WO2024017057A1 - 传输方法、通信节点及存储介质 - Google Patents

传输方法、通信节点及存储介质 Download PDF

Info

Publication number
WO2024017057A1
WO2024017057A1 PCT/CN2023/105727 CN2023105727W WO2024017057A1 WO 2024017057 A1 WO2024017057 A1 WO 2024017057A1 CN 2023105727 W CN2023105727 W CN 2023105727W WO 2024017057 A1 WO2024017057 A1 WO 2024017057A1
Authority
WO
WIPO (PCT)
Prior art keywords
ports
channel information
reference signals
information
sets
Prior art date
Application number
PCT/CN2023/105727
Other languages
English (en)
French (fr)
Inventor
鲁照华
肖华华
郑国增
李永
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024017057A1 publication Critical patent/WO2024017057A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission

Definitions

  • This application relates to the field of communication technology, for example, to a transmission method, communication node and storage medium.
  • Multi-antenna technology is a key technology to improve wireless communication systems. With the development of wireless communication systems, the requirements for spectrum efficiency are getting higher and higher, and multi-antenna technology can improve the spectrum efficiency of wireless communication systems. However, as the number of antennas used increases, the overhead of the required reference signals becomes larger and larger.
  • This application provides a transmission method, communication node and storage medium.
  • embodiments of the present application provide a transmission method, applied to the first communication node, including:
  • embodiments of the present application provide a transmission method, applied to the second communication node, including:
  • embodiments of the present application provide a communication node, including:
  • a storage device for storing at least one program
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the method provided by the embodiments of this application.
  • embodiments of the present application provide a storage medium on which a computer program is stored. When the program is executed by a processor, the method provided by the embodiment of the present application is implemented.
  • Figure 1 is a schematic flowchart of a transmission method provided by an embodiment of the present application.
  • Figure 2a is a schematic flow chart of another transmission method provided by an embodiment of the present application.
  • Figure 2b is a schematic diagram of a prediction channel provided by an embodiment of the present application.
  • Figure 2c is a schematic diagram of another prediction channel provided by an embodiment of the present application.
  • Figure 2d is a schematic diagram of determining predicted channel information provided by an embodiment of the present application.
  • Figure 2e is another schematic diagram for determining predicted channel information provided by an embodiment of the present application.
  • Figure 2f is a schematic diagram of a port correspondence relationship provided by an embodiment of the present application.
  • Figure 2g is a schematic diagram of another port correspondence relationship provided by an embodiment of the present application.
  • Figure 2h is a schematic diagram of reference signal transmission provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a transmission device provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a transmission device provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a communication node provided by an embodiment of the present application.
  • Multi-antenna technology is a key technology to improve wireless communication systems.
  • the requirements for spectrum efficiency are getting higher and higher, and multi-antenna technology can improve the spectrum efficiency of wireless communication systems.
  • the cost of the required reference signals becomes larger and larger.
  • CSI-RS channel state information reference signal
  • Sounding Reference signal Sounding Reference signal
  • SRS Sounding Reference signal
  • NR New Radio
  • the supported CSI-RS density values are 0.5, 1 and 2, and CSI-
  • the configuration of RS is user or user group specific. From the perspective of network-side equipment, the number of CSI-RS resource elements (Resource Elements, REs) it requires may be greater than or equal to the number of antennas.
  • the number of REs in a Physical Resource Block (PRB) is limited, generally not more than 168. Therefore, with the trend of increasing the number of antennas, how to reduce the overhead of reference signals is an urgent problem to be solved.
  • PRB Physical Resource Block
  • mobile communication networks include but are not limited to 3rd-Generation mobile communication technology (3G), 4th generation mobile communication technology (4G), 5th-generation mobile communication technology, etc.
  • Communication technology (5th Generation Mobile Communication Technology, 5G) and future mobile communication networks the network architecture of the mobile communication network may include network side equipment (for example, including but not limited to base stations) and receiving side equipment (for example, including but not limited to terminal equipment).
  • the first communication node may also be referred to as the first communication node device
  • the second communication node may also be referred to as the second communication node device
  • the base station may be a base station in Long Term Evolution (LTE), Long Term Evolution Advanced (LTEA) or an evolutionary base station (Evolutional Node B, eNB or eNodeB), or a base station equipment in a 5G network , or base stations in future communication systems, etc.
  • Base stations can include a variety of macro base stations, micro base stations, home base stations, wireless remotes, reconfigurable intelligent surfaces (Reconfigurable Intelligent Surfaces, RISs), routers, Wireless Fidelity, WIFI) equipment or various network side equipment such as primary cell (primary cell) and cooperative cell (secondary cell), as well as location management function (LMF) equipment.
  • the terminal device (also called terminal) is a device with wireless transceiver functions that can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); and Can be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (Virtual Reality, VR) terminal, an augmented reality (Augmented Reality, AR) terminal, or an industrial control (industrial control) Wireless terminals in autonomous driving (self driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), wireless terminals in transportation safety (transportation safety), Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of this application do not limit application scenarios.
  • the terminal can sometimes also be called a user, user equipment (User Equipment, UE), access terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile device, UE terminal, wireless communication equipment, UE agent or UE device, etc.
  • UE user equipment
  • access terminal UE unit
  • UE station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device UE terminal
  • wireless communication equipment UE agent or UE device
  • high-level signaling includes but is not limited to Radio Resource Control (RRC) and Media Access Control element (MAC CE).
  • RRC Radio Resource Control
  • MAC CE Media Access Control element
  • Physical layer signaling can also be transmitted between the base station and the terminal. For example, physical layer signaling is transmitted on the physical downlink control channel (Physical Downlink Control CHannel, PDCCH), and physical layer signaling is transmitted on the physical uplink control channel (Physical Uplink Control CHannel, PUCCH).
  • RRC Radio Resource Control
  • MAC CE Media Access Control element
  • the Indicator for multiple parameters may also be called Index, or Identifier (ID), which are completely equivalent concepts.
  • ID the resource identifier of the wireless system.
  • the resources of the wireless system here include but are not limited to one of the following: a reference signal resource, a reference signal resource group, a reference signal resource configuration, a channel state information (CSI) report, and a CSI report set. , corresponding indexes for terminals, base stations, panels, neural networks, sub-neural networks, neural network layers, etc.
  • the base station can indicate the identity of one or a group of resources to the terminal through various high-layer signaling or physical layer signaling.
  • artificial intelligence includes machine learning (ML), deep learning, reinforcement learning, transfer learning, deep reinforcement learning, meta-learning and other self-learning devices, components, software, module.
  • artificial intelligence is implemented through an artificial intelligence network (or neural network).
  • the neural network includes multiple layers, each layer includes at least one node.
  • the neural network includes an input layer, an output layer, and at least One hidden layer, each layer of the neural network includes but is not limited to using at least a fully connected layer, a dense layer, a convolutional layer, a transposed convolutional layer, a direct connection layer, an activation function, a normalization layer, a pooling layer, etc. one.
  • each layer of the neural network may include a sub-neural network, such as a residual block (Residual Network block, or Resnet block), a dense network (Densenet Block), a recurrent network (Recurrent Neural Network, RNN), etc.
  • the artificial intelligence network includes a neural network model and/or neural network parameters corresponding to the neural network model, where the neural network model may be referred to as a network model, and the neural network parameters may be referred to as network parameters.
  • a network model defines the number of layers of the neural network, the size of each layer, activation function, link status, convolution kernel size and convolution step size, convolution type (such as 1-dimensional (dimensionality, D) convolution, 2D convolution , 3D convolution, hollow convolution, transposed convolution, separable convolution, grouped convolution, expanded convolution, etc.) and other network architectures, and the network parameters are the weights and/or biases of each layer of the network in the network model. settings and their values.
  • a network model can correspond to multiple sets of different neural network parameter values to adapt to different scenarios.
  • a neural network model can correspond to multiple different neural network parameter values. Obtain the parameters of the neural network through online training or offline training. For example, by inputting at least one sample and a label, the neural network model is trained to obtain neural network parameters.
  • a time slot may be a time slot or a sub-slot mini slot.
  • a slot or sub-slot includes at least one symbol.
  • symbol refers to the time unit in a subframe or frame or time slot, than For example, it can be an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol, a single-carrier frequency division multiple access (Single-Carrier Frequency Division Multiple Access, SC-FDMA) symbol, an orthogonal multiple access frequency Orthogonal Frequency Division Multiple Access (OFDMA) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA single-carrier frequency division multiple access
  • OFDMA orthogonal multiple access frequency Orthogonal Frequency Division Multiple Access
  • transmitting includes sending or receiving. Such as sending data or signals, receiving data or signals.
  • the antenna is a physical antenna. In some examples, the antenna is a logical antenna. In some examples, port and antenna may be interchangeable terms. In some examples, the antenna is a transmit antenna. In some examples, the antenna is a receiving antenna. In some examples, the antennas include an antenna pair of a transmit antenna and a receive antenna. In some examples, the antenna may be a uniform linear array. In some examples, the antenna is a uniform planar array (for example, including Ng rows and Mg columns, Ng and Mg are positive integers.). In some examples, the antenna is a uniform circular array. In some examples, the antenna may be a non-uniform linear array. In some examples, the antenna is a non-uniform planar array.
  • the antenna is a non-uniform circular array.
  • the antenna is a directional antenna, and in some examples, the antenna is an omnidirectional antenna.
  • the antenna is a dual polarization antenna.
  • the antenna is a single polarization antenna.
  • the arrangement of the antennas is called the topology of the antennas or the topological arrangement of the antennas.
  • the antenna topology can be configured by the base station. The base station obtains the number of rows and columns of the antennas of the base station by receiving the antenna topology, which is Linear array, planar array or circular array. Whether the antennas are uniformly arranged or non-uniformly arranged.
  • the base station or user in order to calculate channel state information or perform channel estimation, mobility management, positioning, etc., the base station or user needs to send a reference signal (RS, Reference Signal).
  • the reference signal includes but is not limited to the channel state information reference signal (Channel -State Information reference signal, CSI-RS), which includes zero power CSI-RS (Zero Power CSI-RS, ZP CSI-RS) and non-zero power CSI-RS (Non-Zero Power CSI-RS, NZP CSI -RS), Channel-State Information-Interference Measurement (CSI-IM), Sounding Reference Signal (SRS), Synchronization Signals Block (SSB), Physical Broadcast Channel ( Physical Broadcast Channel, PBCH), Synchronous Broadcast Block/Physical Broadcast Channel (SSB/PBCH), NZP CSI-RS can be used to measure the channel or interference, CSI-RS can also be used for tracking, called Tracking Reference Signal (CSI-RS for Tracking, TRS), while CSI-IM is generally used
  • reference signal resources such as CSI-RS resource, SRS resource, CSI-IM resource, and SSB resource.
  • SSB includes synchronization signal blocks and/or physical broadcast channels.
  • resources for transmitting reference signals may be called reference signal resources.
  • multiple reference signal resources may be divided into multiple sets (such as CSI-RS resource set, CSI-IM resource set, SRS resource set), the reference signal resource set includes at least one reference signal resource, and multiple reference signal resource sets can all come from the same reference signal resource set (such as CSI-RS resource setting, SRS resource setting, CSI-RS resource setting (CSI-IM resource setting may be merged with CSI-IM resource setting, both are called CSI-RS resource setting) to configure parameter information.
  • the base station configures measurement resource information, and the measurement resource information is used to obtain channel state information.
  • the measurement resource information includes C N channel measurement resource (Channel Measurement Resource, CMR) information and C M interference measurement resource (Interference Measurement Resource, IMR) information, where C N and C M are positive integers.
  • CMR Channel Measurement Resource
  • IMR Interference Measurement Resource
  • the base station or terminal needs to obtain channel state information, where the channel state information may include at least one of the following: Channel State Information-Reference Signal Resource Indicator (CSI-RS Resource Indicator, CRI), Synchronization Signals Block Resource Indicator (SSBRI), Reference Signal Received Power (RSRP), Differential RSRP (Differential RSRP), Channel Quality Indicator (CQI), Preliminary Coding Matrix Indicator (Precoding Matrix Indicator, PMI), Layer Indicator (LI), Rank Indicator (RI), Level 1 Signal to Interference plus Noise Ratio (L1-SINR), Differential L1-SINR (Differential L1-SINR).
  • CSI-RS Resource Indicator CRI
  • SSBRI Synchronization Signals Block Resource Indicator
  • RSRP Reference Signal Received Power
  • CQI Channel Quality Indicator
  • Preliminary Coding Matrix Indicator Precoding Matrix Indicator, PMI
  • the precoding matrix indication is one type of precoding information, that is, the precoding information is implemented based on the codebook, such as the first type of precoding information.
  • Precoding information also includes methods based on non-codebook implementation, such as the second type of precoding information.
  • CSI that only includes the first type of precoding information is called the first type of CSI
  • CSI that includes the second type of precoding information is called the second type of CSI.
  • the terminal and the base station transmit channel state information matching the channel through the first type of precoding information.
  • the first type of precoding information is precoding information based on the traditional channel characteristic matrix or the quantized value of the characteristic matrix.
  • the codebook here includes L codewords, and its main idea is that the base station and the terminal store L codewords in advance according to prescribed formulas, tables, or dictionaries.
  • the codeword is a vector.
  • the codeword is a matrix, the matrix includes r columns, each column is also a vector. Optionally, each column of the matrix is mutually orthogonal.
  • the vector that constitutes the codeword is a 0-1 vector, where only one value of the entire vector is 1 and the other values are zero.
  • the vector making up the codeword is a DFT vector (Discrete Fourier Transform, DFT).
  • DFT Discrete Fourier Transform
  • the vectors that constitute the codeword are the tensor product of two or more DFT vectors. (kronecker product) obtained.
  • the vectors that constitute the codeword are two or more DFT vectors that are connected by multiplying with different phase rotations.
  • the vectors that constitute the codeword are two or more DFT vectors obtained by tensor product (kronecker product) and multiplied by phase rotation.
  • the base station or terminal searches for L codewords and finds the codeword that best matches the channel as the optimal codeword to transmit data or signals.
  • the codewords matching the channel here include but are not limited to at least one of the following: the distance between the codeword and the channel is the smallest, the correlation between the codeword and the channel is the largest, the distance between the codeword and the optimal right singular vector or matrix of the channel is the smallest, The optimal right singular vector or matrix correlation between the codeword and the channel is the largest, the calculated signal-to-noise ratio between the codeword and the channel is the largest, etc.
  • L is an integer greater than 1, generally greater than the number of transmitting antennas.
  • the terminal and the base station transmit channel state information that matches the channel through the second type of precoding information.
  • the second type of precoding information is channel state information obtained based on AI.
  • the base station and the terminal transmit through self-encoding
  • the encoder of the autoencoder obtains channel state information.
  • the autoencoder includes an encoder and a decoder, where the encoder is at the terminal and the decoder is at the base station side.
  • the terminal compresses the obtained channel H through the encoder to obtain the compressed H1, and quantizes the compressed channel H1 and feeds it back to the base station.
  • the base station receives the quantized H1, dequantizes the quantized H1 and inputs it into the decoder, and the decoder Decompress to restore H.
  • H includes K0 elements.
  • the terminal selects K elements from H as H1 and provides feedback on H1 quantization.
  • the base station receives the K quantized elements and dequantizes them, and inputs the dequantized K elements.
  • the target module outputs K0 elements as the recovery of H, thereby obtaining the precoding matrix of H.
  • K and K0 are integers greater than 1, and K ⁇ K0.
  • H1 passing through the compressor or the K elements selected from H are the second type of precoding information.
  • the quantized H1 is also called the second type of precoding information.
  • the second type of precoding information may also be a precoding matrix generated by other non-AI methods that is different from the first type of precoding information.
  • the second type of precoding information may also be a precoding matrix other than the first type of precoding information.
  • the terminal and the base station need to define a CSI report (CSI report or CSI report congfig), where the CSI report defines at least one of the following parameters: used to feed back CSI Time-frequency resources, CSI includes reportQuantity, time domain category reportConfigType of CSI feedback, measurement channel resources, measurement interference resources, measured bandwidth size and other information.
  • CSI report defines at least one of the following parameters: used to feed back CSI Time-frequency resources, CSI includes reportQuantity, time domain category reportConfigType of CSI feedback, measurement channel resources, measurement interference resources, measured bandwidth size and other information.
  • the CSI report can be transmitted on uplink transmission resources, where the uplink transmission resources are resources used to transmit uplink signaling or data, including but not limited to PUSCH and PUCCH, and the CSI report also includes time domain characteristics, including periodic CSI reports ( periodic CSI report, P-CSI), aperiodic CSI report (aperiodic CSI report, AP-CSI), semi-persistent CSI report (semi-persistent CSI report, SP-CSI).
  • P-CSI transmits a relatively small number of bits and is transmitted on PUCCH
  • A-CSI transmits a larger number of bits and is generally transmitted on PUSCH
  • SP-CSI can be transmitted based on PUSCH or PUCCH. transmission.
  • P-CSI based on PUCCH transmission is generally configured using high-level signaling (Radio Resource Control, RRC), and SP-CSI based on PUCCH transmission is also configured or activated using high-level signaling (RRC and/or MAC CE).
  • RRC Radio Resource Control
  • SP-CSI or A-CSI based on PUSCH transmission is triggered by physical layer signaling (Downlink control information, DCI), and DCI is generally transmitted on the physical downlink control channel (Physical downlink control channel, PDCCH).
  • DCI Downlink control information
  • feeding back channel status or channel information through a CSI report may mean carrying the channel status or channel information on the uplink transmission resources indicated by the CSI report, and transmitting the channel status or channel information through the uplink transmission resources.
  • feedback of channel status or channel information may refer to carrying the channel status or channel information on uplink transmission resources, and transmitting the channel status or channel information through the uplink transmission resources.
  • the base station configures the terminal with N CSI reports (CSI reports) that need to be fed back to the base station through high-level signaling and/or physical layer signaling.
  • Each CSI report has an index value (identity, ID). , called CSI reportID, the terminal can select M CSI reports among N CSI reports according to its own computing power or processing power, and the requirements of the base station.
  • the uplink feedback resources at least one CSI report among the M CSI reports is fed back, where N and M are positive integers, and M ⁇ N.
  • M CSI reports need to be fed back, but the feedback resources of at least two of the M reports conflict.
  • the conflicting feedback resources of the two reports refer to the resources used to feed back the two reports.
  • At least one symbol in the corresponding transmission resources (such as PUCCH or PUSCH) is the same and/or at least one subcarrier is the same.
  • the channel information is information obtained based on a reference signal (such as CSI-RS) and used to describe the channel environment between communication nodes, such as a time domain channel matrix and a frequency domain channel matrix.
  • the channel information is a complex matrix related to the number of transmitting antennas Nt, the number of receiving antennas Nr, and resource elements (Resource Elements, RE). For example, there is at least one Nr*Nt channel matrix on a physical resource block.
  • the base station sends a reference signal for channel measurement on 1 time slot.
  • the terminal receives the reference signal for channel measurement on one time slot.
  • the channel information H of the corresponding time slot is obtained according to the received reference signal.
  • a piece of channel information is channel information of N ports or channel information of N sending ports, which mainly means that the channel information is channel information with a number of sending ports of N.
  • N The port channel information is an Nr*N complex matrix.
  • one piece of channel information is the channel information of M receiving ports, which mainly means that the channel information is the channel information with M receiving ports.
  • the channel information of M receiving ports is one M*Nt complex matrix.
  • the neural network can predict an Nr1*Nt1 matrix as an Nr*Nt channel information, where Nr1, Nt1, Nt, Nr are positive Integer, and Nt1 ⁇ Nt and/or Nr1 ⁇ Nr, then the channel information can be called the channel information of N sending ports and M receiving ports.
  • channel information obtained from one reference signal may be determined as predicted channel information by the target module.
  • the channel information obtained by the reference signal corresponds to the number of ports. is less than the predicted channel information.
  • the target module is a functional module that can be implemented based on artificial intelligence, such as based on the target module, such as based on a neural network.
  • the target module can be implemented based on some nonlinear mapping relationships, where the nonlinear mapping relationship maps the input channel information to the output predicted channel information through a series of nonlinear operations.
  • the channel information here includes but is not limited to the channel information.
  • Matrix one of the time domain channel matrix and frequency domain channel matrix.
  • target modules may also be called operations, processing, mapping, etc.
  • the function of the target module may be to process channel information of an M port into predicted channel information of an N port, where M is less than N.
  • FIG. 1 is a schematic flowchart of a transmission method provided by an embodiment of the present application.
  • the method provided by this embodiment is applied to the first communication node.
  • the method includes the following steps:
  • the first communication node may receive K sets of reference signals from the second communication node.
  • the first communication node may be a terminal device.
  • the second communication node may be a base station.
  • the number of ports corresponding to the K sets of reference signals can be the same or different.
  • S120 Determine predicted channel information of N ports according to the K sets of reference signals.
  • N>M 1 +M 2 +...+M K , N, M 1 , M 2 ,..., M K is a positive integer, and M K is the number of ports corresponding to the kth set of reference signals. k 1,...,K, K is a positive integer.
  • the predicted channel information of N ports that is greater than the sum of the number of ports corresponding to the K sets of reference signals can be determined based on the K sets of reference signals.
  • the predicted channel information can be considered as channel information predicted by the first communication node based on K sets of reference signals.
  • Corresponding channel state information may be determined based on the predicted channel information and fed back to the second communication node, or the predicted channel information may be fed back to the second communication node.
  • Channel information can be considered as parameterized information on the channel.
  • K 2
  • the predicted channel information of N ports is determined.
  • K 1, and based on 1 set of reference signals, the predicted channel information of N ports is determined.
  • the predicted channel information it can be determined in conjunction with the target module.
  • the first communication node can transmit the first channel information of M 1 ports corresponding to the first set of reference signals to the second communication node. After obtaining the first channel information, the second communication node can determine N Predicted channel information for the port.
  • the first communication node can transmit the first channel information of less than M 1 ports to the second communication node, and the second communication node can determine N ports after obtaining the first channel information of less than M 1 ports. predicted channel information.
  • the first communication node may directly determine the predicted channel information of the N ports based on the K sets of reference signals. For example, the channel information corresponding to K sets of reference signals is determined, and then the predicted channel information of N ports is determined based on the target module.
  • the first communication node determines the predicted channel information of N ports based on the received K sets of reference signals, achieving the prediction of N ports with smaller ports (that is, the ports corresponding to the K sets of reference signals). port channel, reducing the overhead of reference signals.
  • the K sets of reference signals have the same quasi-co-located configuration.
  • determining the predicted channel information of N ports based on the K sets of reference signals includes:
  • the predicted channel information of N ports that is, determine the predicted channel information of N ports based on H1 ,..., H K );
  • M i is a positive integer
  • i 1,...,K
  • K is a positive integer
  • determining the predicted channel information of N ports based on the K sets of reference signals includes:
  • 1,...,K can be considered as 1,2,3...,K
  • P 1 ,..., P K can be regarded as P 1 , P 2, ,..., P K
  • the step size can be a set value or 1.
  • determining the predicted channel information of N ports based on the K sets of reference signals includes:
  • predicted channel information of N ports is determined.
  • each set of CSI-RS has a CSI-RS resource ID
  • the first set of CSI-RS and the second set of CSI-RS in K sets of CSI-RS can be determined based on the ID of the CSI-RS. For example, the one with the smallest ID is the first set of CSI-RS, the one with an ID only larger than the first set of CSI-RS is the second set of CSI-RS, and so on. That is, the IDs of multiple sets of CSI-RS are sorted in order from small to large.
  • the multiple sets of CSI-RS are the first set of CSI-RS, the second set of CSI-RS, etc.
  • the first channel information is channel information corresponding to the first set of reference signals.
  • the second channel information is channel information corresponding to the second set of reference signals.
  • the predicted channel information based on the first channel information and the second channel information it may be determined based on the target module.
  • the first channel information and the second channel information are input into the target module to obtain predicted channel information for N ports.
  • the first channel information is a complex matrix of Nr*M 1
  • the second channel information is a complex matrix of Nr*M 2
  • the predicted channel information is a complex matrix of Nr*N.
  • Nr is the number of receiving ports
  • Nr is a positive integer
  • K 2
  • M 1 , M 2 , N are positive integers
  • M 1 +M 2 ⁇ N are positive integers
  • determining the predicted channel information of N ports based on the K sets of reference signals includes:
  • the first predicted channel information and the second predicted channel information are combined to obtain predicted predictions of N ports.
  • the first predicted channel information can be considered as channel information determined based on the first channel information.
  • the second predicted channel information can be considered as channel information determined based on the second channel information.
  • the first predicted channel information and the second predicted channel information can be combined (such as spliced, connected, merged, etc.) to obtain predicted channel information of N ports.
  • a target module may be used to determine the first predicted channel information and the second predicted channel information.
  • the first channel information is input into the target module to obtain the first predicted channel information of N 1 ports.
  • the second channel information is input into the target module to obtain the second predicted channel information of N 2 ports.
  • determining the predicted channel information of N ports based on the K sets of reference signals includes:
  • the predicted channel information of N ports is determined based on a set of reference signals.
  • the predicted channel information is determined based on the first channel information, it may be determined based on the target module.
  • the first channel information is input into the target module to obtain predicted channel information for N ports.
  • the method further includes:
  • the first communication node may transmit the channel status information to the second communication node.
  • the channel state information includes first type of precoding information or second type of precoding information.
  • determining the predicted channel information of N ports based on the K sets of reference signals includes:
  • the first channel information of M 1 ports is determined according to the first set of reference signals, and the first channel information of M 1 ports is transmitted; the first channel information of M 1 ports is used to determine the predicted channel information of N ports.
  • the first channel information may be determined based on the first set of reference signals, and then the first channel information may be transmitted to the second communication node for the second communication node to determine the predicted channel based on the first channel information. information. After determining the predicted channel information, the second communication node may transmit the predicted channel information to the first communication node.
  • the second communication node determines the predicted channel information, it may be based on AI and/or ML technology. For example, the predicted channel information of N ports is determined based on the first AI system.
  • the method further includes:
  • Transmitting first indication information is used to indicate the type of transmitted information.
  • the type of transmission information includes channel information or channel state information.
  • the channel state information includes first type precoding information and second type precoding information.
  • the first indication information includes two values, and the first indication information may indicate whether the transmission resource transmits channel information or channel state information.
  • the first indication information includes three values, that is, the first indication information is used to indicate channel information, first type precoding information and second type precoding information.
  • the communication node may use the first indication information to indicate that the transmission resource transmits one of channel information, first type precoding information, and second type precoding information.
  • the first indication information is one of the following: physical layer signaling, a field of physical layer signaling, high-level signaling, a field of high-level signaling, or a field corresponding to the CSI report, where the field includes at least one bits.
  • the first indication information includes two values. When the field value is the first value, it indicates that the transmission information corresponding to the CSI report is channel information. When the field value is the second value, it indicates that the transmission information corresponding to the CSI report is channel information. When , it indicates that the transmission information corresponding to the CSI report is channel state information.
  • the first indication information includes three values. When the field value is the first value, it indicates that the transmission information corresponding to the CSI report is channel information.
  • the first value, the second value, and the third value here may be Boolean values, or integer values, or real values.
  • the first value is FALSE and the second and/or third value is TRUE.
  • the first value is 0 and the second and third values are different non-zero values.
  • the first value is TRUE and the second and/or third value is FLASE. In one example the first value is non-zero and the second and/or third value is zero.
  • One or more of the first indication information, channel state information or channel information may be transmitted to the second communication node together or separately.
  • determining the predicted channel information of N ports based on the K sets of reference signals includes:
  • the first channel information of M s ports is transmitted for the second communication node to determine the predicted channel information of N ports. That is, the first communication node selects a port from the configured ports and then transmits the corresponding channel information to the second communication node.
  • the method further includes:
  • the topology configuration information of the port includes one or more of the following:
  • M i and N are integers greater than 1, i is greater than or equal to 1 and less than or equal to K.
  • the location information can be an index.
  • the second communication node transmits the topology configuration information of the port of the second communication node to the first communication node.
  • Topological configuration information can be considered as information that characterizes the port topology, such as how many rows and columns the antenna array is on, how many panels it is on, the antenna array downtilt angle, the antenna array tilt angle, the antenna array discovery direction, etc.
  • the location information of the M i ports among the N ports is used to indicate one of the following:
  • M i ports correspond to ports in one polarization direction among the N ports
  • M i ports correspond to odd-numbered index ports among N ports
  • M i ports correspond to even-indexed ports among N ports
  • a row of M i ports corresponds to an odd-indexed port or an even-indexed port in a row of N ports;
  • a column of M i ports corresponds to an odd-indexed port or an even-indexed port in a column of N ports;
  • M i ports correspond to odd-numbered row ports or even-numbered row ports of N ports;
  • M i ports correspond to odd-numbered column ports or even-numbered column ports of N ports.
  • M i and N are integers greater than 1, i is greater than or equal to 1 and less than or equal to K.
  • receiving K sets of reference signals includes:
  • K sets of reference signals are periodically received, and the K sets of reference signals have the same number of ports.
  • One time slot receives K sets of reference signals, and different time slots receive multiple K sets of reference signals.
  • K sets of reference signals are received periodically.
  • the periodic reception of K sets of reference signals includes:
  • K sets of reference signals of W 12 ports are received on an even period, where K is a positive integer and W 11 and W 12 are different positive integers.
  • the periodic reception of K sets of reference signals includes:
  • one set of the K sets of reference signals is received in one cycle.
  • every K period of the reference signal is a group, which is called a large period with a length of K. That is, within a large period, a set of reference signals is received in each of the K periods. After receiving a large cycle, it then enters the next large cycle, and the cycle repeats.
  • receiving K sets of reference signals includes:
  • K sets of reference signals are received semi-continuously.
  • the K sets of reference signals have the same number of ports, and K is a positive integer.
  • semi-continuous reception of K sets of reference signals includes:
  • K sets of reference signals of the first target number of ports are transmitted in the C-th period.
  • M 31 and M 32 are positive integers. Transmitting the K sets of reference signals of the first target number of ports in the C-th period may be used to receive the K sets of reference signals of the first target number of ports in the C-th period.
  • the first target number is determined based on the parity of C, the size of M 31 and M 32 .
  • This embodiment does not limit how to determine the first target number based on the parity of C and the sizes of M 31 and M 32 .
  • K sets of reference signals of M 31 ports are transmitted (such as received) in the C-th cycle, or K sets of reference signals of M 32 ports are transmitted (such as received);
  • K sets of reference signals of M 32 ports are transmitted (such as received);
  • the first target number It is the larger quantity among M 31 and M 32 .
  • semi-continuous reception of K sets of reference signals includes:
  • S, L, K are positive integers
  • W 1 and W 2 are different positive integers.
  • the duration of the semi-continuous reception reference signal is C cycles
  • the K sets of semi-continuous reception reference signals include one of the following:
  • a second target number of K sets of reference signals are sent in the C-th period.
  • the second target quantity is determined based on whether C is an integer multiple of the sum of S and L and the sizes of W 1 and W 2 .
  • This embodiment does not limit how to determine the second target quantity based on whether C is an integer multiple of the sum of S and L and the sizes of W 1 and W 2 .
  • K sets of reference signals of W 1 or W 2 ports are transmitted (such as received) in the C period; when C is not S and L In the case of an integer multiple of the sum, transmit (such as receive) K sets of reference signals of W 1 or W 2 ports in the C-th cycle; the second target number is the larger number of W 1 and W 2 .
  • K sets of reference signals of W 2 ports are transmitted in the C-th period; when C is a non-integer multiple of S+L In the case of times, K sets of reference signals of W 1 or W 2 ports are transmitted according to the preset regulations in the C-th period.
  • C semi-sustained periods are divided into K groups, and one set of the K sets of reference signals is received in one period of a group of periods.
  • Each K cycle is a group, which is called a large cycle of length K, that is, within a large cycle, a set of reference signals are received in each of the K cycles. After receiving a large cycle, it then enters the next large cycle, and the cycle repeats until the Cth cycle.
  • C is a multiple of K. If C is not a multiple of K, then the last large period may At least one set of reference signals was not received.
  • the method determines the predicted channel information of N ports based on the K sets of reference signals, including:
  • the channel state information of M 1 ports is determined according to the first set of reference signals, and the channel state information of M 1 ports is transmitted, such as sending the channel state information of M 1 ports.
  • the channel state information of the M 1 ports is used to determine the predicted channel information of the N ports.
  • the channel state information of M 1 ports is sent, and the second communication node is instructed to determine the predicted channel information of N ports.
  • the method further includes:
  • the channel state information type includes at least first type of precoding information and second type of precoding information.
  • the value of the second indication information may be used to indicate the type of channel state information transmitted by the communication node.
  • the communication node transmits the first type of precoding information.
  • the communication node transmits the first type of precoding information.
  • the communication node transmits the second type of precoding information.
  • the first value is 0 and the second value is 1, or the first value is 0 and the second value is non-zero; or the first value is FALSE and the second value is TRUE.
  • the first value and the second value can also take real values in other situations, as long as the two situations can be distinguished.
  • the terminal feeds back the second indication information
  • the second indication information takes a first value
  • the terminal determines the channel information as the first type of precoding information, and feeds back the first type of precoding information. Coding information
  • the base station receives the second indication information and the first type of precoding information.
  • the terminal feeds back the second indication information
  • the second indication information takes a second value
  • the terminal determines the channel information as the second type of precoding information, and feeds back the second type of precoding information.
  • Encoded information The base station receives the second indication information describing the channel state information and the second type of precoding information.
  • the second indication information may also take a third value, which is used to indicate that the terminal transmits channel state information selected by the port.
  • the second indication information also includes a fourth value, which is used to indicate that the terminal transmits port-selected channel information.
  • the first value, the second value, and/or the third value, and/or the fourth value here are different integers or different real numbers.
  • the second indication information may be one of the following: physical layer signaling, a field of physical layer signaling, high-level signaling, a field of high-level signaling, or a field corresponding to the CSI report.
  • the fields here include At least one bit.
  • Different values of the second indication information may correspond to indicating different contents. For example, when the value of the second indication information is the third value, the second indication information indicates that the first communication node transmits channel state information for port selection. When the value of the second indication information is the fourth value, the second indication information indicates the following information to the second communication node: the first communication node transmits the channel information selected by the port.
  • the first communication node cannot output channel information of N ports due to capability issues or changes in the scene, or the output channel information of N ports results in estimated channel information H, also known as predicted channel information. H is significantly different from the actual channel, then the first communication node can send the second indication information.
  • the present application also provides a transmission method.
  • Figure 2a is a schematic flowchart of yet another transmission method provided by an embodiment of the present application; this method is applied to the second communication node, and the method includes the following step:
  • the second communication node may transmit the K sets of reference signals to the first communication node.
  • the K sets of reference signals are used to determine the predicted channel information of N ports, where N>M 1 +M 2 +...+M K , N, M 1 , M 2 ,..., M K is a positive integer, M K is the number of ports corresponding to the kth set of reference signals.
  • the channel state information of the N ports may be determined by the second communication node, or may be determined by the first communication node and then transmitted to the second communication node.
  • obtaining the channel state information of the N ports includes: receiving the channel state information of the N ports fed back by the first communication node.
  • obtaining channel state information of N ports includes: receiving first channel information
  • the channel state information of the N ports is determined, the first channel information is the channel information of M 1 ports, the M 1 and N are positive integers, and M 1 ⁇ N, or the first channel information is the channel information of Ms ports, Ms is a positive integer, and Ms ⁇ M 1 ⁇ N.
  • obtaining the channel state information of the N ports includes: receiving the first channel information of the M 1 ports corresponding to the first set of reference signals, and determining the channels of the N ports based on the first channel information of the M 1 ports. status information.
  • obtaining channel state information of N ports includes: receiving channel state information of M 1 ports corresponding to the first set of reference signals, and determining channel state information of N ports based on the channel state information of M 1 ports. .
  • channel state information or channel information corresponding to multiple sets of reference signals transmitted by the first communication node is received, and channel status of the N ports is determined based on the channel information or channel state information corresponding to the received multiple sets of reference signals. information.
  • obtaining channel information of N ports includes:
  • the first channel information is the channel information of M 1 ports, the M 1 and N are positive integers, and M 1 ⁇ N, or the first channel information or the channel information of M s ports, M s is a positive integer, and M s ⁇ M 1 ⁇ N.
  • the channel state information of the N ports determined by the second communication node enables prediction of the channels of the N ports using smaller ports (that is, ports corresponding to K sets of reference signals). Reduced reference signal overhead.
  • determining the channel state information of N ports includes:
  • the predicted channel information corresponding to the N ports is determined based on the first channel information corresponding to the M 1 ports; and the channel state information of the N ports is determined based on the predicted channel information corresponding to the N ports.
  • M 1 and N are positive integers, and M 1 is less than N.
  • determining the channel state information of N ports includes:
  • Ms and N are positive integers, and Ms is less than N.
  • the channel information of the M s ports is based on the channel information of the M 1 ports. Sure.
  • determining the channel information of N ports includes:
  • the predicted channel information corresponding to the N ports is determined based on the first channel information corresponding to the M 1 ports.
  • M 1 and N are positive integers, and M 1 is less than N.
  • determining the channel information of N ports includes:
  • M s and N are positive integers, and M s is less than N.
  • the channel information of M s ports is determined based on the channel information of M 1 ports.
  • the second communication node determines the predicted channel information based on the first channel information, it may be determined based on the target module.
  • determining the channel state information of N ports includes:
  • the channel state information of the N ports is determined.
  • the second communication node determines the predicted channel information based on the channel state information, it may be determined by the target module.
  • the K sets of reference signals have the same quasi-co-located configuration.
  • the predicted channel information for the N ports is determined by the first communication node.
  • the channel state information includes first type precoding information or second type precoding information.
  • the method further includes: receiving first indication information, the first indication information being used to indicate the type of transmission information.
  • the method further includes: receiving first channel information of M s ports, and determining predicted channel information of N ports based on the first channel information of M s ports, where M s is an integer greater than 1, M 1 is greater than M s .
  • the first channel information of M s ports is determined based on the first channel information of M 1 ports. For example, the channel information of M s ports is selected from the first channel information of M 1 ports.
  • One channel information is determined based on the first set of reference signals.
  • the method further includes: sending topology configuration information of the port, where the topology configuration information of the port includes one or more of the following:
  • M i and N are integers greater than 1, i is greater than or equal to 1 and less than or equal to K.
  • the location information of the M i ports among the N ports includes one of the following:
  • M i ports correspond to ports in one polarization direction among the N ports
  • M i ports correspond to odd-numbered index ports among N ports
  • M i ports correspond to even-indexed ports among N ports
  • a row of M i ports corresponds to an odd-indexed port or an even-indexed port in a row of N ports;
  • a column of M i ports corresponds to an odd-indexed port or an even-indexed port in a column of N ports;
  • M i ports correspond to odd-numbered row ports or even-numbered row ports of N ports;
  • M i ports correspond to odd-numbered column ports or even-numbered column ports of N ports.
  • M i and N are integers greater than 1, i is greater than or equal to 1 and less than or equal to K.
  • K sets of reference signals are transmitted, including;
  • K sets of reference signals are periodically sent, and the K sets of reference signals have the same number of ports.
  • the periodic sending of K sets of reference signals includes:
  • K sets of reference signals of W 12 ports are sent on even-numbered periods, where K is a positive integer and W 11 and W 12 are different positive integers.
  • the periodic sending of K sets of reference signals includes:
  • K sets of reference signals are transmitted, including:
  • K sets of reference signals are sent semi-persistently.
  • the K sets of reference signals have the same number of ports, and K is a positive integer.
  • K sets of reference signals are sent semi-continuously, including:
  • K sets of the first target number of ports are sent in the C-th period.
  • M 31 and M 32 are positive integers.
  • the first target number is determined based on the parity of C, the size of M 31 and M 32 .
  • K sets of reference signals of M 31 ports are sent in the C period, or K sets of reference signals of M 32 ports are sent; when C is an even number, In the C-th cycle, K sets of reference signals with M 31 ports are sent, or K sets of reference signals with M 32 ports are sent; the first target quantity is the larger number of M 31 and M 32 .
  • semi-persistently transmitting K sets of reference signals includes:
  • K sets of reference signals for W 1 ports are sent for S periods, and K sets of reference signals for W 2 ports are sent for L periods;
  • a second target number of K sets of reference signals are sent in the C-th period.
  • S, L, K are positive integers
  • W 1 and W 2 are different positive integers
  • the second target quantity is determined based on whether C is an integer multiple of the sum of S and L and the sizes of W 1 and W 2 .
  • K sets of reference signals of W 1 or W 2 ports are sent in the C-th cycle; when C is not an integer of the sum of S and L In the case of times, K sets of reference signals of W 1 or W 2 ports are sent in the C-th cycle; the second target number is the larger number of W 1 and W 2 .
  • K sets of reference signals of W 2 ports are transmitted in the C-th period; when C is a non-integer multiple of S+L In the case of times, K sets of reference signals of W 1 or W 2 ports are transmitted according to the preset regulations in the C-th period.
  • the method further includes:
  • the method further includes:
  • Receive second indication information where the second indication information indicates the channel state information type.
  • the transmission method provided by this application can be considered as a CSI prediction method.
  • artificial intelligence (AI)/machine learning (ML) is used to study the CSI-RS overhead.
  • ML machine learning
  • the reduction is beneficial. That is, smaller M ports are used to predict the channels of N ports. Where M ⁇ N, M and N are positive integers.
  • Solution 1 Receive K sets of CSI-RS resources, and obtain predicted channel information H of N ports based on the K sets of CSI resources.
  • the K sets of CSI-RS resources have the same Quasi-Co-Location (QCL) configuration.
  • the K sets of CSI-RS resources have the same number of ports.
  • Example 1 The terminal receives K sets of CSI-RS resources configured by the base station.
  • the terminal obtains the i-th channel information Hi of M i ports based on the i-th set of CSI-RS resources, and obtains M based on the K sets of CSI-RS resources.
  • Determining the predicted channel information of N ports based on the K sets of reference signals includes:
  • predicted channel information of N ports is determined.
  • One way is to input the first channel information H 1 and the second channel information H 2 into the target module, and obtain the predicted channel information H of N ports through the target module.
  • H 1 is a complex matrix of Nr*M 1
  • H 2 is a complex matrix of Nr*M 2
  • H is a complex matrix of Nr*N.
  • Example 2 The terminal receives K CSI-RS resources configured by the base station.
  • the terminal determines the i - th channel information Hi of Mi ports based on the i -th set of reference signals, and obtains N i based on the channel information Hi of Mi ports.
  • H i is a complex matrix of Nr*N i
  • Hi is a complex matrix of Nr*M i
  • the Pi is combined (such as spliced) into a larger channel matrix H
  • the terminal receives 1 CSI-RS resource configured by the base station.
  • the terminal obtains the first channel information H 1 of M 1 ports based on the CSI-RS resource, and obtains the first channel information H 1 of M 1 ports based on the CSI-RS resource.
  • H 1 obtains the predicted channel information H of N ports. Among them, N>M 1 .
  • One way is to input H 1 into the target module, and obtain the predicted channel information H of N ports through the target module.
  • H 1 is a complex matrix of Nr*M 1
  • H is a complex matrix of Nr*N.
  • Example 4 The terminal feeds back the channel state information corresponding to the predicted channel information H to the base station. For example, after determining the channel state information of the N ports based on the predicted channel information of the N ports, the terminal transmits the channel state information of the N ports.
  • the channel state information may include the first type of precoding information or the second type of precoding information that matches the predicted channel information H.
  • Example 5 The first communication node determines the predicted channel information of N ports based on the K sets of reference signals, including:
  • the first channel information of M 1 ports is determined according to the first set of reference signals, and the first channel information of M 1 ports is transmitted; the first channel information of M 1 ports is used to determine the predicted channel information of N ports.
  • the second communication node determines the channel state information of the N ports, including: receiving the first channel information corresponding to the M 1 ports; determining the predicted channel information corresponding to the N ports based on the first channel information corresponding to the M 1 ports; The predicted channel information corresponding to the N ports is described to determine the channel state information of the N ports.
  • the terminal feeds back the first channel information H 1 of M 1 ports to the base station, and the base station obtains the predicted channel information H of N ports based on the first channel information H 1 of M 1 ports input into the target module.
  • the terminal needs to inform the base station whether the feedback is channel information or channel status information. If the first instruction information is transmitted, the first instruction information Information is used to indicate the type of information transmitted. Types of transmitted information include channel information or channel status information.
  • the terminal in order to obtain the predicted channel information H of N ports from the first channel information H 1 of M 1 ports.
  • the terminal needs to receive the topology configuration of the base station's antenna, that is, to obtain the topology configuration information of the port.
  • N ports The number of rows and columns of antennas corresponding to N ports is the number of rows and columns of N ports.
  • the arrangement of the antenna includes: linear array, planar array, dual polarization, circular array, etc., that is, the arrangement of the ports.
  • the location information including the following default methods:
  • M i ports correspond to ports in one polarization direction of N ports.
  • B)M i ports correspond to odd-numbered index ports of N ports.
  • C)M i ports correspond to even-indexed ports of N ports.
  • a row of M i ports corresponds to an odd-indexed port or an even-indexed port in a row of N ports.
  • a column of M i ports corresponds to an odd-indexed port or an even-indexed port in a column of N ports.
  • F)M i ports correspond to odd-numbered row ports or even-numbered row ports of N ports.
  • G)M i ports correspond to odd-numbered column ports or even-numbered column ports of N ports.
  • the terminal obtains the first channel information H1 of the M 1 ports by receiving CSI-RS resources with periodic time domain characteristics.
  • One way is that the number of ports in each cycle of CSI-RS resources can be different, such as:
  • M 11 and M 12 are different positive integers.
  • M 21 and M 22 are different positive integers.
  • X and Y are positive integers.
  • the CSI-RS of M 21 ports is received in 4 consecutive cycles, and then the CSI-RS of M 22 ports is received in 1 cycle.
  • X and Y need to be configured. That is, the periodic reception of K sets of reference signals includes: receiving K sets of reference signals from Q 1 ports for X periods, and then receiving K sets of reference signals from Q 2 ports for Y periods, where, X, Y, K is a positive integer, Q 1 and Q 2 are different positive integers.
  • M 11 , M 12 , M 21 , M 22 , M 31 , M 32 , M k , Q 1 and Q 2 only distinguish different port numbers.
  • the terminal obtains the first channel information H1 of the M 1 ports by receiving CSI-RS resources whose time domain characteristics are semi-persistent.
  • One way is that the number of ports in each cycle of CSI-RS resources can be different, such as:
  • M 31 and M 32 are different positive integers.
  • K sets of reference signals of the first target number of ports are transmitted in the C-th period.
  • the first target number is determined based on the parity of C, the size of M 31 and M 32 .
  • K sets of reference signals of M 31 ports are transmitted in the C period, or K sets of reference signals of M 32 ports are transmitted;
  • K sets of reference signals of M 31 ports are transmitted in the C period, or K sets of reference signals of M 32 ports are transmitted;
  • the first target quantity is the larger quantity among M 31 and M 32 .
  • the CSI-RS of W 1 ports is received for S periods, and then the CSI-RS of W 2 ports is received for L periods.
  • W 1 and W 2 are different positive integers.
  • S and L are positive integers.
  • the CSI-RS of W 1 port is received in 4 consecutive cycles, and then the CSI-RS of W 2 ports is received in 1 cycle.
  • S and L need to be configured.
  • C is an integer multiple of S+L or C is not an integer multiple of S+L.
  • the terminal receives K sets of CSI-RS and obtains the first information of M 1 ports based on K sets of CSI-RS.
  • channel information H 1 input the first channel information H 1 into the target module, output the predicted channel information H of N ports, and feed back the channel state information CSI corresponding to the predicted channel information H.
  • the terminal may be unable to output the predicted channel information of N ports due to capability issues or changes in discovery scenarios, or may output the predicted channel information of N ports, resulting in a large difference between the estimated predicted channel information H and the actual channel. big.
  • the terminal may need to fall back to traditional channel estimation methods, such as non-AI channel prediction methods and linear interpolation methods to estimate channels.
  • the terminal estimates the first channel information H1 of M 1 ports. Feed back the first channel information H1. And instruct the base station to restore the predicted channel information H according to the first channel information H1. If the second communication node is instructed by the second indication information that the first communication node transmits the first channel information H1, the second communication node needs to determine the predicted channels corresponding to the N ports based on the channel state information corresponding to the first channel information H1. information.
  • the terminal estimates the first channel information H1 of M 1 ports. Feed back channel state information corresponding to the first channel information H1. It also instructed the base station to use the traditional channel estimation method, that is, it did not perform channel spatial prediction. If the second indication information indicates that the first communication node transmits channel state information, the predicted channel information corresponding to the N ports has not been determined.
  • the terminal estimates the first channel information of M s ports. Feed back the first channel information of M s ports or feed back the channel status information corresponding to the first channel information of M s ports, where M s ⁇ M 1 . For example, the terminal selects a channel from M 1 ports through the AI algorithm. Channels of M s ports perform feedback.
  • the second communication node is instructed through the second indication information: the first communication node transmits the channel information selected by the port; or the first communication node transmits the channel state information corresponding to the channel information selected by the port.
  • a base station transmits a set of M ports' reference signals in one time slot.
  • the terminal obtains the predicted channel information H of the corresponding time slot based on the received reference signals of the M ports.
  • H is a complex matrix, which is related to the number of transmitting antennas M, the number of receiving antennas Nr, and the number of physical resource blocks (Physical Resource Block, PRB) Nb.
  • PRB Physical Resource Block
  • H is a complex matrix of Nr*M*Nb, or There is an Nr*M complex matrix on each PRB, or an Nr*M complex matrix on each RE, where Nr, M, and Nb are positive integers.
  • the reference signal is a CSI-RS including M ports.
  • the reference signal is DMRS including M ports.
  • the reference signal is a PRS including M ports.
  • the base station sends reference signals of M ports in one time slot.
  • the terminal is receiving reference signals of the M ports.
  • the first channel information H1 of the corresponding time slot is obtained according to the received reference signals of the M ports, which is a complex matrix including M transmit ports.
  • H1 is a complex matrix, which is related to the number of transmitting antennas M, the number of receiving antennas Nr, and the number of physical resource blocks (Physical Resource Block) Nb.
  • H1 is a complex matrix of Nr*M*Nb, or in each There is an Nr*M complex matrix on each PRB, or there is an Nr*M complex matrix on each RE.
  • the terminal encodes the first channel information H1 and inputs it into the target module.
  • the target module such as the first AI module, outputs predicted channel information H with a number of transmission ports N.
  • H is a complex matrix, which is related to the predicted number of transmitting antennas N, the number of receiving antennas Nr, and the number of physical resource blocks (Physical Resource Block) Nb.
  • H is a complex matrix of Nr*N*Nb, or There is an Nr*N complex matrix on each PRB, or there is an Nr*N complex matrix on each RE.
  • Nr, N, M, and Nb are positive integers respectively, and M ⁇ N, Nr is the receiving antenna.
  • Number, M and N are respectively the number of ports for transmitted reference signals and the number of ports corresponding to predicted reference signals
  • Nb is the number of PRBs or the number of REs.
  • the first AI module can be considered as an AI module used to determine the predicted channel information H for which the number of transmission ports is N, where "first" is only used to distinguish different AI modules.
  • Figure 2b is a schematic diagram of a predicted channel provided by an embodiment of the present application.
  • the base station In order to obtain the channel corresponding to the 8-port CSI-RS, based on AI/ML technology, the base station is configured to actually transmit the 4-port CSI-RS. And can be transmitted to UE. Then, the UE will measure the 4-port CSI-RS to obtain the 4-port channel, and restore the 8-port channel through AI/ML.
  • Figure 2c is a schematic diagram of another predicted channel provided by the embodiment of the present application.
  • the base station in order to obtain the channel corresponding to the 16-port CSI-RS, based on AI/ML technology, the base station is configured to actually transmit 8-port CSI-RS. CSI-RS. And can be transmitted to UE. Then, the UE will measure the 8-port CSI-RS to obtain the 8-port channel, and use AI/ML to restore the 8-port channel to the 16-port channel.
  • the channel matrix H with the number of transmission ports N is obtained according to the channel matrix H1 with the number of transmission ports M 1 .
  • an Nr*M complex matrix of each PRB (or RE) is used as the input of the target module, and then an Nr*N channel matrix with a number of N transmit ports corresponding to each PRB (or RE) is output. , and then merge the Nr*N channel matrices of each PRB (or RE) into the final predicted channel matrix H.
  • a 1*M complex matrix corresponding to each receiving antenna of each PRB (or RE) is used as the input of the target module, and then each pair of receiving antennas of each PRB (or RE) is output.
  • the corresponding 1*N channel matrix with the number of transmit ports is N, and then the 1*N channel matrix of each receiving antenna of each PRB (or RE) is merged into the final predicted channel matrix H.
  • Nr*M*Nb complex matrix of all PRBs (or REs) is used as the input of the target module, and then the Nr*N*Nb of Nr*N*Nb corresponding to all PRBs (or REs) is output.
  • Channel matrix, Nr, N, M, Nb are positive integers respectively, and M ⁇ N, Nr is the number of receiving antennas, M and N are respectively the number of ports of the transmitted reference signal and the number of ports corresponding to the predicted reference signal, Nb is The number of PRBs or the number of REs.
  • channel state information is obtained according to the predicted channel information H of the spatial domain prediction, such as quantizing the predicted channel information H into the first type of precoding information or the second type of precoding information.
  • the channel state information CSI corresponding to the predicted channel information H is fed back.
  • the CSI is fed back in the uplink control information UCI.
  • the UCI is carried on at least one aperiodic PUSCH.
  • the CSI corresponding to the M pieces of channel information is carried on at least one semi-persistent PUSCH.
  • the base station configures K sets of CSI-RS resources and transmits the K sets of CSI-RS resources in at least one time slot.
  • the terminal receives the K sets of CSI-RS resources in at least one time slot.
  • the channel matrix H k with the number of transmit ports and M k ports is obtained.
  • the K sets of CSI-RS resources have the same QCL configuration.
  • the K sets of CSI-RS resources have the same number of ports.
  • the base station configures K sets of CSI-RS resources and transmits the two sets of CSI-RS resources in at least one time slot.
  • the terminal receives two sets of CSI-RS resources configured by the base station.
  • the terminal obtains the first channel information H 1 of M 1 transmission ports based on the first set of CSI-RS resource, and obtains the first channel information H 1 of M 2 transmission ports based on the second set of CSI-RS resource.
  • second channel information H 2 and obtain predicted channel information H of N ports based on the first channel information H 1 of M 1 ports and the second channel information H 2 of M 2 ports.
  • H 1 is a complex matrix of Nr*M 1
  • H 2 is a complex matrix of Nr*M 2
  • H is a complex matrix of Nr*N.
  • the base station configures K sets of CSI-RS resources and transmits the two sets of CSI-RS resources in at least one time slot.
  • the terminal receives two sets of CSI-RS resources configured by the base station.
  • the terminal obtains the channel information Hi of the Mi transmission ports based on the i -th set of CSI-RS resource, and obtains the channel information Hi of the N ports based on the channel information Hi of the Mi transmission ports. Predict channel information H.
  • K 1
  • the base station configures one set of CSI-RS resource, and transmits the CSI-RS resource in one time slot.
  • the CSI-RS resource is the reference signal of M 1 ports, and M 1 is a positive integer.
  • the terminal receives 1 CSI-RS resource configured by the base station.
  • the terminal obtains the first channel information H 1 of M 1 ports based on the CSI-RS resource, and obtains N ports based on the first channel information H 1 of M 1 ports.
  • the predicted channel information H Among them, N>M 1 .
  • One way is to input H 1 into the target module, and obtain the predicted channel information H of N ports through the target module.
  • H 1 is a complex matrix of Nr*M 1
  • H is a complex matrix of Nr*N.
  • the base station configures the values of the actual transmission port number M and the predicted port number N as needed, and indicates them to the terminal through signaling.
  • the terminal obtains the actual transmission port number M and the predicted port number N by receiving instructions from the base station.
  • the base station and the terminal agree on the values of the actual transmission port number M and the predicted port number N. In some examples, the base station and the terminal determine the actual transmission port number M according to the input of the target module.
  • the base station and the terminal determine the value of the predicted port number N according to the output of the target module.
  • the base station configures multiple sets of values for the actual transmission port number M and the predicted port number N, and transmits the multiple sets of M and N configuration values to the terminal through high-layer signaling.
  • the terminal receives the multiple sets of configuration values of M and N, and selects one of the sets of M and N values based on the implementation of the channel or the terminal's own airspace prediction capability.
  • the base station needs to indicate through signaling the number of rows and columns of antenna arrangements corresponding to the M ports of the terminal. In some examples, the base station needs to indicate to the terminal through signaling the number of rows and columns of antenna arrangements corresponding to the N predicted ports. In some examples, the base station needs to indicate through signaling the index or position of the antenna corresponding to the M ports of the terminal among the N ports.
  • Figure 2f is a schematic diagram of a port correspondence relationship provided by an embodiment of the present application. As shown in Figure 2f, Mi ports correspond to antennas with the same polarization direction among N ports.
  • Mi ports correspond to odd-indexed ports among the N ports. In some examples, Mi ports correspond to even-indexed ports among the N ports.
  • Figure 2g is a schematic diagram of another port correspondence relationship provided by an embodiment of the present application. As shown in Figure 2g, odd-numbered port index channels are used to predict even-numbered port index channels.
  • a row of Mi ports corresponds to an odd port or an even port in a row of N ports.
  • a column of Mi ports corresponds to an odd port or an even port in a column of N ports.
  • M i ports correspond to ports in odd rows or even rows of N ports.
  • M i ports correspond to ports in odd columns or even columns of N ports.
  • the base station transmits periodic reference signals. For example, configure the resource type of the periodic reference signal (CSI-RS, PRS, SSB, etc.), the reference signal time-frequency resource mapping resourceMapping, the number of ports for the reference signal, the number of ports that need to be predicted for the reference signal, scrambling code ID, and the period of the reference signal. and bias etc.
  • the terminal obtains the first channel information H1 of the M 1 ports by receiving the periodic reference signal sent by the base station.
  • the periodic reference signal starts to be transmitted in the nth time slot and is transmitted every T time slots, that is, it is transmitted in n+o*T time slots, where o is an integer greater than or equal to 0.
  • the reference signals transmitted every cycle have the same number of ports.
  • the number of reference signal ports transmitted every cycle is different. For example, when o is an odd number, a reference signal with a port number of M 11 is transmitted, and when o is an even number, a reference signal with a port number of M 12 is transmitted. reference signal. M 11 and M 12 are different positive integers.
  • the number of reference signal ports transmitted every cycle is different, for example, the reference signal of M 21 ports is transmitted for X cycles, and then the reference signal of M 22 ports is received for Y cycles.
  • M 21 and M 22 are different positive integers.
  • X and Y are positive integers.
  • the reference signal of M 21 ports is transmitted in 4 consecutive cycles, and then the reference signal of M 22 ports is transmitted in 1 cycle.
  • X and Y need to match Set.
  • the SP reference signal starts to be transmitted in the nth time slot and is transmitted every T time slots, that is, it is transmitted in n+o*T time slots, where o is an integer greater than or equal to 0 and less than or equal to C.
  • the reference signal transmitted in each period has the same number of ports.
  • the number of reference signal ports transmitted in each period is different. For example, when o is an odd number, a reference signal with a port number of M 31 is transmitted. When o is an even number, a reference signal is transmitted. , the reference signal with a port number of M 32 is transmitted.
  • Figure 2h is a schematic diagram of reference signal transmission provided by an embodiment of the present application. Referring to Figure 2h, C is equal to 4. When k is equal to 4, a reference signal of M 31 is transmitted, M 31 is equal to 8, and M 32 is equal to 4.
  • the number of reference signal ports transmitted in each period is different.
  • W 1 reference signal is transmitted for S periods, and then W 2 ports are received for L periods.
  • W 1 and M 12 are different positive integers.
  • S and L are positive integers.
  • the reference signal of W 1 port is transmitted for 4 consecutive cycles, and then the reference signal of W 2 ports is transmitted in 1 cycle. S and L need to be configured.
  • the terminal receives the CSI-RS of M ports, obtains the first channel information H1 of M 1 ports based on the CSI-RS of the M ports, inputs the first channel information H1 into the target module and outputs N
  • the predicted channel information H of the port is fed back, and the CSI corresponding to the predicted channel information H is fed back.
  • an embodiment of the present application provides a transmission device.
  • Figure 3 is a schematic structural diagram of a transmission device provided by an embodiment of the present application. As shown in Figure 3, the transmission device can be integrated in the first On the communication node, the device includes:
  • the receiving module 31 is configured to receive K sets of reference signals
  • the transmission device provided by this embodiment is used to implement the transmission method of the embodiment shown in Figure 1.
  • the implementation principles and technical effects of the transmission device provided by this embodiment are similar to the transmission method of the embodiment shown in Figure 1, and will not be described again here. .
  • the K sets of reference signals have the same quasi-co-located configuration.
  • the determination module 32 determines the predicted channel information of N ports based on the K sets of reference signals, including:
  • the predicted channel information of N ports that is, determine the predicted channel information of N ports based on H1 ,..., H K );
  • M i is a positive integer
  • i 1,...,K
  • K is a positive integer
  • the determination module 32 determines the predicted channel information of N ports based on the K sets of reference signals, including:
  • the determination module 32 determines the predicted channel information of N ports based on the K sets of reference signals, including:
  • predicted channel information of N ports is determined.
  • the determination module 32 determines the predicted channel information of N ports based on the K sets of reference signals, including:
  • the determination module 32 determines the predicted channel information of N ports based on the K sets of reference signals, including:
  • the device further includes: a first transmission module configured to:
  • the channel state information includes first type of precoding information or second type of precoding information.
  • the determination module 32 determines the predicted channel information of N ports based on the K sets of reference signals, including:
  • the first channel information of M 1 ports is determined according to the first set of reference signals, and the first channel information of M 1 ports is transmitted; the first channel information of M 1 ports is used to determine the predicted channel information of N ports.
  • the device further includes: a second transmission module configured to transmit first indication information, where the first indication information is used to indicate the type of transmission information.
  • the determination module 32 determines the predicted channel information of N ports based on the K sets of reference signals, including:
  • the device further includes: an acquisition module, configured to:
  • the topology configuration information of the port includes one or more of the following:
  • M i and N are integers greater than 1, i is greater than or equal to 1 and less than or equal to K.
  • the location information of the M i ports among the N ports includes one of the following:
  • M i ports correspond to ports in one polarization direction among the N ports
  • M i ports correspond to odd-numbered index ports among N ports
  • M i ports correspond to even-indexed ports among N ports
  • a row of M i ports corresponds to an odd-indexed port or an even-numbered port in a row of N ports;
  • a column of M i ports corresponds to an odd-indexed port or an even-indexed port in a column of N ports;
  • M i ports correspond to odd-numbered row ports or even-numbered row ports of N ports;
  • M i ports correspond to odd-numbered column ports or even-numbered column ports of N ports.
  • M i and N are integers greater than 1, i is greater than or equal to 1 and less than or equal to K.
  • the receiving module 31 is configured as:
  • K sets of reference signals are periodically received, and the K sets of reference signals have the same number of ports.
  • the receiving module 31 is configured as:
  • the receiving module 31 is configured as:
  • K sets of reference signals are received semi-continuously.
  • the K sets of reference signals have the same number of ports, and K is a positive integer.
  • the receiving module 31 is configured as:
  • S, L, K are positive integers
  • W 1 and W 2 are different positive integers.
  • the duration of the semi-continuous reception of K sets of reference signals is C cycles.
  • the semi-continuous reception of K sets of reference signals by the receiving module 31 includes one of the following:
  • a second target number of K sets of reference signals are sent in the C-th period.
  • W1 and W2 are different positive integers.
  • the second target quantity is determined based on whether C is an integer multiple of the sum of S and L and the sizes of W 1 and W 2 .
  • the second target quantity is the larger quantity between W 1 and W 2 .
  • K sets of reference signals of W 2 ports are transmitted in the C-th period; when C is a non-integer multiple of S+L In the case of times, K sets of reference signals of W 1 or W 2 ports are transmitted according to the preset regulations in the C-th period.
  • the device, determining module 32 is configured to:
  • the channel state information of the M 1 ports is determined according to the first set of reference signals, and the channel state information of the M 1 ports is transmitted.
  • the channel state information of the M 1 ports is used to determine the predicted channel information of the N ports.
  • the device further includes: a fourth transmission module configured to:
  • the second indication information instructs the second communication node to determine the predicted channel information corresponding to the N ports; or instructs the first communication node not to determine the predicted channel information corresponding to the N ports.
  • an embodiment of the present application provides a transmission device.
  • Figure 4 is a schematic structural diagram of a transmission device provided by an embodiment of the present application; the device is integrated in a second communication node, and the device includes:
  • the transmission module 41 is configured to transmit K sets of reference signals, K is a positive integer; the K sets of reference signals are used to determine the predicted channel information of N ports, where N>M 1 +M 2 +...+M K , N , M 1 , M 2 ,..., M K is a positive integer, M K is the number of ports corresponding to the kth set of reference signals;
  • the acquisition module 42 is configured to acquire the channel status information of the N ports or the channel information of the N ports.
  • the transmission device provided by this embodiment is used to implement the transmission method of the embodiment shown in Figure 2a.
  • the implementation principles and technical effects of the transmission device provided by this embodiment are similar to the transmission method of the embodiment shown in Figure 2a, and will not be described again here. .
  • the acquisition module 42 is set to:
  • the first information is the channel information of the M 1 port, the M 1 and N are positive integers, and M 1 ⁇ N.
  • the acquisition module 42 is set to:
  • the acquisition module 42 is set to:
  • the first channel information is the channel information of M 1 ports, the M 1 and N are positive integers, and M 1 ⁇ N, or the first channel information is the channel information of M s ports, M s is a positive integer, and M s ⁇ M 1 ⁇ N.
  • the acquisition module 42 is set to:
  • the channel state information of the N ports is determined.
  • the K sets of reference signals have the same quasi-co-located configuration.
  • the predicted channel information for the N ports is determined by the first communication node.
  • the channel state information includes first type precoding information or second type precoding information.
  • the device further includes:
  • the first receiving module is configured to receive first indication information, where the first indication information is used to indicate the type of transmission information.
  • the device further includes:
  • the second receiving module is configured to receive the first channel information of M s ports, based on the first channel information of M s ports.
  • One channel information determines the predicted channel information of N ports, M s is an integer greater than 1, and M 1 is greater than M s .
  • the first channel information of M s ports is determined based on the first channel information of M 1 ports. As selected from the first channel information of M 1 ports, the first channel information of M 1 ports is based on the first set of The reference signal is determined.
  • the device further includes a first sending module configured to send topology configuration information of the port, where the topology configuration information of the port includes one or more of the following:
  • M i and N are integers greater than 1, i is greater than or equal to 1 and less than or equal to K.
  • the location information of the M i ports among the N ports includes one of the following:
  • M i ports correspond to ports in one polarization direction among the N ports
  • M i ports correspond to odd-numbered index ports among N ports
  • M i ports correspond to even-indexed ports among N ports
  • a row of M i ports corresponds to an odd-indexed port or an even-indexed port in a row of N ports;
  • a column of M i ports corresponds to an odd-indexed port or an even-indexed port in a column of N ports;
  • M i ports correspond to odd-numbered row ports or even-numbered row ports of N ports;
  • M i ports correspond to odd-numbered column ports or even-numbered column ports of N ports.
  • M i and N are integers greater than 1, i is greater than or equal to 1 and less than or equal to K.
  • the transmission module 41 is configured as:
  • K sets of reference signals are periodically sent, and the K sets of reference signals have the same number of ports.
  • the transmission module 41 is configured as:
  • K sets of reference signals of W 12 ports are sent on even-numbered periods, where K is a positive integer and W 11 and W 12 are different positive integers.
  • the transmission module 41 periodically sends K sets of reference signals, including cyclically sending K sets of reference signals in the following manner:
  • the transmission module 41 is configured as:
  • K sets of reference signals are sent semi-persistently.
  • the K sets of reference signals have the same number of ports, and K is a positive integer.
  • the transmission module 41 is configured as:
  • K sets of reference signals of the first target number of ports are sent in the C-th period.
  • M 31 and M 32 are positive integers.
  • the first target number is determined based on the parity of C, the size of M 31 and M 32 .
  • K sets of reference signals of M 31 ports are sent in the C period, or K sets of reference signals of M 32 ports are sent; when C is an even number, In the C-th cycle, K sets of reference signals with M 31 ports are sent, or K sets of reference signals with M 32 ports are sent; the first target quantity is the larger number of M 31 and M 32 .
  • the transmission module 41 is configured as:
  • K sets of reference signals for W 1 ports are sent for S periods, and K sets of reference signals for W 2 ports are sent for L periods;
  • a second target number of K sets of reference signals are sent in the C-th period.
  • S, L, K are positive integers
  • W 1 and W 2 are different positive integers
  • the second target quantity is determined based on whether C is an integer multiple of the sum of S and L and the sizes of W 1 and W 2 .
  • K sets of reference signals of W 1 or W 2 ports are sent in the C-th cycle; when C is not an integer of the sum of S and L In the case of times, K sets of reference signals of W 1 or W 2 ports are sent in the C-th cycle; the second target number is the larger number of W 1 and W 2 .
  • K sets of reference signals of W 2 ports are transmitted in the C-th period; when C is a non-integer multiple of S+L In the case of times, K sets of reference signals of W 1 or W 2 ports are transmitted according to the preset regulations in the C-th period.
  • the device further includes: a third receiving module, configured to:
  • the device further includes: a fourth receiving module, configured to:
  • Receive second indication information instructs the second communication node to determine the predicted channel information corresponding to the N ports; or instructs the first communication node not to determine the predicted channel information corresponding to the N ports.
  • an embodiment of the present application provides a communication node, and the communication node may be one or more of a first communication node and a second communication node.
  • Figure 5 is a schematic structural diagram of a communication node provided by an embodiment of the present application.
  • the communication node provided by this application includes one or more processors 51 and a storage device 52; there can be one or more processors 51 in the communication node.
  • one processor 51 is For example; the storage device 52 is used to store one or more programs; the one or more programs are executed by the one or more processors 51, so that the one or more processors 51 implement the implementation as in the embodiment of this application The transmission method described.
  • the transmission method as described in the embodiment of FIG. 1 of this application is implemented.
  • the transmission method as described in the embodiment of FIG. 2a of this application is implemented.
  • the communication node also includes: a communication device 53 , an input device 54 and an output device 55 .
  • the processor 51, storage device 52, communication device 53, input device 54 and output device 55 in the communication node can be connected through a bus or other means.
  • connection through a bus is taken as an example.
  • the input device 54 may be used to receive input numeric or character information, and to generate key signal input related to user settings and function control of the communication node.
  • the output device 55 may include a display device such as a display screen.
  • Communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to perform information sending and receiving communication according to the control of the processor 51 .
  • the information includes but is not limited to reference signals, first channel information, first indication information, second indication information and channel state information.
  • the storage device 52 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the transmission method described in the embodiments of the present application (for example, request reception in the transmission device Module 31 and determination module 32; also such as transmission module 41 and acquisition module 42 in the transmission device).
  • the storage device 52 may include a program storage area and a data storage area, wherein The stored program area can store the operating system and at least one application program required for the function; the storage data area can store data created based on the use of the communication node, etc.
  • the storage device 52 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the storage device 52 may further include memories remotely located relative to the processor 51 , and these remote memories may be connected to communication nodes through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • Embodiments of the present application also provide a storage medium.
  • the storage medium stores a computer program.
  • any method described in the present application is implemented.
  • the storage medium stores a computer program.
  • the computer program When the program is executed by the processor, any one of the transmission methods described in the embodiments of this application is implemented.
  • the predicted channel information of N ports is determined according to the K sets of reference signals, where N>M 1 +M 2 +...+M K , N, M1, M2,..., M K is a positive integer, and M K is the kth
  • M K is the kth
  • the transmission method applied to the second communication node includes:
  • the K sets of reference signals are used to determine the predicted channel information of N ports, where N>M 1 +M 2 +...+M K , N, M 1 , M 2 ,..., M K is a positive integer, M K is the number of ports corresponding to the kth set of reference signals;
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof.
  • Examples (a non-exhaustive list) of computer-readable storage media include: an electrical connection having one or more conductors, a portable computer disk, a hard drive, random access memory (RAM), read-only memory (Read- Only Memory (ROM), Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disk Read-Only Memory, CD-ROM), optical storage devices, Magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to: electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including but not limited to: wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to: wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing operations of the present application may be written in one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer (e.g. Use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • terminal device covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuitry, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source code or object code.
  • ISA Instruction Set Architecture
  • Any block diagram of a logic flow in the figures of this application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent program steps and logic circuits, modules and functions. A combination of functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to Read-Only Memory (ROM), Random Access Memory (RAM), optical Storage devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to a general-purpose computer, a special-purpose computer, a microprocessor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • a general-purpose computer such as but not limited to a general-purpose computer, a special-purpose computer, a microprocessor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Abstract

本申请提供了一种传输方法、通信节点及存储介质,应用于第一通信节点的传输方法包括:接收K套参考信号;根据所述K套参考信号确定N个端口的预测信道信息,其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目,k=1,…,K,K为正整数。

Description

传输方法、通信节点及存储介质 技术领域
本申请涉及通信技术领域,例如涉及一种传输方法、通信节点及存储介质。
背景技术
多天线技术是提高无线通信系统的关键技术。随着无线通信系统的发展,对频谱效率的要求越来越高,而多天线技术能提高无线通信系统的频谱效率。但随着使用的天线数目的增加,需要的参考信号的开销越来越大。
故,在天线数目越来越多的趋势下,如何降低参考信号的开销是当前亟待解决的。
发明内容
本申请提供了一种传输方法、通信节点及存储介质。
第一方面,本申请实施例提供了一种传输方法,应用于第一通信节点,包括:
接收K套参考信号;
根据所述K套参考信号确定N个端口的预测信道信息,其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目,k=1,…,K,K为正整数。
第二方面,本申请实施例提供了一种传输方法,应用于第二通信节点,包括:
传输K套参考信号;
所述K套参考信号用于确定N个端口的预测信道信息,其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目,k=1,…,K,K为正整数;
获取N个端口的信道状态信息或N个端口的信道信息。
第三方面,本申请实施例提供了一种通信节点,包括:
至少一个处理器;
存储装置,用于存储至少一个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例所提供的方法。
第四方面,本申请实施例提供了一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请实施例所提供的方法。
附图说明
图1为本申请实施例提供的一种传输方法的流程示意图;
图2a为本申请实施例提供的又一种传输方法的流程示意图;
图2b为本申请实施例提供的一种预测信道的示意图;
图2c为本申请实施例提供的又一种预测信道的示意图;
图2d为本申请实施例提供的一种预测信道信息确定示意图;
图2e为本申请实施例提供的又一种预测信道信息确定示意图;
图2f为本申请实施例提供的一种端口对应关系示意图;
图2g为本申请实施例提供的又一种端口对应关系示意图;
图2h为本申请实施例提供的一种参考信号传输示意图;
图3为本申请实施例提供的一种传输装置的结构示意图;
图4为本申请实施例提供的一种传输装置的结构示意图;
图5为本申请实施例提供的一种通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
多天线技术是提高无线通信系统的关键技术。随着无线通信系统的发展,对频谱效率的要求越来越高,而多天线技术能提高无线通信系统的频谱效率。但随着使用的天线数目的增加,比如32天线,64天线,128天线等,需要的参考信号的开销越来越大。目前一般用信道状态信息参考信号(channel state information reference signal,CSI-RS)或者探测参考信号(Sounding Reference  Signal,SRS)来估计信道状态信息。比如目前新空口(New Radio,NR)支持{1、2、4、8、12、16、24、32}端口CSI-RS,支持的CSI-RS密度值为0.5、1和2,且CSI-RS的配置是用户或者用户组专用的。从网络侧设备来看,其需要的CSI-RS资源元素(Resource Element,RE)个数可能大于等于天线数目。而一个物理资源块(Physical Resource Block,PRB)的RE个数是有限制的,一般来说是不大于168的。所以在天线数目越来越高的趋势下,如何降低参考信号的开销是当前亟待解决的。
为了便于理解,以下介绍本申请所涉及的概念:
本申请中,移动通信网络,包括但不限于第三代移动通信技术(3rd-Generation mobile communication technology,3G),第四代移动通信技术(the 4th generation mobile communication technology,4G),第五代移动通信技术(5th Generation Mobile Communication Technology,5G)以及未来移动通信网络,移动通信网络的网络架构可以包括网络侧设备(例如包括但不限于基站)和接收侧设备(例如包括但不限于终端设备)。且应当理解的是,在本示例中,第一通信节点(也可以称为第一通信节点设备)可以是终端侧设备,第二通信节点(也可以称为第二通信节点设备)可以是基站侧设备。
本申请中,基站可以是长期演进(Long Term Evolution,LTE),长期演进增强(Long Term Evolutionadvanced,LTEA)中的基站或演进型基站(Evolutional Node B,eNB或eNodeB)、5G网络中的基站设备、或者未来通信系统中的基站等,基站可以包括多种宏基站、微基站、家庭基站、无线拉远、可重构智能表面(Reconfigurable Intelligent Surfaces,RISs)、路由器、无线保真(Wireless Fidelity,WIFI)设备或者主小区(primary cell)和协作小区(secondary cell)等多种网络侧设备,以及定位管理功能(location management function,LMF)设备。
本申请中,终端设备(又称终端)是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为用户,用户设备(User Equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、 UE终端、无线通信设备、UE代理或UE装置等。本申请实施例并不限定。
本申请中,高层信令包括但不限于无线资源控制(Radio Resource Control,RRC),媒体控制-控制单元(Media Access Control control element,MAC CE),基站和终端间还可以传输物理层信令,比如在物理下行控制信道(Physical Downlink Control CHannel,PDCCH)上传输物理层信令,在物理上行控制信道(Physical Uplink Control CHannel,PUCCH)上传输物理层信令。
本申请中,多种参数的指示Indicator,也可以称为索引Index,或者标识(Identifier,ID),它们是完全等价的概念。比如无线系统的资源标识,这里无线系统的资源包括但不限于以下之一:一个参考信号资源、参考信号资源组,参考信号资源配置、信道状态信息(Channel State Information,CSI)报告、CSI报告集合、终端、基站、面板、神经网络、子神经网络、神经网络层等对应的索引。基站可以通过多种高层信令或者物理层信令指示一个或一组资源的标识给终端。
在一些实施例中,人工智能(Artificial Intelligence,AI)包括机器学习(Machine learning,ML),深度学习,强化学习,迁移学习,深度强化学习,元学习等具有自我学习的设备、组件、软件、模块。在一些实施例中,人工智能通过人工智能网络(或称为神经网络)实现,神经网络包括多个层,每层包括至少一个节点,在一个示例中,神经网络包括输入层,输出层,至少一层隐藏层,其中每层神经网络包括但不限于使用了全连接层,稠密层,卷积层,转置卷积层,直连层,激活函数,归一化层,池化层等至少之一。在一些实施例中,神经网络的每一层可以包括一个子神经网络,比如残差块(Residual Network block,或者Resnet block),稠密网络(Densenet Block),循环网络(Recurrent Neural Network,RNN)等。人工智能网络包括神经网络模型和/或神经网络模型对应的神经网络参数,其中,神经网络模型可以简称为网络模型,神经网络参数可以简称网络参数。一个网络模型定义了神经网络的层数,每层的大小,激活函数,链接情况,卷积核大小和卷积步长,卷积类型(比如1维(dimensionality,D)卷积,2D卷积,3D卷积,空心卷积,转置卷积,可分卷积,分组卷积,扩展卷积等)等网络的架构,而网络参数是网络模型中每层网络的权值和/或偏置以及它们的取值。一个网络模型可以对应多套不同的神经网络参数取值以适应不同的场景。一个神经网络模型可以对应多个不同的神经网络参数取值。通过线上训练或者线下训练的方式获得神经网络的参数。比如通过输入至少一个样本和标签,训练所述的神经网络模型以获得神经网络参数。
在一些实施例中,时隙可以是时隙slot或子时隙mini slot。一个时隙或者子时隙包括至少一个符号。这里符号是指一个子帧或帧或时隙中的时间单位,比 如可以为一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、单载波频分复用多址接入(Single-Carrier Frequency Division Multiple Access,SC-FDMA)符号、正交多址频分复用接入(Orthogonal Frequency Division Multiple Access,OFDMA)符号。
在一些实施例中,传输包括发送或接收。比如发送数据或者信号,接收数据或者信号。
在一些示例中,天线是物理天线。在一些示例中,天线是逻辑天线。在一些示例中,端口和天线可以是互换的概念。在一些示例中,天线为发送天线。在一些示例中,天线为接收天线。在一些示例中,天线包括发送天线和接收天线的天线对。在一些示例中,天线可以是均匀线性阵列。在一些示例中,天线是均匀平面阵列(比如包括Ng行Mg列,Ng,Mg为正整数。)。在一些示例中,天线是均匀圆阵列。在一些示例中,天线可以是非均匀线性阵列。在一些示例中,天线是非均匀平面阵列。在一些示例中,天线是非均匀圆阵列。在一些示例中,天线是定向天线,在一些示例中,天线是全向天线。在一些示例中,天线是双极化天线。在一些示例中,天线是单极化天线。在一些实施例中,天线的排列称为天线的拓扑或天线的拓扑排列,可以通过基站配置所述的天线拓扑,基站通过接收所述的天线拓扑获得基站的天线是几行几列的,是线性阵列还是平面阵列或者圆形阵列。天线是均匀排列的还是非均匀排列的。
在一些实施例中,为了计算信道状态信息或者进行信道估计,移动性管理,定位等,需要基站或者用户发送参考信号(RS,Reference Signal),参考信号包括但不限于信道状态信息参考信号(Channel-State Information reference signal,CSI-RS),它包括零功率的CSI-RS(Zero Power CSI-RS,ZP CSI-RS)和非零功率的CSI-RS(Non-Zero Power CSI-RS,NZP CSI-RS),信道状态信息干扰测量信号(Channel-State Information-Interference Measurement,CSI-IM),探测参考信号(Sounding Reference Signal,SRS),同步信号块(Synchronization Signals Block,SSB)、物理广播信道(Physical Broadcast Channel,PBCH)、同步广播块/物理广播信道(SSB/PBCH),NZP CSI-RS可以用来测量信道或者干扰,CSI-RS也可以用来做跟踪,叫做跟踪参考信号(CSI-RS for Tracking,TRS),而CSI-IM一般用来测量干扰,SRS用来进行信道估计。另外,用于传输参考信号的时频资源包括的资源元素(Resource Element,RE)集合称为参考信号资源,比如,CSI-RS resource,SRS resource,CSI-IM resource,SSB resource。在本文中,SSB包括同步信号块和/或物理广播信道。
在一些实施例中,在通信系统中,传输参考信号的资源可以称为参考信号资源,为了节省信令开销等,可能会把多个参考信号资源分成多个集合(比如 CSI-RS resource set,CSI-IM resource set,SRS resource set),参考信号资源集合包括至少一个参考信号资源,而多个参考信号资源集合可以都来自同一个参考信号资源设置(比如CSI-RS resource setting,SRS resource setting,CSI-RS resource setting,其中CSI-IM resource setting可能和CSI-IM resource setting合并,都称为CSI-RS resource setting)来配置参数信息。
在一些实施例中,基站配置测量资源信息,测量资源信息用于获取信道状态信息。其中,测量资源信息包括CN个信道测量资源(Channel Measurement Resource,CMR)信息和CM个干扰测量资源(Interference Measurement Resource,IMR)信息,CN和CM为正整数。基站在一个报告配置(report config)或报告设置(reporting setting)中配置测量资源信息。
在一些示例中,为了更好地传输数据或者信号,基站或者终端需要获取信道状态信息,其中,信道状态信息可以包括以下至少之一:信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,CRI)、同步信号块资源指示(Synchronization Signals Block Resource Indicator,SSBRI)、参考信号接收功率(Reference Signal Received Power,RSRP)、差分RSRP(Differential RSRP)、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、层指示(Layer Indicator,LI)、秩指示(Rank Indicator,RI)、级1的信干噪比(Level 1Signal to Interference plus Noise Ratio,L1-SINR)、差分L1-SINR(Differential L1-SINR)。这里预编码矩阵指示是预编码信息中的一种,即基于码本实现预编码信息的情况,比如包括第一类预编码信息。预编码信息还包括基于非码本实现的方式,比如第二类预编码信息。在一个示例中,只包括第一类预编码信息的CSI称为第一类CSI,在一个示例中,包括第二类预编码信息的CSI称为第二类CSI。
在一些实施例中,终端和基站通过第一类预编码信息来传输与信道匹配的信道状态信息,第一类预编码信息是基于传统的信道特征矩阵或者特征矩阵的量化值构成的预编码信息。比如基于码本的方法,比如LTE的中的N天线的码本,这里N=2,4,8,12,16,24,32,NR中type I码本,type II码本,type II port selection码本,enhanced type II码本,enhanced type II selection码本,Further enhanced type II selection码本。这里的码本包括L个码字,它的主要思想是基站和终端预先根据规定的公式或者表格或者字典的方式保存L个码字。在一些示例中,码字是一个向量。在一些示例中码字是矩阵,矩阵包括r列,每列也是一个向量。可选地,所述矩阵的每列是相互正交的。在一些示例中,构成码字的向量是一个0-1向量,其中整个向量只有一个值为1,其它的值为零。在一些示例中,构成码字的向量是一个DFT矢量(离散傅里叶变换,Discrete Fourier Transform,DFT)。在一些示例中构成码字的向量是两个或者两个以上的DFT矢量通过张量积 (kronecker积)获得。在一些示例中构成码字的向量是两个或者两个以上的DFT矢量通过乘以不同的相位旋转连接得到。在一些示例中构成码字的向量是两个或者两个以上的DFT矢量通过张量积(kronecker积)以及乘以相位旋转获得。基站或者终端通过查找L个码字,找到跟信道最匹配的码字作为最优码字以传输数据或者信号。这里跟信道匹配的码字包括但不限于以下至少之一:码字和信道的距离最小,码字和信道的相关性最大,码字和信道的最优的右奇异向量或者矩阵的距离最小,码字和信道的最优的右奇异向量或者矩阵相关性最大,码字和信道计算得到的信噪比最大等。L为大于1的整数,一般来说大于发送天线数目。
在一些示例中,终端和基站通过第二类预编码信息传输与信道匹配的信道状态信息,第二类预编码信息是基于AI获得的信道状态信息,在一个示例中,基站和终端通过自编码器的编码器获得信道状态信息,自编码器包括一个编码器和解码器,其中,编码器在终端而解码器在基站侧。终端通过编码器对获得信道H进行压缩得到压缩后的H1,并将压缩后的信道H1量化反馈给基站,基站接收量化后的H1,量化后的H1去量化后输入解码器,解码器对其进行解压缩,从而恢复H。在一个示例中,H包括K0个元素,终端从H中选K个元素作为H1,对H1量化进行反馈,基站接收所述K个量化的元素并将它去量化,将去量化的K个元素输入目标模块,目标模块输出K0个元素作为对H的恢复,从而得到所述H的预编码矩阵。其中,K和K0为大于1的整数,且K<K0。这里,通过压缩器的H1或从H中选择的K个元素都为第二类预编码信息。并且为了简单起见,量化后的H1也称为第二类预编码信息。在一个示例中,第二类预编码信息也可以是通过其它非AI方式生成的与第一类预编码信息不同的预编码矩阵。在一个示例中,第二类预编码信息也可以是所述第一类预编码信息之外的预编码矩阵。
在一些示例中,为了传输CSI,比如终端反馈CSI,基站接收CSI,需要终端和基站定义一个CSI报告(CSI report或者CSI report congfig),其中CSI报告至少定义了如下参数之一:用于反馈CSI的时频资源,CSI包括的reportQuantity,CSI反馈的时域类别reportConfigType,测量信道资源,测量干扰资源,测量的带宽大小等信息。其中CSI报告可以在上行传输资源上传输,其中上行传输资源为用于传输上行信令或者数据的资源,包括但不限于PUSCH和PUCCH,而CSI report也包括时域特性,包括周期的CSI报告(periodic CSI report,P-CSI),非周期的CSI报告(aperiodic CSI report,AP-CSI),半持续的CSI报告(semi-persistent CSI report,SP-CSI)。一般来说,P-CSI传输的比特数目相对较小,在PUCCH上传输,而A-CSI传输的比特数较多,一般在PUSCH上传输,而SP-CSI可以基于PUSCH传输,也可以基于PUCCH传输。其中, 基于PUCCH传输的P-CSI一般用高层信令(无线资源控制,Radio Resource Control,RRC)配置,基于PUCCH传输的SP-CSI也是用高层信令(RRC和/或MAC CE)配置或者激活,而基于PUSCH传输的SP-CSI或者A-CSI都是通过物理层信令(下行控制信息,Downlink control information,DCI)触发,而DCI一般在物理下行控制信道(Physical downlink control channel,PDCCH)上传输。
在一些实施例中,通过一个CSI报告反馈信道状态或者信道信息可以指,将所述信道状态或者信道信息承载在所述CSI报告指示的上行传输资源上,并通过所述上行传输资源传输所述信道状态或者信道信息。在一些实施例中,反馈信道状态或者信道信息可以指,将所述信道状态或者信道信息承载在上行传输资源上,并通过所述上行传输资源传输所述信道状态或者信道信息。
在一些实施例中,基站通过高层信令和/或物理层信令给终端配置了N个需要向基站反馈的CSI报告(CSI report),每个CSI报告都有一个索引值(identity,ID),称为CSI reportID,终端可以根据自己的计算能力或者处理能力,以及基站的要求选择N个CSI报告中的M个CSI报告。并根据上行反馈的资源,反馈该M个CSI报告中的至少一个CSI报告,其中N和M为正整数,且M<=N。在一个示例中,需要反馈M个CSI报告,但所述M个报告中至少有两个报告的反馈资源是冲突的,所述两个报告的反馈资源冲突是指用于反馈所述两个报告对应的传输资源(比如PUCCH或者PUSCH)中至少有一个符号是相同的和/或至少有一个子载波是相同的。
在一些示例中,信道信息为根据参考信号(比如CSI-RS)获得的用于描述通信节点间的信道环境的信息,比如时域信道矩阵,频域信道矩阵。在一些示例中,信道信息是一个复数矩阵,跟发送天线数目Nt,接收天线数目Nr,资源元素(Resource Element,RE)有关。比如在一个物理资源块上至少有一个Nr*Nt的信道矩阵。基站在1个时隙上发送用于信道测量的参考信号。终端在一个时隙上接收所述用于信道测量的参考信号。根据接收的所述参考信号获得对应时隙的信道信息H。
在一些实施例中,一个信道信息是N个端口的信道信息或N个发送端口的信道信息,主要是指信道信息是发送端口数目为N的信道信息,比如在每个RE或者PRB上,N个端口信道信息为一个Nr*N的复数矩阵。
在一些实施例中,一个信道信息是M个接收端口的信道信息,主要是指信道信息是接收端口数目为M的信道信息,比如在每个RE或者PRB上,M个接收端口信道信息为一个M*Nt的复数矩阵。在一些实施例中,神经网络可以将一个Nr1*Nt1矩阵预测为一个Nr*Nt的信道信息,其中,Nr1,Nt1,Nt,Nr为正 整数,且Nt1<Nt和/或Nr1<Nr,这时可以称信道信息为N个发送端口M个接收端口的信道信息。
在一些示例中,可以通过目标模块将一个参考信号获得的信道信息确定为预测信道信息。在一些示例中,参考信号获得的信道信息包括第一信道信息,第二信道信息,第i信道信息等,i=1,…,K,一般来说,参考信号获得的信道信息对应的端口数目小于预测信道信息。在一些示例中,目标模块是一个功能模块,可以基于人工智能实现,比如基于目标模块实现,比如基于神经网络实现。在一些示例中,目标模块可以基于一些非线性映射关系实现,其中非线性映射关系把输入的信道信息通过一系列的非线性操作映射到输出的预测信道信息中,这里信道信息包括但不限于信道矩阵,时域信道矩阵,频域信道矩阵之一。在一些示例中,目标模块也可以称为操作,处理,映射等。目标模块的作用可以是将一个M端口的信道信息处理为一个N端口的预测信道信息,M小于N。
在一个示例性实施方式中,图1为本申请实施例提供的一种传输方法的流程示意图,本实施例提供的方法应用于第一通信节点。所述方法包括如下步骤:
S110、接收K套参考信号。
K为正整数。第一通信节点可以从第二通信节点接收K套参考信号。第一通信节点可以为终端设备。第二通信节点可以为基站。
K套参考信号对应的端口数目可以相同,也可以不同。
S120、根据所述K套参考信号确定N个端口的预测信道信息。
其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目。k=1,…,K,K为正整数。
在接收K套参考信号后,可以基于K套参考信号确定大于K套参考信号对应端口数目总和的N个端口的预测信道信息。
预测信道信息可以认为是第一通信节点基于K套参考信号预测的信道信息。基于预测信道信息可以确定对应的信道状态信息并将其反馈至第二通信节点,也可以将预测信道信息反馈至第二通信节点。信道信息可以认为是对信道参数化后的信息。
在一个实施例中,K=2,基于2套参考信号,确定N个端口的预测信道信息。
在一个实施例中,K=1,基于1套参考信号,确定N个端口的预测信道信息。
在确定预测信道信息时,可以结合目标模块确定。
在一个实施例中,第一通信节点可以将第一套参考信号对应的M1个端口的第一信道信息传输至第二通信节点,第二通信节点获取到第一信道信息后可以确定N个端口的预测信道信息。
在一个实施例中,第一通信节点可以传输小于M1个端口的第一信道信息至第二通信节点,第二通信节点获取到小于M1个端口的第一信道信息后可以确定N个端口的预测信道信息。
在一个实施例中,第一通信节点可以自身直接基于K套参考信号确定N个端口的预测信道信息。如确定K套参考信号对应的信道信息,进而基于目标模块确定N个端口的预测信道信息。
本申请实施例提供的传输方法,第一通信节点基于接收的K套参考信号确定N个端口的预测信道信息,实现了以较小的端口(即K套参考信号对应的端口)来预测N个端口的信道,降低了参考信号的开销。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述K套参考信号具有相同的准共址配置。
在一个实施例中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第i套参考信号确定Mi个端口的第i信道信息Hi,i=1,…,K;
根据所述第i信道信息Hi,i=1,…,K,确定N个端口的预测信道信息(即基于H1,…,HK,确定N个端口的预测信道信息);
其中,Mi为正整数,i=1,…,K,K为正整数。
在一个实施例中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第i套参考信号确定Mi个端口的第i信道信息Hi
根据所述第i信道信息Hi确定Ni个端口的第i预测信道信息Pi,i=1,…,K;
将所述第i预测信道信息Pi组合得到N个端口的预测信道信息(即根据P1,…,PK组合得到N个端口的预测信道信息);
其中,Ni,Mi为正整数且,Ni不小于Mi,i=1,…,K,K为正整数。
本申请中,1,…,K可以认为是1,2,3…,K,P1,…,PK可以认为是P1,P2,,…,PK。步长可以为设定值或1。
在一个实施例中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息;
根据第二套参考信号确定M2个端口的第二信道信息;
根据所述第一信道信息和所述第二信道信息,确定N个端口的预测信道信息。
本实施例不限定K套参考信号中第一套参考信号和第二套参考信号的划分。如参考信号为CSI-RS,每套CSI-RS有一个CSI-RS resource ID,可以基于CSI-RS的ID确定K套CSI-RS中的第一套CSI-RS和第二套CSI-RS,如ID最小的为第一套CSI-RS,仅比第一套CSI-RS的ID大的为第二套CSI-RS,以此类推。即将多套CSI-RS的ID排序,按照由小到大的顺序,多套CSI-RS依次为第一套CSI-RS、第二套CSI-RS……。
第一信道信息为第一套参考信号对应的信道信息。第二信道信息为第二套参考信号对应的信道信息。
本实施例在基于第一信道信息和第二信道信息确定预测信道信息时,可以基于目标模块确定。
在一个实施例中,将第一信道信息和第二信道信息输入目标模块,得到N个端口的预测信道信息。
其中,在每个资源元素(resource element,RE)上,第一信道信息为Nr*M1的复数矩阵,第二信道信息为Nr*M2的复数矩阵,预测信道信息为Nr*N的复数矩阵,Nr为接收端口数目,Nr为正整数,K=2,M1、M2、N为正整数,且M1+M2<N。
在一个实施例中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息;
根据第二套参考信号确定M2个端口的第二信道信息;
根据第一信道信息确定N1个端口的第一预测信道信息;
根据第二信道信息确定N2个端口的第二预测信道信息;
将所述第一预测信道信息和所述第二预测信道信息组合得到N个端口的预 测信道信息,N1和N2为正整数,N1+N2=N,M1<N1和/或M2<N2
第一预测信道信息可以认为是基于第一信道信息确定的信道信息。第二预测信道信息可以认为是基于第二信道信息确定的信道信息。第一预测信道信息和第二预测信道信息可以组合(如拼接,连接,合并等)得到N个端口的预测信道信息。
在一个实施例中,可以采用目标模块确定第一预测信道信息和第二预测信道信息。
在一个实施例中,将第一信道信息输入目标模块,得到N1个端口的第一预测信道信息。
在一个实施例中,将第二信道信息输入目标模块,得到N2个端口的第二预测信道信息。
在一个实施例中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据所述K套参考信号确定M1个端口的第一信道信息;
根据所述第一信道信息确定N个端口的预测信道信息,其中,K=1,M1和N为正整数,M1<N。
在本实施例中,基于一套参考信号确定N个端口的预测信道信息。
在基于第一信道信息确定预测信道信息时,可以基于目标模块确定。
在一个实施例中,将第一信道信息输入目标模块,得到N个端口的预测信道信息。
在一个实施例中,该方法,还包括:
根据N个端口的预测信道信息确定N个端口的信道状态信息;
传输所述N个端口的信道状态信息。
确定N个端口的信道状态信息后,第一通信节点可以将信道状态信息传输至第二通信节点。
在一个实施例中,所述信道状态信息包括第一类预编码信息或第二类预编码信息。
在一个实施例中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息,传输M1个端口的第一信道信息;所述M1个端口的第一信道信息用于确定N个端口的预测信道信息。 其中,M1和N为大于1的整数,所述的M1小于N,所述K=1。
本实施例在确定预测信道信息时,可以基于第一套参考信号确定第一信道信息,然后将第一信道信息传输至第二通信节点,以供第二通信节点基于第一信道信息确定预测信道信息。第二通信节点在确定预测信道信息后可以将预测信道信息传输至第一通信节点。
第二通信节点在确定预测信道信息时,可以基于AI和/或ML技术。如基于第一AI系统确定N个端口的预测信道信息。
在一个实施例中,该方法,还包括:
传输第一指示信息,用于指示传输信息的类型。其中,传输信息的类型包括信道信息或信道状态信息。其中信道状态信息包括第一类预编码信息和第二类预编码信息。在一个示例中,所述第一指示信息包括两个取值,所述第一指示信息可以指示传输资源传输的是信道信息还是信道状态信息。在一个示例中,如果信道状态信息进一步分类,所述第一指示信息包括三个取值,即所述第一指示信息用于指示信道信息、第一类预编码信息和第二类预编码信息。通信节点可以用所述第一指示信息指示传输资源传输的是信道信息、第一类预编码信息和第二类预编码信息中的一个。
所述第一指示信息为以下之一:物理层信令、物理层信令的一个字段、高层信令、高层信令中的一个字段、CSI报告对应的一个字段,这里所述字段包括至少一个比特。在一个示例中,所述第一指示信息包括两个值,所述字段取值为第一值时,表示所述CSI报告对应的传输信息为信道信息,当所述字段取值为第二值时,表示所述CSI报告对应的传输信息为信道状态信息。在一个示例中,所述第一指示信息包括三个值,所述字段取值为第一值时,表示所述CSI报告对应的传输信息为信道信息,当所述字段取值为第二值时,表示所述CSI报告对应的传输信息为第一类预编码信息,当所述字段取值为第三值时,表示所述CSI报告对应的传输信息为第二类预编码信息。其中,这里的第一值,第二值,第三值可以为布尔值,或者整数值,或者实数值。在一个示例中第一值为FALSE,第二值和/或第三值为TRUE。在一个示例中第一值为0,第二值和第三值为不同的非零值。在一个示例中第一值为TRUE,第二值和/或第三值为FLASE。在一个示例中第一值为非零值,第二值和/或第三值为0。
第一指示信息、信道状态信息或信道信息中的一个或多个可以一起传输至第二通信节点,也可以单独传输至第二通信节点。
在一个实施例中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息;
根据M1个端口的第一信道信息确定Ms个端口的第一信道信息;
传输Ms个端口的第一信道信息,所述Ms个端口的第一信道信息用于确定N个端口的预测信道信息,其中,M1和Ms为大于1的整数,所述的M1大于Ms,所述K=1。
在本实施例中,传输Ms个端口的第一信道信息,以供第二通信节点确定N个端口的预测信道信息。即第一通信节点从配置的端口中选择端口后传输对应的信道信息至第二通信节点。在一个实施例中,该方法,还包括:
获取端口的拓扑配置信息,所述端口的拓扑配置信息包括如下一个或多个:
Mi和N的取值;
Mi个端口的行数和列数;
N个端口的行数和列数;
Mi个端口在N个端口中的位置信息;
端口的排列方式。
其中,Mi和N为大于1的整数,i大于等于1且小于等于K。
位置信息可以是索引。第二通信节点将第二通信节点的端口的拓扑配置信息传输至第一通信节点。拓扑配置信息可以认为是表征端口拓扑的信息,比如天线阵列是几行几列的,在几个面板上,天线阵列下倾角,天线阵列倾斜角,天线阵列发现方向等。
在一个实施例中,所述Mi个端口在N个端口中的位置信息,用于指示包括如下之一:
Mi个端口对应N个端口中一个极化方向的端口;
Mi个端口对应N个端口中的奇数索引端口;
Mi个端口对应N个端口中的偶数索引端口;
Mi个端口的一行对应着N个端口的一行中的奇数索引端口或偶数索引端口;
Mi个端口的一列对应着N个端口的一列中的奇数索引端口或偶数索引端口;
Mi个端口对应着N个端口的奇数行端口或偶数行端口;
Mi个端口对应着N个端口的奇数列端口或偶数列端口。
其中,Mi和N为大于1的整数,i大于等于1且小于等于K。
在一个实施例中,接收K套参考信号,包括:
周期性接收K套参考信号,所述K套参考信号有相同的端口数目。
一个时隙接收K套参考信号,不同时隙接收多个K套参考信号,本实施例周期性接收K套参考信号。
在一个实施例中,所述周期性接收K套参考信号,包括:
在奇数周期上接收W11个端口的K套参考信号;
在偶数周期上接收W12个端口的K套参考信号,其中K为正整数,W11和W12为不同的正整数。
在一个实施例中,所述周期性接收K套参考信号,包括:
持续X个周期接收Q1个端口的K套参考信号,之后持续Y个周期接收Q2个端口的K套参考信号,其中,X,Y,K为正整数,Q1和Q2为不同的正整数。在一个示例中,X=1,Y=1;在一个示例中,X>1,Y=1;在一个示例中,X=1,Y>1;
在一个示例中,在一个周期中接收所述K套参考信号中的一套参考信号。比如参考信号的周期每K个为一组,称为一个长度为K的大周期,即在一个大的周期内,K个周期的每个周期内接收一套参考信号。接收完一个大周期,然后进入下一个大的周期,如此循环反复。
在一个实施例中,接收K套参考信号,包括:
半持续接收K套参考信号,所述K套参考信号有相同的端口数目,K为正整数。
在一个实施例中,半持续接收K套参考信号,包括:
在奇数周期上接收M31个端口的K套参考信号;
在偶数周期上接收M32个端口的K套参考信号;
在持续周期为C的半持续,在第C个周期传输第一目标数量个端口的K套参考信号。M31和M32为正整数。在第C个周期传输第一目标数量个端口的K套参考信号可以为在第C个周期接收第一目标数量个端口的K套参考信号。
在一个实施例中,所述第一目标数量基于所述C的奇偶、M31和M32的大小确定。
本实施例不限定如何基于C的奇偶、M31和M32的大小确定第一目标数量。
在一个实施例中,在C为奇数的情况下,在第C个周期传输(如接收)M31个端口的K套参考信号,或传输(如接收)M32个端口的K套参考信号;在C为偶数的情况下,在第C个周期传输(如接收)M31个端口的K套参考信号,或传输(如接收)M32个端口的K套参考信号;所述第一目标数量为M31和M32中取值大的数量。
在一个实施例中,半持续接收K套参考信号,包括:
持续S个周期接收W1个端口的K套参考信号,之后持续L个周期接收W2个端口的K套参考信号。
其中,S,L,K为正整数,W1和W2为不同的正整数。
在一个实施例中,半持续接收参考信号的持续周期为C个周期,半持续接收K套参考信号包括以下之一:
在第C个周期传输W2个端口的K套参考信号;
在第C个周期传输W1个端口的K套参考信号;
其中,所述C,S和L为正整数,且S+L<=C。
在持续周期为C的半持续,在第C个周期发送第二目标数量个K套参考信号。
在一个实施例中,所述第二目标数量基于C是否为S和L之和的整数倍以及W1和W2的大小确定。
本实施例不限定如何基于C是否为S和L之和的整数倍以及W1和W2的大小确定第二目标数量。
在一个实施例中,在C为S和L之和的整数倍的情况下,在第C个周期传输(如接收)W1或W2个端口的K套参考信号;在C非S和L之和的整数倍的情况下,在第C个周期传输(如接收)W1或W2个端口的K套参考信号;所述第二目标数量为W1和W2中取值大的数量。
在一个实施例中,在所述C为S+L的整数倍的情况下,在所述第C个周期传输W2个端口的K套参考信号;在所述C为S+L的非整数倍的情况下,在所述第C个周期根据预设规定传输W1或W2个端口的K套参考信号。
在一个示例中,将C个半持续的周期分成K组,在一组周期的一个周期中接收所述K套参考信号中的一套参考信号。每K个周期为一组,称为一个长度为K的大周期,即在一个大的周期内,K个周期的每个周期内接收一套参考信号。接收完一个大周期,然后进入下一个大的周期,如此循环反复直到第C个周期。其中,C为K的倍数。如果C不是K的倍数,那么最后一个大周期可能 有至少一套参考信号没有被接收。
此处不对预先规定进行限定,可以根据实际需求设定。
在一个实施例中,该方法,根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的信道状态信息,传输M1个端口的信道状态信息,如发送M1个端口的信道状态信息。
所述M1个端口的信道状态信息用于确定N个端口的预测信道信息。
发送M1个端口的信道状态信息,指示第二通信节点确定N个端口的预测信道信息。
在一个实施例中,该方法,还包括:
传输第二指示信息,所述第二指示信息用于指示信道状态信息类型。所述信道状态信息类型至少包括第一类预编码信息和第二类预编码信息。例如,可以通过第二指示信息的取值来指示通信节点传输的信道状态信息类型,当第二指示信息取第一值时,通信节点传输的是第一类预编码信息,当第二指示信息取第二值时,通信节点传输的是第二类预编码信息。
在一个示例性的实施方式中,第一值为0,第二值为1,或者第一值为0,第二值为非0值;或者第一值为FALSE,第二值为TRUE。第一值和第二值也可以取其它情况的实数值,只要能对两种情况进行区分就可以。
在一个示例性的实施方式中,终端反馈所述第二指示信息,所述第二指示信息取第一值,终端将信道信息确定为第一类预编码信息,反馈所述的第一类预编码信息,基站接收所述的第二指示信息和第一类预编码信息。
在一个示例性的实施方式中,终端反馈所述第二指示信息,所述第二指示信息取第二值,终端将信道信息确定为第二类预编码信息,反馈所述的第二类预编码信息。基站接收所述用于描述信道状态信息的第二指示信息和第二类预编码信息。
在有的示例中,第二指示信息还可以取第三值,用于表示终端传输的是端口选择的信道状态信息。
在有的示例中,第二指示信息还包括第四值,用于表示终端传输的是端口选择的信道信息。其中,这里的第一值,第二值,和/或第三值,和/或第四值为不相同的整数或者不相同的实数。
第二指示信息可以是以下之一:物理层信令、物理层信令的一个字段、高层信令、高层信令中的一个字段、CSI报告对应的一个字段,这里所述字段包括 至少一个比特。
第二指示信息的不同取值可以对应有指示不同的内容。如在第二指示信息取值为第三值时,第二指示信息指示第一通信节点传输的是端口选择的信道状态信息。在第二指示信息取值为第四值时,第二指示信息指示第二通信节点如下信息:第一通信节点传输的是端口选择的信道信息。
在一个实施例中,在第一通信节点由于能力问题或所处场景改变,不能输出N个端口的信道信息,或者输出的N个端口的信道信息导致估计的信道信息H,又称预测信道信息H,和实际信道差异较大,则第一通信节点可以发送第二指示信息。
在一个示例性实施方式中,本申请还提供了一种传输方法,图2a为本申请实施例提供的又一种传输方法的流程示意图;该方法应用于第二通信节点,所述方法包括如下步骤:
S210、传输K套参考信号。
K为正整数。第二通信节点可以将K套参考信号传输至第一通信节点。
所述K套参考信号用于确定N个端口的预测信道信息,其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目。
S220、获取N个端口的信道状态信息或N个端口的信道信息。
在一个实施例中,N个端口的信道状态信息可以是第二通信节点确定,也可以是第一通信节点确定后传输至第二通通信节点。
在一个实施例中,获取N个端口的信道状态信息包括:接收第一通信节点反馈的N个端口的信道状态信息。
在一个实施例中,获取N个端口的信道状态信息包括:接收第一信道信息;
根据所述第一信道信息,确定N个端口对应的预测信道信息;
基于所述N个端口对应的预测信道信息,确定N个端口的信道状态信息,所述第一信道信息为M1个端口的信道信息,所述M1和N为正整数,且M1<N,或所述第一信道信息为Ms个端口的信道信息,Ms为正整数,且Ms<M1<N。
在一个实施例中,获取N个端口的信道状态信息包括:接收第一套参考信号对应的M1个端口的第一信道信息,基于M1个端口的第一信道信息确定N个端口的信道状态信息。
在一个实施例中,获取N个端口的信道状态信息包括:接收第一套参考信号对应的M1个端口的信道状态信息,基于M1个端口的信道状态信息确定N个端口的信道状态信息。
在一个实施例中,接收第一通信节点传输的多套参考信号对应的信道状态信息或信道信息,基于所接收的多套参考信号对应的信道信息或信道状态信息,确定N个端口的信道状态信息。
在一个实施例中,获取N个端口的信道信息,包括:
接收第一信道信息;
根据所述第一信道信息确定N个端口对应的预测信道信息;
其中,所述第一信道信息为M1个端口的信道信息,所述M1和N为正整数,且M1<N,或所述第一信道信息或Ms个端口的信道信息,Ms为正整数,且Ms<M1<N。
本实施例尚未详尽的内容可以参见上述实施例,此处不作赘述。
本申请实施例提供的传输方法,第二通信节点确定的N个端口的信道状态信息实现了以较小的端口(即K套参考信号对应的端口)来预测N个端口的信道。降低了参考信号的开销。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述确定N个端口的信道状态信息,包括:
接收M1个端口所对应第一信道信息;
基于M1个端口所对应第一信道信息确定N个端口对应的预测信道信息;基于所述N个端口对应的预测信道信息,确定N个端口的信道状态信息。M1和N为正整数,且M1小于N。
在一个实施例中,所述确定N个端口的信道状态信息,包括:
接收Ms个端口的信道信息;
基于Ms个端口的信道信息,确定N个端口对应的预测信道信息;
基于所述N个端口对应的预测信道信息,确定N个端口的信道状态信息,Ms和N为正整数,且Ms小于N,Ms个端口的信道信息根据M1个端口的信道信息确定。
在一个实施例中,所述确定N个端口的信道信息,包括:
接收M1个端口所对应第一信道信息;
基于M1个端口所对应第一信道信息确定N个端口对应的预测信道信息。M1和N为正整数,且M1小于N。
在一个实施例中,所述确定N个端口的信道信息,包括:
接收Ms个端口的信道信息;
基于Ms个端口的信道信息,确定N个端口对应的预测信道信息;
其中,Ms和N为正整数,且Ms小于N,Ms个端口的信道信息根据M1个端口的信道信息确定。
第二通信节点在基于第一信道信息确定预测信道信息的情况下,可以基于目标模块确定。
在一个实施例中,所述确定N个端口的信道状态信息,包括:
接收M1个端口的信道状态信息;
基于M1个端口的信道状态信息,确定N个端口对应的预测信道信息;
基于所述N个端口对应的预测信道信息,确定N个端口的信道状态信息。
第二通信节点在基于信道状态信息确定预测信道信息的情况下,可以目标模块确定。
在一个实施例中,所述K套参考信号具有相同的准共址配置。
在一个实施例中,N个端口的预测信道信息由第一通信节点确定。
在一个实施例中,信道状态信息包括第一类预编码信息或第二类预编码信息。
在一个实施例中,该方法还包括:接收第一指示信息,所述第一指示信息用于指示传输信息的类型。
在一个实施例中,该方法还包括:接收Ms个端口的第一信道信息,基于Ms个端口的第一信道信息,确定N个端口的预测信道信息,Ms为大于1的整数,M1大于Ms。Ms个端口的第一信道信息为根据M1个端口的第一信道信息确定,如从M1个端口的第一信道信息中选择的Ms个端口的信道信息,M1个端口的第一信道信息基于第一套参考信号确定。
在一个实施例中,该方法还包括:发送端口的拓扑配置信息,所述端口的拓扑配置信息包括如下一个或多个:
Mi和N的取值;
Mi个端口的行数和列数;
N个端口的行数和列数;
Mi个端口在N个端口中的位置信息;
端口的排列方式;
其中,Mi和N为大于1的整数,i大于等于1且小于等于K。
在一个实施例中,所述Mi个端口在N个端口中的位置信息,包括如下之一:
Mi个端口对应N个端口中一个极化方向的端口;
Mi个端口对应N个端口中的奇数索引端口;
Mi个端口对应N个端口中的偶数索引端口;
Mi个端口的一行对应着N个端口的一行中的奇数索引端口或偶数索引端口;
Mi个端口的一列对应着N个端口的一列中的奇数索引端口或偶数索引端口;
Mi个端口对应着N个端口的奇数行端口或偶数行端口;
Mi个端口对应着N个端口的奇数列端口或偶数列端口。
其中,Mi和N为大于1的整数,i大于等于1且小于等于K。
在一个实施例中,传输K套参考信号,包括;
周期性发送K套参考信号,所述K套参考信号有相同的端口数目。
在一个实施例中,所述周期性发送K套参考信号,包括:
在奇数周期上发送W11个端口的K套参考信号;
在偶数周期上发送W12个端口的K套参考信号,其中K为正整数,W11和W12为不同的正整数。
在一个实施例中,所述周期性发送K套参考信号,包括:
持续X个周期发送Q1个端口的K套参考信号,之后持续Y个周期发送Q2个端口的K套参考信号,其中,X,Y,K为正整数,Q1和Q2为不同的正整数。
在一个实施例中,传输K套参考信号,包括:
半持续发送K套参考信号,所述K套参考信号有相同的端口数目,K为正整数。
在一个实施例中,半持续发送K套参考信号,包括:
在奇数周期上发送M31个端口的K套参考信号;
在偶数周期上发送M32个端口的K套参考信号;
在持续周期为C的半持续,在第C个周期发送第一目标数量个端口的K套 参考信号。M31和M32为正整数。
在一个实施例中,所述第一目标数量基于所述C的奇偶、M31和M32的大小确定。
在一个实施例中,在C为奇数的情况下,在第C个周期发送M31个端口的K套参考信号,或发送M32个端口的K套参考信号;在C为偶数的情况下,在第C个周期发送M31个端口的K套参考信号,或发送M32个端口的K套参考信号;所述第一目标数量为M31和M32中取值大的数量。
在一个实施例中,半持续发送K套参考信号,包括:
持续S个周期发送W1个端口的K套参考信号,之后持续L个周期发送W2个端口的K套参考信号;
在持续周期为C的半持续,在第C个周期发送第二目标数量个K套参考信号。
其中,S,L,K为正整数,W1和W2为不同的正整数
在一个实施例中,所述第二目标数量基于C是否为S和L之和的整数倍以及W1和W2的大小确定。
在一个实施例中,在C为S和L之和的整数倍的情况下,在第C个周期发送W1或W2个端口的K套参考信号;在C非S和L之和的整数倍的情况下,在第C个周期发送W1或W2个端口的K套参考信号;所述第二目标数量为W1和W2中取值大的数量。
在一个实施例中,在所述C为S+L的整数倍的情况下,在所述第C个周期传输W2个端口的K套参考信号;在所述C为S+L的非整数倍的情况下,在所述第C个周期根据预设规定传输W1或W2个端口的K套参考信号。
在一个实施例中,该方法,还包括:
接收M1个端口的信道状态信息。
在一个实施例中,该方法,还包括:
接收第二指示信息,所述第二指示信息指示信道状态信息类型。
以下对本申请进行示例性描述:
在本示例中,本申请提供的传输方法可以认为是一种CSI预测方法,为了降低参考信号的开销,利用人工智能(Artificial Intelligence,AI)/机器学习(Machine learning,ML)研究CSI-RS开销的降低是有益的。即用较小的M个端口来预测N个端口的信道。其中M<N,M和N为正整数。
在用M个端口预测N个端口的信道时,需要确定如何配置所述M个端口的参考信号,如配置CSI-RS,以及如何从M个端口的参考信号预测和反馈所述的N个端口的信道信息,以及如何配置天线的拓扑,如几行几列,线性阵列,平面阵列,双极化,圆形阵列中的哪一种,实际传输的是哪几个端口,恢复到几个端口,如何根据多套端口恢复到一个更大的端口,如何配置周期非周期的端口以校验信道恢复的性能。
为了解决上述技术问题之一,下面给出一些实施例或者示例:
方案1:接收K套CSI-RS资源,根据所述K套CSI resource获取N个端口的预测信道信息H。其中,N>M1+…+MK,N,M1,…,MK为正整数,Mk为第k个CSI-RS资源对应的端口数目。
在一个实施例中,所述K套CSI-RS资源具有相同的准共址(Quasi-Co-Location,QCL)配置。
在一个实施例中,所述K套CSI-RS资源具有相同的端口数目。
示例1:终端接收基站配置的K套CSI-RS资源,终端根据第i套CSI-RS资源获得Mi个端口的第i信道信息Hi,并根据所述K套CSI-RS资源获得的Mi个端口的信道信息Hi(i=1,…,K)获得N个端口的预测信道信息H。
根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据所述K=2套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息;
根据第二套参考信号确定M2个端口的第二信道信息;
根据所述第一信道信息和所述第二信道信息,确定N个端口的预测信道信息。
其中,N>M1+M2。一种方式是将第一信道信息H1和第二信道信息H2输入目标模块,通过目标模块获得N个端口的预测信道信息H。其中,在每个RE上,H1为Nr*M1的复数矩阵,H2为Nr*M2的复数矩阵,H为Nr*N的复数矩阵。
示例2:终端接收基站配置的K个CSI-RS资源,终端基于第i套参考信号确定Mi个端口的第i信道信息Hi,并根据Mi个端口的信道信息Hi获得Ni个端口的预测信道信息Pi(比如将Hi输入目标模块获得预测信道信息Pi),将所有K套参考信号的预测信道信息Pi组合成更大的预测信道矩阵H,i=1,…,K。
比如,根据所述K=2套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息;
根据第二套参考信号确定M2个端口的第二信道信息;
根据第一信道信息确定N1个端口的第一预测信道信息;
根据第二信道信息确定N2个端口的第二预测信道信息;
将所述第一预测信道信息和所述第二预测信道信息组合得到N个端口的预测信道信息,N1和N2为正整数,N1+N2=N,M1<N1和/或M2<N2
一种方式是将Hi输入目标模块,通过目标模块获得Ni个端口的预测信道信息Pi。其中,在每个RE上,Pi为Nr*Ni的复数矩阵,Hi为Nr*Mi的复数矩阵,将所述Pi组合(如拼接)成更大的信道矩阵H,H为Nr*N的复数矩阵,i=1,2。
示例3:根据所述K=1套参考信号确定N个端口的预测信道信息,包括:
根据所述参考信号确定M1个端口的第一信道信息;
根据所述第一信道信息确定N个端口的预测信道信息,其中,K=1,M1和N为正整数,M1<N。
在K=1时,终端接收基站配置的1个CSI-RS资源,终端根据所述CSI-RS资源获得M1个端口的第一信道信息H1,并根据M1个端口的第一信道信息H1获得N个端口的预测信道信息H。其中,N>M1。一种方式是将H1输入目标模块,通过目标模块获得N个端口的预测信道信息H。其中,在每个RE上,H1为Nr*M1的复数矩阵,H为Nr*N的复数矩阵。
示例4:终端反馈预测信道信息H对应的信道状态信息给基站,如根据N个端口的预测信道信息确定N个端口的信道状态信息后,传输所述N个端口的信道状态信息。其中信道状态信息可以包括与预测信道信息H匹配的第一类预编码信息或者第二类预编码信息。
示例5:第一通信节点根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息,传输M1个端口的第一信道信息;所述M1个端口的第一信道信息用于确定N个端口的预测信道信息。其中,M1和N为大于1的整数,所述的M1小于N,所述K=1。第二通信节点确定N个端口的信道状态信息,包括:接收M1个端口所对应第一信道信息;基于M1个端口所对应第一信道信息确定N个端口对应的预测信道信息;基于所述N个端口对应的预测信道信息,确定N个端口的信道状态信息。
终端反馈M1个端口的第一信道信息H1给基站,基站根据M1个端口的第一信道信息H1输入目标模块获得N个端口的预测信道信息H。终端需要告知基站反馈的是信道信息还是信道状态信息。如传输第一指示信息,所述第一指示信 息用于指示传输信息的类型。传输信息的类型包括信道信息或信道状态信息。
在一个实施例中,为了从M1个端口的第一信道信息H1获得N个端口的预测信道信息H。终端需要接收基站的天线的拓扑配置,即获取端口的拓扑配置信息。包括:
A)Mi和N的取值;
B)Mi个端口对应天线是几行几列,即Mi个端口的行数和列数。
C)N个端口对应的天线是几行几列,即N个端口的行数和列数。
D)Mi个端口在N个端口中的索引,即Mi个端口在N个端口中的位置信息。
E)天线的排列包括:线性阵列,平面阵列,双极化,圆形阵列等,即端口的排列方式。
对于Mi个端口在N个端口中的索引,即位置信息:包括以下几种默认的方式:
A)Mi个端口对应N个端口的一个极化方向的端口。
B)Mi个端口对应N个端口的奇数索引端口。
C)Mi个端口对应N个端口的偶数索引端口。
D)Mi个端口的一行对应着N个端口的一行中的奇数索引端口或偶数索引端口。
E)Mi个端口的一列对应着N个端口的一列中的奇数索引端口或偶数索引端口。
F)Mi个端口对应着N个端口的奇数行端口或偶数行端口。
G)Mi个端口对应着N个端口的奇数列端口或偶数列端口。
在一个实施例中,终端通过接收时域特性为周期的CSI-RS资源获得所述的M1个端口的第一信道信息H1。
一种方式是,CSI-RS资源在每个周期的端口数目可以不同,比如包括:
A)在奇数周期接收M11个端口的CSI-RS,在偶数周期接收M12个端口的CSI-RS。M11和M12为不同的正整数。
B)持续X个周期接收M21个端口的CSI-RS,之后持续Y个周期接收M22个端口的CSI-RS。M21和M22为不同的正整数。X和Y为正整数。比如连续4个周期接收M21个端口的CSI-RS,接着1个周期接收M22个端口的CSI-RS。X 和Y需要配置。即所述周期性接收K套参考信号,包括:持续X个周期接收Q1个端口的K套参考信号,之后持续Y个周期接收Q2个端口的K套参考信号,其中,X,Y,K为正整数,Q1和Q2为不同的正整数。M11、M12、M21、M22、M31、M32、Mk、Q1和Q2仅为区别不同端口数。
在一个实施例中,终端通过接收时域特性为半持续semi persist的CSI-RS资源获得所述的M1个端口的第一信道信息H1。
一种方式是,CSI-RS资源在每个周期的端口数目可以不同,比如包括:
A)在奇数周期接收M31个端口的CSI-RS(即在奇数周期上接收M31个端口的K套参考信号),在偶数周期接收M32个端口的CSI-RS(即在偶数周期上接收M32个端口的K套参考信号)。M31和M32为不同的正整数。对于持续周期为C的半持续semipersist。如果C为奇数,那么第C个周期强制传输M32个端口的CSI-RS。或者如果C为偶数,那么第C个周期强制传输M31个端口的CSI-RS。
在持续周期为C的半持续,在第C个周期传输第一目标数量个端口的K套参考信号。
在一个实施例中,所述第一目标数量基于所述C的奇偶、M31和M32的大小确定。
在一个实施例中,在C为奇数的情况下,在第C个周期传输M31个端口的K套参考信号,或传输M32个端口的K套参考信号;
在C为偶数的情况下,在第C个周期传输M31个端口的K套参考信号,或传输M32个端口的K套参考信号;
所述第一目标数量为M31和M32中取值大的数量。
持续S个周期接收W1个端口的CSI-RS,之后持续L个周期接收W2个端口的CSI-RS。W1和W2为不同的正整数。S和L为正整数。比如连续4个周期接收W1个端口的CSI-RS,接着1个周期接收W2个端口的CSI-RS。S和L需要配置。对于持续周期为C的semipersist。C为S+L的整数倍或者,C不是S+L的整数倍。
在所述C为S+L的整数倍的情况下,在所述第C个周期传输W2个端口的K套参考信号;
在所述C为S+L的非整数倍的情况下,在所述第C个周期根据预设规定传输W1或W2个端口的K套参考信号。
终端接收了K套的CSI-RS,并根据K套CSI-RS获得M1个端口的第一信 道信息H1,将第一信道信息H1输入目标模块输出N个端口的预测信道信息H,并反馈预测信道信息H对应的信道状态信息CSI。
在一个实施例中,终端可能由于能力问题或者发现场景改变,不能输出N个端口的预测信道信息,或者输出的N个端口的预测信道信息,导致估计的预测信道信息H跟实际的信道差异很大。此时,终端可能需要回退到传统的信道估计方法,如非AI的信道预测方法,线性插值的方法估计信道。
A)终端估计M1个端口的第一信道信息H1。反馈第一信道信息H1。并指示基站根据第一信道信息H1恢复预测信道信息H。如通过第二指示信息指示第二通信节点第一通信节点传输的是第一信道信息H1,需要第二通信节点根据所述第一信道信息H1对应的信道状态信息确定N个端口对应的预测信道信息。
B)终端估计M1个端口的第一信道信息H1。反馈第一信道信息H1对应的信道状态信息。并指示基站其用了传统的信道估计方法,即没有做信道空域预测。如通过第二指示信息指示所述第一通信节点传输的是信道状态信息,未确定N个端口对应的预测信道信息。
C)终端估计Ms个端口的第一信道信息。反馈Ms个端口的第一信道信息或,反馈Ms个端口的第一信道信息对应的信道状态信息,其中,Ms<M1,比如终端通过AI算法从M1个端口的信道选择了Ms个端口的信道进行反馈。即,在根据K=1套参考信号确定N个端口的预测信道信息包括:根据第一套参考信号确定M1个端口的第一信道信息;根据M1个端口的第一信道信息确定Ms个端口的第一信道信息;传输Ms个端口的第一信道信息,所述Ms个端口的第一信道信息用于确定N个端口的预测信道信息,其中,M1和Ms为大于1的整数,所述的M1大于Ms,所述K=1。如通过第二指示信息指示第二通信节点:第一通信节点传输的是端口选择的信道信息;或者第一通信节点传输的是端口选择的信道信息对应的信道状态信息。
以下对上述示例实施例进行说明:
在一些示例中,基站在一个时隙发送一套M个端口的参考信号。终端在接收所述M个端口的参考信号时,根据接收的所述M个端口的参考信号获得对应时隙的预测信道信息H。在一些示例中,H为复数矩阵,跟发送天线数目M,接收天线数目Nr,物理资源块(Physical Resource Block,PRB)个数Nb有关,比如H是一个Nr*M*Nb的复数矩阵,或者在每个PRB上有一个Nr*M的复数矩阵,或者在每个RE上有一个Nr*M的复数矩阵,其中,Nr,M,Nb为正整数。
在一些示例中,所述参考信号为包括M个端口的CSI-RS。
在一些示例中,所述参考信号为包括M个端口的DMRS。
在一些示例中,所述参考信号为包括M个端口的PRS。
在一些示例中,为了减小参考信号的开销,需要用M个端口的信道预测N个端口的信道。基站在一个时隙发送M个端口的参考信号。终端在接收所述M个端口的参考信号。根据接收的所述M个端口的参考信号获得对应时隙的第一信道信息H1,它是一个包括M个发送端口的复数矩阵。在一些示例中,H1为复数矩阵,跟发送天线数目M,接收天线数目Nr,物理资源块(Physical Resource Block)个数Nb有关,比如H是一个Nr*M*Nb的复数矩阵,或者在每个PRB上有一个Nr*M的复数矩阵,或者在每个RE上有一个Nr*M的复数矩阵。终端将所述的第一信道信息H1编码后输入目标模块,目标模块,如第一AI模块输出发送端口数目为N的预测信道信息H。在一些示例中,H为复数矩阵,跟预测的发送天线数目N,接收天线数目Nr,物理资源块(Physical Resource Block)个数Nb有关,比如H是一个Nr*N*Nb的复数矩阵,或者在每个PRB上有一个Nr*N的复数矩阵,或者在每个RE上有一个Nr*N的复数矩阵,Nr,N,M,Nb分别为正整数,且M<N,Nr为接收天线数目,M和N分别为传输的参考信号的端口数目和预测的参考信号对应的端口数目,Nb为PRB的数目或者RE的数目。
其中,第一AI模块可以认为是用于确定发送端口数目为N的预测信道信息H的AI模块,其中,“第一”仅用于区分不同的AI模块。
图2b为本申请实施例提供的一种预测信道的示意图,为了得到8端口的CSI-RS对应的信道,基于AI/ML技术,基站配置实际传输的是4端口的CSI-RS。并可传输至UE。然后,UE将测量4端口CSI-RS得到4端口的信道,并将4端口的信道通过AI/ML恢复8端口的信道。
图2c为本申请实施例提供的又一种预测信道的示意图,如图2c所示,为了得到16端口的CSI-RS对应的信道,基于AI/ML技术,基站配置实际传输的是8端口的CSI-RS。并可传输至UE。然后,UE将测量8端口CSI-RS得到8端口的信道,并将8端口的信道通过AI/ML恢复16端口的信道。
在一些示例中,根据发送端口数目为M1的信道矩阵H1获得发送端口数目为N的信道矩阵H。
在一个示例中,将每个PRB(或RE)的Nr*M的复数矩阵作为目标模块的输入,然后输出所述每个PRB(或RE)对应的发送端口数目为N的Nr*N信道矩阵,然后合并每个PRB(或RE)的Nr*N信道矩阵为最终的预测信道矩阵H。
在一个示例中,将每个PRB(或RE)的每个接收天线对应的1*M的复数矩阵作为目标模块的输入,然后输出所述每个PRB(或RE)的每个接收天线对 应的发送端口数目为N的1*N信道矩阵,然后合并每个PRB(或RE)每个接收天线的1*N信道矩阵为最终的预测信道矩阵H。
在一个示例中,将所有PRB(或者RE)的Nr*M*Nb的复数矩阵作为目标模块的输入,然后输出所述所有PRB(或者RE)对应的发送端口数目为N的Nr*N*Nb信道矩阵,Nr,N,M,Nb分别为正整数,且M<N,Nr为接收天线数目,M和N分别为传输的参考信号的端口数目和预测的参考信号对应的端口数目,Nb为PRB的数目或者RE的数目。
在一些示例中,根据所述空域预测的预测信道信息H获取信道状态信息,比如将预测信道信息H量化成第一类预编码信息或者第二类预编码信息。反馈预测信道信息H对应的信道状态信息CSI。比如在上行控制信息UCI中反馈所述的CSI。在一些示例中,所述的UCI承载在至少一个非周期的PUSCH上。在一些示例中,所述的M个信道信息对应的CSI承载至少一个半持续的PUSCH上。
在一些实施例中,基站配置了K套CSI-RS resource,并在至少一个时隙中传输所述的K套CSI-RS resource。其中第k套CSI-RS resource为Mk个端口的参考信号,Mk为正整数,k=1,…,K。终端在至少一个时隙接收所述K套CSI-RS resource。并根据第k套CSI-RS resource获得发送端口数目为Mk个端口的信道矩阵Hk,Hk为与PRB(或者RE)个数,发送端口数目,接收端口数目相关的矩阵,根据所述Hk,k=1,…,K,预测发送端口数目为N的信道矩阵H,其中,N>M1+…+MK,N,M1,…,MK为正整数。
在一个示例中,所述K套CSI-RS resource具有相同的QCL配置。
在一个示例中,所述K套CSI-RS resource具有相同的端口数目。
在一个示例中,K=2时,基站配置了K套CSI-RS resource,并在至少一个时隙中传输所述的2套CSI-RS resource。其中第k套CSI-RS resource为Mk个端口的参考信号,Mk为正整数,k=1,2。终端接收基站配置的2套CSI-RS resource,终端根据第1套CSI-RS resource获得M1个发送端口的第一信道信息H1,根据第2套CSI-RS resource获得M2个发送端口的第二信道信息H2,并根据M1个端口的第一信道信息H1和M2个端口的第二信道信息H2获得N个端口的预测信道信息H。其中,N>M1+M2。一种方式是将H1和H2输入目标模块,通过目标模块获得N个端口的预测信道信息H。其中,在每个RE上,H1为Nr*M1的复数矩阵,H2为Nr*M2的复数矩阵,H为Nr*N的复数矩阵。
图2d为本申请实施例提供的一种预测信道信息确定示意图,如图2d所示,M1=M2=8,N=32。
在一个示例中,K=2时,基站配置了K套CSI-RS resource,并在至少一个时隙中传输所述的2套CSI-RS resource。其中第k套CSI-RS resource为Mk个端口的参考信号,Mk为正整数,k=1,2。终端接收基站配置的2套CSI-RS resource,终端根据第i套CSI-RS resource获得Mi个发送端口的信道信息Hi,并根据Mi个发送端口的信道信息Hi获得N个端口的预测信道信息H。一种方式是将Hi输入目标模块,通过目标模块的空域预测功能获得Ni个发送端口的预测信道信息Pi,其中,在每个RE上,预测信道信息Pi为Nr*Ni的复数矩阵,Hi为Nr*Mi的复数矩阵,i=1,2,将P1和P2在发送天线维度组成更大的信道矩阵H,H为Nr*N的复数矩阵,可选地,N=M1+M2
在一个示例中,K=1,基站配置了1套CSI-RS resource,并在一个时隙中传输所述的CSI-RS resource。其中所述CSI-RS resource为M1个端口的参考信号,M1为正整数。终端接收基站配置的1个CSI-RS resource,终端根据所述CSI-RS resource获得M1个端口的第一信道信息H1,并根据M1个端口的第一信道信息H1获得N个端口的预测信道信息H。其中,N>M1。一种方式是将H1输入目标模块,通过目标模块获得N个端口的预测信道信息H。其中,在每个RE上,H1为Nr*M1的复数矩阵,H为Nr*N的复数矩阵。图2e为本申请实施例提供的又一种预测信道信息确定示意图,如图2e所示,用M1=8端口的第一信道信息H1预测N=16的预测信道信息H。
在一些实施例中,为了更好地从M个端口的第一信道信息H1预测N个端口的预测信道信息H。基站根据需要配置实际传输的端口数目M和预测的端口数目N的取值,并通过信令指示给终端。终端通过接收基站的指示获得所述的实际传输的端口数目M和预测的端口数目N。
在一些示例中,基站和终端约定实际传输的端口数目M和预测的端口数目N的取值。在一些示例中,基站和终端根据目标模块的输入确定实际传输的端口数目M。
在一些示例中,基站和终端根据目标模块的输出确定预测的端口数目N的取值。
在一些示例中,基站配置多套实际传输的端口数目M和预测的端口数目N的取值,并通过高层信令传输给终端所述多套M和N的配置值。终端接收所述多套M和N的配置值,并根据信道的实施情况或者终端自身的空域预测能力选择其中的一套M和N的取值。
在一些实施例中,为了更好从M个端口的第一信道信息H1获得N个端口的预测信道信息H。由于天线的排列种类很多,线性阵列,平面阵列,双极化,圆形阵列等,天线间距又可以是均匀的和非均匀的。而从N个天线中选择其中 的M个天线进行参考信号传输也有C(M,N)种可能。所以,在一些示例中,基站需要通过信令指示终端M个端口对应的天线排列是几行几列。在一些示例中,基站需要通过信令指示终端N个预测端口对应的天线排列是几行几列。在一些示例中,基站需要通过信令指示终端M个端口对应的天线在N个端口中的索引或者位置。
在一些示例中,图2f为本申请实施例提供的一种端口对应关系示意图,如图2f所示,Mi个端口对应N个端口中的同一个极化方向的天线。
在一些示例中,Mi个端口对应N个端口中的奇数索引端口。在一些示例中,Mi个端口对应N个端口中的偶数索引端口。图2g为本申请实施例提供的又一种端口对应关系示意图,如图2g所示,其中用奇数索引端口信道预测偶数端口索引信道。
在一些示例中,Mi个端口的一行对应着N个端口的一行中的奇数端口或偶数端口。
在一些示例中,Mi个端口的一列对应着N个端口的一列中的奇数端口或偶数端口。
在一些示例中,Mi个端口对应着N个端口的奇数行的端口或偶数行的端口。
在一些示例中,Mi个端口对应着N个端口的奇数列的端口或偶数列的端口。
在一些示例中,基站发送周期的参考信号。比如配置周期参考信号的资源类型(是CSI-RS,PRS,SSB等),参考信号时频资源映射resourceMapping,参考信号的端口数目,参考信号需要预测的端口数目,扰码ID,参考信号的周期和偏置等。终端通过接收基站发送的所述周期的参考信号获得所述的M1个端口的第一信道信息H1。
在一个示例中,周期参考信号以第n个时隙开始传输,每隔T个时隙传输一次,即在n+o*T的时隙传输,o为大于等于0的整数。在一个示例中,每隔周期传输的参考信号有相同的端口数目。在一个示例中,每隔周期传输的参考信号端口数目不同,比如在o为奇数时,传输的是端口数目为M11的参考信号,在o为偶数时,传输的是端口数目为M12的参考信号。M11和M12为不同的正整数。
在一个示例中,每隔周期传输的参考信号端口数目不同,比如在持续X个周期传输M21个端口的参考信号,然后持续Y个周期接收M22个端口的参考信号。M21和M22为不同的正整数。X和Y为正整数。比如连续4个周期传输M21个端口的参考信号,然后1个周期传输M22个端口的参考信号。X和Y需要配 置。
在一个示例中,SP参考信号以第n个时隙开始传输,每隔T个时隙传输一次,即在n+o*T的时隙传输,o为大于等于0且小于等于C的整数。在一个示例中,持续传输参考信号的C个周期内,每个周期传输的参考信号有相同的端口数目。在一个示例中,持续传输参考信号的C个周期内,每个周期传输的参考信号端口数目不同,比如在o为奇数时,传输的是端口数目为M31的参考信号,在o为偶数时,传输的是端口数目为M32的参考信号。在一个示例中,规定最后一个周期,即k=C时固定传输端口数目为M32的参考信号。在一个示例中,规定最后一个周期,即k=C时固定传输端口数目为M31的参考信号。M31和M32为不同的正整数。图2h为本申请实施例提供的一种参考信号传输示意图,参见图2h,C等于4,在k等于4时,传输M31的参考信号,M31等于8,M32等于4。
在一个示例中,持续传输参考信号的C个周期内,每个周期传输的参考信号端口数目不同,比如在持续S个周期传输W1个端口的参考信号,然后持续L个周期接收W2个端口的参考信号。W1和M12为不同的正整数。S和L为正整数。比如连续4个周期传输W1个端口的参考信号,然后1个周期传输W2个端口的参考信号。S和L需要配置。在一个示例中,规定最后一个周期,即k=C时固定传输端口数目为W2的参考信号。在一个示例中,规定最后一个周期,即k=C时固定传输端口数目为W1的参考信号。
在一些实施例中,终端接收了M个端口的CSI-RS,并根据M个端口的CSI-RS获得M1个端口的第一信道信息H1,将第一信道信息H1输入目标模块输出N个端口的预测信道信息H,并反馈所述的预测信道信息H对应的CSI。
在一个示例性实施方式中,本申请实施例提供了一种传输装置,图3为本申请实施例提供的一种传输装置的结构示意图;如图3所示,该传输装置可以集成在第一通信节点上,该装置包括:
接收模块31,设置为接收K套参考信号;
确定模块32,设置为根据所述K套参考信号确定N个端口的预测信道信息,其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目,k=1,…,K,K为正整数。
本实施例提供的传输装置用于实现如图1所示实施例的传输方法,本实施例提供的传输装置实现原理和技术效果与图1所示实施例的传输方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明 的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述K套参考信号具有相同的准共址配置。
在一个实施例中,确定模块32根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第i套参考信号确定Mi个端口的第i信道信息Hi,i=1,…,K;
根据所述第i信道信息Hi,确定N个端口的预测信道信息(即基于H1,…,HK,确定N个端口的预测信道信息);
其中,Mi为正整数,i=1,…,K,K为正整数。
在一个实施例中,确定模块32根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第i套参考信号确定Mi个端口的第i信道信息Hi
根据所述第i信道信息Hi确定Ni个端口的第i预测信道信息Pi,i=1,…,K;
将所述第i预测信道信息Pi组合得到N个端口的预测信道信息(即根据P1,…,PK组合得到N个端口的预测信道信息);
其中,Ni,Mi为正整数且,Ni不小于Mi,i=1,…,K,K为正整数。
在一个实施例中,确定模块32根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息;
根据第二套参考信号确定M2个端口的第二信道信息;
根据所述第一信道信息和所述第二信道信息,确定N个端口的预测信道信息。
在一个实施例中,确定模块32根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息;
根据第二套参考信号确定M2个端口的第二信道信息;
根据第一信道信息确定N1个端口的第一预测信道信息;
根据第二信道信息确定N2个端口的第二预测信道信息;
将所述第一预测信道信息和所述第二预测信道信息组合得到N个端口的预测信道信息,N1和N2为正整数,N1+N2=N,M1<N1和/或M2<N2
在一个实施例中,确定模块32根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据所述参考信号确定M1个端口的第一信道信息;
根据所述第一信道信息确定N个端口的预测信道信息,其中,K=1,M1和N为正整数,M1<N。
在一个实施例中,该装置,还包括:第一传输模块,设置为:
根据N个端口的预测信道信息确定N个端口的信道状态信息;
传输所述N个端口的信道状态信息。
在一个实施例中,所述信道状态信息包括第一类预编码信息或第二类预编码信息。
在一个实施例中,确定模块32根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息,传输M1个端口的第一信道信息;所述M1个端口的第一信道信息用于确定N个端口的预测信道信息。其中,M1和N为大于1的整数,所述的M1小于N,所述K=1。
在一个实施例中,该装置,还包括:第二传输模块,设置为传输第一指示信息,所述第一指示信息用于指示传输信息的类型。
在一个实施例中,确定模块32根据所述K套参考信号确定N个端口的预测信道信息,包括:
根据第一套参考信号确定M1个端口的第一信道信息;
根据M1个端口的第一信道信息确定Ms个端口的第一信道信息;
传输Ms个端口的第一信道信息,所述Ms个端口的第一信道信息用于确定N个端口的预测信道信息,其中,M1和Ms为大于1的整数,所述的M1大于Ms,所述K=1。
在一个实施例中,该装置,还包括:获取模块,设置为:
获取端口的拓扑配置信息,所述端口的拓扑配置信息包括如下一个或多个:
Mi和N的取值;
Mi个端口的行数和列数;
N个端口的行数和列数;
Mi个端口在N个端口中的位置信息;
端口的排列方式。
其中,Mi和N为大于1的整数,i大于等于1且小于等于K。
在一个实施例中,所述Mi个端口在N个端口中的位置信息,包括如下之一:
Mi个端口对应N个端口中一个极化方向的端口;
Mi个端口对应N个端口中的奇数索引端口;
Mi个端口对应N个端口中的偶数索引端口;
Mi个端口的一行对应着N个端口的一行中的奇数索引端口或偶数端口;
Mi个端口的一列对应着N个端口的一列中的奇数索引端口或偶数索引端口;
Mi个端口对应着N个端口的奇数行端口或偶数行端口;
Mi个端口对应着N个端口的奇数列端口或偶数列端口。
其中,Mi和N为大于1的整数,i大于等于1且小于等于K。
在一个实施例中,接收模块31,设置为:
周期性接收K套参考信号,所述K套参考信号有相同的端口数目。
在一个实施例中,接收模块31,设置为:
持续X个周期接收Q1个端口的K套参考信号,之后持续Y个周期接收Q2个端口的K套参考信号,其中,X,Y,K为正整数,Q1和Q2为不同的正整数。
在一个实施例中,接收模块31,设置为:
半持续接收K套参考信号,所述K套参考信号有相同的端口数目,K为正整数。
在一个实施例中,接收模块31,设置为:
持续S个周期接收W1个端口的K套参考信号,之后持续L个周期接收W2个端口的K套参考信号。
其中,S,L,K为正整数,W1和W2为不同的正整数。
在一个实施例中,半持续接收K套参考信号的持续周期为C个周期,接收模块31半持续接收K套参考信号包括以下之一:
在第C个周期传输W2个端口的K套参考信号;
在第C个周期传输W1个端口的K套参考信号;
其中,所述C,S和L为正整数,且S+L<=C。
在持续周期为C的半持续,在第C个周期发送第二目标数量个K套参考信号。W1和W2为不同的正整数。
在一个实施例中,所述第二目标数量基于C是否为S和L之和的整数倍以及W1和W2的大小确定。
在一个实施例中,在C为S和L之和的整数倍的情况下,在第C个周期传输W1或W2个端口的K套参考信号;
在C非S和L之和的整数倍的情况下,在第C个周期传输W1或W2个端口的K套参考信号;
所述第二目标数量为W1和W2中取值大的数量。
在一个实施例中,在所述C为S+L的整数倍的情况下,在所述第C个周期传输W2个端口的K套参考信号;在所述C为S+L的非整数倍的情况下,在所述第C个周期根据预设规定传输W1或W2个端口的K套参考信号。
在一个实施例中,该装置,确定模块32,设置为:
根据第一套参考信号确定M1个端口的信道状态信息,传输M1个端口的信道状态信息,所述M1个端口的信道状态信息用于确定N个端口的预测信道信息。
在一个实施例中,该装置,还包括:第四传输模块,设置为:
传输第二指示信息,所述第二指示信息指示第二通信节点确定N个端口对应的预测信道信息;或者指示所述第一通信节点未确定N个端口对应的预测信道信息。
在一个示例性实施方式中,本申请实施例提供了一种传输装置,图4为本申请实施例提供的一种传输装置的结构示意图;该装置集成在第二通信节点中,该装置包括:
传输模块41,设置为传输K套参考信号,K为正整数;所述K套参考信号用于确定N个端口的预测信道信息,其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目;
获取模块42,设置为获取N个端口的信道状态信息或N个端口的信道信息。
本实施例提供的传输装置用于实现如图2a所示实施例的传输方法,本实施例提供的传输装置实现原理和技术效果与图2a所示实施例的传输方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明 的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,获取模块42,设置为:
接收第一信道信息;根据所述第一信道信息确定N个端口对应的预测信道信息;
基于所述N个端口对应的预测信道信息,确定N个端口的信道状态信息;
其中,所述第一信信息为M1端口的信道信息,所述M1和N为正整数,且M1<N。
在一个实施例中,获取模块42,设置为:
接收第一通信节点反馈的N个端口的信道状态信息。
在一个实施例中,获取模块42,设置为:
接收第一信道信息;
根据所述第一信道信息确定N个端口对应的预测信道信息;
其中,所述第一信道信息为M1个端口的信道信息,所述M1和N为正整数,且M1<N,或所述第一信道信息为Ms个端口的信道信息,Ms为正整数,且Ms<M1<N。
在一个实施例中,获取模块42,设置为:
接收M1个端口的信道状态信息;
基于M1个端口的信道状态信息,确定N个端口对应的预测信道信息;
基于所述N个端口对应的预测信道信息,确定N个端口的信道状态信息。
在一个实施例中,所述K套参考信号具有相同的准共址配置。
在一个实施例中,N个端口的预测信道信息由第一通信节点确定。
在一个实施例中,信道状态信息包括第一类预编码信息或第二类预编码信息。
在一个实施例中,该装置还包括:
第一接收模块,设置为接收第一指示信息,所述第一指示信息用于指示传输信息的类型。
在一个实施例中,该装置还包括:
第二接收模块,设置为接收Ms个端口的第一信道信息,基于Ms个端口的第 一信道信息,确定N个端口的预测信道信息,Ms为大于1的整数,M1大于Ms。Ms个端口的第一信道信息为根据M1个端口的第一信道信息确定,如从M1个端口的第一信道信息中选择的,M1个端口的第一信道信息基于第一套参考信号确定。
在一个实施例中,该装置还包括第一发送模块,设置为发送端口的拓扑配置信息,所述端口的拓扑配置信息包括如下一个或多个:
Mi和N的取值;
Mi个端口的行数和列数;
N个端口的行数和列数;
Mi个端口在N个端口中的位置信息;
端口的排列方式;
其中,Mi和N为大于1的整数,i大于等于1且小于等于K。
在一个实施例中,所述Mi个端口在N个端口中的位置信息,包括如下之一:
Mi个端口对应N个端口中一个极化方向的端口;
Mi个端口对应N个端口中的奇数索引端口;
Mi个端口对应N个端口中的偶数索引端口;
Mi个端口的一行对应着N个端口的一行中的奇数索引端口或偶数索引端口;
Mi个端口的一列对应着N个端口的一列中的奇数索引端口或偶数索引端口;
Mi个端口对应着N个端口的奇数行端口或偶数行端口;
Mi个端口对应着N个端口的奇数列端口或偶数列端口。
其中,Mi和N为大于1的整数,i大于等于1且小于等于K。
在一个实施例中,传输模块41,设置为:
周期性发送K套参考信号,所述K套参考信号有相同的端口数目。
在一个实施例中,传输模块41,设置为:
在奇数周期上发送W11个端口的K套参考信号;
在偶数周期上发送W12个端口的K套参考信号,其中K为正整数,W11和W12为不同的正整数。
在一个实施例中,传输模块41周期性发送K套参考信号,包括循环按照如下方式发送K套参考信号:
持续X个周期发送Q1个端口的K套参考信号,之后持续Y个周期发送Q2个端口的K套参考信号,其中,X,Y,K为正整数,Q1和Q2为不同的正整数。
在一个实施例中,传输模块41,设置为:
半持续发送K套参考信号,所述K套参考信号有相同的端口数目,K为正整数。
在一个实施例中,传输模块41,设置为:
在奇数周期上发送M31个端口的K套参考信号;
在偶数周期上发送M32个端口的K套参考信号;
在持续周期为C的半持续,在第C个周期发送第一目标数量个端口的K套参考信号。M31和M32为正整数。
在一个实施例中,所述第一目标数量基于所述C的奇偶、M31和M32的大小确定。
在一个实施例中,在C为奇数的情况下,在第C个周期发送M31个端口的K套参考信号,或发送M32个端口的K套参考信号;在C为偶数的情况下,在第C个周期发送M31个端口的K套参考信号,或发送M32个端口的K套参考信号;所述第一目标数量为M31和M32中取值大的数量。
在一个实施例中,传输模块41,设置为:
持续S个周期发送W1个端口的K套参考信号,之后持续L个周期发送W2个端口的K套参考信号;
在持续周期为C的半持续,在第C个周期发送第二目标数量个K套参考信号。
其中,S,L,K为正整数,W1和W2为不同的正整数
在一个实施例中,所述第二目标数量基于C是否为S和L之和的整数倍以及W1和W2的大小确定。
在一个实施例中,在C为S和L之和的整数倍的情况下,在第C个周期发送W1或W2个端口的K套参考信号;在C非S和L之和的整数倍的情况下,在第C个周期发送W1或W2个端口的K套参考信号;所述第二目标数量为W1和W2中取值大的数量。
在一个实施例中,在所述C为S+L的整数倍的情况下,在所述第C个周期传输W2个端口的K套参考信号;在所述C为S+L的非整数倍的情况下,在所述第C个周期根据预设规定传输W1或W2个端口的K套参考信号。
在一个实施例中,该装置,还包括:第三接收模块,设置为:
接收M1个端口的信道状态信息。
在一个实施例中,该装置,还包括:第四接收模块,设置为:
接收第二指示信息,所述第二指示信息指示第二通信节点确定N个端口对应的预测信道信息;或者指示所述第一通信节点未确定N个端口对应的预测信道信息。
在一个示例性实施方式中,本申请实施例提供了一种通信节点,通信节点可以为第一通信节点和第二通信节点中的一个或多个。图5为本申请实施例提供的一种通信节点的结构示意图。如图5所示,本申请提供的通信节点,包括一个或多个处理器51和存储装置52;该通信节点中的处理器51可以是一个或多个,图5中以一个处理器51为例;存储装置52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请实施例中所述的传输方法。在通信节点为第一通信节点的情况下,实现如本申请图1实施例所述的传输方法。在通信节点为第二通信节点的情况下,实现如本申请图2a实施例所述的传输方法。
通信节点还包括:通信装置53、输入装置54和输出装置55。
通信节点中的处理器51、存储装置52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图5中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。信息包括但不限于参考信号、第一信道信息、第一指示信息、第二指示信息和信道状态信息。
存储装置52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述传输方法对应的程序指令/模块(例如,传输装置中的请求接收模块31和确定模块32;又如传输装置中的传输模块41和获取模块42)。存储装置52可包括存储程序区和存储数据区,其中,存 储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储装置52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置52可进一步包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请任一所述方法,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的传输方法。如应用于第一通信节点的传输方法和应用于第二通信节点的传输方法,其中,应用于第一通信节点的传输方法包括:
接收K套参考信号;
根据所述K套参考信号确定N个端口的预测信道信息,其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目,k=1,…,K,K为正整数。
应用于第二通信节点的传输方法包括:
传输K套参考信号,K为正整数;
所述K套参考信号用于确定N个端口的预测信道信息,其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目;
获取N个端口的信道状态信息或N个端口的信道信息。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于,电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式光盘只读存储器(Compact Disk Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语终端设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和 功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (27)

  1. 一种传输方法,应用于第一通信节点,包括:
    接收K套参考信号;
    根据所述K套参考信号确定N个端口的预测信道信息,其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目,k=1,…,K,K为正整数。
  2. 根据权利要求1所述的方法,其中,
    所述K套参考信号具有相同的准共址配置。
  3. 根据权利要求1所述的方法,其中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
    根据第i套参考信号确定Mi个端口的第i信道信息Hi,i=1,…,K;
    根据所述第i信道信息Hi,确定N个端口的预测信道信息;
    其中,Mi为正整数,i=1,…,K,K为正整数。
  4. 根据权利要求1所述的方法,其中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
    根据第i套参考信号确定Mi个端口的第i信道信息Hi
    根据所述第i信道信息Hi确定Ni个端口的第i预测信道信息Pi,i=1,…,K;
    将所述第i预测信道信息Pi组合得到N个端口的预测信道信息;
    其中,Ni,Mi为正整数且,Ni不小于Mi,i=1,…,K,K为正整数。
  5. 根据权利要求1所述的方法,其中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
    根据第一套参考信号确定M1个端口的第一信道信息;
    根据第二套参考信号确定M2个端口的第二信道信息;
    根据所述第一信道信息和所述第二信道信息,确定N个端口的预测信道信息,其中,K=2,M1,M2和N为正整数,M1+M2≤N。
  6. 根据权利要求1所述的方法,其中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
    根据第一套参考信号确定M1个端口的第一信道信息;
    根据第二套参考信号确定M2个端口的第二信道信息;
    根据所述第一信道信息确定N1个端口的第一预测信道信息;
    根据所述第二信道信息确定N2个端口的第二预测信道信息;
    将所述第一预测信道信息和所述第二预测信道信息组合得到N个端口的预测信道信息,其中,K=2,N1和N2为正整数,N1+N2=N,M1和M2满足以下至少一个条件:M1<N1和M2<N2
  7. 根据权利要求1所述的方法,其中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
    根据所述K套参考信号确定M1个端口的第一信道信息;
    根据所述第一信道信息确定N个端口的预测信道信息,其中,K=1,M1和N为正整数,M1<N。
  8. 根据权利要求1所述的方法,还包括:
    根据所述N个端口的预测信道信息确定所述N个端口的信道状态信息;
    传输所述N个端口的信道状态信息。
  9. 根据权利要求8所述的方法,其中,所述信道状态信息包括第一类预编码信息或第二类预编码信息。
  10. 根据权利要求1所述的方法,其中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
    根据第一套参考信号确定M1个端口的第一信道信息,传输所述M1个端口的第一信道信息;所述M1个端口的第一信道信息用于确定所述N个端口的预测信道信息;其中,M1和N为大于1的整数,所述的M1小于N,所述K=1。
  11. 根据权利要求1所述的方法,其中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
    根据第一套参考信号确定M1个端口的第一信道信息;
    根据所述M1个端口的第一信道信息确定Ms个端口的第一信道信息;
    传输所述Ms个端口的第一信道信息,所述Ms个端口的第一信道信息用于确定所述N个端口的预测信道信息,其中,M1和Ms为大于1的整数,所述的M1大于Ms,所述K=1。
  12. 根据权利要求8-11任一所述的方法,还包括:
    传输第一指示信息,所述第一指示信息用于指示传输信息的类型。
  13. 根据权利要求1所述的方法,还包括:
    获取端口的拓扑配置信息,所述端口的拓扑配置信息包括如下至少一个:
    Mi和N的取值;
    Mi个端口的行数和列数;
    N个端口的行数和列数;
    Mi个端口在N个端口中的位置信息;
    端口的排列方式;
    其中,Mi和N为大于1的整数,i大于等于1且小于等于K。
  14. 根据权利要求13所述的方法,其中,所述Mi个端口在N个端口中的位置信息,包括如下之一:
    所述Mi个端口对应所述N个端口中一个极化方向的端口;
    所述Mi个端口对应所述N个端口中的奇数索引端口;
    所述Mi个端口对应所述N个端口中的偶数索引端口;
    所述Mi个端口的一行对应着所述N个端口的一行中的奇数索引端口或偶数索引端口;
    所述Mi个端口的一列对应着所述N个端口的一列中的奇数索引端口或偶数索引端口;
    所述Mi个端口对应着所述N个端口的奇数行端口或偶数行端口;
    所述Mi个端口对应着所述N个端口的奇数列端口或偶数列端口。
    其中,Mi和N为大于1的整数,i大于等于1且小于等于K。
  15. 根据权利要求1所述的方法,其中,所述接收K套参考信号,包括:
    周期性接收K套参考信号,所述K套参考信号有相同的端口数目。
  16. 根据权利要求15所述的方法,其中,所述周期性接收K套参考信号,包括:
    持续X个周期接收Q1个端口的K套参考信号,之后持续Y个周期接收Q2个端口的K套参考信号,其中,X,Y,K为正整数,Q1和Q2为不同的正整数。
  17. 根据权利要求1所述的方法,其中,所述接收K套参考信号,包括:
    半持续接收K套参考信号,所述K套参考信号有相同的端口数目,K为正整数。
  18. 根据权利要求17所述的方法,其中,所述半持续接收K套参考信号, 包括:
    持续S个周期接收W1个端口的K套参考信号,之后持续L个周期接收W2个端口的K套参考信号;
    其中,S,L,K为正整数,W1和W2为不同的正整数
  19. 根据权利要求18所述的方法,其中,所述半持续接收K套参考信号的持续周期为C个周期,所述半持续接收K套参考信号包括以下之一:
    在第C个周期传输W2个端口的K套参考信号;
    在第C个周期传输W1个端口的K套参考信号;
    其中,所述C,S和L为正整数,且S+L<=C。
  20. 根据权利要求18所述的方法,其中,
    在所述C为S+L的整数倍的情况下,在所述第C个周期传输W2个端口的K套参考信号;
    在所述C为S+L的非整数倍的情况下,在所述第C个周期根据预设规定传输W1或W2个端口的K套参考信号。
  21. 根据权利要求1所述的方法,其中,根据所述K套参考信号确定N个端口的预测信道信息,包括:
    根据第一套参考信号确定M1个端口的信道状态信息,传输所述M1个端口的信道状态信息,所述M1个端口的信道状态信息用于确定所述N个端口的预测信道信息。
  22. 一种传输方法,应用于第二通信节点,包括:
    传输K套参考信号;
    所述K套参考信号用于确定N个端口的预测信道信息,其中,N>M1+M2+…+MK,N,M1,M2,…,MK为正整数,MK为第k套参考信号对应的端口数目,k=1,…,K,K为正整数;
    获取所述N个端口的信道状态信息或所述N个端口的信道信息。
  23. 根据权利要求22所述的方法,其中,所述获取所述N个端口的信道状态信息,包括:
    接收第一信道信息;
    根据所述第一信道信息确定所述N个端口对应的预测信道信息;
    基于所述N个端口对应的预测信道信息,确定所述N个端口的信道状态信 息;
    其中,所述第一信道信息为M1个端口的信道信息,所述M1和N为正整数,且M1<N,或所述第一信道信息为Ms个端口的信道信息,Ms为正整数,且Ms<M1<N。
  24. 根据权利要求22所述的方法,其中,所述获取所述N个端口的信道状态信息,包括:
    接收第一通信节点反馈的所述N个端口的信道状态信息。
  25. 根据权利要求22所述的方法,其中,所述获取所述N个端口的信道信息,包括:
    接收第一信道信息;
    根据所述第一信道信息确定所述N个端口对应的预测信道信息;
    其中,所述第一信道信息为M1个端口的信道信息,所述M1和N为正整数,且M1<N,或所述第一信道信息为Ms个端口的信道信息,Ms为正整数,且Ms<M1<N。
  26. 一种通信节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-25任一所述的方法。
  27. 一种存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1-25中任一项所述的方法。
PCT/CN2023/105727 2022-07-18 2023-07-04 传输方法、通信节点及存储介质 WO2024017057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210845022.2 2022-07-18
CN202210845022.2A CN117459104A (zh) 2022-07-18 2022-07-18 一种传输方法、通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2024017057A1 true WO2024017057A1 (zh) 2024-01-25

Family

ID=89582300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105727 WO2024017057A1 (zh) 2022-07-18 2023-07-04 传输方法、通信节点及存储介质

Country Status (2)

Country Link
CN (1) CN117459104A (zh)
WO (1) WO2024017057A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052532A (zh) * 2013-03-15 2014-09-17 中兴通讯股份有限公司 一种无线信道参考信号的发送方法和装置
WO2014201638A1 (zh) * 2013-06-19 2014-12-24 华为技术有限公司 一种通信质量测量的方法和装置
CN112019463A (zh) * 2020-09-04 2020-12-01 中兴通讯股份有限公司 信道状态发送、接收、信令信息传输方法、节点和介质
WO2021030930A1 (en) * 2019-08-16 2021-02-25 Qualcomm Incorporated Downlink precoding configuration for user equipment mobility scenarios

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052532A (zh) * 2013-03-15 2014-09-17 中兴通讯股份有限公司 一种无线信道参考信号的发送方法和装置
WO2014201638A1 (zh) * 2013-06-19 2014-12-24 华为技术有限公司 一种通信质量测量的方法和装置
WO2021030930A1 (en) * 2019-08-16 2021-02-25 Qualcomm Incorporated Downlink precoding configuration for user equipment mobility scenarios
CN112019463A (zh) * 2020-09-04 2020-12-01 中兴通讯股份有限公司 信道状态发送、接收、信令信息传输方法、节点和介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On UE capability for FD-MIMO", 3GPP DRAFT; R1-160402 ON UE CAPABILITY FOR FD-MIMO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. St Julian’s, Malta; 20160215 - 20160219, 14 February 2016 (2016-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051053740 *

Also Published As

Publication number Publication date
CN117459104A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
US10476563B2 (en) System and method for beam-formed channel state reference signals
JP6750926B2 (ja) プリコーディング行列インジケータフィードバック方法および装置
RU2676268C1 (ru) Предварительное кодирование передачи из одномерной антенной решетки, которая включает в себя совместно поляризованные антенные элементы, выровненные по одной линии в единственном пространственном измерении решетки
US10419094B2 (en) Channel state information measurement method, channel state information acquisition method, terminal and network device
WO2017152747A1 (zh) 一种csi反馈方法、预编码方法及装置
KR20180120222A (ko) 데이터 전송 방법과 장치
US10560162B2 (en) Transmit diversity method, device, and system
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
US9887749B2 (en) System and method for quantization of angles for beamforming feedback
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2018023735A1 (zh) 一种终端、基站和获得信道信息的方法
WO2024017057A1 (zh) 传输方法、通信节点及存储介质
WO2024016936A1 (zh) 信道状态信息的确定方法、电子设备和存储介质
WO2024041362A1 (zh) 信道状态信息处理方法、装置、通信节点及存储介质
WO2024032319A1 (zh) 信道状态信息反馈方法、接收方法、装置及通信节点
WO2024007837A1 (zh) 信息传输方法、设备和存储介质
US20230353216A1 (en) Channel data transmission method and apparatus, communication device, and storage medium
WO2024032469A1 (zh) 测量参数的反馈方法、装置、终端和存储介质
WO2022151064A1 (zh) 信息发送方法、信息接收方法、装置、设备及介质
WO2024037339A1 (zh) 信道状态信息处理方法、装置、通信节点及存储介质
WO2023207539A1 (zh) 资源传输方法、资源接收方法、通信节点及存储介质
US20230353214A1 (en) Method for feedback mode determination and device
WO2023174132A1 (zh) 信道状态信息的反馈方法、装置、存储介质及电子装置
WO2023207822A1 (zh) 通信方法、设备和存储介质
WO2022151063A1 (zh) 信息发送方法、信息接收方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842122

Country of ref document: EP

Kind code of ref document: A1