WO2021136152A1 - 物理信道传输方法、装置、节点和存储介质 - Google Patents

物理信道传输方法、装置、节点和存储介质 Download PDF

Info

Publication number
WO2021136152A1
WO2021136152A1 PCT/CN2020/140007 CN2020140007W WO2021136152A1 WO 2021136152 A1 WO2021136152 A1 WO 2021136152A1 CN 2020140007 W CN2020140007 W CN 2020140007W WO 2021136152 A1 WO2021136152 A1 WO 2021136152A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
repeated transmission
repeated
equal
receiving end
Prior art date
Application number
PCT/CN2020/140007
Other languages
English (en)
French (fr)
Inventor
肖华华
鲁照华
蒋创新
张淑娟
邵诗佳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to AU2020416372A priority Critical patent/AU2020416372B2/en
Priority to US17/786,431 priority patent/US20230021652A1/en
Priority to EP20910880.2A priority patent/EP4087167A4/en
Publication of WO2021136152A1 publication Critical patent/WO2021136152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel

Definitions

  • This application relates to the field of communication technology, for example, to a physical channel transmission method, device, node, and storage medium.
  • Repetition transmission is a technology that effectively improves transmission reliability and is widely used in wireless communication systems.
  • repetitive transmission is used to improve ultra-reliable and low latency communications (Ultra-reliable and Low Latency Communications, URLLC), large-scale The reliability of the transmission of machine communication (massive Machine Type of Communication, mMTC).
  • Multi-TRP Multi Transmission and Reception Point
  • LTE Long Term Evolution-Advanced
  • NR New Radio Access Technology
  • Multi-Panel transmission is mainly to install multiple antenna panels at the receiving end and/or transmitting end to improve the spectrum efficiency of the wireless communication system.
  • Multi-TRP or Multi-Panel can also use repeated transmission technology to improve the reliability of transmission, but the repeated transmission technology will occupy resources for N times in N times of transmission.
  • the embodiment of the present application provides a physical channel transmission method, and the method includes:
  • the sending end obtains K reference signal parameters, and K reference signal parameters are used for N repeated transmissions of the physical channel;
  • K and N are integers greater than 1, and N is greater than or equal to K;
  • the sending end performs repeated transmission of the physical channel according to K reference signal parameters.
  • the embodiment of the present application provides a physical channel transmission method, and the method includes:
  • the receiving end obtains K reference signal parameters, and the K reference signal parameters are used to receive N repeated transmissions of the physical channel;
  • K and N are integers greater than 1, and N is greater than or equal to K;
  • the receiving end receives repeated transmissions of the physical channel according to K reference signal parameters.
  • An embodiment of the present application provides a sending device, which includes:
  • the acquiring module is used to acquire K reference signal parameters, and K reference signal parameters are used for N repeated transmissions of the physical channel;
  • K and N are integers greater than 1, and N is greater than or equal to K;
  • the communication module is used to perform repeated transmission of the physical channel according to K reference signal parameters.
  • An embodiment of the present application provides a receiving device, which includes:
  • the acquiring module is used to acquire K reference signal parameters, and the K reference signal parameters are used to receive N repeated transmissions of the physical channel;
  • K and N are integers greater than 1, and N is greater than or equal to K;
  • the communication module is used to receive repeated transmissions of the physical channel according to K reference signal parameters.
  • the embodiment of the present application provides a node, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the computer program, it implements any physical information in the embodiments of the present application.
  • Channel transmission method When the processor executes the computer program, it implements any physical information in the embodiments of the present application.
  • the embodiment of the present application provides a node, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the computer program, it implements any physical information in the embodiments of the present application.
  • Channel transmission method When the processor executes the computer program, it implements any physical information in the embodiments of the present application.
  • the embodiment of the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, any physical channel transmission method in the embodiment of the present application is implemented.
  • the embodiment of the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, any physical channel transmission method in the embodiment of the present application is implemented.
  • FIG. 1 is a flowchart of a physical channel transmission method provided by an embodiment
  • FIG. 2 is a flowchart of another physical channel transmission method provided by an embodiment
  • FIG. 3 is a schematic structural diagram of a sending device provided by an embodiment
  • FIG. 4 is a schematic structural diagram of a receiving device provided by an embodiment
  • FIG. 5 is a schematic diagram of a node structure provided by an embodiment
  • Fig. 6 is a schematic diagram of a node structure provided by an embodiment.
  • one panel can correspond to one port group (for example, antenna port group, or antenna group).
  • the above-mentioned panel and the port group have a one-to-one correspondence relationship.
  • the two can be replaced with each other, and the panel can also use spatial parameters.
  • the aforementioned panel may refer to an antenna panel, and one TRP or receiving end may include at least one antenna panel.
  • the antenna ports on a panel can be divided into a port group.
  • a panel can be divided into multiple sub-panels, and the multiple antenna ports included in each sub-panel can also be divided into a port group.
  • an antenna with a positive 45° polarization is a sub-panel
  • an antenna with a negative 45° polarization is the other sub-panel.
  • the panel and the sub-panel are collectively referred to as a panel, which can be represented by a panel.
  • the standard When transmitting data or signaling, the standard usually divides the physical channel into a physical downlink control channel (Physical Downlink Control Channel, PDCCH), a physical uplink control channel (Physical Uplink Control Channel, PUCCH), and a physical downlink shared channel (Physical Downlink Shared Channel). Channel, PDSCH), physical uplink shared channel (Physical Uplink Shared Channel, PUSCH).
  • PDCCH is mainly used to transmit physical downlink control signaling (Downlink Control Information, DCI)
  • PUCCH is mainly used to transmit uplink control information, such as channel state information (CSI), hybrid automatic repeat request, HARQ), scheduling request (Scheduling Request), etc.
  • PDSCH is mainly used to transmit downlink data
  • PUSCH is mainly used to transmit uplink data and CSI.
  • PDCCH and PUCCH can be collectively referred to as physical control channels
  • PUSCH and PDSCH Can be collectively referred to as a physical shared channel.
  • the aforementioned CSI includes downlink channel state information fed back by the receiving end and uplink channel state information instructed by the transmitting end to the receiving end, where the downlink channel state information includes but is not limited to one of the following information: channel Status Information-Reference Signal Resource Indicator (CSI-RS Resource Indicator, CRI), Synchronization Signal Block Resource Indicator (Synchronization Signals Block Resource Indicator, SSBRI), Channel Quality Indicator (Channel Quality Indicator, CQI), Precoding Matrix Indicator (Precoding Matrix) Indicator, PMI), Layer Indicator (LI), Rank Indicator (Rank Indicator, RI), uplink channel state information includes but is not limited to one of the following information: uplink sounding signal resource indicator (SRS resource Indicator, SRI) ), Transmitted Precoding Matrix Indicator (TPMI), Transmitted Rank Indicator (TRI), Modulation and Coding Scheme (MCS), and TPMI and TRI may be coded jointly, using downlink
  • the repeated transmission of M data carries exactly the same information.
  • the M data are from the same transport block (Transport Block). , TB), but the redundancy version (Redundancy version, RV) after the corresponding channel coding is different, even the RV after M data channel coding is the same, or the same RV of the same transmission block information is divided into different RV refers to different redundancy versions after channel coding of the transmission data.
  • the channel version ⁇ 0, 1, 2, 3 ⁇ can be used.
  • repeated transmission of signaling such as repeated transmission of PDCCH or PUCCH
  • the content of the repeated transmission of M signaling is the same.
  • the content of DCI carried by M PDCCHs is the same (for example, the content of the DCI in each domain is the same).
  • the value is the same), or the value of the content carried by the M PUCCHs is the same.
  • M repeatedly transmitted data or signaling can come from M different TRPs, or M different antenna panels, or M different bandwidth parts (Bandwidth Part, BWP), or M different carrier components (Carrier Component, CC), where M panels or BWPs or CCs may belong to the same TRP, or may belong to multiple TRPs.
  • the M repeatedly transmitted data or signaling may also only come from different transmission slots or sub-slots of the same transmission node.
  • the repeated transmission scheme includes but is not limited to at least one of the following methods: space division multiplexing scheme 1, frequency division multiplexing scheme 2, time division multiplexing within a time slot transmission scheme 3, time slot The time division multiplexing method among the time is Scheme 4.
  • the frequency division multiplexing scheme 2 can be divided into two types.
  • the RV corresponding to the repeated transmission data is the same or the repeated transmission data comes from different layers of the same transmission block, it is Scheme2a, when the RV corresponding to the repeatedly transmitted data is different, it is Scheme2b.
  • time slot refers to a collection of L symbols
  • a sub-slot refers to a collection of K1 symbols.
  • K1 is a positive integer and less than or equal to L
  • L can be 14 or 12
  • K1 can be Any value from 2-13, or 2, 4, 7.
  • the PDCCH needs to be mapped to a group of resource elements (Resource Elements, RE), where one Control Channel Element (CCE) can include multiple REs, and one RE includes one subcarrier in the frequency domain. Include a symbol in the time domain.
  • a set of one or more CCEs used to transmit PDCCH can be called a control resource set (CORESET), which includes multiple physical resource blocks in the frequency domain and K2 symbols in the time domain.
  • K2 is a natural number.
  • K2 can be an integer of 1, 2, and 3.
  • the symbols here can include but are not limited to one of the following: Orthogonal Frequency Division Multiplex (OFDM), Single-Carrier Frequency Division Multiple Access (SC-FDMA), Orthogonal Frequency Division Multiple Access (Orthogonal Frequency Division Multiple Access, OFDMA).
  • OFDM Orthogonal Frequency Division Multiplex
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Physical channels such as PDSCH, PDCCH, PUSCH, PUCCH, etc. are all modulated in the smallest resource unit RE, and each RE includes a symbol in the time domain and a subcarrier in the frequency domain.
  • the value of the wireless channel on the RE needs to be estimated. This value can generally be obtained by estimation from a demodulation reference signal (DMRS), The channel interpolation on the RE corresponding to the DMRS is used to obtain the channel on the physical channel.
  • DMRS demodulation reference signal
  • the transmitting end performs repeated transmission of data or signaling N times, for example, repeated transmission of at least one of PDSCH, PUSCH, PDCCH, and PUCCH N times.
  • the sender can be various network side devices in the downlink, such as various transmission nodes, macro sender, micro sender, pico sender, relay and other network side devices.
  • the uplink it can be mobile phones or portable Receiving end of equipment, computer, data card, etc.
  • the receiving end may be the receiving end in the downlink, and may be the network side device in the uplink.
  • the data or signaling of N repeated transmissions can come from the same sender, or from different senders, or can come from different panels of the same or different senders, and the data or signaling of N repeated transmissions can be multiplexed by space division. Use either frequency division multiplexing or time division multiplexing for transmission.
  • the reference signal may include but is not limited to at least one of the following: DMRS, Channel State Information-Reference Signal (CSI-RS) resource, Synchronization Signals Block (SSB) ) Resources, physical broadcast channel (PBCH) resources, synchronous broadcast block/physical broadcast channel (SSB/PBCH) resources, uplink sounding reference signal (Sounding reference signal, SRS) resources, positioning reference signal (Positioning Reference Signals, PRS), Phase-tracking reference signal (PTRS).
  • DMRS Channel State Information-Reference Signal
  • SSB Synchronization Signals Block
  • PBCH physical broadcast channel
  • SSB/PBCH synchronous broadcast block/physical broadcast channel
  • SRS positioning reference signal
  • PRS Phase-tracking reference signal
  • the receiving end or the sending end After receiving the transport block, the receiving end or the sending end will feed back a confirmation message (Acknowledgement, ACK) if it is detected that the reception is correct, and if it is detected that the reception is wrong, it will feed back a negative information (Negative Acknowledgement, NACK) .
  • the sending end may not feed back the NACK information, but does not schedule or allocate resources to notify the receiving end that PUSCH transmission is not required subsequently.
  • the reference signal density refers to the proportion of REs used for transmitting reference signals in the entire transmission resource, or in one RB, the proportion of REs used for transmitting reference signals in the entire RB.
  • the spatial parameters include, but are not limited to, transmit beam, receive beam, quasi-co-location type type D, transmit beam group, receive beam group, radio frequency beam, spatial reception parameter (Spatial Rx parameter), transmission configuration indication (Transmission configuration) indication, TCI), beam index, beam group index, partial parameter information indication in quasi co-location, etc.
  • transmission can be either sending or receiving.
  • the sending end can be understood as various network side devices (for example, base stations), and receiving The end can be understood as a terminal.
  • the sending end can be understood as a terminal, and the receiving end can be understood as various network side devices. That is, the sending end repeatedly transmits certain data or signaling, which can mean that the sending end repeatedly sends certain data or signaling to the receiving end. Accordingly, the receiving end receives a certain data or signaling repeatedly sent by the sending end.
  • FIG. 1 shows a flowchart of a physical channel transmission method according to an embodiment of the present application.
  • the method can be applied to the sending end, and the method can include:
  • the sending end obtains K reference signal parameters.
  • the above K reference signal parameters can be used for N times of repeated transmission of the physical channel, where K and N are integers greater than 1, and N is greater than or equal to K.
  • the reference signal parameter may include at least one of the number of resource units of the reference signal, the density of the reference signal, the number of symbols of the reference signal, and the transmission power of the reference signal.
  • the configuration of the reference signal parameters may also include the pattern of the reference signal, the power offset of the reference signal, the transmission type of PUSCH, whether the PUSCH is frequency hopping, the transmission type of PUCCH, whether the PUCCH is frequency hopping, etc., where reference The signal pattern can include the number of REs, the number of combs, and the density of REs occupied by the reference signal in 1 RB.
  • the transmit power or power offset is an increase relative to one of the following: data, synchronous broadcast block/physical broadcast channel Block SSB, Channel State Information-Reference Signals (CSI-RS).
  • CSI-RS Channel State Information-Reference Signals
  • N repeated transmissions can be divided into K groups, and each group of repeated transmissions uses the same reference signal parameters, such as n1 repeated transmissions including repeated transmission indexes.
  • K pieces of reference signal parameters correspond to M pieces of spatial parameter information, and/or N times of repeated transmission of the physical channel correspond to M pieces of spatial parameter information, and M is a positive integer greater than or equal to K and less than or equal to N.
  • the M spatial parameters can be divided into K groups, and each group of spatial parameters corresponds to a reference signal parameter.
  • the K reference signal parameters obtained by the sending end may be parameters pre-configured by the sending end, or parameters obtained by the sending end through high-layer signaling.
  • the K reference signal parameters pre-configured by the sender can be understood as the K reference signal parameters that the sender and the receiver agree to configure through high-level signaling (for example, Radio Resource Control (RRC), media access control unit ( Media Access Control control element, MAC CE) or physical layer signaling) to obtain K reference signal parameters can be understood as the sender configures K reference signal parameters through high-level signaling, or receives transmissions from other nodes through high-level signaling or physical layer K shares of reference signal parameters.
  • RRC Radio Resource Control
  • MAC CE Media Access Control control element
  • the sending end when the sending end is a network side device, the sending end may configure K reference signal parameters through high-level signaling, and send K reference signal parameters to the receiving end through high-level signaling or physical layer signaling;
  • the sending end When the sending end is a terminal, the sending end may obtain K reference signal parameters transmitted by other nodes (such as network side equipment) through high-level signaling or physical layer signaling.
  • the transmitting end performs repeated transmission of the physical channel according to K reference signal parameters.
  • step S101 After the transmitting end obtains the K reference signal parameters, since the K reference signal parameters are used for N repeated transmissions of the physical channel, the transmitting end is performing N repeated transmissions, and another node (for example, The receiving end) receives the j-th repeated transmission, the transmitting end can combine the information obtained by the repeated transmissions less than or equal to j times to obtain the combined gain, and feedback the ACK information after the demodulation is successful to avoid occupying too much Repeat the transmission of resources and ensure the reliability of transmission.
  • the physical channel transmission method provided in this embodiment can improve the demodulation performance of the repeated transmission during the repeated transmission.
  • the repeated transmission manner in step S102 may be at least one of the following methods: Manner 1: The number of symbols of the reference signal corresponding to the j-th repetitive transmission of the transmitting end is greater than or equal to the i-th repetition The number of symbols of the reference signal corresponding to the transmission, where 1 ⁇ i ⁇ j ⁇ N; Method 2: The transmit power of the reference signal corresponding to the jth repeated transmission of the transmitter is greater than or equal to that of the reference signal corresponding to the i-th repeated transmission Transmission power, where 1 ⁇ i ⁇ j ⁇ N; Manner 3: The number of resource units of the reference signal corresponding to the jth repetitive transmission of the transmitting end is greater than or equal to the number of resource units of the reference signal corresponding to the i-th repetitive transmission, Among them, 1 ⁇ i ⁇ j ⁇ N; Method 4: The density of the reference signal corresponding to the j-th repeated transmission at the transmitting end is greater than or equal to the density of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ i
  • the repeated transmission manner in step S102 may also include at least one of the following situations:
  • the transmitting end repeats the transmission for the jth time.
  • the number of symbols of the corresponding reference signal is greater than or equal to the number of symbols of the reference signal corresponding to the i-th repeated transmission, where L is an integer greater than 1, and 1 ⁇ i ⁇ j ⁇ N;
  • the transmit power of the reference signal corresponding to the j-th repeated transmission at the transmitting end is greater than or equal to the transmit power of the reference signal corresponding to the i-th repeated transmission, 1 ⁇ n ⁇ j, 1 ⁇ i ⁇ j ⁇ N;
  • the sender succeeds in m repeated transmissions, the repeated transmission ends, and m is greater than k, where 1 ⁇ k ⁇ N, that is, after a certain repeated transmission is successful, the sender has not reached the total number of repeated transmissions.
  • the value of L when the physical channel is PDSCH or PUSCH, when the number of resource symbols corresponding to the above-mentioned transmitting end repeated transmission is greater than L, the value of L may be an integer greater than 7, and further, when the PDSCH transmission type is A, L The value of can be 8. When the PDSCH transmission type is B, the value of L can be 7. When there is no frequency hopping, if the PUSCH transmission type is A, the value of L can be 8, otherwise the value of L can be 7, and when frequency hopping, the value of K is 5. When the physical channel is the PUCCH, and the number of resource symbols corresponding to the above-mentioned transmitting end repeated transmission is greater than L, the value of L may be an integer greater than 2.
  • the transmitting end performs repeated transmission of the physical channel according to K reference signal parameters, which may be that the number of symbols of the reference signal corresponding to the jth repeated transmission of the transmitting end is less than that of the i-th repeated transmission.
  • the number of symbols of the reference signal where 1 ⁇ i ⁇ j ⁇ N; or, when the number of resource symbols corresponding to the sender's repeated transmission is greater than L, the number of symbols of the corresponding reference signal that the sender repeatedly transmits for the jth time Less than the number of symbols of the reference signal corresponding to the i-th repeated transmission, where L is an integer greater than 1, and 1 ⁇ i ⁇ j ⁇ N; or, the number of resource units corresponding to the j-th repeated transmission of the reference signal at the transmitting end Less than the number of resource units corresponding to the i-th repeated transmission of the reference signal, where 1 ⁇ i ⁇ j ⁇ N; or, the density of the reference signal corresponding to the j-th repeated transmission at the transmitting end is less than that of the i-th repeated transmission The density of the reference signal, where 1 ⁇ i ⁇ j ⁇ N.
  • the overhead of the demodulation reference signal is continuously reduced to increase the coding rate of the channel, thereby improving the accuracy of the demodulation.
  • the repeated transmission of the physical channel by the sender in step S102 may be at least one of the following methods: Manner 1: The jth repeated transmission by the sender corresponds to The adjusted coding order corresponding to the shared data of is greater than the adjusted coding order of the shared data corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N; Method two, when the sender receives NACK, the j-th repeat The transmit power of the reference signal corresponding to the transmission is greater than the transmit power of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N; mode three, if the transmitting end receives the ACK, the subsequent repeated transmission ends. For example, after the k-th repeated transmission, after the sender receives the ACK information, then the k+1 to N-th repeated transmissions will not need to be performed.
  • the foregoing repeated transmission may be transmitted in different time slots or sub-slots through one network-side device (for example, a base station), or may be transmitted in different time slots or sub-slots through multiple network-side devices.
  • the time slot is transmitted in a time-division multiplexing manner, or multiple panels of at least one network side device are transmitted in different time slots or sub-slots in a time-division multiplexing manner.
  • the foregoing repeated transmission may also be transmitted in a space division multiplexing manner or a frequency division multiplexing manner in at least one panel of at least one network side device.
  • Fig. 2 shows a flowchart of another physical channel transmission method according to an embodiment of the present application. As shown in Fig. 2, the method may be applied to the receiving end, and the method may include:
  • the receiving end obtains K reference signal parameters.
  • the above K reference signal parameters can be used to receive N times of repeated transmissions of the physical channel, where K and N are integers greater than 1, and N is greater than or equal to K.
  • the reference signal parameter may include at least one of the number of resource units of the reference signal, the density of the reference signal, the number of symbols of the reference signal, and the transmission power of the reference signal.
  • the configuration of the reference signal parameters may also include the pattern of the reference signal, the power offset of the reference signal, the transmission type of PUSCH, whether the PUSCH is frequency hopping, the transmission type of PUCCH, whether the PUCCH is frequency hopping, etc., where reference
  • the signal pattern may include the number of REs, the number of combs, and the density of REs occupied by the reference signal in 1 RB, and the transmit power or power offset is relative to the data or synchronous broadcast block/physical broadcast channel block SSB or channel state information reference Signal (Channel State Information-Reference Signals, CSI-RS) improvement.
  • CSI-RS Channel State Information-Reference Signals
  • N repeated transmissions can be divided into K groups, and each group of repeated transmissions uses the same reference signal parameters, such as n1 repeated transmissions including repeated transmission indexes.
  • K pieces of reference signals correspond to M pieces of spatial parameter information, and/or N times of repeated transmission of the physical channel correspond to M pieces of spatial parameter information, and M is a positive integer greater than or equal to K and less than or equal to N.
  • M spatial parameters can be divided into K groups, and each group of spatial parameters corresponds to a reference signal parameter, that is, each group of spatial parameters is associated with a reference signal parameter, such as the i-th group of spatial parameters and the i-th reference signal parameter.
  • the physical channel transmitted by the i-th group of spatial parameters is used to repeatedly transmit the corresponding reference pilot of the i-th reference signal parameter configuration.
  • the K reference signal parameters obtained by the receiving end may be parameters pre-configured by the receiving end, or parameters obtained by the receiving end through high-layer signaling.
  • the pre-configured K reference signal parameters at the receiving end can be understood as the agreement between the sending end and the receiving end of K reference signal parameters, and the receiving end obtaining parameters through high-level signaling can be understood as the receiving end configuring K reference signal parameters through high-level signaling, or, Obtain K reference signal parameters transmitted by other nodes through high-level signaling or physical layer signaling.
  • S202 The receiving end receives repeated transmission of the physical channel according to K reference signal parameters.
  • the receiving end After the receiving end obtains the K reference signal parameters, since the K reference signal parameters are used to receive N repeated transmissions of the physical channel, the receiving end is receiving N repeated transmissions, if the jth transmitted by the sending end is received Repeated transmissions, optionally, information obtained by repeated transmissions less than or equal to j can be combined to obtain a combined gain.
  • the manner of receiving repeated transmission in step S202 may be at least one of the following implementation manners: Manner 1: The number of symbols of the reference signal corresponding to the jth repeated transmission received by the receiving end is greater than or equal to The number of symbols of the reference signal corresponding to the received i-th repeated transmission; way two, the transmit power of the reference signal corresponding to the j-th repeated transmission received by the receiving end is greater than or equal to that of the reference signal corresponding to the i-th repeated transmission Transmission power, where 1 ⁇ i ⁇ j ⁇ N; Method 3: The number of resource units of the reference signal corresponding to the jth repetitive transmission received by the receiving end is greater than or equal to the resource of the reference signal corresponding to the ith retransmission received The number of units, where 1 ⁇ i ⁇ j ⁇ N; Method 4: The density of the reference signal corresponding to the j-th repeated transmission received by the receiving end is greater than or equal to the density of the reference signal corresponding to the i-th repeated transmission, where , 1 ⁇ i ⁇ j ⁇
  • the manner of receiving repeated transmission in step S202 may also include at least one of the following situations:
  • the receiving end receives The number of symbols of the reference signal corresponding to the jth repeated transmission is greater than or equal to the number of symbols of the reference signal corresponding to the i-th repeated transmission received, where L is an integer greater than 1, and 1 ⁇ i ⁇ j ⁇ N ;
  • the transmit power of the reference signal corresponding to the jth repeated transmission received by the receiving end is greater than or equal to the reference signal corresponding to the ith repeated transmission received Power, 1 ⁇ n ⁇ j, 1 ⁇ i ⁇ j ⁇ N;
  • the receiving end receives m repeated transmissions successfully, it ends receiving repeated transmissions, and m is greater than k, where 1 ⁇ k ⁇ N, that is After a certain repeated transmission is successfully received, the receiving end may end the reception of repeated transmission when the number
  • the value of L when the physical channel is PDSCH or PUSCH, when the number of resource symbols corresponding to the repeated transmission received by the receiving end is greater than L, the value of L may be an integer greater than 7, and further, when the PDSCH transmission type is A , The value of L can be 8. When the PDSCH transmission type is B, the value of L can be 7. When there is no frequency hopping, if the PUSCH transmission type is A, the value of L can be 8, otherwise the value of L can be 7, and when frequency hopping, the value of K is 5. When the physical channel is the PUCCH, and the number of resource symbols corresponding to the repeated transmission received by the receiving end is greater than L, the value of L may be an integer greater than 2.
  • the receiving end receives the repeated transmission of the physical channel according to the K reference signal parameters, which may be that the number of symbols of the reference signal corresponding to the jth repeated transmission received by the receiving end is less than the number of symbols of the i-th received.
  • the number of symbols of the reference signal corresponding to each repeated transmission where 1 ⁇ i ⁇ j ⁇ N; or, when the number of resource symbols corresponding to the repeated transmission received by the receiving end is greater than L, the jth repeated transmission received by the receiving end
  • the number of symbols of the corresponding reference signal is less than the number of symbols of the reference signal corresponding to the received i-th repeated transmission, where L is an integer greater than 1, and 1 ⁇ i ⁇ j ⁇ N; or, the j-th received by the receiving end
  • the number of resource units of the reference signal corresponding to the repeated transmission is less than the number of resource units of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N; or the j-th received by the receiving end
  • the density of the reference signal corresponding to the repeated transmission is less than the density of the reference signal corresponding to the received i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N.
  • the overhead of the demodulation reference signal is continuously reduced to increase the coding rate of the channel, thereby improving the accuracy of the demodulation.
  • the receiving end may receive repeated transmission of the physical channel in at least one of the following ways:
  • Manner 1 The adjusted coding order corresponding to the shared data corresponding to the jth repeated transmission received by the receiving end is greater than the adjusted coding order corresponding to the shared data corresponding to the i-th repeated transmission received, where 1 ⁇ i ⁇ j ⁇ N .
  • the transmit power of the reference signal corresponding to the jth repeated transmission is greater than the transmit power of the reference signal corresponding to the i-th repeated transmission.
  • Manner 3 After the receiving end successfully demodulates the PUSCH, it feeds back an ACK to the transmitting end or no longer allocates resources for repeated transmission to the transmitting end, then the receiving end no longer receives subsequent repeated transmissions of the PUSCH.
  • Manner 4 When the physical channel is the PUSCH, if the receiving end stops allocating repeated transmission resources to the transmitting end, the subsequent reception of repeated transmissions ends. For example, after the kth repetitive transmission, the receiving end stops allocating repetitive transmission resources to the sending end, then the k+1 to Nth repetitive transmission will not need to be performed.
  • the foregoing repeated transmission may be transmitted in different time slots or sub-slots by one network-side device, or multiple network-side devices may be time-division multiplexed in different time slots or sub-slots through multiple network-side devices. Or multiple panels of at least one network-side device are transmitted in different time slots or sub-time slots through time division multiplexing. Further, the foregoing repeated transmission may also be transmitted in a space division multiplexing manner or a frequency division multiplexing manner in at least one panel of at least one network side device.
  • FIG. 3 is a sending device provided by an embodiment of the application. As shown in FIG. 3, the device includes: an acquisition module 301 and a communication module 302.
  • the acquiring module is configured to acquire K reference signal parameters, where K reference signal parameters are used for N repeated transmissions of the physical channel, K and N are integers greater than 1, and N is greater than or equal to K.
  • N repeated transmissions include K groups of repeated transmissions, where each group of repeated transmissions in the K groups of repeated transmissions uses the same reference signal parameter, the i-th reference signal parameter is used for the i-th group of repeated transmissions, and the value of i It is any integer from 1 to K.
  • the aforementioned reference signal includes at least one of the number of resource units of the reference signal, the density of the reference signal, the number of symbols of the reference signal, and the transmission power of the reference signal.
  • the above-mentioned device further includes: a configuration module; a configuration module for pre-configuring K reference signal parameters; in addition, the K reference signal parameters may also be parameters obtained by the above-mentioned device through high-level signaling, and the K reference signal parameters correspond to M pieces of spatial parameter information, and/or, N times of repeated transmission of the physical channel correspond to M pieces of spatial parameter information, and M is a positive integer greater than or equal to K and less than or equal to N.
  • the M pieces of spatial parameter information can be divided into K groups, and the i-th group of spatial parameter information corresponds to the i-th reference signal parameter.
  • the communication module is used to perform repeated transmission of the physical channel according to K reference signal parameters.
  • the communication module is configured to perform at least one of the following implementation modes: Manner 1.
  • the number of symbols of the reference signal corresponding to the jth repeated transmission is greater than or equal to the reference corresponding to the ith repeated transmission The number of symbols of the signal, where 1 ⁇ i ⁇ j ⁇ N; mode two, the transmit power of the reference signal corresponding to the jth repeated transmission is greater than or equal to the transmit power of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N;
  • Manner 3 The number of resource units of the reference signal corresponding to the jth repeated transmission is greater than or equal to the number of resource units of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N;
  • Manner 4 The density of the reference signal corresponding to the j-th repeated transmission is greater than or equal to the density of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N.
  • the communication module can also be used to perform transmission in the following situations: In the first case, when the number of resource symbols corresponding to the repeated transmission is greater than L, the number of symbols of the reference signal corresponding to the jth repeated transmission is greater than Or equal to the number of symbols of the reference signal corresponding to the i-th repeated transmission, where L is an integer greater than 1, and 1 ⁇ i ⁇ j ⁇ N; in the second case, after the n-th repeated transmission, the j-th repeat The transmission power of the reference signal corresponding to the transmission is greater than or equal to the transmission power of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ n and the third case, when m repeated transmissions are successful, the repeated transmission ends, where m is greater than k, 1 ⁇ k ⁇ N.
  • the communication module is used for the number of symbols of the reference signal corresponding to the j-th repeated transmission less than the number of symbols of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N; or ,
  • the number of resource symbols corresponding to the repeated transmission is greater than L
  • the number of symbols of the reference signal corresponding to the j-th repeated transmission is less than the number of symbols of the reference signal corresponding to the i-th repeated transmission, where L is an integer greater than 1.
  • the number of resource units of the reference signal corresponding to the jth repetitive transmission is less than the number of resource units of the reference signal corresponding to the ith repetitive transmission, where 1 ⁇ i ⁇ j ⁇ N; or, the density of the reference signal corresponding to the j-th repeated transmission is less than the density of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N.
  • the communication module can also be used to implement at least one of the following two ways: the adjusted coding order corresponding to the shared data corresponding to the jth repeated transmission is greater than the The adjusted coding order corresponding to the shared data corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N; when the communication module receives negative information, the transmission power of the reference signal corresponding to the j-th repeated transmission is greater than the i-th repetition The transmission power of the corresponding reference signal is transmitted, where 1 ⁇ i ⁇ j ⁇ N.
  • FIG. 4 is a receiving device provided by an embodiment of the application. As shown in FIG. 4, the device includes: an acquisition module 401 and a communication module 402.
  • the acquiring module is used to acquire K reference signal parameters, which are used to receive N repeated transmissions of the physical channel, K and N are integers greater than 1, and N is greater than or equal to K.
  • N repeated transmissions include K groups of repeated transmissions, where each group of repeated transmissions in the K groups of repeated transmissions uses the same reference signal parameter, the i-th reference signal parameter is used for the i-th group of repeated transmissions, and the value of i It is any integer from 1 to K.
  • the reference signal parameter includes at least one of the number of resource units of the reference signal, the density of the reference signal, the number of symbols of the reference signal, and the transmission power of the reference signal.
  • the above-mentioned device may also include a configuration module; the configuration module is used to pre-configure K reference signal parameters; in addition, the K reference signal parameters may also be parameters obtained by the above-mentioned device through high-level signaling, and the K reference signal parameters correspond to M pieces of spatial parameter information, and/or, N times of repeated transmission of the physical channel correspond to M pieces of spatial parameter information, and M is a positive integer greater than or equal to K and less than or equal to N.
  • the M pieces of spatial parameter information can be divided into K groups, and the i-th group of spatial parameter information corresponds to the i-th reference signal parameter.
  • the communication module is used to receive repeated transmissions of the physical channel according to K reference signal parameters.
  • the communication module is configured to perform at least one of the following implementation modes: Manner 1. The number of symbols of the reference signal corresponding to the received j-th repetitive transmission is greater than or equal to the received i-th repetition The number of symbols of the reference signal corresponding to the transmission, where 1 ⁇ i ⁇ j ⁇ N; Method 2: The transmit power of the reference signal corresponding to the jth repeated transmission received is greater than or equal to the reference corresponding to the i-th repeated transmission received Signal transmission power, where 1 ⁇ i ⁇ j ⁇ N; Manner 3: The number of resource units of the reference signal corresponding to the received j-th repetitive transmission is greater than or equal to the resource of the reference signal corresponding to the i-th retransmission received The number of units, where 1 ⁇ i ⁇ j ⁇ N; Method 4: The density of the reference signal corresponding to the jth repeated transmission is greater than or equal to the density of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N.
  • the communication module can also be used to perform transmissions in the following situations: In the first case, when the number of resource symbols corresponding to the received repeated transmission is greater than L, the reference signal corresponding to the jth repeated transmission is received The number of symbols is greater than or equal to the number of symbols of the reference signal corresponding to the received i-th repeated transmission, where L is an integer greater than 1, and 1 ⁇ i ⁇ j ⁇ N; in the second case, in the nth repeated transmission After transmission, the transmit power of the reference signal corresponding to the received j-th repeated transmission is greater than or equal to the transmit power of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ n ⁇ j, 1 ⁇ i ⁇ j ⁇ N ; The third case, when m repeated transmissions are successfully received, the repeated transmissions are ended, where m is greater than k, and 1 ⁇ k ⁇ N.
  • the communication module the number of symbols of the reference signal corresponding to the received j-th repetitive transmission is less than the number of symbols of the reference signal corresponding to the i-th repetitive transmission received, where 1 ⁇ i ⁇ j ⁇ N
  • the number of symbols of the reference signal corresponding to the received j-th repeated transmission is less than the number of symbols of the reference signal corresponding to the i-th received repeated transmission,
  • L is an integer greater than 1, 1 ⁇ i ⁇ j ⁇ N; or, the number of resource units of the reference signal corresponding to the jth repeated transmission is less than the number of resource units of the reference signal corresponding to the i-th repeated transmission
  • the density of the reference signal corresponding to the received j-th repeated transmission is less than the density of the reference signal corresponding to the i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N.
  • the communication module when the physical channel is a physical shared channel, the communication module is also used to implement at least one of the following two optional implementation modes: Manner 1: The received shared data corresponding to the jth repeated transmission The corresponding adjusted coding order is greater than the corresponding adjusted coding order of the shared data corresponding to the received i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N; way two, when the communication module feeds back negative information, the j-th received The transmit power of the reference signal corresponding to the repeated transmission is greater than the transmit power of the reference signal corresponding to the received i-th repeated transmission, where 1 ⁇ i ⁇ j ⁇ N.
  • Fig. 5 is a schematic structural diagram of a node provided by an embodiment.
  • the node includes a processor 501 and a memory 502; the number of processors 501 in the node can be one or more.
  • the processor 501 is taken as an example; the processor 501 and the memory 502 in the node may be connected through a bus or other methods. In FIG. 5, the connection through a bus is taken as an example.
  • the memory 502 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the signaling processing method in FIG. 1 of this application (for example, the acquisition module in the sending device). 301, communication module 302).
  • the processor 501 implements the aforementioned physical channel transmission method by running software programs, instructions, and modules stored in the memory 502.
  • the memory 502 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 502 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • Fig. 6 is a schematic structural diagram of a node provided by an embodiment.
  • the node includes a processor 601 and a memory 602; the number of processors 601 in the node can be one or more.
  • the processor 601 is taken as an example; the processor 601 and the memory 602 in the node may be connected through a bus or other methods. In FIG. 6, the connection through a bus is taken as an example.
  • the memory 602 as a computer-readable storage medium, can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the signaling processing method in FIG. 2 of this application (for example, the acquisition module in the receiving device). 401. Communication module 402).
  • the processor 601 implements the aforementioned physical channel transmission method by running software programs, instructions, and modules stored in the memory 602.
  • the memory 602 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 602 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are executed by a computer processor, the computer-executable instructions are used to execute a physical channel transmission method.
  • the method includes: the sending end obtains K reference signal parameters , K reference signal parameters are used for N repeated transmissions of the physical channel; where K and N are integers greater than 1, and N is greater than or equal to K; the sender performs repeated transmissions of the physical channel according to the K reference signal parameters.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute a physical channel transmission method when executed by a computer processor.
  • the method includes: the receiving end obtains K reference signal parameters , K reference signal parameters are used to receive N repeated transmissions of the physical channel; where K and N are integers greater than 1, and N is greater than or equal to K; the receiving end receives the repeated transmissions of the physical channel according to the K reference signal parameters.
  • receiving end covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a physical channel transmission device, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disc (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic device (Field Programmable Gate Array, FPGA) core processor architecture processor.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FPGA programmable logic device

Abstract

本申请提出了一种物理信道传输方法、装置、节点和存储介质。该方法包括:发送端获取K份参考信号参数,K份参考信号参数用于N次物理信道的重复传输,其中,K和N为大于1的整数,且N大于或等于K,发送端根据K份参考信号参数进行物理信道的重复传输。

Description

物理信道传输方法、装置、节点和存储介质
本申请要求在2019年12月31日提交中国专利局、申请号为201911418751.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,例如涉及一种物理信道传输方法、装置、节点和存储介质。
背景技术
重复(Repetition)传输是一种有效提高传输可靠性的技术,广泛应用于无线通信系统,例如,通过重复传输提高超可靠度和低延迟通讯(Ultra-reliable and Low Latency Communications,URLLC)、大规模机器通信(massive Machine Type of Communication,mMTC)等传输的可靠性。
多个传输接收节点(Multiple Transmission and Reception Point,Multi-TRP)联合传输或者接收作为无线通信领域中的一个重要技术,在增加无线通信的吞吐量上有显著效果,所以在长期演进(Long Term Evolution,LTE)、长期演进增强(Long Term Evolution-Advanced,LTE-A)、新无线接入技术(New Radio Access Technology,NR)等标准中都支持多传输接收节点传输。而多面板(Multi-Panel)传输作为NR引入的一个重要技术,主要是在接收端和/或发送端安装多个天线面板,以提高无线通信系统的频谱效率。
在相关技术中,Multi-TRP或Multi-Panel也可以使用重复传输技术以提高传输的可靠性,但重复传输技术在N次传输中会占用N次的资源。
发明内容
为了解决上述至少一个技术问题,本申请实施例提供了以下方案。
本申请实施例提供了一种物理信道传输方法,该方法包括:
发送端获取K份参考信号参数,K份参考信号参数用于N次物理信道的重复传输;
其中,K和N为大于1的整数,且N大于或等于K;
发送端根据K份参考信号参数进行物理信道的重复传输。
本申请实施例提供了一种物理信道传输方法,该方法包括:
接收端获取K份参考信号参数,K份参考信号参数用于接收N次物理信道的重复传输;
其中,K和N为大于1的整数,且N大于或等于K;
接收端根据K份参考信号参数接收物理信道的重复传输。
本申请实施例提供了一种发送装置,该装置包括:
获取模块,用于获取K份参考信号参数,K份参考信号参数用于N次物理信道的重复传输;
其中,K和N为大于1的整数,且N大于或等于K;
通信模块,用于根据K份参考信号参数进行物理信道的重复传输。
本申请实施例提供了一种接收装置,该装置包括:
获取模块,用于获取K份参考信号参数,K份参考信号参数用于接收N次物理信道的重复传输;
其中,K和N为大于1的整数,且N大于或等于K;
通信模块,用于根据K份参考信号参数接收物理信道的重复传输。
本申请实施例提供了一种节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,当处理器执行计算机程序时,实现本申请实施例中的任一物理信道传输方法。
本申请实施例提供了一种节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,当处理器执行计算机程序时,实现本申请实施例中的任一物理信道传输方法。
本申请实施例提供了一种计算机可读存储介质,该存储介质存储有计算机程序,当计算机程序被处理器执行时,实现本申请实施例中的任一物理信道传输方法。
本申请实施例提供了一种计算机可读存储介质,该存储介质存储有计算机程序,当计算机程序被处理器执行时,实现本申请实施例中的任一物理信道传输方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1为一实施例提供的一种物理信道传输方法流程图;
图2为一实施例提供的另一种物理信道传输方法流程图;
图3为一实施例提供的一种发送装置结构示意图;
图4为一实施例提供的一种接收装置结构示意图;
图5为一实施例提供的一种节点结构示意图;
图6为一实施例提供的一种节点结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
另外,在本申请实施例中,“可选地”或者“示例性地”等词用于表示作例子、例证或说明。本申请实施例中被描述为“可选地”或者“示例性地”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。
在本申请实施例中,一个面板可以对应一个端口组(例如,天线端口组,或者,天线组),上述面板与端口组呈一一对应关系,两者可以相互替换,面板也可以用空间参数代替。进一步地,上述面板可以指天线面板,一个TRP或者接收端可以包括至少一个天线面板。每个面板上有一个或者多个天线阵子,多个天线阵子可以虚拟成一个天线端口。一个面板上的天线端口可以分为一个端口组,另外,一个面板又可以分成多个子面板,每个子面板包括的多个天线端口也可以分为一个端口组。以双极化的天线为例,正45°极化的天线为一个子面板,负45°极化的天线为另一个子面板。在本申请实施例中,将面板和子面板统称为面板,可以用panel表示。
在传输数据或信令时,标准中通常将物理信道分为物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。PDCCH主要用于传输物理下行控制信令(Downlink Control Information,DCI),PUCCH主要用于传输上行控制信息,比如信道状态信息(Channel State Information,CSI)、混合自动重传请求(Hybrid automatic repeat request,HARQ)、调度请求(Scheduling Request)等,PDSCH主要用于传输下行数据,PUSCH主要用于传输上行数据和CSI等信息,进一步地,可以将PDCCH和PUCCH可以统称为物理控制信道,将PUSCH和PDSCH可以统称为物理共享信道。
进一步地,上述CSI包括接收端反馈的下行链路的信道状态信息和发送端指示接收端的上行链路的信道状态信息,其中,下行链路的信道状态信息包括但不限于以下信息之一:信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,CRI)、同步信号块资源指示(Synchronization Signals Block Resource Indicator,SSBRI)、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、层指示(Layer Indicator,LI)、秩指示(Rank Indicator,RI),上行链路的信道状态信息包括但不限于以下信息之一:上行探测信号资源指示(SRS resource Indicator,SRI)、传输预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)、传输秩指示(Transmitted Rank Indicator,TRI)、调制和编码方案(Modulation and coding scheme,MCS),另外TPMI和TRI可能联合编码,使用下行控制信令的预编码和层数(Precoding information and number of layers)指示。
在重复传输数据时,比如重复传输M(M为大于1的整数)个PDSCH或PUSCH,是指重复传输的M个数据携带了完全相同的信息,例如,M个数据来自相同传输块(Transport Block,TB),只是对应的信道编码后的冗余版本(Redundancy version,RV)不同,甚至M个数据信道编码后的RV是相同的,或者是同一个传输块的信息的同一个RV被分成不同的层进行传输,其中,RV指对传输数据进行信道编码后的不同冗余版本,一般来说,可以取信道版本{0,1,2,3}。同样地,重复传输信令,比如重复传输PDCCH或PUCCH,是指重复传输的M个信令携带的内容是相同的,例如,M个PDCCH携带的DCI内容是相同的(比如,每个域的取值相同),或者,M个PUCCH携带的内容取值是相同的。
进一步地,M个重复传输的数据或者信令可以来自M个不同的TRP,或者M个不同的天线面板,或者M个不同的带宽部分(Bandwidth Part,BWP),或者,M个不同的载波组件(Carrier Component,CC),其中,M个面板或者BWP或者CC可以属于同一个TRP,也可以属于多个TRP。M个重复传输的数据或者信令也可以只来自同一个传输节点的不同传输时隙(slot)或者子时隙(sub slot)。进一步地,重复传输的方案包括但不限于以下至少方式之一:空分复用的方式Scheme 1,频分复用的方式Scheme 2,时隙内的时分复用的方式传输Scheme 3,时隙间的时分复用的方式Scheme 4。根据传输块的RV是否相同,又可以将频分复用的方式Scheme 2分为两类,当重复传输的数据对应的RV相同时或者重复传输的数据来自同一个传输块的不同层时,为Scheme2a,当重复传输的数据对应的RV不同时,为Scheme2b。
还可以是上述复用方式的任意组合,比如空分复用和频分复用的组合,时分复用和频分复用的组合等。另外,上述时隙是指包括L个符号的集合,子时 隙是指包括K1个符号的集合,一般来说,K1为正整数,且小于或等于L,L可以为14或者12,K1可以为2-13中的任意值,或者2,4,7。
另外,PDCCH是需要映射到一组资源单元(Resource Element,RE)上的,其中,一个控制信道单元(Control Channel Element,CCE)可以包含多个RE,一个RE在频域上包括一个子载波,在时域上包括一个符号。用于传输PDCCH的一个或者多个CCE的集合,可以称之为控制资源集合(Control resource set,CORESET),其在频域上包括多个物理资源块,而在时域上包括K2个符号,K2为自然数,比如K2可以取1、2、3的整数。这里的符号可以包括但不限于以下之一:正交频分复用符号(Orthogonal Frequency Division Multiplex,OFDM),单载波频分多址接入(Single-Carrier Frequency Division Multiple Access,SC-FDMA),正交频分多址接入(Orthogonal frequency division Multiple Access,OFDMA)。
为了传输PUSCH或者PDSCH,可以将连续K3个符号和L1个频域子载波的一组RE形成一个资源块(Resource block,RB),或称之为物理资源块(Physical Resource block,PRB),K1和L1均为正整数,比如K3=12或者14,L1=12。
PDSCH、PDCCH、PUSCH、PUCCH等物理信道都是调制在最小的资源单元RE中,每个RE包括时域的一个符号和频域的一个子载波。为了解调或者获取RE上调制的物理信道上携带的信息(包括数据或者信号),需要估计RE上无线信道的值,这个值一般可以由解调参考信号(Demodulation Reference Signal,DMRS)估计获得,并用DMRS对应的RE上的信道插值获得物理信道上的信道。
另外,在本申请实施例中,若无特别说明,一般包括1个接收端和至少1个TRP。为了提高传输数据或者信令的可靠性,发送端对数据或者信令进行N次重复传输,比如重复传输N次PDSCH、PUSCH、PDCCH、PUCCH中的至少之一。发送端在下行链路中可以是各类网络侧设备,比如各类传输节点,宏发送端、微发送端、微微发送端,中继等网络侧设备,在上行链路中可以为手机、便携设备、电脑、数据卡等接收端。相应地,接收端在下行链路中可以为接收端,在上行链路中可以为网络侧设备。N次重复传输的数据或者信令可以来自同一个发送端,也可以来自不同的发送端,或者可以来自相同或不同的发送端的不同面板,N个重复传输的数据或者信令可以通过空分复用,或者频分复用,或者时分复用的方式进行传输。
在本申请实施例中,参考信号可以包括但不限于以下至少之一:DMRS、信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)资源、同步信号块(Synchronization Signals Block,SSB)资源、物理广播信道 (Physical Broadcast Channel,PBCH)资源、同步广播块/物理广播信道(SSB/PBCH)资源、上行探测参考信号(Sounding reference signal,SRS)资源、定位参考信号(Positioning Reference Signals,PRS),相位跟踪参考信号(Phase-tracking reference signal,PTRS)。接收端或发送端在接收到传输块之后,若检测发现接收是正确的,则反馈一个确定信息(Acknowledgement,ACK),若检测发现接收是错误的,则反馈一个否定信息(Negative Acknowledgement,NACK)。发送端也可能并不反馈NACK信息,只是不对资源进行调度或者分配,以通知接收端后续不需要进行PUSCH的传输即可。
在本申请实施例中,参考信号的密度是指用于传输参考信号的RE占整个传输资源的比例,或者在一个RB中,用于传输参考信号的RE占整个RB所包括的RE的比例。
本实施例中,空间参数包括但不限于发送波束、接收波束、准共位置类型type D、发送波束组、接收波束组、射频波束、空间接收参数(Spatial Rx parameter)、传输配置指示(Transmission configuration indication,TCI)、波束索引、波束组索引、准共位(quasi co-location)中的部分参数信息指示等。
在本申请实施例中,传输可以为发送或接收中的任意一种方式,对于下行信道(例如,PDCCH或者PDSCH)而言,发送端可以理解为各类网络侧设备(例如,基站),接收端可以理解为终端,对于上行信道(例如,PUCCH或者PUSCH)而言,发送端可以理解为终端,接收端可以理解为各类网络侧设备。即发送端重复传输某个数据或信令,可以为发送端向接收端重复发送某个数据或信令,相应地,接收端接收发送端重复发送的某个数据或信令。
在上述概念的基础上,图1示出本申请实施例的物理信道传输方法的流程图。如图1所示,该方法可以应用于发送端,该方法可以包括:
S101、发送端获取K份参考信号参数。
上述K份参考信号参数可以用于N次物理信道的重复传输,其中,K和N为大于1的整数,且N大于或等于K。参考信号参数可以包括参考信号的资源单元个数、参考信号的密度、参考信号的符号个数、参考信号的发射功率中的至少一个。进一步地,参考信号参数的配置也可以包括参考信号的图样(pattern)、参考信号的功率偏置、PUSCH的传输类型、PUSCH是否跳频、PUCCH的传输类型、PUCCH是否跳频等,其中,参考信号的图样可以包括1个RB中参考信号所占的RE个数、comb数目、RE密度等,发射功率或者功率偏置为相对于以下之一的提升量:数据、同步广播块/物理广播信道块SSB、信道状态信息参考信号(Channel State Information-Reference Signals,CSI-RS)。
进一步地,可以将上述N次重复传输分为K组,每组重复传输使用相同的参考信号参数,比如包括重复传输索引连续的n1次重复传输,这里,n1为正整数,比如,n1=f(N/K),f表示对一个实数上取整或者下取整,N/K表示N除以K。若N不能被K整除,那么当f为上取整时,有的重复传输组可能包括n1-1个重复传输,当f为下取整时,有的重复传输组可能包括n1+1个重复传输。第i组重复传输对应第i份参考信号参数,i=1,…,K。
K份参考信号参数对应M个空间参数信息,和/或,N次物理信道的重复传输对应M个空间参数信息,M为大于或等于K,且小于或等于N的正整数。示例性地,可以将M个空间参数分为K组,每组空间参数对应一份参考信号参数。每组空间参数信息包括n2个空间参数信息,这里,n2为正整数,比如,n2=f(M/K),f表示对一个实数上取整或者下取整,M/K表示M除以K。如果M不能被K整除,那么当f为上取整时,有的重复传输组可能包括n2-1个重复传输,而在f为下取整时,有的重复传输组可能包括n2+1个重复传输。
进一步地,发送端获取的上述K份参考信号参数可以为发送端预配置的参数,或者发送端通过高层信令获取的参数。发送端预配置K份参考信号参数可以理解为发送端与接收端约定配置的K份参考信号参数,通过高层信令(例如,无线资源控制(Radio Resource Control,RRC)、媒体接入控制单元(Media Access Control control element,MAC CE)或物理层信令)获取K份参考信号参数可以理解为发送端通过高层信令配置K份参考信号参数,或者通过高层信令或物理层接收其他节点传输的K份参考信号参数。
示例性地,当发送端为网络侧设备时,该发送端可以通过高层信令配置K份参考信号参数,并将K份参考信号参数通过高层信令或物理层信令发送至接收端;当发送端为终端时,该发送端可以通过高层信令或者物理层信令获取其他节点(比如网络侧设备)传输的K份参考信号参数。
进一步地,在上述K份参考信号参数中,发送端可以预配置部分参考信号参数,例如,假设其中k份参考信号参数是由发送端预配置的,其余K-k份参考信号参数是通过高层信令获取的。例如,根据k=1份参考信号参数按照约定的方式获取k份参考信号参数,并根据参考信号的符号个数可以逐步增加的方式获得K-k份其它的参考信号参数配置,至于参考信号的符号个数增加的参考信号符号索引位置也可以通过预配置的方式获得。
S102、发送端根据K份参考信号参数进行物理信道的重复传输。
基于步骤S101,发送端获取到K份参考信号参数后,由于K份参考信号参数用于N次物理信道的重复传输,那么发送端在进行N次重复传输的过程中,另一节点(例如,接收端)接收第j次重复传输,则发送端可以对小于或等于j 次的重复传输所获得的信息进行合并以获得合并增益,并在解调成功后反馈ACK信息,以避免占用过多的重复传输资源,并保证传输的可靠性。本实施例提供的物理信道传输方法,在重复传输过程中,可以提高重复传输的解调性能。
在一种示例中,上述步骤S102的重复传输方式可以为以下几种方式中的至少一种:方式一、发送端第j次重复传输对应的参考信号的符号个数大于或等于第i次重复传输对应的参考信号的符号个数,其中,1≤i<j≤N;方式二、发送端第j次重复传输对应的参考信号的发送功率大于或等于第i次重复传输对应的参考信号的发送功率,其中,1≤i<j≤N;方式三、发送端第j次重复传输对应的参考信号的资源单元个数大于或等于第i次重复传输对应的参考信号的资源单元个数,其中,1≤i<j≤N;方式四、发送端第j次重复传输对应的参考信号的密度大于或等于第i次重复传输对应的参考信号的密度,其中,1≤i<j≤N。
进一步地,上述步骤S102的重复传输方式还可以包括以下几种情况中的至少一种:第一种情况,当发送端重复传输对应的资源符号个数大于L时,发送端第j次重复传输对应的参考信号的符号个数大于或等于第i次重复传输对应的参考信号的符号个数,其中,L为大于1的整数,1≤i<j≤N;第二种情况,在第n次重复传输后,发送端第j次重复传输对应的参考信号的发送功率大于或等于第i次重复传输对应的参考信号的发送功率,1<n≤j,1≤i<j≤N;第三种情况,当发送端m次重复传输成功后,结束重复传输,m大于k,其中,1<k<N,即发送端在某次重复传输成功之后,而该重复传输次数还未到达总传输次数时,可以结束重复传输。
进一步地,当物理信道为PDSCH或PUSCH时,上述发送端重复传输对应的资源符号个数大于L时,L的取值可以为大于7的整数,进一步地,当PDSCH传输类型为A时,L的取值可以为8,当PDSCH传输类型为B时,L的取值可以为7。当不跳频时,若PUSCH传输类型为A,则L的取值可以为8,否则L的取值为7,在跳频时,K的取值为5。当物理信道为PUCCH时,上述发送端重复传输对应的资源符号个数大于L时,L的取值可以为大于2的整数。
在另一种实施例中,上述步骤S102中发送端根据K份参考信号参数进行物理信道的重复传输可以为发送端第j次重复传输对应的参考信号的符号个数小于第i次重复传输对应的参考信号的符号个数,其中,1≤i<j≤N;或者,当发送端重复传输对应的资源符号个数大于L时,发送端第j次重复传输对应的参考信号的符号个数小于第i次重复传输对应的参考信号的符号个数,其中,L为大于1的整数,1≤i<j≤N;或者,发送端第j次重复传输对应的参考信号的资源单元个数小于第i次重复传输对应的参考信号的资源单元的个数,其中,1≤i<j≤N;或者,发送端第j次重复传输对应的参考信号的密度小于第i次重复传输 对应的参考信号的密度,其中,1≤i<j≤N。
这样通过不断减小解调参考信号的开销,以增加信道的编码率,从而提高解调的准确性。
在另一种示例中,当物理信道为物理共享信道时,上述步骤S102中,发送端进行物理信道的重复传输可以为以下方式中的至少之一:方式一、发送端第j次重复传输对应的共享数据对应的调整编码阶数大于第i次重复传输对应的共享数据对应的调整编码阶数,其中,1≤i<j≤N;方式二、发送端接收到NACK时,第j次重复传输对应的参考信号的发送功率大于第i次重复传输对应的参考信号的发送功率,其中,1≤i<j≤N;方式三、若发送端接收到ACK后,结束后续的重复传输。例如,在第k次重复传输后,发送端接收到ACK信息后,那么第k+1至N次的重复传输将不需要执行。
另外,在本申请实施例中,上述重复传输可以为通过一个网络侧设备(例如,基站)在不同的时隙或者子时隙传输,也可以通过多个网络侧设备在不同的时隙或者子时隙以时分复用的方式传输,或者至少一个网络侧设备的多个面板在不同的时隙或者子时隙通过时分复用的方式传输。进一步地,上述重复传输也可以为以至少一个网络侧设备的至少一个面板通过空分复用的方式,或者频分复用的方式传输。
图2示出本申请实施例的另一物理信道传输方法的流程图,如图2所示,该方法可以应用于接收端,该方法可以包括:
S201、接收端获取K份参考信号参数。
上述K份参考信号参数可以用于接收N次物理信道的重复传输,其中,K和N为大于1的整数,且N大于或等于K。参考信号参数可以包括参考信号的资源单元个数、参考信号的密度、参考信号的符号个数、参考信号的发射功率中的至少一个。进一步地,参考信号参数的配置也可以包括参考信号的图样(pattern)、参考信号的功率偏置、PUSCH的传输类型、PUSCH是否跳频、PUCCH的传输类型、PUCCH是否跳频等,其中,参考信号的图样可以包括1个RB中参考信号所占的RE个数、comb数目、RE密度等,发射功率或者功率偏置为相对于数据或者同步广播块/物理广播信道块SSB或者信道状态信息参考信号(Channel State Information-Reference Signals,CSI-RS)的提升。
进一步地,可以将上述N次重复传输分为K组,每组重复传输使用相同的参考信号参数,比如包括重复传输索引连续的n1次重复传输,这里,n1为正整数,比如,n1=f(N/K),f表示对一个实数上取整或者下取整,N/K表示N除以K。若N不能被K整除,那么当f为上取整时,有的重复传输组可能包括n1-1个重 复传输,当f为下取整时,有的重复传输组可能包括n1+1个重复传输。第i组重复传输对应第i份参考信号参数,i=1,…,K。
K份参考信号对应M个空间参数信息,和/或,N次物理信道的重复传输对应M个空间参数信息,M为大于或等于K,且小于或等于N的正整数。示例性地,可以将M个空间参数分为K组,每组空间参数对应一份参考信号参数,即每组空间参数和一份参考信号参数关联,比如第i组空间参数与第i份参考信号参数关联,用第i组空间参数传输的物理信道重复传输对应的第i份参考信号参数配置的参考导频。每组空间参数信息包括n2个空间参数信息,这里,n2为正整数,比如,n2=f(M/K),f表示对一个实数上取整或者下取整,M/K表示M除以K。如果M不能被K整除,那么当f为上取整时,有的重复传输组可能包括n2-1个重复传输,而在f为下取整时,有的重复传输组可能包括n2+1个重复传输。
在本步骤中,接收端获取的上述K份参考信号参数可以为接收端预配置的参数,或者接收端通过高层信令获取的参数。接收端预配置K份参考信号参数可以理解为发送端与接收端约定K份参考信号参数,接收端通过高层信令获取参数可以理解为接收端通过高层信令配置K份参考信号参数,或者,通过高层信令或物理层信令获取其他节点传输的K份参考信号参数。
进一步地,在上述K份参考信号参数中,接收端可以预配置部分参考信号参数,例如,假设其中k份参考信号参数是由接收端预配置的,其余K-k份参考信号参数是通过高层信令获取的。例如,根据k=1份参考信号参数按照约定的方式获取k份参考信号参数,并根据参考信号的符号个数可以逐步增加的方式获得K-k份其它的参考信号参数配置,至于参考信号的符号个数增加的索引位置也可以预配置的方式获得。
S202、接收端根据K份参考信号参数接收物理信道的重复传输。
接收端获取到K份参考信号参数后,由于K份参考信号参数用于接收N次物理信道的重复传输,那么接收端在接收N次重复传输的过程中,若接收到发送端传输的第j次重复传输,可选地,可以对小于或等于j次的重复传输获得的信息进行合并以获得合并增益。
在一种示例中,上述步骤S202接收重复传输的方式可以为以下几种实现方式中的至少之一:方式一、接收端接收的第j次重复传输对应的参考信号的符号个数大于或等于接收的第i次重复传输对应的参考信号的符号个数;方式二、接收端接收的第j次重复传输对应的参考信号的发送功率大于或等于接收的第i次重复传输对应的参考信号的发送功率,其中,1≤i<j≤N;方式三、接收端接收的第j次重复传输对应的参考信号的资源单元个数大于或等于接收的第i次重复 传输对应的参考信号的资源单元个数,其中,1≤i<j≤N;方式四、接收端接收的第j次重复传输对应的参考信号的密度大于或等于接收的第i次重复传输对应的参考信号的密度,其中,1≤i<j≤N。
进一步地,上述步骤S202中接收重复传输的方式还可以包括以下几种情况中的至少一种:第一种情况,当接收端接收的重复传输对应的资源符号个数大于L时,接收端接收的第j次重复传输对应的参考信号的符号个数大于或等于其接收的第i次重复传输对应的参考信号的符号个数,其中,L为大于1的整数,1≤i<j≤N;第二种情况,当接收端在接收第n次重复传输后,接收端接收的第j次重复传输对应的参考信号的发送功率大于或等于接收的第i次重复传输对应的参考信号的发送功率,1<n≤j,1≤i<j≤N;第三种情况,当接收端m次重复传输接收成功后,结束接收重复传输,m大于k,其中,1<k<N,即接收端在某次重复传输接收成功之后,而该重复传输次数还未到达总传输次数时,可以结束重复传输的接收。
进一步地,当物理信道为PDSCH或PUSCH时,上述接收端接收的重复传输对应的资源符号个数大于L时,L的取值可以为大于7的整数,进一步地,当PDSCH传输类型为A时,L的取值可以为8,当PDSCH传输类型为B时,L的取值为7。当不跳频时,若PUSCH传输类型为A,则L的取值可以为8,否则L的取值为7,在跳频时,K的取值为5。当物理信道为PUCCH时,上述接收端接收的重复传输对应的资源符号个数大于L时,L的取值可以为大于2的整数。
在另一种实施例中,上述步骤S202中接收端根据K份参考信号参数接收物理信道的重复传输可以为接收端接收的第j次重复传输对应的参考信号的符号个数小于接收的第i次重复传输对应的参考信号的符号个数,其中,1≤i<j≤N;或者,当接收端接收的重复传输对应的资源符号个数大于L时,接收端接收的第j次重复传输对应的参考信号的符号个数小于接收的第i次重复传输对应的参考信号的符号个数,其中,L为大于1的整数,1≤i<j≤N;或者,接收端接收的第j次重复传输对应的参考信号的资源单元个数小于接收的第i次重复传输对应的参考信号的资源单元的个数,其中,1≤i<j≤N;或者,接收端接收的第j次重复传输对应的参考信号的密度小于接收的第i次重复传输对应的参考信号的密度,其中,1≤i<j≤N。
这样通过不断减小解调参考信号的开销,以增加信道的编码率,从而提高解调的准确性。
在另一种示例中,当物理信道为物理共享信道时,上述步骤S202中,接收端接收物理信道的重复传输可以为以下几种方式中的至少之一:
方式一、接收端接收的第j次重复传输对应的共享数据对应的调整编码阶数大于接收的第i次重复传输对应的共享数据对应的调整编码阶数,其中,1≤i<j≤N。
方式二、接收端接收的向发送端反馈否定信息时,接收的第j次重复传输对应的参考信号的发送功率大于接收的第i次重复传输对应的参考信号的发送功率。
进一步地,当物理信道为PUSCH时,若接收端给发送端分配了重复传输资源,则接收第j次重复传输对应的参考信号的发送功率大于接收第i次重复传输对应的参考信号的发送功率,其中,1≤i<j≤N。
方式三、若接收端成功解调PUSCH后,向发送端反馈ACK或者不再给发送端分配重复传输的资源,那么接收端不再接收PUSCH后续的重复传输。
方式四、当物理信道为PUSCH时,若接收端停止向发送端分配重复传输资源,则结束后续对重复传输的接收。例如,在第k次重复传输后,接收端停止向发送端分配重复传输资源,那么第k+1至N次的重复传输将不需要执行。
另外,在本申请实施例中,上述重复传输可以为通过一个网络侧设备在不同的时隙或者子时隙传输,也可以通过多个网络侧设备在不同的时隙或者子时隙以时分复用的方式传输,或者至少一个网络侧设备的多个面板在不同的时隙或者子时隙通过时分复用的方式传输。进一步地,上述重复传输也可以为以至少一个网络侧设备的至少一个面板通过空分复用的方式,或者频分复用的方式传输。
图3为本申请实施例提供的一种发送装置,如图3所示,该装置包括:获取模块301、通信模块302。
获取模块,用于获取K份参考信号参数,其中,K份参考信号参数用于N次物理信道的重复传输,K和N为大于1的整数,且N大于或等于K。
进一步地,N次重复传输包括K组重复传输,其中,K组重复传输中的每组重复传输使用相同的参考信号参数,第i份参考信号参数用于第i组重复传输,i的取值为1到K中的任意一个整数。
上述参考信号包括参考信号的资源单元个数、参考信号的密度、参考信号的符号个数、参考信号的发射功率中的至少一个。
进一步地,上述装置还包括:配置模块;配置模块,用于预配置K份参考信号参数;另外,K份参考信号参数也可以为上述装置通过高层信令获取的参数,K份参考信号参数对应M个空间参数信息,和/或,N次物理信道的重复传输对应M个空间参数信息,M为大于或等于K,且小于或等于N的正整数。
进一步地,M个空间参数信息可以分成K组,第i组空间参数信息对应第i份参考信号参数。
通信模块,用于根据K份参考信号参数进行物理信道的重复传输。
在一种示例中,通信模块,用于执行以下几种实现方式中的至少一种:方式一、第j次重复传输对应的参考信号的符号个数大于或等于第i次重复传输对应的参考信号的符号个数,其中,1≤i<j≤N;方式二、第j次重复传输对应的参考信号的发送功率大于或等于第i次重复传输对应的参考信号的发送功率,其中,1≤i<j≤N;方式三、第j次重复传输对应的参考信号的资源单元个数大于或等于第i次重复传输对应的参考信号的资源单元个数,其中,1≤i<j≤N;方式四、第j次重复传输对应的参考信号的密度大于或等于第i次重复传输对应的参考信号的密度,其中,1≤i<j≤N。
进一步地,通信模块还可以用于执行以下几种情况中的传输:第一种情况,当重复传输对应的资源符号个数大于L时,第j次重复传输对应的参考信号的符号个数大于或等于第i次重复传输对应的参考信号的符号个数,其中,L为大于1的整数,1≤i<j≤N;第二种情况,在第n次重复传输后,第j次重复传输对应的参考信号的发送功率大于或等于第i次重复传输对应的参考信号的发送功率,其中,1<n第三种情况,当m次重复传输成功后,结束重复传输,其中,m大于k,1<k<N。
在一种示例中,通信模块,用于第j次重复传输对应的参考信号的符号个数小于第i次重复传输对应的参考信号的符号个数,其中,1≤i<j≤N;或者,当重复传输对应的资源符号个数大于L时,第j次重复传输对应的参考信号的符号个数小于第i次重复传输对应的参考信号的符号个数,其中,L为大于1的整数,1≤i<j≤N;或者,第j次重复传输对应的参考信号的资源单元个数小于第i次重复传输对应的参考信号的资源单元的个数,其中,1≤i<j≤N;或者,所第j次重复传输对应的参考信号的密度小于第i次重复传输对应的参考信号的密度,其中,1≤i<j≤N。
在一种示例中,当物理信道为物理共享信道时,通信模块,还可以用于实现以下两种方式中的至少一种:第j次重复传输对应的共享数据对应的调整编码阶数大于第i次重复传输对应的共享数据对应的调整编码阶数,其中,1≤i<j≤N;通信模块接收到否定信息时,第j次重复传输对应的参考信号的发送功率大于第i次重复传输对应的参考信号的发送功率,其中,1≤i<j≤N。
图4为本申请实施例提供的一种接收装置,如图4所示,该装置包括:获取模块401、通信模块402。
获取模块,用于获取K份参考信号参数,K份参考信号参数用于接收N次物理信道的重复传输,K和N为大于1的整数,且N大于或等于K。
进一步地,N次重复传输包括K组重复传输,其中,K组重复传输中的每组重复传输使用相同的参考信号参数,第i份参考信号参数用于第i组重复传输,i的取值为1到K中的任意一个整数。
参考信号参数包括参考信号的资源单元个数、参考信号的密度、参考信号的符号个数、参考信号的发射功率中的至少一个。
进一步地,上述装置也可以包括配置模块;配置模块,用于预配置K份参考信号参数;另外,K份参考信号参数也可以为上述装置通过高层信令获取的参数,K份参考信号参数对应M个空间参数信息,和/或,N次物理信道的重复传输对应M个空间参数信息,M为大于或等于K,且小于或等于N的正整数。
进一步地,M个空间参数信息可以分成K组,第i组空间参数信息对应第i份参考信号参数。
通信模块,用于根据K份参考信号参数接收物理信道的重复传输。
在一种示例中,通信模块,用于执行以下几种实现方式中的至少一种:方式一、接收的第j次重复传输对应的参考信号的符号个数大于或等于接收的第i次重复传输对应的参考信号的符号个数,其中,1≤i<j≤N;方式二、接收的第j次重复传输对应的参考信号的发送功率大于或等于接收的第i次重复传输对应的参考信号的发送功率,其中,1≤i<j≤N;方式三、接收的第j次重复传输对应的参考信号的资源单元个数大于或等于接收的第i次重复传输对应的参考信号的资源单元个数,其中,1≤i<j≤N;方式四、接收的第j次重复传输对应的参考信号的密度大于或等于接收的第i次重复传输对应的参考信号的密度,其中,1≤i<j≤N。
进一步地,通信模块还可以用于执行以下几种情况中的传输:第一种情况,当接收的重复传输对应的资源符号个数大于L时,接收的第j次重复传输对应的参考信号的符号个数大于或等于接收的第i次重复传输对应的参考信号的符号个数,其中,L为大于1的整数,1≤i<j≤N;第二种情况,在接收第n次重复传输后,接收的第j次重复传输对应的参考信号的发送功率大于或等于接收的第i次重复传输对应的参考信号的发送功率,其中,1<n≤j,1≤i<j≤N;第三种情况,当m次重复传输接收成功后,结束接收重复传输,其中,m大于k,1<k<N。
在一种示例中,通信模块,接收的第j次重复传输对应的参考信号的符号个数小于接收的第i次重复传输对应的参考信号的符号个数,其中,1≤i<j≤N; 或者,当接收的重复传输对应的资源符号个数大于L时,接收的第j次重复传输对应的参考信号的符号个数小于接收的第i次重复传输对应的参考信号的符号个数,其中,L为大于1的整数,1≤i<j≤N;或者,接收的第j次重复传输对应的参考信号的资源单元个数小于接收的第i次重复传输对应的参考信号的资源单元的个数,其中,1≤i<j≤N;或者,接收的第j次重复传输对应的参考信号的密度小于接收的第i次重复传输对应的参考信号的密度,其中,1≤i<j≤N。
在一种示例中,当物理信道为物理共享信道时,通信模块,还用于实现以下两种可选的实现方式中的至少一种:方式一、接收的第j次重复传输对应的共享数据对应的调整编码阶数大于接收的第i次重复传输对应的共享数据对应的调整编码阶数,其中,1≤i<j≤N;方式二、通信模块反馈否定信息时,接收的第j次重复传输对应的参考信号的发送功率大于接收的第i次重复传输对应的参考信号的发送功率,其中,1≤i<j≤N。
图5为一实施例提供的一种节点的结构示意图,如图5所示,该节点包括处理器501和存储器502;节点中处理器501的数量可以是一个或多个,图5中以一个处理器501为例;节点中的处理器501和存储器502可以通过总线或其他方式连接,图5中以通过总线连接为例。
存储器502作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图1中的信令处理方法对应的程序指令/模块(例如,发送装置中的获取模块301、通信模块302)。处理器501通过运行存储在存储器502中的软件程序、指令以及模块实现上述的物理信道传输方法。
存储器502可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器502可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
图6为一实施例提供的一种节点的结构示意图,如图6所示,该节点包括处理器601和存储器602;节点中处理器601的数量可以是一个或多个,图6中以一个处理器601为例;节点中的处理器601和存储器602可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储器602作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图2中的信令处理方法对应的程序指令/模块(例如,接收装置中的获取模块401、通信模块402)。处理器601通过运行存储在存储器602中的软件程序、指令以及模块实现上述的物理信道传输方法。
存储器602可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器602可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种物理信道传输方法,该方法包括:发送端获取K份参考信号参数,K份参考信号参数用于N次物理信道的重复传输;其中,K和N为大于1的整数,且N大于或等于K;发送端根据K份参考信号参数进行物理信道的重复传输。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种物理信道传输方法,该方法包括:接收端获取K份参考信号参数,K份参考信号参数用于接收N次物理信道的重复传输;其中,K和N为大于1的整数,且N大于或等于K;接收端根据K份参考信号参数接收物理信道的重复传输。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语接收端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过物理信道传输装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access  Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disc,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FPGA)核处理器架构的处理器。

Claims (28)

  1. 一种物理信道传输方法,包括:
    发送端获取K份参考信号参数,所述K份参考信号参数用于N次物理信道的重复传输;
    其中,所述K和N为大于1的整数,且所述N大于或等于K;
    所述发送端根据所述K份参考信号参数进行物理信道的重复传输。
  2. 根据权利要求1所述的方法,其中,所述参考信号参数包括以下至少之一:参考信号的资源单元个数、参考信号的密度、参考信号的符号个数、参考信号的发送功率。
  3. 根据权利要求1所述的方法,其中,所述K份参考信号参数为所述发送端预配置的参数,或者,所述K份参考信号参数为所述发送端通过高层信令获取的参数。
  4. 根据权利要求3所述的方法,其中,所述K份参考信号参数对应M个空间参数信息,或者,所述N次物理信道的重复传输对应M个空间参数信息,或者,所述K份参考信号参数对应M个空间参数信息且所述N次物理信道的重复传输对应M个空间参数信息,所述M为大于或等于K,且小于或等于N的正整数。
  5. 根据权利要求4所述的方法,其中,所述M个空间参数信息分成K组,第i组空间参数信息对应第i份参考信号参数。
  6. 根据权利要求1所述的方法,其中,所述N次重复传输包括K组重复传输,其中,所述K组重复传输中的每组重复传输使用相同的参考信号参数。
  7. 根据权利要求6所述的方法,其中,第i份参考信号参数用于第i组重复传输,i的取值为1到K中的任意一个整数。
  8. 根据权利要求1-7任一项所述的方法,其中,所述发送端根据所述K份参考信号参数进行物理信道的重复传输,包括以下至少之一:
    所述发送端第j次重复传输对应的参考信号的符号个数大于或等于所述发送端第i次重复传输对应的参考信号的符号个数;
    所述发送端第j次重复传输对应的参考信号的发送功率大于或等于所述发送端第i次重复传输对应的参考信号的发送功率;
    所述发送端第j次重复传输对应的参考信号的资源单元个数大于或等于所述发送端第i次重复传输对应的参考信号的资源单元个数;
    所述发送端第j次重复传输对应的参考信号的密度大于或等于所述发送端 第i次重复传输对应的参考信号的密度;
    其中,所述j大于所述i,所述i大于或等于1,所述j小于或等于N。
  9. 根据权利要求8所述的方法,其中,所述发送端根据所述K份参考信号参数进行物理信道的重复传输,还包括以下至少之一:
    在重复传输对应的资源符号个数大于L的情况下,所述发送端第j次重复传输对应的参考信号的符号个数大于或等于所述发送端第i次重复传输对应的参考信号的符号个数;
    在第n次重复传输后,所述发送端第j次重复传输对应的参考信号的发送功率大于或等于所述发送端第i次重复传输对应的参考信号的发送功率;
    当所述发送端第m次重复传输成功后,结束重复传输,所述m大于k且小于所述N;
    其中,所述j大于所述i,所述i大于或等于1,且所述j小于或等于N,N为大于1的整数,所述n和所述L为大于1的整数,所述j大于或等于所述n,所述k大于1且小于所述N。
  10. 根据权利要求1-7任一项所述的方法,其中,所述发送端根据所述K份参考信号参数进行物理信道的重复传输,包括以下至少之一:
    所述发送端第j次重复传输对应的参考信号的符号个数小于所述发送端第i次重复传输对应的参考信号的符号个数;
    在重复传输对应的资源符号个数大于L的情况下,所述发送端第j次重复传输对应的参考信号的符号个数小于所述发送端第i次重复传输对应的参考信号的符号个数;
    所述发送端第j次重复传输对应的参考信号的资源单元个数小于所述发送端第i次重复传输对应的参考信号的资源单元的个数;
    所述发送端第j次重复传输对应的参考信号的密度小于所述发送端第i次重复传输对应的参考信号的密度;
    其中,所述j大于所述i,所述i大于或等于1,且所述j小于或等于N,N为大于1的整数,所述L为大于1的整数。
  11. 根据权利要求8所述方法,其中,在所述物理信道为物理共享信道的情况下,所述发送端根据所述K份参考信号参数进行物理信道的重复传输,还包括以下至少之一:
    所述发送端第j次重复传输对应的共享数据对应的调整编码阶数大于所述发送端第i次重复传输对应的共享数据对应的调整编码阶数;
    在所述发送端接收到否定信息的情况下,所述发送端第j次重复传输对应的参考信号的发送功率大于所述发送端第i次重复传输对应的参考信号的发送功率;
    其中,所述j大于所述i,所述i大于或等于1,且所述j小于或等于N,N为大于1的整数。
  12. 一种物理信道传输方法,包括:
    接收端获取K份参考信号参数,所述K份参考信号参数用于接收N次物理信道的重复传输;
    其中,所述K和N为大于1的整数,且所述N大于或等于K;
    所述接收端根据所述K份参考信号参数接收物理信道的重复传输。
  13. 根据权利要求12所述的方法,其中,所述参考信号参数包括以下至少之一:参考信号的资源单元个数、参考信号的密度、参考信号的符号个数、参考信号的发送功率。
  14. 根据权利要求12所述的方法,其中,所述K份参考信号参数为所述接收端预配置的参数,或者,所述K份参考信号参数为所述接收端通过高层信令获取的参数。
  15. 根据权利要求14所述的方法,其中,所述K份参考信号参数对应M个空间参数信息,或者,所述N次物理信道的重复传输对应M个空间参数信息,或者,所述K份参考信号参数对应M个空间参数信息且所述N次物理信道的重复传输对应M个空间参数信息,所述M为大于或等于K,且小于或等于N的正整数。
  16. 根据权利要求15所述的方法,其中,所述M个空间参数信息分成K组,第i组空间参数信息对应第i份参考信号参数。
  17. 根据权利要求12所述的方法,其中,所述N次重复传输包括K组重复传输,其中,所述K组重复传输中的每组重复传输使用相同的参考信号参数。
  18. 根据权利要求17所述的方法,其中,第i份参考信号参数用于第i组重复传输,i的取值为1到K中的任意一个整数。
  19. 根据权利要求12-18任一项所述的方法,其中,所述接收端根据所述K份参考信号参数接收物理信道的重复传输,包括以下至少之一:
    所述接收端接收的第j次重复传输对应的参考信号的符号个数大于或等于所述接收端接收的第i次重复传输对应的参考信号的符号个数;
    所述接收端接收的第j次重复传输对应的参考信号的发送功率大于或等于 所述接收端接收的第i次重复传输对应的参考信号的发送功率;
    所述接收端接收的第j次重复传输对应的参考信号的资源单元个数大于或等于所述接收端接收的第i次重复传输对应的参考信号的资源单元个数;
    所述接收端接收的第j次重复传输对应的参考信号的密度大于或等于所述接收端接收的第i次重复传输对应的参考信号的密度;
    其中,所述j大于所述i,所述i大于或等于1,所述j小于或等于N。
  20. 根据权利要求19所述的方法,其中,所述接收端根据所述K份参考信号参数接收物理信道的重复传输,还包括以下至少之一:
    在接收的重复传输对应的资源符号个数大于L的情况下,所述接收端接收的第j次重复传输对应的参考信号的符号个数大于或等于所述接收端接收的第i次重复传输对应的参考信号的符号个数;
    在接收第n次重复传输后,所述接收端接收的第j次重复传输对应的参考信号的发送功率大于或等于所述接收端接收的第i次重复传输对应的参考信号的发送功率;
    当所述接收端第m次重复传输接收成功后,结束接收重复传输,所述m大于k且小于所述N;
    其中,所述j大于所述i,所述i大于或等于1,且所述j小于或等于N,N为大于1的整数,所述n和所述L为大于1的整数,所述j大于或等于所述n,所述k大于1且小于所述N。
  21. 根据权利要求12-18任一项所述的方法,其中,所述接收端根据所述K份参考信号参数接收物理信道的重复传输,包括:
    所述接收端接收的第j次重复传输对应的参考信号的符号个数小于所述接收端接收的第i次重复传输对应的参考信号的符号个数;
    或者,在接收的重复传输对应的资源符号个数大于L的情况下,所述接收端接收的第j次重复传输对应的参考信号的符号个数小于所述接收端接收的第i次重复传输对应的参考信号的符号个数;
    或者,所述接收端接收的第j次重复传输对应的参考信号的资源单元个数小于所述接收端接收的第i次重复传输对应的参考信号的资源单元的个数;
    或者,所述接收端接收的第j次重复传输对应的参考信号的密度小于所述接收端接收的第i次重复传输对应的参考信号的密度;
    其中,所述j大于所述i,所述L为大于1的整数。
  22. 根据权利要求19所述的方法,其中,在所述物理信道为物理共享信道的情况下,所述接收端根据所述K份参考信号参数接收物理信道的重复传输,还包括以下至少之一:
    所述接收端接收的第j次重复传输对应的共享数据对应的调整编码阶数大于所述接收端接收的第i次重复传输对应的共享数据对应的调整编码阶数;
    在所述接收端反馈否定信息的情况下,所述接收端接收的第j次重复传输对应的参考信号的发送功率大于所述接收端接收的第i次重复传输对应的参考信号的发送功率;
    其中,所述j大于所述i。
  23. 一种发送装置,包括:
    获取模块,设置为获取K份参考信号参数,所述K份参考信号参数用于N次物理信道的重复传输;
    其中,所述K和N为大于1的整数,且所述N大于或等于K;
    通信模块,设置为根据所述K份参考信号参数进行物理信道的重复传输。
  24. 一种接收装置,包括:
    获取模块,设置为获取K份参考信号参数,所述K份参考信号参数用于接收N次物理信道的重复传输;
    其中,所述K和N为大于1的整数,且所述N大于或等于K;
    通信模块,设置为根据所述K份参考信号参数接收物理信道的重复传输。
  25. 一种节点,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1-11任一项所述的物理信道传输方法。
  26. 一种节点,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求12-22任一项所述的物理信道传输方法。
  27. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-11任一项所述的物理信道传输方法。
  28. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求12-22任一项所述的物理信道传输方法。
PCT/CN2020/140007 2019-12-31 2020-12-28 物理信道传输方法、装置、节点和存储介质 WO2021136152A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020416372A AU2020416372B2 (en) 2019-12-31 2020-12-28 Physical channel transmission method, apparatus, and node, and storage medium
US17/786,431 US20230021652A1 (en) 2019-12-31 2020-12-28 Physical channel transmission method, apparatus, and node, and storage medium
EP20910880.2A EP4087167A4 (en) 2019-12-31 2020-12-28 METHOD, DEVICE AND NODE FOR PHYSICAL CHANNEL TRANSMISSION AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911418751.4 2019-12-31
CN201911418751.4A CN111342938A (zh) 2019-12-31 2019-12-31 物理信道传输方法、装置、节点和存储介质

Publications (1)

Publication Number Publication Date
WO2021136152A1 true WO2021136152A1 (zh) 2021-07-08

Family

ID=71185159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140007 WO2021136152A1 (zh) 2019-12-31 2020-12-28 物理信道传输方法、装置、节点和存储介质

Country Status (5)

Country Link
US (1) US20230021652A1 (zh)
EP (1) EP4087167A4 (zh)
CN (1) CN111342938A (zh)
AU (1) AU2020416372B2 (zh)
WO (1) WO2021136152A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342938A (zh) * 2019-12-31 2020-06-26 中兴通讯股份有限公司 物理信道传输方法、装置、节点和存储介质
US20220132526A1 (en) * 2020-10-23 2022-04-28 Qualcomm Incorporated Techniques for deriving a sounding reference signal-based multi-transmission and reception point downlink precoding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036787A2 (en) * 2010-09-13 2012-03-22 Qualcomm Incorporated Method and apparatus of obtaining timing in a repeater
CN109257958A (zh) * 2017-05-12 2019-01-22 联发科技股份有限公司 用于物理随机接入信道重传的装置与方法
CN110536399A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置和系统
CN111342938A (zh) * 2019-12-31 2020-06-26 中兴通讯股份有限公司 物理信道传输方法、装置、节点和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631984B (zh) * 2017-03-24 2022-11-15 中兴通讯股份有限公司 一种信息配置方法及装置
CN110535603A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 数据传输和数据接收方法、装置及存储介质
CN110536450A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置、传输接收节点、终端及介质
CN110536452A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种指示方法、装置和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036787A2 (en) * 2010-09-13 2012-03-22 Qualcomm Incorporated Method and apparatus of obtaining timing in a repeater
CN109257958A (zh) * 2017-05-12 2019-01-22 联发科技股份有限公司 用于物理随机接入信道重传的装置与方法
CN110536399A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置和系统
CN111342938A (zh) * 2019-12-31 2020-06-26 中兴通讯股份有限公司 物理信道传输方法、装置、节点和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM: "UL grant-free transmission for URLLC", 3GPP DRAFT; R1-1710971, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, P.R. China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051300171 *
See also references of EP4087167A4 *

Also Published As

Publication number Publication date
US20230021652A1 (en) 2023-01-26
CN111342938A (zh) 2020-06-26
EP4087167A1 (en) 2022-11-09
AU2020416372A1 (en) 2022-07-28
EP4087167A4 (en) 2024-01-24
AU2020416372B2 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US11924849B2 (en) Method and apparatus for transmitting control and data information in wireless cellular communication system
JP7163277B2 (ja) 無線通信システムにおいて上りリンク送信のための方法及びそのための装置
US10263874B2 (en) Method and user equipment for determining control channel resource
CN109845180B (zh) 无线通信系统中用于支持短传输时间间隔的终端发送或者接收上行链路信号的方法及其装置
KR102109411B1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
CN109997327B (zh) 在无线通信系统中发送上行链路信号的方法及其装置
JP6543341B2 (ja) 上りリンク制御情報を送信するための方法及びそのための装置
US11109406B2 (en) Scheduling method and device in wireless communication system providing broadband service
KR102278389B1 (ko) 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치
CN107210886B (zh) 在无线通信系统中传输用于终端的控制信道的方法和装置
KR102201751B1 (ko) 무선 통신 시스템에서 하향링크 제어 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
US11729770B2 (en) Configuring the transmission of periodic feedback information on a physical uplink shared channel (PUSCH)
KR102057864B1 (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
EP3462657B1 (en) Method and apparatus for transmitting and receiving data information in wireless communication system
CN110612693B (zh) 用于在无线通信系统中传输下行链路控制信道的方法和装置
US10306612B2 (en) Method and apparatus for transmitting control channel in intra-cell carrier aggregation system
WO2021160010A1 (zh) 数据传输方法、装置、设备和存储介质
CN104885543A (zh) 用于在无线通信系统中确定传输块大小的方法和设备
JP2021503858A (ja) 無線通信システムにおいて信号を送信もしくは受信する方法ならびにそのための装置
KR102150446B1 (ko) 무선 통신 시스템에서 하향링크 신호를 수신하기 위한 방법 및 이를 위한 장치
US8964670B2 (en) Method for transmitting control information in a wireless communication system using multiple carriers
US9313005B2 (en) Method and user equipment for transmitting channel state information and method and base station for receiving channel state information
WO2014119865A1 (ko) 무선 통신 시스템에서 하향링크 제어 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
CA3151964A1 (en) Parameter determination method and device for coordinated multi-point transmission
JP2019537345A (ja) 無線通信システムにおいて、複数の送信時間間隔、複数のサブキャリア間隔、又は複数のプロセッシング時間を支援するための方法及びそのための装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020416372

Country of ref document: AU

Date of ref document: 20201228

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910880

Country of ref document: EP

Effective date: 20220801