WO2020238471A1 - 信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质 - Google Patents

信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质 Download PDF

Info

Publication number
WO2020238471A1
WO2020238471A1 PCT/CN2020/085599 CN2020085599W WO2020238471A1 WO 2020238471 A1 WO2020238471 A1 WO 2020238471A1 CN 2020085599 W CN2020085599 W CN 2020085599W WO 2020238471 A1 WO2020238471 A1 WO 2020238471A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
channel state
pieces
position information
beam information
Prior art date
Application number
PCT/CN2020/085599
Other languages
English (en)
French (fr)
Inventor
肖华华
李儒岳
蒋创新
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/615,010 priority Critical patent/US11901990B2/en
Priority to EP20812713.4A priority patent/EP3979669A4/en
Publication of WO2020238471A1 publication Critical patent/WO2020238471A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • the embodiments of the application relate to the field of wireless communication technology, for example, to an information feedback method and device, an information receiving method and device, an information acquisition method and device, a communication node, and a storage medium.
  • the multi-antenna technology is an important means to improve the performance of the wireless communication system.
  • CSI Channel State Information
  • the multi-array antennas are generally used to obtain beamforming gain, so as to use beamforming gain to compensate for the path. The impact of loss.
  • the user needs to select the best transmitting and/or receiving beam matching the user channel according to the channel.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • NR New Radio Access Technology
  • This application provides an information feedback method and device, an information receiving method and device, an information acquisition method and device, a communication node, and a storage medium, so as to make full use of positioning technology to improve the performance of a wireless communication system.
  • the present application provides an information feedback method, including: acquiring K pieces of position information after a reference time; feeding back the K pieces of position information; wherein K is a positive integer.
  • This application also provides an information receiving method, including: receiving K pieces of position information; wherein the K pieces of position information are K pieces of position information after a reference time, and K is a positive integer.
  • the present application also provides an information feedback method, including: acquiring N beam information after a reference time; feeding back or indicating the N beam information; where N is a positive integer.
  • the present application also provides an information acquisition method, including: acquiring N beam information by receiving or self-determining, where the N beam information is N beam information after a reference time, and N is a positive integer.
  • the present application also provides an information feedback device, including: a first obtaining module, adapted to obtain K pieces of position information after a reference time; a first feedback module, adapted to feed back the K pieces of position information; where K is a positive integer .
  • the present application also provides an information receiving device, including: a receiving module adapted to receive K pieces of position information; wherein, the K pieces of position information are K pieces of position information after a reference time, and K is a positive integer.
  • the present application also provides a communication node, including a memory and a processor, the memory is suitable for storing a computer program, and when the computer program is executed by the processor, any one of the above-mentioned information feedback methods is implemented.
  • the present application also provides a communication node, including: a memory and a processor, where the memory is suitable for storing a computer program, and when the computer program is executed by the processor, the foregoing information receiving method or information obtaining method is implemented.
  • the present application also provides a computer-readable storage medium storing a computer program, which implements the above-mentioned information feedback method when the computer program is executed by a processor.
  • the present application also provides a computer-readable storage medium that stores a computer program that, when executed by a processor, implements the above-mentioned information receiving method or information obtaining method.
  • the first communication node obtains K pieces of position information after the reference time, and feeds back the K pieces of position information to the second communication node.
  • the first communication node can support the second communication node to obtain or predict future channel state information by feeding back the position information after the reference time to the second communication node.
  • This application can support the acquisition or prediction of more accurate channel state information by using positioning technology, thereby improving the performance of the wireless communication system.
  • Figure 1 is a schematic diagram of an application scenario of an embodiment of the application
  • FIG. 3 is a flowchart of an information receiving method provided by an embodiment of this application.
  • FIG. 4 is a flowchart of another information feedback method provided by an embodiment of the application.
  • FIG. 5 is a flowchart of an information acquisition method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of an exemplary implementation of an information feedback method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another exemplary implementation of the information feedback method provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of an information feedback device provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of an information receiving device provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another information feedback device provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of an information acquisition device provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of a first communication node provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of a second communication node provided by an embodiment of the application.
  • Figure 1 is a schematic diagram of an application scenario of an embodiment of the application.
  • the communication system implementing the method provided by the embodiment of the present application may include a first communication node 100 and a second communication node 120.
  • the communication system shown in FIG. 1 is only an example, and the embodiment of the present application is not limited to this.
  • both the first communication node and the second communication node may be greater than one.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as: Long Term Evolution (LTE) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System, UMTS), the 5th Generation (5G) New Radio (NR) communication system, etc.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • 5G 5th Generation
  • NR New Radio
  • the second communication node 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, a base station equipment in a 5G network, or a base station in a future communication system, etc.
  • the base station may include various macro base stations, micro base stations, etc.
  • Various network side devices such as base stations, femtocells, wireless remote, routers, location servers, or primary cells and secondary cells, and location management function (LMF) devices .
  • LMF location management function
  • the first communication node 100 may be a terminal device, and may also be called an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , Terminal, wireless communication equipment, user agent or user device.
  • the terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and a wireless Handheld devices with communication functions, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, or terminal devices in 5G networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • this application is not limited to this.
  • the first communication node is the terminal and the second communication node is the base station as an example.
  • the base station configures measurement resource information, and the measurement resource information is used to obtain Channel State Information (CSI).
  • the measurement resource information may include N1 channel measurement resource (Channel Measurement Resource, CMR) information and M1 interference measurement resource (Interference Measurement Resource, IMR) information, and both N1 and M1 are positive integers.
  • the base station configures the measurement resource information corresponding to the report in a report configuration (report config) or report setting (reporting setting).
  • N1 pieces of CMR information are used for the terminal to measure the channel state
  • M1 pieces of IMR information are used for the terminal to measure interference.
  • CMR configuration or setting includes at least one of the following: channel measurement resource set (CMR set), interference measurement resource set (IMR set); a channel measurement resource set includes at least one channel measurement resource and one interference measurement
  • the resource set includes at least one interference measurement resource.
  • the channel measurement resource refers to the reference signal resource used for channel measurement, which may include but not limited to channel state information-reference signal (CSI-RS) resource, synchronization signal block (Synchronization Signals Block, SSB) Resources, physical broadcast channel (PBCH) resources, synchronous broadcast block/physical broadcast channel (SSB/PBCH) resources, uplink sounding reference signal (Sounding reference signal, SRS) resources, positioning reference pilot (Positioning Reference Signals), PRS).
  • CSI-RS channel state information-reference signal
  • SSB synchronization signal block
  • PBCH physical broadcast channel
  • SSB/PBCH synchronous broadcast block/physical broadcast channel
  • SRS positioning reference pilot
  • PRS positioning reference pilot
  • CSI-RS resources mainly refer to non-zero power channel state information-reference signal (Non Zero Power Channel State Information-Reference Signal, NZP-CSI-RS) resources.
  • Interference measurement resources may include, but are not limited to, Channel State Information-Interference Measurement (CSI-IM), NZP-CSI-RS (NZP-CSI-RS for Interference Measurement) for interference measurement, and zero-power channel Status information-reference signal (ZP-CSI-RS); in an interference measurement, the M1 interference measurement resources included in the interference measurement resource may include at least one of NZP-CSI-RS, CSI-IM, and ZP-CSI-RS For example, it only includes CSI-IM, or includes CSI-IM and NZP-CSI-RS, or only includes ZP-CSI-RS, or includes NZP-CSI-RS and ZP-CSI-RS.
  • CSI-IM Channel State Information-Interference Measurement
  • NZP-CSI-RS for Interference Measurement
  • ZP-CSI-RS zero-power channel Status information
  • Channel state information may include at least one of the following: channel state information-reference signal resource indicator (CSI-RS Resource Indicator, CRI), synchronization signal block resource indicator (Synchronization Signals Block Resource Indicator, SSBRI), reference signal received power (Reference Signal) Received Power, RSRP, Differential RSRP (Differential RSRP), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Layer Indicator (LI), Rank Indicator (Rank Indicator) , RI), Level 1 Signal to Interference and Noise Ratio (Level 1 Signal to Interference plus Noise Ratio, L1-SINR), and differential L1-SINR (Differential L1-SINR).
  • CRI channel state information-reference signal resource indicator
  • CRI CSI-RS Resource Indicator
  • SSBRI Synchron Signal Block Resource Indicator
  • Reference Signal received power Reference Signal Received Power
  • RSRP Differential RSRP (Differential
  • CSI-RS Resource Indicator CRI
  • CRI Channel State Information-Reference Signal Resource Indicator
  • SSBRI Synchronization Signals Block Resource Indicator
  • SSBRI Synchronization Signals Block Resource Indicator
  • Spatial characteristics include at least one of the following parameters: Quasi-co-located (QCL), Transmission Configuration Indication (TCI), Transmission Configuration State (transmission configuration state), QCL Type D (QCL Type D) , Receive spatial characteristics, transmit spatial characteristics, receive beam group, transmit beam group, receive beam, transmit beam, and spatial receive parameter (Spatial Rx Parameter).
  • QCL Quasi-co-located
  • TCI Transmission Configuration Indication
  • TCI Transmission Configuration State
  • QCL Type D QCL Type D
  • Receive spatial characteristics transmit spatial characteristics, receive beam group, transmit beam group, receive beam, transmit beam, and spatial receive parameter (Spatial Rx Parameter).
  • the same spatial characteristic means that the value of at least one spatial characteristic parameter mentioned above is the same.
  • the spatial characteristics mainly include QCL Type D or Spatial Rx Parameter.
  • Quasi co-location can include QCL type A, QCL type B, QCL type C, and QCL Type D; two ports satisfying the quasi co-location relationship means that the large-scale information of one port can be derived from the large-scale information of the other port ,
  • Large-scale information includes but is not limited to: Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameter (Spatial Rx parameter).
  • the classification of one QCL Type is as follows:
  • the quasi-co-location relationship between two reference signals regarding a type of quasi-co-location parameter includes at least one of the following: the quasi-co-location parameter of one reference signal can be obtained from the quasi-co-location parameter of the other reference signal; two reference signals
  • the quasi-co-location reference signal for a type of quasi-co-location parameter is the same.
  • the quasi-co-location reference signal of CSI-RS1 for spatial reception parameters is CSI-RS3
  • the quasi-co-location reference signal of CSI-RS2 for spatial reception parameters is CSI-RS3, then CSI-RS1 and CSI-RS2 meet the quasi co-location relationship with respect to spatial reception parameters.
  • time, time stamp, and reference time in this article are concepts that can be replaced with each other. They represent a certain time point or reference time point. They can include at least one of the following time units: slot, symbol, time Slot group, symbol group, X milliseconds, Y microseconds; wherein the symbol group includes at least one symbol (for example, a mini-slot), and the time slot group includes at least one time slot; wherein, X and Y are positive real numbers.
  • the symbol in this article refers to the time unit in a subframe or frame or time slot.
  • it can be an Orthogonal Frequency Division Multiplexing (OFDM) symbol, single carrier frequency division multiplexing multiple access ( Single-Carrier Frequency Division Multiple Access, SC-FDMA) symbols, Orthogonal Frequency Division Multiple Access (OFDMA) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single carrier frequency division multiplexing multiple access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the speed or k-order acceleration as well as the direction of the speed and the direction of the k-order acceleration can be the value in Cartesian coordinate system or the value in polar coordinate system; among them, x, y, z are real numbers, and r is real number. a and b are the horizontal angle and the vertical angle.
  • the beam information can include at least one of the following: Angle Of Arrival (AOA), Angle Of Departure (AOD), ZOD (Zenith Angle Of Departure), ZOA (Zenith Angle Of Arrival), Discrete Fourier Change (Discrete Fourier Transformation, DFT) vector, codewords in the codebook, transmit beam, receive beam, transmit beam group, receive beam group, transmit beam index, receive beam index, transmit beam group index, and receive beam group index.
  • AOA Angle Of Arrival
  • AOD Angle Of Departure
  • ZOA Zero Angle Of Departure
  • DFT Discrete Fourier Change
  • the terminal or the base station may transmit or feed back or indicate the N beam information through at least one of high-layer signaling and physical layer signaling.
  • the base station may indicate N beam information through high-level signaling and/or physical layer signaling, for example, may indicate N beam information through at least one quasi-colocation (QCL) and/or at least one transmission control indicator (TCI), or
  • the terminal can indicate N beam information through Spatial Relation Information (for example, the beam information used by the reference pilot is the corresponding beam information of the target pilot or signal), or the terminal can indicate N beam information through high-level signaling , Or feedback the N beam information through a physical uplink shared channel or a physical uplink control channel, for example, the CRI or SSBI corresponding to the feedback beam information.
  • the angle corresponding to the beam information may include at least one of AOA, AOD, ZOD, and ZOA.
  • the high-level signaling includes radio resource control (Radio Resource Control, RRC) signaling and media access control layer control element (Media Access Control control element, MAC CE) signaling.
  • the physical layer signaling includes downlink control information (Downlink Control Information, DCI) in the physical downlink control information, or signaling fed back on the physical uplink control channel or the physical uplink shared channel.
  • DCI Downlink Control Information
  • Fig. 2 is a flowchart of an information feedback method provided by an embodiment of the application.
  • the information feedback method provided in this embodiment can be applied to the first communication node side described above.
  • the information feedback method provided in this embodiment includes:
  • the terminal may obtain K pieces of position information after the reference time, and feed back the K pieces of position information to the base station.
  • the reference time may be a time point F1 time unit before the current time.
  • the partial position information of the K position information is the position information before the current time
  • the partial position information is the predicted future position information.
  • the reference time may be the current time.
  • all the position information of the K pieces of position information are predicted future position information.
  • the time unit may be one of a symbol, a time slot, a symbol group, a time slot group, X milliseconds, and Y microseconds, which can be determined through negotiation between the first communication node and the second communication node, or agreed by both parties.
  • F1 is an integer less than or equal to K.
  • the information feedback method of this embodiment may further include: obtaining N beam information corresponding to the K position information, and feeding back or indicating the N beam information; where N is a positive integer, and N Greater than or equal to K.
  • the beam information may include at least one of the following: Angle Of Arrival (AOA), Angle Of Departure (AOD), ZOD (Zenith Angle Of Departure), ZOA (Zenith Angle Of Arrival), Discrete Fourier Transformation (Discrete Fourier Transformation, DFT) vector, codeword in codebook, transmit beam, receive beam, transmit beam group, receive beam group, transmit beam index, receive beam index, transmit beam group index, receive beam group index.
  • AOA Angle Of Arrival
  • AOD Angle Of Departure
  • ZOA Zenith Angle Of Departure
  • DFT Discrete Fourier Transformation
  • the index and indicator mentioned in this article are concepts that can be replaced with each other.
  • the terminal or the base station may transmit or feed back or indicate the N beam information through at least one of high-layer signaling and physical layer signaling.
  • the base station may indicate N beam information through high-level signaling and/or physical layer signaling, for example, may indicate N beam information through at least one quasi-colocation (QCL) and/or at least one transmission control indicator (TCI), or
  • the terminal may indicate N beam information through spatial correlation information (Spatial Relation Information) (for example, the beam information used by the reference pilot is the corresponding beam information of the target pilot or signal), or the terminal may indicate the N beam information through high-level signaling
  • the beam information may be fed back to the N beam information through a physical uplink shared channel or a physical uplink control channel, for example, the CRI or SSBI corresponding to the beam information is fed back.
  • the system is downlink transmission.
  • the N beam information is a base station's transmit beam or a terminal's receive beam
  • the terminal feeds back or instructs the information via a physical uplink control channel or a physical uplink shared channel.
  • N beam information includes but not limited to one of the following: beam index, beam group index, RSRP, differential RSRP, differential L1-SINR, L1-SINR, ZOA, ZOD, AOA, AOD, or ZOA, ZOD, AOA
  • the index of at least one of the AOD, SSBRI, CRI because the beam information may also be implicit in the corresponding measurement resource, the resource index corresponding to the beam may also be fed back).
  • the base station instructs the terminal to use the beam information of the base station through one of high-level or physical layer signaling.
  • the system is uplink transmission.
  • the N beam information is a terminal's transmitting beam or a base station's receiving beam
  • the number of beams and/or the transmission time of the N beam information may be Determined by the terminal.
  • the terminal may feed back the value of N and/or the information of the transmission time of the N beams through a physical uplink control channel or a physical uplink shared channel, or the terminal may indicate the N beam information through spatial related information.
  • the base station may indicate the L beam information finally used by the terminal through at least one of high-layer signaling or physical layer signaling, where the L beam information is a subset of the N beam information.
  • the system is uplink transmission.
  • the N beam information when the N beam information is a terminal's transmitting beam or a base station's receiving beam, the N beam information may be transmitted by the base station through high-level signaling or physical layer. At least one of the signaling indications.
  • the method of this embodiment may further include: determining N beam information according to K position information.
  • the method of determining or acquiring N beam information according to K position information includes at least one of the following:
  • the geographic location of the UE is obtained according to one of RSTD, RTOA, Rx-Tx time Difference obtained from at least two base stations.
  • the beam direction of the terminal and the serving base station can be calculated according to the geographic location and the position information with the serving base station, such as at least one of ZOA, ZOD, AOA, AOD, so as to obtain beam information, including but not limited to Beam vector;
  • A is one of ZOA, AOD, AOA, and AOD
  • cos represents cosine, which can also be expressed in the form of sine
  • lambda represents the wavelength of electromagnetic waves
  • d represents the distance between antennas or elements.
  • beam information can be generated directly according to at least one of the ZOA, ZOD, AOA, and AOD.
  • the location information is a geographic location
  • the possible trajectory of the user can be predicted according to the direction of the speed or acceleration, and the physical position of the terminal can be calculated according to the trajectory, then according to the geographical position and the position of the serving base station Information, the beam direction of the terminal and the serving base station can be calculated, for example, at least one of ZOA, ZOD, AOA, AOD generates beam information.
  • the method of this embodiment may further include: obtaining F channel state information according to at least one of K position information and N beam information, and feeding back F channel state information; wherein, N and F are positive integers, and N and F are greater than or equal to K.
  • the channel state information may include at least one of the following: reference signal received power (RSRP), differential RSRP, channel state information-reference signal resource indicator (CRI), synchronization signal block resource indicator (SSBRI), precoding matrix Indicator (PMI), Channel Rank Indicator (RI), Channel Quality Indicator (CQI), Layer Indicator (LI), L1-SINR, Differential L1-SINR.
  • RSRP reference signal received power
  • CRI channel state information-reference signal resource indicator
  • SSBRI synchronization signal block resource indicator
  • PMI precoding matrix Indicator
  • RI Channel Rank Indicator
  • CQI Channel Quality Indicator
  • LI Layer Indicator
  • L1-SINR Differential L1-SIN
  • obtaining F channel state information may include one of the following: for example, obtaining beam information according to location information, selecting measurement resource information corresponding to the beam according to the beam information, and obtaining CSI according to the measurement resource information measurement; or, according to beam information Determine the direction of the beam, obtain precoding information according to the beam direction, and calculate CQI, RI, LI, CRI, etc. according to the precoding.
  • the measurement resource information corresponding to the beam is selected according to the beam information, and the CSI information is measured according to the measurement resource information; or, the direction of the beam is determined according to the beam information, the precoding information is obtained according to the beam direction, and the CQI, RI, and CQI are calculated according to the precoding. LI etc.
  • the measurement time interval or feedback time interval of K position information is T1, T2,...,TK time slots or symbols, respectively, and T1, T2,...,TK are positive integers, and the values can be the same. They may be determined by at least one of beam information and channel state information, or the measurement time or feedback time of K position information may be determined by at least one of beam information and channel state information. Wherein, the feedback time interval of K position information or the feedback frequency of K position information, or the feedback period of K position information may be determined by beam information or channel state information.
  • the K position information can be recalculated by changing at least one of the following: CRI, RI, PMI, beam change, so that the cycle or frequency of the CRI, RI, PMI, beam change determines the K position information
  • the period or frequency For example, the CRI, RI, PMI, beam change cycle or the minimum frequency (average value, weighted average value, etc.) are used as the update frequency of K position information.
  • the update frequency of the K position information may determine the feedback period or the feedback time interval of the K position information.
  • the value of K may be determined by beam information or channel state information, or the second communication node may configure the feedback time interval, feedback time, measurement time interval, or measurement time of K position information.
  • the terminal or the base station determines at least one of the measurement time interval, feedback time interval, measurement time, and feedback time of the K pieces of position information according to real-time or statistical channel state information.
  • two pieces of channel state information corresponding to two adjacent pieces of position information among the K pieces of position information may have correlation.
  • the correlation between two channel state information may include at least one of the following: the indexes corresponding to the two channel state information are adjacent (for example, two PMIs are adjacent, two RIs are adjacent, two The CQIs are adjacent); the absolute value of the difference between the values of the two channel state information is less than the third threshold (for example, the difference between the SINR1 and SINR2 corresponding to the two CQIs is less than the third threshold a3, where a3 Is a positive real number).
  • the two CSIs are correlated, so differential feedback or reception can be used to reduce overhead.
  • two beam information corresponding to two adjacent pieces of position information in the K pieces of position information have correlation.
  • the correlation between the two beam information may include at least one of the following: the beam indexes corresponding to the two beam information are adjacent; the angles corresponding to the two beam information are adjacent; the resources corresponding to the two beam information The indexes are adjacent; the vector correlation corresponding to the two beam information is greater than the first threshold; the vector distance corresponding to the two beam information is less than the second threshold.
  • Adjacent angle means: the absolute value of the two angle differences is less than a1, for example,
  • Two vectors are adjacent means that their distance or norm is less than the threshold a2, that is
  • the norm in this article can be all the norms defined in linear algebra, such as l 1 norm, l 2 norm, lp norm and so on.
  • Z' represents the minimum delay requirement from the last symbol of the channel measurement resource to the first symbol carrying the CSI report resource; Indicates the number of symbols in a time slot; Indicates rounding down.
  • the first communication node feeds back the position information after the reference time (for example, the position information at the future time after the current time) to the second communication node to support the second communication node to use the position information after the reference time.
  • the reference time for example, the position information at the future time after the current time
  • the second communication node to support the second communication node to use the position information after the reference time.
  • Fig. 3 is a flowchart of an information receiving method provided by an embodiment of the application.
  • the information receiving method provided in this embodiment can be applied to the above-mentioned second communication node side.
  • the information receiving method provided in this embodiment includes:
  • S21 Receive K pieces of position information; wherein, the K pieces of position information are K pieces of position information after the reference time, and K is a positive integer.
  • S21 may include: K pieces of position information after the base station receives the reference time fed back by the terminal.
  • the method of this embodiment may further include: S22.
  • the base station may receive N beam information fed back by the terminal.
  • the beam information may include at least one of the following: Angle Of Arrival (AOA), Angle Of Departure (AOD), ZOD (Zenith Angle Of Departure), ZOA (Zenith Angle Of Arrival), Discrete Fourier Transformation (Discrete Fourier Transformation, DFT) vector, codeword in codebook, transmit beam, receive beam, transmit beam group, receive beam group, transmit beam index, receive beam index, transmit beam group index, receive beam group index.
  • AOA Angle Of Arrival
  • AOD Angle Of Departure
  • ZOD Zero Angle Of Departure
  • ZOA Zenith Angle Of Arrival
  • DFT Discrete Fourier Transformation
  • the beam information is obtained by receiving at least one of the following parameters on the physical uplink control channel or the physical uplink shared channel of the terminal: beam index, beam group index, RSRP, differential RSRP, differential L1-SINR, L1-SINR, ZOA , ZOD, AOA, AOD, or the index of at least one of ZOA, ZOD, AOA, AOD, SSBRI, CRI.
  • the method of this embodiment may further include: receiving F channel state information, wherein the F channel state information is determined by at least one of K position information and N beam information, F is a positive integer.
  • the base station may receive F channel state information fed back by the terminal.
  • the channel state information may include at least one of the following: reference signal received power (RSRP), differential RSRP, channel state information-reference signal resource indicator (CRI), synchronization signal block resource indicator (SSBRI), precoding matrix Indicator (PMI), Channel Rank Indicator (RI), Channel Quality Indicator (CQI), Layer Indicator (LI), L1-SINR, Differential L1-SINR.
  • RSRP reference signal received power
  • CRI channel state information-reference signal resource indicator
  • SSBRI synchronization signal block resource indicator
  • PMI precoding matrix Indicator
  • RI Channel Rank Indicator
  • CQI Channel Quality Indicator
  • LI Layer Indicator
  • L1-SINR Differential L1-S
  • the measurement time interval or feedback time interval of K position information is T1, T2,...,TK time slots or symbols, respectively, and T1, T2,...,TK are positive integers, and the values can be the same. They may be determined by at least one of beam information and channel state information, or the measurement time or feedback time of K position information may be determined by at least one of beam information and channel state information. Wherein, the feedback time interval of K position information or the feedback frequency of K position information, or the feedback period of K position information may be determined by beam information or channel state information.
  • the K pieces of position information can be recalculated by changing at least one of the following: CRI, RI, PMI, beam change.
  • the period or frequency of CRI, RI, PMI, and beam change determines the period or frequency of the K position information.
  • the CRI, RI, PMI, beam change cycle or the minimum frequency are used as the update frequency of K position information.
  • the update frequency of the K position information may determine the feedback period or the feedback time interval of the K position information.
  • the value of K may be determined by beam information or channel state information, or the second communication node may configure the feedback time interval, feedback time, measurement time interval, or measurement time of K position information.
  • the terminal or the base station determines at least one of the measurement time interval, feedback time interval, measurement time, and feedback time of the K pieces of position information according to real-time or statistical channel state information.
  • two pieces of channel state information corresponding to two adjacent pieces of position information among the K pieces of position information have correlation.
  • the correlation between the two channel state information may include at least one of the following: the indexes corresponding to the two channel state information are adjacent; the absolute value of the difference between the values corresponding to the two channel state information is smaller than the third gate Limit.
  • two beam information corresponding to two adjacent pieces of position information in the K pieces of position information have correlation.
  • the correlation between the two beam information may include at least one of the following: the beam indexes corresponding to the two beam information are adjacent; the angles corresponding to the two beam information are adjacent; the resources corresponding to the two beam information The indexes are adjacent; the vector correlation corresponding to the two beam information is greater than the first threshold; the vector distance corresponding to the two beam information is less than the second threshold.
  • the value of K may be configured by the base station, or may be determined by beam information or channel state information.
  • the method in this embodiment may further include at least one of the following: using K pieces of position information and F pieces of channel state information to determine L pieces of new channel state information, where K, L, F are A positive integer; use the K position information, N beam information, and F channel state information to determine L new channel state information, where K, N, F, and L are positive integers; use the N beams Information, F channel state information, determine L new channel state information, where N, F, and L are positive integers.
  • the base station may determine L new channel state information according to the K position information and F channel state information fed back by the terminal, and perform beam management and scheduling management according to the L new channel state information.
  • Some examples are as follows: obtain the geographic coordinates of these K location information through K location information, and fit L new geographic location information through artificial intelligence deep learning algorithms according to the geographic coordinates, such as linear fitting (or weighted fitting) The method of combining), or studying the correlation between locations through deep learning, so as to obtain L new geographic locations based on the correlation of these locations, and use the L new geographic information and the previous embodiments of this article Using the L beam information obtained by the method described above, the L beam information and/or the received N beam information are used together to determine the beam used for beam management for a period of time in the future.
  • L new precoding matrices according to the L beam information and/or the received N beam information, for example, the vector corresponding to the same polarization direction antenna corresponding to the precoding matrix and the The correlation of the vector corresponding to the beam information is greater than a certain threshold value or a codeword whose distance is less than the threshold value.
  • the new L precoding matrices can be used to calculate new CQI, RI and other information, so that the new L CSI and/or N received CSI can be used to allocate resources and priority scheduling for users.
  • the second communication node can obtain or predict more accurate channel state information by using the position information after the reference time fed back by the first communication node, thereby improving the performance of the wireless communication system.
  • Fig. 4 is a flowchart of another information feedback method provided by an embodiment of the application.
  • the information feedback method provided in this embodiment can be applied to the first communication node side described above.
  • the information feedback method provided in this embodiment includes:
  • the terminal obtains N beam information after the reference time, and feeds back the N beam information to the base station.
  • the beam information may include at least one of the following: Angle Of Arrival (AOA), Angle Of Departure (AOD), ZOD (Zenith Angle Of Departure), ZOA (Zenith Angle Of Arrival), Discrete Fourier Transformation (Discrete Fourier Transformation, DFT) vector, codeword in codebook, transmit beam, receive beam, transmit beam group, receive beam group, transmit beam index, receive beam index, transmit beam group index, receive beam group index.
  • the N beam information may be obtained through K position information after the reference time.
  • the N beam information may be obtained by receiving at least one of high-layer signaling and physical layer signaling.
  • high-level signaling RRC can include a TCI state list
  • the TCI state list includes N0 TCI states
  • N4 TCI states of the N0 TCI states correspond to a value of QCL Type D
  • each QCL Type D corresponds to one Transmit beam and/or receive beam.
  • the physical layer signaling includes 1 TCI domain, each TCI domain indicates N6 TCI states, N7 TCI states of the N6 TCI states correspond to a value of QCL Type D, each QCL Type D corresponds to one transmit beam and/or receive beam, that is, one TCI indicates at least one TCI state, and each TCI state corresponds to one or two reference pilots and the value of QCL type.
  • each physical layer signaling includes a TCI field, each TCI field indicates a TCI state, and each TCI state corresponds to one or two reference pilots and the value of QCL type.
  • N6 is greater than or equal to N7
  • N7 is greater than N.
  • the method of this embodiment may further include: obtaining F channel state information corresponding to the N beam information, and feeding back the F channel state information, where F is a positive integer.
  • F channel state information is acquired according to F channel state information reference resources.
  • the value of all indexes in this article can start from 0 and end with O-1, where O is the number of resources corresponding to the corresponding index.
  • the method of this embodiment may further include: determining the value of N and the value of N beam information.
  • the method of this embodiment may further include: feeding back the value of N or the use time of the N beam information.
  • the number of beams and/or the transmission time of the N beam information may be determined by the terminal.
  • the terminal may feed back the value of N and/or information of N beam transmission moments through a physical uplink control channel or a physical uplink shared channel.
  • FIG. 5 is a flowchart of an information acquisition method provided by an embodiment of this application.
  • the information acquisition method provided in this embodiment can be applied to the above-mentioned second communication node side.
  • the information acquisition method provided in this embodiment includes:
  • N beam information by receiving or a method determined by itself, where the N beam information is N beam information after a reference time, and N is a positive integer.
  • the base station may receive N beam information after the reference time fed back by the terminal; or the base station may determine the N beam information after the reference time by itself.
  • the beam information may include at least one of the following: Angle Of Arrival (AOA), Angle Of Departure (AOD), ZOD (Zenith Angle Of Departure), ZOA (Zenith Angle Of Arrival), Discrete Fourier Transformation (Discrete Fourier Transformation, DFT) vector, codeword in codebook, transmit beam, receive beam, transmit beam group, receive beam group, transmit beam index, receive beam index, transmit beam group index, receive beam group index.
  • the method of this embodiment may further include: S42.
  • the channel state information may include at least one of the following: reference signal received power (RSRP), differential RSRP, channel state information-reference signal resource indicator (CRI), synchronization signal block resource indicator (SSBRI), precoding matrix Indicator (PMI), Channel Rank Indicator (RI), Channel Quality Indicator (CQI), Layer Indicator (LI), L1-SINR, Differential L1-SINR.
  • RSRP reference signal received power
  • CRI channel state information-reference signal resource indicator
  • SSBRI synchronization signal block resource indicator
  • PMI precoding matrix Indicator
  • RI Channel Rank Indicator
  • CQI Channel Quality Indicator
  • LI Layer Indicator
  • L1-SINR Differential L1-SINR.
  • F channel state information is acquired according to F channel state information reference resources.
  • the time slot corresponding to the i-th channel state information reference resource is n1+k_i, where n1 is the time slot corresponding to the channel state information reference resource corresponding to the first CSI report, and n1 and k_i are positive integers, And k_i is less than or equal to k_j, i is less than j, and i and j are both positive integers greater than 0 and less than or equal to F, or i and j are both positive integers greater than or equal to 0 and less than or equal to F-1.
  • the method of this embodiment may further include: receiving the value of N and the use time of the N beam information, and determining according to the received value of N or the use time of the N beam information The value of N and the value of N beam information.
  • the method of this embodiment may further include: indicating the N beam information through at least one of high-layer and physical layer signaling.
  • high-level signaling RRC can include a TCI state list
  • the TCI state list includes N0 TCI states
  • N4 TCI states of the N0 TCI states correspond to a value of QCL-Type D
  • each QCL Type D corresponds to One transmit beam and/or receive beam.
  • the physical layer signaling includes 1 TCI domain, each TCI domain indicates N6 TCI states, N7 TCI states of the N6 TCI states correspond to a value of QCL-Type D, each Each QCL Type D corresponds to one transmit beam and/or receive beam, that is, one TCI indicates at least one TCI state, and each TCI state corresponds to one or two reference pilots and the value of QCL type.
  • each physical layer signaling includes a TCI field, each TCI field indicates a TCI state, and each TCI state corresponds to one or two reference pilots and the value of QCL type.
  • N6 is greater than or equal to N7
  • N7 is greater than N.
  • FIG. 6 is a schematic diagram of an exemplary implementation of an information feedback method provided by an embodiment of the application.
  • the exemplary embodiment is applied to a system including at least one terminal (or user) and one base station. Both the base station and the terminal in this system may have more than one port or antenna. As shown in FIG. 6, this exemplary embodiment includes the following processing:
  • the terminal obtains K pieces of position information after a reference time; where K is an integer greater than or equal to 1.
  • K pieces of position information after the reference time may refer to K pieces of position information corresponding to K times in the future after the current moment.
  • the terminal can predict the location information at L moments in the future, for example, obtain the user's possible movement trajectory according to K location information, and use linear average or Linear weighted average or other methods are used to fit the new L geographic location information, and the possible motion trajectory of the user can also be predicted through the artificial intelligence learning method, and the corresponding new L locations are obtained according to the motion trajectory and the actual map information information.
  • AI artificial intelligence
  • the terminal feeds back the K pieces of position information to the base station.
  • the terminal may also perform the following S103 and S104.
  • N is a positive integer, and N is greater than or equal to K.
  • the beam information can include at least one of the following: Angle Of Arrival (AOA), Angle Of Departure (AOD), ZOD (Zenith Angle Of Departure), ZOA (Zenith Angle Of Arrival), Discrete Fourier Change (Discrete Fourier Transformation, DFT) vector, codewords in the codebook, transmit beam, receive beam, transmit beam group, receive beam group, transmit beam index, receive beam index, transmit beam group index, and receive beam group index.
  • AOA Angle Of Arrival
  • AOD Angle Of Departure
  • ZOD Zero Angle Of Departure
  • ZOA Zenith Angle Of Arrival
  • Discrete Fourier Change Discrete Fourier Transformation, DFT
  • the terminal may feed back RSRP, SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio), differential RSRP, and differential SINR corresponding to the N beam information.
  • SINR Signal to Interference plus Noise Ratio, signal to interference plus noise ratio
  • differential RSRP differential SINR corresponding to the N beam information.
  • the N beam information may be adjacent beams.
  • the indexes corresponding to the two beams are adjacent, or the angles corresponding to the two beams are Adjacent, or the resource indexes corresponding to the two beams are adjacent, or the vector correlation corresponding to the two beams is greater than the threshold value c1, or the vector distance corresponding to the two beams is less than the threshold value c2; where , C1 and c2 are real numbers greater than 0 and less than 1.
  • the beams are adjacent, so the feedback overhead can be reduced based on one of the following feedback:
  • the RSRP corresponding to the first beam and the difference value (differential RSRP) of the RSRP corresponding to other beams outside the first beam relative to the RSRP corresponding to the first beam are fed back.
  • the SINR corresponding to the first beam and the difference value (differential SINR) of the RSRP corresponding to other beams outside the first beam relative to the SINR corresponding to the first beam are fed back.
  • the beam information index includes at least one of the following: CRI, SSBRI, beam identifier (Identifier, ID), beam group ID, AOA corresponding The index of AOD, the index of ZOA, the index of AOD, the index of TCI status.
  • the terminal feeds back N beam information to the base station.
  • the terminal may also perform S105 and S106.
  • the terminal obtains F pieces of channel state information according to the N pieces of beam information; the channel state information may include at least one of the following parameters: RI, CRI, PMI, LI, and CQI.
  • the F channel state information has a certain correlation. For example, at least one of the following: the precoding distances corresponding to two PMIs are less than a threshold a1, the precoding correlations corresponding to the two PMIs are greater than a certain threshold a2, and the absolute value of the index difference corresponding to the two RIs is less than the threshold. Limit a3, the absolute value of the index difference corresponding to the two CQIs is smaller than the threshold a4, where a1, a2, a3, and a4 are positive real numbers.
  • S106 The terminal feeds back the F channel state information to the base station.
  • the terminal may feed back the position information and the beam information together after acquiring the position information and the corresponding beam information.
  • the terminal may perform feedback after acquiring the location information, the corresponding beam information, and the channel state information.
  • FIG. 7 is a schematic diagram of another exemplary implementation of the information feedback method provided by an embodiment of the application.
  • This exemplary embodiment is applied to a system including at least one terminal (or user) and one base station. Both the base station and the terminal in this system may have more than one port or antenna. As shown in FIG. 7, this exemplary embodiment includes the following processing:
  • the base station obtains K pieces of position information after the reference time, where K is a positive integer.
  • the base station may obtain the K position information by receiving the K position information fed back by the terminal; or, it may obtain the K position information by itself through uplink channel information.
  • K pieces of position information after the reference time may refer to K pieces of position information corresponding to K times in the future after the current moment.
  • the terminal predicts location information at L moments in the future, such as obtaining the user's possible movement trajectory according to K location information, and using linear average or linear Weighted average or other methods are used to fit the new L geographic location information, and the possible motion trajectory of the user can also be predicted through the artificial intelligence learning method, and the corresponding new L location information is obtained according to the motion trajectory and the actual map information , Or, predict the user's new L position information through K moving speeds and/or K K-step accelerations.
  • AI artificial intelligence
  • the base station may also perform S202.
  • N is a positive integer, and N is greater than or equal to K.
  • the beam information may include at least one of the following: Angle Of Arrival (AOA), Angle Of Departure (AOD), ZOD (Zenith Angle Of Departure), ZOA (Zenith Angle Of Arrival), Discrete Fourier Discrete Fourier Transformation (DFT) vector, codewords in the codebook, transmit beam, receive beam, transmit beam group, receive beam group, transmit beam index, receive beam index, transmit beam group index, and receive beam group index.
  • AOA Angle Of Arrival
  • AOD Angle Of Departure
  • ZOD Zero Angle Of Departure
  • ZOA Zero Angle Of Arrival
  • DFT Discrete Fourier Discrete Fourier Transformation
  • the base station may receive RSRP, SINR, differential RSRP, and differential SINR corresponding to the N beam information fed back by the terminal.
  • the N beam information is adjacent beams, for example, the indexes corresponding to the two beams (i-th beam and i+1-th beam) are adjacent, or the angles corresponding to the two beams are adjacent , Or the resource indexes corresponding to the two beams are adjacent, or the vector correlation of the two beams is greater than the threshold c1, or the vector distance corresponding to the two beams is less than the threshold c2, where c1 and c2 are A real number greater than 0 and less than 1.
  • the beams are adjacent, so the signaling overhead can be reduced based on receiving one of the following:
  • the index corresponding to the first beam Receives the index corresponding to the first beam, and the difference value (differential index) of the index corresponding to other beams outside the first beam relative to the index corresponding to the first beam, where the index includes at least one of the following: CRI, SSBRI, beam ID, beam group ID, index corresponding to AOA, index corresponding to AOD, index corresponding to ZOA, index corresponding to AOD.
  • the base station may also perform S203.
  • the base station receives F channel state information fed back by the terminal.
  • the channel state information may include at least one of the following parameters: RI, CRI, PMI, LI, CQI.
  • the F channel state information has a certain correlation. For example, at least one of the following: the precoding distances corresponding to two PMIs are less than a threshold a1, the precoding correlations corresponding to the two PMIs are greater than a certain threshold a2, and the absolute value of the index difference corresponding to the two RIs is less than the threshold. Limit a3, the absolute value of the index difference corresponding to the two CQIs is smaller than the threshold a4, where a1, a2, a3, and a4 are positive real numbers.
  • the base station obtains L new channel state information according to F channel state information and K location information.
  • N, K, F, and L are integers greater than or equal to 1.
  • L precoding matrices of, and new L CRI and CQI For example, predict the possible operation trajectory of the UE in the future through the position information, thereby obtaining L position information in the future, and determine the L direction information of the base station and the terminal through the L position information, so as to fit the new information according to the L direction information.
  • L precoding matrices of, and new L CRI and CQI For example, predict the possible operation trajectory of the UE in the future through the position information, thereby obtaining L position information in the future, and determine the L direction information of the base station and the terminal through the L position information, so as to fit the new information according to the L direction information.
  • the base station may use the new L pieces of channel state information to perform resource scheduling and beam management on the terminal.
  • Some examples are as follows: obtain the geographic coordinates of these K location information through K location information, and fit L new geographic location information through artificial intelligence deep learning algorithms according to the geographic coordinates, such as linear fitting (or weighted fitting) The method of combining), or studying the correlation between locations through deep learning, so as to obtain L new geographic locations based on the correlation of these locations, and use the L new geographic information and the previous embodiments of this article Using the L beam information obtained by the method described above, the L beam information and/or the received N beam information are used together to determine the beam used for beam management for a period of time in the future.
  • L new precoding matrices according to the L beam information and/or the received N beam information, for example, the vector corresponding to the same polarization direction antenna corresponding to the precoding matrix and the The correlation of the vector corresponding to the beam information is greater than a certain threshold value or a codeword whose distance is less than the threshold value.
  • the new L precoding matrices can be used to calculate new CQI, RI and other information, so that the new L CSI and/or N received CSI can be used to allocate resources and priority scheduling for users.
  • the position information of the next K moments can be inferred; thus, the base station and the The beam direction information of the terminal, so that the CSI information can be determined according to the beam direction information.
  • This embodiment is applied to a system including at least one terminal (or user) and one base station. Both the base station and the terminal in this system may have more than one port or antenna.
  • the terminal can improve the performance of the system through the following methods:
  • the terminal obtains N beam information after the reference time.
  • the N beam information after the reference time may refer to the N beam information corresponding to K moments in the future after the current moment; wherein, K and N are both positive integers, and N is greater than or equal to K.
  • the terminal may feed back the RSRP, SINR, differential RSRP, and differential SINR corresponding to the N beam information to the base station.
  • the N beam information is adjacent beams.
  • the terminal may determine N beam information through downlink channel information.
  • the terminal may obtain N beam information by receiving at least one of high-level signaling and physical layer signaling of the base station.
  • high-level signaling RRC can include a TCI state list
  • the TCI state list includes N0 TCI states
  • N4 TCI states of the N0 TCI states correspond to a value of QCL-Type D
  • each QCL Type D corresponds to a transmit beam and/or receive beam.
  • the physical layer signaling includes 1 TCI domain, each TCI domain indicates N6 TCI states, N7 TCI states of the N6 TCI states correspond to a value of QCL-Type D, each Each QCL Type D corresponds to one transmit beam and/or receive beam, that is, one TCI indicates at least one TCI state, and each TCI state corresponds to one or two reference pilots and the value of QCL type.
  • each physical layer signaling includes a TCI field, each TCI field indicates a TCI state, and each TCI state corresponds to one or two reference pilots and the value of QCL type.
  • N6 is greater than or equal to N7
  • N7 is greater than N.
  • S302 The terminal transmits data or signals by using the N beam information.
  • the data may include a physical uplink shared channel, and the signal may include SRS, DMRS (Demodulation Reference Signal, demodulation reference signal), and the like.
  • SRS Signal Reference Signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the terminal uses one of the N beams to send data or signals at a time in a manner agreed with the base station.
  • the i-th beam is used to send data or signals at the i+k*N-th time after the current time in polling manner.
  • the i-th beam is used to send data or signals at the i+k*N-th time after the current time in a poll.
  • sort the SINRs corresponding to the N beams and use the i-th beam to send data or signals at the i+k*N-th time after the current time in a poll.
  • the terminal feeds back the use time of the N beams and/or the value of N determined by the terminal through a physical uplink shared channel or a physical uplink control channel.
  • the base station can receive or send data information or signals in the following ways:
  • the base station obtains N beam information.
  • the base station may indicate N beam information through at least one of high-layer signaling and physical layer signaling.
  • the terminal may use one of the N beams to send data or signals at a time in a manner agreed with the base station.
  • the i-th beam is used to send data or signals at the i+k*N-th time after the current time in polling manner.
  • the i-th beam is used to send data or signals at the i+k*N-th time after the current time in a poll.
  • sort the SINRs corresponding to the N beams and use the i-th beam to send data or signals at the i+k*N-th time after the current time in a poll.
  • the base station receives data or signals by using the received beam information corresponding to the N beam information.
  • the data includes a physical uplink shared channel, and the signal includes SRS, DMRS, and so on.
  • Z' represents the minimum delay requirement from the last symbol of the channel measurement resource to the first symbol carrying the CSI report resource; Indicates the number of symbols in a time slot; Indicates rounding down.
  • FIG. 8 is a schematic diagram of an information feedback device provided by an embodiment of the application.
  • the information feedback device provided in this embodiment can be applied to a first communication node (for example, a terminal device), and includes: a first obtaining module 801, adapted to obtain K position information after a reference time; A feedback module 802 is adapted to feed back the K position information; where K is a positive integer.
  • the first obtaining module 801 is further adapted to obtain N beam information corresponding to the K position information; the first feedback module 802 is further adapted to feed back or indicate N beam information; where N is a positive integer , And N is greater than or equal to K.
  • the first obtaining module 801 is further adapted to obtain F channel state information according to at least one of the K position information and the N beam information; the first feedback module 802 is further adapted to feed back F channel state information; where N and F are positive integers, and N and F are greater than or equal to K.
  • At least one of the feedback time interval, measurement time interval, feedback time, and measurement time of the K position information is determined by at least one of beam information and channel state information.
  • two pieces of channel state information corresponding to two adjacent pieces of position information among the K pieces of position information have correlation.
  • two beam information corresponding to two adjacent pieces of position information in the K pieces of position information have correlation.
  • the correlation between the two beam information includes at least one of the following: the beam indexes corresponding to the two beam information are adjacent; the angles corresponding to the two beam information are adjacent; The resource indexes corresponding to the two beam information are adjacent; the vector correlation corresponding to the two beam information is greater than the first threshold; the vector distance corresponding to the two beam information is less than the second threshold.
  • FIG. 9 is a schematic diagram of an information receiving device provided by an embodiment of this application.
  • the information receiving device provided in this embodiment is applied to a second communication node (for example, a base station), and includes: a receiving module 901, adapted to receive K pieces of position information, where the K pieces of position information are K position information after the reference time, K is a positive integer.
  • the receiving module 901 is further adapted to receive N beam information corresponding to the K pieces of position information; where N is a positive integer, and N is greater than or equal to K.
  • the receiving module 901 is further adapted to receive F channel state information, where the F channel state information is determined by at least one of the K position information and the N beam information, and F Is a positive integer.
  • the time interval for receiving K pieces of position information is determined by at least one of beam information and channel state information.
  • two pieces of channel state information corresponding to two adjacent pieces of position information in the K pieces of position information have correlation.
  • two beam information corresponding to two adjacent pieces of position information in the K pieces of position information have correlation.
  • the correlation between the two beam information includes at least one of the following: the beam indexes corresponding to the two beam information are adjacent; the angles corresponding to the two beam information are adjacent; The resource indexes corresponding to the two beam information are adjacent; the vector correlation corresponding to the two beam information is greater than the first threshold; the vector distance corresponding to the two beam information is less than the second threshold.
  • the information receiving device of this embodiment may further include: a first processing module 902, adapted to perform at least one of the following: determining L new pieces of information using the K pieces of position information and F pieces of channel state information K, N, F, and L are positive integers; use the K position information, N beam information, and F channel state information to determine L new channel state information, where K, N , F, L are positive integers; use the N beam information and F channel state information to determine L new channel state information, where N, F, L are positive integers.
  • a first processing module 902 adapted to perform at least one of the following: determining L new pieces of information using the K pieces of position information and F pieces of channel state information K, N, F, and L are positive integers; use the K position information, N beam information, and F channel state information to determine L new channel state information, where K, N , F, L are positive integers; use the N beam information and F channel state information to determine L new channel state information, where N, F, L are positive integers.
  • FIG. 10 is a schematic diagram of another information feedback device provided by an embodiment of the application.
  • the information feedback device provided in this embodiment can be applied to a first communication node (for example, a terminal device), and includes: a second acquisition module 1001, adapted to acquire N beam information after a reference time point;
  • the second feedback module 1002 is adapted to feed back or indicate the N beam information, where N is a positive integer.
  • the N beam information is acquired through K position information after the reference time.
  • the N beam information is obtained by receiving at least one of high layer signaling and physical layer signaling.
  • the second obtaining module 1001 is further adapted to obtain F channel state information corresponding to the N beam information; the second feedback module 1002 is further adapted to feed back the F channel state information.
  • the F channel state information is acquired according to F channel state information reference resources.
  • the time slot corresponding to the i-th channel state information reference resource is n1+k_i, where n1 is the time slot corresponding to the channel state information reference resource corresponding to the first CSI report, n1 and k_i are positive integers, and k_i Less than or equal to k_j, i is less than j, and both i and j are positive integers greater than 0 and less than or equal to F, or i and j are both positive integers greater than or equal to 0 and less than or equal to F-1.
  • the apparatus provided in this embodiment may further include: a determining module, adapted to determine the value of N and the value of N beam information.
  • the second feedback module 1002 is further adapted to feed back the value of N or the use time of the N beam information.
  • FIG. 11 is a schematic diagram of an information acquisition device provided by an embodiment of this application.
  • the information acquisition device provided in this embodiment is applied to a second communication node (for example, a base station), and includes: a third acquisition module 1101, adapted to acquire N beam information by receiving or determining by itself, Among them, N is a positive integer.
  • the third acquiring module 1101 is further adapted to receive F channel state information corresponding to the N beam information, where F is a positive integer.
  • F channel state information is acquired according to F channel state information reference resources.
  • the time slot corresponding to the i-th channel state information reference resource is n1+k_i, where n1 is the time slot corresponding to the channel state information reference resource corresponding to the first CSI report, n1 and k_i are positive integers, and k_i Less than or equal to k_j, i is less than j, and both i and j are positive integers greater than 0 and less than or equal to F, or i and j are both positive integers greater than or equal to 0 and less than or equal to F-1.
  • the third acquisition module 1101 is further adapted to receive the value of N or the use time of the N beam information; the information acquisition apparatus provided in this embodiment may further include: a second processing module 1102 And it is suitable for determining the value of N and the value of N beam information according to the received value of N or the time of use of the N beam information.
  • the information acquisition apparatus may further include: an indication module, adapted to indicate the N beam information through at least one of high-layer signaling and physical layer signaling.
  • An embodiment of the present application further provides a communication node, including: a memory and a processor, the memory is suitable for storing a computer program, and the computer program is executed by the processor to implement the above-mentioned information feedback method on the side of the first communication node, For example, the steps shown in Figure 2 or Figure 4.
  • FIG. 12 is a schematic diagram of a first communication node provided by an embodiment of this application.
  • the first communication node 1200 may include a processor 1210, a memory 1220, a bus system 1230, and a transceiver 1240, where the processor 1210, the memory 1220, and the The transceiver 1240 is connected through the bus system 1230, the memory 1220 is used to store instructions, and the processor 1210 is used to execute instructions stored in the memory 1220 to control the transceiver 1240 to send signals.
  • the operations of the first feedback module and the second feedback module in the above information feedback device can be executed by the transceiver under the control of the processor, and the operations of the first acquisition module and the second acquisition module can be executed by the processor.
  • the processor 1210 may be a central processing unit (Central Processing Unit, “CPU”), and the processor 1210 may also be other general-purpose processors, digital signal processors (Digital Signal Process, DSP), and application specific integrated circuits (Application Specific Integrated Circuits). ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 1220 may include a read-only memory and a random access memory, and provides instructions and data to the processor 1210. A part of the memory 1220 may also include a non-volatile random access memory. For example, the memory 1220 may also store device type information.
  • the bus system 1230 may also include a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are marked as the bus system 1230 in FIG. 12.
  • the processing performed by the first communication node 1200 may be completed by an integrated logic circuit of hardware in the processor 1210 or instructions in the form of software. That is, the steps of the method disclosed in the embodiments of the present application may be embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software module can be located in storage media such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1220, and the processor 1210 reads the information in the memory 1220, and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • An embodiment of the present application further provides a communication node, including: a memory and a processor, the memory is adapted to store a computer program, and when the computer program is executed by the processor, the second communication node side information receiving method or Information acquisition methods, such as the steps shown in Figure 3 or Figure 5.
  • FIG. 13 is a schematic diagram of a second communication node provided by an embodiment of the application.
  • the second communication node 1300 may include: a processor 1310, a memory 1320, a bus system 1330, and a transceiver 1340, where the processor 1310, the memory 1320, and The transceiver 1340 is connected through the bus system 1330, the memory 1320 is used to store instructions, and the processor 1310 is used to execute instructions stored in the memory 1320 to control the transceiver 1340 to send signals.
  • the operations of the receiving module in the information receiving device and the third acquiring module in the information acquiring device can be executed by the transceiver under the control of the processor, the first processing module in the information receiving device, and the second processing module in the information acquiring device The operation can be performed by the processor.
  • processor 1310 For related descriptions of the processor 1310, the memory 1320, the bus system 1330, and the transceiver 1340, reference may be made to the related descriptions of the processor 1210, the memory 1220, the bus system 1230, and the transceiver 1240, and therefore will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the processing of any method described in the foregoing embodiment of the present application is realized, for example, FIG. 2 or the information feedback method on the first communication node side shown in FIG. 4, or the information receiving method on the second communication node side shown in FIG. 3, or the information acquisition method on the second communication node side shown in FIG.
  • the functional modules/units in the system, and the device can be implemented as software, firmware, hardware, and appropriate combinations thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may consist of several physical components.
  • the components are executed cooperatively.
  • Some or all components may be implemented as software executed by a processor, such as a digital signal processor or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and non-volatile, removable and non-removable implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data) medium.
  • Computer storage media include but are not limited to Random Access Memory (RAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory, EEPROM ), flash memory or other storage technologies, CD-ROM (Compact Disc Read-Only Memory, CD-ROM), Digital Video Disc (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other A magnetic storage device, or any other medium that can be used to store desired information and can be accessed by a computer.
  • Communication media generally contain computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery media.

Abstract

本文公开一种信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质,所述信息反馈方法包括:获取参考时间之后的K个位置信息,反馈所述K个位置信息;其中,K为正整数。

Description

信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质
本申请要求在2019年05月27日提交中国专利局、申请号为201910448094.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信技术领域,例如涉及一种信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质。
背景技术
多天线技术是提高无线通信系统性能的一种重要手段,而为了利用好多天线技术,需要获取准确的信道状态信息(Channel State Information,CSI)。特别是在高频技术中,随着载频的增加,路径损耗也会随之增加,为了保证覆盖,一般会使用多阵子天线以获得波束赋型增益,以达到用波束赋型增益来弥补路径损耗的影响。另外,为了获得波束增益,需要用户根据信道选择与用户信道匹配的最佳发送和/或接收波束。
另一方面,定位也是无线通信中的一个重要技术,比如在长期演进(Long Term Evolution,LTE)、长期演进增强(Long Term Evolution-Advanced,LTE-A)中都进行了标准化,在新无线接入技术(New Radio Access Technology,NR)中也将进行标准化工作,而定位技术不能很好地应用于信道状态信息的获取。
发明内容
本申请提供了一种信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质,实现充分利用定位技术提高无线通信系统性能。
本申请提供一种信息反馈方法,包括:获取参考时间之后的K个位置信息;反馈所述K个位置信息;其中,K为正整数。
本申请还提供一种信息接收方法,包括:接收K个位置信息;其中,所述K个位置信息为参考时间之后的K个位置信息,K为正整数。
本申请还提供一种信息反馈方法,包括:获取参考时间之后的N个波束信息;反馈或指示所述N个波束信息;其中,N为正整数。
本申请还提供一种信息获取方法,包括:通过接收或者自身确定的方式获 取N个波束信息,其中,所述N个波束信息为参考时间之后的N个波束信息,N为正整数。
本申请还提供一种信息反馈装置,包括:第一获取模块,适于获取参考时间之后的K个位置信息;第一反馈模块,适于反馈所述K个位置信息;其中,K为正整数。
本申请还提供一种信息接收装置,包括:接收模块,适于接收K个位置信息;其中,所述K个位置信息为参考时间之后的K个位置信息,K为正整数。
本申请还提供一种通信节点,包括:存储器和处理器,所述存储器适于存储计算机程序,所述计算机程序被所述处理器执行时实现上述任一信息反馈方法。
本申请还提供一种通信节点,包括:存储器和处理器,所述存储器适于存储计算机程序,所述计算机程序被所述处理器执行时实现上述的信息接收方法或信息获取方法。
本申请还提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述信息反馈方法。
本申请还提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述信息接收方法或信息获取方法。
在本申请中,第一通信节点获取参考时间之后的K个位置信息,并向第二通信节点反馈所述K个位置信息。第一通信节点通过向第二通信节点反馈参考时间之后的位置信息,可以支持第二通信节点获取或预测未来的信道状态信息。本申请通过利用定位技术可以支持获取或预测更准确的信道状态信息,从而提高无线通信系统性能。
附图说明
图1为本申请实施例的应用场景示意图;
图2为本申请实施例提供的一种信息反馈方法的流程图;
图3为本申请实施例提供的一种信息接收方法的流程图;
图4为本申请实施例提供的另一种信息反馈方法的流程图;
图5为本申请实施例提供的一种信息获取方法的流程图;
图6为本申请实施例提供的信息反馈方法的一种示例性实施示意图;
图7为本申请实施例提供的信息反馈方法的另一种示例性实施示意图;
图8为本申请实施例提供的一种信息反馈装置的示意图;
图9为本申请实施例提供的一种信息接收装置的示意图;
图10为本申请实施例提供的另一种信息反馈装置的示意图;
图11为本申请实施例提供的一种信息获取装置的示意图;
图12为本申请实施例提供的第一通信节点的示意图;
图13为本申请实施例提供的第二通信节点的示意图。
具体实施方式
下文中将结合附图对本发明实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1为本申请实施例的应用场景示意图。如图1所示,实施本申请实施例提供的方法的通信系统可以包括第一通信节点100和第二通信节点120。
图1所示的通信系统仅仅是一个示例,本申请实施例不限定于此,比如,第一通信节点和第二通信节点都可以大于1个。本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、第五代(the 5th Generation,5G)新空口(New Radio NR)通信系统等。
第二通信节点120可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB)、5G网络中的基站设备、或者未来通信系统中的基站等,所述基站可以包括各种宏基站、微基站、家庭基站、无线拉远、路由器、位置服务器(location server)、或者主小区(primary cell)和协作小区(secondary cell)等各种网络侧设备,定位管理功能(location management function,LMF)设备。
第一通信节点100可以为终端设备,也可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、或者5G网络中的终端 设备等。然而,本申请对此并不限定。
下面以第一通信节点为终端、第二通信节点为基站为例进行说明。
在本文中,基站配置测量资源信息,测量资源信息用于获取信道状态信息(Channel State Information,CSI)。其中,测量资源信息可以包括N1个信道测量资源(Channel Measurement Resource,CMR)信息和M1个干扰测量资源(Interference Measurement Resource,IMR)信息,N1和M1均为正整数。基站在一个报告配置(report config)或报告设置(reporting setting)中配置报告对应的测量资源信息。其中,N1个CMR信息用于使终端对信道状态进行测量,M1个IMR信息用于使终端对干扰进行测量。
CMR配置或者设置(CMR setting或者CMR config)包括以下至少一项:信道测量资源集合(CMR set)、干扰测量资源集合(IMR set);一个信道测量资源集合包括至少一个信道测量资源,一个干扰测量资源集合包括至少一个干扰测量资源。其中,信道测量资源表示用于信道测量的参考信号资源,可以包括但不限于信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)资源、同步信号块(Synchronization Signals Block,SSB)资源、物理广播信道(Physical Broadcast Channel,PBCH)资源、同步广播块/物理广播信道(SSB/PBCH)资源、上行探测参考信号(Sounding reference signal,SRS)资源、定位参考导频(Positioning Reference Signals,PRS)。其中,CSI-RS资源主要是指非零功率信道状态信息-参考信号(Non Zero Power Channel State Information-Reference Signal,NZP-CSI-RS)资源。干扰测量资源可以包括但不限于信道状态信息干扰测量(Channel State Information-Interference Measurement,CSI-IM)、用于干扰测量的NZP-CSI-RS(NZP-CSI-RS for Interference Measurement)、零功率信道状态信息-参考信号(ZP-CSI-RS);在一次干扰测量中,干扰测量资源包括的M1个干扰测量资源可以包括NZP-CSI-RS、CSI-IM以及ZP-CSI-RS中的至少一个,比如只包括CSI-IM,或者包括CSI-IM和NZP-CSI-RS,或者只包括ZP-CSI-RS,或者包括NZP-CSI-RS和ZP-CSI-RS。
信道状态信息可以包括以下至少之一:信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,CRI)、同步信号块资源指示(Synchronization Signals Block Resource Indicator,SSBRI)、参考信号接收功率(Reference Signal Received Power,RSRP)、差分RSRP(Differential RSRP)、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、层指示(Layer Indicator,LI)、秩指示(Rank Indicator,RI)、级1的信干噪比(Level1Signal to Interference plus Noise Ratio,L1-SINR)、差分L1-SINR(Differential  L1-SINR)。
信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,CRI)取值为i表示指示第i个CSI-RS资源,i=0,1,...N2,N2为CSI-RS资源的个数。同步信号块资源指示(SSBRI,Synchronization Signals Block Resource Indicator)取值为i表示指示第i个SSB和/或PBCH资源,i=0,1,...N3,N3为SSB资源的个数。
空间特性包括以下至少之一参数:准共位置(Quasi-co-located,QCL)、传输配置指示(Transmission Configuration Indication,TCI)、传输配置状态(transmission configuration state)、QCL类型D(QCL Type D)、接收空间特性、发送空间特性、接收波束组、发送波束组、接收波束、发送波束、空间接收参数(Spatial Rx Parameter)。空间特性相同是指上述至少一个空间特性参数的取值相同。在一实施例中,空间特性主要包括QCL Type D或空间接收参数(Spatial Rx Parameter)。
准共位置(QCL)可以包括QCL type A、QCL type B、QCL type C和QCL Type D;两个端口满足准共位置关系表示一个端口的大尺度信息可以通过另外一个端口的大尺度信息推导出来,大尺度信息包括但不限于:多普勒平移(Doppler shift)、多普勒扩展(Doppler spread)、平均延迟(average delay)、延迟扩展(delay spread)、空间接收参数(Spatial Rx parameter)。其中一种QCL Type的分类如下:
- 'QCL-TypeA':{Doppler shift,Doppler spread,average delay,delay spread}
- 'QCL-TypeB':{Doppler shift,Doppler spread}
- 'QCL-TypeC':{Doppler shift,average delay}
- 'QCL-TypeD':{Spatial Rx parameter}
两个参考信号之间的关于一类准共址参数满足准共址关系包括以下至少之一:一个参考信号的准共址参数可以根据另一个参考信号的准共址参数获取;两个参考信号的关于一类准共址参数的准共址参考信号相同,比如,CSI-RS1关于空间接收参数的准共址参考信号为CSI-RS3,CSI-RS2关于空间接收参数的准共址参考信号为CSI-RS3,则CSI-RS1和CSI-RS2关于空间接收参数满足准共址关系。
本文中的时刻、时间戳、参考时间是可以相互替换的概念,表示某一个时间点或者参考时间点,它们可以包括以下至少之一的时间单位:时隙(slot)、符号(symbol)、时隙组、符号组、X毫秒、Y微秒;其中,所述符号组包括至少一个符号(比如,迷你时隙(mini-slot)),而所述时隙组包括至少一个时隙; 其中,X、Y为正实数。
本文中的符号是指一个子帧或帧或时隙中的时间单位,比如可以为一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、单载波频分复用多址接入(Single-Carrier Frequency Division Multiple Access,SC-FDMA)符号、正交多址频分复用接入(Orthogonal Frequency Division Multiple Access,OFDMA)符号。
本文中的位置信息包括但不限于以下至少之一:参考信号时间不同(Reference Signal Time Difference,RSTD)、到达相关时间(Relative Time Of Arrival,RTOA)、到达角(Angle of Arrival,AoA)、离开角(Angle Of Departure,AOD)、垂直离开角(Zenith angle Of Departure,ZOD)、垂直到达角(Zenith angle Of Arrival,ZOA)、接收传输时间不同(Rx-Tx time difference)、物理位置笛卡尔坐标(x,y,z)、极坐标(r,a,b)、移动速度、移动速度的方向、移动加速度、移动加速度的方向、k阶加速度、k阶加速度方向;这里,k=1阶加速度表示加速度,它是移动速度的导数,而k+1阶加速度表示k阶加速度的导数,k=1,…,K1,K1为大于或等于1的整数,K1的值可以是第二通信节点配置的,也可以是第一通信节点和第二通信节点约定的。这里速度或者k阶加速度,以及速度的方向和k阶加速度的方向可以是笛卡尔坐标系里的值,或极坐标系里的值;其中,x、y、z是实数,r是真实数,a、b是水平角度和垂直角度。
波束信息可以包括以下至少之一:到达角(angle Of Arrival,AOA)、离开角(angle Of Departure,AOD)、ZOD(Zenith angle Of Departure)、ZOA(Zenith angle Of Arrival)、离散傅里叶变化(Discrete Fourier Transformation,DFT)矢量、码本中的码字、发送波束、接收波束、发送波束组、接收波束组、发送波束索引、接收波束索引、发送波束组索引、接收波束组索引。另外,本文说的索引(index)和指示(indicator)是可以相互替换的概念。示例性地,终端或者基站可以通过高层信令和物理层信令中的至少之一传输或反馈或指示N个波束信息。比如,基站可以通过高层信令和/或物理层信令指示N个波束信息,比如可以通过至少一个准共位置(QCL)和/或至少一个传输控制指示(TCI)指示N个波束信息,或者终端可以通过空间相关信息(Spatial Relation Information)指示N个波束信息(比如参考导频所用的波束信息就是目标导频或者信号的对应波束信息),或者,终端可以通过高层信令指示N个波束信息,或者通过物理上行共享信道或者物理上行控制信道反馈所述N个波束信息,比如反馈波束信息对应的CRI或SSBI。
在本文中,波束信息对应的角度可以包括AOA、AOD、ZOD、ZOA中的至少一个。
在本文中,高层信令包括无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制层控制单元(Media Access Control control element,MAC CE)信令。物理层信令包括物理下行控制信息中的下行控制信息(Downlink Control Information,DCI),或者在物理上行控制信道或者物理上行共享信道反馈的信令。
图2为本申请实施例提供的一种信息反馈方法的流程图。本实施例提供的信息反馈方法可以应用于上述第一通信节点侧。如图2所示,本实施例提供的信息反馈方法,包括:
S11、获取参考时间之后的K个位置信息。
S12、反馈K个位置信息;其中,K为正整数。
在一示例性实施方式中,终端可以获取参考时间之后的K个位置信息,并向基站反馈所述K个位置信息。
在本文中,所述参考时间可以是当前时间之前F1个时间单位的时间点,这时K个位置信息的部分位置信息就是当前时间之前的位置信息,部分位置信息是预测的未来的位置信息。所述参考时间可以是当前时间,这时K个位置信息的所有位置信息都是预测的未来的位置信息。这里时间单位可以是符号、时隙、符号组、时隙组、X毫秒、Y微秒中的一个,具体哪个可以由第一通信节点和第二通信节点协商确定,或者双方约定。F1为小于或等于K的整数。
在一示例性实施方式中,本实施例的信息反馈方法还可以包括:获取K个位置信息对应的N个波束信息,反馈或指示所述N个波束信息;其中,N为正整数,且N大于或等于K。示例性地,波束信息可以包括以下至少之一:到达角(angle Of Arrival,AOA)、离开角(angle Of Departure,AOD)、ZOD(Zenith angle Of Departure)、ZOA(Zenith angle Of Arrival)、离散傅里叶变化(Discrete Fourier Transformation,DFT)矢量、码本中的码字、发送波束、接收波束、发送波束组、接收波束组、发送波束索引、接收波束索引、发送波束组索引、接收波束组索引。另外,本文说的索引(index)和指示(indicator)是可以相互替换的概念。示例性地,终端或者基站可以通过高层信令和物理层信令中的至少之一传输或反馈或指示所述N个波束信息。比如,基站可以通过高层信令和/或物理层信令指示N个波束信息,比如可以通过至少一个准共位置(QCL)和/或至少一个传输控制指示(TCI)指示N个波束信息,或者,终端可以通过空间相关信息(SpatialRelation Information)指示N个波束信息(比如参考导频所用的波束信息就是目标导频或者信号的对应波束信息),或者,终端可以通过高层信令指示所述N个波束信息,或者通过物理上行共享信道或者物理上行控制信道反馈所述N个波束信息,比如反馈波束信息对应的CRI或SSBI。
在一个实施例中,系统为下行链路传输,比如,当所述N个波束信息是基站的发送波束或者终端的接收波束时,终端通过物理上行控制信道或者物理上行共享信道反馈或指示所述N个波束信息,波束信息包括但不限于以下之一:波束索引,波束组索引,RSRP,差分RSRP,差分L1-SINR,L1-SINR,ZOA、ZOD、AOA、AOD,或者ZOA、ZOD、AOA、AOD中至少之一的索引,SSBRI,CRI(因为,波束信息也可能隐含在对应的测量资源中,所以也可以反馈所述波束对应的资源索引)。基站通过高层或者物理层信令之一指示终端所述基站使用的波束信息。
在一个实施例中,系统为上行链路传输,比如,当所述N个波束信息是终端的发送波束或基站的接收波束时,所述N个波束信息的波束个数和/或发送时刻可以由终端确定。示例性地,终端可以通过物理上行控制信道或者物理上行共享信道反馈所述N的值和/或N个波束的发送时刻的信息,或者终端可以通过空间相关信息指示所述N个波束信息。基站可以通过高层信令或者物理层信令中的至少之一信令指示终端最终使用的L个波束信息,其中,所述L个波束信息为所述N个波束信息的子集合。
在一个实施例中,系统为上行链路传输,比如,当所述N个波束信息是终端的发送波束或基站的接收波束时,所述N个波束信息可以由基站通过高层信令或者物理层信令中的至少之一信令指示。
在一示例性实施方式中,本实施例的方法还可以包括:根据K个位置信息确定N个波束信息。在本文中,根据K个位置信息确定或者获取N个波束信息的方法包括至少以下之一:
当所述位置信息为RSTD,RTOA,Rx-Tx time Difference之一时,根据获得的至少两个基站的RSTD、RTOA,Rx-Tx time Difference之一获得UE的地理位置(包括笛卡尔坐标或者极坐标),并根据所述地理位置以及与服务基站的位置信息就可以算出终端和服务基站的波束方向,比如ZOA,ZOD,AOA,AOD中的至少之一,从而可以获得波束信息,包括但不限于波束向量;比如,根据波束方向获得DFT矢量,波束方向A对应的DFT矢量可以表示为u1=[1,exp(2*pi*j*d*cos(A)/lambda),…,exp(2*pi*j*(N-1)*d*cos(A)/lambda)]T。这里A为ZOA、AOD、AOA及AOD中的一个,cos表示余弦,也可表示成正弦的形式,lambda表示电磁波的波长,d表示天线或者阵子间的间距。如果表示的波束方向有垂直方向ZOA或ZOD,和水平方向(AOA,AOD),那么需要将水平方向获得的u1和垂直方向获得的u2进行kroneck积得到新的波束对应的DFT矢量,比如kroneck(u1,u2)或者kroneck(u2,u1)。
当所述位置信息为ZOA,ZOD,AOA,AOD中的至少之一时,可以直接 根据所述ZOA,ZOD,AOA,AOD中的至少之一产生波束信息。
当所述位置信息为地理位置,那么需要根据所述地理位置以及与服务基站的位置信息算出终端和服务基站的波束方向,比如ZOA,ZOD,AOA,AOD中的至少之一产生波束信息。
当所述位置信息为速度或者k阶加速度,那么可以根据速度或者加速度的方向预测用户的可能的轨迹,并根据轨迹算出所述终端的物理位置,那么根据所述地理位置以及与服务基站的位置信息,就可以算出终端和服务基站的波束方向,比如ZOA,ZOD,AOA,AOD中的至少之一产生波束信息。
在一示例性实施方式中,本实施例的方法还可以包括:根据K个位置信息和N个波束信息中的至少一项,获取F个信道状态信息,并反馈F个信道状态信息;其中,N、F为正整数,且N、F大于或等于K。示例性地,信道状态信息中可以包括以下至少之一:参考信号接收功率(RSRP)、差分RSRP、信道状态信息-参考信号资源指示(CRI)、同步信号块资源指示(SSBRI)、预编码矩阵指示(PMI)、信道秩指示(RI)、信道质量指示(CQI)、层指示(LI)、L1-SINR、差分L1-SINR。在本文中,信道状态信息的个数F和波束信息的个数N可以相同,也可以不同。
示例性地,获取F个信道状态信息可以包括以下之一:比如,根据位置信息获取波束信息,根据波束信息选择波束对应的测量资源信息,并根据测量资源信息测量获得CSI;或者,根据波束信息确定波束的方向,根据波束方向获得预编码信息,并根据预编码计算CQI、RI、LI、CRI等。比如,根据波束信息选择波束对应的测量资源信息,并根据测量资源信息测量获得CSI信息;或者,根据波束信息确定波束的方向,根据波束方向获得预编码信息,并根据预编码计算CQI、RI、LI等。
在一示例性实施方式中,K个位置信息的测量时间间隔或者反馈时间间隔分别为T1,T2,…,TK个时隙或者符号,T1,T2,…,TK为正整数,且取值可以相同。它们可以由波束信息和信道状态信息中的至少一项确定,或K个位置信息的测量时间或者反馈时间可以由波束信息和信道状态信息中的至少一项确定。其中,K个位置信息的反馈时间间隔或K个位置信息的反馈频率,或者K个位置信息的反馈周期,可以由波束信息或者信道状态信息确定。K个位置信息可以由以下至少之一的改变而重新计算:CRI、RI、PMI、波束(beam)改变,从而CRI、RI、PMI、波束(beam)改变的周期或者频率决定了K个位置信息的周期或者频率。比如,以CRI、RI、PMI、波束(beam)改变的周期或者频率的最小值(平均值,加权平均值等)作为K个位置信息的更新频率。而K个位置信息的更新频率可以决定K个位置信息的反馈周期或者反馈时间间隔。另外,所述K的取 值可以由波束信息或信道状态信息确定,或者由第二通信节点配置K个位置信息的反馈时间间隔,反馈时刻,测量时间间隔或者测量时刻,K的取值中的至少之一。或者,终端或者基站根据实时的或者统计的信道状态信息确定所述K个位置信息的测量时间间隔、反馈时间间隔、测量时刻、反馈时刻中的至少之一。
在一示例性实施方式中,K个位置信息中相邻的两个位置信息对应的两个信道状态信息可以具有相关性。示例性地,两个信道状态信息具有相关性可以包括以下至少之一:两个信道状态信息对应的索引是相邻的(比如两个PMI是相邻的,两个RI是相邻,两个CQI是相邻的);两个信道状态信息对应的取值的差的绝对值小于第三门限值(比如两个CQI对应的SINR1和SINR2的差小于第三门限值a3,其中,a3为正实数)。两个CSI具有相关性,从而可以用差分反馈或者接收以减小开销。
在一示例性实施方式中,K个位置信息中相邻的两个位置信息对应的两个波束信息具有相关性。示例性地,两个波束信息具有相关性可以包括以下至少之一:两个波束信息对应的波束索引是相邻的;两个波束信息对应的角度是相邻的;两个波束信息对应的资源索引是相邻的;两个波束信息对应的向量相关性大于第一门限值;两个波束信息对应的向量距离小于第二门限值。
角度相邻是指:两个角度差的绝对值小于a1,比如,|A-B|<a1;或者,两个角度差的绝对值模2*pi的值小于a1,比如mod(|A-B|,2*pi)<a1,其中,A、B为两个角度,a1为一个门限值,它们的单位同时为角度或者弧度,|A|表示对A求绝对值,mod(A,B)表示A对B求模。
两个矢量相邻是指它们的距离或者范数小于门限a2,即||u1-u2||<a2,这里,u1、u2为两个矢量或者矩阵,比如DFT矢量或者码字,其中,||u1||表示对矩阵或者矢量u1求范数,两个矢量相邻也可是它们的相关性大于门限值a3,即||u1 H*u2||>a3,u1 H表示u1的共轭转置,a2和a3是正实数。本文中的范数可以是线性代数里的一切定义的范数,比如l 1范数,l 2范数,lp范数等。
在一示例性实施方式中,F个信道状态信息可以根据F个信道状态信息参考资源获取;其中,所述第i个信道状态信息的信道状态参考资源(CSI reference resource)所在的时隙为n1+k_i。即在早于n+k_i且最接近n+k_i的信道测量资源集合和/或干扰测量资源集合为对象测量第k个时刻对应的波束信息,以及对应的信道状态信息CSI;其中,n1为第一个CSI报告的CSI reference resource对应的时隙,n1=n-n ref
Figure PCTCN2020085599-appb-000001
n’为CSI上报时隙,μ DL和μ UL分别为上下行载波间距;n,n ref,k_i,F为正整数,且k_i≤k_j,这里,i<j;i,j=1,…, F或者i,j=0,…,F-1。n ref为根据以下方式之一确定的值:
当CSI报告为周期或半持续报告且只有一个CSI-RS resource被配置为信道测量时,n ref取值满足:使得n1=n-n ref是一个有效的下行子帧的最小的且大于或等于
Figure PCTCN2020085599-appb-000002
当CSI报告为周期或半持续报告且有大于一个CSI-RS resource被配置为信道测量,那么n ref取值满足:使得n1=n-n ref是一个有效的下行子帧的最小的且大于或等于
Figure PCTCN2020085599-appb-000003
当CSI报告为非周期报告时,n ref取值满足,n-n ref为触发CSI报告的时隙,或者,当CSI报告为非周期报告时,使得n1=n-n ref是一个有效的下行子帧的最小的且大于或等于
Figure PCTCN2020085599-appb-000004
这里Z’表示信道测量资源的最后一个符号到承载CSI report资源的第一个符号的最小时延要求;
Figure PCTCN2020085599-appb-000005
表示一个时隙里的符号个数;
Figure PCTCN2020085599-appb-000006
表示向下取整。
本申请实施例中,通过第一通信节点向第二通信节点反馈参考时间之后的位置信息(比如,当前时刻之后的未来时刻的位置信息),支持第二通信节点利用参考时间之后的位置信息,获得或者预测更准确的信道状态信息,从而提高无线通信系统的性能。
图3为本申请实施例提供的一种信息接收方法的流程图。本实施例提供的信息接收方法可以应用于上述第二通信节点侧。如图3所示,本实施例提供的信息接收方法,包括:
S21、接收K个位置信息;其中,所述K个位置信息为参考时间之后的K个位置信息,K为正整数。
在一示例性实施方式中,S21可以包括:基站接收终端反馈的参考时间之后的K个位置信息。
在一示例性实施方式中,本实施例的方法还可以包括:S22、接收K个位置信息对应的N个波束信息,其中,N为正整数,且N大于或等于K。示例性地,基站可以接收终端反馈的N个波束信息。示例性地,波束信息可以包括以下至少之一:到达角(angle Of Arrival,AOA)、离开角(angle Of Departure,AOD)、ZOD(Zenith angle Of Departure)、ZOA(Zenith angle Of Arrival)、离散傅里叶变化(Discrete Fourier Transformation,DFT)矢量、码本中的码字、发送波束、接收波束、发送波束组、接收波束组、发送波束索引、接收波束索引、发送波束组索引、接收波束组索引。一个示例中,通过接收终端的物理上行控制信道或者物理上行共享信道上的至少如下参数之一获得波束信息:波束索引,波束组索引,RSRP,差分RSRP,差分L1-SINR,L1-SINR,ZOA、ZOD、AOA、 AOD,或者ZOA、ZOD、AOA、AOD中至少之一的索引,SSBRI,CRI。
在一示例性实施方式中,本实施例的方法还可以包括:接收F个信道状态信息,其中,所述F个信道状态信息由K个位置信息和N个波束信息中的至少之一确定,F为正整数。在一示例中,基站可以接收终端反馈的F个信道状态信息。示例性地,信道状态信息中可以包括以下至少之一:参考信号接收功率(RSRP)、差分RSRP、信道状态信息-参考信号资源指示(CRI)、同步信号块资源指示(SSBRI)、预编码矩阵指示(PMI)、信道秩指示(RI)、信道质量指示(CQI)、层指示(LI)、L1-SINR、差分L1-SINR。
在一示例性实施方式中,K个位置信息的测量时间间隔或者反馈时间间隔分别为T1,T2,…,TK个时隙或者符号,T1,T2,…,TK为正整数,且取值可以相同。它们可以由波束信息和信道状态信息中的至少一项确定,或K个位置信息的测量时间或者反馈时间可以由波束信息和信道状态信息中的至少一项确定。其中,K个位置信息的反馈时间间隔或K个位置信息的反馈频率,或者K个位置信息的反馈周期,可以由波束信息或者信道状态信息确定。K个位置信息可以由以下至少之一的改变而重新计算:CRI、RI、PMI、波束(beam)改变。从而CRI、RI、PMI、波束(beam)改变的周期或者频率决定了K个位置信息的周期或者频率。比如,以CRI、RI、PMI、波束(beam)改变的周期或者频率的最小值(平均值,加权平均值等)作为K个位置信息的更新频率。而K个位置信息的更新频率可以决定K个位置信息的反馈周期或者反馈时间间隔。另外,所述K的取值可以由波束信息或信道状态信息确定,或者由第二通信节点配置K个位置信息的反馈时间间隔,反馈时刻,测量时间间隔或者测量时刻,K的取值中的至少之一。或者,终端或者基站根据实时的或者统计的信道状态信息,确定所述K个位置信息的测量时间间隔、反馈时间间隔、测量时刻、反馈时刻中的至少之一。
在一示例性实施方式中,K个位置信息中相邻的两个位置信息对应的两个信道状态信息具有相关性。示例性地,两个信道状态信息具有相关性可以包括以下至少之一:两个信道状态信息对应的索引是相邻的;两个信道状态信息对应的取值的差的绝对值小于第三门限值。
在一示例性实施方式中,K个位置信息中相邻的两个位置信息对应的两个波束信息具有相关性。示例性地,两个波束信息具有相关性可以包括以下至少之一:两个波束信息对应的波束索引是相邻的;两个波束信息对应的角度是相邻的;两个波束信息对应的资源索引是相邻的;两个波束信息对应的向量相关性大于第一门限值;两个波束信息对应的向量距离小于第二门限值。
在一示例性实施方式中,K的取值可以由基站配置,或者,可以由波束信 息或者信道状态信息确定。
在一示例性实施方式中,本实施例的方法还可以包括以下至少之一:利用K个位置信息以及F个信道状态信息,确定L个新的信道状态信息,其中,K、L、F为正整数;利用所述K个位置信息、N个波束信息、F个信道状态信息,确定L个新的信道状态信息,其中,K、N、F、L为正整数;利用所述N个波束信息、F个信道状态信息,确定L个新的信道状态信息,其中,N、F、L为正整数。示例性地,基站可以根据终端反馈的K个位置信息和F个信道状态信息,确定L个新的信道状态信息,并根据L个新的信道状态信息进行波束管理和调度管理。
一些示例如下:通过K个位置信息获取这K个位置信息的地理坐标,并根据地理坐标通过人工智能的深度学习算法拟合出L个新的地理位置信息,比如通过线性拟合(或加权拟合)的方法,或者通过深度学习的方式研究位置间的相关性,从而根据这些位置的相关性得到L个新的地理位置,并利用所述L个新的地理位置信息和本文前面的实施例的方法获得的L个波束信息,利用所述的L个波束信息和/或接收的N个波束信息一起确定未来一段时间的波束管理使用的波束。或者,根据所述的L个波束信息和/或接收的N个波束信息获得L个新的预编码矩阵,比如,所述预编码矩阵对应的同一个极化方向天线对应的矢量与所述的波束信息对应的矢量的相关性大于某个门限值或者距离小于门限值的码字。并可以利用新的L个预编码矩阵计算新的CQI、RI等信息,从而利用新的L个CSI和/或N个接收的CSI对用户进行资源分配以及优先级调度。
关于本实施例的相关说明可以参照图2对应实施例的相关描述,故于此不再赘述。
本申请实施例中,第二通信节点通过利用第一通信节点反馈的参考时间之后的位置信息,可以获得或预测更准确的信道状态信息,从而提高无线通信系统的性能。
图4为本申请实施例提供的另一种信息反馈方法的流程图。本实施例提供的信息反馈方法可以应用于上述第一通信节点侧。如图4所示,本实施例提供的信息反馈方法,包括:
S31、获取参考时间之后的N个波束信息。
S32、反馈或指示N个波束信息;其中,N为正整数。
在一示例性实施方式中,终端获取参考时间之后的N个波束信息,并向基站反馈N个波束信息。示例性地,波束信息可以包括以下至少之一:到达角(angle Of Arrival,AOA)、离开角(angle Of Departure,AOD)、ZOD(Zenith angle Of  Departure)、ZOA(Zenith angle Of Arrival)、离散傅里叶变化(Discrete Fourier Transformation,DFT)矢量、码本中的码字、发送波束、接收波束、发送波束组、接收波束组、发送波束索引、接收波束索引、发送波束组索引、接收波束组索引。
在一示例性实施方式中,N个波束信息可以通过参考时间之后的K个位置信息获取。
在一示例性实施方式中,N个波束信息可以通过接收高层信令和物理层信令中的至少一项获取。
一个示例如下:高层信令RRC可以包括一个TCI状态列表,TCI状态列表包括N0个TCI状态,N0个TCI状态中的N4个TCI状态对应一个QCL Type D的取值,每个QCL Type D对应一个发送波束和/或接收波束。或者,高层信令可以包括N0=N4个QCL Type D的指示,每个QCL Type D对应一个发送波束和/或接收波束,可以通过MAC CE从N4个TCI信令中选择N5个TCI状态进行指示,或者通过MAC CE从N4个TCI状态中选择N5个TCI状态组合成一个TCI状态集合,所述TCI状态集合中包括至少N4个参考信号以及N4个QCL Type的取值,其中,N0,N4,N5为正整数,且N5小于或等于N4,N4小于或等于N0。
通过一个物理层信令,所述物理层信令包括1个TCI域,每个TCI域指示N6个TCI状态,N6个TCI状态中的N7个TCI状态对应一个QCL Type D的取值,每个QCL Type D对应一个发送波束和/或接收波束,即一个TCI指示至少一个TCI状态,每个TCI状态对应一个或者两个参考导频以及QCL type的取值。或者,通过多个物理层信令,每个物理层信令包括一个TCI域,每个TCI域指示一个TCI状态,每个TCI状态对应一个或者两个参考导频以及QCL type的取值。其中,N6大于或等于N7,N7大于N。
在一示例性实施方式中,本实施例的方法还可以包括:获取N个波束信息对应的F个信道状态信息,反馈所述F个信道状态信息,其中,F为正整数。
在一示例性实施方式中,F个信道状态信息根据F个信道状态信息参考资源获取。示例性地,第i个信道状态信息参考资源所对应的时隙为n1+k_i,其中,n1为第一个CSI报告对应的信道状态信息参考资源对应的时隙;n1=n-n ref
Figure PCTCN2020085599-appb-000007
n’为CSI上报时隙,μ DL和μ UL分别为上下行载波间距,n、n ref和k_i为正整数,且k_i小于或等于k_j,i小于j,且i、j均为大于0且小于或等于F的正整数,或者,i、j均为大于或等于0且小于或等于F-1的正整数。本 文中所有的索引的取值可以从0开始,O-1结束,其中,O为对应的索引对应资源的个数。
在一示例性实施方式中,本实施例的方法还可以包括:确定N的取值以及N个波束信息的取值。示例性地,本实施例的方法还可以包括:反馈所述N的取值或N个波束信息的使用时刻。
在一个实施例中,当所述N个波束信息是终端的发送波束时,所述N个波束信息的波束个数和/或发送时刻可以由终端确定。示例性地,终端可以通过物理上行控制信道或者物理上行共享信道反馈所述N的值和/或N个波束发送时刻的信息。
图5为本申请实施例提供的一种信息获取方法的流程图。本实施例提供的信息获取方法可以应用于上述第二通信节点侧。如图5所示,本实施例提供的信息获取方法,包括:
S41、通过接收或者自身确定的方式获取N个波束信息,其中,所述N个波束信息为参考时间之后的N个波束信息,N为正整数。
在一示例性实施方式中,基站可以接收终端反馈的参考时间之后的N个波束信息;或者,基站可以自身确定参考时间之后的N个波束信息。示例性地,波束信息可以包括以下至少之一:到达角(angle Of Arrival,AOA)、离开角(angle Of Departure,AOD)、ZOD(Zenith angle Of Departure)、ZOA(Zenith angle Of Arrival)、离散傅里叶变化(Discrete Fourier Transformation,DFT)矢量、码本中的码字、发送波束、接收波束、发送波束组、接收波束组、发送波束索引、接收波束索引、发送波束组索引、接收波束组索引。
在一示例性实施方式中,本实施例的方法还可以包括:S42、接收N个波束信息对应的F个信道状态信息;其中,F为正整数。示例性地,信道状态信息中可以包括以下至少之一:参考信号接收功率(RSRP)、差分RSRP、信道状态信息-参考信号资源指示(CRI)、同步信号块资源指示(SSBRI)、预编码矩阵指示(PMI)、信道秩指示(RI)、信道质量指示(CQI)、层指示(LI)、L1-SINR、差分L1-SINR。
在一示例性实施方式中,F个信道状态信息根据F个信道状态信息参考资源获取。示例性地,第i个信道状态信息参考资源所对应的时隙为n1+k_i,其中,n1为第一个CSI报告对应的信道状态信息参考资源对应的时隙,n1和k_i为正整数,且k_i小于或等于k_j,i小于j,且i、j均为大于0且小于或等于F的正整数,或i、j均为大于或等于0且小于或等于F-1的正整数。
在一示例性实施方式中,本实施例的方法还可以包括:接收N的取值以及 N个波束信息的使用时刻,根据接收的所述N的取值或N个波束信息的使用时刻,确定所述N的取值以及N个波束信息的取值。
在一示例性实施方式中,本实施例的方法还可以包括:通过高层和物理层信令中的至少一项指示所述N个波束信息。一个示例如下:高层信令RRC可以包括一个TCI状态列表,TCI状态列表包括N0个TCI状态,N0个TCI状态中的N4个TCI状态对应一个QCL-Type D的取值,每个QCL Type D对应一个发送波束和/或接收波束。或者,高层信令可以包括N0=N4个QCL Type D的指示,每个QCL Type D对应一个发送波束和/或接收波束,可以通过MAC CE从N4个TCI信令中选择N5个TCI状态进行指示,或者通过MAC CE从N4个TCI状态中选择N5个TCI状态组合成一个TCI状态集合,所述TCI状态集合中包括至少N4个参考信号以及N4个QCL Type的取值,其中,N0,N4,N5为正整数,且N5小于或等于N4,N4小于或等于N0。
通过一个物理层信令,所述物理层信令包括1个TCI域,每个TCI域指示N6个TCI状态,N6个TCI状态中的N7个TCI状态对应一个QCL-Type D的取值,每个QCL Type D对应一个发送波束和/或接收波束,即一个TCI指示至少一个TCI状态,每个TCI状态对应一个或者两个参考导频以及QCL type的取值。或者通过多个物理层信令,每个物理层信令包括一个TCI域,每个TCI域指示一个TCI状态,每个TCI状态对应一个或者两个参考导频以及QCL type的取值。其中,N6大于或等于N7,N7大于N。
关于本实施例的相关说明可以参照图4对应实施例的相关描述,故于此不再赘述。
实施例一
图6为本申请实施例提供的信息反馈方法的一种示例性实施示意图。在示例性实施例应用在一个包括至少一个终端(或者用户)和一个基站的系统中,这个系统中的基站和终端都可能有多于一个的端口或者天线。如图6所示,本示例性实施例包括以下处理:
S101、终端获取参考时间之后的K个位置信息;其中,K为大于或等于1的整数。
参考时间之后的K个位置信息可以指当前时刻后未来的K个时刻对应的K个位置信息。
位置信息可以包括但不限于以下之一:参考信号时间不同(Reference Signal Time Difference,RSTD)、到达相关时间(Relative Time Of Arrival,RTOA)、到达角(Angle of Arrival,AoA)、离开角(Angle Of Departure,AOD)、ZOD (Zenith angle Of Departure)、ZOA(Zenith angle Of Arrival)、接收传输时间不同(Rx-Tx time difference)、物理位置笛卡尔坐标(x,y,z)、极坐标(r,a,b)、移动速度、移动速度的方向、移动加速度、移动加速度的方向,k阶加速度,k阶加速度方向,这里,k=1阶加速度表示加速度,它是移动速度的导数,而k+1阶加速度表示k阶加速度的导数,k=1,…,K1,K1为大于或等于1的整数,K1的值可以是第二通信节点配置的,也可以是第一通信节点和第二通信节点约定的;其中,x、y、z是实数,r是真实数,a、b是水平角度和垂直角度。
在一种示例中,利用人工智能(Artificial Intelligence,AI)的深度学习技术,终端可以预测未来L个时刻的位置信息,比如根据K个位置信息的获得用户的可能移动轨迹,并通过线性平均或者线性加权平均或者其他的方式拟合出新的L个地理位置信息,也可以通过人工智能学习方式预测用户可能的运动轨迹,并根据所述运动轨迹结合实际的地图信息获得相应新的L个位置信息。
S102、终端向基站反馈上述K个位置信息。
在一种示例中,终端还可以执行以下S103和S104。
S103、终端根据上述K个位置信息,获取K个位置信息对应的N个波束信息。其中,N为正整数,且N大于或等于K。
波束信息可以包括以下至少之一:到达角(angle Of Arrival,AOA)、离开角(angle Of Departure,AOD)、ZOD(Zenith angle Of Departure)、ZOA(Zenith angle Of Arrival)、离散傅里叶变化(Discrete Fourier Transformation,DFT)矢量、码本中的码字、发送波束、接收波束、发送波束组、接收波束组、发送波束索引、接收波束索引、发送波束组索引、接收波束组索引。
在一示例中,终端可以反馈N个波束信息对应的RSRP、SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)、差分RSRP、差分SINR。
示例性地,N个波束信息可以是相邻的波束,比如,两个波束(第i个波束和第i+1个波束)对应的索引是相邻的,或者,两个波束对应的角度是相邻的,或者,两个波束对应的资源索引是相邻的,或者,两个波束对应的向量相关性大于门限值c1,或者,两个波束对应的向量距离小于门限值c2;其中,c1和c2为大于0且小于1的实数。
所述波束是相邻的,所以可以基于以下之一反馈来减小反馈开销:
反馈第一个波束对应的RSRP,以及第一个波束外其它波束对应的RSRP相对于第一个波束对应的RSRP的差分值(差分RSRP)。
反馈第一个波束对应的SINR,以及第一个波束外其它波束对应的RSRP相对于第一个波束对应的SINR的差分值(差分SINR)。
反馈或者指示一个波束信息索引和N-1个相对于这个波束信息索引的差分索引,这里波束信息索引包括至少以下之一:CRI、SSBRI、beam标识(Identifier,ID),波束组ID、AOA对应的索引,AOD对应的索引,ZOA对应的索引,AOD对应的索引,TCI状态索引。比如,反馈或者指示第一个波束索引,以及N-1个第一个波束信息外其它波束信息对应的索引相对于第一个波束信息对应的索引的差分值(差分索引)。
反馈或者指示N个波束信息索引集合,所述波束信息索引集合包括至少以下之一索引的集合:CRI、SSBRI、beam ID,波束组ID、AOA对应的索引,AOD对应的索引,ZOA对应的索引,AOD对应的索引,TCI状态索引;所述N个波束信息索引集合中的第i个波束信息索引集合包括的波束信息索引与第i+1个波束信息索引集合包括的波束信息有至少一个相同的波束信息索引,i=1,…,N。
S104、终端向基站反馈N个波束信息。
在一示例中,终端还可以执行S105和S106。
S105、终端根据N个波束信息获取F个信道状态信息;信道状态信息可以包括以下至少之一参数:RI、CRI、PMI、LI、CQI。
由于N个波束信息是相邻的,因此,F个信道状态信息有一定的相关性。比如以下至少之一:两个PMI对应的预编码距离小于一个门限值a1,两个PMI对应的预编码相关性大于某个门限值a2,两个RI对应的索引差的绝对值小于门限值a3,两个CQI对应的索引差绝对值小于门限值a4,这里,a1、a2、a3、a4为正实数。
S106、终端向基站反馈所述F个信道状态信息。
本申请实施例对于上述步骤顺序并不限定。例如,终端可以在获取位置信息和对应的波束信息之后,一并反馈位置信息和波束信息。或者,终端可以在获取位置信息、对应的波束信息以及信道状态信息之后一并进行反馈。
实施例二
图7为本申请实施例提供的信息反馈方法的另一种示例性实施示意图。本示例性实施例应用在一个包括至少一个终端(或者用户)和一个基站的系统中,这个系统中的基站和终端都可能有多于一个的端口或者天线。如图7所示,本示例性实施例包括以下处理:
S201、基站获取参考时间之后的K个位置信息;其中,K为正整数。
基站可以通过接收终端反馈的K个位置信息来获取所述K个位置信息;或者,也可以通过上行信道信息自己获取所述K个位置信息。
参考时间之后的K个位置信息可以指当前时刻后未来的K个时刻对应的K个位置信息。
位置信息包括但不限于以下之一:参考信号时间不同(Reference Signal Time Difference,RSTD)、到达相关时间(Relative Time Of Arrival,RTOA)、到达角(Angle of Arrival,AoA)、离开角(Angle Of Departure,AOD)、ZOD(Zenith angle Of Departure)、ZOA(Zenith angle Of Arrival)、接收传输时间不同(Rx-Tx time difference)、物理位置笛卡尔坐标(x,y,z)、极坐标(r,a,b)、移动速度、移动速度的方向、移动加速度、移动加速度的方向,k阶加速度,k阶加速度方向,这里,k=1阶加速度表示加速度,它是移动速度的导数,而k+1阶加速度表示k阶加速度的导数,k=1,…,K,K为大于或等于1的整数,K的值可以是第二通信节点配置的,也可以是第一通信节点和第二通信节点约定的;其中,x、y、z是实数,r是真实数,a、b是水平角度和垂直角度。
在一种示例中,利用人工智能(Artificial Intelligence,AI)的深度学习技术,终端预测未来L个时刻的位置信息,比如根据K个位置信息的获得用户的可能移动轨迹,并通过线性平均或者线性加权平均或者其他的方式拟合出新的L个地理位置信息,也可以通过人工智能学习方式预测用户可能的运动轨迹,并根据所述运动轨迹结合实际的地图信息获得相应新的L个位置信息,或者,通过K个移动速度和/或K个K阶加速度预测用户的新的L个位置信息。
在一示例中,基站还可以执行S202。
S202、基站接收终端反馈的N个波束信息。其中,N为正整数,且N大于或等于K。
所述波束信息可以包括以下至少之一:到达角(angle Of Arrival,AOA)、离开角(angle Of Departure,AOD)、ZOD(Zenith angle Of Departure)、ZOA(Zenith angle Of Arrival)、离散傅里叶变化(Discrete Fourier Transformation,DFT)矢量、码本中的码字、发送波束、接收波束、发送波束组、接收波束组、发送波束索引、接收波束索引、发送波束组索引、接收波束组索引。
示例性地,基站可以接收终端反馈的N个波束信息对应的RSRP、SINR、差分RSRP、差分SINR。
示例性地,N个波束信息是相邻的波束,比如,两个波束(第i个波束和第i+1个波束)对应的索引是相邻的,或者两个波束对应的角度是相邻的,或者两个波束对应的资源索引是相邻的,或者两个波束对应的向量相关性大于门限值c1,或者两个波束对应的向量距离小于门限值c2,其中,c1和c2为大于0且小于1的实数。
所述波束是相邻的,所以可以基于以下之一接收来减小信令开销:
接收第一个波束对应的RSRP,以及第一个波束外其它波束对应的RSRP相对于第一个波束对应的RSRP的差分值(差分RSRP)。
接收第一个波束对应的SINR,以及第一个波束外其它波束对应的RSRP相对于第一个波束对应的SINR的差分值(差分SINR)。
接收第一个波束对应的索引,以及第一个波束外其它波束对应的索引相对于第一个波束对应的索引的差分值(差分索引),这里索引包括至少以下之一:CRI、SSBRI、beam ID,波束组ID、AOA对应的索引,AOD对应的索引,ZOA对应的索引,AOD对应的索引。
在一示例性实施方式中,基站还可以执行S203。
S203、基站接收终端反馈的F个信道状态信息。
信道状态信息可以包括以下至少之一的参数:RI、CRI、PMI、LI、CQI。
由于N个波束信息是相邻的,因此F个信道状态信息有一定的相关性。比如以下至少之一:两个PMI对应的预编码距离小于一个门限值a1,两个PMI对应的预编码相关性大于某个门限值a2,两个RI对应的索引差的绝对值小于门限值a3,两个CQI对应的索引差绝对值小于门限值a4,这里,a1、a2、a3、a4为正实数。
S204、基站根据F个信道状态信息以及K个位置信息,获取L个新的信道状态信息。其中,N、K、F、L为大于或等于1的整数。
比如,通过位置信息,预测未来UE可能的运行轨迹,从而获得未来L个位置信息,通过所述L个位置信息确定基站和终端的L个方向信息,从而根据这L个方向信息拟合出新的L个预编码矩阵,以及新的L个CRI、CQI。
基站可以采用所述新的L个信道状态信息对终端进行资源调度和波束管理。
一些示例如下:通过K个位置信息获取这K个位置信息的地理坐标,并根据地理坐标通过人工智能的深度学习算法拟合出L个新的地理位置信息,比如通过线性拟合(或加权拟合)的方法,或者通过深度学习的方式研究位置间的相关性,从而根据这些位置的相关性得到L个新的地理位置,并利用所述L个新的地理位置信息和本文前面的实施例的方法获得的L个波束信息,利用所述的L个波束信息和/或接收的N个波束信息一起确定未来一段时间的波束管理使用的波束。或者,根据所述的L个波束信息和/或接收的N个波束信息获得L个新的预编码矩阵,比如,所述预编码矩阵对应的同一个极化方向天线对应的矢量与所述的波束信息对应的矢量的相关性大于某个门限值或者距离小于门限值 的码字。并可以利用新的L个预编码矩阵计算新的CQI、RI等信息,从而利用新的L个CSI和/或N个接收的CSI对用户进行资源分配以及优先级调度。一个应用场景比如在高速公路或者铁路上移动的用户,由于运动轨迹是近乎直线的,只要知道移动速度和/或加速度就可以推测下K个时刻的位置信息;从而可以根据这些位置信息获得基站与终端的波束方向信息,从而根据可以根据波束方向信息确定CSI信息。
实施例三
本实施例应用在一个包括至少一个终端(或者用户)和一个基站的系统中,这个系统中的基站和终端都可能有多于一个的端口或者天线。在本实施例中,终端可以通过如下的方法提高系统的性能:
S301、终端获取参考时间之后的N个波束信息。
参考时间之后的N个波束信息可以指当前时刻之后的未来的K个时刻对应的N个波束信息;其中,K和N均为正整数,且N大于或等于K。
示例性地,终端可以向基站反馈N个波束信息对应的RSRP、SINR、差分RSRP、差分SINR。
示例性地,N个波束信息是相邻的波束。
示例性地,终端可以通过下行信道信息确定N个波束信息。
示例性地,终端可以通过接收基站的高层信令和物理层信令中的至少一项,获得N个波束信息。其中,一个示例如下:高层信令RRC可以包括一个TCI状态列表,TCI状态列表包括N0个TCI状态,N0个TCI状态中的N4个TCI状态对应一个QCL-Type D的取值,每个QCL Type D对应一个发送波束和/或接收波束。或者,高层信令可以包括N0=N4个QCL Type D的指示,每个QCL Type D对应一个发送波束和/或接收波束,可以通过MAC CE从N4个TCI信令中选择N5个TCI状态进行指示,或者通过MAC CE从N4个TCI状态中选择N5个TCI状态组合成一个TCI状态集合,所述TCI状态集合中包括至少N4个参考信号以及N4个QCL Type的取值,其中,N0,N4,N5为正整数,且N5小于或等于N4,N4小于或等于N0。
通过一个物理层信令,所述物理层信令包括1个TCI域,每个TCI域指示N6个TCI状态,N6个TCI状态中的N7个TCI状态对应一个QCL-Type D的取值,每个QCL Type D对应一个发送波束和/或接收波束,即一个TCI指示至少一个TCI状态,每个TCI状态对应一个或者两个参考导频以及QCL type的取值。或者通过多个物理层信令,每个物理层信令包括一个TCI域,每个TCI域指示一个TCI状态,每个TCI状态对应一个或者两个参考导频以及QCL type的取值。 其中,N6大于或等于N7,N7大于N。
S302、终端用所述N个波束信息传输数据或者信号。
所述数据可以包括物理上行共享信道,所述信号可以包括SRS、DMRS(Demodulation Reference Signal,解调参考信号)等。
本实施例中,终端通过与基站约定的方式在一个时刻用所述N个波束中的一个波束发送数据或者信号。比如,按N个波束的索引排序,轮询地在当前时刻后的第i+k*N个时刻用第i个波束发送数据或者信号。比如,按N个波束对应的RSRP排序,轮询地在当前时刻后的第i+k*N个时刻用第i个波束发送数据或者信号。比如,按N个波束对应的SINR排序,轮询地在当前时刻后的第i+k*N个时刻用第i个波束发送数据或者信号。这里,i=1,…,N,k为大于或等于0的整数。或者,终端通过物理上行共享信道或者物理上行控制信道反馈终端确定的所述N个波束的使用时间和/或N的取值。
在本实施例中,在基站侧,基站可以通过如下方式接收或者发送数据信息或者信号:
S303、基站获取N个波束信息。
示例性地,基站可以通过高层信令和物理层信令中的至少一项指示N个波束信息。
本实施例中,终端可以通过与基站约定的方式在一个时刻用所述N个波束中的一个波束发送数据或者信号。比如,按N个波束的索引排序,轮询地在当前时刻后的第i+k*N个时刻用第i个波束发送数据或者信号。比如,按N个波束对应的RSRP排序,轮询地在当前时刻后的第i+k*N个时刻用第i个波束发送数据或者信号。比如,按N个波束对应的SINR排序,轮询地在当前时刻后的第i+k*N个时刻用第i个波束发送数据或者信号。这里,i=1,…,N,k为大于或等于0的整数。或者,通过接收物理上行共享信道或者物理上行控制信道反馈的所述N个波束的使用时间和/或N的取值。
S304、基站用N个波束信息对应的接收波束信息接收数据或者信号。
所述数据包括物理上行共享信道,所述信号包括SRS、DMRS等。
实施例四
本实施例应用在一个包括至少一个终端(或者用户)和一个基站的系统中,这个系统中的基站和终端都可能有多于一个的端口或者天线。在本实施例中,F个信道状态信息根据F个信道状态信息参考资源获取,F个信道状态信息参考资源所对应的时隙为n1+k_1,n1+k_2,n1+k_3,...,n1+k_F,其中,n1,k_1,k_2, k_3,...,k_F为正整数,且k_1≤k_2≤...≤k_F,其中,n1为第一个CSI报告的CSI reference resource对应的时隙,n1=n-n ref
Figure PCTCN2020085599-appb-000008
n’为CSI上报时隙,μ DL和μ UL分别为上下行载波间距;n,n ref,k_i,F为正整数,且k_i≤k_j,这里,i<j;i,j=1,…,F或者i,j=0,…,F-1。n ref为根据以下方式之一确定的值:
当CSI报告为周期或半持续报告且只有一个CSI-RS resource被配置为信道测量时,n ref取值满足:使得n1=n-n ref是一个有效的下行子帧的最小的且大于或等于
Figure PCTCN2020085599-appb-000009
当CSI报告为周期或半持续报告且有大于一个CSI-RS resource被配置为信道测量,那么n ref取值满足:使得n1=n-n ref是一个有效的下行子帧的最小的且大于或等于
Figure PCTCN2020085599-appb-000010
当CSI报告为非周期报告时,n ref取值满足,n-n ref为触发CSI报告的时隙,或者,当CSI报告为非周期报告时,使得n1=n-n ref是一个有效的下行子帧的最小的且大于或等于
Figure PCTCN2020085599-appb-000011
这里Z’表示信道测量资源的最后一个符号到承载CSI report资源的第一个符号的最小时延要求;
Figure PCTCN2020085599-appb-000012
表示一个时隙里的符号个数;
Figure PCTCN2020085599-appb-000013
表示向下取整。
图8为本申请实施例提供的一种信息反馈装置的示意图。如图8所示,本实施例提供的信息反馈装置,可以应用于第一通信节点(比如,终端设备),包括:第一获取模块801,适于获取参考时间之后的K个位置信息;第一反馈模块802,适于反馈所述K个位置信息;其中,K为正整数。
在一示例性实施方式中,第一获取模块801还适于获取K个位置信息对应的N个波束信息;第一反馈模块802还适于反馈或指示N个波束信息;其中,N为正整数,且N大于或等于K。
在一示例性实施方式中,第一获取模块801还适于根据所述K个位置信息和N个波束信息中的至少一项,获取F个信道状态信息;第一反馈模块802还适于反馈F个信道状态信息;其中,N、F为正整数,且N、F大于或等于K。
在一示例性实施方式中,K个位置信息的反馈时间间隔、测量时间间隔、反馈时间、测量时间中的至少一项由波束信息和信道状态信息中的至少一项确定。
在一示例性实施方式中,K个位置信息中相邻的两个位置信息对应的两个信道状态信息具有相关性。
在一示例性实施方式中,所述K个位置信息中相邻的两个位置信息对应的两个波束信息具有相关性。示例性地,所述两个波束信息具有相关性包括以下至少之一:所述两个波束信息对应的波束索引是相邻的;所述两个波束信息对应的角度是相邻的;所述两个波束信息对应的资源索引是相邻的;所述两个波束信息对应的向量相关性大于第一门限值;所述两个波束信息对应的向量距离小于第二门限值。
关于本实施例提供的信息反馈装置的相关说明可以参照上述图2所示的第一通信节点侧的信息反馈方法实施例,故于此不再赘述。
图9为本申请实施例提供的一种信息接收装置的示意图。如图9所示,本实施例提供的信息接收装置,应用于第二通信节点(比如,基站),包括:接收模块901,适于接收K个位置信息,其中,所述K个位置信息为参考时间之后的K个位置信息,K为正整数。
在一示例性实施方式中,接收模块901还适于接收所述K个位置信息对应的N个波束信息;其中,N为正整数,且N大于或等于K。
在一示例性实施方式中,接收模块901还适于接收F个信道状态信息,其中,所述F个信道状态信息由所述K个位置信息和N个波束信息中的至少一项确定,F为正整数。
在一示例性方式中,K个位置信息的接收时间间隔由波束信息和信道状态信息中的至少一项确定。
在一示例性实施方式中,所述K个位置信息中相邻的两个位置信息对应的两个信道状态信息具有相关性。
在一示例性实施方式中,所述K个位置信息中相邻的两个位置信息对应的两个波束信息具有相关性。示例性地,所述两个波束信息具有相关性包括以下至少之一:所述两个波束信息对应的波束索引是相邻的;所述两个波束信息对应的角度是相邻的;所述两个波束信息对应的资源索引是相邻的;所述两个波束信息对应的向量相关性大于第一门限值;所述两个波束信息对应的向量距离小于第二门限值。
在一示例性实施方式中,本实施例的信息接收装置还可以包括:第一处理模块902,适于执行以下至少之一:利用所述K个位置信息以及F个信道状态信息确定L个新的信道状态信息,其中,K、N、F、L为正整数;利用所述K个位置信息、N个波束信息、F个信道状态信息确定L个新的信道状态信息,其中,K,N,F,L为正整数;利用所述N个波束信息、F个信道状态信息确定L个新的信道状态信息,其中,N,F,L为正整数。
关于本实施例提供的信息接收装置的相关说明可以参照上述第二通信节点侧的信息接收方法实施例,故于此不再赘述。
图10为本申请实施例提供的另一种信息反馈装置的示意图。如图10所示,本实施例提供的信息反馈装置,可以应用于第一通信节点(比如,终端设备),包括:第二获取模块1001,适于获取参考时间点之后的N个波束信息;第二反馈模块1002,适于反馈或指示所述N个波束信息,其中,N为正整数。
在一示例性实施方式中,所述N个波束信息通过所述参考时间之后的K个位置信息获取。
在一示例性实施方式中,所述N个波束信息通过接收高层信令和物理层信令中的至少一项获取。
在一示例性实施方式中,第二获取模块1001还适于获取N个波束信息对应的F个信道状态信息;第二反馈模块1002还适于反馈所述F个信道状态信息。
在一示例性实施方式中,所述F个信道状态信息根据F个信道状态信息参考资源获取。其中,第i个信道状态信息参考资源所对应的时隙为n1+k_i,其中,n1为第一个CSI报告对应的信道状态信息参考资源对应的时隙,n1和k_i为正整数,且k_i小于或等于k_j,i小于j,且i、j均为大于0且小于或等于F的正整数,或i、j均为大于或等于0且小于或等于F-1的正整数。
在一示例性实施方式中,本实施例提供的装置还可以包括:确定模块,适于确定N的取值以及N个波束信息的取值。示例性地,第二反馈模块1002,还适于反馈所述N的取值或N个波束信息的使用时刻。
关于本实施例提供的信息反馈装置的相关说明可以参照上述图4所示的第一通信节点侧的信息反馈方法实施例,故于此不再赘述。
图11为本申请实施例提供的信息获取装置的示意图。如图11所示,本实施例提供的信息获取装置,应用于第二通信节点(比如,基站),包括:第三获取模块1101,适于通过接收或者自身确定的方式获取N个波束信息,其中,N为正整数。
在一示例性实施方式中,第三获取模块1101还适于接收N个波束信息对应的F个信道状态信息,F为正整数。
在一示例性实施方式中,F个信道状态信息根据F个信道状态信息参考资源获取。其中,第i个信道状态信息参考资源所对应的时隙为n1+k_i,其中,n1为第一个CSI报告对应的信道状态信息参考资源对应的时隙,n1和k_i为正整数,且k_i小于或等于k_j,i小于j,且i、j均为大于0且小于或等于F的正整数,或i、j均为大于或等于0且小于或等于F-1的正整数。
在一示例性实施方式中,第三获取模块1101,还适于接收所述N的取值或N个波束信息的使用时刻;本实施例提供的信息获取装置还可以包括:第二处理模块1102,适于根据所述接收的所述N的取值或N个波束信息的使用时刻确定所述N的取值以及N个波束信息的取值。
在一示例性实施方式中,本实施例提供的信息获取装置还可以包括:指示模块,适于通过高层信令和物理层信令中的至少一项指示所述N个波束信息。
关于本实施例提供的信息获取装置的相关说明可以参照上述第二通信节点侧的信息获取方法实施例,故于此不再赘述。
本申请实施例还提供一种通信节点,包括:存储器和处理器,所述存储器适于存储计算机程序,所述计算机程序被所述处理器执行时实现上述第一通信节点侧的信息反馈方法,比如图2或图4所示的步骤。
图12为本申请实施例提供的第一通信节点的示意图。如图12所示,在一个示例中,第一通信节点1200(比如,终端)可包括:处理器1210、存储器1220、总线系统1230和收发器1240,其中,该处理器1210、该存储器1220和该收发器1240通过该总线系统1230相连,该存储器1220用于存储指令,该处理器1210用于执行该存储器1220存储的指令,以控制该收发器1240发送信号。上述信息反馈装置中第一反馈模块和第二反馈模块的操作可由收发器在处理器的控制下执行,第一获取模块和第二获取模块的操作可由处理器执行。
处理器1210可以是中央处理单元(Central Processing Unit,为“CPU”),处理器1210还可以是其他通用处理器、数字信号处理器(Digital Signal Process,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器1220可以包括只读存储器和随机存取存储器,并向处理器1210提供指令和数据。存储器1220的一部分还可以包括非易失性随机存取存储器。例如,存储器1220还可以存储设备类型的信息。
总线系统1230除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图12中将各种总线都标为总线系统1230。
在实现过程中,第一通信节点1200所执行的处理可以通过处理器1210中的硬件的集成逻辑电路或者软件形式的指令完成。即本申请实施例所公开的方法的步骤可以体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块 组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等存储介质中。该存储介质位于存储器1220,处理器1210读取存储器1220中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本申请实施例还提供一种通信节点,包括:存储器和处理器,所述存储器适于存储计算机程序,所述计算机程序被所述处理器执行时实现上述第二通信节点侧的信息接收方法或信息获取方法,比如图3或图5所示的步骤。
图13为本申请实施例提供的第二通信节点的示意图。如图13所示,在一个示例中,第二通信节点1300(比如,基站)可包括:处理器1310、存储器1320、总线系统1330和收发器1340,其中,该处理器1310、该存储器1320和该收发器1340通过该总线系统1330相连,该存储器1320用于存储指令,该处理器1310用于执行该存储器1320存储的指令,以控制该收发器1340发送信号。上述信息接收装置中的接收模块、信息获取装置中的第三获取模块的操作可由收发器在处理器的控制下执行,信息接收装置中的第一处理模块、信息获取装置中的第二处理模块的操作可由处理器执行。
关于处理器1310、存储器1320、总线系统1330和收发器1340的相关说明可以参照处理器1210、存储器1220、总线系统1230和收发器1240的相关描述,故于此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如本申请上述实施例所述的任一方法的处理,比如,图2或图4所示的第一通信节点侧的信息反馈方法,或图3所示的第二通信节点侧的信息接收方法,或图5所示的第二通信节点侧的信息获取方法。
上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory, RAM)、只读存储器(Read-Only Memory,ROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (36)

  1. 一种信息反馈方法,包括:
    获取参考时间之后的K个位置信息;
    反馈所述K个位置信息;其中,K为正整数。
  2. 根据权利要求1所述的方法,还包括:
    获取所述K个位置信息对应的N个波束信息;反馈或指示所述N个波束信息;其中,N为正整数,且N大于或等于K。
  3. 根据权利要求2所述的方法,还包括:
    根据所述K个位置信息和所述N个波束信息中的至少之一,获取F个信道状态信息;
    反馈所述F个信道状态信息;其中,F为正整数,且F大于或等于K。
  4. 根据权利要求1所述的方法,其中,所述K个位置信息的反馈时间间隔、测量时间间隔、反馈时间、测量时间中的至少之一由波束信息和信道状态信息中的至少一项确定。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述K个位置信息中相邻的两个位置信息对应的两个信道状态信息具有相关性。
  6. 根据权利要求1至4中任一项所述的方法,其中,所述K个位置信息中相邻的两个位置信息对应的两个波束信息具有相关性。
  7. 根据权利要求6所述的方法,其中,所述两个波束信息具有相关性包括以下至少之一:所述两个波束信息对应的波束索引是相邻的;所述两个波束信息对应的角度是相邻的;所述两个波束信息对应的资源索引是相邻的;所述两个波束信息对应的向量相关性大于第一门限值;所述两个波束信息对应的向量距离小于第二门限值。
  8. 一种信息接收方法,包括:
    接收K个位置信息;其中,所述K个位置信息为参考时间之后的K个位置信息,K为正整数。
  9. 根据权利要求8所述的方法,还包括:
    接收所述K个位置信息对应的N个波束信息;其中,N为正整数,且N大于或等于K。
  10. 根据权利要求9所述的方法,还包括:
    接收F个信道状态信息,其中,所述F个信道状态信息由所述K个位置信 息和所述N个波束信息中的至少之一确定,F为正整数,且F大于或等于K。
  11. 根据权利要求8所述的方法,其中,所述K个位置信息的接收时间间隔由波束信息和信道状态信息中的至少之一确定。
  12. 根据权利要求8至11中任一项所述的方法,其中,所述K个位置信息中相邻的两个位置信息对应的两个信道状态信息具有相关性。
  13. 根据权利要求8至11中任一项所述的方法,其中,所述K个位置信息中相邻的两个位置信息对应的两个波束信息具有相关性。
  14. 根据权利要求13所述的方法,其中,所述两个波束信息具有相关性包括以下至少之一:所述两个波束信息对应的波束索引是相邻的;所述两个波束信息对应的角度是相邻的;所述两个波束信息对应的资源索引是相邻的;所述两个波束信息对应的向量相关性大于第一门限值;所述两个波束信息对应的向量距离小于第二门限值。
  15. 根据权利要求10所述的方法,还包括以下至少之一:
    利用所述K个位置信息以及所述F个信道状态信息,确定L个新的信道状态信息,其中,L为正整数;
    利用所述K个位置信息、所述N个波束信息以及所述F个信道状态信息,确定L个新的信道状态信息,其中,L为正整数;
    利用所述N个波束信息以及所述F个信道状态信息,确定L个新的信道状态信息,其中,L为正整数。
  16. 一种信息反馈方法,包括:
    获取参考时间之后的N个波束信息;
    反馈或指示所述N个波束信息;其中,N为正整数。
  17. 根据权利要求16所述的方法,其中,所述N个波束信息通过所述参考时间之后的K个位置信息获取;其中,K为正整数。
  18. 根据权利要求16所述的方法,其中,所述N个波束信息通过接收高层信令和物理层信令中的至少之一获取。
  19. 根据权利要求16所述的方法,还包括:
    获取所述N个波束信息对应的F个信道状态信息,反馈所述F个信道状态信息,其中,F为正整数。
  20. 根据权利要求19所述的方法,其中,所述F个信道状态信息根据F个信道状态信息参考资源获取。
  21. 根据权利要求20所述的方法,其中,第i个信道状态信息参考资源所对应的时隙为n1+k_i,其中,n1为第一个信道状态信息CSI报告对应的信道状态信息参考资源对应的时隙,n1和k_i为正整数,且k_i小于或等于k_j,i小于j,且i和j均为大于0且小于或等于F的整数,或i和j均为大于或等于0且小于或等于F-1的整数。
  22. 根据权利要求16所述的方法,还包括:确定N的取值以及所述N个波束信息的取值。
  23. 根据权利要求22所述的方法,还包括:反馈所述N的取值或所述N个波束信息的使用时刻。
  24. 一种信息获取方法,包括:
    通过接收或者自身确定的方式获取N个波束信息,其中,所述N个波束信息为参考时间之后的N个波束信息,N为正整数。
  25. 根据权利要求24所述的方法,还包括:
    接收所述N个波束信息对应的F个信道状态信息,其中,F为正整数。
  26. 根据权利要求25所述的方法,其中,所述F个信道状态信息根据F个信道状态信息参考资源获取。
  27. 根据权利要求26所述的方法,其中,第i个信道状态信息参考资源所对应的时隙为n1+k_i,其中,n1为第一个信道状态信息CSI报告对应的信道状态信息参考资源对应的时隙,n1和k_i为正整数,且k_i小于或等于k_j,i小于j,且i和j均为大于0且小于或等于F的整数,或i和j均为大于或等于0且小于或等于F-1的整数。
  28. 根据权利要求24所述的方法,还包括:
    接收N的取值或所述N个波束信息的使用时刻,根据接收的所述N的取值或所述N个波束信息的使用时刻,确定所述N的取值以及所述N个波束信息的取值。
  29. 根据权利要求24所述的方法,还包括:
    通过高层信令和物理层信令中的至少之一指示所述N个波束信息。
  30. 一种信息反馈装置,包括:
    第一获取模块,设置为获取参考时间之后的K个位置信息;
    第一反馈模块,设置为反馈所述K个位置信息;其中,K为正整数。
  31. 一种信息接收装置,包括:
    接收模块,设置为接收K个位置信息;其中,所述K个位置信息为参考时间之后的K个位置信息,K为正整数。
  32. 一种信息反馈装置,包括:
    第二获取模块,设置为获取参考时间点之后的N个波束信息;
    第二反馈模块,设置为反馈或指示所述N个波束信息,其中,N为正整数。
  33. 一种信息获取装置,包括:
    第三获取模块,设置为通过接收或者自身确定的方式获取N个波束信息,其中,所述N个波束信息为参考时间之后的N个波束信息,N为正整数。
  34. 一种通信节点,包括:存储器和处理器,所述存储器设置为存储计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的信息反馈方法,或实现如权利要求16至23中任一项所述的信息反馈方法。
  35. 一种通信节点,包括:存储器和处理器,所述存储器设置为存储计算机程序,所述计算机程序被所述处理器执行时实现如权利要求8至15中任一项所述的信息接收方法,或实现如权利要求24至29中任一项所述的信息获取方法。
  36. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至29中任一项所述的方法。
PCT/CN2020/085599 2019-05-27 2020-04-20 信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质 WO2020238471A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/615,010 US11901990B2 (en) 2019-05-27 2020-04-20 Information feedback method and apparatus, information receiving method and apparatus, information acquisition method and apparatus, communication node and storage medium
EP20812713.4A EP3979669A4 (en) 2019-05-27 2020-04-20 METHOD AND DEVICE FOR INFORMATION FEEDBACK, METHOD AND DEVICE FOR RECEIPT OF INFORMATION, METHOD AND DEVICE FOR CAPTURE OF INFORMATION, AS WELL AS COMMUNICATION NODES AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910448094.1 2019-05-27
CN201910448094.1A CN110536231B (zh) 2019-05-27 2019-05-27 一种信息反馈方法及装置

Publications (1)

Publication Number Publication Date
WO2020238471A1 true WO2020238471A1 (zh) 2020-12-03

Family

ID=68659559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085599 WO2020238471A1 (zh) 2019-05-27 2020-04-20 信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质

Country Status (4)

Country Link
US (1) US11901990B2 (zh)
EP (1) EP3979669A4 (zh)
CN (1) CN110536231B (zh)
WO (1) WO2020238471A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536231B (zh) 2019-05-27 2023-06-20 中兴通讯股份有限公司 一种信息反馈方法及装置
CN113993150B (zh) * 2019-09-19 2023-04-14 Oppo广东移动通信有限公司 波束管理方法及装置、用户设备、芯片及计算机介质
CN111901809A (zh) * 2020-02-13 2020-11-06 中兴通讯股份有限公司 一种定位信息的处理方法、装置及存储介质
CN116918419A (zh) * 2021-01-14 2023-10-20 苹果公司 用于qcl类型d冲突处理的系统和方法
CN113162665B (zh) * 2021-04-02 2022-05-06 中国电子科技集团公司第五十四研究所 一种基于深度学习信道预测的预编码方法
WO2022246632A1 (en) * 2021-05-25 2022-12-01 Qualcomm Incorporated Transmission configuration indicator state applicability prior to acknowledgement
WO2023012996A1 (ja) * 2021-08-05 2023-02-09 株式会社Nttドコモ 端末、無線通信方法及び基地局
CN115988520A (zh) * 2021-10-15 2023-04-18 维沃软件技术有限公司 定位方法、终端及网络侧设备
CN116488747A (zh) * 2022-01-14 2023-07-25 维沃移动通信有限公司 信息交互方法、装置及通信设备
CN116828497A (zh) * 2022-03-21 2023-09-29 维沃移动通信有限公司 信道特征信息传输方法、装置、终端及网络侧设备
CN115280827A (zh) * 2022-06-22 2022-11-01 北京小米移动软件有限公司 空口处理方法及装置、存储介质
WO2024036586A1 (en) * 2022-08-19 2024-02-22 Qualcomm Incorporated Signaling for random measurement beam patterns for beam measurement predictions
WO2024065239A1 (en) * 2022-09-28 2024-04-04 Qualcomm Incorporated Hierarchical channel measurement resource beam shape indication for ue based predictive beam measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301505A (zh) * 2015-05-14 2017-01-04 株式会社Ntt都科摩 信息发送方法、波束测量方法、移动台和基站
CN108111278A (zh) * 2017-08-11 2018-06-01 中兴通讯股份有限公司 信息上报方法及装置、信息传输的方法及装置
CN108282321A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
CN109120315A (zh) * 2018-06-26 2019-01-01 南京邮电大学 基于移动场景下波束域信道矩阵的自适应降维方法
CN110536231A (zh) * 2019-05-27 2019-12-03 中兴通讯股份有限公司 一种信息反馈方法及装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785852B1 (ko) * 2006-06-26 2007-12-14 한국전자통신연구원 직교 주파수 분할 다중 접속 기반 무선 통신 시스템에서의전송효율 최대화를 위한 서브채널 할당 및 고정빔 형성전송 방법 및 장치
US8452301B2 (en) * 2010-03-08 2013-05-28 Nokia Corporation Method and apparatus for selecting a coding format
US8681651B2 (en) * 2010-11-05 2014-03-25 Qualcomm Incorporated Reference signal reception and channel state information determination for multiple nodes in a wireless communication network
EP2688330B1 (en) * 2012-07-17 2014-06-11 Alcatel Lucent Method for interference reduction in a radio communication system, processing unit, and wireless access network node thereof
US9998202B2 (en) * 2013-03-15 2018-06-12 Smartsky Networks LLC Position information assisted beamforming
KR20140126555A (ko) * 2013-04-23 2014-10-31 삼성전자주식회사 빔포밍 통신시스템의 피드백 정보 송수신 방법 및 장치
CN104184537B (zh) * 2013-05-21 2019-05-31 上海朗帛通信技术有限公司 一种移动通信系统中的信道信息反馈方法和装置
US20150038140A1 (en) * 2013-07-31 2015-02-05 Qualcomm Incorporated Predictive mobility in cellular networks
EP3145241A4 (en) * 2014-06-03 2017-06-07 Huawei Technologies Co. Ltd. Communication method in heterogeneous network, macro base station, micro base station, and user equipment
WO2016023227A1 (zh) * 2014-08-15 2016-02-18 富士通株式会社 资源配置方法、装置以及通信系统
US20160191201A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Method and apparatus for transmitting channel quality indicator information of beams in communication system
CN107431522B (zh) 2015-04-10 2021-03-16 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
US20160380820A1 (en) * 2015-06-29 2016-12-29 Microsoft Technology Licensing, Llc Reconfiguring Wireless Networks By Predicting Future User Locations and Loads
EP3369223B1 (en) * 2015-10-30 2022-02-02 Intel Corporation Latency reduction for wireless data transmission
US10958404B2 (en) * 2015-11-06 2021-03-23 Qualcomm Incorporated Discovery reference signal configuration and scrambling in licensed-assisted access
EP3217754B1 (en) * 2016-03-11 2020-02-12 ASUSTek Computer Inc. Method and apparatus for assisting data transmission in a wireless communication system
US10863474B2 (en) * 2016-10-21 2020-12-08 Qualcomm Incorporated Millimeter-wavelength network map for use in a beamforming procedure
CN108288991B (zh) * 2017-01-09 2023-05-09 中兴通讯股份有限公司 波束信息、配置信息的反馈方法及装置
CN108696889B (zh) 2017-03-30 2021-09-10 财团法人工业技术研究院 波束测量和反馈的方法及使用所述方法的基站与用户设备
WO2018199135A1 (ja) * 2017-04-28 2018-11-01 株式会社Nttドコモ 無線基地局
US10644397B2 (en) * 2017-06-30 2020-05-05 Intel Corporation Methods, apparatus and systems for motion predictive beamforming
CN109392123A (zh) * 2017-08-10 2019-02-26 株式会社Ntt都科摩 波束选择方法、基站和用户设备
CN109391296A (zh) * 2017-08-11 2019-02-26 索尼公司 用于无线通信的电子设备、方法和介质
WO2019061253A1 (en) * 2017-09-29 2019-04-04 Qualcomm Incorporated BEAM MANAGEMENT TECHNIQUES IN WIRELESS COMMUNICATIONS
US11258524B2 (en) * 2018-06-28 2022-02-22 Qualcomm Incorporated Predictive link adaptation for V2X communications
CN111954309A (zh) * 2019-05-17 2020-11-17 株式会社Ntt都科摩 终端和基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301505A (zh) * 2015-05-14 2017-01-04 株式会社Ntt都科摩 信息发送方法、波束测量方法、移动台和基站
CN108282321A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
CN108111278A (zh) * 2017-08-11 2018-06-01 中兴通讯股份有限公司 信息上报方法及装置、信息传输的方法及装置
CN109120315A (zh) * 2018-06-26 2019-01-01 南京邮电大学 基于移动场景下波束域信道矩阵的自适应降维方法
CN110536231A (zh) * 2019-05-27 2019-12-03 中兴通讯股份有限公司 一种信息反馈方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Physical layer procedure for NR positioning", 3GPP TSG RAN WG1 MEETING #96B R1-1904006, 12 April 2019 (2019-04-12), XP051707082, DOI: 20200706152943A *
See also references of EP3979669A4
ZTE ET AL.: "NR positioning measurements", 3GPP TSG RAN WG1 MEETING #97 R1-1906426, 17 May 2019 (2019-05-17), XP051727876, DOI: 20200706153032 *

Also Published As

Publication number Publication date
US20220231741A1 (en) 2022-07-21
US11901990B2 (en) 2024-02-13
CN110536231B (zh) 2023-06-20
EP3979669A4 (en) 2023-05-31
CN110536231A (zh) 2019-12-03
EP3979669A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2020238471A1 (zh) 信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质
US11283503B2 (en) Communication method and communications apparatus
US10939315B2 (en) Channel state information (CSI) obtaining method and apparatus
CN111314952B (zh) 一种测量上报的方法及装置
US11671161B2 (en) System and method for allocating resources
US20200014455A1 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
EP4138492A1 (en) Mechanism for beam reciprocity determination and uplink beam management
EP2842236B1 (en) Configuring channel-state feedback resources
CN111278023B (zh) 一种通信方法及设备
JP2022551506A (ja) チャネル情報の決定方法、ネットワーク機器及び端末機器
CN108631891B (zh) 通信节点间链路的测量方法及装置
CN108282807B (zh) 信道质量信息的测量、选择和上报方法及装置
CN114258640A (zh) 用于csi反馈的方法、设备和计算机存储介质
WO2021213656A1 (en) Inter-transmission layer interference tracking for multi-transmission/reception points
CN114499786B (zh) 一种信号传输方法及装置
CN114071503B (zh) 下行定位参考信号收发方法、终端、基站、设备及装置
CN117044139A (zh) 一种基于波束的通信方法以及相关装置
WO2018176328A1 (zh) 一种用户设备、基站中的被用于多天线传输的方法和装置
US20240056858A1 (en) Phase continuity handling for a ue csi report of time domain channel properties measurements
WO2023202659A1 (zh) 信息传输方法、装置及通信设备
WO2024031685A1 (en) Reporting channel impulse responses of multiple beams for spatial analysis by machine learning
CN109417753A (zh) 传输信号的方法、终端设备和网络设备
CN116980096A (zh) 信息传输方法、装置、终端、网络侧设备及介质
WO2024072270A1 (en) Uplink beam management for enabling simultaneous transmission or reception from multiple antenna panels
CN117955595A (zh) 信道状态信息报告配置的传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020812713

Country of ref document: EP

Effective date: 20220103