station and the terminal store L codewords in advance according to prescribed formulas, tables, or dictionaries.
  • the codeword is a vector.
  • the codeword is a matrix, the matrix includes r columns, each column is also a vector. Preferably, each column of said matrix is mutually orthogonal.
  • the vector that constitutes the codeword is a 0-1 vector, where only one value of the entire vector is 1 and the other values are zero.
  • the vector making up the codeword is a DFT vector (Discrete Fourier Transform, DFT).
  • the vectors that constitute the codeword are two or more DFT vectors obtained by tensor product (kronecker product).
  • the vectors that constitute the codeword are two or more DFT vectors that are connected by multiplying with different phase rotations.
  • the vectors that constitute the codeword are two or more DFT vectors obtained by tensor product (kronecker product) and multiplied by phase rotation.
  • the base station or terminal searches for L codewords and finds the codeword that best matches the channel as the optimal codeword to transmit data or signals.
  • the codewords matching the channel here include but are not limited to at least one of the following: the distance between the codeword and the channel is the smallest, the correlation between the codeword and the channel is the largest, the distance between the codeword and the optimal right singular vector or matrix of the channel is the smallest, The optimal right singular vector or matrix has the largest correlation between the codeword and the channel, The calculated signal-to-noise ratio of the codeword and channel is the largest, etc.
  • L is an integer greater than 1, generally greater than the number of transmitting antennas.
  • the terminal and the base station transmit channel state information that matches the channel through the second type of precoding information.
  • the second type of precoding information is based on AI to obtain the channel state information.
  • the base station and the terminal use an autoencoder.
  • the encoder obtains the channel state information
  • the self-encoder includes an encoder and a decoder, where the encoder is at the terminal and the decoder is at the base station side.
  • the terminal compresses the obtained channel H through the encoder to obtain the compressed channel state information H1, and quantizes the compressed channel state information H1 and feeds it back to the base station.
  • the base station receives the quantized H1, dequantizes it and inputs it into the decoder.
  • H includes K0 elements.
  • the terminal selects K elements from H as H1 and provides feedback on H1 quantization.
  • the base station receives the K quantized elements and dequantizes them, and inputs the dequantized K elements.
  • AI module the AI module outputs K0 elements as the recovery of H, thereby obtaining the precoding matrix of H.
  • K and K0 are integers greater than 1, and K ⁇ K0.
  • H1 passing through the compressor or the K elements selected from H are the second type of channel state information.
  • the quantized H1 is also called the second type of channel state information.
  • the second type of precoding information may also be a precoding matrix generated by other non-AI methods that is different from the first type of precoding information. In one example, the second type of precoding information may also be a precoding matrix other than the first type of precoding information.
  • the base station in order to transmit CSI, such as a terminal feeding back CSI, receives CSI.
  • the terminal and the base station need to define a CSI report (CSI report or CSI report congfig), in which the CSI report defines at least one of the following parameters: time-frequency resources used to feedback CSI, reportQuantity included in CSI, time domain category reportConfigType of CSI feedback, Measure channel resources, measure interference resources, measured bandwidth and other information.
  • the CSI report can be transmitted on uplink transmission resources, where the uplink transmission resources are resources used to transmit uplink signaling or data, including but not limited to Physical Uplink Shared Channel (PUSCH) and Physical Uplink Control Channel (Physical Uplink Control Channel, PUCCH), and CSI report also includes time domain characteristics, including periodic CSI report (periodic CSI report, P-CSI), aperiodic CSI report (aperiodic CSI report, A-CSI), and semi-persistent CSI Report (semi-persistent CSI report, SP-CSI).
  • P-CSI transmits a relatively small number of bits and is transmitted on PUCCH
  • A-CSI transmits a larger number of bits and is generally transmitted on PUSCH.
  • SP-CSI can be transmitted on PUSCH or on PUSCH. transmitted on PUCCH.
  • P-CSI based on PUCCH transmission is generally configured using high-level signaling (Radio Resource Control, RRC), and SP-CSI based on PUCCH transmission is also configured or activated using high-level signaling (RRC and/or MAC CE).
  • RRC Radio Resource Control
  • RRC and/or MAC CE high-level signaling
  • SP-CSI or A-CSI are triggered by physical layer signaling (Downlink control information, DCI), and DCI is generally transmitted on the Physical downlink control channel (Physical downlink control channel, PDCCH).
  • DCI Downlink control information
  • feedback can also be replaced by sending or transmitting, both of which refer to transmitting signaling or data or channel status information from one communication node to another communication node.
  • the base station configures the terminal with N CSI reports (CSI reports) that need to be fed back to the base station through high-level signaling and/or physical layer signaling.
  • Each CSI report has an index value (identity, ID). , called CSI reportID, the terminal can select M CSI reports among N CSI reports according to its own computing power or processing power, and the requirements of the base station.
  • the uplink feedback resources at least one CSI report among the M CSI reports is fed back, where N and M are positive integers, and M ⁇ N.
  • M CSI reports need to be fed back, but the feedback resources of at least two of the M reports conflict.
  • the conflicting feedback resources of the two reports refer to the resources used to feed back the two reports.
  • At least one symbol in the corresponding transmission resources (such as PUCCH or PUSCH) is the same and/or at least one subcarrier is the same.
  • the terminal needs to feed back multiple CSI reports, where transmission resources corresponding to at least L CSI reports among the multiple CSI reports conflict.
  • at least one of the L CSI reports with conflicts is a report including the second type of precoding information, where L is a positive integer.
  • PV priority values
  • the antenna is a physical antenna. In some examples, the antenna is a logical antenna. In some examples, the concepts of port and antenna are interchangeable. In some examples, the antenna is a transmit antenna. In some examples, the antenna is a receiving antenna. In some examples, the antennas include an antenna pair of a transmit antenna and a receive antenna. In some examples, the antenna may be a uniform linear array. In some examples, the antenna is a uniform planar array (for example, including Ng rows and Mg columns, Ng and Mg are positive integers.). In some examples, the antenna is a uniform circular array. In some examples, the antenna may be a non-uniform linear array. In some examples, the antenna is a non-uniform planar array.
  • the antenna is a non-uniform circular array. In some examples, the antenna is a directional antenna, and in some examples the antenna is an omnidirectional antenna. In some examples, the antenna is a dual polarization antenna. In some examples the antenna is a single polarization antenna.
  • the channel information is information obtained based on a reference signal (such as CSI-RS) and used to describe the channel environment between communication nodes, such as a time domain channel matrix and a frequency domain channel matrix.
  • the channel information is a complex matrix, followed by the number of transmitting antennas Nt, the number of receiving antennas Nr, and the number of resources.
  • Element Resource Element, RE
  • the base station sends reference signals for channel measurement in N time slots.
  • the terminal receives the reference signals for channel measurement sent in the N time slots in at least one time slot measurement.
  • N time slots are time slots before the reference time slot.
  • the reference time slot includes one of the following: the reference time slot is a time slot agreed upon by the base station and the terminal, or a current time slot, which is used to obtain M based on N channel information. The operation of channel information; or a time slot indicated by the base station; or a time slot indicated by the base station plus a fixed offset; or a time slot obtained by adding a fixed offset to the time slot in which the terminal receives signaling indicated by the base station time slot.
  • M pieces of channel information are obtained based on N pieces of channel information.
  • N pieces of channel information are sequentially encoded and then input to the first AI module, and the first AI module outputs M pieces of channel information.
  • encoding the channel information includes but is not limited to one of the following: normalizing elements of the channel matrix (such as normalizing the range of an element to the interval [0,1] or [-0.5,0.5 ]), perform real-number processing on the elements of the channel matrix (such as dividing a complex number into a real part and an imaginary part), sample the channel matrix, group the channel matrix, and perform joint operations on multiple channel matrices.
  • the N pieces of channel information are channel information before the reference time slot.
  • the M channel information is the channel information after the reference time slot.
  • N is an integer greater than 1
  • M is an integer greater than or equal to 1.
  • channel state information corresponding to the M pieces of channel information is determined.
  • M pieces of channel information are encoded and input into the second AI module, and the second AI module outputs one CSI.
  • M pieces of channel information are encoded and then input into the second AI module respectively, and the second AI module outputs M pieces of CSI respectively.
  • M channel information is divided into K groups of channel information, each group of channel information is encoded and input into the second AI module respectively, and the second AI module outputs K CSIs respectively.
  • M is an integer greater than or equal to 1
  • K is an integer greater than or equal to 1
  • K ⁇ M is an integer greater than or equal to
  • channel state information CSI of the M pieces of channel information is fed back.
  • the CSI is transmitted in uplink transmission resources.
  • the CSI bearers corresponding to the M pieces of channel information are transmitted on at least one aperiodic PUSCH.
  • the CSI corresponding to the M pieces of channel information carries at least one semi-persistent PUSCH transmission.
  • the CSI corresponding to the M pieces of channel information is transmitted on the PUCCH for at least one cycle.
  • feeding back a channel state information means carrying CSI on an uplink transmission resource for transmission.
  • feeding back at least one channel state information through a channel state information report means carrying the at least one channel state information on the uplink transmission resource indicated by the channel state information report, and transmitting the at least one channel state information through the uplink transmission resource.
  • the transmission resource is transmitted to another communication node.
  • Figure 2 is a flow chart of a method for determining channel state information provided by an embodiment of the present application.
  • the embodiment of the present application can be applied to the situation of determining channel state information.
  • the channel information corresponding to the channel state information is determined by historical or reference time slots.
  • the previous channel information is predicted and generated.
  • This method can be performed by the device for determining channel state information in the embodiment of the present application.
  • the device can be implemented by software and/or hardware and is generally integrated in the terminal. See Figure 2.
  • Implementation of the present application The method provided in the example specifically includes the following steps:
  • Step 110 Obtain M pieces of channel information based on N pieces of channel information.
  • M pieces of channel information can be obtained based on N pieces of channel information.
  • the acquisition method can be to predict the N pieces of channel information through artificial intelligence methods, thereby determining the M pieces of channel information.
  • M channel information can be obtained from N channel information through non-AI methods. For example, N pieces of channel information are sequentially encoded and then input to the first AI module, and the first AI module outputs M pieces of channel information.
  • Step 120 Determine the channel state information corresponding to the M pieces of channel information.
  • the channel state information corresponding to M pieces of channel information can be determined, and the determination can be implemented through AI.
  • the M pieces of channel information are encoded and then input into the second AI module, and the second AI module outputs one CSI.
  • M pieces of channel information are encoded and then input into the second AI module respectively, and the second AI module outputs M pieces of CSI respectively.
  • M channel information is divided into K groups of channel information, each group of channel information is encoded and input into the second AI module respectively, and the second AI module outputs K CSIs respectively.
  • M is an integer greater than or equal to 1
  • K is an integer greater than or equal to 1
  • K ⁇ M is an integer greater than or equal to
  • Step 130 Feed back channel state information corresponding to M pieces of channel information, where N is an integer greater than 1, and M is an integer greater than or equal to 1.
  • channel state information of M pieces of channel information is fed back.
  • the N pieces of channel information are channel information before the reference time slot, and the M pieces of channel information are channel information after the reference time slot.
  • one or more channel information after the reference time slot may be determined by using one or more channel information before the reference time slot.
  • Figure 3 is a flow chart of another method for determining channel state information provided by an embodiment of the present application.
  • the application embodiment is a concretization based on the above-mentioned application embodiment. Refer to Figure 3.
  • the method provided by the application embodiment specifically includes the following steps:
  • Step 210 Obtain M pieces of channel information based on N pieces of channel information.
  • Step 220 Process M channel information into K channel state information, where M is a positive integer and K is a positive integer less than or equal to M.
  • M channel information can be processed into K information status information.
  • the processing process can include mapping the channel information into a precoding matrix, that is, converting the channel information into the first type of precoding information or the second type of precoding information. Coding information, or using the first type of precoding information or the second type of precoding information to describe the channel information, where K is a positive integer less than 1 or equal to M.
  • Step 230 Feed back the channel state information of K channel information in the transmission resource corresponding to one channel state information report.
  • the generated channel state information corresponding to K pieces of channel information can be fed back in a channel state information report.
  • the channel state information report indicates the uplink transmission resources, and the K information corresponding to the K pieces of channel information is transmitted on the uplink transmission resources. channel status information of each channel information.
  • the first indication information may be one of the following: physical layer signaling, a field in physical layer signaling, high-layer signaling, a field in high-layer signaling, or a field carried in a CSI report. a field of .
  • the first indication information is used to indicate the channel state information type.
  • the channel state information report includes first indication information.
  • first indication information is fed back, and the first indication information is used to indicate the type of channel state information and so on.
  • the first indication information may be specifically used to indicate the channel state information type of the channel state information corresponding to the channel state information group.
  • the channel state information type includes the first type of precoding information and the second type of precoding information, and may be used for Indicates the channel state information type of the channel state information corresponding to the channel state information group.
  • the channel state information type of the channel state information corresponding to the channel state information group can be indicated through the first indication information.
  • the first indication information takes the first value
  • the terminal and/or the base station use the first type of precoding information to describe the channel information in the channel information group, for example, the channel information in the channel information group is determined to be the first type of precoding information.
  • the terminal and/or the base station may use the second type of precoding information to describe the channel information in the channel information group, for example, determine the channel information in the channel information group as the second type of precoding information.
  • the first value is 0 and the second value is 1, or the first value is 0 and the second value is non-zero; or the first value is FALSE and the second value is TRUE.
  • the first value and the second value here can also be real values in other situations, as long as the two situations can be distinguished.
  • the terminal feeds back the first finger indication information, the first indication information takes a first value, the terminal determines the channel information in the channel information group as the first type of precoding information, feeds back the first type of precoding information, and the base station receives the first type of precoding information. indication information and first-type precoding information.
  • the terminal feeds back the first indication information, the first indication information includes at least one bit, the first indication information used to describe the channel state information takes a second value, and the terminal sets the channel The channel information in the information group is determined to be the second type of precoding information, and the second type of precoding information is fed back.
  • the base station receives the first indication information and the second type of precoding information used to describe the channel state information.
  • feedback of channel state information corresponding to the K pieces of channel information includes:
  • the channel status information corresponding to the K pieces of channel status information is transmitted in the transmission resources corresponding to the K pieces of channel status information reports.
  • channel state information corresponding to K channel information may be transmitted in transmission resources corresponding to K channel state information reports.
  • the transmission resources corresponding to the K channel state information reports may transmit the channel state information corresponding to the K channel information in the first or multiple time slots.
  • the report identification information of the K channel state information reports is the same.
  • K channel state information reports that feed back K channel state information may have the same report identification information, for example, may have the same report number ReportID.
  • the report identification information of the K channel state information reports is different.
  • K channel status information reports that feed back K channel status information may have different report identification information.
  • K channel status information reports may have different report numbers ReportID.
  • K channel status information reports are reported in one time slot.
  • K channel state information reports are reported in K0 time slots, where K0 is an integer less than or equal to K and greater than 1.
  • Figure 4 is a flow chart of another method for determining channel state information provided by an embodiment of the present application.
  • the embodiment of the present application is a specific embodiment based on the above embodiment of the present application.
  • the channel state information provided by the embodiment of the present application is The method of determining information specifically includes the following steps:
  • Step 310 Obtain M pieces of channel information based on N pieces of channel information.
  • Step 320 Divide the M channel information into K channel information groups according to their respective corresponding time slot sizes.
  • M pieces of channel information can be divided into K channel information groups according to the size of the time slot in which they are located, and each channel information group can include one or more channel information.
  • Step 330 Process K channel information groups into K second type precoding information, where K and M are integers greater than or equal to 1, and K is less than or equal to M.
  • the divided K channel information groups can be processed into K pieces of second type precoding information.
  • the i-th group can be processed into the i-th channel state information.
  • This processing process can be implemented based on AI, and i is an integer of 1,...,K.
  • Step 340 Feed back the channel state information corresponding to the M pieces of channel information.
  • each channel information group includes at least one piece of channel information.
  • the number of channel information included in each channel information group is one of the following:
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information, where X1 and X2 are positive integers;
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information
  • the third channel information group includes X3 channel information, where X1, X2 and X3 are positive integers;
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information
  • the third channel information group includes X3 channel information
  • the fourth channel information group includes X4 channel information, where X1 and X2, X3, and X4 are positive integers.
  • the channel information group may be included in at least one of the following ways:
  • the first channel information group includes 1 channel information, and the second channel information group includes 2 channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 2 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 3 channel information, and the second said channel information group includes 2 channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 2 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 2 pieces of channel information, and the third said channel information group includes 2 pieces of information;
  • the first said channel information group includes 2 pieces of channel information
  • the second said channel information group includes 2 pieces of channel information
  • the third said channel information group includes 1 piece of information
  • the channel information group when the channel information group includes only one channel information and the first indication information takes the first value, one channel information is processed as the first type of precoding information; the channel information group includes at least two When the channel information is obtained and the first indication information takes a first value, at least two pieces of channel information are processed into at least one first type of precoding information.
  • the channel information group when the channel information group only includes one channel information and the first indication information is the first value, one channel information included in the channel information group can be processed as the first type of precoding information.
  • this processing process can describe the channel information based on TypeII, eTypeII and other DFT-related codebook methods.
  • the channel information group includes at least two channel information, if the first indication information is the first value, at least one channel information included in the channel information group can be processed as the first type of precoding information, each channel information
  • the processing can all use TypeII codebook, eTypeII and other DFT-related codebook methods to describe the channel information.
  • the method further includes: feeding back first indication information, where the first indication information is used to describe or indicate the channel state information type.
  • Figure 5 is a flow chart of another method for determining channel state information provided by an embodiment of the present application.
  • the embodiment of the present application is a concretization based on the above-mentioned embodiment of the application.
  • the channel state provided by the embodiment of the present application is The method of determining information specifically includes the following steps:
  • Step 410 Obtain M pieces of channel information based on N pieces of channel information.
  • Step 420 Encode M pieces of channel information sequentially according to the size of the time slot in which they are located and process them into one piece of channel state information.
  • the M channel information can be encoded in the order of the time slot size.
  • the channel information with a larger time slot is more advanced in coding processing.
  • the M channel information can be encoded into one channel state information.
  • Step 430 Feed back the channel state information corresponding to the M pieces of channel information.
  • Figure 6 is a flow chart of another method for determining channel state information provided by an embodiment of the present application.
  • the embodiment of the present application is a concrete implementation based on the above embodiment of the present application.
  • the channel state information provided by the embodiment of the present application is The method of determining information specifically includes the following steps:
  • Step 510 Obtain M pieces of channel information based on N pieces of channel information.
  • Step 520 Process the M pieces of channel information into M pieces of channel state information, where one channel information corresponds to one channel state information.
  • M pieces of channel information can be processed into M pieces of channel state information, and each channel information can be processed into one piece of channel state information.
  • Step 530 Feed back the channel state information corresponding to the M pieces of channel information.
  • Figure 7 is a flow chart of another method for determining channel state information provided by an embodiment of the present application.
  • the embodiment of the present application is a concrete implementation based on the above embodiment of the present application.
  • the channel state information provided by the embodiment of the present application is The method of determining information specifically includes the following steps:
  • Step 610 Obtain M pieces of channel information based on N pieces of channel information.
  • Step 620 Process M channel information into K channel state information.
  • Step 630 Map the K pieces of channel status information to the uplink transmission resources corresponding to one channel status information report in sequence according to priority values.
  • K pieces of channel state information can be mapped to uplink transmission resources according to priority values, and the uplink transmission resources can correspond to one channel state information report.
  • Step 640 Feed back the channel state information corresponding to the M pieces of channel information.
  • the priorities of K channel status information The value size is determined based on the time slot size corresponding to the K channel status information, or the priority value of the K channel status information is determined based on the index size corresponding to the K channel status information.
  • the priority value of the channel state information is determined by its corresponding time slot size.
  • the priority value of the channel state information is determined by its corresponding index size. The larger the index, the smaller the priority value.
  • the priority value corresponding to the index of the i-th channel state information is smaller than the j-th channel state information.
  • mapping the K pieces of channel status information to the uplink transmission resources corresponding to one channel status information report in sequence according to priority values includes one of the following:
  • the uplink transmission resources are divided into K time-frequency domain resource groups, and the k-th channel state information is mapped to the k-th time-frequency domain resource group.
  • the uplink transmission resources can be at least one of time domain resources, frequency domain resources, or time-frequency domain resources.
  • the uplink transmission resources can be divided into K groups, and the K channel state information can be mapped to a group of uplink resources respectively.
  • Transmission resources it can be understood that when the uplink transmission resources can include time domain resources, the K channel state information can be mapped to one of the K time domain resource groups divided into time domain resources.
  • Each time domain resource group can include L1 time domain symbol resources (for example, including resource elements on different subcarriers on continuous or non-continuous L1 symbols); when the uplink transmission resources can include frequency domain resources, K channel state information can be mapped to frequency domain resources respectively.
  • each frequency domain resource group can include L2 subcarrier resources, such as one or more physical resource block resources (Physical Resource Block, PRB), one or more subbands; uplink transmission
  • L2 subcarrier resources such as one or more physical resource block resources (Physical Resource Block, PRB), one or more subbands; uplink transmission
  • PRB Physical Resource Block
  • the K channel state information can be mapped to one of the K time-frequency domain resource groups divided into time-frequency domain resources.
  • Each time-frequency domain resource group can include L1 time-domain symbol resources and L2 subcarrier resources, where K, L1, and L2 are positive integers.
  • the method for determining channel state information further includes at least one of the following:
  • the channel state information that is determined first is transmitted first.
  • the priority here is reflected in the size of the transmission time slot.
  • a smaller time slot means transmission first.
  • the first determination time of the channel state information corresponding to the M pieces of channel information is less than the second determination time of determining the channel state information of the N pieces of channel information.
  • the first determination time for determining the channel state information of M pieces of channel information is less than the second determination time for determining the channel state information of N pieces of channel information.
  • the second time is an integer multiple of the first time.
  • Figure 8 is a flow chart of a method for determining channel state information provided by an embodiment of the present application.
  • the embodiment of the present application can be applied to the situation of determining channel state information.
  • the channel information corresponding to the channel state information is determined by historical or reference time slots.
  • the previous channel information is determined.
  • This method can be performed by the device for determining channel state information in the embodiment of the present application.
  • the device can be implemented by software and/or hardware, and is generally integrated in the base station. See Figure 8.
  • the method provided by the embodiment of the present application specifically includes the following: step:
  • channel state information may be obtained by receiving one or more CSI reports, and the channel state information is channel state information processed according to M pieces of channel information.
  • M pieces of channel information or M pieces of channel state information can be determined according to the received channel state information, and the M pieces of channel information can be determined by N pieces of channel information.
  • the channel state information is based on K second-type precoding information feedback, and the corresponding channel information can be determined based on the i-th second type precoding information.
  • the channel state information is based on the first type of precoding information feedback, and M pieces of channel state information can be determined respectively according to the channel state information, such as determining the i-th piece of first-type precoding information.
  • channel status information. i is a positive integer less than or equal to M.
  • the N channel information is channel information before the reference time slot
  • the M channel information is The information is the channel information after the reference time slot.
  • the number of channel state information is K
  • the K channel state information is obtained by processing M channel information, where M is a positive integer, and K is a positive integer less than or equal to M.
  • M channel information is processed into K channel state information, including:
  • the K channel information groups are processed into K second type precoding information, wherein the K and the M are integers greater than or equal to 1, and the K is less than or equal to the M.
  • M channel information is processed into K channel state information, including:
  • the M pieces of channel information are sequentially encoded according to the size of the time slot in which they are located and then processed into one piece of channel state information.
  • M channel information is processed into K channel state information, including:
  • the M pieces of channel information are processed into M pieces of channel state information, where one channel information corresponds to one channel state information.
  • M channel information is processed into K channel state information, including:
  • the K pieces of channel status information are sequentially mapped to the uplink transmission resources corresponding to one channel status information report according to priority values.
  • the priority values of the K channel state information are determined according to the time slot sizes corresponding to the K channel state information, or the priority values of the K channel state information are determined according to the time slot sizes corresponding to the K channel state information.
  • the index size is determined.
  • mapping the K pieces of channel status information to the uplink transmission resources corresponding to one channel status information report in sequence according to priority values includes one of the following:
  • the uplink transmission resources are divided into K time-frequency domain resource groups, and the k-th channel state information is mapped to the k-th time-frequency domain resource group.
  • each channel information group includes at least one piece of channel information.
  • the number of channel information included in each channel information group One of the following:
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information, where X1 and X2 are positive integers;
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information
  • the third channel information group includes X3 channel information, where X1, X2 and X3 are positive integers;
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information
  • the third channel information group includes X3 channel information
  • the fourth channel information group includes X4 channel information, where X1 and X2, X3, and X4 are positive integers.
  • the first set of channel information includes 1 piece of channel information, and the second set of channel information includes 2 pieces of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 2 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 2 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 2 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 2 pieces of channel information, and the third said channel information group includes 2 pieces of information;
  • the first said channel information group includes 2 pieces of channel information
  • the second said channel information group includes 2 pieces of channel information
  • the third said channel information group includes 1 piece of information
  • the channel information group when the channel information group includes only one channel information and the first indication information is the first value, the one channel information is processed as the first type of precoding information; the channel information group includes When there are at least two channel information and the first indication information is the first value, the at least two channel information is processed into at least one first type of precoding information.
  • obtaining the channel state information includes: obtaining the channel state information fed back from the channel state information of K pieces of channel information obtained and transmitted by a transmission resource corresponding to a channel state information report.
  • the method further includes receiving first indication information, where the first indication information is used to indicate the channel state information type.
  • the channel state information of the transmitted K channel information is obtained from the transmission resources corresponding to the K channel state information reports.
  • the channel state information report includes first indication information, and the first indication information is used to indicate the channel state information type of the channel state information corresponding to the channel information group.
  • obtaining channel state information includes: obtaining the channel state information fed back in K channel state information reports.
  • the report identification information of the K channel state information reports is the same.
  • the report identification information of the K channel state information reports is different.
  • K channel status information reports are reported in one time slot.
  • K channel state information reports are reported in K time slots.
  • the smaller the corresponding time slot of the channel information the smaller the time slot for transmitting the channel information.
  • the smaller the time slot corresponding to the transmission resource is.
  • the first determination time of the channel state information corresponding to the M pieces of channel information is less than the second determination time of determining the channel state information of the N pieces of channel information.
  • the channel information is jointly processed into one CSI and fed back in one channel status information report.
  • Determining the channel state information corresponding to the M pieces of channel information means jointly processing the M pieces of channel information into one channel state information (Channel State Information, CSI).
  • CSI Channel State Information
  • M pieces of channel information H 1 , H 2 ,..., H M are the channel information of time slots n 1 ,..., n M respectively. They are a channel matrix related to the number of transmitting and receiving antennas and bandwidth.
  • n 1 ,..., n M are positive integers sorted from small to large.
  • the M channel information is sequentially encoded according to the corresponding time slot size and mapped to a CSI, and is fed back through a CSI report.
  • the channel information is processed into M CSIs respectively and fed back in a channel status information report.
  • Determining the channel state information corresponding to the M pieces of channel information means processing the M pieces of channel information into M CSIs respectively.
  • M pieces of channel information H 1 , H 2 ,..., H M are the channel information of time slots n 1 ,..., n M respectively. They are a channel matrix related to the number of transmitting and receiving antennas and bandwidth.
  • n 1 ,..., n M are positive integers sorted from small to large, and the i-th channel information Hi is mapped to the i-th CSI i .
  • the first CSI is encoded first, then the second CSI is encoded, and the encoding is performed in sequence until the uplink transmission resource transmission indicated by the CSI report does not meet the encoding requirements.
  • CSI coding can be mapped in uplink transmission resources, which can include time domain resources, frequency domain resources, and time-frequency domain resources.
  • uplink transmission resources can include time domain resources, frequency domain resources, and time-frequency domain resources.
  • CSI 1 , CSI 2 , and CSI M are coded in the time domain in sequence; See Figure 10, CSI 1 , CSI 2 , and CSI M are coded in the frequency domain in sequence; See Figure 11, the frequency domain is followed by the time domain CSI 1 , CSI 2 , CSI M are encoded in sequence.
  • the encoded M CSIs are transmitted on the uplink transmission resources corresponding to one CSI report.
  • the channel information can be processed into K CSI, that is, the CSI Corresponds to one channel information, and some CSI corresponds to at least two channel information, and reports feedback in one channel status information.
  • Determining the channel state information corresponding to the M pieces of channel information means mapping the M pieces of channel information into K pieces of CSI respectively.
  • M pieces of channel information H 1 , H 2 ,..., H M are the channel information of time slots n 1 ,..., n M respectively. They are a channel matrix related to the number of transmitting and receiving antennas and bandwidth.
  • n 1 ,..., n M are positive integers sorted from small to large.
  • the M channels are divided into K groups according to time slot size, and each group includes at least one channel information.
  • An example is to sequentially encode CSI 1 , CSI 2 , ..., CSI K in the time domain
  • An example is to sequentially encode CSI 1 , CSI 2 , ..., CSI K in the frequency domain
  • An example is to sequentially encode CSI 1 , CSI 2 ,..., CSI K in the frequency domain first and then the time domain
  • the number of channel information included in each group of channel information is one of the following:
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information, where X1 and X2 are positive integers;
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information
  • the third channel information group includes X3 channel information, where X1, X2, and X3 are positive integers;
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information
  • the third channel information group includes X3 channel information
  • the fourth channel information group includes X4 channel information, where X1 and X2, X3, and X4 are positive integers.
  • K groups of channel information are divided into two or more groups, and the number of channel information included in each group can be as follows:
  • the first channel information group includes 1 channel information, and the second channel information group includes 2 channel information;
  • the first channel information group includes 2 channel information, and the second channel information group includes 1 channel information;
  • the first channel information group includes 2 channel information, and the second channel information group includes 2 channel information;
  • the first channel information group includes 1 channel information, and the second channel information group includes 3 channels information;
  • the first channel information group includes 3 channel information, and the second channel information group includes 1 channel information;
  • the first channel information group includes 2 channel information, and the second channel information group includes 3 channel information;
  • the first channel information group includes 3 channel information, and the second channel information group includes 2 channel information;
  • the first channel information group includes 3 channel information, and the second channel information group includes 3 channel information;
  • the first channel information group includes 1 channel information, and the second channel information group includes 4 channel information;
  • the first channel information group includes 4 channel information, and the second channel information group includes 1 channel information;
  • the first channel information group includes 2 channel information, and the second channel information group includes 4 channel information;
  • the first channel information group includes 4 channel information, and the second channel information group includes 2 channel information;
  • the first channel information group includes 3 channel information, and the second channel information group includes 4 channel information;
  • the first channel information group includes 4 channel information, and the second channel information group includes 3 channel information;
  • the first channel information group includes 4 channel information, and the second channel information group includes 4 channel information;
  • the first channel information group includes 1 channel information
  • the second channel information group includes 2 channel information
  • the third channel information group includes 2 information to information
  • the first channel information group includes 2 channel information
  • the second channel information group includes 2 channel information
  • the third channel information group includes 1 information to information.
  • the first CSI is processed individually, or one CSI is compressed individually.
  • the terminal and/or the base station use the first type of precoding information to describe the signal.
  • Channel information in the channel information group for example, determine the channel information in the channel information group as the first type of precoding information.
  • the terminal and/or the base station can use the second type of precoding information to describe the channel information in the channel information group, for example, the channel information in the channel information group is the second type of precoding information.
  • the first value is 0 and the second value is 1, or the first value is 0 and the second value is non-0; or the first value is FALSE and the second value is TRUE.
  • the first value and the second value here can also be real values in other situations, as long as the two situations can be distinguished.
  • the channel information can be described based on DFT-related codebook methods such as TypeII and eTypeII. If at least two H's are included, and if the first indication information is the first value, the at least two channel information included in the channel information group can be processed respectively as the first type of precoding information, and each channel information can be processed using TypeII codebook, eTypeII, etc. describe the channel information based on DFT-related codebook methods.
  • the method further includes: feeding back first indication information, where the first indication information is used to indicate the channel state information type.
  • M pieces of channel information are respectively obtained as M pieces of CSI, and M pieces of channel state information are used to report feedback.
  • Determining the channel state information corresponding to the M pieces of channel information means mapping the M pieces of channel information to M CSIs respectively.
  • M pieces of channel information H 1 , H 2 ,..., H M are the channel information of time slots n 1 ,..., n M respectively. They are a channel matrix related to the number of transmitting and receiving antennas and bandwidth.
  • n 1 ,..., n M are positive integers sorted from small to large.
  • M reports have the same reportID.
  • the M reports are reported in one time slot.
  • the M CSIs are fed back in sequence according to the index size of the frequency domain group.
  • the i-th frequency domain group is used to carry the CSI corresponding to the i-th CSI report.
  • M reports have the same reportID.
  • the M reports are reported in M time slots.
  • the M CSIs are fed back in sequence according to the index size of the time slot.
  • the i-th time slot is used to carry the CSI corresponding to the i-th CSI report.
  • M reports have different reportIDs.
  • the M reports are reported in M time slots.
  • feedback is given in sequence according to the index size of the time slot.
  • the i-th time slot is used to carry the CSI on the CSI report corresponding to the i-th largest reportID.
  • Figure 12 is a schematic structural diagram of a device for determining channel state information provided by an embodiment of the present application. It can execute the method of determining channel state information provided by any embodiment of the present application and has functional modules and beneficial effects corresponding to the execution method.
  • the device can be implemented by software and/or hardware, and is generally integrated in the terminal. Specifically, it includes: an information prediction module 101, a channel status module 102, and an information feedback module 103.
  • the information prediction module 101 is used to obtain M channel information based on N channel information.
  • the channel state module 102 is used to determine the channel state information corresponding to the M pieces of channel information.
  • the information feedback module 103 is used to feed back the channel state information corresponding to the M pieces of channel information, where N is an integer greater than 1, and M is an integer greater than or equal to 1.
  • the N pieces of channel information in the device are channel information before the reference time slot, and the M pieces of channel information are channel information after the reference time slot.
  • the in-device channel status module 102 includes:
  • a processing unit configured to process the M pieces of channel information into K pieces of channel state information, where M is a positive integer and K is a positive integer less than or equal to M.
  • the processing unit is configured to divide the M channel information into K channel information groups according to respective corresponding time slot sizes; and process the K channel information groups into K second type precoding information , wherein the K and the M are integers greater than or equal to 1, and the K is less than or equal to the M.
  • the processing unit is configured to sequentially encode the M pieces of channel information according to the size of the time slot in which they are located and then process them into one piece of channel state information.
  • the processing unit is configured to process the M pieces of channel information into M pieces of channel state information, where one channel information corresponds to one channel state information.
  • the processing unit is configured to map the K pieces of channel status information to the uplink transmission resources corresponding to one channel status information report in sequence according to priority values.
  • the priority values of the K channel state information are determined according to the time slot sizes corresponding to the K channel state information, or the priority values of the K channel state information are determined according to the K channel state information.
  • the corresponding index size is determined.
  • mapping the K pieces of channel status information to the uplink transmission resources corresponding to one channel status information report in sequence according to priority values includes one of the following:
  • the uplink transmission resources are divided into K time-frequency domain resource groups, and the k-th channel state information is mapped to the k-th time-frequency domain resource group.
  • each channel information group includes at least one piece of channel information.
  • the number of channel information included in each channel information group is one of the following:
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information, where X1 and X2 are positive integers;
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information
  • the third channel information group includes X3 channel information, where X1, X2 and X3 are positive integers;
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information
  • the third channel information group includes X3 channel information
  • the fourth channel information group includes X4 channel information, where X1 and X2, X3, and X4 are positive integers.
  • the device includes one of the following:
  • the first channel information group includes 1 channel information, and the second channel information group includes 2 channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 2 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 2 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 channel information, and the second said channel information group includes 4 channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 2 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 2 pieces of channel information, and the third said channel information group includes 2 pieces of information;
  • the first said channel information group includes 2 pieces of channel information
  • the second said channel information group includes 2 pieces of channel information
  • the third said channel information group includes 1 piece of information
  • the device further includes one of the following:
  • the channel information group only includes one channel information and the first indication information is the first value, process the one channel information as the first type of precoding information;
  • the channel information group includes at least two channel information and the first indication information is the first value, the at least two channel information is processed into at least one first type of precoding information.
  • the device further includes feeding back first indication information, where the first indication information is used to indicate the channel state information type.
  • the information feedback module 103 is specifically configured to transmit the channel state information of the K channel information in the transmission resource corresponding to one channel state information report.
  • the channel state information report in the device includes first indication information, where the first indication information is used to indicate the channel state information type of the channel state information corresponding to the channel information group.
  • the information feedback module 103 is specifically configured to transmit the channel state information of the K channel information in the transmission resources corresponding to the K channel state information reports.
  • the report identification information of the K channel state information reports is the same.
  • the report identification information of the K channel state information reports is different.
  • K channel status information reports are reported in one time slot.
  • K channel state information reports are reported in K time slots.
  • the first determination time of the channel state information corresponding to the M pieces of channel information is less than the second determination time of determining the channel state information of the N pieces of channel information.
  • Figure 13 is a schematic structural diagram of another device for determining channel state information provided by an embodiment of the present application. It can execute the method of determining channel state information provided by any embodiment of the present application and has functional modules and beneficial effects corresponding to the execution method.
  • the device can be implemented by software and/or hardware, and is generally integrated in the base station. Specifically, it includes: an information acquisition module 201 and an information determination module 202.
  • Information acquisition module 201 is used to acquire channel status information.
  • the information determination module 202 is used to determine the M channel information corresponding to the channel state information or the channel state information of the M channel information, where the M channel information is determined by N information, N is an integer greater than 1, and M is greater than or An integer equal to 1.
  • the N pieces of channel information are channel information before the reference time slot, and the M pieces of channel information are channel information after the reference time slot.
  • the number of channel state information is K
  • the K channel state information is obtained by processing M channel information, where M is a positive integer, and K is a positive integer less than or equal to M.
  • M channel information is processed into K channel state information, including:
  • the K channel information groups are processed into K second type precoding information, wherein the K and the M are integers greater than or equal to 1, and the K is less than or equal to the M.
  • M channel information is processed into K channel state information, including:
  • the M pieces of channel information are sequentially encoded according to the size of the time slot in which they are located and then processed into one piece of channel state information.
  • M channel information is processed into K channel state information, including:
  • the M channel information is processed into M channel state information, where one channel information corresponds to A channel status message.
  • M channel information is processed into K channel state information, including:
  • the K pieces of channel status information are sequentially mapped to the uplink transmission resources corresponding to one channel status information report according to priority values.
  • the priority values of the K channel state information are determined according to the time slot sizes corresponding to the K channel state information, or the priority values of the K channel state information are determined according to the time slot sizes corresponding to the K channel state information.
  • the index size is determined.
  • mapping the K pieces of channel status information to the uplink transmission resources corresponding to one channel status information report in sequence according to priority values includes one of the following:
  • the uplink transmission resources are divided into K time-frequency domain resource groups, and the k-th channel state information is mapped to the k-th time-frequency domain resource group.
  • each channel information group includes at least one piece of channel information.
  • the number of channel information included in each channel information group is one of the following:
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information, where X1 and X2 are positive integers;
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information
  • the third channel information group includes X3 channel information, where X1, X2 and X3 are positive integers;
  • the first channel information group includes X1 channel information
  • the second channel information group includes X2 channel information
  • the third channel information group includes X3 channel information
  • the fourth channel information group includes X4 channel information, where X1 and X2, X3, and X4 are positive integers.
  • the first set of channel information includes 1 piece of channel information, and the second set of channel information includes 2 pieces of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 channel information, and the second said channel information group includes 2 channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 2 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 1 piece of channel information;
  • the first said channel information group includes 2 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 2 pieces of channel information;
  • the first said channel information group includes 3 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 3 pieces of channel information;
  • the first said channel information group includes 4 pieces of channel information, and the second said channel information group includes 4 pieces of channel information;
  • the first said channel information group includes 1 piece of channel information, and the second said channel information group includes 2 pieces of channel information, and the third said channel information group includes 2 pieces of information;
  • the first said channel information group includes 2 pieces of channel information
  • the second said channel information group includes 2 pieces of channel information
  • the third said channel information group includes 1 piece of information
  • the channel information group when the channel information group includes only one channel information and the first indication information is the first value, the one channel information is processed as the first type of precoding information; the channel information group includes When there are at least two channel information and the first indication information is the first value, the at least two The channel information is processed into at least one first type of precoding information.
  • the method further includes receiving first indication information, where the first indication information is used to indicate the channel state information type.
  • obtaining the channel state information includes: obtaining the channel state information fed back from the channel state information of K pieces of channel information obtained and transmitted by a transmission resource corresponding to a channel state information report.
  • the channel state information report includes first indication information, the first indication information being used to indicate the channel state information type.
  • obtaining the channel state information includes: obtaining the channel state information of the transmitted K channel information in the transmission resources corresponding to the K channel state information reports.
  • the report identification information of the K channel state information reports is the same.
  • the report identification information of the K channel state information reports is different.
  • K channel status information reports are reported in one time slot.
  • K channel state information reports are reported in K time slots.
  • the first determination time of the channel state information corresponding to the M pieces of channel information is less than the second determination time of determining the channel state information of the N pieces of channel information.
  • Figure 14 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device includes a processor 40, a memory 41, an input device 42 and an output device 43; the number of processors 40 in the electronic device may be one or more ,
  • Figure 14 takes a processor 40 as an example; in electronic equipment, the processor 40, memory 41, input device 42 and output device 43 can be connected through a bus or other means.
  • a bus connection is taken as an example.
  • the memory 41 can be used to store software programs, computer-readable Execution programs and modules, such as the modules corresponding to the device for determining channel state information in the embodiment of the present application (information prediction module 101, channel state module 102 and information feedback module 103, or information acquisition module 201 and information determination module 202).
  • the processor 40 executes the software programs, instructions and modules stored in the memory 41 to execute various functional applications and data processing of the electronic device, that is, to implement the above method.
  • the memory 41 may mainly include a stored program area and a stored data area, where the stored program area may store an operating system and at least one application program required for a function; the stored data area may store data created according to the use of the electronic device, etc.
  • the memory 41 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the memory 41 may further include memory located remotely relative to the processor 40, and these remote memories may be connected to the electronic device through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the input device 42 may be used to receive input numeric or character information and generate key signal inputs related to user settings and function control of the electronic device.
  • the output device 43 may include a display device such as a display screen.
  • Embodiments of the present application also provide a storage medium containing computer-executable instructions.
  • the computer-executable instructions when executed by a computer processor, are used to perform a method for determining channel state information.
  • the method includes:
  • M channel information or channel state information of the M channel information corresponding to the channel state information wherein the M channel information is determined by N information, where N is an integer greater than 1, and M is greater than or equal to an integer of 1.
  • the present application can be implemented with the help of software and necessary general hardware. Of course, it can also be implemented with hardware, but in many cases the former is a better implementation. . Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk.
  • ROM read-only memory
  • RAM random access memory
  • FLASH flash memory
  • hard disk or optical disk etc., including a number of instructions used to make a computer device (can be a personal computer, server, or network device, etc.) that executes the methods described in various embodiments of this application.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may consist of several physical components. Components execute cooperatively. Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit . Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes but is not limited to RAM, ROM, Electrically Erasable Programmable Read-Only Memory (EEPROM), flash memory or other memory technologies, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical disk storage, magnetic cassette, tape, disk storage or other magnetic storage device, or can be used to store the desired information and can be accessed by a computer any other medium.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信道状态信息的确定方法、电子设备和存储介质,其中,该方法包括:根据N个信道信息获取M个信道信息;确定所述M个信道信息对应的信道状态信息;反馈所述M个信道信息对应的信道状态信息,其中,N为大于1的整数,M为大于或等于1的整数。

Description

信道状态信息的确定方法、电子设备和存储介质
本申请要求在2022年07月18日提交中国专利局、申请号为202210843620.6的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信道状态信息的确定方法、电子设备和存储介质。
背景技术
近期随着无线通信技术的发展,将人工智能(Artificial Intelligence,AI)引入无线通信系统已经得到了广泛的共识。在无线通信系统中,一个AI应用的主要场景为信道状态信息(Channel State Information,CSI)的预测,由于AI具有强大的特征提取能力,可以提取历史信道信息的特征,从而根据所述提取历史信道信息的特征预测未来的信道信息。例如,在CSI反馈中,在某个参考时隙n,根据参考时隙n之前的N个时隙的信道信息预测参考时隙n之后M个时隙的信道信息。当然,也可以用非AI的方式从N个时隙的信道信息预测未来的M个时隙的信道信息。并将所述M个信道信息处理为信道状态信息。但是如何将所述M个信道信息处理为信道状态信息,并反馈信道状态信息,目前仍然需要研究。
发明内容
本申请实施例提供了一种信道状态信息的确定方法、电子设备和存储介质,以实现预测的信道信息的信道状态信息的确定,可提高信道传输质量,增强用户的使用体验。
本申请实施例提供了一种信道状态信息确定方法,其中,该方法包括:
根据N个信道信息获取M个信道信息;
确定所述M个信道信息对应的信道状态信息;
反馈所述M个信道信息对应的信道状态信息,其中,N为大于1的整数,M为大于或等于1的整数。
本申请实施例还提供了一种信道状态信息确定方法,其中,该方法包括:
获取信道状态信息;
确定所述信道状态信息对应的M个信道信息或M个信道信息的信道状态信 息,其中,所述M个信道信息由N个信息获取,N为大于1的整数,M为大于或等于1的整数。
本申请实施例还提供了一种电子设备,其中,该电子设备包括:
一个或多个处理器;
存储器,设置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中任一所述方法。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如本申请实施例中任一所述方法。
附图说明
图1是本申请实施例提供的一种信道状态信息预测的示例图;
图2是本申请实施例提供的一种信道状态信息的确定方法的流程图;
图3是本申请实施例提供的另一种信道状态信息的确定方法的流程图;
图4是本申请实施例提供的另一种信道状态信息的确定方法的流程图;
图5是本申请实施例提供的另一种信道状态信息的确定方法的流程图;
图6是本申请实施例提供的另一种信道状态信息的确定方法的流程图;
图7是本申请实施例提供的另一种信道状态信息的确定方法的流程图;
图8是本申请实施例提供的一种信道状态信息的确定方法的流程图;
图9是本申请实施例提供的一种时域资源上编码信道状态信息的示例图;
图10是本申请实施例提供的一种频域资源上编码信道状态信息的示例图;
图11是本申请实施例提供的一种时频域资源上编码信道状态信息的示例图;
图12是本申请实施例提供的一种信道状态信息的确定装置的结构示意图;
图13是本申请实施例提供的另一种信道状态信息的确定装置的结构示意图;
图14是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施仅仅用于解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元” 后缀仅为了有利于本申请的说明,其本身没有特有的意义,因此,“模块”、“部件”或“单元”可以混合地使用。
本申请实施例中移动通信网络(包括但不限于第三代移动通信技术(3rd-Generation,3G),第四代移动通信技术(the 4th generation mobile communication technology,4G),第五代移动通信技术(5th-Generation,5G)以及未来移动通信网络)的网络架构可以包括网络侧设备(例如包括但不限于基站)和接收侧设备(例如包括但不限于终端)。且应当理解的是,在本示例中,在下行链路中第一通信节点(也可以称为第一通信节点设备)可以是基站侧设备,第二通信节点(也可以称为第二通信节点设备)可以是终端侧设备,当然,在上行链路中第一通信节点也可以是终端侧设备,第二通信节点也可以是基站侧设备。在两个通信节点是设备到设备通信中,第一通信节点和第二通信节点都可以是基站或者终端。
本申请中,基站可以是长期演进(Long Term Evolution,LTE),长期演进增强(Long Term Evolution advanced,LTE-A)中的基站或演进型基站(Evolutional Node B,eNB或eNodeB)、5G网络中的基站设备、或者未来通信系统中的基站等,基站可以包括各种宏基站、微基站、家庭基站、无线拉远、可重构智能表面(Reconfigurable Intelligent Surfaces,RISs)、路由器、无线保真(Wireless Fidelity,WIFI)设备或者主小区(primary cell)和协作小区(secondary cell)等各种网络侧设备。
本申请中,终端是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(Self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为用户,用户设备(User Equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。本申请实施例并不限定。
本申请中,高层信令包括但不限于无线资源控制(Radio Resource Control, RRC),媒体控制-控制单元(Media Access Control control element,MAC CE),基站和终端间还可以传输物理层信令,比如在物理下行控制信道(Physical Downlink Control CHannel,PDCCH)上传输物理层信令,在物理上行控制信道(Physical Uplink Control CHannel,PUCCH)传输物理层信令。
本申请中,各种参数的指示Indicator,也可以称为索引Index,或者标识(Identifier,ID),它们是完全等价的概念。比如无线系统的资源标识,这里无线系统资源包括但不限于以下之一:一个参考信号资源、参考信号资源组,参考信号资源配置、信道状态信息(Channel State Information,CSI)报告、CSI报告集合、终端、基站、面板、神经网络、子神经网络、神经网络层等对应的索引。基站可以通过各种高层信令或者物理层信令指示一个或一组资源的标识给终端。
在一些实施例中,人工智能(Artificial Intelligence,AI)包括机器学习(Machine learning,ML),深度学习,强化学习,迁移学习,深度强化学习,元学习等具有自我学习的设备、组件、软件、模块。在一些实施例中,人工智能通过人工智能网络(或称为神经网络)实现,神经网络包括多个层,每层包括至少一个节点,在一个示例中,神经网络包括输入层,输出层,至少一层隐藏层,其中每层神经网络包括但不限于使用了全连接层,稠密层,卷积层,转置卷积层,直连层,激活函数,归一化层,池化层等至少之一。在一些实施例中,神经网络的每一层可以包括一个子神经网络,比如残差块(Residual Network block,或者Resnet block),稠密网络(Densenet Block),循环网络(Recurrent Neural Network,RNN)等。人工智能网络包括神经网络模型和/或神经网络模型对应的神经网络参数,其中,神经网络模型可以简称为网络模型,神经网络参数可以简称网络参数。一个网络模型定义了神经网络的层数,每层的大小,激活函数,链接情况,卷积核和大小卷积步长,卷积类型(比如1D卷积,2D卷积,3D卷积,空心卷积,转置卷积,可分卷积,分组卷积,扩展卷积等)等网络的架构,而网络参数是网络模型中每层网络的权值和/或偏置以及它们的取值。一个网络模型可以对应多套不同的神经网络参数取值以适应不同的场景。一个神经网络模型可以对应多个不同的神经网络参数取值。通过线上训练或者线下训练的方式获得神经网络的参数。比如通过输入至少一个样本和标签,训练所述的神经网络模型以获得神经网络参数。
在一些实施例中,时隙可以是时隙slot或子时隙mini slot。一个时隙或者子时隙包括至少一个符号。这里符号是指一个子帧或帧或时隙中的时间单位,比 如可以为一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、单载波频分复用多址接入(Single-Carrier Frequency Division Multiple Access,SC-FDMA)符号、正交多址频分复用接入(Orthogonal Frequency Division Multiple Access,OFDMA)符号。
在一些实施例中,传输包括发送或接收。比如发送数据或者信号,接收数据或者信号。
在一些实施例中,为了计算信道状态信息或者进行信道估计,移动性管理,定位等,需要基站或者用户发送参考信号(RS,Reference Signal),参考信号包括但不限于信道状态信息参考信号(Channel State Information-reference signal,CSI-RS),它包括零功率的CSI-RS(Zero Power CSI-RS,ZP CSI-RS)和非零功率的CSI-RS(Non-Zero Power CSI-RS,NZP CSI-RS),信道状态信息干扰测量信号(Channel State Information-Interference Measurement,CSI-IM),探测参考信号(Sounding Reference Signal,SRS),同步信号块(Synchronization Signals Block,SSB)、物理广播信道(Physical Broadcast Channel,PBCH)、同步广播块/物理广播信道(SSB/PBCH),NZP CSI-RS可以用来测量信道或者干扰,CSI-RS也可以用来做跟踪,叫做跟踪参考信号(CSI-RS for Tracking,TRS),而CSI-IM一般用来测量干扰,SRS用来进行信道估计。另外,用于传输参考信号的时频资源包括的资源元素(Resource Element,RE)集合称为参考信号资源,比如,CSI-RS resource,SRS resource,CSI-IM resource,SSB resource。在本文中,SSB包括同步信号块和/或物理广播信道。
在一些实施例中,在通信系统中,传输参考信号的资源可以称为参考信号资源,为了节省信令开销等,可能会把多个参考信号资源分成多个集合(比如CSI-RS resource set,CSI-IM resource set,SRS resource set),参考信号资源集合包括至少一个参考信号资源,而多个参考信号资源集合可以都来自同一个参考信号资源设置(比如CSI-RS resource setting,SRS resource setting,CSI-RS resource setting,其中CSI-RS resource setting可能和CSI-IM resource setting合并,都称为CSI-RS resource setting)来配置参数信息。
在一些实施例中,基站配置测量资源信息,测量资源信息用于获取信道状态信息。其中,测量资源信息包括CN个信道测量资源(Channel Measurement Resource,CMR)信息和CM个干扰测量资源(Interference Measurement Resource,IMR)信息,CN和CM为正整数。基站在一个报告配置(report config)或报告设置(reporting setting)中配置测量资源信息。
在一些示例中,为了更好地传输数据或者信号,基站或者终端需要获取信道状态信息,其中,信道状态信息可以包括以下至少之一:信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,CRI)、同步信号块资源指示(Synchronization Signals Block Resource Indicator,SSBRI)、参考信号接收功率(Reference Signal Received Power,RSRP)、差分RSRP(Differential RSRP)、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、层指示(Layer Indicator,LI)、秩指示(Rank Indicator,RI)、级1的信干噪比(Level 1Signal to Interference plus Noise Ratio,L1-SINR)、差分L1-SINR(Differential L1-SINR)。这里预编码矩阵指示是预编码信息中的一种,即基于码本实现预编码信息的情况,比如包括第一类预编码信息。预编码信息还包括基于非码本实现的方式。比如第二类预编码信息。在一个示例中,只包括第一类预编码信息的CSI称为第一类CSI,在一个示例中,包括第二类预编码信息的CSI称为第二类CSI。
在一些实施例中,终端和基站通过第一类预编码信息来传输与信道匹配的信道状态信息,第一类预编码信息是基于传统的信道特征矩阵或者特征矩阵的量化值构成的预编码信息。比如基于码本的方法,比如LTE的中的N天线的码本,这里N=2,4,8,12,16,24,32,NR中type I码本,type II码本,type II port selection码本,enhanced type II码本,enhanced type II selection码本,Further enhanced type II selection码本。这里的码本包括L个码字,它的主要思想是基站和终端预先根据规定的公式或者表格或者字典的方式保存L个码字。在一些示例中,码字是一个向量。在一些示例中码字是矩阵,矩阵包括r列,每列也是一个向量。优选地,所述矩阵的每列是相互正交的。在一些示例中,构成码字的向量是一个0-1向量,其中整个向量只有一个值为1,其它的值为零。在一些示例中,构成码字的向量是一个DFT矢量(离散傅里叶变换,Discrete Fourier Transform,DFT)。在一些示例中构成码字的向量是两个或者两个以上的DFT矢量通过张量积(kronecker积)获得。在一些示例中构成码字的向量是两个或者两个以上的DFT矢量通过乘以不同的相位旋转连接得到。在一些示例中构成码字的向量是两个或者两个以上的DFT矢量通过张量积(kronecker积)以及乘以相位旋转获得。基站或者终端通过查找L个码字,找到跟信道最匹配的码字作为最优码字来传输数据或者信号。这里跟信道匹配的码字包括但不限于以下至少之一:码字和信道的距离最小,码字和信道的相关性最大,码字和信道的最优的右奇异向量或者矩阵的距离最小,码字和信道的最优的右奇异向量或者矩阵相关性最大, 码字和信道计算得到的信噪比最大等。L为大于1的整数,一般来说大于发送天线数目。
在一些示例中,终端和基站通过第二类预编码信息传输与信道匹配的信道状态信息,第二类预编码信息是基于AI获得信道状态信息,在一个示例中,基站和终端通过自编码器的编码器获得的信道状态信息,自编码器包括一个编码器和解码器,其中,编码器在终端而解码器在基站侧。终端通过编码器对获得信道H进行压缩得到压缩后的信道状态信息H1,并将压缩后的信道状态信息H1量化反馈给基站,基站接收量化后的H1,去量化后输入解码器,解码器对其进行解压缩,从而恢复H。在一个示例中,H包括K0个元素,终端从H中选K个元素作为H1,对H1量化进行反馈,基站接收所述K个量化的元素并将它去量化,将去量化的K个元素输入AI模块,AI模块输出K0个元素作为对H的恢复,从而得到所述H的预编码矩阵。其中,K和K0为大于1的整数,且K<K0。这里,通过压缩器的H1或从H中选择的K个元素都为第二类信道状态信息。并且为了简单起见,量化后的H1也称为第二类信道状态信息。在一个示例中,第二类预编码信息也可以是通过其它非AI方式生成的与第一类预编码信息不同的预编码矩阵。在一个示例中,第二类预编码信息也可以是所述第一类预编码信息之外的预编码矩阵。
在一些示例中,为了传输CSI,比如终端反馈CSI,基站接收CSI。需要终端和基站定义一个CSI报告(CSI report或者CSI report congfig),其中CSI报告至少定义了如下参数之一:用于反馈CSI的时频资源,CSI包括的reportQuantity,CSI反馈的时域类别reportConfigType,测量信道资源,测量干扰资源,测量的带宽大小等信息。其中CSI报告可以在上行传输资源上传输,其中上行传输资源为用于传输上行信令或者数据的资源,包括但不限于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和物理上行控制信道(Physical Uplink Control Channel,PUCCH),而CSI report也包括时域特性,包括周期的CSI报告(periodic CSI report,P-CSI),非周期的CSI报告(aperiodic CSI report,A-CSI),半持续的CSI报告(semi-persistent CSI report,SP-CSI)。一般来说,P-CSI传输的比特数目相对较小,在PUCCH上传输,而A-CSI传输的比特数较多,一般在PUSCH上传输,而SP-CSI可以基于PUSCH上传输,也可以基于PUCCH上传输。其中,基于PUCCH传输的P-CSI一般用高层信令(无线资源控制,Radio Resource Control,RRC)配置,基于PUCCH传输的SP-CSI也是用高层信令(RRC和/或MAC CE)配置或者激活,而基于PUSCH传输的 SP-CSI或者A-CSI都是通过物理层信令(下行控制信息,Downlink control information,DCI)触发,而DCI一般在物理下行控制信道(Physical downlink control channel,PDCCH)上传输。
在一些实施例中,反馈也可以替换为发送或者传输,都是指将信令或者数据或者信道状态信息从一个通信节点传输到另外一个通信节点。
在一些实施例中,基站通过高层信令和/或物理层信令给终端配置了N个需要向基站反馈的CSI报告(CSI report),每个CSI报告都有一个索引值(identity,ID),称为CSI reportID,终端可以根据自己的计算能力或者处理能力,以及基站的要求选择N个CSI报告中的M个CSI报告。并根据上行反馈的资源,反馈该M个CSI报告中的至少一个CSI报告,其中N和M为正整数,且M<=N。在一个示例中,需要反馈M个CSI报告,但所述M个报告中至少有两个报告的反馈资源是冲突的,所述两个报告的反馈资源冲突是指用于反馈所述两个报告对应的传输资源(比如PUCCH或者PUSCH)中至少有一个符号是相同的和/或至少有一个子载波是相同的。
在一些示例中,终端需要反馈多个CSI报告,其中,多个CSI报告中至少有L个CSI报告对应的传输资源存在冲突。在一个示例中,存在冲突的L个CSI报告中至少有一个是包括第二类预编码信息的报告,其中L为正整数。根据优先级计算公式计算L个冲突的CSI报告的优先级值(priority value,PV),并根据优先级值从小到大排序,选择其中优先级小的至少一个CSI报告在上行传输资源中传输。
在一些实施例中,在一些示例中,天线是物理天线。在一些示例中,天线是逻辑天线。在一些示例中,端口和天线可以互换的概念。在一些示例中,天线为发送天线。在一些示例中,天线为接收天线。在一些示例中,天线包括发送天线和接收天线的天线对。在一些示例中,天线可以是均匀线性阵列。在一些示例中,天线是均匀平面阵列(比如包括Ng行Mg列,Ng,Mg为正整数。)。在一些示例中,天线是均匀圆阵列。在一些示例中,天线可以是非均匀线性阵列。在一些示例中,天线是非均匀平面阵列。在一些示例中,天线是非均匀圆阵列。在一些示例中,天线是定向天线,在一些示例中天线是全向天线。在一些示例中,天线是双极化天线。在一些示例中天线是单极化天线。
在一些示例中,信道信息为根据参考信号(比如CSI-RS)获得的用于描述通信节点间的信道环境的信息,比如时域信道矩阵,频域信道矩阵。在一些示例中,信道信息是一个复数矩阵,跟发送天线数目Nt,接收天线数目Nr,资源 元素(Resource Element,RE)有关。比如在一个物理资源块(Physical Resource Block)上至少有一个Nr*Nt的信道矩阵。基站在N个时隙发送用于信道测量的参考信号。终端在至少一个时隙测量分别接收所述的N个时隙发送的用于信道测量的参考信号。根据接收的所述N个时隙发送的用于信道测量的参考信号分别获得对应时隙的信道信息Hi,i=1,…,N。这里,N个时隙为参考时隙之前的时隙。在一些实施例中,参考时隙包括以下之一:参考时隙为基站和终端约定的一个时隙,或者一个当前的时隙,所述当前的时隙用于执行根据N个信道信息获取M个信道信息的操作;或基站指示的一个时隙;或者基站指示的一个时隙加一个固定偏置得到的时隙;或终端收到基站指示信令的时隙加一个固定的偏置得到的时隙。
在一些示例中,根据N个信道信息获取M个信道信息。比如将N个信道信息依次编码后输入到第一AI模块,第一AI模块输出M个信道信息。在一些示例中,将信道信息编码包括但不限于以下之一,对信道矩阵的元素进行归一化处理(比如将一个元素的范围归一化到区间[0,1]或[-0.5,0.5]),对信道矩阵的元素进行实数化处理(比如将一个复数分成实部,虚部),对信道矩阵进行采样,对信道矩阵进行分组,对多个信道矩阵进行联合操作。这里,N个信道信息为参考时隙之前的信道信息。M个信道信息为参考时隙之后的信道信息。N为大于1的整数,M为大于或等于1的整数。
在一些示例中,参见图1,确定所述M个信道信息对应的信道状态信息。在一个示例中,将M个信道信息编码后输入第二AI模块,第二AI模块输出一个CSI。在一个示例中,将M个信道信息编码后分别输入第二AI模块,第二AI模块分别输出M个CSI。一个示例中,将M个信道信息分成K组信道信息,对每组信道信息编码后分别输入第二AI模块,第二AI模块分别输出K个CSI。一个示例中,将M个信道信息分成K组信道信息,将第i个信道信息编码后输入第二AI模块,第二AI模块输出i个CSI,i=1,…,K。这里,M为大于或等于1的整数,K为大于或等于1的整数,且K<M。
在一些示例中,反馈所述M个信道信息的信道状态信息CSI。比如在上行传输资源中传输所述的CSI。在一些示例中,所述的M个信道信息对应的CSI承载在至少一个非周期的PUSCH上进行传输。在一些示例中,所述的M个信道信息对应的CSI承载至少一个半持续的PUSCH上传输。在一些示例中,所述的M个信道信息对应的CSI承载至少一个周期的PUCCH上传输。在一些实施例中,反馈一个信道状态信息是指将CSI承载在一个上行传输资源上进行传输。 在一些实施例中,通过一个信道状态信息报告反馈至少一个信道状态信息,是指将所述至少一个信道状态信息承载在由所述信道状态信息报告指示的上行传输资源上,并通过所述上行传输资源传输给另外一个通信节点。
图2是本申请实施例提供的一种信道状态信息的确定方法的流程图,本申请实施例可以适用于确定信道状态信息的情况,该信道状态信息对应的信道信息由历史的或参考时隙之前的信道信息预测生成,该方法可以由本申请实施例中的信道状态信息的确定装置来执行,该装置可以通过软件和/或硬件实现,并一般集成在终端中,参见图2,本申请实施例提供的方法具体包括如下步骤:
步骤110、根据N个信道信息获取M个信道信息。
在本申请实施例中,可以基于N个信道信息获取M个信道信息,获取的方式可以通过人工智能方法对N个信道信息进行预测,从而确定出M个信道信息,当然在本申请中,也可以通过非AI的方式从N个信道信息获取M个信道信息。例如,比如将N个信道信息依次编码后输入到第一AI模块,由第一AI模块输出M个信道信息。
步骤120、确定M个信道信息对应的信道状态信息。
例如,可以确定对应M个信道信息的信道状态信息,该确定可以通过AI实现,例如,将M个信道信息编码后输入第二AI模块,第二AI模块输出一个CSI。在一个示例中,将M个信道信息编码后分别输入第二AI模块,第二AI模块分别输出M个CSI。一个示例中,将M个信道信息分成K组信道信息,对每组信道信息编码后分别输入第二AI模块,第二AI模块分别输出K个CSI。一个示例中,将M个信道信息分成K组信道信息,将第i个信道信息编码后输入第二AI模块,第二AI模块输出i个CSI,i=1,…,K。这里,M为大于或等于1的整数,K为大于或等于1的整数,且K<M。
步骤130、反馈M个信道信息对应的信道状态信息,其中,N为大于1的整数,M为大于或等于1的整数。
在本申请实施例中,在确定信道状态信息后,反馈M个信道信息的信道状态信息。
在一些实施例中,N个信道信息为参考时隙之前的信道信息,M个信道信息为参考时隙之后的信道信息。
在本申请实施例中,可以通过参考时隙之前的一个或多个信道信息确定参考时隙之后的一个或多个信道信息。
图3是本申请实施例提供的另一种信道状态信息的确定方法的流程图,本 申请实施例是在上述申请实施例基础上的具体化,参见图3,本申请实施例提供的方法具体包括如下步骤:
步骤210、根据N个信道信息获取M个信道信息。
步骤220、将M个信道信息处理为K个信道状态信息,其中M为正整数,K为小于或等于M的正整数。
在本申请实施中,可以将M个信道信息处理为K个信息状态信息,该处理过程可以包括将信道信息映射为预编码矩阵,即将信道信息转换成第一类预编码信息或者第二类预编码信息,或者用第一类预编码信息或者第二类预编码信息来描述所述信道信息,其中,K为小于1或等于M的正整数。
步骤230、在一个信道状态信息报告对应的传输资源中反馈K个信道信息的信道状态信息。
例如,可以将生成的对应K个信道信息的信道状态信息在一个信道状态信息报告中进行反馈,比如所述信道状态信息报告指示了上行传输资源,在所述上行传输资源上传输对应所述K个信道信息的信道状态信息。
在一些实施例中,所述第一指示信息可以是以下之一:物理层信令、物理层信令中的一个字段,高层信令、高层信令中的一个字段,或者是CSI报告中携带的一个字段。所述第一指示信息用于指示信道状态信息类型。在一个示例中信道状态信息报告包括第一指示信息。
在本申请实施例中,反馈第一指示信息,所述第一指示信息用于指示信道状态信息类型等。
例如,第一指示信息可以具体用于指示信道状态信息组对应的信道状态信息的信道状态信息类型,所述信道状态信息类型包括第一类预编码信息和第二类预编码信息,可以用于指示信道状态信息组对应的信道状态信息的信道状态信息类型,例如,可以通过第一指示信息来指示信道状态信息组对应的信道状态信息的信道状态信息类型,当第一指示信息取第一值时,终端和/或基站用第一类预编码信息来描述信道信息组内的信道信息,比如将信道信息组内的信道信息确定为第一类预编码信息,当第一指示信息取第二值时,终端和/或基站可以用第二类预编码信息来描述信道信息组内的信道信息,比如将信道信息组内的信道信息确定为第二类预编码信息。在一个示例性的实施方式中,第一值为0,第二值为1,或者第一值为0,第二值为非0值;或者第一值为FALSE,第二值为TRUE。当然,这里的第一值和第二值也可以取其它情况的实数值,只要能对两种情况进行区分就可以。在一个示例性的实施方式中,终端反馈所述第一指 示信息,所述第一指示信息取第一值,终端将信道信息组内的信道信息确定为第一类预编码信息,反馈所述的第一类预编码信息,基站接收所述的第一指示信息和第一类预编码信息。在一个示例性的实施方式中,终端反馈所述第一指示信息,所述第一指示信息包括至少一个比特,所述用于描述信道状态信息的第一指示信息取第二值,终端将信道信息组内的信道信息确定为第二类预编码信息,反馈所述的第二类预编码信息。基站接收所述的用于描述信道状态信息的第一指示信息和第二类预编码信息。
在一些实施例中,反馈对应所述K个信道信息的信道状态信息,包括:
在K个信道状态信息报告对应的传输资源中传输K个信道信息对应的信道状态信息。
在本申请实施例中,对应K个信道信息的信道状态信息可以在K个信道状态信息报告对应的传输资源中进行传输。所述K个信道状态信息报告对应的传输资源可以在第一个或者多个时隙中传输所述的K个信道信息对应的信道状态信息。
在一些实施例中,K个信道状态信息报告的报告标识信息相同。
例如,反馈K个信道状态信息的K个信道状态信息报告可以具有相同的报告标识信息,例如,可以具有相同的报告编号ReportID。
在另一些实施例中,K个信道状态信息报告的报告标识信息不同。
在本申请实施例中,反馈K个信道状态信息的K个信道状态信息报告可以具有不同的报告标识信息,例如,K个信道状态信息报告可以具有不同的报告编号ReportID。
在一些实施例中,K个信道状态信息报告在一个时隙报告。
在另一些实施例中,K个信道状态信息报告在K0个时隙报告,K0为小于等于K且大于1的整数。
图4是本申请实施例提供的另一种信道状态信息的确定方法的流程图,参见图4,本申请实施例是在上述申请实施例基础上的具体化,本申请实施例提供的信道状态信息的确定方法具体包括如下步骤:
步骤310、根据N个信道信息获取M个信道信息。
步骤320、将M个信道信息按照各自对应的时隙大小划分为K个信道信息组。
在本申请实施例中,M个信道信息可以按照所在的时隙大小划分为K个信道信息组,每个信道信息组内可以包括一个或多个信道信息。
步骤330、将K个信道信息组处理为K个第二类预编码信息,其中,K和M为大于或等于1的整数,K小于或等于M。
在本申请实施例中,可以将划分的K个信道信息组处理为K个第二类预编码信息。例如,可以将第i组处理为第i个信道状态信息,该处理过程可以基于AI实现,i为1,……,K的整数。
步骤340、反馈M个信道信息对应的信道状态信息。
在一些实施例中,K个信道信息组中第i个信道信息组包括Xi个信道信息,其中,Xi为正整数,i=1,…,K。
在本申请实施例中,划分的K个信道信息组中,每个信道信息组至少包括1个信道信息。在一个更具体的实施例中,每个信道信息组包括的信道信息个数分别如下之一:
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,其中,X1和X2为正整数;
第一信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,第三个信道信息组包括X3个信道信息,其中,X1、X2和X3为正整数;
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,第三个信道组包括X3个信道信息,第四个信道信息组包括X4个信道信息,其中,X1和X2、X3、X4为正整数。
在一些实施例中,信道信息组内包括信道信息的方式可以如下至少之一:
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括2 个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括2个信道信息,第三个所述信道信息组包括2个信息到信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括2个信道信息,第三个所述信道信息组包括1个信息到信息。
在一个示例性的实施方式中,信道信息组仅包括一个信道信息且第一指示信息取第一值的情况下,将一个信道信息处理为第一类预编码信息;信道信息组包括至少两个信道信息且第一指示信息取第一值的情况下,将至少两个信道信息处理为至少一个第一类预编码信息。
在本申请实施例中,在信道信息组仅包括一个信道信息时,且第一指示信息为第一值的情况下,可以将信道信息组内包括的一个信道信息处理为第一类预编码信息,该处理过程可以基于TypeII,eTypeII等基于DFT相关的码本方式来描述所述信道信息。而在信道信息组包括至少两个信道信息时,若第一指示信息为第一值,则可以将信道信息组内包括的至少一个信道信息分别处理为第一类预编码信息,每个信道信息的处理可以均使用TypeII码本,eTypeII等基于DFT相关的码本方式来描述所述的信道信息。
在一实施例中,在上述申请实施例的基础上,还包括:反馈第一指示信息,所述第一指示信息用于描述或指示信道状态信息类型。
图5是本申请实施例提供的另一种信道状态信息的确定方法的流程图,参见图5,本申请实施例是在上述申请实施例基础上的具体化,本申请实施例提供的信道状态信息的确定方法具体包括如下步骤:
步骤410、根据N个信道信息获取M个信道信息。
步骤420、将M个信道信息按照它们所在的时隙大小依次编码后处理为一个信道状态信息。
在本申请实施例中,M个信道信息可以按照所在的时隙大小顺序进行编码处理,处于时隙越大的信道信息越先进编码处理,M个信道信息可以编码为一个信道状态信息。
步骤430、反馈M个信道信息对应的信道状态信息。
图6是本申请实施例提供的另一种信道状态信息的确定方法的流程图,参见图6,本申请实施例是在上述申请实施例基础上的具体化,本申请实施例提供的信道状态信息的确定方法具体包括如下步骤:
步骤510、根据N个信道信息获取M个信道信息。
步骤520、将M个信道信息处理为M个信道状态信息,其中,一个信道信息对应一个信道状态信息。
在本申请实施例中,可以将M个信道信息分别处理为M个信道状态信息,每个信道信息可以分别处理为一个信道状态信息。
步骤530、反馈M个信道信息对应的信道状态信息。
图7是本申请实施例提供的另一种信道状态信息的确定方法的流程图,参见图7,本申请实施例是在上述申请实施例基础上的具体化,本申请实施例提供的信道状态信息的确定方法具体包括如下步骤:
步骤610、根据N个信道信息获取M个信道信息。
步骤620、将M个信道信息处理为K个信道状态信息。
步骤630、将K个信道状态信息按优先级值依次映射到一个信道状态信息报告对应的上行传输资源。
在本申请实施例中,可以将K个信道状态信息按照优先级值映射到上行传输资源,该上行传输资源可以对应于一个信道状态信息报告。
步骤640、反馈M个信道信息对应的信道状态信息。
在一实施例中,在上述申请实施例的基础上,K个信道状态信息的优先级 值大小根据K个信道状态信息所对应的时隙大小确定,或者,K个信道状态信息的优先级值根据K个信道状态信息所对应的索引大小确定。
在本申请实施例中,信道状态信息的优先级值由其对应的时隙大小决定,在K个信道状态信息中,对应的时隙大小越大,则其对应的优先级值则越大。或者,信道状态信息的优先级值由其对应的索引大小确定,索引越大,则其优先级值越小,例如,第i个信道状态信息的索引对应的优先级值小于第j个信道状态信息的索引对应的优先级值,这里j<i,且i,j=1,…,K。
在一些实施例中,将所述K个信道状态信息按优先级值依次映射到一个信道状态信息报告对应的上行传输资源,包括以下之一:
将所述上行传输资源分成K个时域资源组,第k个所述信道状态信息映射到第k个时域资源组;
将所述上行传输资源分成K个频域资源组,第k个所述信道状态信息映射到第k个频域资源组;
将所述上行传输资源分成K个时频域资源组,第k个所述信道状态信息映射到第k个时频域资源组。
在本申请实施例中,上行传输资源可以为时域资源、频域资源或者时频域资源中至少之一,上行传输资源可以划分为K组,K个信道状态信息可以分别映射到一组上行传输资源,可以理解的是,上行传输资源可以包括时域资源时,K个信道状态信息可以分别映射到时域资源分成的K个时域资源组中之一,每个时域资源组可以包括L1个时域符号资源(比如包括连续或者非连续的L1个符号上的不同子载波上的资源元素);上行传输资源可以包括频域资源时,K个信道状态信息可以分别映射到频域资源分成的K个频域资源组中之一,每个频域资源组可以包括L2个子载波资源,比如一个或者多个物理资源块资源(Physical Resource Block,PRB),一个或者多个子带;上行传输资源包括时频域资源时,K个信道状态信息可以分别映射到时频域资源划分的K个时频域资源组中之一,每个时频域资源组可以包括L1个时域符号资源以及L2个子载波资源,其中,K,L1,L2为正整数。
在一实施例中,在上述申请实施例的基础上,信道状态信息的确定方法还包括以下至少之一:
信道信息的对应的时隙越小,则传输信道信息对应的信道状态信息的传输资源对应的时隙越小;
信道信息的对应的时隙越小,则传输信道信息的传输资源对应的时隙越小;
信道信息的对应的时隙越小,则信道信息对应的信道状态信息报告对应的时隙越小;
信道状态信息的对应的时隙越小,则信道状态信息对应的信道状态信息报告对应的时隙越小;
信道状态信息的对应的时隙越小,则传输信道状态信息的传输资源对应的时隙越小。
即,越先确定的信道状态信息,越先传输。这里的先体现为传输时隙的大小上,时隙小表示先传输。
在一实施例中,M个信道信息对应的信道状态信息的第一确定时间小于确定N个信道信息的信道状态信息的第二确定时间。
在本申请实施例中,确定M个信道信息的信道状态信息的第一确定时间小于确定N个信道信息的信道状态信息的第二确定时间,比如第二时间是第一时间的整数倍。
图8是本申请实施例提供的一种信道状态信息的确定方法的流程图,本申请实施例可以适用于确定信道状态信息的情况,该信道状态信息对应的信道信息由历史的或参考时隙之前的信道信息确定。该方法可以由本申请实施例中的信道状态信息的确定装置来执行,该装置可以通过软件和/或硬件实现,并一般集成在基站中,参见图8,本申请实施例提供的方法具体包括如下步骤:
710、获取信道状态信息。
例如,可以通过接收一个或者多个CSI报告获得信道状态信息,该信道状态信息为根据M个信道信息处理得到的信道状态信息。
720、确定信道状态信息对应的M个信道信息或M个信道信息的信道状态信息,其中,M个信道信息由N个信息确定,N为大于1的整数,M为大于或等于1的整数。
在本申请实施例中,可以按照接收的信道状态信息确定M个信道信息或M个信道状态信息,该M个信道信息可以由N个信道信息确定。在一个示例性的实施方式中,信道状态信息为基于K个第二类预编码信息反馈,可以根据第i个第二类预编码信息确定对应的信道信息。在另一个示例性的实施方式中,信道状态信息为基于第一类型预编码信息反馈,可以根据信道状态信息分别确定M个信道状态信息,比如根据第i个第一类预编码信息确定第i个信道状态信息。i为小于等于M的正整数。
在一些实施例中,N个信道信息为参考时隙之前的信道信息,M个信道信 息为参考时隙之后的信道信息。
在一些实施例中,所述信道状态信息为K个,所述K个信道状态信息由M个信道信息处理获得,其中,M为正整数,K为小于或等于M的正整数。
在一些实施例中,将M个信道信息处理为K个信道状态信息,包括:
将所述M个信道信息按照各自对应的时隙大小划分为K个信道信息组;
将所述K个信道信息组处理为K个第二类预编码信息,其中,所述K和所述M为大于或等于1的整数,所述K小于或等于所述M。
在一些实施例中,将M个信道信息处理为K个信道状态信息,包括:
将所述M个信道信息按照它们所在的时隙大小依次编码后处理为一个所述信道状态信息。
在一些实施例中,将M个信道信息处理为K个信道状态信息,包括:
将所述M个信道信息处理为M个信道状态信息,其中,一个信道信息对应一个信道状态信息。
在一些实施例中,将M个信道信息处理为K个信道状态信息,包括:
将所述K个信道状态信息按优先级值依次映射到一个信道状态信息报告对应的上行传输资源。
在一些实施例中,K个信道状态信息的优先级值根据K个信道状态信息所对应的时隙大小确定,或者,所述K个信道状态信息的优先级值根据K个信道状态信息所对应的索引大小确定。
在一些实施例中,将所述K个信道状态信息按优先级值依次映射到一个信道状态信息报告对应的上行传输资源,包括以下之一:
将所述上行传输资源分成K个时域资源组,第k个所述信道状态信息映射到第k个时域资源组;
将所述上行传输资源分成K个频域资源组,第k个所述信道状态信息映射到第k个频域资源组;
将所述上行传输资源分成K个时频域资源组,第k个所述信道状态信息映射到第k个时频域资源组。
其中,k=1,…,K,为小于等于K的正整数。
在一些实施例中,K个信道信息组中第i个信道信息组包括Xi个信道信息,其中,Xi为正整数,i=1,…,K。
在本申请实施例中,划分的K个信道信息组中,每个信道信息组至少包括1个信道信息。在一个更具体的实施例中,每个信道信息组包括的信道信息个数 分别如下之一:
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,其中,X1和X2为正整数;
第一信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,第三个信道信息组包括X3个信道信息,其中,X1、X2和X3为正整数;
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,第三个信道组包括X3个信道信息,第四个信道信息组包括X4个信道信息,其中,X1和X2、X3、X4为正整数。
在一些实施例中,第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括2个信道信息,第三个所述信道信息组包括2个信息到信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括2个信道信息,第三个所述信道信息组包括1个信息到信息。
在一些实施例中,所述信道信息组仅包括一个信道信息且第一指示信息为第一值的情况下,将所述一个信道信息处理为第一类预编码信息;所述信道信息组包括至少两个信道信息且第一指示信息为第一值的情况下,将所述至少两个信道信息处理为至少一个第一类预编码信息。
在一些实施例中,获取信道状态信息包括:在一个信道状态信息报告对应的传输资源获取传输的K个信道信息的信道状态信息中获取反馈的所述信道状态信息。
在一些实施例中,还包括,接收第一指示信息,所述第一指示信息用于指示信道状态信息类型。
在一些实施例中,在K个信道状态信息报告对应的传输资源中获取传输的K个信道信息的信道状态信息。
在一些实施例中,所述信道状态信息报告包括第一指示信息,所述第一指示信息用于指示所述信道信息组对应的信道状态信息的信道状态信息类型。
在一些实施例中,获取信道状态信息包括:在K个信道状态信息报告中获取反馈的所述信道状态信息。
在一些实施例中,K个信道状态信息报告的报告标识信息相同。
在一些实施例中,K个信道状态信息报告的报告标识信息不同。
在一些实施例中,K个信道状态信息报告在一个时隙报告。
在一些实施例中,K个信道状态信息报告在K个时隙报告。
在一些实施例中,信道信息的对应的时隙越小,则传输所述信道信息对应的信道状态信息的传输资源对应的时隙越小。
在一些实施例中,信道信息的对应的时隙越小,则传输所述信道信息的传 输资源对应的时隙越小。
在一些实施例中,信道信息的对应的时隙越小,则所述信道信息对应的信道状态信息报告对应的时隙越小。
在一些实施例中,信道状态信息的对应的时隙越小,则所述信道状态信息对应的信道状态信息报告对应的时隙越小。
在一些实施例中,信道状态信息的对应的时隙越小,则传输所述信道状态信息的传输资源对应的时隙越小。
在一些实施例中,M个信道信息对应的信道状态信息的第一确定时间小于确定所述N个信道信息的信道状态信息的第二确定时间。
在一个示例性的实施方式中,信道信息联合处理为一个CSI,并用1个信道状态信息报告中反馈。确定M个信道信息对应的信道状态信息是指,将M个信道信息联合处理为一个信道状态信息(Channel State Information,CSI)。假设M个信道信息H1,H2,…,HM,分别为时隙n1,…,nM的信道信息,它们是一个跟收发天线数目,带宽相关的信道矩阵。且,n1,…,nM为从小到大排序的正整数。
将M个信道信息根据对应的时隙大小依次编码后映射到一个CSI,并通过一个CSI报告反馈。
在另一个示例性的实施方式中,信道信息分别处理为M个CSI,并在一个信道状态信息报告中反馈。确定M个信道信息对应的信道状态信息是指将M个信道信息分别处理为M个CSI。假设M个信道信息H1,H2,…,HM,分别为时隙n1,…,nM的信道信息,它们是一个跟收发天线数目,带宽相关的信道矩阵。且,n1,…,nM为从小到大排序的正整数,第i个信道信息Hi映射到第i个CSIi
在一个实施例中,第i个CSI优先级值小于第j个CSIj,其中1<=i<j<=M。编码时根据优先级值从小到大,先编码第1个CSI,在编码第2个CSI,依次编码,直到CSI report指示的上行传资源输不满足编码要求。
在一个实施例中,CSI的编码可以在上行传输资源中进行映射,上行传输资源可以包括时域资源、频域资源和时频域资源。参见图9,在时域上依次编码CSI1,CSI2,CSIM;参见图10,在频域域上依次编码CSI1,CSI2,CSIM;参见图11,在先频域后时域上依次编码CSI1,CSI2,CSIM。将编码后的M个CSI在一个CSI report对应的上行传输资源上传输。
在一个示例性的实施方式中,信道信息可以处理为K个CSI,即有的CSI 对应1个信道信息,有的CSI对应至少两个信道信息,并在1个信道状态信息报告反馈。确定M个信道信息对应的信道状态信息是指,将M个信道信息分别映射为K个CSI。假设M个信道信息H1,H2,…,HM,分别为时隙n1,…,nM的信道信息,它们是一个跟收发天线数目,带宽相关的信道矩阵。且,n1,…,nM为从小到大排序的正整数。将所述M个信道按时隙大小分成K组,每组至少包括一个信道信息。将第i组信道信息映射到第i个CSIi,i=1,…,K。
在一些实施例中,第i个CSI优先级值小于第j个CSIj,其中1<=i<j<=K。编码时根据优先级值从小到大,先编码第1个CSI,在编码第2个CSI,依次编码,直到CSI report指示传输资源不满足编码要求。
一个示例是,在时域上依次编码CSI1,CSI2,…,CSIK
一个示例是,在频域域上依次编码CSI1,CSI2,…,CSIK
一个示例是,在先频域后时域上依次编码CSI1,CSI2,…,CSIK
将编码后的K个CSI在一个CSI report上反馈。
在一个示例中,K组信道信息,其中,第i个信道组包括Xi个信道信息,Xi为正整数,i=1,…,K。更具体的一个示例为每组信道信息包括的信道信息个数分别如下之一:
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,其中,X1和X2为正整数;
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,第三个信道组包括X3个信道信息,其中,X1和X2、X3为正整数;
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,第三个信道组包括X3个信道信息,第四个信道信息组包括X4个信道信息,其中,X1和X2、X3、X4为正整数。
另外一个更具体的示例为,K组信道信息分为两组或多组,每组中包括的信道信息的个数可以如下:
第一个信道信息组包括1个信道信息,且第二个信道信息组包括2个信道信息;
第一个信道信息组包括2个信道信息,且第二个信道信息组包括1个信道信息;
第一个信道信息组包括2个信道信息,且第二个信道信息组包括2个信道信息;
第一个信道信息组包括1个信道信息,且第二个信道信息组包括3个信道 信息;
第一个信道信息组包括3个信道信息,且第二个信道信息组包括1个信道信息;
第一个信道信息组包括2个信道信息,且第二个信道信息组包括3个信道信息;
第一个信道信息组包括3个信道信息,且第二个信道信息组包括2个信道信息;
第一个信道信息组包括3个信道信息,且第二个信道信息组包括3个信道信息;
第一个信道信息组包括1个信道信息,且第二个信道信息组包括4个信道信息;
第一个信道信息组包括4个信道信息,且第二个信道信息组包括1个信道信息;
第一个信道信息组包括2个信道信息,且第二个信道信息组包括4个信道信息;
第一个信道信息组包括4个信道信息,且第二个信道信息组包括2个信道信息;
第一个信道信息组包括3个信道信息,且第二个信道信息组包括4个信道信息;
第一个信道信息组包括4个信道信息,且第二个信道信息组包括3个信道信息;
第一个信道信息组包括4个信道信息,且第二个信道信息组包括4个信道信息;
第一个信道信息组包括1个信道信息,且第二个信道信息组包括2个信道信息,第三个信道信息组包括2个信息到信息;
第一个信道信息组包括2个信道信息,且第二个信道信息组包括2个信道信息,第三个信道信息组包括1个信息到信息。
在确定每组信道信息的信道状态信息时,比如第一个CSI是单独处理的,或者一个CSI是单独压缩的。
在遇到信道信息H到CSI的处理过程中,如果信道信息处理为CSI的性能不是很好,即,所述CSI不能跟所述的信道信息进行匹配,或者相关性很小,如,当第一指示信息取第一值时,终端和/或基站用第一类预编码信息来描述信 道信息组内的信道信息,比如将信道信息组内的信道信息确定为第一类预编码信息。当第一指示信息取第二值时,终端和/或基站可以用第二类预编码信息来描述信道信息组内的信道信息,比如将信道信息组内的信道信息为第二类预编码信息。其中第一值为0,第二值为1,或者第一值为0,第二值为非0值;或者第一值为FALSE,第二值为TRUE。当然,这里的第一值和第二值也可以取其它情况的实数值,只要能对两种情况进行区分就可以。优选地,只有所述H组中包括一个H时,可以基于TypeII,eTypeII等基于DFT相关的码本方式来描述信道信息。如果包括至少两个H,若第一指示信息为第一值,则可以将信道信息组内包括的至少两个信道信息分别处理为第一类预编码信息,每个信道信息的处理可以均使用TypeII码本,eTypeII等基于DFT相关的码本方式来描述所述的信道信息。
在一实施例中,在上述申请实施例的基础上,还包括:反馈第一指示信息,所述第一指示信息用于指示信道状态信息类型。
在一个示例性的实施方式中,将M个信道信息分别获M个CSI,并用M个信道状态信息报告反馈。确定M个信道信息对应的信道状态信息是指,将M个信道信息分别映射为M个CSI。假设M个信道信息H1,H2,…,HM,分别为时隙n1,…,nM的信道信息,它们是一个跟收发天线数目,带宽相关的信道矩阵。且,n1,…,nM为从小到大排序的正整数。将第i组信道信息映射到第i个CSIi,i=1,…,K,并用第i个CSI report反馈第k个CSI。
在一个实施例中,M个report有相同的reportID。所述M个report在一个时隙报告。那么,根据频域组的索引大小依次反馈所述的M个CSI。比如第i个频域组用于承载第i个CSI report对应的CSI。
在另一个实施例中,M个report有相同的reportID。所述M个report在M个时隙报告。那么,根据时隙的索引大小依次反馈所述的M个CSI。比如第i个时隙用于承载第i个CSI report对应的CSI。
在另一个实施例中,M个report有不同的reportID。所述M个report在M个时隙报告。那么,根据reportID的大小,根据时隙的索引大小依次反馈。比如第i个时隙用于承载第i大的reportID对应的CSI report上的CSI。
图12是本申请实施例提供的一种信道状态信息的确定装置的结构示意图,可执行本申请任意实施例所提供的信道状态信息的确定方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,一般集成在终端,具体包括:信息预测模块101、信道状态模块102和信息反馈模块103。
信息预测模块101,用于根据N个信道信息获取M个信道信息。
信道状态模块102,用于确定所述M个信道信息对应的信道状态信息。
信息反馈模块103,用于反馈所述M个信道信息对应的信道状态信息,其中,N为大于1的整数,M为大于或等于1的整数。
在一些实施例中,装置中N个信道信息为参考时隙之前的信道信息,所述M个信道信息为参考时隙之后的信道信息。
在一些实施例中,装置中信道状态模块102包括:
处理单元,用于将所述M个信道信息处理为K个信道状态信息,其中M为正整数,K为小于或等于M的正整数。
在一些实施例中,处理单元用于将所述M个信道信息按照各自对应的时隙大小划分为K个信道信息组;将所述K个信道信息组处理为K个第二类预编码信息,其中,所述K和所述M为大于或等于1的整数,所述K小于或等于所述M。
在另一些实施例中,处理单元用于将所述M个信道信息按照它们所在的时隙大小依次编码后处理为一个所述信道状态信息。
在另一些实施例中,处理单元用于将所述M个信道信息处理为M个信道状态信息,其中,一个信道信息对应一个信道状态信息。
在另一些实施例中,处理单元用于将所述K个信道状态信息按优先级值依次映射到一个信道状态信息报告对应的上行传输资源。
在另一些实施例中,K个信道状态信息的优先级值根据K个信道状态信息所对应的时隙大小确定,或者,所述K个信道状态信息的优先级值根据K个信道状态信息所对应的索引大小确定。
在另一些实施例中,将所述K个信道状态信息按优先级值依次映射到一个信道状态信息报告对应的上行传输资源,包括以下之一:
将所述上行传输资源分成K个时域资源组,第k个所述信道状态信息映射到第k个时域资源组;
将所述上行传输资源分成K个频域资源组,第k个所述信道状态信息映射到第k个频域资源组;
将所述上行传输资源分成K个时频域资源组,第k个所述信道状态信息映射到第k个时频域资源组。
在一些实施例中,装置中K个信道信息组中第i个所述信道信息组包括Xi个信道信息,其中,Xi为正整数,i=1,…,K。
在本申请实施例中,划分的K个信道信息组中,每个信道信息组至少包括1个信道信息。在一个更具体的实施例中,每个信道信息组包括的信道信息个数分别如下之一:
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,其中,X1和X2为正整数;
第一信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,第三个信道信息组包括X3个信道信息,其中,X1、X2和X3为正整数;
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,第三个信道组包括X3个信道信息,第四个信道信息组包括X4个信道信息,其中,X1和X2、X3、X4为正整数。
在另一些实施例中,装置包括以下之一:
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括4 个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括2个信道信息,第三个所述信道信息组包括2个信息到信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括2个信道信息,第三个所述信道信息组包括1个信息到信息。
在另一些实施例中,装置还包括以下之一:
所述信道信息组仅包括一个信道信息且第一指示信息为第一值的情况下,将所述一个信道信息处理为第一类预编码信息;
所述信道信息组包括至少两个信道信息且第一指示信息为第一值的情况下,将所述至少两个信道信息处理为至少一个第一类预编码信息。
在另一些实施例中,装置还包括反馈第一指示信息,所述第一指示信息用于指示信道状态信息类型。
在另一些实施例中,信息反馈模块103具体用于在一个信道状态信息报告对应的传输资源中传输所述K个信道信息的信道状态信息。
在另一些实施例中,装置中信道状态信息报告包括第一指示信息,所述第一指示信息用于指示所述信道信息组对应的信道状态信息的信道状态信息类型。
在另一些实施例中,信息反馈模块103具体用于在K个信道状态信息报告对应的传输资源中传输所述K个信道信息的信道状态信息。
在一些实施例中,K个信道状态信息报告的报告标识信息相同。
在一些实施例中,K个信道状态信息报告的报告标识信息不同。
在一些实施例中,K个信道状态信息报告在一个时隙报告。
在一些实施例中,K个信道状态信息报告在K个时隙报告。
在一些实施例中,信道信息的对应的时隙越小,则所述信道信息对应的所 述信道状态信息的传输资源对应的时隙越小。
在一些实施例中,信道信息的对应的时隙越小,则传输所述信道信息的传输资源对应的时隙越小。
在一些实施例中,信道信息的对应的时隙越小,则所述信道信息对应的信道状态信息报告对应的时隙越小。
在一些实施例中,信道状态信息的对应的时隙越小,则所述信道状态信息对应的信道状态信息报告对应的时隙越小。
在一些实施例中,信道状态信息的对应的时隙越小,则传输所述信道状态信息的传输资源对应的时隙越小。
在一些实施例中,M个信道信息对应的信道状态信息的第一确定时间小于确定所述N个信道信息的信道状态信息的第二确定时间。
图13是本申请实施例提供的另一种信道状态信息的确定装置的结构示意图,可执行本申请任意实施例所提供的信道状态信息的确定方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,一般集成在基站,具体包括:信息获取模块201和信息确定模块202.
信息获取模块201,用于获取信道状态信息。
信息确定模块202,用于确定信道状态信息对应的M个信道信息或M个信道信息的信道状态信息,其中,M个信道信息由N个信息确定,N为大于1的整数,M为大于或等于1的整数。
在一些实施例中,N个信道信息为参考时隙之前的信道信息,M个信道信息为参考时隙之后的信道信息。
在一些实施例中,所述信道状态信息为K个,所述K个信道状态信息由M个信道信息处理得到,其中,M为正整数,K为小于或等于M的正整数。
在一些实施例中,将M个信道信息处理为K个信道状态信息,包括:
将所述M个信道信息按照各自对应的时隙大小划分为K个信道信息组;
将所述K个信道信息组处理为K个第二类预编码信息,其中,所述K和所述M为大于或等于1的整数,所述K小于或等于所述M。
在一些实施例中,将M个信道信息处理为K个信道状态信息,包括:
将所述M个信道信息按照它们所在的时隙大小依次编码后处理为一个所述信道状态信息。
在一些实施例中,将M个信道信息处理为K个信道状态信息,包括:
将所述M个信道信息处理为M个信道状态信息,其中,一个信道信息对应 一个信道状态信息。
在一些实施例中,将M个信道信息处理为K个信道状态信息,包括:
将所述K个信道状态信息按优先级值依次映射到一个信道状态信息报告对应的上行传输资源。
在一些实施例中,K个信道状态信息的优先级值根据K个信道状态信息所对应的时隙大小确定,或者,所述K个信道状态信息的优先级值根据K个信道状态信息所对应的索引大小确定。
在一些实施例中,将所述K个信道状态信息按优先级值依次映射到一个信道状态信息报告对应的上行传输资源,包括以下之一:
将所述上行传输资源分成K个时域资源组,第k个所述信道状态信息映射到第k个时域资源组;
将所述上行传输资源分成K个频域资源组,第k个所述信道状态信息映射到第k个频域资源组;
将所述上行传输资源分成K个时频域资源组,第k个所述信道状态信息映射到第k个时频域资源组。
在一些实施例中,K个信道信息组中所述第i个所述信道信息组包括Xi个信道信息,其中,Xi为正整数,i=1,…,K。
在本申请实施例中,划分的K个信道信息组中,每个信道信息组至少包括1个信道信息。在一个更具体的实施例中,每个信道信息组包括的信道信息个数分别如下之一:
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,其中,X1和X2为正整数;
第一信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,第三个信道信息组包括X3个信道信息,其中,X1、X2和X3为正整数;
第一个信道信息组包括X1个信道信息,第二个信道信息组包括X2个信道信息,第三个信道组包括X3个信道信息,第四个信道信息组包括X4个信道信息,其中,X1和X2、X3、X4为正整数。
在一些实施例中,第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括2 个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括1个信道信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括2个信道信息;
第一个所述信道信息组包括3个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括3个信道信息;
第一个所述信道信息组包括4个信道信息,且第二个所述信道信息组包括4个信道信息;
第一个所述信道信息组包括1个信道信息,且第二个所述信道信息组包括2个信道信息,第三个所述信道信息组包括2个信息到信息;
第一个所述信道信息组包括2个信道信息,且第二个所述信道信息组包括2个信道信息,第三个所述信道信息组包括1个信息到信息。
在一些实施例中,所述信道信息组仅包括一个信道信息且第一指示信息为第一值的情况下,将所述一个信道信息处理为第一类预编码信息;所述信道信息组包括至少两个信道信息且第一指示信息为第一值的情况下,将所述至少两 个信道信息处理为至少一个第一类预编码信息。
在一些实施例中,还包括,接收第一指示信息,所述第一指示信息用于指示信道状态信息类型。
在一些实施例中,获取信道状态信息包括:在一个信道状态信息报告对应的传输资源获取传输的K个信道信息的信道状态信息中获取反馈的所述信道状态信息。
在一些实施例中,信道状态信息报告包括第一指示信息,所述第一指示信息用于指示信道状态信息类型。
在一些实施例中,获取信道状态信息包括:在K个信道状态信息报告对应的传输资源中获取传输的K个信道信息的信道状态信息。
在一些实施例中,K个信道状态信息报告的报告标识信息相同。
在一些实施例中,K个信道状态信息报告的报告标识信息不同。
在一些实施例中,K个信道状态信息报告在一个时隙报告。
在一些实施例中,K个信道状态信息报告在K个时隙报告。
在一些实施例中,信道信息的对应的时隙越小,则所述信道信息对应的所述信道状态信息的传输资源对应的时隙越小。
在一些实施例中,信道信息的对应的时隙越小,则传输所述信道信息的传输资源对应的时隙越小。
在一些实施例中,信道信息的对应的时隙越小,则所述信道信息对应的信道状态信息报告对应的时隙越小。
在一些实施例中,信道状态信息的对应的时隙越小,则所述信道状态信息对应的信道状态信息报告对应的时隙越小。
在一些实施例中,信道状态信息的对应的时隙越小,则传输所述信道状态信息的传输资源对应的时隙越小。
在一些实施例中,M个信道信息对应的信道状态信息的第一确定时间小于确定所述N个信道信息的信道状态信息的第二确定时间。
图14是本申请实施例提供的一种电子设备的结构示意图,该电子设备包括处理器40、存储器41、输入装置42和输出装置43;电子设备中处理器40的数量可以是一个或多个,图14中以一个处理器40为例;电子设备中处理器40、存储器41、输入装置42和输出装置43可以通过总线或其他方式连接,图14中以通过总线连接为例。
存储器41作为一种计算机可读存储介质,可用于存储软件程序、计算机可 执行程序以及模块,如本申请实施例中的信道状态信息的确定装置对应的模块(信息预测模块101、信道状态模块102和信息反馈模块103,或,信息获取模块201和信息确定模块202)。处理器40通过运行存储在存储器41中的软件程序、指令以及模块,从而执行电子设备的各种功能应用以及数据处理,即实现上述的方法。
存储器41可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器41可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器41可进一步包括相对于处理器40远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置42可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置43可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种信道状态信息的确定方法,该方法包括:
根据N个信道信息获取M个信道信息;
确定所述M个信道信息对应的信道状态信息;
反馈所述M个信道信息对应的信道状态信息,其中,N为大于1的整数,M为大于或等于1的整数。或者,
获取信道状态信息;
确定所述信道状态信息对应的M个信道信息或M个信道信息的信道状态信息,其中,所述M个信道信息由N个信息确定,其中,N为大于1的整数,M为大于或等于1的整数。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以 是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
值得注意的是,上述装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、紧凑型光盘只读储存器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Versatile Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图说明了本申请的优选实施例,并非因此局限本申请的权利范围。本领域技术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。

Claims (22)

  1. 一种信道状态信息的确定方法,包括:
    根据N个信道信息获取M个信道信息;
    确定所述M个信道信息对应的信道状态信息;
    反馈所述M个信道信息对应的信道状态信息,其中,N为大于1的整数,M为大于或等于1的整数。
  2. 根据权利要求1所述方法,其中,所述N个信道信息为参考时隙之前的信道信息,所述M个信道信息为参考时隙之后的信道信息。
  3. 根据权利要求1所述方法,其中,所述确定所述M个信道信息对应的信道状态信息,包括:
    将所述M个信道信息处理为K个信道状态信息,其中M为正整数,K为小于或等于M的正整数。
  4. 根据权利要求3所述的方法,其中,所述将所述M个信道信息处理为K个信道状态信息,包括:
    将所述M个信道信息按照各自对应的时隙大小划分为K个信道信息组;
    将所述K个信道信息组处理为K个第二类预编码信息,其中,所述K和所述M为大于或等于1的整数,所述K小于或等于所述M。
  5. 根据权利要求3所述方法,其中,所述将所述M个信道信息处理为K个信道状态信息,包括:
    将所述M个信道信息按照所述M个信道信息所在的时隙大小依次编码后处理为一个所述信道状态信息。
  6. 根据权利要求3所述方法,其中,所述将所述M个信道信息处理为K个信道状态信息,包括:
    将所述M个信道信息处理为M个信道状态信息,其中,一个信道信息对应一个信道状态信息。
  7. 根据权利要求3所述方法,其中,将所述M个信道信息处理为K个信道状态信息,包括:
    将所述K个信道状态信息按优先级值依次映射到一个信道状态信息报告对应的上行传输资源。
  8. 根据权利要求7所述的方法,其中,所述K个信道状态信息的优先级值根据K个信道状态信息所对应的时隙大小确定,或者,所述K个信道状态信息的优先级值根据K个信道状态信息所对应的索引大小确定。
  9. 根据权利要求7所述方法,其中,将所述K个信道状态信息按优先级值 依次映射到一个信道状态信息报告对应的上行传输资源,包括以下之一:
    将所述上行传输资源分成K个时域资源组,第k个所述信道状态信息映射到第k个时域资源组,其中,k为小于或等于K的正整数;
    将所述上行传输资源分成K个频域资源组,第k个所述信道状态信息映射到第k个频域资源组;
    将所述上行传输资源分成K个时频域资源组,第k个所述信道状态信息映射到第k个时频域资源组。
  10. 根据权利要求4所述方法,其中,所述K个信道信息组中第i个所述信道信息组包括Xi个信道信息,其中,Xi为正整数,i=1,…,K。
  11. 根据权利要求7所述方法,其中,反馈对应所述K个信道信息的信道状态信息,包括:
    在一个信道状态信息报告对应的传输资源中传输所述K个信道信息的信道状态信息。
  12. 根据权利要求1或11所述方法,还包括:反馈第一指示信息,所述第一指示信息设置为指示信道状态信息类型。
  13. 根据权利要求3所述方法,其中,反馈对应所述K个信道信息的信道状态信息,包括:
    在K个信道状态信息报告对应的传输资源中传输所述K个信道信息的信道状态信息。
  14. 根据权利要求13所述方法,其中,所述K个信道状态信息报告的报告标识信息相同。
  15. 根据权利要求13所述方法,其中,所述K个信道状态信息报告的报告标识信息不同。
  16. 根据权利要求13所述方法,其中,所述K个信道状态信息报告在一个时隙报告。
  17. 根据权利要求13所述方法,其中,所述K个信道状态信息报告在K个时隙报告。
  18. 根据权利要求1所述方法,还包括以下之一:
    所述信道信息的对应的时隙越小,则传输所述信道信息对应的信道状态信息的传输资源对应的时隙越小;
    所述信道信息的对应的时隙越小,则传输所述信道信息的传输资源对应的时隙越小;
    所述信道信息的对应的时隙越小,则所述信道信息对应的信道状态信息报告对应的时隙越小;
    所述信道状态信息的对应的时隙越小,则所述信道状态信息对应的信道状态信息报告对应的时隙越小;
    所述信道状态信息的对应的时隙越小,则传输所述信道状态信息的传输资源对应的时隙越小。
  19. 根据权利要求1所述方法,其中,所述M个信道信息对应的信道状态信息的第一确定时间小于确定所述N个信道信息的信道状态信息的第二确定时间。
  20. 一种信道状态信息的确定方法,包括:
    获取信道状态信息;
    确定所述信道状态信息对应的M个信道信息或M个信道信息的信道状态信息,其中,所述M个信道信息由N个信道信息确定,N为大于1的整数,M为大于或等于1的整数。
  21. 一种电子设备,包括:
    一个或多个处理器;
    存储器,设置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-20中任一所述方法。
  22. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-20中任一所述方法。
PCT/CN2023/101856 2022-07-18 2023-06-21 信道状态信息的确定方法、电子设备和存储介质 WO2024016936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210843620.6 2022-07-18
CN202210843620.6A CN117479316A (zh) 2022-07-18 2022-07-18 一种信道状态信息的确定方法、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024016936A1 true WO2024016936A1 (zh) 2024-01-25

Family

ID=89617000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101856 WO2024016936A1 (zh) 2022-07-18 2023-06-21 信道状态信息的确定方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN117479316A (zh)
WO (1) WO2024016936A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2406979A1 (en) * 2009-03-12 2012-01-18 Huawei Technologies Co., Ltd. System and method for channel information feedback in a wireless communications system
US20140226508A1 (en) * 2011-03-31 2014-08-14 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for determining channel state information in an upcoming time slot
WO2020220278A1 (zh) * 2019-04-30 2020-11-05 华为技术有限公司 一种信道估计模型训练方法及设备
CN113098804A (zh) * 2021-03-29 2021-07-09 东南大学 一种基于深度学习与熵编码的信道状态信息反馈方法
CN114422059A (zh) * 2022-01-24 2022-04-29 清华大学 信道预测方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2406979A1 (en) * 2009-03-12 2012-01-18 Huawei Technologies Co., Ltd. System and method for channel information feedback in a wireless communications system
US20140226508A1 (en) * 2011-03-31 2014-08-14 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for determining channel state information in an upcoming time slot
WO2020220278A1 (zh) * 2019-04-30 2020-11-05 华为技术有限公司 一种信道估计模型训练方法及设备
CN113098804A (zh) * 2021-03-29 2021-07-09 东南大学 一种基于深度学习与熵编码的信道状态信息反馈方法
CN114422059A (zh) * 2022-01-24 2022-04-29 清华大学 信道预测方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN117479316A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
CN107342852B (zh) 信令发送、接收方法及装置、网络侧设备、终端
CN111432479B (zh) 传输信道状态信息的方法和装置
EP2942880A1 (en) Methods and devices for reporting and receiving channel state information
CN109391305B (zh) 一种通信处理方法及装置
CN105680999A (zh) 一种信道状态信息测量方法、终端和网络设备
KR20200035463A (ko) 채널 상태 정보(csi) 보고 방법 및 통신 장치
US20230421228A1 (en) Method and apparatus for compression-based csi reporting
CN109479047B (zh) 一种终端、基站和获得信道信息的方法
WO2024016936A1 (zh) 信道状态信息的确定方法、电子设备和存储介质
WO2024007837A1 (zh) 信息传输方法、设备和存储介质
WO2024017057A1 (zh) 传输方法、通信节点及存储介质
WO2024032469A1 (zh) 测量参数的反馈方法、装置、终端和存储介质
WO2024041362A1 (zh) 信道状态信息处理方法、装置、通信节点及存储介质
WO2024032319A1 (zh) 信道状态信息反馈方法、接收方法、装置及通信节点
WO2023207526A1 (zh) 波束度量参数反馈方法和接收方法及装置
WO2022151064A1 (zh) 信息发送方法、信息接收方法、装置、设备及介质
WO2024037339A1 (zh) 信道状态信息处理方法、装置、通信节点及存储介质
WO2023174132A1 (zh) 信道状态信息的反馈方法、装置、存储介质及电子装置
EP4207649A1 (en) Interference reporting method and apparatus
US20230353216A1 (en) Channel data transmission method and apparatus, communication device, and storage medium
CN110855330B (zh) 一种传输方法及装置
CN108260217B (zh) 一种信息传输的方法、装置和通信节点
CN117955540A (zh) 信道状态信息的发送、接收方法、通信装置及存储介质
CN117955595A (zh) 信道状态信息报告配置的传输方法、装置及存储介质
CN117956517A (zh) 信道状态信息报告的发送方法、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842002

Country of ref document: EP

Kind code of ref document: A1