WO2024032319A1 - 信道状态信息反馈方法、接收方法、装置及通信节点 - Google Patents

信道状态信息反馈方法、接收方法、装置及通信节点 Download PDF

Info

Publication number
WO2024032319A1
WO2024032319A1 PCT/CN2023/107712 CN2023107712W WO2024032319A1 WO 2024032319 A1 WO2024032319 A1 WO 2024032319A1 CN 2023107712 W CN2023107712 W CN 2023107712W WO 2024032319 A1 WO2024032319 A1 WO 2024032319A1
Authority
WO
WIPO (PCT)
Prior art keywords
status information
sub
channel status
time slot
channel
Prior art date
Application number
PCT/CN2023/107712
Other languages
English (en)
French (fr)
Inventor
鲁照华
肖华华
李伦
刘文丰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024032319A1 publication Critical patent/WO2024032319A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communication technology, for example, to a channel state information feedback method, receiving method, device and communication node.
  • the autoencoder includes an encoder and a decoder, where the encoder is set on the terminal side and the decoder is set on the base station side.
  • the base station allocates uplink transmission resources for feedback CSI to the terminal.
  • the base station does not know how many data streams the terminal needs to transmit, the specific number of bits transmitted by each data stream, and how many data streams may be transmitted. Due to reasons such as two CSIs being transmitted on the same uplink transmission resources, the uplink transmission resources allocated by the base station may not be able to effectively transmit the CSI.
  • one solution is for the terminal to discard some CSI bits to achieve the purpose of transmission.
  • discarding some bits may cause the base station to be unable to recover the compressed channel information well.
  • Another solution is to feed back the CSI through multiple channel state information reports, but how multiple CSI reports feed back the CSI is a problem that needs to be solved.
  • This application provides a channel state information feedback method, receiving method, device and communication node, which can effectively solve the problem that an uplink transmission resource cannot effectively transmit at least one channel state information.
  • inventions of the present application provide a channel state information feedback method.
  • the method includes:
  • embodiments of the present application also provide a method for receiving channel state information.
  • the method includes:
  • the at least two sub-channel state information are combined into first channel state information.
  • inventions of the present application also provide a channel state information feedback device.
  • the device includes: a packet module block and feedback module; where,
  • the grouping module is configured to divide the first channel state information into at least two sub-channel state information
  • the feedback module is configured to feed back the at least two sub-channel status information through at least two uplink transmission resources.
  • embodiments of the present application also provide a device for receiving channel state information.
  • the device includes: a receiving module and a combining module; wherein,
  • the receiving module is configured to receive at least two sub-channel status information on at least two uplink transmission resources
  • the merging module is configured to merge at least two sub-channel state information into first channel state information.
  • embodiments of the present application provide a communication node, including:
  • a storage device configured to store one or more programs
  • the one or more processors are caused to implement any method in the embodiments of this application.
  • embodiments of the present application provide a storage medium.
  • the storage medium stores a computer program.
  • the computer program is executed by a processor, any one of the methods in the embodiments of the present application is implemented.
  • Figure 1 is a first flow diagram of the channel state information feedback method provided by an embodiment of the present application.
  • Figure 2 is a second flow diagram of the channel state information feedback method provided by an embodiment of the present application.
  • Figure 3 is a third flow diagram of the channel state information feedback method provided by the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of uplink transmission resources provided by the embodiment of the present application.
  • Figure 5 is a schematic flowchart of a method for receiving channel state information provided by an embodiment of the present application
  • Figure 6 is a schematic structural diagram of a channel state information feedback device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a channel state information receiving device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication node provided by an embodiment of the present application.
  • the network architecture of mobile communication networks may include network side equipment (for example, including but not limited to base stations) and receiving side equipment (for example, including but not limited to base stations). limited to terminals).
  • the first communication node may also be referred to as the first communication node device
  • the second communication node may also be referred to as the second communication node device
  • It can be a terminal.
  • the first communication node can also be a terminal
  • the second communication node can also be a base station.
  • both the first communication node and the second communication node may be a base station or a terminal.
  • the base station may be a base station in Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A) or an Evolutional Node B (eNB). or eNodeB), base station equipment in 5G networks, or base stations in future communication systems, etc.
  • Base stations can include macro base stations, micro base stations, home base stations, remote wireless, reconfigurable intelligent surfaces (RISs), Routers, Wireless Fidelity (WIFI) equipment, or various network-side devices such as primary cell and secondary cell.
  • RISs reconfigurable intelligent surfaces
  • WIFI Wireless Fidelity
  • the terminal is a device with wireless transceiver function, which can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed In the air (such as on airplanes, balloons, satellites, etc.).
  • the terminal can be a mobile phone (mobile phone), tablet computer (Pad), computer with wireless transceiver function, virtual reality (Virtual Reality, VR) terminal, augmented reality (Augmented Reality, AR) terminal, industrial control (industrial control) Wireless terminals in autonomous driving (selfdriving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), wireless terminals in transportation safety (transportation safety), smart Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application may be applied in various application scenarios.
  • the terminal can sometimes also be called a user, user equipment (User Equipment, UE), access terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile equipment, UE terminal, wireless communication equipment, UE Agent or UE device, etc.
  • User Equipment User Equipment
  • UE user equipment
  • access terminal UE unit
  • UE station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile equipment UE terminal
  • wireless communication equipment UE Agent or UE device, etc.
  • high-level signaling includes but is not limited to Radio Resource Control (RRC) and Media Access Control element (MAC CE).
  • RRC Radio Resource Control
  • MAC CE Media Access Control element
  • Physical layer signaling can also be transmitted between the base station and the terminal. For example, physical layer signaling is transmitted on the physical downlink control channel (Physical Downlink Control CHannel, PDCCH), or physical layer signaling is transmitted on the physical uplink control channel (Physical Uplink Control CHannel, PUCCH).
  • the parameter indication Indicator may also be called an index, or an identifier (Identifier, ID), which are completely equivalent concepts.
  • ID an identifier
  • the wireless system resources here include but are not limited to one of the following: a reference signal resource, a reference signal resource group, a reference signal resource configuration, a channel state information (CSI) report, and a CSI report set. , corresponding indexes for terminals, base stations, panels, neural networks, sub-neural networks, neural network layers, etc.
  • the base station can indicate the identity of one or a group of resources to the terminal through various high-layer signaling or physical layer signaling.
  • artificial intelligence includes machine learning (Machine Learning, referred to as ML), deep learning, reinforcement learning, transfer learning, deep reinforcement learning, meta-learning and other devices and components with self-learning , software, modules.
  • artificial intelligence is implemented through an artificial intelligence network (or neural network).
  • the neural network includes multiple layers, and each layer includes at least one node.
  • the neural network includes an input layer, an output layer, and at least one hidden layer, wherein each layer of the neural network includes, but is not limited to, a fully connected layer, a dense layer, a convolutional layer, a transposed convolutional layer, and a direct connection.
  • each layer of the neural network may include a sub-neural network, such as a residual block (Residual Network block, or Resnet block), a dense network (Densenet Block), and a recurrent network (Recurrent Neural Network, referred to as RNN) wait.
  • the artificial intelligence network may include a neural network model and/or neural network parameters corresponding to the neural network model, where the neural network model may be referred to as a network model, and the neural network parameters may be referred to as network parameters.
  • a network model defines the number of layers of the neural network, the size of each layer, activation function, link status, convolution kernel and convolution step size, convolution type (such as 1D convolution, 2D convolution, 3D convolution, hollow convolution, transposed convolution, separable convolution, grouped convolution, expanded convolution, etc.), and the network parameters are the weights and/or biases of each layer of the network in the network model and their values .
  • a network model can correspond to multiple sets of different neural network parameter values to adapt to different scenarios.
  • a neural network model can correspond to multiple different neural network parameter values. Obtain the parameters of the neural network through online training or offline training. For example, by inputting at least one sample and label, the neural network model is trained to obtain the neural network parameters.
  • the time slot may be a time slot or a sub-time slot mini slot.
  • a slot or sub-slot includes at least one symbol.
  • the symbol here refers to the time unit in a subframe or frame or time slot.
  • it can be an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM for short) symbol, single carrier frequency division multiplexing multiple access (Single -Carrier Frequency Division Multiple Access (SC-FDMA) symbols, Orthogonal Frequency Division Multiple Access (OFDMA) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single -Carrier Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • transmission includes sending or receiving. Such as sending data or signals, receiving data or signals.
  • CSI-RS Channel-State Information reference signal
  • ZP CSI-RS Zero power CSI-RS
  • NZP CSI-RS Non-Zero Power CSI-RS
  • CSI-IM Channel-State Information-Interference Measurement
  • SRS Synchronization Signals Block
  • SSB Physical Broadcast Channel
  • SSB/PBCH Synchronization Signal Block/Physical Broadcast Channel
  • NZP CSI-RS can be used to measure channels or interference, and CSI-RS can also be used for tracking.
  • CSI-RS For Tracking
  • SRS is used to perform channel estimation or obtain uplink precoding
  • RE resource Elements
  • a set of resource elements (Resource Elements, RE for short) used to transmit reference signals is called reference signal resources, such as CSI-RS resource, SRS resource, CSI-IM resource, and SSB resource.
  • SSB includes synchronization signal blocks and/or physical broadcast channel.
  • the resources for transmitting reference signals may be called reference signal resources.
  • multiple reference signal resources may be combined into a set (such as CSI-RS resource set , CSI-IM resource set, SRS resource set), a reference signal resource set includes at least one reference signal resource, and multiple reference signal resource sets can all come from the same reference signal resource setting (such as CSI-RS resource setting, SRS resource setting, CSI-IM resource setting, where CSI-RS resource setting may be merged with CSI-IM resource setting, both are called CSI-RS resource setting) to configure reference signal parameter information.
  • the base station configures measurement resource information, and the measurement resource information is used to obtain channel state information.
  • the measurement resource information includes CN channel measurement resource (Channel Measurement Resource, CMR for short) information and CM interference measurement resource (Interference Measurement Resource, IMR for short) information, where CN and CM are positive integers.
  • the base station configures measurement resource information in a reporting configuration (report config) or reporting setting (reporting setting). Among them, C N CMR information is used to measure the terminal's channel, and C M IMR information is used to enable the terminal to measure the interference received.
  • the base station or terminal needs to obtain channel state information, where the channel state information may include at least one of the following: Channel State Information-Reference Signal Resource Indicator (CSI-RS Resource Indicator, CRI for short), Synchronization Signals Block Resource Indicator (SSBRI for short), Reference Signal Received Power (RSRP for short), Differential RSRP (Differential RSRP), Channel Quality Indicator (Channel Quality Indicator for short) CQI), Precoding Matrix Indicator (PMI for short), Layer Indicator (LI for short), Rank Indicator (RI for short), Level 1 Signal to Interference plus Noise Ratio, referred to as L1-SINR), differential L1-SINR (Differential L1-SINR), precoding information.
  • CSI-RS Resource Indicator CRI for short
  • SSBRI Synchronization Signals Block Resource Indicator
  • RSRP Reference Signal Received Power
  • Differential RSRP Differential RSRP
  • the precoding matrix indication is one type of precoding information, that is, the precoding information is implemented based on the codebook.
  • the precoding information also includes methods based on non-codebook implementation.
  • the second type of precoding information For example, the second type of precoding information.
  • CSI including the first type of precoding information is called first type CSI.
  • CSI including the second type of precoding information is called second type CSI.
  • the terminal and the base station transmit channel state information that matches the channel through the first type of precoding information.
  • the first type of precoding information is precoding information based on the traditional channel characteristic matrix or the quantized value of the characteristic matrix.
  • the codebook here includes L codewords, and its main idea is that the base station and the terminal store L codewords in advance according to prescribed formulas, tables, or dictionaries.
  • the codeword is a vector.
  • the codeword is a matrix, and the matrix includes r columns, each column is also a vector.
  • each column of the matrix is mutually orthogonal.
  • the vector that constitutes the codeword is a 0-1 vector, in which only one value of the entire vector is 1 and the other values are zero.
  • the vector constituting the codeword is a Discrete Fourier Transform (DFT) vector.
  • DFT Discrete Fourier Transform
  • construct The vector into a codeword is obtained by tensor product (kronecker product) of two or more DFT vectors.
  • the vectors that constitute the codeword are two or more DFT vectors that are connected by multiplying by different phase rotations.
  • the vectors constituting the codeword are two or more DFT vectors obtained by tensor product (kronecker product) and multiplication by phase rotation.
  • the base station or terminal searches for L codewords and finds the codeword that best matches the channel as the optimal codeword to transmit data or signals.
  • the codewords matching the channel here include but are not limited to at least one of the following: the distance between the codeword and the channel is the smallest, the correlation between the codeword and the channel is the largest, the distance between the codeword and the optimal right singular vector or matrix of the channel is the smallest, The optimal right singular vector or matrix correlation between the codeword and the channel is the largest, the calculated signal-to-noise ratio between the codeword and the channel is the largest, etc.; L is an integer greater than 1, which is generally greater than the number of transmitting antennas.
  • the terminal and the base station transmit channel state information that matches the channel through the second type of precoding information.
  • the second type of precoding information is channel state information obtained based on AI.
  • the base station and the terminal obtain channel state information through an autoencoder.
  • the autoencoder includes an encoder and a decoder; where the encoder is on the terminal side and the decoder is on the base station side.
  • the terminal compresses the obtained channel H through the encoder to obtain the compressed H1, and quantizes the compressed channel H1 and feeds it back to the base station.
  • the base station receives the quantized H1, dequantizes it and inputs it into the decoder, and decompresses it through the decoder. , thereby restoring H.
  • H includes K0 elements.
  • the terminal selects K elements from H as H1 and provides feedback on H1 quantization.
  • the base station receives the K quantized elements and dequantizes them, and inputs the dequantized K elements.
  • AI module the AI module outputs K0 elements as the recovery of H, thereby obtaining the precoding matrix of H.
  • K and K0 are integers greater than 1, and K ⁇ K0.
  • H1 passing through the compressor or the K elements selected from H are the second type of channel state information.
  • the quantized H1 is also called the second type of channel state information.
  • the second type of precoding information may also be a precoding matrix generated by other non-AI methods that is different from the first type of precoding information.
  • the second type of precoding information may also be a precoding matrix other than the first type of precoding information.
  • the base station receives CSI.
  • the terminal and base station need to define a CSI report (CSI report or CSI report congfig), in which the CSI report defines at least one of the following parameters: time-frequency resources used to feedback CSI, report Quantity included in CSI, and time domain category of CSI feedback reportConfigType , measuring channel resources, measuring interference resources, measured bandwidth size and other information.
  • the CSI report can be transmitted on uplink transmission resources, where the uplink transmission resources include Physical Uplink Shared Channel (PUSCH) and PUCCH, and the CSI report also includes time domain characteristics, including periodic CSI reports (periodic CSI report, P-CSI), aperiodic CSI report (aperiodic CSI report, AP-CSI), semi-persistent CSI report (semi-persistent CSI report, SP-CSI).
  • P-CSI transmits a relatively small number of bits and is transmitted on PUCCH
  • A-CSI transmits a larger number of bits and is generally transmitted on PUSCH.
  • SP-CSI can be transmitted on PUSCH or on PUSCH. transmitted on PUCCH.
  • P-CSI based on PUCCH transmission is generally configured using high-level signaling (Radio Resource Control, RRC), and SP-CSI based on PUCCH transmission is also configured or activated using high-level signaling (RRC and/or MAC CE).
  • RRC Radio Resource Control
  • SP-CSI or A-CSI based on PUSCH transmission are triggered by physical layer signaling (Downlink control information, DCI), and DCI is generally on the physical downlink control channel (Physical downlink control channel, PDCCH) transmission.
  • the feedback CSI is also It can be called transmitting CSI or sending CSI, such as carrying channel state information on uplink transmission resources for feedback or transmission.
  • the uplink transmission resources and corresponding CSI are indicated by a channel state information report.
  • feeding back a CSI report means feeding back the channel state information corresponding to the CSI report.
  • the base station configures N CSI reports (CSI reports) for the terminal through high-level signaling and/or physical layer signaling.
  • Each CSI report has an index value (identity, ID), called CSI.
  • report ID the terminal can select M CSI reports among the N CSI reports based on its own computing power or processing power and the requirements of the base station, and feed back at least one CSI report corresponding to the M CSI reports based on the uplink feedback resources Channel state information, where N and M are positive integers, and M ⁇ N.
  • the terminal needs to feed back M CSI reports, but the transmission resources corresponding to at least two of the M reports conflict.
  • the conflict of transmission resources corresponding to the two reports means that the transmission resources corresponding to the two reports conflict.
  • At least one symbol in the resource (such as PUCCH or PUSCH) is the same and/or at least one subcarrier is the same.
  • the terminal compresses the obtained channel H through the encoder and feeds the compressed channel H1 back to the base station.
  • the base station receives H1 and decompresses H1 through the decompression module of the decoder, thereby restoring H.
  • the terminal compresses the obtained channel information H through an encoder to obtain first channel state information (here, it is a second type of precoding information), where the first channel state information includes L elements, for L After quantizing the elements, the quantized first channel state information is obtained, and the quantized first channel state information is fed back to the base station; the base station receives the quantized first channel state information, dequantizes it, and sends the dequantized first channel state information to the base station.
  • the information is input to the decoder, and is processed by the decoder to obtain second channel state information.
  • the second channel state information can be understood as an estimate of the channel information H or a precoding matrix matching it.
  • the terminal needs to feed back multiple CSI reports in the same uplink transmission resource, where the transmission resources corresponding to at least L CSI reports among the multiple CSI reports conflict.
  • at least one of the L CSI reports with conflicts is a report including the second type of precoding information, where L is a positive integer.
  • PV priority value
  • the L1 CSI reports with the smallest priority that meet the requirements are transmitted in the uplink transmission resources, where L and L1 are positive integers, and L ⁇ L1.
  • the uplink transmission resource is PUSCH.
  • the uplink transmission resource is PUCCH.
  • Figure 1 is a first flow diagram of a channel state information feedback method provided by an embodiment of the present application. This method can be executed by a channel state information feedback device or a terminal.
  • the device or terminal can be implemented by software and/or hardware.
  • the method The device or terminal can be integrated into any smart device with network communication capabilities.
  • the channel state information feedback method may include the following steps:
  • the terminal when the terminal needs to feed back L conflicting CSI reports to the base station on the first uplink transmission resource, the terminal selects L1 reports from the L reports as CSI reports for priority transmission according to priority; where, L and L1 is a positive integer and L is greater than or equal to L1; the L1-th CSI report is the CSI report with the smallest priority among the CSI reports of L1 priority transmission; in one case, the first uplink used to transmit the L1 CSI report
  • the transmission resources can only transmit the contents of the L1-1 CSI report and part of the contents of the L1th report.
  • C sub-channel state information (or called channel state information sub-set, or CSI sub-set), such as C sub-type second type precoding information; in the first At least one of the C sub-channel state information is transmitted on the uplink transmission resource, and at least one of the C sub-channel state information is transmitted on the second uplink transmission resource.
  • the intersection of the sub-channel state information transmitted by the first uplink transmission resource and the sub-channel state information transmitted by the second uplink transmission resource is zero, or is different from each other.
  • the union of the sub-channel state information transmitted by the first uplink transmission resource and the sub-channel state information transmitted by the second uplink transmission resource is all sub-channel state information.
  • the channel state information corresponding to the L1th CSI report (ie, the first channel state information) is split into two sub-channel state information, and the first sub-channel state information is transmitted in the first uplink transmission resource, and the first sub-channel state information is transmitted in the first uplink transmission resource.
  • the second uplink transmission resource transmits the second sub-channel status information.
  • the channel state information corresponding to at least one CSI report is split into C sub-channel state information; all or part of the C sub-channel state information is transmitted in at least two uplink transmission resources.
  • Sub-channel state information for example, at least one of the C sub-channel state information is transmitted on the first uplink transmission resource, and the remaining sub-channel state information of the C sub-channel state information is transmitted on the second uplink transmission resource.
  • the plurality of uplink transmission resources satisfy a preset timing relationship, and the transmission content on the uplink transmission resources is determined according to the preset timing relationship.
  • S102 Feed back at least two sub-channel status information through at least two uplink transmission resources.
  • the terminal can feed back at least two sub-channel status information through at least two uplink transmission resources. For example, assuming that the terminal divides the first channel state information into first sub-channel state information and second sub-channel state information, the terminal can feed back the first sub-channel state information on the first uplink transmission resource; and feed back the first sub-channel state information on the second uplink transmission resource. Second sub-channel status information.
  • the CSI corresponding to the L1th CSI report is the first channel state information, including K bits.
  • the first uplink transmission resource transmits the content of the L1-1 CSI report and part of the content of the L1-th report (only K1 bits are left for transmitting part of the content of the L1-th report).
  • the terminal can divide the first channel status information into the first sub-channel status information and the second sub-channel status information.
  • the terminal can also split the channel state information corresponding to the L1th CSI report into C CSIs; feed back the first sub-channel state information on the first uplink transmission resource; and feed back the first sub-channel state information on the second uplink transmission resource. Feed back the second sub-channel status information; ...; feed back the C-th sub-channel status information on the C-th uplink transmission resource.
  • the C uplink transmission resources corresponding to the C sub-channel state information respectively correspond to different time domain resources, such as multiple different time slots or sub-time slots.
  • the C uplink transmission resources corresponding to the C sub-channel status information respectively correspond to different frequency domain resources, such as different sub-carrier sets, or different physical resource blocks (Physical Resource Block, referred to as PRB).
  • PRB Physical Resource Block
  • the first uplink transmission resource and the first sub-channel status information correspond to the first channel status information report; the second uplink transmission resource and the second sub-channel status information correspond to the second channel status information report.
  • the first uplink transmission resource and the first sub-channel status information correspond to the first channel status information report, which means that the first uplink transmission resource is the uplink transmission resource indicated by the first channel status information report, and the first sub-channel status information is the first
  • the channel state information indicated by the channel state information report is transmitted in the first uplink transmission resource indicated by the first channel state information report.
  • the second uplink transmission resource and the second sub-channel status information correspond to the second channel status information report, which means that the second uplink transmission resource is the uplink transmission resource indicated by the second channel status information report, and the second sub-channel status information is the second
  • the channel state information indicated by the channel state information report is transmitted in the second uplink transmission resource indicated by the second channel state information report.
  • the terminal may feed back the first sub-channel status information on the first uplink transmission resource and feed back the second sub-channel status information on the second uplink transmission resource.
  • the terminal may feed back the first sub-channel status information on the first time slot; feed back the second sub-channel status information on the second time slot; wherein the second time slot is larger than the first time slot.
  • the time slot here can also be a sub-time slot.
  • the second time slot is determined based on the first time slot and the time slot offset t, for example, the second time slot is equal to the first time slot plus the time slot offset.
  • the time slot offset t is determined based on the second time slot and the first time slot. For example, the time slot offset is equal to the second time slot minus the first time slot; where the time slot offset t is a positive integer.
  • the first time slot is determined based on the second time slot and the time slot offset t. For example, the first time slot is equal to the second time slot minus the time slot offset; where the time slot offset t is a positive integer. .
  • the time slot offset t is an integer greater than or equal to the first threshold m1 and less than or equal to the second threshold m2, m1 and m2 are positive integers, and m1 is less than m2.
  • the terminal can feed back the first sub-channel status information on the n-th time slot; feed back the second sub-channel status information on the n+t-th time slot; where n is an integer; t is greater than or equal to m1 and less than or equal to m2 is a positive integer; m1 and m2 are positive integers.
  • the terminal first divides the first channel state information into at least two sub-channel state information; and then transmits the at least two sub-channel state information through at least two uplink transmission resources.
  • the base station can receive at least two sub-channel status information fed back by the terminal through at least two uplink transmission resources, so it will not affect channel decoding.
  • the terminal achieves the purpose of transmission by discarding some CSI bits.
  • each CSI coded bit may be related to the channel information, and its importance is equal. If discarded Some bits may cause the base station to be unable to recover the compressed channel, causing the decoder to be unable to decode well.
  • the channel state information feedback method proposed in the embodiments of the present application can effectively solve the problem that one uplink transmission resource cannot effectively transmit at least one channel state information; and, the technical solutions of the embodiments of the present application are simple to implement. Convenient, easy to popularize, and has a wider scope of application.
  • FIG. 2 is a second flowchart of a channel state information feedback method provided by an embodiment of the present application. Optimization and expansion are carried out based on the above technical solutions, and can be combined with the above optional implementation modes. As shown in Figure 2, the channel state information feedback method may include the following steps:
  • S202 Feed back the first sub-channel status information on the first uplink transmission resource; feed back the second sub-channel status information on the second uplink transmission resource; wherein the at least two sub-channel status information include: the first sub-channel status information and the second sub-channel status information. Two sub-channel status information.
  • the terminal may divide the first channel state information into two or more sub-channel state information; when the terminal divides the first channel state information into two sub-channel state information, the terminal may feedback on the first uplink transmission resource The first sub-channel status information is fed back on the second uplink transmission resource. The second sub-channel status information is fed back.
  • the first channel state information corresponding to a CSI report is split into first sub-channel state information and second sub-channel state information; the first channel state information may include K bits; The first sub-channel status information may include K1 bits; the second sub-channel status information may include K2 bits; where K1+K2 ⁇ K.
  • K1+K2 is greater than or equal to K here is because the first CSI report and/or the second CSI report may be accompanied by some bits used to indicate that they belong to the same channel state information, or there may be some bits used to indicate that they belong to the same channel state information.
  • a bit indicating the correlation of the first CSI report and the second CSI report is because the first CSI report and/or the second CSI report may be accompanied by some bits used to indicate that they belong to the same channel state information, or there may be some bits used to indicate that they belong to the same channel state information.
  • the terminal first divides the first channel state information into at least two sub-channel state information; and then transmits the at least two sub-channel state information through at least two uplink transmission resources.
  • the base station can receive at least two sub-channel status information fed back by the terminal through at least two uplink transmission resources, so it will not affect channel decoding.
  • the terminal achieves the purpose of transmission by discarding some CSI bits.
  • each CSI coded bit may be related to the channel information, and its importance is equal.
  • the channel state information feedback method proposed in the embodiments of the present application can effectively solve the problem that one uplink transmission resource cannot effectively transmit at least one channel state information; and, the technical solutions of the embodiments of the present application are simple to implement. Convenient, easy to popularize, and has a wider scope of application.
  • Figure 3 is a third flowchart of a channel state information feedback method provided by an embodiment of the present application. Optimization and expansion are carried out based on the above technical solutions, and can be combined with the above optional implementation modes. As shown in Figure 3, the channel state information feedback method may include the following steps:
  • the terminal may feed back the first sub-channel status information on the first time slot; feed back the second sub-channel status information on the second time slot; wherein the second time slot is larger than the first time slot;
  • the time slot is based on the first time slot and the time slot offset t Determine; or, the time slot offset t is determined based on the second time slot and the first time slot; alternatively, the first time slot is determined based on the second time slot and the time slot offset t; the time slot offset t is a positive integer.
  • the time slot offset t is an integer greater than or equal to the first threshold m1 and less than or equal to the second threshold m2, m1 and m2 are positive integers, and m1 is less than m2.
  • the terminal can feed back the first sub-channel status information on the n-th time slot; feed back the second sub-channel status information on the n+t-th time slot; where n is an integer; t is greater than or equal to m1 and less than or equal to m2 is a positive integer; m1 and m2 are positive integers.
  • the first threshold m1 is determined in one of the following ways: determined based on the received first indication signaling; determined based on an agreed method; determined based on the first time interval f1 and carrier spacing; based on the ability to process CSI Determine; wherein the first indication signaling may include first high-layer signaling and/or first physical layer signaling.
  • the first threshold m1 may be determined by the base station, the terminal receives the first high-layer signaling and/or the first physical layer signaling sent by the base station, and the terminal determines it through the first high-layer signaling and/or the first physical layer signaling.
  • the first threshold m1 can also be determined by the base station and the terminal according to an agreed method; or, m1 can also be determined according to the first time interval f1 and the carrier spacing; where, f1 is the first uplink carrying the first CSI report The number of symbols between the last symbol of the transmission resource and the first symbol of the second uplink transmission resource carrying the second CSI report, where f1 is the minimum time required for the base station to process the CSI report; or, the first threshold m1 is also It can be determined based on the terminal's ability to process CSI. The terminal feeds back the ability to process CSI to the base station, and the base station determines m1 based on the terminal's ability to process CSI.
  • the second threshold m2 is determined in one of the following ways: determined based on the received second indication signaling; determined based on an agreed method; determined based on the second time interval f2 and carrier spacing; based on the ability to process CSI Determine; wherein the second indication signaling may include second high-layer signaling and/or second physical layer signaling.
  • the second threshold m2 may be determined by the base station. The terminal receives the second high-level signaling and/or the second physical layer signaling sent by the base station. The terminal may use the second high-level signaling and/or the second physical layer signaling.
  • the second threshold m2 can also be determined by the base station and the terminal in an agreed manner; or, the second threshold m2 can also be determined based on the second time interval f2 and the carrier spacing; f2 is the first time interval carrying the first CSI report.
  • the number of symbols between the last symbol of the uplink transmission resource and the first symbol of the second uplink transmission resource carrying the second CSI report, where f2 is the maximum time required for the channel to maintain correlation; or, the second threshold m2 It can also be determined based on the terminal's ability to process CSI.
  • the terminal feeds back the ability to process CSI to the base station, and the base station determines m2 based on the terminal's ability to process CSI.
  • the time slot offset t is less than the first threshold m1, that is, 1 ⁇ t ⁇ m1, the first channel status information report corresponding to the first sub-channel status information and the second channel status information corresponding to the second sub-channel status information
  • the Hybrid Automatic Repeat Request (HARQ) HARQ corresponding to the status information report has the same HARQ ID.
  • the time slot offset t is greater than the first threshold m1, that is, the HARQ corresponding to the first channel status information report and the second channel status information report have the same HARQ ID; or, the first channel status information report and The HARQ corresponding to the second channel status information report has a different HARQ ID.
  • the time slot offset t is greater than the second threshold m2, that is, the terminal can ignore the second channel status information report corresponding to the second sub-channel status information. That is, the second sub-channel status information corresponding to the second uplink transmission resource is not fed back. Second channel status information report.
  • the time slot offset t is greater than or equal to the second threshold m2, that is, t ⁇ m2.
  • the terminal can also receive the third indication signaling and reacquire the first channel status information.
  • the first channel status information is the second type of predetermined signal. Encoding information feeds back the first channel state information, and the third indication signaling is high layer and/or physical layer signaling.
  • the terminal may also receive the fourth indication signaling, reacquire the first channel status information, the first channel status information is the first type of precoding information, and feed back the first channel status information.
  • the fourth indication signaling For higher layer and/or physical layer signaling.
  • the terminal may also receive the fifth indication signaling, re-acquire the first sub-channel status information and the second sub-channel status information, and feed back the first sub-channel status information and the second sub-channel status information.
  • the fifth The indication signaling is high layer and/or physical layer signaling.
  • the terminal may also receive sixth indication signaling, reacquire the first subchannel status information, and feed back the first subchannel status information, where the sixth indication signaling is high layer and/or physical layer signaling.
  • the terminal may also receive seventh indication signaling, where the seventh indication signaling is high layer and/or physical layer signaling, reacquire the second subchannel status information, and feed back the second subchannel status information.
  • the second uplink transmission resource may be PUSCH, and the effective transmission bits of the second uplink transmission resource are greater than the number of bits corresponding to the second sub-channel status information.
  • the second uplink transmission resource may be a PUCCH, and the effective transmission bits of the second uplink transmission resource are greater than the reserved bits corresponding to the second sub-channel status information.
  • the effective transmission bits of an uplink transmission resource refer to the number of transmission bits that the uplink transmission resource can carry under its corresponding modulation and coding method.
  • the second uplink transmission resource may be a PUCCH
  • the PUCCH is used to transmit second channel state information, where the second channel state information is channel state information different from the first channel state information, reducing the second channel state information.
  • the transmission priority of the channel status information is to transmit the second sub-channel status information.
  • Figure 4 is a schematic structural diagram of uplink transmission resources provided by an embodiment of the present application.
  • the terminal can feed back the first sub-channel status information on the n-th time slot, and feed back the second sub-channel status information on the n+t-th time slot, where n is an integer and t is a positive integer. n is a negative integer before the current time slot and a positive integer after the current time slot.
  • t is a negative integer before the current time slot and a positive integer after the current time slot.
  • t since the base station needs a certain amount of time to process the received CSI1 after receiving CSI1, it is required that t ⁇ m1, where m1 is related to the algorithm used by the base station to process CSI1 or the base station's own processing capabilities, and also depends on the base station's own processing capabilities.
  • the first threshold m1 may be determined by the base station.
  • the base station sends m1 to the terminal through the first high-level signaling and/or the first physical layer signaling.
  • the terminal receives the first high-level signaling and/or the first physical layer signaling.
  • Layer signaling determines m1.
  • the first threshold m1 is agreed between the base station and the terminal. For example, there are different m1s according to the processing capabilities of the base station or the terminal.
  • the first threshold m1 is a minimum value agreed by the base station and the terminal.
  • the base station and the terminal agree that the last symbol of the first uplink transmission resource carrying the first CSI report to the second uplink transmission resource carrying the second CSI report
  • the number of symbols between the first symbols of the transmission resource is f1
  • m1 is floor(f1/s), where f1 is a positive integer, and s is the number of symbols included in each time slot, such as 12, 14
  • floor represents a rounding function, such as an upper rounding function or a lower rounding function.
  • the first threshold m1 is determined based on f1 and the carrier spacing, such as is 2 (u1/u2) ⁇ floor(f1/s), where f1 is a positive integer, s is the number of symbols included in each time slot, u1 is the first uplink transmission resource or the second uplink transmission resource corresponding to Parameters related to subcarrier spacing, such as 30 kilohertz (khz), etc.; u2 corresponds to the reference subcarrier spacing, such as 15khz.
  • the first threshold m1 is related to the terminal's ability to process CSI. If m1 is too small, the terminal will not have time to obtain the CSI, so the first threshold m1 must be greater than a certain value.
  • the first threshold m1 can also be determined based on the terminal's ability to process CSI.
  • the terminal feeds back its ability to process CSI to the base station, and the base station determines the value of m1 based on the terminal's ability to process CSI.
  • the channel status information since the channel is constantly changing, the channel status information has a certain timeliness. After a certain timeliness, it is meaningless for the terminal to feed back the CSI. Therefore, it is necessary to specify that the time slot offset t is less than or equal to the second threshold m2.
  • m2 is a positive integer
  • the second threshold m2 may be determined based on the terminal's ability to process CSI.
  • the terminal can determine the value of m2 based on the changes in the downlink channel. For example, the channel that changes quickly has a small m2, while the channel that changes slowly has a large m2.
  • the speed of channel change is related to the moving speed of the terminal and the surrounding scatterers. It is also related to the subcarrier spacing.
  • the base station determines m2, for example, determines m2 based on the speed of channel change, determines m2 based on statistical channel characteristics, and indicates the determined m2 to the terminal through second high-layer signaling and/or second physical layer signaling.
  • m2 is a maximum value agreed between the base station and the terminal. For example, the base station and the terminal agree from the last symbol of the first uplink transmission resource carrying the first CSI report to the second uplink transmission resource carrying the second CSI report.
  • the number of symbols between the first symbols is f2, then m2 is floor(f2/s), where f2 is a positive integer and s is the number of symbols included in each time slot, such as 12, 14 and other positive integers.
  • floor represents a rounding function, such as an upper rounding function or a lower rounding function.
  • the second threshold m2 can be determined based on the second time interval f2 and the carrier spacing.
  • m2 is 2 (u1/u2) ⁇ floor(f2/s); where f2 is a positive integer and s is each time slot.
  • the number of symbols included in , u1 is the parameter related to the subcarrier spacing corresponding to the first uplink transmission resource or the second uplink transmission resource, such as 30khz, etc., and u2 corresponds to the reference subcarrier spacing, such as 15khz.
  • the time slot offset t is less than the first threshold m1, that is, 1 ⁇ t ⁇ m1, and the terminal may not process or transmit the second sub-channel status information.
  • the terminal can obtain the second sub-channel status information and transmit the second sub-channel status information on the second uplink transmission resource; wherein, the first sub-channel status information corresponding to the first sub-channel status information
  • the HARQ corresponding to the channel state information report and the second channel state information report corresponding to the second sub-channel state information have the same HARQ ID, that is, they are retransmitted on the same uplink transmission resource.
  • the terminal can obtain the second channel state information and transmit the second channel state information on the second uplink transmission resource.
  • the terminal may not feed back the second sub-channel status information.
  • the terminal may feed back the second sub-channel status information in the second uplink transmission resource.
  • the base station finds that t ⁇ m2, and the base station does not need to process the second sub-channel status information.
  • the base station finds that t ⁇ m2, does not process the second sub-channel status information, and ignores the already processed first sub-channel status information.
  • the base station finds that t ⁇ m2, does not process the second sub-channel status information, and obtains low-precision channel status information corresponding to the terminal through the first sub-channel status information.
  • the base station after receiving the second sub-channel status information, finds that t ⁇ m2 and sends a third instruction signaling to the terminal to instruct the terminal to re-obtain the first channel status information.
  • the first channel status information is The second type of precoding information receives the first channel state information, and the third indication signaling is high layer and/or physical layer signaling.
  • the base station after receiving the second sub-channel status information, finds that t ⁇ m2 and sends a fourth instruction signaling to the terminal to instruct the terminal to re-obtain the first channel status information.
  • the first channel status information is The first type of precoding information receives first channel state information, and the fourth indication signaling is high layer and/or physical layer signaling.
  • the base station after receiving the second sub-channel status information, finds that t ⁇ m2 and sends a fifth instruction signaling to the terminal to instruct the terminal to re-obtain the first sub-channel status information and the second sub-channel status.
  • information, receiving first sub-channel status information and second sub-channel status information, and the fifth indication signaling is high-layer and/or physical layer signaling.
  • the base station after receiving the second sub-channel status information, finds that t ⁇ m2 and sends a sixth instruction signaling to the terminal to instruct the terminal to re-obtain the first sub-channel status information and receive the first sub-channel Status information, the sixth indication signaling is high layer and/or physical layer signaling.
  • the base station after receiving the second sub-channel status information, finds that t ⁇ m2 and sends a seventh instruction signaling to the terminal to instruct the terminal to re-obtain the second sub-channel status information and receive the second sub-channel Status information, the seventh indication signaling is high layer and/or physical layer signaling.
  • Figure 5 is a schematic flowchart of a channel state information receiving method provided by an embodiment of the present application.
  • the method can be executed by a channel state information receiving device or a base station.
  • the device or base station can be implemented by software and/or hardware.
  • the device or The base station can be integrated into any smart device with network communication capabilities.
  • the channel state information receiving method may include the following steps:
  • S501 Receive at least two sub-channel status information on at least two uplink transmission resources.
  • the intersection of the sub-channel state information transmitted by the first uplink transmission resource and the sub-channel state information transmitted by the second uplink transmission resource is zero, or is different from each other.
  • the union of the sub-channel state information transmitted by the first uplink transmission resource and the sub-channel state information transmitted by the second uplink transmission resource is all sub-channel state information.
  • the base station may receive the first sub-channel status information on the first uplink transmission resource and receive the second sub-channel status information on the second uplink transmission resource; wherein the at least two sub-channel status information include: First sub-channel status information and second sub-channel status information.
  • the first uplink transmission resource and the first sub-channel status information correspond to the first channel status information report; the second uplink transmission resource and the second sub-channel status information correspond to the second channel status information report.
  • the base station may receive the first sub-channel state information fed back in the first time slot; and receive the second sub-channel state information fed back in the second time slot; wherein the second time slot is larger than the first time slot.
  • the time slot here can also be a sub-time slot.
  • the second time slot is determined based on the first time slot and the time slot offset t.
  • the second time slot is equal to the first time slot plus the time slot offset; where the time slot offset t is positive. integer.
  • the time slot offset t is determined based on the second time slot and the first time slot. For example, the time slot offset is equal to the second time slot minus the first time slot; where the time slot offset t is Positive integer.
  • the first time slot is determined based on the second time slot and the time slot offset t, for example, the first time slot is equal to the second time slot minus the time slot offset; where the time slot offset t is Positive integer.
  • the base station may receive the first sub-channel state information fed back in the nth time slot; receive the second sub-channel state information fed back in the n+t time slot; where n is an integer; t is greater than or equal to m1 and less than or equal to m2 are positive integers; m1 and m2 are positive integers.
  • the time slot offset t is an integer greater than or equal to the first threshold m1 and less than or equal to the second threshold m2, m1 and m2 are positive integers, and m1 is less than m2.
  • the first threshold m1 is determined in one of the following ways: determined based on the first indication signaling sent; determined based on an agreed method; determined based on the first time interval f1 and carrier spacing; or based on the terminal processing CSI.
  • the second threshold m2 is determined in one of the following ways: determined based on the sent second indication signaling; determined based on an agreed method; determined based on the second time interval f2 and carrier spacing; based on the terminal processing CSI Ability determined.
  • the time slot offset t is less than the first threshold m1
  • the HARQ corresponding to the first channel status information report and the second channel status information report has the same HARQ ID.
  • the time slot offset t is greater than or equal to the first threshold m1, and the HARQ corresponding to the first channel status information report and the second channel status information report has the same HARQ ID; or, the first channel status information report and the second channel status information report The HARQ corresponding to the two channel status information reports has different HARQ IDs.
  • the base station can also send third indication signaling to instruct the terminal to re-obtain the first channel state information, and the first channel state information is the second type of precoding.
  • the base station can also send fourth indication signaling to instruct the terminal to re-obtain the first channel state information, and the first channel state information is the first type of precoding.
  • the base station may also send fifth instruction signaling to instruct the terminal to reacquire the first sub-channel status information and the second sub-channel status information, receive the first Subchannel status information and second subchannel status information, and the fifth indication signaling is high layer and/or physical layer signaling.
  • the base station may also send sixth indication signaling for Instruct the terminal to re-obtain the first sub-channel status information and receive the first sub-channel status information, and the sixth indication signaling is high-layer and/or physical layer signaling.
  • the time slot offset t is greater than or equal to the second threshold m2
  • the base station can also send a seventh instruction signaling to instruct the terminal to re-obtain the second sub-channel status information and receive the second sub-channel status information.
  • the seventh indication signaling is high layer and/or physical layer signaling.
  • the second uplink transmission resource is PUSCH, and the effective transmission bits of the second uplink transmission resource are greater than the number of bits corresponding to the second sub-channel status information.
  • the second uplink transmission resource is PUCCH, and the effective transmission bits of the second uplink transmission resource are greater than the number of bits corresponding to the second sub-channel status information.
  • the second uplink transmission resource is PUCCH
  • PUCCH is a reserved bit used to transmit a static HARQ codebook.
  • the effective transmission bits of an uplink transmission resource refer to the number of transmission bits that the uplink transmission resource can carry under its corresponding modulation and coding method.
  • the second uplink transmission resource may be a PUCCH
  • the PUCCH is used to transmit second channel state information, where the second channel state information is channel state information different from the first channel state information, reducing the second channel state information.
  • the transmission priority of the channel status information is to transmit the second sub-channel status information.
  • the base station receives at least two sub-channel state information on at least two uplink transmission resources; and combines the at least two sub-channel state information into first channel state information.
  • the terminal achieves the purpose of transmission by discarding some CSI bits.
  • each CSI coded bit may be related to the channel information, and its importance is equal. If discarded Some bits may cause the base station to be unable to recover the compressed channel, causing the decoder to be unable to decode well.
  • the channel state information receiving method proposed in the embodiment of the present application can effectively solve the problem that one uplink transmission resource cannot effectively transmit at least one channel state information; and, the technical solution of the embodiment of the present application is simple to implement. Convenient, easy to popularize, and has a wider scope of application.
  • Figure 6 is a schematic structural diagram of a channel state information feedback device provided by an embodiment of the present application.
  • the channel state information feedback device includes: a grouping module 601 and a feedback module 602; wherein the grouping module 601 is configured to divide the first channel state information into at least two sub-channel state information; the feedback Module 602 is configured to feed back the at least two sub-channel status information through at least two uplink transmission resources.
  • the feedback module 602 is configured to feed back the first sub-channel status information on the first uplink transmission resource and feed back the second sub-channel status information on the second uplink transmission resource; wherein the at least The two sub-channel status information include first sub-channel status information and second sub-channel status information.
  • the first uplink transmission resource and the first sub-channel status information correspond to a first channel status information report; the second uplink transmission resource and the second sub-channel status information correspond to a second channel Status information report.
  • the feedback module 602 is configured to feed back the first sub-channel status information on the first time slot; feed back the second sub-channel status information on the second time slot; wherein, The second time slot is larger than the first time slot.
  • the second time slot is determined based on the first time slot and a time slot offset t; or, the time slot offset t is determined based on the second time slot and the first time slot. Determine; or, the first time slot is determined according to the second time slot and the time slot offset t; wherein the time slot offset t is a positive integer.
  • the time slot offset t is an integer greater than or equal to the first threshold m1 and less than or equal to the second threshold m2, m1 and m2 are positive integers, and m1 is less than m2.
  • the first threshold m1 is determined in one of the following ways: determined based on the received first indication signaling; determined based on an agreed method; determined based on the first time interval f1 and carrier spacing; based on the ability to process CSI Sure.
  • the second threshold m2 is determined in one of the following ways: determined based on the received second indication signaling; determined based on an agreed method; determined based on the second time interval f2 and carrier spacing; based on the ability to process CSI Sure.
  • the time slot offset t is less than the first threshold m1
  • the HARQ corresponding to the first channel status information report and the second channel status information report has the same HARQ ID.
  • the time slot offset t is greater than or equal to the first threshold m1, and the HARQ corresponding to the first channel status information report and the second channel status information report has the same HARQ ID; or, The HARQ corresponding to the first channel status information report and the second channel status information report have different HARQ IDs.
  • the time slot offset t is greater than or equal to the second threshold m2, and the feedback module 602 is also configured to ignore the second channel status information report corresponding to the second sub-channel status information.
  • the time slot offset t is greater than or equal to the second threshold m2.
  • the feedback module 602 is also configured to receive the third indication signaling and reacquire the first channel status information.
  • the first The channel state information is the second type of precoding information, and the first channel state information is fed back.
  • the time slot offset t is greater than or equal to the second threshold m2.
  • the feedback module 602 is also configured to receive the fourth indication signaling and reacquire the first channel status information.
  • the first The channel state information is the first type of precoding information, and the first channel state information is fed back.
  • the time slot offset t is greater than or equal to the second threshold m2.
  • the feedback module 602 is also configured to receive the fifth indication signaling and reacquire the first sub-channel status information and the second sub-channel status information. Channel state information, feeding back the first sub-channel state information and the second sub-channel state information.
  • the time slot offset t is greater than or equal to the second threshold m2.
  • the feedback module 602 is also configured to receive the sixth indication signaling, reacquire the first sub-channel status information, and feedback the First sub-channel status information.
  • the time slot offset t is greater than or equal to the second threshold m2.
  • the feedback module 602 is also configured to receive the seventh indication signaling, reacquire the second sub-channel status information, and feedback the Second sub-channel status information.
  • the second uplink transmission resource is PUSCH, and effective transmission of the second uplink transmission resource The number of bits is greater than the number of bits corresponding to the second sub-channel status information.
  • the second uplink transmission resource is PUCCH, and the effective transmission bits of the second uplink transmission resource are greater than the number of bits corresponding to the second sub-channel status information.
  • the second uplink transmission resource is PUCCH
  • the PUCCH is a reserved bit used to transmit a static HARQ codebook.
  • the effective transmission bits of an uplink transmission resource refer to the number of transmission bits that the uplink transmission resource can carry under its corresponding modulation and coding method.
  • the second uplink transmission resource is PUCCH
  • the PUCCH is used to transmit second channel state information, where the second channel state information is channel state information different from the first channel state information, reducing the The transmission priority of the second channel status information is adjusted to transmit the second sub-channel status information.
  • Figure 7 is a schematic structural diagram of a channel state information receiving device provided by an embodiment of the present application.
  • the channel state information receiving device includes: a receiving module 701 and a combining module 702; wherein the receiving module 701 is configured to receive at least two sub-channel state information on at least two uplink transmission resources; so The merging module 702 is configured to merge at least two sub-channel state information into first channel state information.
  • the receiving module 701 is configured to receive the first sub-channel status information on the first uplink transmission resource and receive the second sub-channel status information on the second uplink transmission resource; wherein the at least The two sub-channel status information include first sub-channel status information and second sub-channel status information.
  • the first uplink transmission resource and the first sub-channel status information correspond to the first channel status information report; the second uplink transmission resource and the second sub-channel status information correspond to the second channel status information Report.
  • the receiving module 701 is configured to receive the first sub-channel status information fed back in the first time slot; and receive the second sub-channel status information fed back in the second time slot; wherein, The second time slot is larger than the first time slot.
  • the second time slot is determined based on the first time slot and a time slot offset t; or, the time slot offset t is determined based on the second time slot and the first time slot. Determine; or, the first time slot is determined according to the second time slot and the time slot offset t; wherein the time slot offset t is a positive integer.
  • the time slot offset t is an integer greater than or equal to the first threshold m1 and less than or equal to the second threshold m2, m1 and m2 are positive integers, and m1 is less than m2.
  • the first threshold m1 is determined in one of the following ways: determined based on the first indication signaling sent; determined based on an agreed method; determined based on the first time interval f1 and carrier spacing; determined based on terminal processing CSI capabilities determined.
  • the second threshold m2 is determined in one of the following ways: determined according to the second instruction signaling sent; determined according to an agreed method; determined according to the second time interval f2 and carrier spacing; determined according to terminal processing CSI Ability determined.
  • the time slot offset t is less than the first threshold m1
  • the HARQ corresponding to the first channel status information report and the second channel status information report has the same HARQ ID.
  • the time slot offset t is greater than or equal to the first threshold m1, and the HARQ corresponding to the first channel status information report and the second channel status information report has the same HARQ ID; or, The HARQ corresponding to the first channel status information report and the second channel status information report have different HARQ IDs.
  • the device further includes: a sending module 703, the time slot offset t is greater than or equal to the second threshold m2, and the sending module 703 is configured to send a third indication signaling to instruct the terminal to re- Obtain the first channel state information, which is the second type of precoding information, and receive the first channel state information; or, the sending module 703 is also configured to send fourth indication signaling , used to instruct the terminal to re-obtain the first channel state information, which is the first type of precoding information, and receive the first channel state information; or, the sending module 703 is also set to Send fifth instruction signaling to instruct the terminal to re-obtain the first sub-channel status information and the second sub-channel status information, and receive the first sub-channel status information and the second sub-channel status information; Alternatively, the sending module 703 is further configured to send sixth instruction signaling to instruct the terminal to re-obtain the first sub-channel status information and receive the first sub-channel status information; or, the sending module 70
  • the second uplink transmission resource is PUSCH, and the effective transmission bits of the second uplink transmission resource are greater than the number of bits corresponding to the second sub-channel status information.
  • the second uplink transmission resource is PUCCH, and the effective transmission bits of the second uplink transmission resource are greater than the number of bits corresponding to the second sub-channel status information.
  • the second uplink transmission resource is PUCCH
  • the PUCCH is a reserved bit used to transmit a static HARQ codebook.
  • the second uplink transmission resource is PUCCH
  • the PUCCH is used to transmit second channel state information, where the second channel state information is channel state information different from the first channel state information, reducing the The transmission priority of the second channel status information is adjusted to transmit the second sub-channel status information.
  • the above-mentioned channel state information receiving device can execute the channel state information receiving method provided by the embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the channel state information receiving method provided in the embodiment of this application.
  • Figure 8 is a schematic structural diagram of a communication node provided by an embodiment of the present application.
  • the communication node provided by this application can be a terminal or a base station, including one or more processors 801 and storage devices 802; the processor 801 in the communication node can be one or more, Figure In 8, a processor 801 is taken as an example; the storage device 802 is configured to store one or more programs; the one or more programs are executed by the one or more processors 801, so that the one or more programs Multiple processors 801 implement the channel state information feedback method and channel state information receiving method as described in the embodiments of this application.
  • the communication node also includes: communication device 803, input device 804 and output device 805.
  • the processor 801, storage device 802, communication device 803, input device 804 and output device 805 in the communication node can be connected through a bus or other means.
  • connection through a bus is taken as an example.
  • the input device 804 may be configured to receive input numeric or character information and to generate key signal inputs related to user settings and functional control of the communication node.
  • the output device 805 may include a display device such as a display screen.
  • Communication device 803 may include a receiver and a transmitter.
  • the communication device 803 is configured to feedback and receive channel state information according to the control of the processor 801.
  • the storage device 802 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the channel state information feedback method and the channel state information receiving method described in the embodiments of the present application.
  • the storage device 802 may include a stored program area and a stored data area, where the stored program area may store an operating system and an application program required for at least one function; the stored data area may store data created according to the use of the device, etc.
  • the storage device 802 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • storage device 802 may include memory located remotely relative to processor 801, and these remote memories may be connected to communication nodes through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • Embodiments of the present application also provide a storage medium.
  • the storage medium stores a computer program. When the computer program is executed by a processor, any method described in the present application is implemented.
  • the storage medium stores a computer program.
  • the computer program When the program is executed by the processor, any of the methods described in the embodiments of this application is implemented.
  • a channel state information feedback method includes: dividing the first channel state information into at least two sub-channel state information; and feeding back the at least two sub-channel state information through at least two uplink transmission resources.
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof.
  • Examples of computer-readable storage media may include: an electrical connection having one or more wires, a portable computer disk, a hard drive, Random Access Memory (RAM), Read Only Memory (ROM), Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc-Read Only Memory, CD-ROM), optical storage device, magnetic storage device, or the above any suitable combination.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. This propagated data signal can take many forms, including but not limited to: electromagnetic signal, optical signal, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code contained on a computer-readable medium can be transmitted using any appropriate medium, including but not limited to: wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to: wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing operations of the present application may be written in one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer (e.g. Use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuitry, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source code or object code.
  • ISA Instruction Set Architecture
  • Any block diagram of a logic flow in the figures of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read-only memory (ROM), random access memory (Random Access Memory, RAM), optical Storage devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FGPA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出了一种信道状态信息反馈方法、接收方法、装置及通信节点,包括:将至少一个CSI报告对应的信道状态信息拆分成C个子信道状态信息;在至少两个上行传输资源中传输所述C个子信道状态信息中的全部子信道状态信息或者部分子信道状态信息。所述多个上行传输资源之间满足预设的时序关系,根据预设的时序关系确定上行传输资源上的传输内容。

Description

信道状态信息反馈方法、接收方法、装置及通信节点
本申请要求在2022年08月10日提交中国专利局、申请号为202210959508.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,例如涉及一种信道状态信息反馈方法、接收方法、装置及通信节点。
背景技术
人工智能(Artificial Intelligence,简称AI)/机器学习(Machine Learning,简称ML)已经广泛应用于各行各业,将它引入无线通信系统来获得信道状态信息得到了广泛的研究;其中一个主要应用场景是信道状态信息(Channel State Information,简称CSI)的反馈。一般来说,基于自编码器的方式来实现CSI反馈。自编码器包括一个编码器和解码器,其中,编码器设置在终端侧,而解码器设置在基站侧。
在CSI反馈中,基站会给终端分配反馈CSI的上行传输资源,但由于基站在分配资源时并不知道终端需要传输多少个数据流,以及每个数据流具体传输的比特数目,以及有可能多个CSI在相同的上行传输资源上传输等原因,有可能会导致基站分配的上行传输资源不能有效传输CSI的情况。此时,一种解决方式是通过终端丢弃部分CSI比特来达到传输的目的。但对于基于AI的CSI反馈来说,丢弃部分比特,可能导致基站不能很好地恢复压缩后的信道信息。另外一种解决方法是通过多个信道状态信息报告反馈所述CSI,但多个CSI报告如何反馈所述CSI是需要解决的问题。
发明内容
本申请提供了一种信道状态信息反馈方法、接收方法、装置及通信节点,可以有效地解决一个上行传输资源不能有效传输至少一个信道状态信息的问题。
第一方面,本申请实施例提供了一种信道状态信息反馈方法,所述方法包括:
将第一信道状态信息分成至少两个子信道状态信息;
通过至少两个上行传输资源反馈所述的至少两个子信道状态信息。
第二方面,本申请实施例还提供了一种信道状态信息接收方法,所述方法包括:
在至少两个上行传输资源接收至少两个子信道状态信息;
将所述至少两个子信道状态信息合并成第一信道状态信息。
第三方面,本申请实施例还提供了一种信道状态信息反馈装置,所述装置包括:分组模 块和反馈模块;其中,
所述分组模块,设置为将第一信道状态信息分成至少两个子信道状态信息;
所述反馈模块,设置为通过至少两个上行传输资源反馈所述的至少两个子信道状态信息。
第四方面,本申请实施例还提供了一种信道状态信息接收装置,所述装置包括:接收模块和合并模块;其中,
所述接收模块,设置为在至少两个上行传输资源上接收至少两个子信道状态信息;
所述合并模块,设置为将至少两个子信道状态信息合并成第一信道状态信息。
第五方面,本申请实施例提供了一种通信节点,包括:
存储装置,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中的任意一种方法。
第六方面,本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1为本申请实施例提供的信道状态信息反馈方法的第一流程示意图;
图2为本申请实施例提供的信道状态信息反馈方法的第二流程示意图;
图3为本申请实施例提供的信道状态信息反馈方法的第三流程示意图;
图4为本申请实施例提供的上行传输资源的结构示意图;
图5为本申请实施例提供的信道状态信息接收方法的流程示意图;
图6为本申请实施例提供的信道状态信息反馈装置的结构示意图;
图7为本申请实施例提供的信道状态信息接收装置的结构示意图;
图8为本申请实施例提供的通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所 示出或描述的步骤。
本申请实施例中,移动通信网络(包括但不限于3G,4G,5G以及未来移动通信网络)的网络架构可以包括网络侧设备(例如包括但不限于基站)和接收侧设备(例如包括但不限于终端)。且应当理解的是,在本示例中,在下行链路中第一通信节点(也可以称为第一通信节点设备)可以是基站,第二通信节点(也可以称为第二通信节点设备)可以终端,当然,在上行链路中第一通信节点也可以是终端,第二通信节点也可以是基站。在两个通信节点是设备到设备通信中,第一通信节点和第二通信节点都可以是基站或者终端。
在本申请实施例中,基站可以是长期演进(Long Term Evolution,简称LTE),长期演进增强(Long Term Evolution-Advanced,简称LTE-A)中的基站或演进型基站(Evolutional Node B,简称eNB或eNodeB)、5G网络中的基站设备、或者未来通信系统中的基站等,基站可以包括宏基站、微基站、家庭基站、无线拉远、可重构智能表面(Reconfigurable Intelligent Surfaces,简称RISs)、路由器、无线保真(Wireless Fidelity,简称WIFI)设备或者主小区(primary cell)和协作小区(secondary cell)等多种网络侧设备。
在本申请实施例中,终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,简称VR)终端、增强现实(Augmented Reality,简称AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(selfdriving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请的实施例可以有多种应用场景。终端有时也可以称为用户,用户设备(User Equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。
本申请实施例中,高层信令包括但不限于无线资源控制(Radio Resource Control,RRC),媒体控制-控制单元(Media Access Control control element,MAC CE),基站和终端间还可以传输物理层信令,比如在物理下行控制信道(Physical Downlink Control CHannel,PDCCH)上传输物理层信令,或者在物理上行控制信道(Physical Uplink Control CHannel,PUCCH)传输物理层信令。
本申请实施例中,参数的指示Indicator,也可以称为索引Index,或者标识(Identifier,ID),它们是完全等价的概念。比如无线系统的资源标识,这里无线系统资源包括但不限于以下之一:一个参考信号资源、参考信号资源组,参考信号资源配置、信道状态信息(Channel State Information,简称CSI)报告、CSI报告集合、终端、基站、面板、神经网络、子神经网络、神经网络层等对应的索引。基站可以通过多种高层信令或者物理层信令指示一个或一组资源的标识给终端。
在本申请实施例中,人工智能(Artificial Intelligence,简称AI)包括机器学习(Machine Learning,简称ML),深度学习,强化学习,迁移学习,深度强化学习和元学习等具有自我学习的设备、组件、软件、模块。在一个实施例中,人工智能通过人工智能网络(或称为神经网络)实现,神经网络包括多个层,每层包括至少一个节点。在一个示例中,神经网络包括输入层,输出层,至少一层隐藏层,其中每层神经网络包括但不限于使用了全连接层,稠密层,卷积层,转置卷积层,直连层,激活函数,归一化层,池化层等至少之一。在一个实施例中,神经网络的每一层可以包括一个子神经网络,比如残差块(Residual Network block,或者Resnet block),稠密网络(Densenet Block),循环网络(Recurrent Neural Network,简称RNN)等。人工智能网络可以包括神经网络模型和/或神经网络模型对应的神经网络参数,其中,神经网络模型可以简称为网络模型,神经网络参数可以简称网络参数。一个网络模型定义了神经网络的层数,每层的大小,激活函数,链接情况,卷积核和大小卷积步长,卷积类型(比如1D卷积,2D卷积,3D卷积,空心卷积,转置卷积,可分卷积,分组卷积,扩展卷积等)等网络的架构,而网络参数是网络模型中每层网络的权值和/或偏置以及它们的取值。一个网络模型可以对应多套不同的神经网络参数取值以适应不同的场景。一个神经网络模型可以对应多个不同的神经网络参数取值。通过线上训练或者线下训练的方式获得神经网络的参数。比如通过输入至少一个样本和标签,训练神经网络模型以获得神经网络参数。
在本申请实施例中,时隙可以是时隙slot或子时隙mini slot。一个时隙或者子时隙包括至少一个符号。这里符号是指一个子帧或帧或时隙中的时间单位,比如可以为一个正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号、单载波频分复用多址接入(Single-Carrier Frequency Division Multiple Access,简称SC-FDMA)符号、正交多址频分复用接入(Orthogonal Frequency Division Multiple Access,简称OFDMA)符号。
在本申请实施例中,传输包括发送或接收。比如发送数据或者信号,接收数据或者信号。
在本申请实施例中,为了计算信道状态信息或者进行信道估计,移动性管理,定位等,需要基站或者用户发送参考信号(Reference Signal,简称RS),参考信号包括但不限于信道状态信息参考信号(Channel-State Information reference signal,简称CSI-RS),它包括零功率的CSI-RS(Zero Power CSI-RS,ZP CSI-RS)和非零功率的CSI-RS(Non-Zero Power CSI-RS,简称NZP CSI-RS),信道状态信息干扰测量信号(Channel-State Information-Interference Measurement,简称CSI-IM),探测参考信号(Sounding reference signal,简称SRS),同步信号块(Synchronization Signals Block,简称SSB)、物理广播信道(Physical Broadcast Channel,简称PBCH)、同步信号块/物理广播信道(SSB/PBCH),NZP CSI-RS可以用来测量信道或者干扰,CSI-RS也可以用来做跟踪,叫做跟踪参考信号(CSI-RS for Tracking,TRS),而CSI-IM一般用来测量干扰,SRS用来进行信道估计或获取上行预编码。另外,用于传输参考信号的资源元素(Resource Element,简称RE)集合称为参考信号资源,比如,CSI-RS resource,SRS resource,CSI-IM resource,SSB resource。在本文中,SSB包括同步信号块和/或物理广 播信道。
在本申请实施例中,在通信系统中,传输参考信号的资源可以称为参考信号资源,为了节省信令开销等,可能会把多个参考信号资源组合成一个集合(比如CSI-RS resource set,CSI-IM resource set,SRS resource set),一个参考信号资源集合包括至少一个参考信号资源,而多个参考信号资源集合可以都来自同一个参考信号资源设置(比如CSI-RS resource setting,SRS resource setting,CSI-IM resource setting,其中CSI-RS resource setting可能和CSI-IM resource setting合并,都称为CSI-RS resource setting)来配置参考信号参数信息。
在本申请实施例中,基站配置测量资源信息,测量资源信息用于获取信道状态信息。其中,测量资源信息包括CN个信道测量资源(Channel Measurement Resource,简称CMR)信息和CM个干扰测量资源(Interference MeasurementResource,简称IMR)信息,CN和CM为正整数。基站在一个报告配置(report config)或报告设置(reporting setting)中配置测量资源信息。其中CN个CMR信息用于终端的信道进行测量,CM个IMR信息用于使终端对所受到的干扰进行测量。
在一个示例中,为了更好地传输数据或者信号,基站或者终端需要获取信道状态信息,其中,信道状态信息可以包括以下至少之一:信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,简称CRI)、同步信号块资源指示(Synchronization Signals Block Resource Indicator,简称SSBRI)、参考信号接收功率(Reference Signal Received Power,简称RSRP)、差分RSRP(Differential RSRP)、信道质量指示(Channel Quality Indicator,简称CQI)、预编码矩阵指示(Precoding Matrix Indicator,简称PMI)、层指示(Layer Indicator,简称LI)、秩指示(Rank Indicator,简称RI)、级l的信干噪比(Level 1 Signal to Interference plus Noise Ratio,简称L1-SINR)、差分L1-SINR(Differential L1-SINR),预编码信息。这里预编码矩阵指示是预编码信息中的一种,即基于码本实现预编码信息的情况。预编码信息还包括基于非码本实现的方式。比如第二类预编码信息。在一个示例中,包括第一类预编码信息的CSI称为第一类CSI。在一个示例中,包括第二类预编码信息的CSI称为第二类CSI。
在本申请实施例中,终端和基站通过第一类预编码信息传输与信道匹配的信道状态信息,第一类预编码信息是基于传统的信道特征矩阵或者特征矩阵的量化值构成的预编码信息。比如基于码本的方法。比如LTE的中的N天线的码本,这里N=2,4,8,12,16,2432,新无线电(New Radio,NR)中type I码本,type II码本,type II port selection码本,enhanced type II码本,enhanced type II selection码本,Further enhanced type II selection码本。这里的码本包括L个码字,它的主要思想是基站和终端预先根据规定的公式或者表格或者字典的方式保存L个码字。在一个示例中,码字是一个向量。在一个示例中,码字是矩阵,矩阵包括r列,每列也是一个向量。示例性地,矩阵的每列是相互正交的。在一个示例中,构成码字的向量是一个0-1向量,其中,整个向量只有一个值为1,其它的值为零。在一个示例中,构成码字的向量是一个离散傅里叶变换(Discrete Fourier Transform,DFT)矢量。在一个示例中,构 成码字的向量是两个或者两个以上的DFT矢量通过张量积(kronecker积)获得。在一个示例中,构成码字的向量是两个或者两个以上的DFT矢量通过乘以不同的相位旋转连接得到。在一个示例中,构成码字的向量是两个或者两个以上的DFT矢量通过张量积(kronecker积)以及乘以相位旋转获得。基站或者终端通过查找L个码字,找到与信道最匹配的码字作为最优码字来传输数据或者信号。这里跟信道匹配的码字包括但不限于以下至少之一:码字和信道的距离最小,码字和信道的相关性最大,码字和信道的最优的右奇异向量或者矩阵的距离最小,码字和信道的最优的右奇异向量或者矩阵相关性最大,码字和信道计算得到的信噪比最大等;L为大于1的整数,一般来说大于发送天线数目。
在一个示例中,终端和基站通过第二类预编码信息传输与信道匹配的信道状态信息,第二类预编码信息是基于AI获得的信道状态信息。在一个示例中,基站和终端通过自编码器获得信道状态信息,自编码器包括一个编码器和解码器;其中,编码器在终端,而解码器在基站侧。终端通过编码器对获得信道H进行压缩得到压缩后的H1,并将压缩后的信道H1量化反馈给基站,基站接收量化后的H1,去量化后输入解码器,通过解码器对其进行解压缩,从而恢复H。
在一个示例中,H包括K0个元素,终端从H中选K个元素作为H1,对H1量化进行反馈,基站接收所述K个量化的元素并将它去量化,将去量化的K个元素输入AI模块,AI模块输出K0个元素作为对H的恢复,从而得到所述H的预编码矩阵。其中,K和K0为大于1的整数,且K<K0。这里,通过压缩器的H1或从H中选择的K个元素都为第二类信道状态信息。并且为了简单起见,量化后的H1也称为第二类信道状态信息。在一个示例中,第二类预编码信息也可以是通过其它非AI方式生成的与第一类预编码信息不同的预编码矩阵。在一个示例中,第二类预编码信息也可以是第一类预编码信息之外的预编码矩阵。
在一个示例中,为了传输CSI,比如终端反馈CSI,基站接收CSI。需要终端和基站定义一个CSI报告(CSI report或者CSI report congfig),其中CSI报告至少定义了如下参数之一:用于反馈CSI的时频资源,CSI包括的report Quantity,CSI反馈的时域类别reportConfigType,测量信道资源,测量干扰资源,测量的带宽大小等信息。其中,CSI报告可以在上行传输资源上传输,其中,上行传输资源包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和PUCCH,而CSI report也包括时域特性,包括周期的CSI报告(periodic CSI report,P-CSI),非周期的CSI报告(aperiodic CSI report,AP-CSI),半持续的CSI报告(semi-persistent CSI report,SP-CSI)。一般来说,P-CSI传输的比特数目相对较小,在PUCCH上传输,而A-CSI传输的比特数较多,一般在PUSCH上传输,而SP-CSI可以基于PUSCH上传输,也可以基于PUCCH上传输。其中,基于PUCCH传输的P-CSI一般用高层信令(无线资源控制,Radio Resource Control,RRC)配置,基于PUCCH传输的SP-CSI也是用高层信令(RRC和/或MAC CE)配置或者激活,而基于PUSCH传输的SP-CSI或者A-CSI都是通过物理层信令(下行控制信息,Downlink control information,DCI)触发,而DCI一般在物理下行控制信道(Physical downlink control channel,PDCCH)上传输。在本申请实施例中,反馈CSI也 可以称为传输CSI或者发送CSI,比如把信道状态信息承载在上行传输资源上进行反馈或者传输。所述上行传输资源和对应的CSI都是通过一个信道状态信息报告指示。在本申请实施例中,反馈一个CSI报告是指反馈所述CSI报告对应的信道状态信息。
在本申请实施例中,基站通过高层信令和/或物理层信令给终端配置了N个CSI报告(CSI report),每个CSI报告都有一个索引值(identity,ID),称为CSI report ID,终端可以根据自己的计算能力或者处理能力,以及基站的要求选择N个CSI报告中的M个CSI报告,并根据上行反馈的资源,反馈该M个CSI报告中的至少一个CSI报告对应的信道状态信息,其中N和M为正整数,且M≤N。在一个示例中,终端需要反馈M个CSI报告,但M个报告中至少有两个报告对应的传输资源是冲突的,两个报告对应的传输资源冲突是指用于反馈两个报告对应的传输资源(比如PUCCH或者PUSCH)中至少有一个符号是相同的和/或至少有一个子载波是相同的。
在一个示例中,终端通过编码器对获得的信道H进行压缩,并将压缩后的信道H1反馈给基站,基站接收H1,并通过解码器的解压缩模块对H1进行解压缩,从而恢复H。示例性地,终端将获得的信道信息H通过编码器压缩,得到第一信道状态信息(这里,它是一个第二类预编码信息),其中第一信道状态信息包括L个元素,对该L个元素进行量化后得到量化的第一信道状态信息,并反馈量化的第一信道状态信息给基站;基站接收量化的第一信道状态信息,并对它去量化,将去量化的第一信道状态信息输入解码器,并通过解码器的处理得到第二信道状态信息,第二信道状态信息可以理解为信道信息H的估计值或者和它匹配的预编码矩阵。
在一些示例中,终端需要在一个相同的上行传输资源中反馈多个CSI报告,其中,多个CSI报告中至少有L个CSI报告对应的传输资源存在冲突。在一个示例中,存在冲突的L个CSI报告中至少有一个是包括第二类预编码信息的报告,其中L为正整数。根据优先级值计算公式计算L个冲突的CSI报告的优先级值(priority value,简称PV),并根据优先级值从小到大排序,优先忽略优先级值大的CSI报告,然后忽略优先级第二大的CSI报告,直到满足传输要求为止,在上行传输资源中传输满足要求的优先级最小的L1个CSI报告,其中L、L1为正整数,且L≥L1。在一个示例中,上行传输资源为PUSCH。在一个示例中,上行传输资源为PUCCH。
图1为本申请实施例提供的信道状态信息反馈方法的第一流程示意图,该方法可以由信道状态信息反馈装置或者终端来执行,该装置或者终端可以由软件和/或硬件的方式实现,该装置或终端可以集成在任何具有网络通信功能的智能设备中。如图1所示,信道状态信息反馈方法可以包括以下步骤:
S101、将第一信道状态信息分成至少两个子信道状态信息。
在一个示例中,当终端需要将L个存在冲突的CSI报告在第一上行传输资源上反馈给基站时,终端根据优先级从L个报告中选择L1个报告作为优先传输的CSI报告;其中,L和 L1为正整数且L大于或等于L1;第L1个CSI报告为L1个优先传输的CSI报告中优先级最小的CSI报告;一种情况下,用于传输所述L1个CSI报告的第一上行传输资源只能传输L1-1个CSI报告的内容和部分第L1个报告的内容。将所述第L1个CSI报告对应的信道状态信息拆分成C个子信道状态信息(或者称为信道状态信息子集合,或CSI子集合),比如C个子第二类预编码信息;在第一上行传输资源上传输C个子信道状态信息中的至少一个子信道状态信息,在第二上行传输资源上传输C个子信道状态信息的至少一个。
在一个示例中,第一上行传输资源传输的子信道状态信息和第二上行传输资源传输的子信道状态信息的交集为零,或者互不相同。
在一个示例中,第一上行传输资源传输的子信道状态信息和第二上行传输资源传输的子信道状态信息的并集为所有的子信道状态信息。
在一个示例中,将第L1个CSI报告对应的信道状态信息(即第一信道状态信息)拆分成2个子信道状态信息,在第一上行传输资源传输第一个子信道状态信息,在第二上行传输资源传输第二个子信道状态信息。一个示例中,将第L1个CSI报告对应的信道状态信息拆分成C个子信道状态信息,在第i个上行传输资源传输第i个子信道状态信息,i=1,…,C。
在一个实施例中,将至少一个CSI报告对应的信道状态信息拆分成C个子信道状态信息;在至少两个上行传输资源中传输所述C个子信道状态信息中的全部子信道状态信息或者部分子信道状态信息,比如在第一上行传输资源上传输C个子信道状态信息中的至少一个子信道状态信息,在第二上行传输资源上传输C个子信道状态信息中剩下的子信道状态信息。所述多个上行传输资源之间满足预设的时序关系,根据预设的时序关系确定上行传输资源上的传输内容。
S102、通过至少两个上行传输资源反馈至少两个子信道状态信息。
在一个实施例中,终端可以通过至少两个上行传输资源反馈至少两个子信道状态信息。例如,假设终端将第一信道状态信息分成第一子信道状态信息和第二子信道状态信息,则终端可以在第一上行传输资源反馈第一子信道状态信息;在第二上行传输资源上反馈第二子信道状态信息。
在一个实施例中,第L1个CSI报告对应的CSI为第一信道状态信息,包括K比特。但第一上行传输资源传输L1-1个CSI报告的内容和部分第L1个报告的内容(只剩下K1比特用于传输部分第L1个报告的内容)。那么终端可以将第一信道状态信息分成第一子信道状态信息和第二子信道状态信息,其中,K1比特的第一子信道状态信息可以承载在第一上行传输资源上反馈,剩下的K2=K-K1比特的第二子信道状态信息可以承载在第二上行传输资源上反馈。在一个实施例中,终端还可以将第L1个CSI报告对应的信道状态信息拆分成C个CSI;在第一上行传输资源上反馈第一个子信道状态信息;在第二上行传输资源上反馈第二子信道状态信息;…;在第C个上行传输资源上反馈第C个子信道状态信息。
在一个实施例中,C个子信道状态信息对应的C个上行传输资源分别对应不同的时域资源,如在多个不同的时隙或子时隙。在一个实施例中,C个子信道状态信息对应的C个上行传输资源分别对应不同的频域资源,比如在不同的子载波集合,或者不同的物理资源块(Physical Resource Block,简称PRB)。
在一个实施例中,第一上行传输资源和第一子信道状态信息对应第一信道状态信息报告;第二上行传输资源和第二子信道状态信息对应第二信道状态信息报告。第一上行传输资源和第一子信道状态信息对应第一信道状态信息报告的意思是,第一上行传输资源为第一信道状态信息报告指示的上行传输资源,第一子信道状态信息为第一信道状态信息报告指示的信道状态信息,并且在第一信道状态信息报告指示的第一上行传输资源中传输。第二上行传输资源和第二子信道状态信息对应第二信道状态信息报告的意思是,第二上行传输资源为第二信道状态信息报告指示的上行传输资源,第二子信道状态信息为第二信道状态信息报告指示的信道状态信息,并且在第二信道状态信息报告指示的第二上行传输资源中传输。
在一个实施例中,终端可以在第一上行传输资源上反馈第一子信道状态信息;在第二上行传输资源上反馈第二子信道状态信息。示例性地,终端可以在第一时隙上反馈第一子信道状态信息;在第二时隙上反馈第二子信道状态信息;其中,第二时隙大于第一时隙。这里的时隙也可以是子时隙。
在一个实施例中,第二时隙根据第一时隙和时隙偏置t确定,比如第二时隙等于第一时隙加上时隙偏置。在一个实施中,时隙偏置t根据第二时隙和第一时隙确定,比如时隙偏置等于第二时隙减去第一个时隙;其中,时隙偏置t为正整数。在一个实施例中,第一时隙根据第二时隙和时隙偏置t确定,比如第一时隙等于第二时隙减去时隙偏置;其中,时隙偏置t为正整数。
在一个实施例中,时隙偏置t为大于等于第一门限m1,小于等于第二门限m2的整数,m1和m2为正整数,且m1小于m2。例如,终端可以在第n个时隙上反馈第一子信道状态信息;在第n+t个时隙上反馈第二子信道状态信息;其中,n为整数;t为大于等于m1且小于等于m2的正整数;m1和m2为正整数。
本申请实施例提出的信道状态信息反馈方法,终端先将第一信道状态信息分成至少两个子信道状态信息;然后通过至少两个上行传输资源传输该至少两个子信道状态信息。这样基站可以通过至少两个上行传输资源接收终端反馈的至少两个子信道状态信息,因此不会对信道解码产生影响。而在相关技术中,终端通过丢弃部分CSI比特来达到传输的目的,但对于基于AI的CSI来说,每个CSI编码比特可能都跟信道信息有关,其重要性都是平等的,如果丢弃掉部分比特,可能导致基站不能恢复压缩后的信道,从而导致解码器不能很好地解码。因此,和相关技术相比,本申请实施例提出的信道状态信息反馈方法,可以有效地解决一个上行传输资源不能有效传输至少一个信道状态信息的问题;并且,本申请实施例的技术方案实现简单方便、便于普及,适用范围更广。
图2为本申请实施例提供的信道状态信息反馈方法的第二流程示意图。基于上述技术方案进行优化与扩展,并可以与上述可选实施方式进行结合。如图2所示,信道状态信息反馈方法可以包括以下步骤:
S201、将第一信道状态信息分成至少两个子信道状态信息。
S202、在第一上行传输资源反馈第一子信道状态信息;在第二上行传输资源上反馈第二子信道状态信息;其中,该至少两个子信道状态信息包括:第一子信道状态信息和第二子信道状态信息。
在一个实施例中,终端可以将第一信道状态信息分成两个或者多个子信道状态信息;当终端将第一信道状态信息分成两个子信道状态信息时,终端可以在第一上行传输资源上反馈第一子信道状态信息;在第二上行传输资源上反馈第二子信道状态信息。
在一个实施例中,当C=2时,即将一个CSI报告对应的第一信道状态信息拆分成第一子信道状态信息和第二子信道状态信息;第一信道状态信息可以包括K比特;第一子信道状态信息可以包括K1比特;第二子信道状态信息可以包括K2比特;其中,K1+K2≥K。这里之所以K1+K2大于等于K,是因为,可能会在第一CSI报告和/或第二CSI报告中附带了一些用于指示它们属于同一个信道状态信息中的比特,或者存在一些用于指示第一CSI报告和第二CSI报告的关联性的比特。
本申请实施例提出的信道状态信息反馈方法,终端先将第一信道状态信息分成至少两个子信道状态信息;然后通过至少两个上行传输资源传输该至少两个子信道状态信息。这样基站可以通过至少两个上行传输资源接收终端反馈的至少两个子信道状态信息,因此不会对信道解码产生影响。而在相关技术中,终端通过丢弃部分CSI比特来达到传输的目的,但对于基于AI的CSI来说,每个CSI编码比特可能都跟信道信息有关,其重要性都是平等的,如果丢弃掉部分比特,可能导致基站不能恢复压缩后的信道,也会导致解码器的输入维度发生变化,从而导致解码器不能很好地解码。因此,和相关技术相比,本申请实施例提出的信道状态信息反馈方法,可以有效地解决一个上行传输资源不能有效传输至少一个信道状态信息的问题;并且,本申请实施例的技术方案实现简单方便、便于普及,适用范围更广。
图3为本申请实施例提供的信道状态信息反馈方法的第三流程示意图。基于上述技术方案进行优化与扩展,并可以与上述可选实施方式进行结合。如图3所示,信道状态信息反馈方法可以包括以下步骤:
S301、将第一信道状态信息分成至少两个子信道状态信息。
S302、在第一时隙上反馈第一子信道状态信息;在第二时隙上反馈第二子信道状态信息;其中,第二时隙大于第一时隙。
在一个实施例中,终端可以在第一时隙上反馈第一子信道状态信息;在第二时隙上反馈第二子信道状态信息;其中,第二时隙大于第一时隙;第二时隙根据第一时隙和时隙偏置t 确定;或者,时隙偏置t根据第二时隙和第一时隙确定;或者,第一时隙根据第二时隙和时隙偏置t确定;时隙偏置t为正整数。
在一个实施例中,时隙偏置t为大于等于第一门限m1,小于等于第二门限m2的整数,m1和m2为正整数,且m1小于m2。例如,终端可以在第n个时隙上反馈第一子信道状态信息;在第n+t个时隙上反馈第二子信道状态信息;其中,n为整数;t为大于等于m1且小于等于m2的正整数;m1和m2为正整数。
在一个实施例中,第一门限m1的确定方式包括以下之一:根据接收的第一指示信令确定;根据约定的方式确定;根据第一时间间距f1和载波间距确定;根据处理CSI的能力确定;其中,第一指示信令可以包括第一高层信令和/或第一物理层信令。示例性地,第一门限m1可以由基站确定,终端接收基站发送的第一高层信令和/或第一物理层信令,终端通过第一高层信令和/或第一物理层信令确定m1;或者,第一门限m1还可以由基站和终端根据约定的方式确定;或者,m1还可以由根据第一时间间距f1和载波间距确定;其中,f1为承载第一CSI报告的第一上行传输资源的最后一个符号到承载第二CSI报告的第二上行传输资源的第一个符号之间的符号个数,所述f1为满足基站处理CSI报告的最小时间;或者,第一门限m1还可以根据终端处理CSI的能力确定,终端向基站反馈处理CSI的能力,基站根据终端处理CSI的能力确定m1。
在一个实施例中,第二门限m2的确定方式包括以下之一:根据接收的第二指示信令确定;根据约定的方式确定;根据第二时间间距f2和载波间距确定;根据处理CSI的能力确定;其中,第二指示信令可以包括第二高层信令和/或第二物理层信令。示例性地,第二门限m2可以由基站确定,终端接收基站发送的第二高层信令和/或第二物理层信令,终端可以通过第二高层信令和/或第二物理层信令确定m2;或者,第二门限m2还可以由基站和终端根据约定的方式确定;或者,第二门限m2还可以根据第二时间间距f2和载波间距确定;f2为承载第一CSI报告的第一上行传输资源的最后一个符号到承载第二CSI报告的第二上行传输资源的第一个符号之间的符号个数,所述f2为信道保持相关性要求的最大时间;或者,第二门限m2还可以根据终端处理CSI的能力确定,终端向基站反馈处理CSI的能力,基站根据终端处理CSI的能力确定m2。
在一个实施例中,时隙偏置t小于第一门限m1,即1≤t<m1,第一子信道状态信息对应的第一信道状态信息报告和第二子信道状态信息对应的第二信道状态信息报告对应的混合自动重复请求(Hybrid Automatic Repeat Request,简称HARQ)HARQ具有相同的HARQ ID。
在一个实施例中,时隙偏置t大于第一门限m1,即,第一信道状态信息报告和第二信道状态信息报告对应的HARQ具有相同的HARQ ID;或者,第一信道状态信息报告和第二信道状态信息报告对应的HARQ具有不同的HARQ ID。
在一个实施例中,时隙偏置t大于第二门限m2,即,终端可以忽略第二子信道状态信息对应的第二信道状态信息报告。即不在第二上行传输资源上反馈第二子信道状态信息对应的 第二信道状态信息报告。
在一个示例中,时隙偏置t大于等于第二门限m2,即t≥m2,终端还可以接收第三指示信令,重新获取第一信道状态信息,第一信道状态信息为第二类预编码信息,反馈第一信道状态信息,所述第三指示信令为高层和/或物理层信令。在一个示例中,终端还可以接收第四指示信令,重新获取第一信道状态信息,第一信道状态信息为第一类预编码信息,反馈第一信道状态信息,所述第四指示信令为高层和/或物理层信令。在一个示例中,终端还可以接收第五指示信令,重新获取第一子信道状态信息和第二子信道状态信息,反馈子第一信道状态信息和第二子信道状态信息,所述第五指示信令为高层和/或物理层信令。在一个示例中,终端还可以接收第六指示信令,重新获取第一子信道状态信息,反馈第一子信道状态信息,所述第六指示信令为高层和/或物理层信令。在一个示例中,终端还可以接收第七指示信令,重新获取第二子信道状态信息,反馈第二子信道状态信息,所述第七指示信令为高层和/或物理层信令。
在一个实施例中,第二上行传输资源可以为PUSCH,第二上行传输资源的有效传输比特大于第二子信道状态信息对应的比特数。
在一个实施例中,第二上行传输资源可以为PUCCH,且第二上行传输资源的有效传输比特大于第二子信道状态信息对应的保留比特。
在一些实施例中,一个上行传输资源的有效传输比特是指所述上行传输资源在它对应的调制编码方式下能承载的传输比特数目。
在一个实施例中,第二上行传输资源可以为PUCCH,所述PUCCH用于传输第二信道状态信息,这里第二信道状态信息为不同于第一信道状态信息的一个信道状态信息,降低第二信道状态信息的传输优先级以传输第二子信道状态信息。
图4为本申请实施例提供的上行传输资源的结构示意图。如图4所示,终端可以在第n个时隙上反馈第一子信道状态信息,在第n+t个时隙上反馈第二子信道状态信息,其中n为整数,t为正整数,n在当前时隙之前为负整数,在当前时隙之后为正整数。在一个示例中,由于基站需要在接收CSI1后,对接收的CSI1处理需要一定的时间,所以,要求t≥m1,其中m1跟基站使用处理CSI1的算法或者基站自身的处理能力有关,也跟基站需要同时处理的CSI个数有关。在一个示例中,第一门限m1可以由基站确定,基站将m1通过第一高层信令和/或第一物理层信令发送给终端,终端通过接收第一高层信令和/或第一物理层信令确定m1。在一个示例中,第一门限m1为基站和终端约定的,比如根据基站的处理能力或者终端的处理能力不同有不同的m1。在一个示例中,第一门限m1为基站和终端约定的一个最小值,比如基站和终端约定,承载第一CSI报告的第一上行传输资源的最后一个符号到承载第二CSI报告的第二上行传输资源的第一个符号之间的符号个数为f1,那么m1为floor(f1/s),其中f1为正整数,s为每个时隙中包括的符号个数,比如为12、14等正整数,floor表示取整函数,比如上取整函数或下取整函数。在一个示例中,第一门限m1根据f1和载波间距确定,比如 为2(u1/u2)×floor(f1/s),其中,f1为正整数,s为每个时隙中包括的符号个数,u1为第一上行传输资源或第二上行传输资源对应的子载波间距相关的参数,比如为30千赫兹(khz)等;u2对应参考子载波间距,比如为15khz。在一个示例中,第一门限m1与终端处理CSI的能力有关,如果m1太小,终端还来不及获得CSI,所以第一门限m1必须大于一定的值。第一门限m1还可以根据终端处理CSI的能力确定,终端反馈处理CSI的能力给基站,基站通过终端处理CSI的能力来确定m1的值。
在一个实施例中,由于信道是不断变化的,信道状态信息有一定的时效性,大于一定的时效后,终端再反馈CSI已经没有意义了。所以,需要规定时隙偏置t小于或者等于第二门限m2。在一个示例中,m2为正整数,第二门限m2可以根据终端处理CSI的能力确定。在一个示例中,终端可以根据下行信道的变化情况确定m2的值,比如变化快的信道m2小,而变化慢的信道m2大,信道的变化快慢与终端的移动速度有关,与周围的散射体有关,也与子载波间距有关。在一个示例中,基站确定m2,比如根据信道的变化快慢确定m2,根据统计的信道特征确定m2,并将确定的m2通过第二高层信令和/或第二物理层信令指示给终端。在一个示例中,m2为基站和终端约定的一个最大值,比如基站和终端约定,承载第一CSI报告的第一上行传输资源的最后一个符号到承载第二CSI报告的第二上行传输资源的第一个符号之间的符号个数为f2,那么m2为floor(f2/s),其中f2为正整数,s为每个时隙中包括的符号个数,比如为12、14等正整数,floor表示取整函数,比如上取整函数或下取整函数。在一个示例中,第二门限m2可以根据第二时间间距f2和载波间距确定,比如m2为2(u1/u2)×floor(f2/s);其中f2为正整数,s为每个时隙中包括的符号个数,u1为第一上行传输资源或第二上行传输资源对应的子载波间距相关的参数,比如为30khz等,u2对应参考子载波间距,比如为15khz。
在一个实施例中,时隙偏置t小于第一门限m1,即1≤t<m1,终端可以不处理或者传输第二子信道状态信息。在一个示例中,如果1≤t<m1,终端可以获取第二子信道状态信息,并在第二上行传输资源上传输第二子信道状态信息;其中,第一子信道状态信息对应的第一信道状态信息报告和第二子信道状态信息对应的第二信道状态信息报告对应的HARQ具有相同的HARQ ID,即它们是在同一个上行传输资源重传。在一个示例中,时隙偏置t大于等于第一门限m1,即t≥m1,终端可以获取第二信道状态信息,并在第二上行传输资源上传输第二信道状态信息。
在一个示例中,时隙偏置t大于等于第二门限m2,即t≥m2,终端可以不反馈第二子信道状态信息。在一个示例中,t≥m2,终端可以在第二上行传输资源中反馈第二子信道状态信息。但基站在接收第二子信道状态信息后,发现t≥m2,基站可以不处理第二子信道状态信息。在一个示例中,基站在接收第二子信道状态信息后,发现t≥m2,不处理第二子信道状态信息,并且忽略已经处理的第一子信道状态信息。在一个示例中,基站在接收第二子信道状态信息后,发现t≥m2,不处理第二子信道状态信息,并且通过第一子信道状态信息获得终端对应的低精度的信道状态信息。
在一个示例中,基站在接收到第二子信道状态信息后,发现t≥m2,向终端发送一个第三指示信令,用于指示终端重新获取第一信道状态信息,第一信道状态信息为第二类预编码信息,接收第一信道状态信息,所述第三指示信令为高层和/或物理层信令。
在一个示例中,基站在接收到第二子信道状态信息后,发现t≥m2,向终端发送一个第四指示信令,用于指示终端重新获取第一信道状态信息,第一信道状态信息为第一类预编码信息,接收第一信道状态信息,所述第四指示信令为高层和/或物理层信令。
在一个示例中,基站在接收到第二子信道状态信息后,发现t≥m2,向终端发送一个第五指示信令,用于指示终端重新获取第一子信道状态信息和第二子信道状态信息,接收第一子信道状态信息和第二子信道状态信息,所述第五指示信令为高层和/或物理层信令。
在一个示例中,基站在到接收第二子信道状态信息后,发现t≥m2,向终端发送一个第六指示信令,用于指示终端重新获取第一子信道状态信息,接收第一子信道状态信息,所述第六指示信令为高层和/或物理层信令。
在一个示例中,基站在接收到第二子信道状态信息后,发现t≥m2,向终端发送一个第七指示信令,用于指示终端重新获取第二子信道状态信息,接收第二子信道状态信息,所述第七指示信令为高层和/或物理层信令。
图5为本申请实施例提供的信道状态信息接收方法的流程示意图,该方法可以由信道状态信息接收装置或者基站来执行,该装置或者基站可以由软件和/或硬件的方式实现,该装置或基站可以集成在任何具有网络通信功能的智能设备中。如图5所示,信道状态信息接收方法可以包括以下步骤:
S501、在至少两个上行传输资源上接收至少两个子信道状态信息。
S502、将该至少两个子信道状态信息合并成第一信道状态信息。
在一个示例中,第一上行传输资源传输的子信道状态信息和第二上行传输资源传输的子信道状态信息的交集为零,或者互不相同。
在一个示例中,第一上行传输资源传输的子信道状态信息和第二上行传输资源传输的子信道状态信息的并集为所有的子信道状态信息。
在一个实施例中,基站可以在第一上行传输资源上接收第一子信道状态信息;在第二上行传输资源上接收第二子信道状态信息;其中,该至少两个子信道状态信息包括:第一子信道状态信息和第二子信道状态信息。
在一个实施例中,第一上行传输资源和第一子信道状态信息对应第一信道状态信息报告;第二上行传输资源和第二子信道状态信息对应第二信道状态信息报告。
在一个实施例中,基站可以接收第一时隙反馈的第一子信道状态信息;接收第二时隙反馈的第二子信道状态信息;其中,第二时隙大于第一时隙。这里的时隙也可以是子时隙。
在一个实施例中,第二时隙根据第一时隙和时隙偏置t确定,比如,第二时隙等于第一时隙加上时隙偏置;其中,时隙偏置t为正整数。
在一个实施例中,时隙偏置t根据第二时隙和第一时隙确定,比如,时隙偏置等于第二时隙减去第一个时隙;其中,时隙偏置t为正整数。
在一个实施例中,第一时隙根据第二时隙和时隙偏置t确定,比如,比如第一时隙等于第二时隙减去时隙偏置;其中,时隙偏置t为正整数。
例如,基站可以接收第n个时隙反馈的第一子信道状态信息;接收第n+t时隙反馈的第二子信道状态信息;其中,n为整数;t为大于等于m1且小于等于m2的正整数;m1和m2为正整数。
在一个实施例中,时隙偏置t为大于等于第一门限m1,小于等于第二门限m2的整数,m1和m2为正整数,且m1小于m2。
在一个实施例中,第一门限m1的确定方式包括以下之一:根据发送的第一指示信令确定;根据约定的方式确定;根据第一时间间距f1和载波间距确定;根据终端处理CSI的能力确定。
在一个实施例中,第二门限m2的确定方式包括以下之一:根据发送的第二指示信令确定;根据约定的方式确定;根据第二时间间距f2和载波间距确定;根据终端处理CSI的能力确定。
在一个实施例中,时隙偏置t小于第一门限m1,第一信道状态信息报告和第二信道状态信息报告对应的HARQ具有相同的HARQ ID。
在一个实施例中,时隙偏置t大于等于第一门限m1,第一信道状态信息报告和第二信道状态信息报告对应的HARQ具有相同的HARQ ID;或者,第一信道状态信息报告和第二信道状态信息报告对应的HARQ具有不同的HARQ ID。
在一个示例中,时隙偏置t大于等于第二门限m2,基站还可以发送第三指示信令,用于指示终端重新获取第一信道状态信息,第一信道状态信息为第二类预编码信息,接收第一信道状态信息,所述第三指示信令为高层和/或物理层信令。
在一个示例中,时隙偏置t大于等于第二门限m2,基站还可以发送第四指示信令,用于指示终端重新获取第一信道状态信息,第一信道状态信息为第一类预编码信息,接收第一信道状态信息,所述第四指示信令为高层和/或物理层信令。
在一个示例中,时隙偏置t大于等于第二门限m2,基站还可以发送第五指示信令,用于指示终端重新获取第一子信道状态信息和第二子信道状态信息,接收第一子信道状态信息和第二子信道状态信息,所述第五指示信令为高层和/或物理层信令。
在一个示例中,时隙偏置t大于等于第二门限m2,基站还可以发送第六指示信令,用于 指示终端重新获取第一子信道状态信息,接收第一子信道状态信息,所述第六指示信令为高层和/或物理层信令。
在一个示例中,时隙偏置t大于等于第二门限m2,基站还可以发送第七指示信令,用于指示终端重新获取第二子信道状态信息,接收第二子信道状态信息,所述第七指示信令为高层和/或物理层信令。
在一个实施例中,第二上行传输资源为PUSCH,第二上行传输资源的有效传输比特大于第二子信道状态信息对应的比特数。
在一个实施例中,第二上行传输资源为PUCCH,且第二上行传输资源的有效传输比特大于第二子信道状态信息对应的比特数。
在一个实施例中,第二上行传输资源为PUCCH,PUCCH为用于传输静态HARQ码本的保留比特。
在一些实施例中,一个上行传输资源的有效传输比特是指所述上行传输资源在它对应的调制编码方式下能承载的传输比特数目。
在一个实施例中,第二上行传输资源可以为PUCCH,所述PUCCH用于传输第二信道状态信息,这里第二信道状态信息为不同于第一信道状态信息的一个信道状态信息,降低第二信道状态信息的传输优先级以传输第二子信道状态信息。
本申请实施例提出的信道状态信息接收方法,基站在至少两个上行传输资源上接收至少两个子信道状态信息;将该至少两个子信道状态信息合并成第一信道状态信息。而在相关技术中,终端通过丢弃部分CSI比特来达到传输的目的,但对于基于AI的CSI来说,每个CSI编码比特可能都跟信道信息有关,其重要性都是平等的,如果丢弃掉部分比特,可能导致基站不能恢复压缩后的信道,从而导致解码器不能很好地解码。因此,和相关技术相比,本申请实施例提出的信道状态信息接收方法,可以有效地解决一个上行传输资源不能有效传输至少一个信道状态信息的问题;并且,本申请实施例的技术方案实现简单方便、便于普及,适用范围更广。
图6为本申请实施例提供的信道状态信息反馈装置的结构示意图。如图6所示,所述信道状态信息反馈装置包括:分组模块601和反馈模块602;其中,所述分组模块601,设置为将第一信道状态信息分成至少两个子信道状态信息;所述反馈模块602,设置为通过至少两个上行传输资源反馈所述至少两个子信道状态信息。
在一个实施例中,所述反馈模块602,是设置为在第一上行传输资源上反馈第一子信道状态信息;在第二上行传输资源上反馈第二子信道状态信息;其中,所述至少两个子信道状态信息包括第一子信道状态信息和第二子信道状态信息。
在一个实施例中,所述第一上行传输资源和所述第一子信道状态信息对应第一信道状态信息报告;所述第二上行传输资源和所述第二子信道状态信息对应第二信道状态信息报告。
在一个实施例中,所述反馈模块602,是设置为在第一时隙上反馈所述第一子信道状态信息;在第二时隙上反馈所述第二子信道状态信息;其中,所述第二时隙大于所述第一时隙。
在一个实施例中,所述第二时隙根据所述第一时隙和时隙偏置t确定;或者,所述时隙偏置t根据所述第二时隙和所述第一时隙确定;或者,所述第一时隙根据所述第二时隙和所述时隙偏置t确定;其中,所述时隙偏置t为正整数。
在一个实施例中,所述时隙偏置t为大于等于第一门限m1,小于等于第二门限m2的整数,m1和m2为正整数,且m1小于m2。
在一个实施例中,第一门限m1的确定方式包括以下之一:根据接收的第一指示信令确定;根据约定的方式确定;根据第一时间间距f1和载波间距确定;根据处理CSI的能力确定。
在一个实施例中,第二门限m2的确定方式包括以下之一:根据接收的第二指示信令确定;根据约定的方式确定;根据第二时间间距f2和载波间距确定;根据处理CSI的能力确定。
在一个实施例中,所述时隙偏置t小于所述第一门限m1,所述第一信道状态信息报告和所述第二信道状态信息报告对应的HARQ具有相同的HARQ ID。
在一个实施例中,所述时隙偏置t大于等于所述第一门限m1,所述第一信道状态信息报告和所述第二信道状态信息报告对应的HARQ具有相同的HARQ ID;或者,所述第一信道状态信息报告和所述第二信道状态信息报告对应的HARQ具有不同的HARQ ID。
在一个实施例中,所述时隙偏置t大于等于第二门限m2,所述反馈模块602,还用于忽略所述第二子信道状态信息对应的第二信道状态信息报告。
在一个实施例中,所述时隙偏置t大于等于第二门限m2,所述反馈模块602,还用于接收第三指示信令,重新获取所述第一信道状态信息,所述第一信道状态信息为第二类预编码信息,反馈所述第一信道状态信息。
在一个实施例中,所述时隙偏置t大于等于第二门限m2,所述反馈模块602,还用于接收第四指示信令,重新获取所述第一信道状态信息,所述第一信道状态信息为第一类预编码信息,反馈所述第一信道状态信息。
在一个实施例中,所述时隙偏置t大于等于第二门限m2,所述反馈模块602,还用于接收第五指示信令,重新获取所述第一子信道状态信息和第二子信道状态信息,反馈所述第一子信道状态信息和所述第二子信道状态信息。
在一个实施例中,所述时隙偏置t大于等于第二门限m2,所述反馈模块602,还用于接收第六指示信令,重新获取所述第一子信道状态信息,反馈所述第一子信道状态信息。
在一个实施例中,所述时隙偏置t大于等于第二门限m2,所述反馈模块602,还用于接收第七指示信令,重新获取所述第二子信道状态信息,反馈所述第二子信道状态信息。
在一个实施例中,所述第二上行传输资源为PUSCH,所述第二上行传输资源的有效传输 比特大于所述第二子信道状态信息对应的比特数。
在一个实施例中,所述第二上行传输资源为PUCCH,且所述第二上行传输资源的有效传输比特大于所述第二子信道状态信息对应的比特数。
在一个实施例中,所述第二上行传输资源为PUCCH,所述PUCCH为用于传输静态HARQ码本的保留比特。
在一些实施例中,一个上行传输资源的有效传输比特是指所述上行传输资源在它对应的调制编码方式下能承载的传输比特数目。
在一个实施例中,所述第二上行传输资源为PUCCH,所述PUCCH用于传输第二信道状态信息,这里第二信道状态信息为不同于第一信道状态信息的一个信道状态信息,降低所述第二信道状态信息的传输优先级以传输所述第二子信道状态信息。
图7为本申请实施例提供的信道状态信息接收装置的结构示意图。如图7所示,所述信道状态信息接收装置包括:接收模块701和合并模块702;其中,所述接收模块701,设置为在至少两个上行传输资源上接收至少两个子信道状态信息;所述合并模块702,设置为将至少两个子信道状态信息合并成第一信道状态信息。
在一个实施例中,所述接收模块701,是设置为在第一上行传输资源上接收第一子信道状态信息;在第二上行传输资源上接收第二子信道状态信息;其中,所述至少两个子信道状态信息包括第一子信道状态信息和第二子信道状态信息。
在一个实施例中,第一上行传输资源和所述第一子信道状态信息对应第一信道状态信息报告;所述第二上行传输资源和所述第二子信道状态信息对应第二信道状态信息报告。
在一个实施例中,所述接收模块701,是设置为接收第一时隙反馈的所述第一子信道状态信息;接收第二时隙反馈的所述第二子信道状态信息;其中,所述第二时隙大于所述第一时隙。
在一个实施例中,所述第二时隙根据所述第一时隙和时隙偏置t确定;或者,所述时隙偏置t根据所述第二时隙和所述第一时隙确定;或者,所述第一时隙根据所述第二时隙和所述时隙偏置t确定;其中,所述时隙偏置t为正整数。
在一个实施例中,所述时隙偏置t为大于等于第一门限m1,小于等于第二门限m2的整数,m1和m2为正整数,且m1小于m2。
在一个实施例中,所述第一门限m1的确定方式包括以下之一:根据发送的第一指示信令确定;根据约定的方式确定;根据第一时间间距f1和载波间距确定;根据终端处理CSI的能力确定。
在一个实施例中,所述第二门限m2的确定方式包括以下之一:根据发送的第二指示信令确定;根据约定的方式确定;根据第二时间间距f2和载波间距确定;根据终端处理CSI的 能力确定。
在一个实施例中,所述时隙偏置t小于所述第一门限m1,所述第一信道状态信息报告和所述第二信道状态信息报告对应的HARQ具有相同的HARQ ID。
在一个实施例中,所述时隙偏置t大于等于所述第一门限m1,所述第一信道状态信息报告和所述第二信道状态信息报告对应的HARQ具有相同的HARQ ID;或者,所述第一信道状态信息报告和所述第二信道状态信息报告对应的HARQ具有不同的HARQ ID。
在一个实施例中,所述装置还包括:发送模块703,所述时隙偏置t大于等于第二门限m2,所述发送模块703,设置为发送第三指示信令,用于指示终端重新获取所述第一信道状态信息,所述第一信道状态信息为第二类预编码信息,接收所述第一信道状态信息;或者,所述发送模块703,还设置为发送第四指示信令,用于指示终端重新获取所述第一信道状态信息,所述第一信道状态信息为第一类预编码信息,接收所述第一信道状态信息;或者,所述发送模块703,还设置为发送第五指示信令,用于指示终端重新获取所述第一子信道状态信息和所述第二子信道状态信息,接收所述第一子信道状态信息和所述第二子信道状态信息;或者,所述发送模块703,还设置为发送第六指示信令,用于指示终端重新获取所述第一子信道状态信息,接收所述第一子信道状态信息;或者,所述发送模块703,还设置为发送第七指示信令,用于指示终端重新获取所述第二子信道状态信息,接收所述第二子信道状态信息。
在一个实施例中,所述第二上行传输资源为PUSCH,所述第二上行传输资源的有效传输比特大于所述第二子信道状态信息对应的比特数。
在一个实施例中,所述第二上行传输资源为PUCCH,且所述第二上行传输资源的有效传输比特大于所述第二子信道状态信息对应的比特数。
在一个实施例中,所述第二上行传输资源为PUCCH,所述PUCCH为用于传输静态HARQ码本的保留比特。
在一个实施例中,所述第二上行传输资源为PUCCH,所述PUCCH用于传输第二信道状态信息,这里第二信道状态信息为不同于第一信道状态信息的一个信道状态信息,降低所述第二信道状态信息的传输优先级以传输所述第二子信道状态信息。
上述信道状态信息接收装置可执行本申请实施例所提供信道状态信息接收方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例提供的信道状态信息接收方法。
图8为本申请实施例提供的通信节点的结构示意图。如图8所示,本申请提供的通信节点可以为终端,也可以为基站,包括一个或多个处理器801和存储装置802;该通信节点中的处理器801可以是一个或多个,图8中以一个处理器801为例;存储装置802设置为存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器801执行,使得所述一个或 多个处理器801实现如本申请实施例中所述的信道状态信息反馈方法和信道状态信息接收方法。通信节点还包括:通信装置803、输入装置804和输出装置805。
通信节点中的处理器801、存储装置802、通信装置803、输入装置804和输出装置805可以通过总线或其他方式连接,图8中以通过总线连接为例。
输入装置804可设置为接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置805可包括显示屏等显示设备。
通信装置803可以包括接收器和发送器。通信装置803设置为根据处理器801的控制进行信道状态信息的反馈和接收。
存储装置802作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述信道状态信息反馈方法和信道状态信息接收方法对应的程序指令/模块(例如,信道状态信息反馈装置中的分组模块601和反馈模块602)。存储装置802可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储装置802可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置802可包括相对于处理器801远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请任一所述方法,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的方法。
如,一种信道状态信息反馈方法,所述方法包括:将第一信道状态信息分成至少两个子信道状态信息;通过至少两个上行传输资源反馈所述至少两个子信道状态信息。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的示例可以包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式紧凑盘只读存储器(Compact Disc-Read Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁 信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (35)

  1. 一种信道状态信息反馈方法,所述方法包括:
    将第一信道状态信息分成至少两个子信道状态信息;
    通过至少两个上行传输资源反馈所述至少两个子信道状态信息。
  2. 根据权利要求1所述的方法,其中,所述通过至少两个上行传输资源反馈所述至少两个子信道状态信息,包括:
    在第一上行传输资源上反馈第一子信道状态信息;在第二上行传输资源上反馈第二子信道状态信息;其中,所述至少两个子信道状态信息包括所述第一子信道状态信息和所述第二子信道状态信息。
  3. 根据权利要求2所述的方法,其中,所述第一上行传输资源和所述第一子信道状态信息对应第一信道状态信息报告;所述第二上行传输资源和所述第二子信道状态信息对应第二信道状态信息报告。
  4. 根据权利要求2所述的方法,其中,在第一上行传输资源反馈第一子信道状态信息;在第二上行传输资源反馈第二子信道状态信息,包括:
    在第一时隙上反馈所述第一子信道状态信息;在第二时隙上反馈所述第二子信道状态信息;其中,所述第二时隙大于所述第一时隙。
  5. 根据权利要求4所述的方法,其中,所述第二时隙根据所述第一时隙和时隙偏置t确定;或者,所述时隙偏置t根据所述第二时隙和所述第一时隙确定;或者,所述第一时隙根据所述第二时隙和所述时隙偏置t确定;其中,所述时隙偏置t为正整数。
  6. 根据权利要求5所述的方法,其中,所述时隙偏置t为大于等于第一门限m1,小于等于第二门限m2的整数,m1和m2为正整数,且m1小于m2。
  7. 根据权利要求6所述的方法,其中,所述第一门限m1的确定方式包括以下之一:根据接收的第一指示信令确定;根据约定的方式确定;根据第一时间间距f1和载波间距确定;根据处理信道状态信息CSI的能力确定。
  8. 根据权利要求6所述的方法,其中,所述第二门限m2的确定方式包括以下之一:根据接收的第二指示信令确定;根据约定的方式确定;根据第二时间间距f2和载波间距确定;根据处理CSI的能力确定。
  9. 根据权利要求5所述的方法,其中,所述时隙偏置t小于所述第一门限m1,所述第一信道状态信息报告和所述第二信道状态信息报告对应的混合自动重复请求HARQ具有相同的标识ID。
  10. 根据权利要求6所述的方法,其中,所述时隙偏置t大于等于所述第一门限m1,所述第一信道状态信息报告和所述第二信道状态信息报告对应的HARQ具有相同的HARQ ID;或者,所述第一信道状态信息报告和所述第二信道状态信息报告对应的HARQ具有不同的 HARQ ID。
  11. 根据权利要求6所述的方法,其中,所述时隙偏置t大于等于第二门限m2,忽略所述第二子信道状态信息对应的第二信道状态信息报告。
  12. 根据权利要求6所述的方法,其中,所述时隙偏置t大于等于第二门限m2,所述方法还包括以下之一:
    接收第三指示信令,重新获取所述第一信道状态信息,所述第一信道状态信息为第二类预编码信息,反馈所述第一信道状态信息;
    接收第四指示信令,重新获取所述第一信道状态信息,所述第一信道状态信息为第一类预编码信息,反馈所述第一信道状态信息;
    接收第五指示信令,重新获取所述第一子信道状态信息和第二子信道状态信息,反馈所述第一子信道状态信息和所述第二子信道状态信息;
    接收第六指示信令,重新获取所述第一子信道状态信息,反馈所述第一子信道状态信息;
    接收第七指示信令,重新获取所述第二子信道状态信息,反馈所述第二子信道状态信息。
  13. 根据权利要求2所述的方法,其中,所述第二上行传输资源为物理上行共享信道PUSCH,所述第二上行传输资源的有效传输比特大于所述第二子信道状态信息对应的比特数。
  14. 根据权利要求2所述的方法,其中,所述第二上行传输资源为物理上行控制信道PUCCH,且所述第二上行传输资源的有效传输比特大于所述第二子信道状态信息对应的比特数。
  15. 根据权利要求2所述的方法,其中,所述第二上行传输资源为PUCCH,所述PUCCH为用于传输静态HARQ码本的保留比特。
  16. 根据权利要求2所述的方法,其中,所述第二上行传输资源为PUCCH,所述PUCCH用于传输第二信道状态信息,降低所述第二信道状态信息的传输优先级以传输所述第二子信道状态信息。
  17. 一种信道状态信息接收方法,所述方法包括:
    在至少两个上行传输资源上接收至少两个子信道状态信息;
    将所述至少两个子信道状态信息合并成第一信道状态信息。
  18. 根据权利要求17所述的方法,其中,所述在至少两个上行传输资源上接收至少两个子信道状态信息,包括:
    在第一上行传输资源上接收第一子信道状态信息;在第二上行传输资源上接收第二子信道状态信息;其中,所述至少两个子信道状态信息包括第一子信道状态信息和第二子信道状 态信息。
  19. 根据权利要求18所述的方法,其中,所述第一上行传输资源和所述第一子信道状态信息对应第一信道状态信息报告;所述第二上行传输资源和所述第二子信道状态信息对应第二信道状态信息报告。
  20. 根据权利要求18所述的方法,其中,在第一上行传输资源上接收第一子信道状态信息;在第二上行传输资源上接收第二子信道状态信息,包括:
    接收第一时隙反馈的所述第一子信道状态信息;接收第二时隙反馈的所述第二子信道状态信息;其中,所述第二时隙大于所述第一时隙。
  21. 根据权利要求20所述的方法,其中,所述第二时隙根据所述第一时隙和时隙偏置t确定;或者,所述时隙偏置根据第二时隙根据所述第一时隙确定;或者,所述第一时隙根据所述第二时隙和时隙偏置t确定;其中,所述时隙偏置t为正整数。
  22. 根据权利要求21所述的方法,其中,所述时隙偏置t为大于等于第一门限m1,小于等于第二门限m2的整数,m1和m2为正整数,且m1小于m2。
  23. 根据权利要求22所述的方法,其中,所述第一门限m1的确定方式包括以下之一:根据发送的第一指示信令确定;根据约定的方式确定;根据第一时间间距f1和载波间距确定;根据终端处理CSI的能力确定。
  24. 根据权利要求22所述的方法,其中,所述第二门限m2的确定方式包括以下之一:根据发送的第二指示信令确定;根据约定的方式确定;根据第二时间间距f2和载波间距确定;根据终端处理CSI的能力确定。
  25. 根据权利要求22所述的方法,其中,所述时隙偏置t小于所述第一门限m1,所述第一信道状态信息报告和所述第二信道状态信息报告对应的混合自动重复请求HARQ具有相同的HARQ ID。
  26. 根据权利要求22所述的方法,其中,所述时隙偏置t大于等于所述第一门限m1,所述第一信道状态信息报告和所述第二信道状态信息报告对应的HARQ具有相同的HARQ ID;或者,所述第一信道状态信息报告和所述第二信道状态信息报告对应的HARQ具有不同的HARQ ID。
  27. 根据权利要求22所述的方法,其中,所述时隙偏置t大于等于第二门限m2,所述方法还包括以下之一:
    发送第三指示信令,用于指示终端重新获取所述第一信道状态信息,所述第一信道状态信息为第二类预编码信息,接收所述第一信道状态信息;
    发送第四指示信令,用于指示终端重新获取所述第一信道状态信息,所述第一信道状态信息为第一类预编码信息,接收所述第一信道状态信息;
    发送第五指示信令,用于指示终端重新获取所述第一子信道状态信息和所述第二子信道状态信息,接收所述第一子信道状态信息和所述第二子信道状态信息;
    发送第六指示信令,用于指示终端重新获取所述第一子信道状态信息,接收所述第一子信道状态信息;
    发送第七指示信令,用于指示终端重新获取所述第二子信道状态信息,接收所述第二子信道状态信息。
  28. 根据权利要求18所述的方法,其中,所述第二上行传输资源为PUSCH,所述第二上行传输资源的有效传输比特大于所述第二子信道状态信息对应的比特数。
  29. 根据权利要求18所述的方法,其中,所述第二上行传输资源为PUCCH,且所述第二上行传输资源的有效传输比特大于所述第二子信道状态信息对应的比特数。
  30. 根据权利要求18所述的方法,其中,所述第二上行传输资源为PUCCH,所述PUCCH为用于传输静态HARQ码本的保留比特。
  31. 根据权利要求18所述的方法,其中,所述第二上行传输资源为PUCCH,所述PUCCH用于传输第二信道状态信息,降低所述第二信道状态信息的传输优先级以传输所述第二子信道状态信息。
  32. 一种信道状态信息反馈装置,所述装置包括:分组模块和反馈模块;其中,
    所述分组模块,设置为将第一信道状态信息分成至少两个子信道状态信息;
    所述反馈模块,设置为通过至少两个上行传输资源反馈所述的至少两个子信道状态信息。
  33. 一种信道状态信息接收装置,所述装置包括:接收模块和合并模块;其中,
    所述接收模块,设置为在至少两个上行传输资源上接收至少两个子信道状态信息;
    所述合并模块,设置为将至少两个子信道状态信息合并成第一信道状态信息。
  34. 一种通信节点,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-16或者17-31中任一项所述的方法。
  35. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-16或者17-31中任一项所述的方法。
PCT/CN2023/107712 2022-08-10 2023-07-17 信道状态信息反馈方法、接收方法、装置及通信节点 WO2024032319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210959508.9 2022-08-10
CN202210959508.9A CN117640007A (zh) 2022-08-10 2022-08-10 信道状态信息反馈方法、接收方法、装置及通信节点

Publications (1)

Publication Number Publication Date
WO2024032319A1 true WO2024032319A1 (zh) 2024-02-15

Family

ID=89850716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107712 WO2024032319A1 (zh) 2022-08-10 2023-07-17 信道状态信息反馈方法、接收方法、装置及通信节点

Country Status (2)

Country Link
CN (1) CN117640007A (zh)
WO (1) WO2024032319A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210105055A1 (en) * 2019-10-03 2021-04-08 Hyukjin Chae Sidelink channel state information acquisition
WO2021168709A1 (zh) * 2020-02-26 2021-09-02 Oppo广东移动通信有限公司 Csi上报及接收方法、装置、终端设备、网络设备
CN113574815A (zh) * 2019-01-11 2021-10-29 瑞典爱立信有限公司 用于多传输点(trp)传输的低开销信道状态信息(csi)反馈
WO2022151952A1 (zh) * 2021-01-15 2022-07-21 大唐移动通信设备有限公司 信息上报、接收方法、终端设备及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574815A (zh) * 2019-01-11 2021-10-29 瑞典爱立信有限公司 用于多传输点(trp)传输的低开销信道状态信息(csi)反馈
US20210105055A1 (en) * 2019-10-03 2021-04-08 Hyukjin Chae Sidelink channel state information acquisition
WO2021168709A1 (zh) * 2020-02-26 2021-09-02 Oppo广东移动通信有限公司 Csi上报及接收方法、装置、终端设备、网络设备
WO2022151952A1 (zh) * 2021-01-15 2022-07-21 大唐移动通信设备有限公司 信息上报、接收方法、终端设备及网络设备

Also Published As

Publication number Publication date
CN117640007A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US11705950B2 (en) Method and apparatus for resource-based CSI acquisition in advanced wireless communication systems
US20220330258A1 (en) Method for transmitting signaling information, and communication node and storage medium
EP3751891A1 (en) Method, terminal and base station in a wireless communication system supporting discontinuous reception, drx
US20210110261A1 (en) Method and apparatus for transceiving signal using artificial intelligence in wireless communication system
RU2528178C1 (ru) Способ радиосвязи и устройство радиосвязи
US11277184B2 (en) Method and apparatus for high rand CSI reporting in wireless communications systems
EP3800945B1 (en) Power allocation method and related device
EP4189875A1 (en) Ultra-low latency csi timeline for urllc csi reporting
CA3151964A1 (en) Parameter determination method and device for coordinated multi-point transmission
KR20230087461A (ko) 사이드링크 시스템의 에너지 절약 방법 및 장치
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
WO2021136152A1 (zh) 物理信道传输方法、装置、节点和存储介质
US20230421228A1 (en) Method and apparatus for compression-based csi reporting
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2024032319A1 (zh) 信道状态信息反馈方法、接收方法、装置及通信节点
CN109479047A (zh) 一种终端、基站和获得信道信息的方法
KR20230158513A (ko) 상향링크 채널의 반복 전송
KR20230132825A (ko) 채널 및 간섭 측정 방법 및 장치
WO2017186064A1 (zh) 一种信道状态信息反馈和接收方法、装置
KR20230144522A (ko) 유니캐스트 및 멀티캐스트 제어 정보 다중화
WO2024041362A1 (zh) 信道状态信息处理方法、装置、通信节点及存储介质
WO2024007837A1 (zh) 信息传输方法、设备和存储介质
WO2024017057A1 (zh) 传输方法、通信节点及存储介质
WO2024016936A1 (zh) 信道状态信息的确定方法、电子设备和存储介质
WO2024037339A1 (zh) 信道状态信息处理方法、装置、通信节点及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851542

Country of ref document: EP

Kind code of ref document: A1