WO2018176328A1 - 一种用户设备、基站中的被用于多天线传输的方法和装置 - Google Patents

一种用户设备、基站中的被用于多天线传输的方法和装置 Download PDF

Info

Publication number
WO2018176328A1
WO2018176328A1 PCT/CN2017/078806 CN2017078806W WO2018176328A1 WO 2018176328 A1 WO2018176328 A1 WO 2018176328A1 CN 2017078806 W CN2017078806 W CN 2017078806W WO 2018176328 A1 WO2018176328 A1 WO 2018176328A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless signal
information
sub
configuration information
signaling
Prior art date
Application number
PCT/CN2017/078806
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to PCT/CN2017/078806 priority Critical patent/WO2018176328A1/zh
Priority to CN201780083600.0A priority patent/CN110268638B/zh
Priority to CN202211657844.4A priority patent/CN115987354A/zh
Priority to CN202211663745.7A priority patent/CN115884380A/zh
Publication of WO2018176328A1 publication Critical patent/WO2018176328A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to a transmission method and apparatus in a wireless communication system, and more particularly to a method and apparatus for multi-antenna transmission.
  • the base station configures a plurality of information related to physical layer transmission for the UE (User Equipment) through RRC (Radio Resource Control) signaling, for example, TM (Transmission Mode), DMRS (Demodulation Reference Signal) configuration, SRS (Sounding Reference Signal) configuration, PUCCH (Physical Uplink Control Channel) , CSI-RS (Channel State Information-Reference Signal) configuration, TPC (Transmission Power Control) configuration, and the like.
  • RRC Radio Resource Control
  • TM Transmission Mode
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • PUCCH Physical Uplink Control Channel
  • CSI-RS Channel State Information-Reference Signal
  • TPC Transmission Power Control
  • part of the physical layer transmission requires not only RRC signaling to configure multiple candidate information, but also DCI (Downlink Control Information) signaling to indicate one candidate information from the configured multiple candidate information to complete the last. Operation, such as reporting of A-CSI (Aperiodic CSI) in a CA (Carrier Aggregation) scenario.
  • A-CSI Aperiodic CSI
  • CA Carrier Aggregation
  • the base station will transmit downlink control channels and downlink data channels on multiple transmit beams (Tx-Beam).
  • Tx-Beam transmit beams
  • the UE will also be in multiple receive beams.
  • the downlink control channel and the downlink data channel are detected on (Rx-Beam). Due to UE mobility, Rotation, and transmission path blocking, the UE may switch between multiple Tx-Beam or multiple Rx-Beams to obtain better reception quality, especially control signaling. The quality of reception.
  • RRC signaling There will be problems with the configuration of RRC signaling.
  • One solution is to configure different RRC signaling for different beams.
  • the present invention provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the user equipment of the present application may be applied to a base station, and vice versa.
  • the invention discloses a method in a user equipment used for wireless communication, which comprises the following steps:
  • Step B Receive a second wireless signal.
  • the first wireless signal includes K configuration information
  • the second wireless signal includes first signaling.
  • the configuration information includes an information index and Q sub-information.
  • the first signaling includes Q bit fields, and the Q sub-informations in the first configuration information are respectively in one-to-one correspondence with the Q bit fields in the first signaling.
  • the bit field includes a positive integer number of bits, and the Q bit fields in the first signaling indicate a candidate configuration from a plurality of candidate configurations configured by the corresponding sub information.
  • the Q is a positive integer.
  • the first configuration information is one of the K configuration information.
  • the first index in the first configuration information is related to a first antenna port group, and an antenna port for transmitting the second wireless signal and an antenna port in the first antenna port group are semi-co-located
  • the first index in the first configuration information is related to a first vector group, the first vector group being used for multi-antenna reception of the second wireless signal.
  • the foregoing method is characterized in that: the K configuration information is for K beams, the K beams correspond to K transmit beams of the base station, or the K beams correspond to K receive of the user equipment. Beam.
  • the Q sub-information corresponds to different configuration information of the Q class, such as configuration information of a power control class, configuration information of a CSI-RS class, and the like, and each class
  • the sub-information corresponding to the configuration information includes multiple candidate configuration information. For a given type of configuration information, one of the bit fields in the first signaling indicates a candidate configuration for subsequent operations from among a plurality of candidate configuration information.
  • the foregoing method is advantageous in that the first wireless signal is used for transmitting high layer signaling, and the Q bit fields in the first signaling are indicated from multiple candidate configurations configured by corresponding sub information. A candidate configuration.
  • the RRC signaling configuration information overhead is kept small, and the flexibility of the indicated candidate configuration is further improved by introducing the first signaling, thereby maximizing the gain brought by the beamforming.
  • the configuration information is semi-statically configured.
  • the configuration information is carried by high layer signaling.
  • the higher layer signaling is RRC layer signaling.
  • the K configuration information respectively correspond to K candidate antenna port groups.
  • the K candidate antenna port groups correspond to K transmit beams of the serving cell of the user equipment.
  • the candidate antenna port group #1 and the candidate antenna port group #2 are the candidate antenna port groups that are different from any two of the K candidate antenna port groups, and one antenna exists.
  • the ports are not the same as the candidate antenna port group #1 and the candidate antenna port group #2.
  • the K configuration information respectively correspond to K candidate vector groups.
  • the K candidate vector groups correspond to K receiving beams of the user equipment.
  • the candidate vector set is used for receive beamforming of the user equipment.
  • the K pieces of configuration information respectively correspond to K pieces of the information index.
  • the K configuration information is transmitted by Cell-Specific RRC signaling.
  • the K configuration information is transmitted through a TRP (Transmission Reception Point)-specific RRC signaling.
  • TRP Transmission Reception Point
  • the K configuration information is transmitted by Beam-Specific RRC signaling.
  • the K configuration information is exclusive to the UE. (UE-Specific) RRC signaling transmission.
  • the Q sub-informations respectively correspond to Q different types of candidate configurations.
  • the Q different types of candidate configurations include ⁇ candidate configuration for power, candidate configuration for uplink RS (reference signal), candidate configuration for downlink RS, for CSI At least one of a candidate configuration of the report, a candidate configuration for channel measurement, and a candidate configuration for resource allocation.
  • the Q sub-information includes ⁇ power-related information, uplink RS-related information, downlink RS-related information, CSI report-related information, channel measurement-related information, and resource allocation-related information. At least one of the information ⁇ .
  • one of the Q sub-information information is downlink RS related information.
  • the downlink RS is a downlink DMRS.
  • the first signaling is a DCI
  • a bit field related to the downlink RS information belongs to an “antenna port, a scrambling identifier, and a layer number indication in the first signaling. (Antenna port(s), scrambling identity and number of layers indication)" domain.
  • the downlink RS related information includes a plurality of candidate configurations.
  • a bit field associated with the downlink RS information is used to indicate one of the candidate configurations from the plurality of candidate configurations.
  • the candidate configuration is DMRS-Config in TS 36.331.
  • the candidate configuration includes a scrambling identity for the downlink RS.
  • the candidate configuration includes for the downlink RS
  • a given bit field contains N bits, the given bit field corresponding to a given sub-information, the given sub-information comprising M candidate configurations, the M being related to the N.
  • the N is an integer and the M is a positive integer.
  • the given bit field is any one of the Q bit fields, and the given sub-information is the pair of the Q sub-information and the given bit field Sub-information.
  • the N is equal to among them Represents the smallest integer not less than X.
  • the physical layer channel corresponding to the first radio signal is ⁇ PDSCH (Physical Downlink Shared Channel), SPDSCH (Short Latency PDSCH), NR-PDSCH (New One of Radio PDSCH, new wireless physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel
  • SPDSCH Short Latency PDSCH
  • NR-PDSCH New One of Radio PDSCH, new wireless physical downlink shared channel
  • the transport channel corresponding to the first radio signal is a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the physical layer channel corresponding to the second radio signal is a ⁇ PDCCH (Physical Downlink Control Channel), an SPDCCH (Short Latency PDCCH), and an NR-PDCCH (NR).
  • - PDCCH one of the new radio physical downlink control channels).
  • the first signaling is a DCI.
  • a given antenna port and a target antenna port are semi-co-located (QCL, Quasi Co-Located) refers to a large scale (large size) of a channel capable of transmitting wireless signals from the given antenna port.
  • the -scale) properties infer the large-scale characteristics of the channel of the wireless signal transmitted on the target antenna port.
  • the large-scale features include ⁇ Delay Spread, Doppler Spread, Doppler Shift, Average Gain, Average Delay, Arrival One or more of Angle of Arrival, Angle of Departure, Spatial Correlation.
  • the antenna port in the present invention is formed by stacking multiple physical antennas through antenna virtualization.
  • a mapping coefficient of the antenna port to the plurality of physical antennas constitutes a beamforming vector for the antenna to be virtualized to form a beam.
  • the antenna port in the present invention is an AP (Antenna Port).
  • the antenna port group in the present invention includes a positive integer number of APs.
  • the first set of vectors is used for receive beamforming of the user equipment.
  • the receive beamforming is an analog beamforming.
  • the first set of antenna ports is used for transmit beamforming of a given base station device.
  • the transmit beamforming is an analog beamforming.
  • the base station device is a serving base station of the user equipment.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A1 Receive a fourth wireless signal.
  • the third wireless signal is used to trigger the fourth wireless signal.
  • the fourth wireless signal is used to determine the first set of antenna ports; or the fourth wireless signal is used to determine the first set of vectors.
  • the above method is characterized in that the third wireless signal is used for beam switching or beam recovery request of the user equipment, and the fourth wireless signal is used by the serving base station of the user equipment. Beam switching of the user equipment or confirmation of a beam recovery request.
  • the foregoing method has an advantage that the third wireless signal and the fourth wireless signal are respectively used for triggering and confirming when the user equipment switches between multiple beams to ensure that the base station knows the The beam in which the user equipment is served, thereby ensuring the performance of beamforming.
  • the third wireless signal includes a PRACH (Physical Random Access Channel) preamble.
  • PRACH Physical Random Access Channel
  • the third wireless signal is transmitted on the PRACH.
  • the third wireless signal includes a Beam Recovery Request.
  • the fourth wireless signal is used for beam recovery.
  • the fourth wireless signal includes a given MAC (Media Access Control) CE (Control Element), and the given MAC CE is used for beam recovery.
  • MAC Media Access Control
  • the fourth radio signal includes given RRC signaling, where the given RRC signaling is used to indicate ⁇ the first antenna port group, the index of the first vector group ⁇ One.
  • the fourth wireless signal is a DCI, where the DCI includes a given domain, and the given domain is used to indicate ⁇ the first antenna port group, an index of the first vector group One of the ⁇ .
  • the above method is characterized by further comprising the steps of:
  • the candidate configuration indicated by the Q bit fields in the first signaling is applied to the fifth wireless signal.
  • the above method is characterized in that the transmission of the fifth wireless signal is jointly determined by high layer signaling and dynamic signaling.
  • the high layer signaling corresponds to the K configuration information
  • the dynamic signaling corresponds to the first signaling.
  • the operation is reception.
  • the physical layer channel corresponding to the fifth wireless signal is one of ⁇ PDSCH, SPDSCH, NR-PDSCH ⁇ .
  • the transport channel corresponding to the fifth wireless signal is a DL-SCH.
  • the fifth wireless signal further includes a downlink DMRS.
  • the operations further include performing channel estimation and demodulation for the fifth wireless signal according to the downlink DMRS.
  • the fifth wireless signal further comprises a CSI-RS.
  • the first operation further comprises reporting channel quality according to the CSI-RS.
  • the channel quality includes a ⁇ CQI (Channel Quality Indicator), a PMI (Precoding Matrix Indicator), an RI (Rank Indicator), and a CRI ( At least one of a CSI-RS Resource Indicator, a CSI-RS resource indicator).
  • ⁇ CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • CRI At least one of a CSI-RS Resource Indicator, a CSI-RS resource indicator.
  • the user equipment obtains the channel quality according to the CSI-RS.
  • the channel quality is a channel quality of a sender of the fifth wireless signal to the user equipment.
  • the channel quality further includes ⁇ RSRP (Reference) At least one of Signal Received Power, Reference Signal Received Quality (RSRQ), RSSI (Received Signal Strength Indicator).
  • RSRP Reference Signal Received Quality
  • RSSI Receiveived Signal Strength Indicator
  • the channel quality is used for layer 3 (Layer 3) measurements.
  • the fifth wireless signal further comprises a target sequence.
  • the target sequence includes a ⁇ PSS (Primary Synchronization Signal), an SSS (Secondary Synchronization Signal), and a CRS (Common Reference Signal).
  • ⁇ PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CRS Common Reference Signal
  • DRS Discovery Reference Signal
  • MRS Mobi lity Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the target sequence is used for the measurement of Layer 3 (Layer 3).
  • the operation is a transmission.
  • the physical layer channel corresponding to the fifth radio signal is a PUSCH (Physical Uplink Shared Channel), and a Short Latency PUSCH (Short Latency PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • Short Latency PUSCH Short Latency PUSCH
  • One of NR-PUSCH New Radio-PUSCH, new radio physical uplink shared channel).
  • the transport channel corresponding to the fifth radio signal is a UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the fifth wireless signal further includes an uplink DMRS.
  • the operations further include performing channel estimation and demodulation of the fifth wireless signal according to the uplink DMRS.
  • the physical layer channel corresponding to the fifth radio signal is a PUCCH (Physical Uplink Control Channel), and a Short Latency PUCCH (Short Latency PUCCH).
  • PUCCH Physical Uplink Control Channel
  • Short Latency PUCCH Short Latency PUCCH
  • NR-PUCCH New Radio-PUCCH, New Radio Physical Uplink Control Channel
  • the fifth wireless signal is a UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the fifth wireless signal includes a first HARQ-ACK (Hybrid Automatic Repeat request-Acknowledgement), the first HARQ-ACK is used to determine whether downlink transmission for the user equipment is correctly received.
  • HARQ-ACK Hybrid Automatic Repeat request-Acknowledgement
  • the fifth wireless signal includes a first channel quality
  • the first channel quality is used to determine a ⁇ CQI of a sender of the fifth wireless signal to the user equipment At least one of PMI, RI, CRI ⁇ .
  • the fifth wireless signal further comprises an SRS.
  • the SRS is used to determine a channel quality of the user equipment to a receiver of the fifth radio signal, where the channel quality includes ⁇ RSRP, RSRQ, RSSI, CQI, At least one of PMI, RI, CRI ⁇ .
  • the above method is characterized in that one of the Q pieces of sub-information is power-related information.
  • the above method is characterized in that the sub-information is used to configure the transmission power of the fifth wireless signal.
  • the operation is transmission
  • the power related information is used by the user equipment to determine a transmission power of the fifth wireless signal.
  • the power related information includes multiple candidate configurations, where the multiple candidate configurations are K candidate configurations, and the K candidate configurations are in one-to-one correspondence with K antenna port groups, or the K types.
  • the candidate configuration corresponds to the K vector groups one by one.
  • the K is a positive integer.
  • one of the K antenna port groups and the transmit antenna port group of the fifth wireless signal are BPL (Beam Pair Link).
  • one of the K vector groups is used to determine a transmit antenna port group of the fifth wireless signal.
  • one of the K vector groups is used for receive beamforming of the fifth wireless signal.
  • the power related information includes a plurality of candidate configurations.
  • a given bit field is used to determine one of the candidate configurations from the plurality of candidate configurations.
  • the fifth wireless signal is one of ⁇ PUSCH, SPUSCH, NR-PUSCH ⁇ .
  • the bit field associated with the sub-information is TS TPC Command for Scheduled PUSCH field in 36.212.
  • the candidate configuration is p0-UE-PUSCH in TS 36.331.
  • the candidate configuration is p0-NominalPUSCH in TS 36.331.
  • the candidate configuration is preambleInitialReceivedTargetPower in TS 36.331.
  • the candidate configuration is deltaPreambleMsg3 in TS 36.331.
  • the candidate configuration is one of ⁇ alpha-SubframeSet2-r12, alpha ⁇ in TS 36.331.
  • the candidate configuration is ⁇ referenceSignalPower, pathlossReferenceLinking ⁇ in TS 36.331.
  • the candidate configuration is Accuulation-enabled in TS 36.331.
  • the candidate configuration is used to determine ⁇ PUSCH,c in TS 36.213.
  • the candidate configuration further includes at least one of ⁇ a first parameter set, a second parameter set, a third parameter set, a fourth parameter set, and a fifth parameter set ⁇ .
  • the first parameter set is ⁇ -1, 0, 1, 3 ⁇ and the unit is dB.
  • the second set of parameters is ⁇ -1, 1 ⁇ and the unit is dB.
  • the third parameter set is ⁇ -4, -1, 1, 4 ⁇ and the unit is dB.
  • the fourth parameter set is ⁇ -M1, 0, M2, M3 ⁇ , and the unit is dB.
  • the M1, the M2 and the M3 are both positive integers.
  • the fifth parameter set is ⁇ -M4, -M5, M6, M7 ⁇ , and the unit is dB.
  • the M4, the M5, the M6 and the M7 are each a positive integer.
  • the fifth wireless signal is ⁇ PUCCH, SPUCCH, NR-PUCCH ⁇ One of them.
  • the bit field associated with the sub-information is the TPC Command for PUCCH field in TS 36.212.
  • the candidate configuration is p0-NominalPUCCH in TS 36.331.
  • the candidate configuration is deltaF-PUCCH-FormatX in TS 36.331.
  • the candidate configuration is deltaTxD-OffsetPUCCH-FormatX in TS 36.331.
  • the candidate configuration is used to determine ⁇ PUCCH in TS 36.213.
  • the candidate configuration includes at least one of ⁇ a first parameter set, a second parameter set, a third parameter set, a fourth parameter set, and a fifth parameter set ⁇ .
  • the first parameter set is ⁇ -1, 0, 1, 3 ⁇ and the unit is dB.
  • the second set of parameters is ⁇ -1, 1 ⁇ and the unit is dB.
  • the third parameter set is ⁇ -4, -1, 1, 4 ⁇ and the unit is dB.
  • the fourth parameter set is ⁇ -M1, 0, M2, M3 ⁇ , and the unit is dB.
  • the M1, the M2 and the M3 are both positive integers.
  • the fifth parameter set is ⁇ -M4, -M5, M6, M7 ⁇ , and the unit is dB.
  • the M4, the M5, the M6 and the M7 are each a positive integer.
  • the fifth wireless signal is an SRS.
  • the bit field associated with the sub-information is the TPC Command for Scheduled PUSCH field in TS 36.212.
  • the candidate configuration is pSRS-Offset in TS 36.331.
  • the candidate configuration is pSRS-OffsetAP in TS 36.331.
  • the candidate configuration is p0-Nominal-AperiodicSRS in TS 36.331.
  • the candidate configuration is p0-Nominal-PeriodicSRS in TS 36.331.
  • the candidate configuration is p0-UE-AperiodicSRS in TS 36.331.
  • the candidate configuration is p0-UE-PeriodicSRS in TS 36.331.
  • the candidate configuration is an alpha-SRS in TS 36.331.
  • the candidate configuration is used to determine ⁇ SRS,c in TS 36.213.
  • the candidate configuration includes at least one of ⁇ a first parameter set, a second parameter set, a third parameter set, a fourth parameter set, and a fifth parameter set ⁇ .
  • the first parameter set is ⁇ -1, 0, 1, 3 ⁇ and the unit is dB.
  • the second set of parameters is ⁇ -1, 1 ⁇ and the unit is dB.
  • the third parameter set is ⁇ -4, -1, 1, 4 ⁇ and the unit is dB.
  • the fourth parameter set is ⁇ -M1, 0, M2, M3 ⁇ , and the unit is dB.
  • the M1, the M2 and the M3 are both positive integers.
  • the fifth parameter set is ⁇ -M4, -M5, M6, M7 ⁇ , and the unit is dB.
  • the M4, the M5, the M6 and the M7 are each a positive integer.
  • the method is characterized in that one of the Q pieces of sub-information is uplink RS related information.
  • an aspect of the foregoing method is that the sub information is used to configure an uplink DMRS of the fifth wireless signal.
  • another aspect of the above method is that the sub information is used to configure an SRS included in the fifth wireless signal.
  • the operation is a transmission.
  • the uplink RS related information includes multiple candidate configurations, where the multiple candidate configurations are K candidate configurations, and the K candidate configurations are in one-to-one correspondence with K antenna port groups, or the K The candidate configuration corresponds to the K vector groups one by one.
  • the K is a positive integer.
  • one of the K antenna port groups and the transmit antenna port group of the fifth wireless signal are BPL.
  • one of the K vector groups is used to determine a transmit antenna port group of the fifth wireless signal.
  • one of the K vector groups is used for receive beamforming of the fifth wireless signal.
  • the uplink RS related information includes multiple candidate configurations.
  • a given bit field is used to determine one of the candidate configurations from the plurality of candidate configurations.
  • the uplink RS related information is used by the user equipment to determine at least one of ⁇ time domain resources, frequency domain resources, and code domain resources ⁇ occupied by the uplink RS.
  • the fifth wireless signal includes an SRS, and the uplink RS is the SRS.
  • the candidate configuration is one of ⁇ srs-ConfigApDCI-Format0, srs-ConfigApDCI-Format1a2b2c, srs-ConfigApDCI-Format4 ⁇ in TS 36.331.
  • the candidate configuration is srs-ConfigApDCI-FormatX.
  • the srs-ConfigApDCI-FormatX contains a plurality of SRS-ConfigAps in TS 36.331.
  • the fifth wireless signal includes one of ⁇ PUSCH, SPUSCH, NR-PUSCH ⁇ , and the uplink RS related information is used by the user equipment for channel estimation and solution of the fifth wireless signal. Tune.
  • the uplink RS is an uplink DMRS.
  • the candidate configuration is a transmissionModeUL in TS 36.331.
  • the candidate configuration is fourAntennaPortActivated in TS 36.331.
  • the candidate configuration is in TS 36.331 nPUSCH-Identity.
  • the candidate configuration is nDMRS-CSH-Identity in TS 36.331.
  • the candidate configuration is dmrs-WithOCC-Activated in TS 36.331.
  • the method is characterized in that one of the Q pieces of sub-information is information related to a CSI report.
  • the above method is characterized in that the sub-information is used to configure a CSI-RS of the user equipment, and is used to configure a CSI report referring to the CSI-RS.
  • the operation is reception.
  • the CSI report related information includes multiple candidate configurations, where the K candidate configurations are K-type candidate configurations, and the K candidate configurations are in one-to-one correspondence with K antenna port groups, or the K The candidate configuration corresponds to the K vector groups one by one.
  • the K is a positive integer.
  • one of the K antenna port groups and the transmit antenna port group of the fifth wireless signal are BPL.
  • one of the K vector groups is used to determine a transmit antenna port group of the fifth wireless signal.
  • one of the K vector groups is used for receive beamforming of the fifth wireless signal.
  • the CSI report related information includes a plurality of candidate configurations.
  • a given bit field is used to determine one of the candidate configurations from the plurality of candidate configurations.
  • the CSI report related information is used by the user equipment to determine at least one of ⁇ time domain resources, frequency domain resources, and code domain resources ⁇ occupied by the configured CSI-RS.
  • the candidate configuration is one of ⁇ CSI-IM-Config, CSI-RS-Config, CSI-RS-ConfigNZ, CSI-RS-ConfigZP ⁇ in TS 36.331.
  • the candidate configuration is CQI-ReportAperiodic in TS 36.331.
  • the candidate configuration corresponds to a CSI-RS-Config in a TS36.331, where the multiple candidate configurations correspond to multiple CSI-RS-Configs, and the sub-information
  • the associated bit field is used to determine from the plurality of said CSI-RS-Config One of the CSI-RS-Configs is defined.
  • the candidate configuration corresponds to a csi-SubframePatternConfig in a TS36.331, where the multiple candidate configurations correspond to a plurality of the csi-SubframePatternConfig, and a bit field associated with the sub-information Used to determine one of the csi-SubframePatternConfigs from the plurality of the csi-SubframePatternConfigs.
  • the bit field associated with the sub-information is a CSI request field in the DCI.
  • the method is characterized in that one of the Q pieces of sub-information is information related to channel measurement.
  • the above method is characterized in that the sub-information is used for the configuration measured by the user equipment layer 3.
  • the layer 3 measurement is used for RRM (Radio Resource Management).
  • the layer 3 measurement is used for at least one of ⁇ cell handover, beam handover, beam restoration, cell reselection ⁇ .
  • the channel measurement related information includes multiple candidate configurations, where the multiple candidate configurations are K candidate configurations, the K candidate configurations are in one-to-one correspondence with K antenna port groups, or the K The candidate configuration corresponds to the K vector groups one by one.
  • the K is a positive integer.
  • one of the K antenna port groups and the transmit antenna port group of the fifth wireless signal are BPL.
  • one of the K vector groups is used to determine a transmit antenna port group of the fifth wireless signal.
  • one of the K vector groups is used for receive beamforming of the fifth wireless signal.
  • the channel measurement related information includes a plurality of candidate configurations.
  • a given bit field is used to determine one of the candidate configurations from the plurality of candidate configurations.
  • the channel measurement related information is used by the user equipment to determine at least one of ⁇ time domain resources, frequency domain resources, code domain resources, and transmission powers occupied by the wireless signals for performing layer 3 measurement.
  • the user equipment determines at least one of ⁇ time domain resources, frequency domain resources, code domain resources, and transmission powers occupied by the wireless signals for performing layer 3 measurement.
  • the wireless signal includes at least one of ⁇ PSS, SSS, DRS, CRS, MRS, PTRS ⁇ .
  • the candidate configuration is p-aList-r12 in TS 36.331.
  • the candidate configuration is p-a in TS 36.331.
  • the candidate configuration is p-b in TS 36.331.
  • the candidate configuration is mbsfn-SubframeConfigList in TS 36.331.
  • the candidate configuration is a MeasSubframePatternPCell in TS 36.331.
  • the method is characterized in that one of the Q pieces of sub-information is information related to resource allocation.
  • an aspect of the above method is that the sub-information is used to configure resources for UCI transmission.
  • another aspect of the above method is that the sub-information is used to configure a minimum granularity of the fifth wireless signal scheduling.
  • the above method has the advantage that the current system bandwidth is only for one scheduling granularity, that is, an RBG (Resource Block Group) size (Size).
  • RBG Resource Block Group
  • different beams may be switched between different services, and different services may be required.
  • the system bandwidth is the same, different RBG sizes exist for the scheduling of different service types and different requirements.
  • the above method satisfies scheduling corresponding to different RBG sizes.
  • the resource allocation related information includes multiple candidate configurations, where the multiple candidate configurations are K candidate configurations, and the K candidate configurations are in one-to-one correspondence with K antenna port groups, or the K The candidate configuration corresponds to the K vector groups one by one.
  • the K is a positive integer.
  • one of the K antenna port groups and the transmit antenna port group of the fifth wireless signal are BPL.
  • one of the K vector groups is used to determine a transmit antenna port group of the fifth wireless signal.
  • one of the K vector groups is used for receive beamforming of the fifth wireless signal.
  • the resource allocation related information includes a plurality of candidate configurations. give A fixed bit field is used to determine one of the candidate configurations from the plurality of candidate configurations.
  • the resource allocation related information is used by the user equipment to determine at least one of ⁇ time domain resources, frequency domain resources, and code domain resources ⁇ occupied by the fifth wireless signal.
  • the operation is to send, and the physical layer channel corresponding to the fifth wireless signal is one of ⁇ PUCCH, SPUCCH, NR-PUCCH ⁇ .
  • the candidate configuration is one of ⁇ n1 PUCCH-AN-InfoList, n3 PUCCH-AN-List, nPUCCH-Identity, n1 PUCCH-AN, nkaPUCCH-AN ⁇ in TS36.331.
  • the candidate configuration is PUCCH-ConfigDedicated in TS36.331.
  • the resource allocation related information is used by the user equipment to determine an RBG size used for scheduling the fifth wireless signal.
  • the RBG corresponds to a minimum number of RBs (Resource Blocks) occupied by the fifth radio signal.
  • the multiple candidate configurations correspond to values of a plurality of RBGs, and a bit field associated with the sub-information is used to determine one RBG size from the plurality of RBG sizes.
  • the bit field associated with the sub-information belongs to the "Resource block assignment and hopping resource allocation" field in the DCI.
  • the operation is to send, and the transmission channel corresponding to the fifth wireless signal is a UL-SCH.
  • the operation is receiving, and the transmission channel corresponding to the fifth wireless signal is a DL-SCH.
  • the invention discloses a method in a base station used for wireless communication, which comprises the following steps:
  • step A transmitting a first wireless signal
  • Step B Send a second wireless signal.
  • the first wireless signal includes K configuration information, and the second wireless signal packet Including the first signaling.
  • the configuration information includes an information index and Q sub-information.
  • the first signaling includes Q bit fields, and the Q sub-informations in the first configuration information are respectively in one-to-one correspondence with the Q bit fields in the first signaling.
  • the bit field includes a positive integer number of bits, and the Q bit fields in the first signaling indicate a candidate configuration from a plurality of candidate configurations configured by the corresponding sub information.
  • the Q is a positive integer.
  • the first configuration information is one of the K configuration information.
  • the first index in the first configuration information is related to a first antenna port group, and an antenna port for transmitting the second wireless signal and an antenna port in the first antenna port group are semi-co-located
  • the first index in the first configuration information is related to a first vector group, the first vector group being used for multi-antenna reception of the second wireless signal.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A1 Send a fourth wireless signal.
  • the third wireless signal is used to trigger the fourth wireless signal.
  • the fourth wireless signal is used to determine the first set of antenna ports; or the fourth wireless signal is used to determine the first set of vectors.
  • the above method is characterized by further comprising the steps of:
  • execution is a transmission or the execution is a reception.
  • the candidate configuration indicated by the Q bit fields in the first signaling is applied to the fifth wireless signal.
  • the physical layer channel corresponding to the fifth wireless signal is one of ⁇ PDSCH, SPDSCH, NR-PDSCH ⁇ , and the execution is transmission.
  • the fifth wireless signal includes a CSI-RS, and the execution is a transmission.
  • the fifth wireless signal includes a downlink DMRS, and the execution is a transmission.
  • the transport channel corresponding to the fifth wireless signal is a DL-SCH, and the performing is sending.
  • the physical layer channel corresponding to the fifth wireless signal is one of ⁇ PUSCH, SPUSCH, NR-PUSCH ⁇ , and the performing is receiving.
  • the fifth wireless signal includes an SRS and the execution is reception.
  • the fifth wireless signal includes an uplink DMRS, and the performing is reception.
  • the transport channel corresponding to the fifth wireless signal is a UL-SCH, and the performing is receiving.
  • the above method is characterized in that one of the Q pieces of sub-information is power-related information.
  • the method is characterized in that one of the Q pieces of sub-information is uplink RS related information.
  • the method is characterized in that one of the Q pieces of sub-information is information related to a CSI report.
  • the method is characterized in that one of the Q pieces of sub-information is information related to channel measurement.
  • the method is characterized in that one of the Q pieces of sub-information is information related to resource allocation.
  • the invention discloses a user equipment used for wireless communication, which comprises the following modules:
  • a first processing module for receiving the first wireless signal
  • a first receiving module for receiving the second wireless signal.
  • the first wireless signal includes K configuration information
  • the second wireless signal includes first signaling.
  • the configuration information includes an information index and Q sub-information.
  • the first signaling includes Q bit fields, and the Q sub-informations in the first configuration information are respectively in one-to-one correspondence with the Q bit fields in the first signaling.
  • the bit field includes a positive integer number of bits, and the Q bit fields in the first signaling indicate a candidate configuration from a plurality of candidate configurations configured by the corresponding sub information.
  • the Q is a positive integer.
  • the first configuration information is one of the K configuration information.
  • the first index in the first configuration information is related to a first antenna port group, and an antenna port for transmitting the second wireless signal and an antenna port in the first antenna port group are semi-co-located
  • the first index in the first configuration information is related to a first vector group, the first vector group being used for multi-antenna reception of the second wireless signal.
  • the user equipment used for wireless communication is characterized in that the first processing module is further configured to send a third wireless signal and to receive a fourth wireless signal.
  • the third wireless signal is used to trigger the fourth wireless signal.
  • the fourth wireless signal is used to determine the first set of antenna ports; or the fourth wireless signal is used to determine the first set of vectors.
  • the user equipment used for wireless communication is characterized in that it further comprises a second processing module, the second processing module is configured to operate the fifth wireless signal.
  • the operation is to receive, or the operation is to send.
  • the candidate configuration indicated by the Q bit fields in the first signaling is applied to the fifth wireless signal.
  • the above user equipment used for wireless communication is characterized in that one of the Q sub-information is power-related information.
  • the user equipment used for wireless communication is characterized in that one of the Q sub-information is uplink RS related information.
  • the user equipment used for wireless communication is characterized in that one of the Q sub-information is information related to CSI reporting.
  • the user equipment used for wireless communication is characterized in that one of the Q sub-information is channel measurement related information.
  • the user equipment used for wireless communication is characterized in that one of the Q sub-information is information related to resource allocation.
  • the invention discloses a base station device used for wireless communication, which comprises the following modules:
  • a third processing module configured to send the first wireless signal
  • a first transmitting module for transmitting a second wireless signal.
  • the first wireless signal includes K configuration information
  • the second wireless signal includes first signaling.
  • the configuration information includes an information index and Q sub-information.
  • the first signaling includes Q bit fields, and the Q sub-informations in the first configuration information are respectively in one-to-one correspondence with the Q bit fields in the first signaling.
  • the bit field includes a positive integer number of bits, and the Q bit fields in the first signaling indicate a candidate configuration from a plurality of candidate configurations configured by the corresponding sub information.
  • the Q is a positive integer.
  • the first configuration information is one of the K configuration information.
  • the first index and the first in the first configuration information An antenna port group is associated, the antenna port for transmitting the second wireless signal and the antenna port of the first antenna port group are semi-co-located; or the first index in the first configuration information Associated with a first set of vectors, the first set of vectors is used for multi-antenna reception of the second wireless signal.
  • the base station device used for wireless communication is characterized in that the third processing module is further configured to receive a third wireless signal and to send a fourth wireless signal.
  • the third wireless signal is used to trigger the fourth wireless signal.
  • the fourth wireless signal is used to determine the first set of antenna ports; or the fourth wireless signal is used to determine the first set of vectors.
  • the base station device used for wireless communication described above is characterized by further comprising a fourth processing module, wherein the fourth processing module is configured to execute the fifth wireless signal.
  • the execution is a transmission, or the execution is a reception.
  • the candidate configuration indicated by the Q bit fields in the first signaling is applied to the fifth wireless signal.
  • the above-described base station apparatus used for wireless communication is characterized in that one of the Q pieces of sub-information is power-related information.
  • the base station apparatus used for wireless communication is characterized in that one of the Q pieces of sub-information is uplink RS related information.
  • the base station device used for wireless communication is characterized in that one of the Q sub-information is information related to CSI reporting.
  • the above-described base station apparatus used for wireless communication is characterized in that one of the Q pieces of sub-information is information related to channel measurement.
  • the base station device used for wireless communication is characterized in that one of the Q sub-information is information related to resource allocation.
  • the present invention has the following technical advantages over the prior art:
  • the K configuration information is for K beams.
  • the Q sub-information corresponds to different types of configuration information of the Q type, such as configuration information of the power control type, configuration information of the CSI-RS type, and the like, and the sub-information corresponding to each type of configuration information includes multiple candidate configuration information.
  • the user equipment selects corresponding candidate configuration information according to the beam in which it is located to adapt to the characteristics of different beams.
  • the first wireless letter The number is used to transmit high layer signaling, and the Q bit fields in the first signaling indicate a candidate configuration from a plurality of candidate configurations configured by the corresponding sub information. In this way, the RRC signaling overhead is kept small, and the flexibility of the indicated candidate configuration is further improved by introducing the first signaling, thereby maximizing the gain brought by the beamforming.
  • the scheduling corresponding to different service types and different requirements adopts different RBG sizes. This method improves the scheduling flexibility of the beamforming and the adaptability to the service, thereby improving the overall performance.
  • FIG. 1 shows a flow chart of a first wireless signal transmission in accordance with one embodiment of the present invention
  • FIG. 2 shows a flow chart of a first wireless signal transmission in accordance with another embodiment of the present invention
  • FIG. 3 shows a schematic diagram of an application scenario in accordance with the present invention
  • FIG. 4 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present invention.
  • Figure 6 shows a schematic diagram of a first antenna port group in accordance with the present invention
  • Figure 7 is a diagram showing a pattern of a first antenna port group in accordance with the present invention.
  • Figure 8 shows a schematic diagram of a first vector group in accordance with the present invention.
  • Figure 9 is a diagram showing a pattern of a target RS corresponding to a first vector group according to the present invention.
  • FIG. 10 shows a schematic diagram of an antenna port in accordance with the present invention.
  • Embodiment 1 illustrates a flow chart of a first wireless signal transmission according to the present invention, as attached Figure 1 shows.
  • a base station N1 is a maintenance base station of a serving cell of UE U2.
  • the steps identified by block F0 and block F1 are optional.
  • the first wireless signal is transmitted in step S10
  • the third wireless signal is received in step S11
  • the fourth wireless signal is transmitted in step S12
  • the second wireless signal is transmitted in step S13
  • the second wireless signal is transmitted in step S14.
  • the first wireless signal is received in step S20, the third wireless signal is transmitted in step S21, the fourth wireless signal is received in step S22, the second wireless signal is received in step S23, and the second wireless signal is received in step S24.
  • Five wireless signals are transmitted in step S20, the third wireless signal is transmitted in step S21, the fourth wireless signal is received in step S22, the second wireless signal is received in step S23, and the second wireless signal is received in step S24.
  • the first wireless signal includes K configuration information
  • the second wireless signal includes first signaling.
  • the configuration information includes an information index and Q sub-information.
  • the first signaling includes Q bit fields, and the Q sub-informations in the first configuration information are respectively in one-to-one correspondence with the Q bit fields in the first signaling.
  • the bit field includes a positive integer number of bits, and the Q bit fields in the first signaling indicate a candidate configuration from a plurality of candidate configurations configured by the corresponding sub information.
  • the Q is a positive integer.
  • the first configuration information is one of the K configuration information.
  • the first index in the first configuration information is related to a first antenna port group, and an antenna port for transmitting the second wireless signal and an antenna port in the first antenna port group are semi-co-located Or the first index in the first configuration information is related to a first vector group, the first vector group being used for multi-antenna reception of the second wireless signal.
  • the third wireless signal is used to trigger the fourth wireless signal.
  • the fourth wireless signal is used to determine the first set of antenna ports; or the fourth wireless signal is used to determine the first set of vectors.
  • the candidate configuration indicated by the Q bit fields in the first signaling is applied to the fifth wireless signal.
  • one of the Q sub-information is information related to a CSI report.
  • one of the Q sub-information information is channel measurement related information.
  • one of the Q sub-information is information related to resource allocation.
  • the fifth wireless signal comprises a CSI-RS.
  • the fifth wireless signal includes a downlink DMRS.
  • the transport channel corresponding to the fifth wireless signal is a DL-SCH.
  • Embodiment 2 illustrates a flow chart of another first wireless signal transmission in accordance with the present invention, as shown in FIG.
  • the base station N3 is a maintenance base station of the serving cell of the UE U4.
  • the steps identified by block F2 and block F3 are optional.
  • the first wireless signal is transmitted in step S30, the third wireless signal is received in step S31, the fourth wireless signal is transmitted in step S32, the second wireless signal is transmitted in step S33, and the second wireless signal is received in step S34.
  • Five wireless signals are transmitted.
  • the first wireless signal is received in step S40, the third wireless signal is transmitted in step S41, the fourth wireless signal is received in step S42, the second wireless signal is received in step S43, and the second wireless signal is transmitted in step S44.
  • Five wireless signals are received.
  • the first wireless signal includes K configuration information
  • the second wireless signal includes first signaling.
  • the configuration information includes an information index and Q sub-information.
  • the first signaling includes Q bit fields, and the Q sub-informations in the first configuration information are respectively in one-to-one correspondence with the Q bit fields in the first signaling.
  • the bit field includes a positive integer number of bits, and the Q bit fields in the first signaling indicate a candidate configuration from a plurality of candidate configurations configured by the corresponding sub information.
  • the Q is a positive integer.
  • the first configuration information is one of the K configuration information.
  • the first index in the first configuration information is related to a first antenna port group, and an antenna port for transmitting the second wireless signal and an antenna port in the first antenna port group are semi-co-located Or the first index in the first configuration information is related to a first vector group, the first vector group being used for multi-antenna reception of the second wireless signal.
  • the third wireless signal is used to trigger the fourth wireless signal.
  • the fourth wireless signal is used to determine the first set of antenna ports; or the fourth wireless signal is used to determine the first set of vectors.
  • the candidate configuration indicated by the Q bit fields in the first signaling is applied to the fifth wireless signal.
  • one of the Q sub-information is power-related information.
  • one of the Q sub-information information is uplink RS related information.
  • one of the Q sub-information is information related to resource allocation.
  • the fifth wireless signal comprises an SRS.
  • the fifth wireless signal includes an uplink DMRS.
  • the transport channel corresponding to the fifth wireless signal is a UL-SCH.
  • Embodiment 3 illustrates a schematic diagram of an application scenario according to the present invention, as shown in FIG.
  • time segment #1 corresponds to beam 1
  • time segment #2 corresponds to beam 2.
  • Time period #1 and time period #2 belong to the first time window.
  • the first time window corresponds to a period corresponding to one RRC signaling of the user equipment in the present invention.
  • the first configuration information and the second configuration information are present in the K configuration information in the present invention, the first configuration information is for the beam 1 and the second configuration information is for the beam 2.
  • the first configuration information and the second configuration information are different.
  • the user equipment transmits the third wireless signal in the present invention at the first time shown and receives the fourth wireless signal in the present invention at the second time.
  • the first wireless signal is received in the first time window.
  • the K configuration information is valid in the first time window.
  • the user equipment receives the second wireless signal in the present invention in the time period #1, and the user equipment operates the fifth wireless signal in the present invention in the time period #1 .
  • the first configuration information includes Q first sub-informations, where the first sub-information includes a positive integer number of first candidate configurations, and the first signaling in the present invention is used. Determining Q of the first candidate configurations from the Q first sub-informations.
  • the user equipment receives the second wireless signal in the present invention in the time period #2, and the user equipment operates the fifth wireless signal in the present invention in the time period #2 .
  • the second configuration information includes Q second sub-informations
  • the second sub-information includes a positive integer second candidate configuration
  • the first signaling in the present invention is used. Determining Q of the second candidate configurations from the Q second sub-information.
  • the user equipment maintains an RRC Connection Mode in the first time window.
  • the user equipment does not have a Reestablishment of the RRC connection in the first time window.
  • Embodiment 4 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG. Attached In FIG. 4, the UE processing apparatus 100 is mainly composed of a first processing module 101, a first receiving module 102, and a second processing module 103.
  • a first processing module 101 for receiving the first wireless signal
  • a first receiving module 102 for receiving a second wireless signal
  • a second processing module 103 for operating the fifth wireless signal.
  • the first wireless signal includes K configuration information
  • the second wireless signal includes first signaling.
  • the configuration information includes an information index and Q sub-information.
  • the first signaling includes Q bit fields, and the Q sub-informations in the first configuration information are respectively in one-to-one correspondence with the Q bit fields in the first signaling.
  • the bit field includes a positive integer number of bits, and the Q bit fields in the first signaling indicate a candidate configuration from a plurality of candidate configurations configured by the corresponding sub information.
  • the Q is a positive integer.
  • the first configuration information is one of the K configuration information.
  • the first index in the first configuration information is related to a first antenna port group, and an antenna port for transmitting the second wireless signal and an antenna port in the first antenna port group are semi-co-located
  • the first index in the first configuration information is related to a first vector group, the first vector group being used for multi-antenna reception of the second wireless signal.
  • the operation is to receive, or the operation is to send.
  • the candidate configuration indicated by the Q bit fields in the first signaling is applied to the fifth wireless signal.
  • the first processing module 101 is further configured to send a third wireless signal and to receive the fourth wireless signal.
  • the third wireless signal is used to trigger the fourth wireless signal.
  • the fourth wireless signal is used to determine the first set of antenna ports; or the fourth wireless signal is used to determine the first set of vectors.
  • one of the Q sub-information is power-related information.
  • one of the Q sub-information information is uplink RS related information.
  • one of the Q sub-information is information related to a CSI report.
  • one of the Q sub-information information is channel measurement related information.
  • one of the Q sub-information is a resource sub-information With relevant information.
  • Embodiment 5 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 200 is mainly composed of a third processing module 201, a first sending module 202, and a fourth processing module 203.
  • a third processing module 201 configured to send the first wireless signal
  • a first sending module 202 configured to send a second wireless signal
  • a fourth processing module 203 for performing a fifth wireless signal.
  • the first wireless signal includes K configuration information
  • the second wireless signal includes first signaling.
  • the configuration information includes an information index and Q sub-information.
  • the first signaling includes Q bit fields, and the Q sub-informations in the first configuration information are respectively in one-to-one correspondence with the Q bit fields in the first signaling.
  • the bit field includes a positive integer number of bits, and the Q bit fields in the first signaling indicate a candidate configuration from a plurality of candidate configurations configured by the corresponding sub information.
  • the Q is a positive integer.
  • the first configuration information is one of the K configuration information.
  • the first index in the first configuration information is related to a first antenna port group, and an antenna port for transmitting the second wireless signal and an antenna port in the first antenna port group are semi-co-located
  • the first index in the first configuration information is related to a first vector group, the first vector group being used for multi-antenna reception of the second wireless signal.
  • the execution is a transmission, or the execution is a reception.
  • the candidate configuration indicated by the Q bit fields in the first signaling is applied to the fifth wireless signal.
  • the third processing module 201 is further configured to receive a third wireless signal and to send a fourth wireless signal.
  • the third wireless signal is used to trigger the fourth wireless signal.
  • the fourth wireless signal is used to determine the first set of antenna ports; or the fourth wireless signal is used to determine the first set of vectors.
  • one of the Q sub-information is power-related information.
  • one of the Q sub-information information is uplink RS related information.
  • one of the Q sub-information is information related to a CSI report.
  • one of the Q sub-information information is channel measurement related information.
  • one of the Q sub-information is information related to resource allocation.
  • Embodiment 6 shows a schematic diagram of a first antenna port group in accordance with the present invention, as shown in FIG.
  • the first antenna port group belongs to a target candidate antenna port group set
  • the target candidate antenna port group set includes T target candidate antenna port groups.
  • the T target candidate antenna port groups are in one-to-one correspondence with T time units.
  • the dashed box shown corresponds to the set of target candidate antenna port groups.
  • the T is a positive integer.
  • L shown in the figure is a positive integer greater than 1 and less than T.
  • the number of antenna ports included in the different target candidate antenna port groups is the same.
  • the number of antenna ports included in at least two different target candidate antenna port groups is different.
  • the number of multi-carrier symbols occupied by any one of the T time units is the same.
  • the T time units constitute one of ⁇ Min-Slot, Time Slot, Sub-frame ⁇ .
  • the duration of the time unit in the time domain is not greater than the duration of the time period described in the present invention in the time domain.
  • the T is equal to the K in the present invention.
  • the target candidate antenna port group is a candidate antenna port group described in the present invention.
  • the multi-carrier symbol in the present invention is one of the following:
  • the L is an index of the first antenna port group in the T target candidate antenna port groups.
  • Embodiment 7 shows a schematic diagram of a pattern of a first antenna port group in accordance with the present invention, as shown in FIG.
  • the pattern is a schematic diagram of an RE (Resource Element) occupied by a given RS in a unit time-frequency resource block corresponding to the first antenna port group.
  • the unit time-frequency resource block occupies a frequency bandwidth corresponding to a PRB (Physical Resource Block) in the frequency domain, and occupies two multi-carrier symbols in the time domain.
  • a square filled with diagonal lines corresponds to one RE
  • a, b, c, and d shown in the figure correspond to antenna port a, antenna port b, antenna port c and antenna port d, respectively.
  • "a, b” indicates that the corresponding two REs occupy the antenna port a and the antenna port b
  • "c, d” indicates that the corresponding two REs occupy the antenna port c and the antenna port d.
  • the given RS is a downlink DMRS.
  • the given RS is a CSI-RS.
  • the antenna port a and the antenna port b are distinguished by an OCC (Orthogonal Cover Code).
  • the antenna port c and the antenna port d are distinguished by OCC.
  • the REs occupied by the first antenna port group are periodically distributed in the time domain.
  • the periodic division refers to a periodic repetition of the pattern shown in the figure.
  • the REs occupied by the first antenna port group in the system bandwidth are repeated in the system bandwidth according to the pattern shown.
  • the RE occupied by the RS corresponding to the candidate antenna port group in the present invention also adopts the pattern shown in the figure.
  • Embodiment 8 shows a schematic diagram of a first vector group in accordance with the present invention, as shown in FIG.
  • the first vector group belongs to a target candidate vector group set, and the target candidate
  • the set of vector groups contains R of the target candidate vector groups.
  • the R target candidate vector groups are in one-to-one correspondence with R time units.
  • the dashed box shown corresponds to the set of target candidate vector groups.
  • the R is a positive integer.
  • P shown in the figure is a positive integer greater than 1 and less than R.
  • the number of antenna ports included in the different target candidate vector groups is the same.
  • the target candidate vector group is a candidate vector group described in the present invention.
  • the number of multi-carrier symbols occupied by any one of the R time units is the same.
  • the R time units constitute one of ⁇ Mini-Slot, Time Slot, Sub-frame ⁇ .
  • the duration of the time unit in the time domain is not greater than the duration of the time period described in the present invention in the time domain.
  • the R is equal to the K in the present invention.
  • the target candidate vector group is the candidate vector group in the present invention.
  • the P is an index of the first vector group in the R target candidate vector groups.
  • Embodiment 9 shows a schematic diagram of a pattern of an RS corresponding to a first vector group according to the present invention, as shown in FIG.
  • the pattern is a schematic diagram of REs occupied by a target RS corresponding to the first vector group in a target time-frequency resource block.
  • the target time-frequency resource block occupies a frequency bandwidth corresponding to one PRB in the frequency domain, and occupies one multi-carrier symbol in the time domain.
  • a square filled with diagonal lines corresponds to one RE, and e shown in the figure corresponds to antenna port e. "e" indicates that the corresponding one RE occupies the antenna port e.
  • the target RS is an SRS.
  • the REs occupied by the target RS are periodically distributed in the time domain.
  • the periodic division refers to a periodic repetition of the pattern shown in the figure.
  • the REs occupied by the target RS in the system bandwidth are repeated in the system bandwidth according to the pattern shown.
  • the RE occupied by the RS corresponding to the candidate vector group in the present invention also adopts the pattern shown in the figure.
  • Embodiment 10 shows a schematic diagram of an antenna port in accordance with the present invention, as shown in FIG.
  • An antenna of a given device is divided into a plurality of antenna groups, each of which includes a plurality of antennas.
  • the antenna port is formed by superimposing multiple antennas of one or more antenna groups by antenna virtualization, and mapping coefficients of multiple antennas of the one or more antenna groups to the antenna port form a beam assignment Type vector.
  • One of the antenna groups is connected to the baseband processor via an RF (Radio Frequency) chain.
  • One of the beamforming vectors consists of an analog beamforming vector and a Kronecker product of a digital beamforming vector.
  • the mapping coefficients of the plurality of antennas in the same antenna group to the antenna port constitute an analog beamforming vector of the antenna group, and one antenna group includes different antenna groups corresponding to the same analog beamforming vector.
  • the mapping coefficients of the different antenna groups to the antenna ports included in one of the antenna ports constitute a digital beamforming vector of the antenna port.
  • the first antenna port group in the present invention corresponds to one of the analog beamforming vectors.
  • the first vector group in the present invention corresponds to one of the analog beamforming vectors.
  • the given device is the user equipment described in the present invention.
  • the given device is the base station device described in the present invention.
  • UEs and terminals include, but are not limited to, mobile phones, tablets, notebooks, vehicle communication devices, wireless sensors, network cards, Internet of things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, network cards, car communication devices, low-cost mobile phones, low-cost tablets and other wireless communication devices.
  • the base station in the present invention includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用户设备、基站中的被用于多天线传输的方法和装置。用户设备首先接收第一无线信号,随后接收第二无线信号。所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述K个配置信息是波束赋形专属的。本发明简化高层流程,降低延迟,进而提高整体性能。

Description

一种用户设备、基站中的被用于多天线传输的方法和装置 技术领域
本发明涉及无线通信系统中的传输方法和装置,尤其涉及多天线传输的方法和装置。
背景技术
现有的LTE(Long Term Evolution,长期演进)系统中,基站通过RRC(Radio Resource Control,无线资源控制)信令为UE(User Equipment,用户设备)配置多种与物理层传输相关的信息,例如TM(Transmission Mode,传输模式),DMRS(Demodulation Reference Signal,解调参考信号)配置,SRS(Sounding Reference Signal,探测参考信号)配置,PUCCH(Physical Uplink Control Channel,物理上行控制信道)所占用的资源,CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)配置,TPC(Transmission Power Control,传输功率控制)配置等。上述信息通过UE专属的(UE-Specific)或者小区专属的(Cell-Specific)的信令下发给用户设备,且当用户设备发生RRC重建时(Reestablishment)时,上述信息将会被重新配置。与此同时,部分物理层传输不仅需要RRC信令配置多个候选信息,还需要DCI(Downlink Control Information,下行控制信息)信令从所配置的多个候选信息中指示出一个候选信息以完成最后操作,例如CA(Carrier Aggregation,载波聚合)场景下的A-CSI(Aperiodic CSI,非周期CSI)的汇报。
未来移动通信系统中,由于波束赋形(Beamforming)和Massive-MIMO(Massive Multiple-Input Multiple-Output,大规模多天线)系统的引入,上述机制需要被重新考虑。
发明内容
未来移动通信系统中,基站将会在多个发送波束(Tx-Beam)上传输下行控制信道以及下行数据信道。与此同时,UE也将会在多个接收波束 (Rx-Beam)上检测下行控制信道及下行数据信道。由于UE的移动性,旋转(Rotation)及传输路径阻碍(Blocking)的原因,UE可能在多个Tx-Beam或者多个Rx-Beam之间切换以获取较好的接收质量,特别是控制信令的接收质量。针对此种场景,RRC信令的配置将会存在问题。一种解决方式就是针对不同的波束配置不同的RRC信令,然而此种方法的一个显而易见的缺点是RRC配置周期远慢于波束间的切换,从而导致在一个RRC周期内,不同波束只能采用固定的配置参数进行操作,且不能灵活配置,进而会影响波束赋形带来的性能增益。
针对上述问题,本发明提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。
本发明公开了一种被用于无线通信的用户设备中的方法,其中,包括如下步骤:
-步骤A.接收第一无线信号;
-步骤B.接收第二无线信号。
其中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。
作为一个实施例,上述方法的特质在于:所述K个配置信息针对K个波束,所述K个波束对应基站的K个发送波束,或者所述K个波束对应所述用户设备的K个接收波束。所述Q个子信息对应Q类不同的配置信息,例如功率控制类的配置信息,CSI-RS类的配置信息等,且每一类 配置信息对应的子信息中包含多种候选配置信息。针对给定的一类配置信息,所述第一信令中的一个所述比特域从多种候选配置信息中指示出一种候选配置用于后续操作。
作为一个实施例,上述方法的优点在于:所述第一无线信号用于传输高层信令,所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。此种方式既保留RRC信令配置信息开销较小的特点,又通过引入第一信令进一步提升指示的候选配置的灵活性,进而最大化波束赋形带来的增益。
作为一个实施例,所述配置信息是半静态(Semi-Static)配置的。
作为一个实施例,所述配置信息是通过高层信令承载的。
作为该实施例的一个子实施例,所述高层信令是RRC层信令。
作为一个实施例,所述K个配置信息分别对应K个候选天线端口组。
作为该实施例的一个子实施例,所述K个候选天线端口组对应所述用户设备的服务小区的K个发送波束。
作为该实施例的一个子实施例,候选天线端口组#1和候选天线端口组#2是所述K个候选天线端口组中的任意两个不相同的所述候选天线端口组,存在一个天线端口不同时属于所述候选天线端口组#1和所述候选天线端口组#2。
作为一个实施例,所述K个配置信息分别对应K个候选向量组。
作为该实施例的一个子实施例,所述K个候选向量组对应所述用户设备的K个接收波束。
作为该实施例的一个子实施例,所述候选向量组被用于所述用户设备的接收波束赋形。
作为一个实施例,所述K个配置信息分别对应K个所述信息索引。
作为一个实施例,所述K个配置信息通过小区专属的(Cell-Specific)RRC信令传输。
作为一个实施例,所述K个配置信息通过TRP(Transmission Reception Point,发送接收点)专属的RRC信令传输。
作为一个实施例,所述K个配置信息通过波束专属的(Beam-Specific)RRC信令传输。
作为一个实施例,所述K个配置信息通过UE专属的 (UE-Specific)RRC信令传输。
作为一个实施例,所述Q个子信息分别对应Q种不同类型的候选配置。
作为该实施例的一个子实施例,所述Q种不同类型的候选配置包括{针对功率的候选配置,针对上行RS(Reference Signal,参考信号)的候选配置,针对下行RS的候选配置,针对CSI报告的候选配置,针对信道测量的候选配置,针对资源分配的候选配置}中的至少之一。
作为该实施例的一个子实施例,所述Q个子信息包含{功率相关的信息,上行RS相关的信息,下行RS相关的信息,CSI报告相关的信息,信道测量相关的信息,资源分配相关的信息}中的至少之一。
作为一个实施例,所述Q个子信息中的一个所述子信息是下行RS相关的信息。
作为该实施例的一个子实施例,所述下行RS是下行DMRS。
作为该实施例的一个子实施例,所述第一信令是一个DCI,与所述下行RS信息相关的比特域属于所述第一信令中的“天线端口,加扰标识和层数指示(Antenna port(s),scrambling identity and number of layers indication)”域。
作为该实施例的一个子实施例,所述下行RS相关的信息包含多个候选配置。
作为该子实施例的一个附属实施例,与所述下行RS信息相关的比特域被用于从所述多个候选配置中指示出一个所述候选配置。
作为该子实施例的一个附属实施例,所述候选配置是TS 36.331中的DMRS-Config。
作为该子实施例的一个附属实施例,所述候选配置包括针对所述下行RS的加扰标识(Scrambling Identity)。
作为该子实施例的一个附属实施例,所述候选配置包括针对所述下行RS的
Figure PCTCN2017078806-appb-000001
作为一个实施例,给定比特域包含N个比特,所述给定比特域对应给定子信息,所述给定子信息包含M个候选配置,所述M与所述N有关。所述N是整数,所述M是正整数。所述给定比特域是所述Q个比特域中的任意一个比特域,所述给定子信息是所述Q个子信息中与所述给定比特域对 应的子信息。
作为该实施例的一个子实施例,所述N等于
Figure PCTCN2017078806-appb-000002
其中
Figure PCTCN2017078806-appb-000003
表示不小于X的最小整数。
作为一个实施例,所述第一无线信号对应的物理层信道是{PDSCH(Physical Downlink Shared Channel,物理下行共享信道),SPDSCH(Short Latency PDSCH,短延迟物理下行共享信道),NR-PDSCH(New Radio PDSCH,新无线物理下行共享信道)}中的之一。
作为一个实施例,所述第一无线信号对应的传输信道是DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述第二无线信号对应的物理层信道是{PDCCH(Physical Downlink Control Channel,物理下行控制信道),SPDCCH(Short Latency PDCCH,短延迟物理下行控制信道),NR-PDCCH(NR-PDCCH,新无线物理下行控制信道)}中的之一。
作为一个实施例,所述第一信令是一个DCI。
作为一个实施例,给定天线端口和目标天线端口是半共址的(QCL,Quasi Co-Located)是指:能够从在所述给定天线端口上传输的无线信号的信道的大尺度(large-scale)特性(properties)推断出在所述目标天线端口上传输的无线信号的信道的大尺度特性。所述大尺度特性包括{延时扩展(Delay Spread),多普勒扩展(Doppler Spread),多普勒移位(Doppler Shift),平均增益(Average Gain),平均延时(Average Delay),到达角(Angle of Arrival),离开角(Angle of Departure),空间相关性}中的一种或者多种。
作为一个实施例,本发明中所述天线端口由多根物理天线通过天线虚拟化(Virtualization)叠加而成。所述天线端口到所述多根物理天线的映射系数组成波束赋形向量用于所述天线虚拟化,形成波束。
作为一个实施例,本发明中的所述天线端口是一个AP(Antenna Port,天线端口)。
作为一个实施例,本发明中的所述天线端口组包含正整数个AP。
作为一个实施例,所述第一向量组被用于所述用户设备的接收波束赋型。
作为该实施例的一个子实施例,所述接收波束赋型是模拟的波束赋型。
作为一个实施例,所述第一天线端口组被用于给定基站设备的发送波束赋型。
作为该实施例的一个子实施例,所述发送波束赋型是模拟的波束赋型。
作为该实施例的一个子实施例,所述基站设备是所述用户设备的服务基站。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A0.发送第三无线信号;
-步骤A1.接收第四无线信号。
其中,所述第三无线信号被用于触发所述第四无线信号。所述第四无线信号被用于确定所述第一天线端口组;或者所述第四无线信号被用于确定所述第一向量组。
作为一个实施例,上述方法的特质在于:所述第三无线信号被用于所述用户设备的波束切换或者波束恢复的请求,所述第四无线信号被所述用户设备的服务基站用于对所述用户设备的波束切换或者波束恢复请求的确认。
作为一个实施例,上述方法的优点在于:所述第三无线信号和所述第四无线信号分别被用于所述用户设备在多个波束间切换时的触发和确认,以保证基站知道所述用户设备在哪个波束下被服务,进而保证波束赋形的性能。
作为一个实施例,所述第三无线信号包括PRACH(Physical Random Access Channel,物理随机接入信道)前导(Preamble)。
作为一个实施例,所述第三无线信号在PRACH上传输。
作为一个实施例,所述第三无线信号包括波束恢复请求(Beam Recovery Request)。
作为一个实施例,所述第四无线信号被用于波束恢复。
作为一个实施例,所述第四无线信号包括给定MAC(Media Access Control,媒体接入控制)CE(Control Element,控制单元),所述给定MAC CE被用于波束恢复。
作为一个实施例,所述第四无线信号包含给定RRC信令,所述给定RRC信令被用于指示{所述第一天线端口组,所述第一向量组的索引}中的之一。
作为一个实施例,所述第四无线信号是一个DCI,所述DCI中包含给定域,所述给定域被用于指示{所述第一天线端口组,所述第一向量组的索引}中的之一。
具体的,根据本发明的一个方面,上述方法的特征在于,还包括如下步骤:
-步骤C.操作第五无线信号。
其中,所述操作是接收,或者所述操作是发送。所述所述第一信令中的Q个比特域所指示的所述候选配置被应用于所述第五无线信号。
作为一个实施例,上述方法的特质在于:所述第五无线信号的传输由高层信令和动态信令共同确定。所述高层信令对应所述K个配置信息,所述动态信令对应所述第一信令。
作为一个实施例,所述操作是接收。
作为该实施例的一个子实施例,所述第五无线信号对应的物理层信道是{PDSCH,SPDSCH,NR-PDSCH}中的之一。
作为该实施例的一个子实施例,所述第五无线信号对应的传输信道是DL-SCH。
作为该实施例的一个子实施例,所述第五无线信号还包含下行DMRS。
作为该子实施例的一个附属实施例,所述操作还包括根据所述下行DMRS进行针对所述第五无线信号的信道估计和解调。
作为该实施例的一个子实施例,所述第五无线信号还包含CSI-RS。
作为该子实施例的一个附属实施例,所述第一操作还包括根据所述CSI-RS汇报信道质量。
作为该附属实施例的一个范例,所述信道质量包括{CQI(Channel Quality Indicator,信道质量指示),PMI(Precoding Matrix Indicator,预编码矩阵指示),RI(Rank Indicator,阶数指示),CRI(CSI-RS Resource Indicator,CSI-RS资源指示)}中的至少之一。
作为该附属实施例的一个范例,所述用户设备根据所述CSI-RS获得所述信道质量。
作为该附属实施例的一个范例,所述信道质量是所述第五无线信号的发送者到所述用户设备的信道质量。
作为该附属实施例的一个范例,所述信道质量还包含{RSRP(Reference  Signal Received Power,参考信号接收功率),RSRQ(Reference Signal Received Quality,参考信号接收质量),RSSI(Received Signal Strength Indicator,接收信号强度指示)}中的至少之一。
作为该附属实施例的一个范例,所述信道质量被用于层3(Layer 3)的测量。
作为该实施例的一个子实施例,所述第五无线信号还包含目标序列。
作为该子实施例的一个附属实施例,所述目标序列包含{PSS(Primary Synchronization Signal,主同步信号),SSS(Secondary Synchronization Signal,辅同步信号),CRS(Common Reference Signal,公共参考信号),DRS(Discovery Reference Signal,发现参考信号),MRS(Mobi lity Reference Signal,移动性参考信号),PTRS(Phase Tracking Reference Signal,相位跟踪参考信号)}中的至少之一。
作为该子实施例的一个附属实施例,所述目标序列被用于层3(Layer 3)的测量。
作为一个实施例,所述操作是发送。
作为该实施例的一个子实施例,所述第五无线信号对应的物理层信道是{PUSCH(Physical Uplink Shared Channel,物理上行共享信道),SPUSCH(Short Latency PUSCH,短延迟物理上行共享信道),NR-PUSCH(New Radio-PUSCH,新无线物理上行共享信道)}中的之一。
作为该实施例的一个子实施例,所述第五无线信号对应的传输信道是UL-SCH(Uplink Shared Channel,上行共享信道)。
作为该实施例的一个子实施例,所述第五无线信号还包含上行DMRS。
作为该子实施例的一个附属实施例,所述操作还包括根据所述上行DMRS进行所述第五无线信号的信道估计和解调。
作为该实施例的一个子实施例,所述第五无线信号对应的物理层信道是{PUCCH(Physical Uplink Control Channel,物理上行控制信道),SPUCCH(Short Latency PUCCH,短延迟物理上行控制信道),NR-PUCCH(New Radio-PUCCH,新无线物理上行控制信道)}中的之一。
作为该实施例的一个子实施例,所述第五无线信号是一个UCI(Uplink Control Information,上行控制信息)。
作为该子实施例的一个附属实施例,所述第五无线信号包括第一 HARQ-ACK(Hybrid Automatic Repeat request-Acknowledgement,混合自动重传请求确认),所述第一HARQ-ACK被用于确定针对所述用户设备的下行传输是否被正确接收。
作为该子实施例的一个附属实施例,所述第五无线信号包括第一信道质量,所述第一信道质量被用于确定所述第五无线信号的发送者到所述用户设备的{CQI,PMI,RI,CRI}中的至少之一。
作为该实施例的一个子实施例,所述第五无线信号还包含SRS。
作为该子实施例的一个附属实施例,所述SRS被用于确定所述用户设备到所述第五无线信号的接收者的信道质量,所述信道质量包括{RSRP,RSRQ,RSSI,CQI,PMI,RI,CRI}中的至少之一。
具体的,根据本发明的一个方面,上述方法的特征在于,所述Q个子信息中的一个所述子信息是功率相关的信息。
作为一个实施例,上述方法的特质在于:所述子信息被用于配置所述第五无线信号的发送功率。
作为一个实施例,所述操作是发送,所述功率相关的信息被所述用户设备用于确定所述第五无线信号的发送功率。
作为一个实施例,所述功率相关的信息包括多种候选配置,所述多种候选配置是K种候选配置,所述K种候选配置与K个天线端口组一一对应,或者所述K种候选配置与K个向量组一一对应。所述K是正整数。
作为该实施例的一个子实施例,所述K个天线端口组中的一个天线端口组与所述第五无线信号的发送天线端口组是BPL(Beam Pair Link,波束对相关)的。
作为该实施例的一个子实施例,所述K个向量组中的一个向量组被用于确定所述第五无线信号的发送天线端口组。
作为该实施例的一个子实施例,所述K个向量组中的一个向量组被用于所述第五无线信号的接收波束赋形。
作为一个实施例,所述功率相关的信息包括多种候选配置。给定比特域被用于从所述多种候选配置中确定一种所述候选配置。
作为一个实施例,所述第五无线信号是{PUSCH,SPUSCH,NR-PUSCH}中的之一。
作为该实施例的一个子实施例,与所述子信息相关的比特域是TS 36.212中的TPC Command for Scheduled PUSCH域。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的p0-UE-PUSCH。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的p0-NominalPUSCH。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的preambleInitialReceivedTargetPower。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的deltaPreambleMsg3。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的{alpha-SubframeSet2-r12,alpha}中的之一。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的{referenceSignalPower,pathlossReferenceLinking}。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的Accumulation-enabled。
作为该子实施例的一个附属实施例,所述候选配置被用于确定TS36.213中的δPUSCH,c
作为该子实施例的一个附属实施例,所述候选配置还包括{第一参数集合,第二参数集合,第三参数集合,第四参数集合,第五参数集合}中的至少之一。
作为该附属实施例的一个范例,所述第一参数集合是{-1,0,1,3},且单位是dB。
作为该附属实施例的一个范例,所述第二参数集合是{-1,1},且单位是dB。
作为该附属实施例的一个范例,所述第三参数集合是{-4,-1,1,4},且单位是dB。
作为该附属实施例的一个范例,所述第四参数集合是{-M1,0,M2,M3},且单位是dB。所述M1,所述M2和所述M3均是正整数。
作为该附属实施例的一个范例,所述第五参数集合是{-M4,-M5,M6,M7},且单位是dB。所述M4,所述M5,所述M6和所述M7均是正整数。
作为一个实施例,所述第五无线信号是{PUCCH,SPUCCH,NR-PUCCH} 中的之一。
作为该实施例的一个子实施例,与所述子信息相关的比特域是TS36.212中的TPC Command for PUCCH域。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的p0-NominalPUCCH。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的deltaF-PUCCH-FormatX。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的deltaTxD-OffsetPUCCH-FormatX。
作为该实施例的一个子实施例,所述候选配置被用于确定TS 36.213中的δPUCCH
作为该子实施例的一个附属实施例,所述候选配置包括{第一参数集合,第二参数集合,第三参数集合,第四参数集合,第五参数集合}中的至少之一。
作为该附属实施例的一个范例,所述第一参数集合是{-1,0,1,3},且单位是dB。
作为该附属实施例的一个范例,所述第二参数集合是{-1,1},且单位是dB。
作为该附属实施例的一个范例,所述第三参数集合是{-4,-1,1,4},且单位是dB。
作为该附属实施例的一个范例,所述第四参数集合是{-M1,0,M2,M3},且单位是dB。所述M1,所述M2和所述M3均是正整数。
作为该附属实施例的一个范例,所述第五参数集合是{-M4,-M5,M6,M7},且单位是dB。所述M4,所述M5,所述M6和所述M7均是正整数。
作为一个实施例,所述第五无线信号是SRS。
作为该实施例的一个子实施例,与所述子信息相关的比特域是TS36.212中的TPC Command for Scheduled PUSCH域。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的pSRS-Offset。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的pSRS-OffsetAP。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的p0-Nominal-AperiodicSRS。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的p0-Nominal-PeriodicSRS。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的p0-UE-AperiodicSRS。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的p0-UE-PeriodicSRS。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的alpha-SRS。
作为该实施例的一个子实施例,所述候选配置被用于确定TS 36.213中的δSRS,c
作为该子实施例的一个附属实施例,所述候选配置包括{第一参数集合,第二参数集合,第三参数集合,第四参数集合,第五参数集合}中的至少之一。
作为该附属实施例的一个范例,所述第一参数集合是{-1,0,1,3},且单位是dB。
作为该附属实施例的一个范例,所述第二参数集合是{-1,1},且单位是dB。
作为该附属实施例的一个范例,所述第三参数集合是{-4,-1,1,4},且单位是dB。
作为该附属实施例的一个范例,所述第四参数集合是{-M1,0,M2,M3},且单位是dB。所述M1,所述M2和所述M3均是正整数。
作为该附属实施例的一个范例,所述第五参数集合是{-M4,-M5,M6,M7},且单位是dB。所述M4,所述M5,所述M6和所述M7均是正整数。
具体的,根据本发明的一个方面,上述方法的特征在于,所述Q个子信息中的一个所述子信息是上行RS相关的信息。
作为一个实施例,上述方法的一个方面在于:所述子信息用于配置所述第五无线信号的上行DMRS。
作为一个实施例,上述方法的另一个方面在于:所述子信息用于配置所述第五无线信号所包含的SRS。
作为一个实施例,所述操作是发送。
作为一个实施例,所述上行RS相关的信息包括多种候选配置,所述多种候选配置是K种候选配置,所述K种候选配置与K个天线端口组一一对应,或者所述K种候选配置与K个向量组一一对应。所述K是正整数。
作为该实施例的一个子实施例,所述K个天线端口组中的一个天线端口组与所述第五无线信号的发送天线端口组是BPL的。
作为该实施例的一个子实施例,所述K个向量组中的一个向量组被用于确定所述第五无线信号的发送天线端口组。
作为该实施例的一个子实施例,所述K个向量组中的一个向量组被用于所述第五无线信号的接收波束赋形。
作为一个实施例,所述上行RS相关的信息包括多种候选配置。给定比特域被用于从所述多种候选配置中确定一种所述候选配置。
作为一个实施例,所述上行RS相关信息被所述用户设备用于确定所述上行RS所占用的{时域资源,频域资源,码域资源}中的至少之一。
作为一个实施例,所述第五无线信号包括SRS,所述上行RS是所述SRS。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的{srs-ConfigApDCI-Format0,srs-ConfigApDCI-Format1a2b2c,srs-ConfigApDCI-Format4}中的之一。
作为该实施例的一个子实施例,所述候选配置是srs-ConfigApDCI-FormatX。
作为该子实施例的一个附属实施例,所述srs-ConfigApDCI-FormatX包含多个TS 36.331中的SRS-ConfigAp。
作为一个实施例,所述第五无线信号包括{PUSCH,SPUSCH,NR-PUSCH}中的之一,所述上行RS相关信息被所述用户设备用于所述第五无线信号的信道估计和解调。
作为该实施例的一个子实施例,所述上行RS是上行DMRS。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的transmissionModeUL。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的fourAntennaPortActivated。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的 nPUSCH-Identity。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的nDMRS-CSH-Identity。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的dmrs-WithOCC-Activated。
具体的,根据本发明的一个方面,上述方法的特征在于,所述Q个子信息中的一个所述子信息是CSI报告相关的信息。
作为一个实施例,上述方法的特质在于:所述子信息被用于配置所述用户设备的CSI-RS,以及被用于配置参照所述CSI-RS的CSI汇报。
作为一个实施例,所述操作是接收。
作为一个实施例,所述CSI报告相关的信息包括多种候选配置,所述多种候选配置是K种候选配置,所述K种候选配置与K个天线端口组一一对应,或者所述K种候选配置与K个向量组一一对应。所述K是正整数。
作为该实施例的一个子实施例,所述K个天线端口组中的一个天线端口组与所述第五无线信号的发送天线端口组是BPL的。
作为该实施例的一个子实施例,所述K个向量组中的一个向量组被用于确定所述第五无线信号的发送天线端口组。
作为该实施例的一个子实施例,所述K个向量组中的一个向量组被用于所述第五无线信号的接收波束赋形。
作为一个实施例,所述CSI报告相关的信息包括多种候选配置。给定比特域被用于从所述多种候选配置中确定一种所述候选配置。
作为一个实施例,所述CSI报告相关的信息被所述用户设备用于确定配置的CSI-RS所占用的{时域资源,频域资源,码域资源}中的至少之一。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中{CSI-IM-Config,CSI-RS-Config,CSI-RS-ConfigNZ,CSI-RS-ConfigZP}中的之一。
作为该实施例的一个子实施例,所述候选配置是TS 36.331中的CQI-ReportAperiodic。
作为该实施例的一个子实施例,所述候选配置对应一种TS36.331中的CSI-RS-Config,所述多种候选配置对应多种所述CSI-RS-Config,与所述子信息相关的比特域被用于从所述多种所述CSI-RS-Config中确 定一种所述CSI-RS-Config。
作为该实施例的一个子实施例,所述候选配置对应一种TS36.331中的csi-SubframePatternConfig,所述多种候选配置对应多种所述csi-SubframePatternConfig,与所述子信息相关的比特域被用于从所述多种所述csi-SubframePatternConfig中确定一种所述csi-SubframePatternConfig。
作为一个实施例,与所述子信息相关的比特域是DCI中的CSI request域。
具体的,根据本发明的一个方面,上述方法的特征在于,所述Q个子信息中的一个所述子信息是信道测量相关的信息。
作为一个实施例,上述方法的特质在于:所述子信息被用于所述用户设备层3测量的配置。
作为该实施例的一个子实施例,所述层3测量被用于RRM(Radio Resource Management,无线资源管理)。
作为该实施例的一个子实施例,所述层3测量被用于{小区切换,波束切换,波束恢复,小区重选}中的至少之一。
作为一个实施例,所述信道测量相关的信息包括多种候选配置,所述多种候选配置是K种候选配置,所述K种候选配置与K个天线端口组一一对应,或者所述K种候选配置与K个向量组一一对应。所述K是正整数。
作为该实施例的一个子实施例,所述K个天线端口组中的一个天线端口组与所述第五无线信号的发送天线端口组是BPL的。
作为该实施例的一个子实施例,所述K个向量组中的一个向量组被用于确定所述第五无线信号的发送天线端口组。
作为该实施例的一个子实施例,所述K个向量组中的一个向量组被用于所述第五无线信号的接收波束赋形。
作为一个实施例,所述信道测量相关的信息包括多种候选配置。给定比特域被用于从所述多种候选配置中确定一种所述候选配置。
作为一个实施例,所述信道测量相关的信息被所述用户设备用于确定进行层3测量的无线信号所占用的{时域资源,频域资源,码域资源,发送功率}中的至少之一。
作为该实施例的一个子实施例,所述无线信号包括{PSS,SSS,DRS,CRS,MRS,PTRS}中的至少之一。
作为一个实施例,所述候选配置是TS 36.331中的p-aList-r12。
作为一个实施例,所述候选配置是TS 36.331中的p-a。
作为一个实施例,所述候选配置是TS 36.331中的p-b。
作为一个实施例,所述候选配置是TS 36.331中的mbsfn-SubframeConfigList。
作为一个实施例,所述候选配置是TS 36.331中的MeasSubframePatternPCell。
具体的,根据本发明的一个方面,上述方法的特征在于,所述Q个子信息中的一个所述子信息是资源分配相关的信息。
作为一个实施例,上述方法的一个方面在于:所述子信息被用于配置UCI传输的资源。
作为一个实施例,上述方法的另一个方面在于:所述子信息被用于配置所述第五无线信号调度的最小颗粒度。
作为该实施例的一个子实施例,上述方法的好处在于:目前一个系统带宽仅针对一种调度颗粒度,即一种RBG(Resource Block Group)大小(Size)。NR系统中,不同的波束可能在不同的业务之间切换,服务不同的需求,即使系统带宽相同,对应不同业务类型和不同需求的调度也会存在不同的RBG大小。上述方法满足对应不同RBG大小的调度。
作为一个实施例,所述资源分配相关的信息包括多种候选配置,所述多种候选配置是K种候选配置,所述K种候选配置与K个天线端口组一一对应,或者所述K种候选配置与K个向量组一一对应。所述K是正整数。
作为该实施例的一个子实施例,所述K个天线端口组中的一个天线端口组与所述第五无线信号的发送天线端口组是BPL的。
作为该实施例的一个子实施例,所述K个向量组中的一个向量组被用于确定所述第五无线信号的发送天线端口组。
作为该实施例的一个子实施例,所述K个向量组中的一个向量组被用于所述第五无线信号的接收波束赋形。
作为一个实施例,所述资源分配相关的信息包括多种候选配置。给 定比特域被用于从所述多种候选配置中确定一种所述候选配置。
作为一个实施例,所述资源分配相关的信息被所述用户设备用于确定所述第五无线信号做占用的{时域资源,频域资源,码域资源}中的至少之一。
作为该实施例的一个子实施例,所述操作是发送,所述第五无线信号对应的物理层信道是{PUCCH,SPUCCH,NR-PUCCH}中的之一。
作为该子实施例的一个附属实施例,所述候选配置是TS36.331中的{n1PUCCH-AN-InfoList,n3PUCCH-AN-List,nPUCCH-Identity,n1PUCCH-AN,nkaPUCCH-AN}之一。
作为该子实施例的一个附属实施例,所述候选配置是TS36.331中的PUCCH-ConfigDedicated。
作为一个实施例,所述资源分配相关的信息被所述用户设备用于确定调度所述第五无线信号所采用的RBG大小。
作为该实施例的一个子实施例,所述RBG对应调度一次所述第五无线信号所占用的最少的RB(Resource Block,资源块)个数。
作为该子实施例的一个附属实施例,所述多种候选配置对应多个RBG的值,与所述子信息相关的比特域被用于从所述多个RBG大小中确定一个RBG大小。
作为该附属实施例的一个范例,所述与所述子信息相关的比特域属于DCI中的“资源块分配和跳频资源配置(Resource block assignment and hopping resource allocation)”域。
作为该子实施例的一个附属实施例,所述操作是发送,所述第五无线信号对应的传输信道是UL-SCH。
作为该子实施例的一个附属实施例,所述操作是接收,所述第五无线信号对应的传输信道是DL-SCH。
本发明公开了一种被用于无线通信的基站中的方法,其中,包括如下步骤:
-步骤A.发送第一无线信号;
-步骤B.发送第二无线信号。
其中,所述第一无线信号包括K个配置信息,所述第二无线信号包 括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A0.接收第三无线信号;
-步骤A1.发送第四无线信号。
其中,所述第三无线信号被用于触发所述第四无线信号。所述第四无线信号被用于确定所述第一天线端口组;或者所述第四无线信号被用于确定所述第一向量组。
具体的,根据本发明的一个方面,上述方法的特征在于,还包括如下步骤:
-步骤C.执行第五无线信号。
其中,所述执行是发送,或者所述执行是接收。所述所述第一信令中的Q个比特域所指示的所述候选配置被应用于所述第五无线信号。
作为一个实施例,所述第五无线信号对应的物理层信道是{PDSCH,SPDSCH,NR-PDSCH}中的之一,所述执行是发送。
作为一个实施例,所述第五无线信号包含CSI-RS,所述执行是发送。
作为一个实施例,所述第五无线信号包含下行DMRS,所述执行是发送。
作为一个实施例,所述第五无线信号对应的传输信道是DL-SCH,所述执行是发送。
作为一个实施例,所述第五无线信号对应的物理层信道是{PUSCH,SPUSCH,NR-PUSCH}中的之一,所述执行是接收。
作为一个实施例,所述第五无线信号包含SRS,所述执行是接收。
作为一个实施例,所述第五无线信号包含上行DMRS,所述执行是接收。
作为一个实施例,所述第五无线信号对应的传输信道是UL-SCH,所述执行是接收。
具体的,根据本发明的一个方面,上述方法的特征在于,所述Q个子信息中的一个所述子信息是功率相关的信息。
具体的,根据本发明的一个方面,上述方法的特征在于,所述Q个子信息中的一个所述子信息是上行RS相关的信息。
具体的,根据本发明的一个方面,上述方法的特征在于,所述Q个子信息中的一个所述子信息是CSI报告相关的信息。
具体的,根据本发明的一个方面,上述方法的特征在于,所述Q个子信息中的一个所述子信息是信道测量相关的信息。
具体的,根据本发明的一个方面,上述方法的特征在于,所述Q个子信息中的一个所述子信息是资源分配相关的信息。
本发明公开了一种被用于无线通信的用户设备,其中,包括如下模块:
-第一处理模块:用于接收第一无线信号;
-第一接收模块:用于接收第二无线信号。
其中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还用于发送第三无线信号,以及用于接收第四无线信号。所述第三无线信号被用于触发所述第四无线信号。所述第四无线信号被用于确定所述第一天线端口组;或者所述第四无线信号被用于确定所述第一向量组。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,还包括第二处理模块,所述第二处理模块用于操作第五无线信号。所述操作是接收,或者所述操作是发送。所述所述第一信令中的Q个比特域所指示的所述候选配置被应用于所述第五无线信号。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述Q个子信息中的一个所述子信息是功率相关的信息。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述Q个子信息中的一个所述子信息是上行RS相关的信息。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述Q个子信息中的一个所述子信息是CSI报告相关的信息。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述Q个子信息中的一个所述子信息是信道测量相关的信息。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述Q个子信息中的一个所述子信息是资源分配相关的信息。
本发明公开了一种被用于无线通信的基站设备,其中,包括如下模块:
-第三处理模块:用于发送第一无线信号;
-第一发送模块:用于发送第二无线信号。
其中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第 一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第三处理模块还用于接收第三无线信号,以及用于发送第四无线信号。所述第三无线信号被用于触发所述第四无线信号。所述第四无线信号被用于确定所述第一天线端口组;或者所述第四无线信号被用于确定所述第一向量组。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,还包括第四处理模块,所述第四处理模块用于执行第五无线信号。所述执行是发送,或者所述执行是接收。所述所述第一信令中的Q个比特域所指示的所述候选配置被应用于所述第五无线信号。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述Q个子信息中的一个所述子信息是功率相关的信息。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述Q个子信息中的一个所述子信息是上行RS相关的信息。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述Q个子信息中的一个所述子信息是CSI报告相关的信息。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述Q个子信息中的一个所述子信息是信道测量相关的信息。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述Q个子信息中的一个所述子信息是资源分配相关的信息。
作为一个实施例,相比现有公开技术,本发明具有如下技术优势:
-.通过设计所述K个配置信息,所述K个配置信息针对K个波束。所述Q个子信息对应Q类不同的配置信息,例如功率控制类的配置信息,CSI-RS类的配置信息等,且每一类配置信息对应的子信息中包含多种候选配置信息。所述用户设备根据所在的波束选择对应的候选配置信息,以适应不同波束的特点。
-.通过设计所述第一无线信号和所述第一信令。所述第一无线信 号用于传输高层信令,所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。此种方式既保留RRC信令开销较小的特点,又通过引入第一信令进一步提升指示的候选配置的灵活性,进而最大化波束赋形带来的增益。
-.通过设计所述资源分配的相关信息,当不同的波束应用于不同的业务,且对应不同的需求时,即使系统带宽相同,对应不同业务类型和不同需求的调度采用不同的RBG大小。此方法提升波束赋形的调度灵活性和对业务的适应性,进而提升整体性能。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的第一无线信号传输的流程图;
图2示出了根据本发明的另一个实施例的第一无线信号传输的流程图;
图3示出了根据本发明的一个应用场景的示意图;
图4示出了根据本发明的一个实施例的UE中的处理装置的结构框图;
图5示出了根据本发明的一个实施例的基站中的处理装置的结构框图;
图6示出了根据本发明的一个第一天线端口组的示意图;
图7示出了根据本发明的一个第一天线端口组的图样(Pattern)的示意图;
图8示出了根据本发明的一个第一向量组的示意图;
图9示出了根据本发明的一个第一向量组对应的目标RS的图样的示意图;
图10示出了根据本发明的一个天线端口的示意图。
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本发明的一个第一无线信号传输的流程图,如附 图1所示。附图1中,基站N1是UE U2的服务小区的维持基站。方框F0和方框F1标识的步骤是可选的。
对于基站N1,在步骤S10中发送第一无线信号,在步骤S11中接收第三无线信号,在步骤S12中发送第四无线信号,在步骤S13中发送第二无线信号,在步骤S14中发送第五无线信号。
对于UE U2,在步骤S20中接收第一无线信号,在步骤S21中发送第三无线信号,在步骤S22中接收第四无线信号,在步骤S23中接收第二无线信号,在步骤S24中接收第五无线信号。
实施例1中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。所述第三无线信号被用于触发所述第四无线信号。所述第四无线信号被用于确定所述第一天线端口组;或者所述第四无线信号被用于确定所述第一向量组。所述所述第一信令中的Q个比特域所指示的所述候选配置被应用于所述第五无线信号。
作为一个子实施例,所述Q个子信息中的一个所述子信息是CSI报告相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是信道测量相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是资源分配相关的信息。
作为一个子实施例,所述第五无线信号包含CSI-RS。
作为一个子实施例,所述第五无线信号包含下行DMRS。
作为一个子实施例,所述第五无线信号对应的传输信道是DL-SCH。
实施例2
实施例2示例了根据本发明的另一个第一无线信号传输的流程图,如附图2所示。附图2中,基站N3是UE U4的服务小区的维持基站。方框F2和方框F3标识的步骤是可选的。
对于基站N3,在步骤S30中发送第一无线信号,在步骤S31中接收第三无线信号,在步骤S32中发送第四无线信号,在步骤S33中发送第二无线信号,在步骤S34中接收第五无线信号。
对于UE U4,在步骤S40中接收第一无线信号,在步骤S41中发送第三无线信号,在步骤S42中接收第四无线信号,在步骤S43中接收第二无线信号,在步骤S44中发送第五无线信号。
实施例2中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。所述第三无线信号被用于触发所述第四无线信号。所述第四无线信号被用于确定所述第一天线端口组;或者所述第四无线信号被用于确定所述第一向量组。所述所述第一信令中的Q个比特域所指示的所述候选配置被应用于所述第五无线信号。
作为一个子实施例,所述Q个子信息中的一个所述子信息是功率相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是上行RS相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是资源分配相关的信息。
作为一个子实施例,所述第五无线信号包含SRS。
作为一个子实施例,所述第五无线信号包含上行DMRS。
作为一个子实施例,所述第五无线信号对应的传输信道是UL-SCH。
实施例3
实施例3示例了根据本发明的一个应用场景的示意图,如附图3所示。图中时间段#1对应波束1,时间段#2对应波束2。时间段#1和时间段#2均属于第一时间窗。所述第一时间窗对应本发明中所述用户设备的一个RRC信令对应的周期。本发明中的所述K个配置信息中存在第一配置信息和第二配置信息,所述第一配置信息针对所述波束1,所述第二配置信息针对所述波束2。所述第一配置信息和所述第二配置信息是不同的。所述用户设备在所示第一时刻发送本发明中的第三无线信号,并在所述第二时刻接收本发明中的第四无线信号。
作为一个子实施例,所述第一无线信号在所述第一时间窗中被接收。
作为一个子实施例,所述K个配置信息在所述第一时间窗中有效。
作为一个子实施例,所述用户设备在所述时间段#1中接收本发明中的第二无线信号,且所述用户设备在所述时间段#1中操作本发明中的第五无线信号。
作为该子实施例的一个附属实施例,所述第一配置信息包含Q个第一子信息,所述第一子信息包含正整数个第一候选配置,本发明中的第一信令被用于从所述Q个第一子信息中确定Q个所述第一候选配置。
作为一个子实施例,所述用户设备在所述时间段#2中接收本发明中的第二无线信号,且所述用户设备在所述时间段#2中操作本发明中的第五无线信号。
作为该子实施例的一个附属实施例,所述第二配置信息包含Q个第二子信息,所述第二子信息包含正整数个第二候选配置,本发明中的第一信令被用于从所述Q个第二子信息中确定Q个所述第二候选配置。
作为一个子实施例,所述用户设备在所述第一时间窗中保持RRC连接状态(Connection Mode)。
作为一个子实施例,所述用户设备在所述第一时间窗中未发生RRC连接的重建(Reestablishment)。
实施例4
实施例4示例了一个UE中的处理装置的结构框图,如附图4所示。附 图4中,UE处理装置100主要由第一处理模块101,第一接收模块102和第二处理模块103组成。
-第一处理模块101:用于接收第一无线信号;
-第一接收模块102:用于接收第二无线信号;
-第二处理模块103:用于操作第五无线信号。
实施例6中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。所述操作是接收,或者所述操作是发送。所述所述第一信令中的Q个比特域所指示的所述候选配置被应用于所述第五无线信号。
作为一个子实施例,所述第一处理模块101还用于发送第三无线信号,以及用于接收第四无线信号。所述第三无线信号被用于触发所述第四无线信号。所述第四无线信号被用于确定所述第一天线端口组;或者所述第四无线信号被用于确定所述第一向量组。
作为一个子实施例,所述Q个子信息中的一个所述子信息是功率相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是上行RS相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是CSI报告相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是信道测量相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是资源分 配相关的信息。
实施例5
实施例5示例了一个基站设备中的处理装置的结构框图,如附图5所示。附图5中,基站设备处理装置200主要由第三处理模块201,第一发送模块202和第四处理模块203组成。
-第三处理模块201:用于发送第一无线信号;
-第一发送模块202:用于发送第二无线信号;
-第四处理模块203:用于执行第五无线信号。
实施例4中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。所述执行是发送,或者所述执行是接收。所述所述第一信令中的Q个比特域所指示的所述候选配置被应用于所述第五无线信号。
作为一个子实施例,所述第三处理模块201还用于接收第三无线信号,以及用于发送第四无线信号。所述第三无线信号被用于触发所述第四无线信号。所述第四无线信号被用于确定所述第一天线端口组;或者所述第四无线信号被用于确定所述第一向量组。
作为一个子实施例,所述Q个子信息中的一个所述子信息是功率相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是上行RS相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是CSI报告相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是信道测量相关的信息。
作为一个子实施例,所述Q个子信息中的一个所述子信息是资源分配相关的信息。
实施例6
实施例6示出了根据本发明的一个第一天线端口组的示意图,如附图6所示。附图6中,所述第一天线端口组属于目标候选天线端口组集合,所述目标候选天线端口组集合包含T个所述目标候选天线端口组。所述T个所述目标候选天线端口组与T个时间单元一一对应。所示虚线框中对应所述目标候选天线端口组集合。所述T是正整数。图中所示L是大于1小于T的正整数。
作为一个子实施例,不同所述目标候选天线端口组包括的天线端口的数量是相同的。
作为一个子实施例,至少存在两个不同的所述目标候选天线端口组包括的天线端口的数量是不相同的。
作为一个子实施例,所述T个时间单元中任意一个所述时间单元所占用的多载波符号数是相同的。
作为一个子实施例,所述T个时间单元中存在两个所述时间单元,所述两个所述时间单元所占用的多载波符号数是不同的。
作为一个子实施例,所述T个时间单元组成{微时隙(Mini-Slot),时隙,子帧}中的之一。
作为一个子实施例,所述时间单元在时域的持续时间不大于本发明中所述的时间段在时域的持续时间。
作为一个子实施例,所述T等于本发明中的所述K。
作为一个子实施例,所述目标候选天线端口组是本发明中所述的候选天线端口组。
作为一个子实施例,本发明中的多载波符号是以下之一:
-OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号;
-FBMC(Filtering Bank Multi le Carrier,滤波器组多载波)符号;
-SC-FDMA(Single Carrier Frequency Division Multiple Access,单载波频分多址)符号。
作为一个子实施例,所述L是所述第一天线端口组在所述T个目标候选天线端口组中的索引。
实施例7
实施例7示出了根据本发明的一个第一天线端口组的图样的示意图,如附图7所示。附图7中,所述图样是所述第一天线端口组对应的给定RS在单位时频资源块中所占用的RE(Resource Element,资源单元)的示意图。所述单位时频资源块在频域占用一个PRB(Physical Resource Block,物理资源块)所对应的频带宽度,且在时域占用两个多载波符号。图中一个填充斜线的方格对应一个RE,图中所示的a,b,c,d分别对应天线端口a,天线端口b,天线端口c和天线端口d。“a,b”表示对应的两个RE占用所述天线端口a和所述天线端口b,“c,d”表示对应的两个RE占用所述天线端口c和所述天线端口d。
作为一个子实施例,所述给定RS是下行DMRS。
作为一个子实施例,所述给定RS是CSI-RS。
作为一个子实施例,所述天线端口a和所述天线端口b通过OCC(Orthogonal Cover Code,正交掩码)区分。
作为一个子实施例,所述天线端口c和所述天线端口d通过OCC区分。
作为一个子实施例,所述第一天线端口组所占用的RE在时域是周期分布的。
作为该子实施例的一个附属实施例,所述周期分部是指图中所示的图样在时域周期性的重复。
作为一个子实施例,所述第一天线端口组在系统带宽中占用的RE按照所示图样在系统带宽中重复。
作为一个子实施例,本发明中的所述候选天线端口组对应的RS所占用的RE也采用图中所示的图样的。
实施例8
实施例8示出了根据本发明的一个第一向量组的示意图,如附图8所示。附图8中,所述第一向量组属于目标候选向量组集合,所述目标候选 向量组集合包含R个所述目标候选向量组。所述R个所述目标候选向量组与R个时间单元一一对应。所示虚线框中对应所述目标候选向量组集合。所述R是正整数。图中所示P是大于1小于R的正整数。
作为一个子实施例,不同所述目标候选向量组包括的天线端口的数量是相同的。
作为一个子实施例,所述目标候选向量组是本发明中所述的候选向量组。
作为一个子实施例,至少存在两个不同的所述目标候选向量组包括的天线端口的数量是不相同的。
作为一个子实施例,所述R个时间单元中任意一个所述时间单元所占用的多载波符号数是相同的。
作为一个子实施例,所述R个时间单元中存在两个所述时间单元,所述两个所述时间单元所占用的多载波符号数是不同的。
作为一个子实施例,所述R个时间单元组成{微时隙(Mini-Slot),时隙,子帧}中的之一。
作为一个子实施例,所述时间单元在时域的持续时间不大于本发明中所述的时间段在时域的持续时间。
作为一个子实施例,所述R等于本发明中的所述K。
作为一个子实施例,所述目标候选向量组是本发明中的所述候选向量组。
作为一个子实施例,所述P是所述第一向量组在所述R个目标候选向量组中的索引。
实施例9
实施例9示出了根据本发明的一个第一向量组对应的RS的图样的示意图,如附图9所示。附图9中,所述图样是所述第一向量组对应的目标RS在目标时频资源块中所占用的RE的示意图。所述目标时频资源块在频域占用一个PRB所对应的频带宽度,且在时域占用一个多载波符号。图中一个填充斜线的方格对应一个RE,图中所示的e对应天线端口e。“e”表示对应的一个RE占用所述天线端口e。
作为一个子实施例,所述目标RS是SRS。
作为一个子实施例,所述目标RS所占用的RE在时域是周期分布的。
作为该子实施例的一个附属实施例,所述周期分部是指图中所示的图样在时域周期性的重复。
作为一个子实施例,所述目标RS在系统带宽中占用的RE按照所示图样在系统带宽中重复。
作为一个子实施例,本发明中的所述候选向量组对应的RS所占用的RE也采用图中所示的图样的。
实施例10
实施例10示出了根据本发明的一个天线端口的示意图,如附图10所示。给定设备的天线被分成了多个天线组,每个所述天线组包括多根天线。所述天线端口由一个或者多个天线组中的多根天线通过天线虚拟化叠加而成,所述一个或者多个所述天线组中的多根天线到所述天线端口的映射系数组成波束赋型向量。一个所述天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器。一个所述波束赋型向量由一个模拟波束赋型向量和一个数字波束赋型向量的Kronecker积构成。同一个所述天线组内的多根天线到所述天线端口的映射系数组成这个天线组的模拟波束赋型向量,一个所述天线端口包括的不同天线组对应相同的模拟波束赋型向量。一个所述天线端口包括的不同所述天线组到所述天线端口的映射系数组成这个天线端口的数字波束赋型向量。
作为一个子实施例,本发明中的所述第一天线端口组对应一个所述模拟波束赋型向量。
作为一个子实施例,本发明中的所述第一向量组对应一个所述模拟波束赋型向量。
作为一个子实施例,所述给定设备是本发明中所述的用户设备。
作为一个子实施例,所述给定设备是本发明中所述的基站设备。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本发明中 的UE和终端包括但不限于手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本发明中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种被用于无线通信的用户设备中的方法,其中,包括如下步骤:
    -步骤A.接收第一无线信号;
    -步骤B.接收第二无线信号。
    其中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.发送第三无线信号;
    -步骤A1.接收第四无线信号。
    其中,所述第三无线信号被用于触发所述第四无线信号。所述第四无线信号被用于确定所述第一天线端口组;或者所述第四无线信号被用于确定所述第一向量组。
  3. 根据权利要求1,2所述的方法,其特征在于,还包括如下步骤:
    -步骤C.操作第五无线信号。
    其中,所述操作是接收,或者所述操作是发送。所述所述第一信令中的Q个比特域所指示的所述候选配置被应用于所述第五无线信号。
  4. 根据权利要求1-3所述的方法,其特征在于,所述Q个子信息中的一个所述子信息是功率相关的信息。
  5. 根据权利要求1-4所述的方法,其特征在于,所述Q个子信息中的一个所述子信息是上行RS相关的信息。
  6. 根据权利要求1-5所述的方法,其特征在于,所述Q个子信息中的一个所述子信息是CSI报告相关的信息。
  7. 根据权利要求1-6所述的方法,其特征在于,所述Q个子信息中的一个所述子信息是信道测量相关的信息。
  8. 根据权利要求1-7所述的方法,其特征在于,所述Q个子信息中的一个所述子信息是资源分配相关的信息。
  9. 一种被用于无线通信的基站中的方法,其中,包括如下步骤:
    -步骤A.发送第一无线信号;
    -步骤B.发送第二无线信号。
    其中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。
  10. 根据权利要求9所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.接收第三无线信号;
    -步骤A1.发送第四无线信号。
    其中,所述第三无线信号被用于触发所述第四无线信号。所述第四无线信号被用于确定所述第一天线端口组;或者所述第四无线信号被用于确定所述第一向量组。
  11. 根据权利要求9,10所述的方法,其特征在于,还包括如下步骤:
    -步骤C.执行第五无线信号。
    其中,所述执行是发送,或者所述执行是接收。所述所述第一信令中的Q个比特域所指示的所述候选配置被应用于所述第五无线信号。
  12. 根据权利要求9-11所述的方法,其特征在于,所述Q个子信息中的一个所述子信息是功率相关的信息。
  13. 根据权利要求9-12所述的方法,其特征在于,所述Q个子信息中的一个所述子信息是上行RS相关的信息。
  14. 根据权利要求9-13所述的方法,其特征在于,所述Q个子信息中的一个所述子信息是CSI报告相关的信息。
  15. 根据权利要求9-14所述的方法,其特征在于,所述Q个子信息中的一个所述子信息是信道测量相关的信息。
  16. 根据权利要求9-15所述的方法,其特征在于,所述Q个子信息中的一个所述子信息是资源分配相关的信息。
  17. 一种被用于无线通信的用户设备,其中,包括如下模块:
    -第一处理模块:用于接收第一无线信号;
    -第一接收模块:用于接收第二无线信号。
    其中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。
  18. 一种被用于无线通信的基站设备,其中,包括如下步骤:
    -第三处理模块:用于发送第一无线信号;
    -第一发送模块:用于发送第二无线信号。
    其中,所述第一无线信号包括K个配置信息,所述第二无线信号包括第一信令。所述配置信息包括信息索引以及Q个子信息。所述第一信令中包括Q个比特域,第一配置信息中的Q个子信息分别和所述第一信令中的Q个比特域一一对应。所述比特域中包括正整数个比特,所述所述第一信令中的Q个比特域从相应的子信息所配置的多种候选配置中指示一种候选配置。所述Q是正整数。所述第一配置信息是所述K个配置 信息中的一个所述配置信息。所述第一配置信息中的所述第一索引和第一天线端口组相关,用于发送所述第二无线信号的天线端口和所述第一天线端口组中的天线端口是半共址的;或者所述第一配置信息中的所述第一索引和第一向量组相关,所述第一向量组被用于针对所述第二无线信号的多天线接收。
PCT/CN2017/078806 2017-03-30 2017-03-30 一种用户设备、基站中的被用于多天线传输的方法和装置 WO2018176328A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/078806 WO2018176328A1 (zh) 2017-03-30 2017-03-30 一种用户设备、基站中的被用于多天线传输的方法和装置
CN201780083600.0A CN110268638B (zh) 2017-03-30 2017-03-30 一种用户设备、基站中的被用于多天线传输的方法和装置
CN202211657844.4A CN115987354A (zh) 2017-03-30 2017-03-30 一种用户设备、基站中的被用于多天线传输的方法和装置
CN202211663745.7A CN115884380A (zh) 2017-03-30 2017-03-30 一种用户设备、基站中的被用于多天线传输的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078806 WO2018176328A1 (zh) 2017-03-30 2017-03-30 一种用户设备、基站中的被用于多天线传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2018176328A1 true WO2018176328A1 (zh) 2018-10-04

Family

ID=63674037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078806 WO2018176328A1 (zh) 2017-03-30 2017-03-30 一种用户设备、基站中的被用于多天线传输的方法和装置

Country Status (2)

Country Link
CN (3) CN115884380A (zh)
WO (1) WO2018176328A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070371A (zh) * 2020-08-05 2022-02-18 大唐移动通信设备有限公司 一种波束赋形方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026868A1 (en) * 2010-08-23 2012-03-01 Telefonaktiebolaget L M Ericsson (Publ) Device and method for improved closed loop diversity
CN102394684A (zh) * 2011-11-02 2012-03-28 电信科学技术研究院 多天线端口场景下的信息传输方法和设备
CN106412942A (zh) * 2015-07-31 2017-02-15 株式会社Ntt都科摩 波束参考信号的发送方法、波束选择方法、基站及用户终端
CN106470096A (zh) * 2015-08-14 2017-03-01 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9456358B2 (en) * 2012-08-13 2016-09-27 Qualcomm Incorporated Method and apparatus for indicating active channel state information reference signal (CSI-RS) configurations
US20160105817A1 (en) * 2014-10-10 2016-04-14 Telefonaktiebolaget L M Ericsson (Publ) Method for csi feedback
US10374839B2 (en) * 2015-08-13 2019-08-06 Lg Electronics Inc. Operation method of user equipment in relation to CSI-RS in wireless communication system and apparatus supporting the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026868A1 (en) * 2010-08-23 2012-03-01 Telefonaktiebolaget L M Ericsson (Publ) Device and method for improved closed loop diversity
CN102394684A (zh) * 2011-11-02 2012-03-28 电信科学技术研究院 多天线端口场景下的信息传输方法和设备
CN106412942A (zh) * 2015-07-31 2017-02-15 株式会社Ntt都科摩 波束参考信号的发送方法、波束选择方法、基站及用户终端
CN106470096A (zh) * 2015-08-14 2017-03-01 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070371A (zh) * 2020-08-05 2022-02-18 大唐移动通信设备有限公司 一种波束赋形方法、装置及可读存储介质
CN114070371B (zh) * 2020-08-05 2023-08-11 大唐移动通信设备有限公司 一种波束赋形方法、装置及可读存储介质

Also Published As

Publication number Publication date
CN115987354A (zh) 2023-04-18
CN110268638A (zh) 2019-09-20
CN115884380A (zh) 2023-03-31
CN110268638B (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
US20220030617A1 (en) Transmission of control information using more than one beam pair link
US11483812B2 (en) Base station controlled beam management
CN110431901B (zh) 终端装置、基站装置、通信方法以及集成电路
US11044061B2 (en) Terminal apparatus, communication method, and integrated circuit
CN108260217B (zh) 一种信息传输的方法、装置和通信节点
CN113541905B (zh) 信道配置、功控方法和装置、用户设备、基站及存储介质
CN110536231B (zh) 一种信息反馈方法及装置
JP7060617B2 (ja) リソースを配分するためのシステムおよび方法
US11595108B2 (en) Wireless communication method, network device, and terminal device
US20190089420A1 (en) Method, system and apparatus of beam selection
US9749108B2 (en) Terminal, base station, transmission method, and reception method
JP6771582B2 (ja) 低複雑性マルチ設定csiレポート
CN109150251B (zh) 一种用于功率调整的ue、基站中的方法和装置
CN112567680A (zh) 在无线通信系统中配置和指示波束信息的方法和设备
JP7177141B2 (ja) 無線通信方法、ユーザ装置及び基地局
WO2011129547A2 (ko) 다중 노드 시스템에서 단말의 피드백 정보 전송 방법 및 장치
CN109565315B (zh) 利用天线阵列发送和接收参考信令的网络节点、终端及方法
EP4089953A1 (en) User device, and method and device in base station for multi-antenna transmission
CN111817829A (zh) 一种被用于无线通信的节点中的方法和装置
CN115398840A (zh) 用于改进的探测参考信号(srs)开销和灵活重用方案的方法和系统
CN108242944B (zh) 一种用于多天线传输的ue、基站中的方法和装置
WO2018176328A1 (zh) 一种用户设备、基站中的被用于多天线传输的方法和装置
EP3496444B1 (en) User terminal, wireless base station, and wireless communication method
WO2023044771A1 (en) Beam failure recovery with uplink antenna panel selection
CN117016033A (zh) 具有重复的上行链路传输

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17903285

Country of ref document: EP

Kind code of ref document: A1