WO2024037218A1 - 马达、摄像模组和电子设备 - Google Patents

马达、摄像模组和电子设备 Download PDF

Info

Publication number
WO2024037218A1
WO2024037218A1 PCT/CN2023/104177 CN2023104177W WO2024037218A1 WO 2024037218 A1 WO2024037218 A1 WO 2024037218A1 CN 2023104177 W CN2023104177 W CN 2023104177W WO 2024037218 A1 WO2024037218 A1 WO 2024037218A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
electronic device
driving component
telescopic
camera module
Prior art date
Application number
PCT/CN2023/104177
Other languages
English (en)
French (fr)
Inventor
杨子路
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024037218A1 publication Critical patent/WO2024037218A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations

Definitions

  • Embodiments of the present application relate to the field of optical image stabilization technology, and in particular, to a motor, a camera module and an electronic device.
  • Image stabilization technology compensates for the amount of movement during imaging, making images clearer.
  • Image stabilization technology is divided into two categories: image stabilization and optical image stabilization.
  • Image stabilization mainly uses digital image processing to make it more stable after imaging, while optical image stabilization mainly changes the imaging light path during the imaging process and reverses motion. compensation to ensure image stability.
  • optical image stabilization mainly uses mechanical devices to compensate for motion.
  • general mechanical devices have complex structures and take up a large space, which is not conducive to the miniaturization of electronic equipment.
  • Embodiments of the present application provide a motor, a camera module and an electronic device, which solve the problems of complex structure and high power consumption of the optical anti-shake device.
  • a motor including: a movable part; a fixed part, the fixed part and the movable part are arranged in a stack; and an elastic support.
  • One end of the elastic support member is connected to the movable part, and the other end is connected to the fixed part; a telescopic part, one end of the telescopic part is connected to the movable part, and the other end is connected to the fixed part; a driving part, the driving part Connected to the telescopic component, the driving component is used to generate heat in the first energized state to heat the telescopic component, causing the telescopic component to deform and drive the movable component to move from the first position to the second position.
  • the driving component It is also used for cooling after power outage, so that the deformation of the telescopic component is restored, and the movable component is driven to move from the second position to the first position.
  • the telescopic component can be driven to expand and contract.
  • the elastic support member can play a role in supporting the fixed component.
  • the elastic support member is compressed, causing the movable component to approach the fixed component.
  • the elastic support part stretches accordingly, and the movable part moves away from the fixed part, realizing relative movement between the movable part and the fixed part. All movement directions of the movable parts can be synthesized by the movement of the telescopic parts.
  • connection method between the driving component and the telescopic component includes: bonding through thermally conductive adhesive.
  • connection method between the driving component and the telescopic component includes: the driving component winds around the telescopic component. Therefore, the driving component and the telescopic component are connected by winding, which is simple to operate and saves space.
  • the elastic support member includes: at least one of a reed and a spring. Therefore, the elastic support member can achieve an elastic support function.
  • the material of the telescopic component includes: heat shrinkable material. Therefore, when the telescopic member is heated, the telescopic member contracts, and when the telescopic member is cooled or cooled, the telescopic member expands.
  • the material of the driving component includes: temperature difference semiconductor. Therefore, the thermoelectric semiconductor has the Peltier effect and the Seebeck effect and can achieve thermoelectric conversion.
  • the driving component is also used for cooling in the second energized state to cool the telescopic component so that the deformation of the telescopic component is restored and the movable component is driven to move from the second position to the second position.
  • the first position wherein the current directions of the first energized state and the second energized state are opposite. Therefore, in the second energized state, the temperature difference semiconductor can be refrigerated through the circuit to quickly cool the telescopic component, thereby improving the cooling efficiency.
  • a second aspect of the embodiment of the present application provides a camera module, including an optical lens module and the motor as described above; wherein the optical lens module is disposed on the movable component. Therefore, the camera module uses the above-mentioned motor, has a simple structure and lower power consumption.
  • a third aspect of the embodiment of the present application provides an electronic device.
  • the electronic device includes: a display screen, a housing, and a camera module as described above; the display screen is provided with a first mounting hole, and the camera module is located on inside the first mounting hole; or, outside the The shell is provided with a second installation hole, and the camera module is located in the second installation hole. Therefore, this electronic device has the above-mentioned camera module, which has a simple structure, reduced processing and matching accuracy requirements, low cost, and is conducive to industrial mass production. Moreover, the camera device has fewer components and takes up less space, which is conducive to mobile terminals. miniaturization.
  • the electronic device further includes a middle frame; a side surface of the middle frame away from the housing is connected to the display screen; a motherboard is provided on the surface of the middle frame facing the housing; and the camera module It includes a module circuit board, and the module circuit board is electrically connected to the main board.
  • the module circuit board of the camera module can be connected to the main board to achieve integration.
  • the electronic device further includes: a processor configured to apply a first current to the driving component so that the driving component generates heat. In this way, the processor can control the heating of the drive components.
  • the processor is further configured to apply a second current to the driving component to cool down the driving component, wherein the second current is in an opposite direction to the first current. In this way, the processor can control the drive components to cool down quickly.
  • the electronic device further includes: an energy storage circuit
  • the driving component is also used to convert the heat of the telescopic component into current when the telescopic component dissipates heat
  • the processor is also used to control the storage circuit.
  • the circuit can recycle the current of the drive component. In this way, the energy storage circuit can recover and store the electrical energy converted by the heat of the driving components.
  • the electronic device further includes: a charge and discharge switch, the driving component is electrically connected to the energy storage circuit through the charge and discharge switch, and the processor is also used to control the on and off of the charge and discharge switch, so that The driving component charges the energy storage circuit, or causes the energy storage circuit to provide power to the driving component.
  • the energy storage circuit can recover the electrical energy converted by the heat of the driving component and store it to avoid the impact of the heat generated when the telescopic component dissipates heat on the electronic equipment.
  • the stored electrical energy can be used twice, reducing the electrical energy/heat energy waste and improve energy utilization.
  • the electronic device further includes: a detection element electrically connected to the processor, the detection element is used to detect a trigger operation input by the user, and the processor is used to control the camera in response to the user's trigger operation.
  • the module moves closer to or further away from the fixed component.
  • the processor can control the camera module to achieve automatic focus.
  • the trigger operation includes: click trigger, voice trigger or action trigger.
  • the electronic device further includes: a vibration sensor, the vibration sensor is used to obtain the shake data of the camera device; the processor is also used to power on the driving component according to the shake data, so that the The movable component rotates along a first rotation axis perpendicular to the optical axis of the optical lens module, wherein the optical axis is parallel to the central axis of the movable component.
  • the processor can control the camera module to achieve optical image stabilization. This enriches the ways to trigger the camera component and improves user experience.
  • the vibration sensor includes: a Hall magnet and a Hall sensor, the Hall sensor is used to detect the position of the Hall magnet; the Hall magnet is connected to the fixed component, and the Hall sensor Connected to the movable part; or, the Hall sensor is connected to the movable part, and the Hall magnet is connected to the fixed part.
  • Figure 1 is a schematic diagram of the disassembled structure of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a front view of an electronic device provided by an embodiment of the present application.
  • Figure 3 is a back view of an electronic device provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a camera module
  • Figure 5 is a schematic structural diagram of a motor
  • Figure 6 is a front view of the motor in Figure 5;
  • Figure 7a is a schematic structural diagram of a motor provided by an embodiment of the present application.
  • Figure 7b is a circuit diagram of the driving component provided by the embodiment of the present application.
  • Figure 8 is a circuit block diagram of the driving component provided in Example 1;
  • Figure 9 is a circuit block diagram of the driving component provided in Example 2.
  • Figure 10 is a structural block diagram of an electronic device provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of the first application scenario of the electronic device provided by the embodiment of the present application.
  • Figure 12 is a schematic diagram of the second application scenario of the electronic device provided by the embodiment of the present application.
  • Embodiments of the present application provide an electronic device.
  • the electronic device may be a smart phone, a smart watch, a tablet computer, a personal digital assistant (personal digital assistant, PDA), a point of sale terminal (point of sales, POS), a vehicle-mounted computer, a desktop computer, Any electronic devices such as laptops and smart TVs are not limited in the embodiments of this application.
  • an electronic device 1 includes a display screen 2 , a middle frame 3 , a casing (also called a battery cover or a back case) 4 and a cover 5 .
  • the display screen 2 has a light-emitting surface a1 from which the display screen can be viewed and a back surface a2 opposite to the light-emitting surface a1.
  • the back surface a2 of the display screen 2 is close to the middle frame 3, and the cover 5 is provided on the light-emitting surface a1 of the display screen 2.
  • the display screen 2 is an organic light-emitting diode (OLED) display screen. Since each light-emitting sub-pixel in the OLED display screen is provided with an electroluminescent layer, the OLED display screen can achieve self-luminescence after receiving the operating voltage.
  • OLED organic light-emitting diode
  • the cover plate 5 is located on the side of the display screen 2 away from the middle frame 3.
  • the cover plate 5 can be, for example, cover glass (CG), and the cover glass can have a certain degree of toughness.
  • the middle frame 3 is located between the display screen 2 and the casing 4.
  • the surface of the middle frame 3 away from the display screen 2 is used to install internal components such as batteries, printed circuit boards (PCBs), cameras, and antennas.
  • internal components such as batteries, printed circuit boards (PCBs), cameras, and antennas.
  • the electronic device 1 also includes: a camera module 100 .
  • the camera module 100 may be a front-facing camera module, and in other embodiments, the camera module 100 may be a rear-facing camera module.
  • the camera module 100 may also be configured as a rotating camera module, which is not limited here.
  • the display screen 2 is installed on the housing 4.
  • the display surface of the display screen 2 is the front area of the electronic device 1.
  • the display screen 2 is provided with a first mounting hole and a first camera module. 11 is located in the first mounting hole.
  • the first camera module 11 is used to capture scenery or portraits on the front side of the electronic device 1 , that is, the first camera module 11 is used as a front camera module.
  • FIG. 3 is a schematic diagram of the electronic device 1 shown in FIG. 2 from another perspective.
  • the housing 4 is provided with a second camera module 12.
  • the housing 4 is provided with a second installation hole, and the second camera module 12 is located in the second installation hole.
  • the second camera module 12 can be used as a rear camera module.
  • the camera module 100 includes a module circuit board, a main board is disposed on the surface of the middle frame 3 facing the housing 4, and the module circuit board is electrically connected to the main board.
  • this application does not limit the specific structure of the electronic device 1 , as long as the electronic device 1 has a camera module 100 .
  • FIG. 4 is a schematic structural diagram of a camera module provided by an embodiment of the present application.
  • the camera module 100 includes an optical lens module 20 and a motor 10 .
  • the optical lens module 20 is fixed on the motor 10 .
  • the motor 10 can be used in a camera assembly to achieve focusing, zooming or optical image stabilization.
  • Figure 5 is a top view of a motor.
  • the motor 10 includes: a movable component 101 , a fixed component 102 , an elastic support component 103 and a telescopic component 104 .
  • the movable component 101 is, for example, a lens base, and the optical lens module 20 is fixed on the lens base.
  • the fixing component 102 is, for example, an optical image stabilization (OIS) base.
  • OIS optical image stabilization
  • the OIS base is fixed in the electronic device and will not cause relative movement with the electronic device.
  • the fixed part 102 and the movable part 101 are stacked, and the elastic support member 103 is provided between the movable part 101 and the fixed part 102.
  • the first surface of the movable component 101 is opposite to the second surface of the fixed component 102
  • the elastic support The support member 103 includes opposite first and second ends. The first end of the elastic support member 103 is connected to the first surface of the fixing component 102 , and the second end of the elastic support member 103 is connected to the second surface of the fixing component 102 .
  • the embodiment of the present application does not limit the structure of the elastic support member 103 .
  • the elastic support member 103 includes: at least one of a reed and a spring. Therefore, there are more choices for the elastic support member 103 .
  • the telescopic component 104 is used to drive the movable component 101 to move relative to the fixed component 102.
  • One end of the telescopic component 104 is connected to the movable component, and the other end is connected to the fixed component 102.
  • the telescopic component 104 is used to shrink when heated and expand when cooled. .
  • the elastic support 103 can play the role of elastically supporting the movable component 101.
  • the elastic support 103 is compressed, so that the movable component 101 is close to the fixed component 102.
  • the elastic support 103 103 stretches accordingly, and the movable component 101 moves away from the fixed component 102, realizing relative movement between the movable component 101 and the fixed component 102.
  • the OIS base (fixed component 102) is provided with anchor points
  • the camera module base (movable component 101) is provided with floating points.
  • One end of the telescopic component 104 is connected to the anchor point of the OIS base, and the other end Connect to the floating point of the camera module.
  • the elastic support member 103 gives an upward force to the lens base, and the telescopic component 104 gives a downward force to the lens base. The difference between the two forces determines the movement direction of the lens base.
  • the motor has a hexahedral structure, including four sides, each side is provided with a set of intersecting telescopic parts 104, and one end of each telescopic part 104 is connected to the OIS base (fixed part 102) The other end is connected to the floating point of the base (movable component 101) of the camera module.
  • Figure 6 is a front view of the motor in Figure 5.
  • the side is composed of a side of the fixed component 102 and a side of the movable component 1011 , where the first floating point 1011 and the first floating point 1011 are provided on the side of the movable component 1011 .
  • Two floating points 1012, a first anchor point 1021 and a second anchor point 1022 are provided on the side of the fixed component 102.
  • the line connecting the first floating point 1011, the first anchor point 1021, the second floating point 1012 and the second anchor point 1022 forms a quadrilateral, and the first floating point 1011, the first anchor point 1021, the second floating point 1012 and The second anchor points 1022 are located at the four corners of the quadrilateral.
  • the first floating point 1011 and the first anchor point 1021 are located at opposite corners
  • the second floating point 1012 and the second anchor point 1022 are located at opposite corners
  • the first floating point 1011 and the first anchor point 1021 are connected through the first telescopic component 1041
  • the second floating point 1012 and the second anchor point 1022 are connected through the second telescopic component 1042.
  • the lens exhibits tilting motion.
  • the telescopic component 104 When the telescopic component 104 is energized, the current will be converted into heat with a certain efficiency, causing the telescopic component 104 to expand and contract. After the heating is stopped, the telescopic component 104 will dissipate heat and cool down, thereby expanding and contracting.
  • applying currents of the same magnitude to the first telescopic component 1041 and the third telescopic component 1043 at the same time can cause the movable component 101 to rotate relative to the fixed component 102 .
  • Heating the third telescopic component 1043 while the first telescopic component 1041 is not heated or slightly heated can cause the anchor point to move in the direction of the third telescopic component 1043 .
  • the telescopic component 104 can be driven to expand and contract, and all movement directions of the movable component 1011 can be synthesized by the movement of the telescopic component 104.
  • the telescopic component 104 can apply forces in different directions to the four floating points to achieve optical image stabilization.
  • the telescopic component 104 can apply force in the same direction to the four floating points to achieve Auto Focus (AF).
  • AF Auto Focus
  • the embodiment of the present application does not limit the material of the telescopic component 104.
  • the material of the telescopic component 104 includes: memory alloy wire and other heat shrinkable materials.
  • the memory alloy wire 30 may be made of shape memory material.
  • Shape memory materials are materials that have a shape memory effect through thermoelastic and martensitic phase transformations and their reverse transformation. Shape memory materials restore the high-temperature phase shape when heated and the low-temperature phase shape when cooled.
  • the memory alloy wire 30 provided in the embodiment of the present application is made of the above shape memory material.
  • the memory alloy wire 30 When the memory alloy wire 30 is not energized, the memory alloy wire 30 enters the martensitic phase at low temperature. When the memory alloy wire 30 is energized, it generates heat. At high temperature, the memory alloy wire 30 enters the austenite phase. The austenite phase causes deformation, and the deformation causes the memory alloy wire 30 to shrink. By energizing the memory alloy wire 30, the length of the memory alloy wire 30 can be reduced.
  • the embodiment of the present application does not limit the material of the memory alloy wire 30.
  • the memory alloy wire 30 is made of Nitinol alloy material, for example.
  • the material composition of the memory alloy wire 30 can be adjusted, or the memory alloy wire 30 can be pre-treated so that the memory alloy wire 30 provides phase change within a certain temperature range above the expected ambient temperature during normal operation, and maximizes the phase change as much as possible. Degree of position control.
  • the above-mentioned telescopic component 104 shrinks when heated and expands when cooled. However, it uses electric current to heat, and the heating efficiency is very high. It dissipates heat through heat conduction or natural cooling, but the heat dissipation efficiency is low, and the heat cannot be recovered.
  • embodiments of the present application provide an improved motor.
  • the motor includes: a movable component 101 and a fixed component 102 arranged in a stack, and an elastic support 103 disposed between the movable component 101 and the fixed component 102.
  • One end of the elastic support 103 is connected to the movable component 103.
  • the moving part 101 is connected, and the other end is connected to the fixed part 102.
  • the motor also includes: a telescopic component 104 and a driving component 105.
  • One end of the telescopic component 104 is connected to the movable component 101 , the other end is connected to the fixed component 102 , and the driving component 105 is connected to the telescopic component 104 .
  • the driving component 105 is used to generate heat in the first energized state to heat the telescopic component 104 so that the telescopic component 104 deforms and drives the movable component 101 to move from the first position to the second position.
  • the driving component 105 It is also used for cooling after power outage, so that the deformation of the telescopic component 104 is restored, and the movable component 101 is driven to move from the second position to the first position.
  • the embodiment of the present application does not limit the material of the driving component 105 .
  • the material of the driving component 105 includes: temperature difference semiconductor.
  • Temperature difference semiconductor material is a special material with Peltier effect. Among them, the Peltier effect is used to heat or cool temperature-difference semiconductor materials. When a current passes through a temperature-difference conductor, in addition to generating irreversible Joule heat, heat absorption and release will occur at the joints of different conductors depending on the direction of the current. thermal phenomena.
  • thermoelectric semiconductor has the Peltier effect and can convert electrical energy into thermal energy.
  • the driving component 105 also has a Seebeck effect, for example.
  • the Seebeck effect is used to absorb ambient heat to generate electricity.
  • the temperature difference can be converted into voltage through a temperature difference semiconductor. This thermoelectric effect phenomenon is called the Seebeck effect.
  • the driving component 105 can also convert the heat of the telescopic component 104 into electric current when the telescopic component 104 dissipates heat. As a result, the driving component 105 generates electricity during cooling, which facilitates energy recovery.
  • the driving component 105 is also used for cooling in the second energized state to cool the telescopic component 104 .
  • the current directions in the first energized state and the second energized state are opposite.
  • the temperature difference semiconductor can be cooled through the circuit to quickly cool the telescopic component 104, thereby improving the cooling efficiency.
  • the driving component 105 by providing the driving component 105, the telescopic component 104 can be heated or cooled, and the telescopic component 104 can be driven to expand and contract. All movement directions of the movable component 101 can be synthesized by the movement of the telescopic component 104.
  • optical anti-shake can be achieved.
  • Integrated control with autofocus does not require the installation of other mechanical devices. It has a simple structure, fewer components, and takes up less space. It is conducive to the miniaturization of mobile terminals, and is conducive to energy recovery and improving cooling efficiency.
  • connection method between the driving component 105 and the telescopic component 104 does not limit the connection method between the driving component 105 and the telescopic component 104.
  • the connection method between the driving component 105 and the telescopic component 104 includes adhesion. This makes the connection between the driving component 105 and the telescopic component 104 more stable.
  • the gap between the driving component 105 and the telescopic component 104 can be filled with thermally conductive glue, and the driving component 105 and the telescopic component 104 can be connected through the thermally conductive glue. While improving the connection stability, heat can also be transferred through the thermally conductive glue.
  • connection between the driving component 105 and the telescopic component 104 includes: winding the telescopic component 104 through the driving component 105 . Therefore, the driving component 105 and the telescopic component 104 can be connected without providing a connecting component, which is simple to operate and saves space.
  • connection method between the driving component 105 and the telescopic component 104 includes: wrapping the telescopic component 104 through the driving component 105, and bonding the driving component 105 and the telescopic component 104 through thermally conductive glue.
  • FIG. 7b is a circuit diagram of the driving component 105 provided by the embodiment of the present application. As shown in Figure 7b, the control circuit 106 is connected to the driving component 105.
  • the embodiment of the present application does not limit the heating and cooling methods of the driving component 105 .
  • a first current can be input to the driving component 105 through the control circuit 106 to heat the driving component 105 .
  • the first current can also be input to the driving component 105 through an energy storage circuit to heat the driving component 105 .
  • a second current can be input to the driving component 105 through the control circuit 106 to quickly cool down the driving component 105.
  • the first current and the second current have opposite directions.
  • the driving component 105 can be allowed to cool down naturally. At this time, the driving component 105 converts the temperature difference into current under the action of the Seebeck effect, and the electrical energy can be stored through the energy storage circuit.
  • the heating and cooling control method of the driving component 105 will be described below with reference to Example 1 and Example 2.
  • FIG. 8 is a circuit block diagram of the driving component 105 provided in Example 1. As shown in FIG. 8 , the driving component 105 is electrically connected to the external power supply circuit 13 through the control circuit 106 , and the external power supply circuit 13 is used to supply power to the driving component 105 through the control circuit 106 .
  • control circuit 106 When the control circuit 106 obtains the heating control signal, the control circuit 106 can control the external power supply circuit 13 to input the first current to the driving component 105.
  • the driving component generates the Peltier effect under the action of the first current and converts electrical energy into heat energy. Heating the telescopic part and driving the telescopic part to shrink.
  • control circuit 106 When the control circuit 106 obtains the cooling control signal, the control circuit 106 can control the external power supply circuit 13 to stop supplying power to the driving component 105, and the driving component 105 is naturally cooled.
  • control circuit 106 can control the external power supply circuit 13 to input the second current to the driving component 105, so that the driving component 105 cools down and quickly cools the telescopic component 104, so that the telescopic component quickly cools down and drives the telescopic component. Parts stretch.
  • the driving component 105 when the second current is passed through the driving component 105, the driving component 105 generates a Peltier effect under the action of the second current, causing the driving component 105 to cool down and rapidly cool the telescopic component 104, causing the telescopic component to cool down quickly and drive the The telescopic part stretches.
  • FIG. 9 is a circuit block diagram of the driving component 105 provided in Example 2. As shown in Figure 9, based on the first example, the second example also adds an energy storage circuit 14 and a charge and discharge switch 15.
  • the control circuit 106 is electrically connected to the charge and discharge switch 15, and the charge and discharge switch 15 is electrically connected to the driving component 105 and the energy storage circuit 14 respectively.
  • control circuit 106 is used to control the external power supply circuit 13 to supply power to the driving component 105. At the same time, the control circuit 106 is also used to control the on and off of the charge and discharge switch 15 to achieve charging or discharging operations.
  • control circuit 106 When the control circuit 106 obtains the heating control signal, the control circuit 106 can control the external power supply circuit 13 to input the first current to the driving component 105.
  • the driving component generates the Peltier effect under the action of the first current and converts electrical energy into heat energy. Heating the telescopic part and driving the telescopic part to shrink.
  • control circuit 106 When the control circuit 106 obtains the natural cooling control signal, the control circuit 106 can control the external power supply circuit 13 to stop supplying power to the driving component 105, and the driving component 105 is naturally cooled. At the same time, the control circuit 106 controls the charge and discharge switch 15 to be turned on. Under the action of the electric current, the driving component 105 converts the temperature difference into current, and flows to the energy storage circuit 14 through the charge and discharge switch 15. The energy storage circuit 14 converts it into energy and stores it.
  • control circuit 106 can also control the charge and discharge switch 15 to turn on, so that the electric energy stored in the energy storage circuit 14 applies the first current to the driving component 105 through the charge and discharge switch 15 .
  • control circuit 106 can control the external power supply circuit 13 to input the second current to the driving component 105, or the control circuit 106 controls the charge and discharge switch 15 to turn on, so that the energy storage circuit 14 controls
  • the stored electric energy applies a second current to the driving component 105 through the charge and discharge switch 15, so that the driving component 105 generates the Peltier effect under the action of the second current, causing the driving component 105 to cool and quickly cool the telescopic component 104, making the telescopic component fast. Cooling down drives the telescopic components to expand.
  • the energy storage circuit can recover the electric energy converted by the heat of the driving component 105 and store it to avoid the impact of the heat generated when the telescopic component 104 dissipates heat on the electronic equipment. At the same time, the stored electric energy can be used twice, reducing the amount of electric energy. /Waste of heat energy, Improved energy utilization.
  • FIG. 10 is a structural block diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 1 further includes at least one processor 17 , a communication bus 18 , at least one communication interface 16 and a memory 19 .
  • FIG. 10 is only an example of the electronic device 1 and does not constitute a limitation on the electronic device 1.
  • the electronic device 1 may include more or fewer components than shown in FIG. 10, or combine certain components, or Different components, such as the electronic device 1, may also include input and output devices, network access devices, etc.
  • the processor 17 is communicatively connected with at least one communication interface 16, memory 19, display screen 2, and control circuit through a communication bus 18.
  • the processor 17 can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or an on-site processor.
  • Programmable gate array Field-Programmable Gate Array, FPGA or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general processor can be a microprocessor or the processor can be any conventional processor, etc.
  • the processor is the control center of the electronic device 1 and uses various interfaces and lines to connect various components of the entire electronic device 1 .
  • Communication bus 18 may include a path that carries information between the above-mentioned components.
  • Communication interface 16 using any device such as a transceiver, is used to communicate with other devices or communication networks, such as Ethernet, wireless access network (radio access network, RAN), wireless local area networks (WLAN), etc. .
  • Ethernet wireless access network
  • RAN wireless access network
  • WLAN wireless local area networks
  • the memory 19 can be used to store computer programs and/or modules.
  • the processor 17 implements various functions of the electronic device 1 by running or executing computer programs and/or modules stored in the memory 19 and calling data stored in the memory 19 .
  • the memory 19 may mainly include a program storage area and a data storage area, wherein the program storage area may store the operating system, application programs required for multiple functions (such as sound playback function, image playback function, etc.), etc.; the data storage area may store data based on Data created by the use of the electronic device 1 (such as audio data, phone book, etc.), etc.
  • the memory 19 may include high-speed random access memory, and may also include non-volatile memory, such as hard disk, memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) Card, Flash Card, multiple disk storage devices, flash memory devices, or other volatile solid-state storage devices.
  • non-volatile memory such as hard disk, memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) Card, Flash Card, multiple disk storage devices, flash memory devices, or other volatile solid-state storage devices.
  • the memory 19 may exist independently and be connected to the processor 17 through the communication bus 18 .
  • the memory 19 may also be integrated with the processor 17 .
  • the processor 17 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 10 .
  • the electronic device 1 may include multiple processors, such as the processor 17 and the processor 171 in FIG. 10 .
  • processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the electronic device 1 further includes a driving component 105.
  • the driving component 105 can be energized to generate heat or cool, and the current directions for heating and cooling are opposite.
  • the processor 17 further includes a control circuit 106 for applying a first current to the driving component 105 so that the driving component 105 generates heat.
  • the processor can control the driving component 105 to generate heat.
  • the control circuit 106 is also used to apply a second current to the driving component 105 to cool down the driving component 105, wherein the second current is in the opposite direction to the first current.
  • the processor can control the first driving component 1051 and the second driving component 1052 to cool down quickly.
  • the electronic device 1 also includes: an energy storage circuit 14.
  • the first driving component 1051 and the second driving component 1052 are also used to convert the heat of the telescopic component into current when the telescopic component dissipates heat, and control
  • the circuit 106 is also used to control the energy storage circuit 14 to recover the current from the driving component 105 .
  • the energy storage circuit 14 can recover the electrical energy converted by the heat of the driving component 105 and store it to avoid the impact of the heat generated when the telescopic component 104 dissipates heat on the electronic equipment. At the same time, the stored electrical energy can be reused, reducing the The waste of electrical energy/heat energy improves the energy utilization rate.
  • the electronic device 1 includes a first camera module and a second camera module, where the first camera module is a front-facing camera module, and the second camera module is embedded in the electronic device.
  • the back of 1 is used as a rear camera module.
  • the processor of the electronic device 1 detects that the first icon of the camera application receives a trigger event input by the user (similar to the one shown in Figures 11 and 12 The interface of the electronic device is similar), please refer to Figure 12.
  • the processor controls the electronic device 1 to enter the shooting interface, and the shooting interface includes a second icon 1002.
  • the second icon 1002 is an application icon for switching the working camera module.
  • the processor controls the switching of the used camera module, for example, the electronic The second camera module currently used by the device 1 is switched to the first camera module, or the first camera module currently used by the electronic device 1 is switched to the second camera module.
  • the processor controls the electronic device 1 to enter the shooting interface, the content displayed is the picture acquired by the second camera module, that is, the camera module currently working on the electronic device 1 is the second camera module.
  • the processor detects that the second camera module
  • the processor controls to close the second camera module and switch to the first camera module to work.
  • the front camera module includes: a first driving component 1051
  • the rear camera module includes, for example, a second driving component 1052.
  • the first driving component 1051 and the second driving component 1052 have the same structure.
  • first driving component 1051 and the second driving component 1052 can be energized to generate heat or cool, and the current directions for heating and cooling are opposite.
  • the processor 17 further includes a control circuit 106 for applying a first current to the first driving component 1051 or the second driving component 1052, so that the first driving component 1051 or the second driving component 1052 Component 1052 generates heat.
  • the processor can control the first driving component 1051 or the second driving component 1052 to generate heat.
  • the control circuit 106 is also used to apply a second current to the first driving component 1051 or the second driving component 1052 to cool down the first driving component 1051 or the second driving component 1052, wherein the second current is in the opposite direction to the first current.
  • the processor can control the first driving component 1051 or the second driving component 1052 to cool down quickly.
  • the processor 17 can control the operation of the driving component in response to a trigger operation input by a user.
  • the following is an exemplary description of how the processor 17 of the electronic device 1 determines a trigger operation input by the user.
  • the electronic device 1 further includes a detection element 108 electrically connected to the processor 17 .
  • the detection element 108 is used to detect the trigger operation input by the user.
  • the processor 17 is used to control the first driving component 1051 or the first drive component 1051 in response to the user's trigger operation.
  • the second driving component 1052 is energized to make the camera module approach or move away from the fixed component 102 to achieve automatic focusing.
  • the trigger operation input by the user includes a trigger operation for starting the camera; for example, the user's trigger operation includes: click trigger, voice trigger or action trigger.
  • this situation is illustrated by taking the electronic device as a mobile phone as an example.
  • the interface of the electronic device 1 can display the first icon 1001 of the camera application.
  • Camera applications include application software that can use camera modules, such as WeChat, QQ, etc.
  • the detection element is, for example, a display screen of the electronic device.
  • the processor may respond to the click operation. Control the camera module to approach or move away from the fixed component 102 to achieve automatic focusing.
  • the electronic device 1 further includes: a vibration sensor, which is used to obtain shake data of the camera device.
  • the processor is also used to energize the first driving component 1051 or the second driving component 1052 according to the shake data, so that the movable component 101 rotates along the first rotation axis to achieve optical image stabilization.
  • the first rotation axis is perpendicular to the optical axis of the optical lens module, and the optical axis is parallel to the central axis of the movable component 101 .
  • the first vibration sensor includes a first magnetic component and a first Hall sensor.
  • the first magnetic component is fixed on the fixed component 102.
  • the first Hall sensor is fixed on the movable component 101.
  • the first The Hall sensor is electrically connected to the processor.
  • the first Hall sensor is used to sense the magnetic induction intensity of the first magnetic component. For example, if the magnetic induction intensity sensed by the first Hall sensor is the first preset magnetic induction intensity, it means that the movable component 101 is not at the preset position. If the magnetic induction intensity sensed by the first Hall sensor is the second preset magnetic induction intensity, The strength of the magnetic induction means that the camera component is in the preset shooting position.
  • the first driving component 1051 can be controlled to heat or cool the telescopic component according to the magnetic induction intensity detected by the first Hall sensor, thereby accurately controlling the position information of the camera component, preventing the first camera module from shaking during use, and improving accuracy.
  • the accuracy of the control of the second camera module further improves the working efficiency of the camera module.
  • the second vibration sensor includes a second magnetic component and a second Hall sensor.
  • the second magnetic component is fixed on the fixed component 102
  • the second Hall sensor is fixed on the movable component 101
  • the second Hall sensor is fixed on the movable component 101.
  • the Hall sensor is electrically connected to the processor.
  • the second Hall sensor is used to sense the magnetic induction intensity of the second magnetic component. For example, if the magnetic induction sensed by the second Hall sensor is strong If the magnetic induction intensity sensed by the second Hall sensor is the second preset magnetic induction intensity, it means that the camera component is at the preset shooting position.
  • the second driving component 1052 can be controlled to heat or cool the telescopic component according to the magnetic induction intensity detected by the first Hall sensor, thereby accurately controlling the position information of the camera component, preventing the second camera module from shaking during use, and improving accuracy.
  • the accuracy of the control of the second camera module further improves the working efficiency of the camera module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例公开了一种马达、摄像模组和电子设备,该马达包括:可动部件;固定部件,该固定部件和该可动部件层叠设置;弹性支撑件,该弹性支撑件一端与该可动部件连接,另一端与该固定部件连接;伸缩部件,该伸缩部件一端与该可动部件连接,另一端和该固定部件连接;驱动部件,该驱动部件与该伸缩部件连接,该驱动部件用于在第一通电状态时发热,以加热该伸缩部件,使得该伸缩部件产生形变,带动该可动部件由第一位置移动至第二位置,该驱动部件还用于在断电后冷却,使得该伸缩部件的形变恢复,带动该可动部件由该第二位置移动至该第一位置。由此,更节省空间。

Description

马达、摄像模组和电子设备
“本申请要求于2022年08月19日提交国家知识产权局、申请号为202211001554.4、发明名称为马达、摄像模组和电子设备的中国专利申请的优先权,其全部内容通过引用结合在本申请中”。
技术领域
本申请实施例涉及光学防抖技术领域,尤其涉及一种马达、摄像模组和电子设备。
背景技术
目前,越来越多电子设备具有拍照、录像等成像功能,图像稳定技术变得越来越重要。图像稳定技术可以补偿成像过程中的运动量,使图像变得更加清晰。
图像稳定技术分为图像防抖和光学防抖两大类别,图像防抖主要是成像后通过数字图像处理使其更加稳定,而光学防抖主要在成像过程中改变成像光路,对运动做反向补偿以保证图像稳定。
其中,光学防抖主要使用机械装置补偿运动,但一般的机械装置结构复杂、占用空间大,不利于电子设备的小型化。
发明内容
本申请实施例提供一种马达、摄像模组和电子设备,解决了光学防抖装置结构复杂、功耗大的问题。
为达到上述目的,本申请实施例采用如下技术方案:本申请实施例的第一方面,提供一种马达,包括:可动部件;固定部件,该固定部件和该可动部件层叠设置;弹性支撑件,该弹性支撑件一端与该可动部件连接,另一端与该固定部件连接;伸缩部件,该伸缩部件一端与该可动部件连接,另一端和该固定部件连接;驱动部件,该驱动部件与该伸缩部件连接,该驱动部件用于在第一通电状态时发热,以加热该伸缩部件,使得该伸缩部件产生形变,带动该可动部件由第一位置移动至第二位置,该驱动部件还用于在断电后冷却,使得该伸缩部件的形变恢复,带动该可动部件由该第二位置移动至该第一位置。由此,通过驱动部件加热或者冷却伸缩部件,可以驱动伸缩部件伸缩,该弹性支撑件可以起到支撑固定部件的作用,当伸缩部件收缩时,弹性支撑件被压缩,使得可动部件靠近固定部件,当伸缩部件伸展时,弹性支撑件随之伸展,可动部件远离固定部件,实现可动部件和固定部件的相对运动。可动部件所有的运动方向都可以通过伸缩部件的运动合成,将上述结构用于摄像模组,可以实现光学防抖和自动对焦的一体化控制,无需设置其他的机械装置,结构简单,占用空间小。
一种可选的实现方式中,该驱动部件与该伸缩部件的连接方式包括:通过导热胶粘接。由此,使得驱动部件与伸缩部件连接更稳定,可以更好的实现热量传递。
一种可选的实现方式中,该驱动部件与该伸缩部件的连接方式包括:该驱动部件缠绕该伸缩部件。由此,采用缠绕的方式将驱动部件和伸缩部件连接,操作简单,更节省空间。
一种可选的实现方式中,该弹性支撑件包括:簧片、弹簧中的至少一种。由此,该弹性支撑件可以实现弹性支撑作用。
一种可选的实现方式中,该伸缩部件的材质包括:热缩材料。由此,当所述伸缩部件受热时,所述伸缩部件收缩,当所述伸缩部件遇冷或降温时,所述伸缩部件伸展。
一种可选的实现方式中,该驱动部件的材质包括:温差半导体。由此,温差半导体具有珀尔帖效应和塞贝克效应,可以实现热电转换。
一种可选的实现方式中,该驱动部件还用于在第二通电状态时制冷,以冷却该伸缩部件,使得该伸缩部件的形变恢复,带动该可动部件由该第二位置移动至该第一位置;其中,该第一通电状态和该第二通电状态的电流方向相反。由此,第二通电状态时温差半导体可以通过电路制冷,以快速冷却该伸缩部件,提高了冷却效率。
本申请实施例的第二方面,提供一种摄像模组,包括光学镜头模组,以及如上所述的马达;其中,该光学镜头模组设置在该可动部件上。由此,该摄像模组采用上述马达,结构简单,且功耗更低。
本申请实施例的第三方面,提供一种电子设备,该电子设备包括:显示屏和外壳,以及如上所述的摄像模组;该显示屏上开设有第一安装孔,该摄像模组位于该第一安装孔内;或者,该外 壳上设有第二安装孔,该摄像模组位于该第二安装孔内。由此,该电子设备此案有上述摄像模组,结构简单,加工及配合精度要求降低,成本低,有利于工业化大量生产,且该摄像装置部件更少,占用空间更小,有利于移动终端小型化。
一种可选的实现方式中,该电子设备还包括中框;该中框远离该外壳的一侧表面与该显示屏相连接;该中框朝向该外壳的表面设置有主板;该摄像模组包括模组电路板,该模组电路板与该主板电连接。由此,可以将摄像模组的模组电路板与主板连接,实现一体化。
一种可选的实现方式中,该电子设备还包括:处理器,该处理器用于向该驱动部件施加第一电流,使得该驱动部件发热。由此,该处理器可以控制驱动部件发热。
一种可选的实现方式中,该处理器还用于向该驱动部件施加第二电流,使得该驱动部件降温,其中,该第二电流与该第一电流方向相反。由此,该处理器可以控制驱动部件快速降温。
一种可选的实现方式中,该电子设备还包括:储能电路,该驱动部件还用于在该伸缩部件散热时将该伸缩部件的热量转化为电流,该处理器还用于控制该储能电路回收该驱动部件的电流。由此,该储能电路可以回收由驱动部件的热量转化的电能并进行储存。
一种可选的实现方式中,电子设备还包括:充放电开关,该驱动部件通过该充放电开关与该储能电路电连接,该处理器还用于控制该充放电开关的通断,使得该驱动部件向该储能电路充电,或使得该储能电路向所述驱动部件供电。由此,该储能电路可以回收由驱动部件的热量转化的电能并进行储存,避免伸缩部件散热时产生的热量对电子设备产生影响,同时储存的电能可以二次利用,减小了电能/热能的浪费,提高了能量的利用率。
一种可选的实现方式中,该电子设备还包括:与该处理器电连接的检测元件,该检测元件用于检测用户输入的触发操作,该处理器用于响应于用户的触发操作控制该摄像模组靠近或远离该固定部件。由此,该处理器可以控制摄像模组实现自动对焦。
一种可选的实现方式中,该触发操作包括:点击触发、语音触发或动作触发。
一种可选的实现方式中,该电子设备还包括:振动传感器,该振动传感器用于获取该摄像装置的抖动数据;该处理器还用于根据该抖动数据对该驱动部件通电,使得该可动部件沿第一旋转轴转动,该第一旋转轴垂直于该光学镜头模组的光轴,其中,该光轴与该可动部件的中心轴平行。由此,该处理器可以控制摄像模组实现光学防抖。由此,丰富了触发摄像组件的途径,提高了用户体验。
一种可选的实现方式中,该振动传感器包括:霍尔磁铁和霍尔传感器,该霍尔传感器用于检测该霍尔磁铁的位置;该霍尔磁铁与该固定部件连接,该霍尔传感器与该可动部件连接;或者,该霍尔传感器与该可动部件连接,该霍尔磁铁与该固定部件连接。
附图说明
图1为本申请实施例提供的一种电子设备的拆解结构示意图;
图2为本申请实施例提供的一种电子设备的正面视图;
图3为本申请实施例提供的一种电子设备的背面视图;
图4为一种摄像模组的结构示意图;
图5为一种马达的结构示意图;
图6为图5中马达的主视图;
图7a为本申请实施例提供的马达的结构示意图;
图7b为本申请实施例提供的驱动部件的电路图;
图8为示例一提供的驱动部件的电路框图;
图9为示例二提供的驱动部件的电路框图;
图10为本申请实施例提供的电子设备的结构框图;
图11为本申请实施例提供的电子设备的第一应用场景示意图;
图12为本申请实施例提供的电子设备的第二应用场景示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请中,“上”、“下”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
本申请实施例提供一种电子设备,电子设备可以是智能手机、智能手表、平板电脑、个人数字助理(personal digital assistant,PDA)、销售终端(point of sales,POS)、车载电脑、台式电脑、笔记本电脑、智能电视等任意电子设备,本申请实施例对此不做限定。
如图1所示,电子设备1包括显示屏2、中框3、外壳(或者称为电池盖、后壳)4以及盖板5。
显示屏2具有能够看到显示画面的出光面a1和与上述出光面a1相对设置的背面a2,显示屏2的背面a2靠近中框3,盖板5设置在显示屏2的出光面a1。
在本申请的一种可能的实施例中,显示屏2为有机发光二极管(organic lightemitting diode,OLED)显示屏。由于OLED显示屏中每个发光子像素内设置有电致发光层,所以可以使得OLED显示屏在接收到工作电压后,实现自发光。
盖板5位于显示屏2远离中框3一侧,盖板5例如可以是盖板玻璃(cover glass,CG),该盖板玻璃可以具有一定的韧性。
中框3位于显示屏2和外壳4之间,中框3远离显示屏2的表面用于安装电池、印刷电路板(printed circuit board,PCB)、摄像头(camera)、天线等内部元件。外壳4与中框3盖合后,上述内部元件位于外壳4与中框3之间。
电子设备1还包括:摄像模组100。在一些实施例中,该摄像模组100可以是前置摄像模组,在另一些实施例中,该摄像模组100为后置摄像模组。
在其他实施方式中,摄像模组100也可以设置为旋转类型的摄像模组,在此不作限定。
示例的,如图2所示,显示屏2装设于外壳4上,显示屏2的显示面为电子设备1的正面区域,显示屏2上例如开设有第一安装孔,第一摄像模组11位于第一安装孔内。
本实施例中,第一摄像模组11用于获取电子设备1的正面所在一侧的景物或人像等,即第一摄像模组11作为前置摄像模组使用。
此外,图3为图2所示的电子设备1的另一视角示意图。请参阅图3,外壳4上设有第二摄像模组12。其中,外壳4上例如设有第二安装孔,第二摄像模组12位于该第二安装孔内。第二摄像模组12可以作为后置摄像模组使用。
本申请实施例对摄像模组100的电连接关系不做限制。在一些实施例中,摄像模组100包括模组电路板,中框3朝向外壳4的表面设置有主板,模组电路板与主板电连接。
需明确的是,本申请对电子设备1的具体结构不做限定,只要电子设备1具有摄像模组100即可。
图4为本申请实施例提供的一种摄像模组的结构示意图。如图4所示,该摄像模组100包括:光学镜头模组20和马达10,光学镜头模组20固定在马达10上。马达10可以用于摄像组件中,以实现聚焦、变焦或光学防抖。
图5为一种马达的俯视图。如图5所示,在一些实施例中,该马达10包括:可动部件101、固定部件102、弹性支撑件103和伸缩部件104。
其中,可动部件101例如为镜头底座,光学镜头模组20固定在镜头底座上。
在一些实施例中,固定部件102例如为光学防抖(optical imagestabilization,OIS)底座。OIS底座固定在电子设备内,不会和电子设备产生相对运动。
固定部件102和可动部件101层叠设置,弹性支撑件103设置在可动部件101和固定部件102之间。
在本申请一些实施例中,可动部件101的第一表面和固定部件102的第二表面相对,弹性支 撑件103包括相对的第一端和第二端,弹性支撑件103的第一端与固定部件102的第一表面连接,弹性支撑件103的第二端和固定部件102的第二表面连接。
本申请实施例对该弹性支撑件103的结构不做限制。弹性支撑件103包括:簧片、弹簧中的至少一种。由此,弹性支撑件103的选择更多。
伸缩部件104用于带动可动部件101相对于固定部件102运动,伸缩部件104一端与可动部件连接,另一端和固定部件102连接,伸缩部件104用于在受热时收缩,并在冷却时伸展。
弹性支撑件103可以起到弹性支撑可动部件101的作用,当伸缩部件104收缩时,弹性支撑件103被压缩,使得可动部件101靠近固定部件102,当伸缩部件104伸展时,弹性支撑件103随之伸展,可动部件101远离固定部件102,实现可动部件101和固定部件102的相对运动。
在一些实施例中,OIS底座(固定部件102)上设有锚点,摄像模组的底座(可动部件101)上设有浮动点,伸缩部件104一端和OIS底座的锚点连接,另一端和摄像模组的浮动点连接。
弹性支撑件103给镜头底座一个向上的力,而伸缩部件104给镜头底座一个向下的力,两个力的差决定了镜头底座的运动方向。
其中,在本申请一些实施例中,马达为六面体结构,包括四个侧面,每个侧面上设有一组相互交叉的伸缩部件104,且每根伸缩部件104一端连接在OIS底座(固定部件102)的锚点上,另一端连接在摄像模组的底座(可动部件101)的浮动点上。
图6为图5中马达的主视图。参见图6,以马达的一个侧面为例,该侧面例如由固定部件102的一个侧面和可动部件1011的一个侧面组成,其中,可动部件1011的侧面上设有第一浮动点1011和第二浮动点1012,固定部件102的侧面上设有第一锚点1021和第二锚点1022。
第一浮动点1011、第一锚点1021、第二浮动点1012和第二锚点1022的连线围成一个四边形,且第一浮动点1011、第一锚点1021、第二浮动点1012和第二锚点1022位于四边形的四个角上。
其中,第一浮动点1011和第一锚点1021位于对角,第二浮动点1012和第二锚点1022位于对角,第一浮动点1011和第一锚点1021通过第一伸缩部件1041连接,第二浮动点1012和第二锚点1022通过第二伸缩部件1042连接。
此外,当四个方向的伸缩部件104力不平衡时,镜头呈现倾斜运动。
当给伸缩部件104通电时,电流会以一定的效率转化为热量,使伸缩部件104伸缩;而停止加热后,伸缩部件104会散热冷却,从而伸缩。
例如,给第一伸缩部件1041和第三伸缩部件1043同时施加同等大小的电流,可使得可动部件101相对于固定部件102转动。
给第三伸缩部件1043加热,而第一伸缩部件1041不加热或者轻微加热,可使得锚点沿着第三伸缩部件1043的方向运动。
其中,通过加热或者冷却伸缩部件104,可以驱动伸缩部件104伸缩,可动部件1011所有的运动方向都可以通过伸缩部件104的运动合成。
使用时,当镜头抖动时,可以通过伸缩部件104对四个浮动点施加不同方向的力,实现光学防抖。当对焦时,可以通过伸缩部件104对4个浮动点施加同一方向的力,实现自动对焦(Auto Focus,AF)。
由此,通过上述结构可以实现光学防抖和自动对焦的一体化控制。
本申请实施例对伸缩部件104的材质不做限制。示例的,伸缩部件104的材质包括:记忆合金线等热缩材料。其中,记忆合金线30可以由形状记忆材料制成。
形状记忆材料是通过热弹性与马氏体相变及其逆变而具有形状记忆效应的材料。形状记忆材料加热时恢复高温相形状,冷却时又能恢复低温相形状。
本申请实施例提供的记忆合金线30,由上述形状记忆材料制成,当记忆合金线30未通电时,在低温下,记忆合金线30进入马氏体相。当记忆合金线30通电时发热,在高温下,记忆合金线30进入奥氏体相,奥氏体相导致变形,变形引起记忆合金线30收缩。通过向记忆合金线30通电,可以使得记忆合金线30长度减小。
本申请实施例对该记忆合金线30的材质不做限制,在本申请一种实现方式中,记忆合金线30例如由镍钛诺合金材料制成。
可以通过调整记忆合金线30的材料成分,或对记忆合金线30进行预处理以使得记忆合金线30在正常操作期间在高于预计环境温度的一定温度范围内提供相变,并且尽可能最大化位置控制的程度。
上述伸缩部件104加热时收缩,冷却时膨胀,但是其利用电流加热,加热效率很高,通过热传导或者自然冷却散热,散热效率低,且热量无法回收。
为此,本申请实施例提供一种改进的马达。
如图7a所示,该马达包括:层叠设置的可动部件101和固定部件102,以及设置在可动部件101和固定部件102之间的弹性支撑件103,该弹性支撑件103一端与该可动部件101连接,另一端与该固定部件102连接。
此外,该马达还包括:伸缩部件104和驱动部件105。其中,该伸缩部件104一端与该可动部件101连接,另一端和该固定部件102连接,驱动部件105与伸缩部件104连接。
其中,驱动部件105用于在第一通电状态时发热,以加热该伸缩部件104,使得该伸缩部件104产生形变,带动该可动部件101由第一位置移动至第二位置,该驱动部件105还用于在断电后冷却,使得该伸缩部件104的形变恢复,带动该可动部件101由该第二位置移动至该第一位置。
本申请实施例对驱动部件105的材质不做限制。示例的,驱动部件105的材质包括:温差半导体。
用温差半导体材料实现冷热驱动控制。温差半导体材料是一种特殊的材料,具有珀尔帖效应(Peltier effect)。其中,珀尔帖效应用于温差半导体材料发热或者制冷,当有电流通过温差导体时,除产生不可逆的焦耳热外,在不同导体的接头处随着电流方向的不同会分别出现吸热、放热现象。
由此,温差半导体具有珀尔帖效应,可以将电能转换为热能。
该驱动部件105例如还具有塞贝克效应(Seebeck effect),塞贝克效应用于吸收环境热量而发电,可以通过温差半导体将温度差转换为电压,这种热电效应现象被称为塞贝克效应。
也即,驱动部件105还可以在伸缩部件104散热时将伸缩部件104的热量转化为电流。由此,在冷却时驱动部件105会发电,便于能量回收。
此外,驱动部件105还用于在第二通电状态时制冷,以冷却伸缩部件104。其中,第一通电状态和第二通电状态的电流方向相反。
由此,第二通电状态时温差半导体可以通过电路制冷,以快速冷却该伸缩部件104,提高了冷却效率。
由此,通过设置驱动部件105,可以加热或者冷却伸缩部件104,并驱动伸缩部件104伸缩,可动部件101所有的运动方向都可以通过伸缩部件104的运动合成,通过上述结构可以实现光学防抖和自动对焦的一体化控制,无需设置其他的机械装置,结构简单,部件更少,占用空间更小,有利于移动终端小型化,且有利于能量回收和提高冷却效率。
本申请实施例对驱动部件105与伸缩部件104的连接方式不做限制。在一些实施例中,驱动部件105与伸缩部件104的连接方式包括:粘接。由此,使得驱动部件105与伸缩部件104连接更稳定。
其中,可以在驱动部件105与伸缩部件104之间的缝隙中填充导热胶,并通过导热胶连接驱动部件105和伸缩部件104,在提高连接稳定性的同时,还可以通过导热胶传递热量。
在另一些实施例中,驱动部件105与伸缩部件104的连接方式包括:通过驱动部件105缠绕伸缩部件104。由此,可以无需设置连接部件,即可将驱动部件105和伸缩部件104连接,操作简单,且节省空间。
在本申请其他实施例中,驱动部件105与伸缩部件104的连接方式包括:通过驱动部件105缠绕伸缩部件104,并使得驱动部件105与伸缩部件104通过导热胶粘接。这些均属于本申请的保护范围。
本申请实施例还提供一种驱动部件105的控制电路。图7b为本申请实施例提供的驱动部件105的电路图。如图7b所示,控制电路106与驱动部件105连接。
其中,驱动部件105在第一通电状态时,其电流方向如图7b所示。当驱动部件105在第二通 电状态时,电流方向与图7b中电流方向相反。
本申请实施例对驱动部件105的加热和冷却方式不做限制。加热该驱动部件时,在一些实施例中,可以通过控制电路106向驱动部件105输入第一电流,对驱动部件105进行加热。
在另一些实施例中,还可以通过储能电路向驱动部件105输入第一电流,对驱动部件105进行加热。
冷却该驱动部件105时,在一些实施例中,可以通过控制电路106向驱动部件105输入第二电流,对驱动部件105进行快速降温。其中,该第一电流和第二电流的方向相反。
在另一些实施例中,可使得驱动部件105自然降温,此时,驱动部件105在塞贝克效应的作用下将温度差转换为电流,可以通过储能电路将电能储存起来。
下面结合示例一、示例二对驱动部件105的加热和冷却控制方式进行说明。
示例一
图8为示例一提供的驱动部件105的电路框图。如图8所示,驱动部件105通过控制电路106和外部供电电路13电连接,外部供电电路13用于通过控制电路106向驱动部件105供电。
当控制电路106获取到加热控制信号时,控制电路106可以控制外部供电电路13向驱动部件105输入第一电流,驱动部件在第一电流的作用下产生珀尔帖效应,将电能转化为热能,加热伸缩部件,驱动伸缩部件收缩。
当控制电路106获取到冷却控制信号时,控制电路106可以控制外部供电电路13停止向驱动部件105供电,驱动部件105自然冷却。
当控制电路106获取到快速制冷控制信号时,控制电路106可以控制外部供电电路13向驱动部件105输入第二电流,使得驱动部件105制冷,快速冷却伸缩部件104,使得伸缩部件快速降温,驱动伸缩部件伸展。
由此,当驱动部件105中通入第二电流时,驱动部件105在第二电流的作用下产生珀尔帖效应,使得驱动部件105制冷,快速冷却伸缩部件104,使得伸缩部件快速降温,驱动伸缩部件伸展。
示例二
图9为示例二提供的驱动部件105的电路框图。如图9所示,在示例一的基础上,示例二还增加了储能电路14和充放电开关15。
控制电路106和充放电开关15电连接,充放电开关15分别和驱动部件105、储能电路14电连接。
其中,控制电路106用于控制外部供电电路13向驱动部件105供电,同时,控制电路106还用于控制充放电开关15的通断,使其实现充电或者放电动作。
当控制电路106获取到加热控制信号时,控制电路106可以控制外部供电电路13向驱动部件105输入第一电流,驱动部件在第一电流的作用下产生珀尔帖效应,将电能转化为热能,加热伸缩部件,驱动伸缩部件收缩。
当控制电路106获取到自然冷却控制信号时,控制电路106可以控制外部供电电路13停止向驱动部件105供电,驱动部件105自然冷却,同时,控制电路106控制充放电开关15接通,在塞贝克效应的作用下,驱动部件105将温度差转化为电流,并通过充放电开关15流向储能电路14,储能电路14将其转化为能量储存起来。
由此,当控制电路106再次获取到加热控制信号时,控制电路106还可以控制控制充放电开关15接通,使得储能电路14储存的电能通过充放电开关15给驱动部件105施加第一电流。
此外,当控制电路106获取到快速制冷控制信号时,控制电路106可以控制外部供电电路13向驱动部件105输入第二电流,或者控制电路106控制充放电开关15接通,使得储能电路14控制储存的电能通过充放电开关15给驱动部件105施加第二电流,使得驱动部件105在第二电流的作用下产生珀尔帖效应,使得驱动部件105制冷,快速冷却伸缩部件104,使得伸缩部件快速降温,驱动伸缩部件伸展。
由此,该储能电路可以回收由驱动部件105的热量转化的电能并进行储存,避免伸缩部件104散热时产生的热量对电子设备产生影响,同时储存的电能可以二次利用,减小了电能/热能的浪费, 提高了能量的利用率。
图10为本申请实施例提供的电子设备的结构框图。请参阅图10,电子设备1还包括至少一个处理器17,通信总线18,至少一个通信接口16以及存储器19。可以理解的是,图10仅是电子设备1的示例,并不构成对电子设备1的限定,电子设备1可以包括比图10所示更多或更少的部件,或者组合某些部件,或者不同的部件,例如电子设备1还可以包括输入输出设备、网络接入设备等。
处理器17与至少一个通信接口16、存储器19、显示屏2、控制电路均通过通信总线18通信连接。处理器17可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,处理器是电子设备1的控制中心,利用各种接口和线路连接整个电子设备1的各个部件分。
通信总线18可包括一通路,在上述组件之间传送信息。
通信接口16,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器19可用于存储计算机程序和/或模块,处理器17通过运行或执行存储在存储器19内的计算机程序和/或模块,以及调用存储在存储器19内的数据,实现电子设备1的各种功能。存储器19可主要包括程序存储区和数据存储区,其中,程序存储区可存储操作系统、多个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;数据存储区可存储根据电子设备1的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器19可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、多个磁盘存储器件、闪存器件、或其他易失性固态存储器件。存储器19可以是独立存在,通过通信总线18与处理器17相连接。存储器19也可以和处理器17集成在一起。
在具体实现中,作为一种实施例,处理器17可以包括一个或多个CPU,例如图10中的CPU0和CPU1。
在具体实现中,作为一种实施例,电子设备1可以包括多个处理器,例如图10中的处理器17和处理器171。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,电子设备1还包括:驱动部件105,驱动部件105可以通电发热或制冷,用于发热和制冷的电流方向相反。
在本申请的一些实施例中,处理器17还包括控制电路106,控制电路106用于向驱动部件105施加第一电流,使得驱动部件105发热。
由此,该处理器可以控制驱动部件105发热。
控制电路106还用于向驱动部件105施加第二电流,使得驱动部件105降温,其中,第二电流与第一电流方向相反。
由此,该处理器可以控制第一驱动部件1051和第二驱动部件1052快速降温。
此外,在本申请一些实施例中,电子设备1还包括:储能电路14,第一驱动部件1051和第二驱动部件1052还用于在伸缩部件散热时将伸缩部件的热量转化为电流,控制电路106还用于控制储能电路14回收驱动部件105的电流。
由此,该储能电路14可以回收由驱动部件105的热量转化的电能并进行储存,避免伸缩部件104散热时产生的热量对电子设备产生影响,同时储存的电能可以二次利用,减小了电能/热能的浪费,提高了能量的利用率。
在本申请实施例其他的实现方式中,电子设备1包括第一摄像模组及第二摄像模组,其中第一摄像模组为前置摄像模组,第二摄像模组嵌设于电子设备1的背面作为后置摄像模组使用,在 本实施例所示的电子设备1安装有相机应用的情况下,电子设备1的处理器在检测到相机应用的第一图标接收到用户输入的触发事件时(与图11、图12所示的电子设备的界面类似),请参阅图12,处理器控制电子设备1进入拍摄界面,拍摄界面包括第二图标1002。本实施方式中,第二图标1002为转换工作摄像模组的应用图标,当处理器检测到第二图标1002收到用户输入的点击事件时,处理器控制切换使用的摄像模组,例如将电子设备1当前使用的第二摄像模组切换为第一摄像模组,或者将电子设备1当前使用的第一摄像模组切换为第二摄像模组。例如,处理器控制电子设备1进入拍摄界面所显示的内容为第二摄像模组所获取的画面,即电子设备1当前工作的摄像模组为第二摄像模组,当处理器检测到第二图标1002收到用户输入的点击事件时,处理器控制关闭第二摄像模组并切换至第一摄像模组工作。
其中,前置摄像模组包括:第一驱动部件1051,后置摄像模组例如包括第二驱动部件1052。该第一驱动部件1051和第二驱动部件1052结构相同。
示例的,第一驱动部件1051和第二驱动部件1052可以通电发热或制冷,用于发热和制冷的电流方向相反。
在本申请的一些实施例中,处理器17还包括控制电路106,控制电路106用于向第一驱动部件1051或第二驱动部件1052施加第一电流,使得第一驱动部件1051或第二驱动部件1052发热。
由此,该处理器可以控制第一驱动部件1051或第二驱动部件1052发热。
控制电路106还用于向第一驱动部件1051或第二驱动部件1052施加第二电流,使得第一驱动部件1051或第二驱动部件1052降温,其中,第二电流与第一电流方向相反。
由此,该处理器可以控制第一驱动部件1051或第二驱动部件1052快速降温。
在本申请一些实施例中,处理器17可以响应于用户输入的触发操作控制驱动部件工作,以下对电子设备1的处理器17如何确定接收到用户输入的触发操作的具体情况进行示例性说明。
其中,该电子设备1例如还包括与处理器17电连接的检测元件108,检测元件108用于检测用户输入的触发操作,处理器17用于响应于用户的触发操作控制第一驱动部件1051或第二驱动部件1052通电,使得摄像模组靠近或远离固定部件102,实现自动对焦。
在一些实施方式中,用户输入的触发操作包括用于启动摄像头的触发操作;示例性的,用户的触发操作包括:点击触发、语音触发或动作触发。
在本申请实施例的一种实现方式中,如图11和图12所示,本种情况以电子设备为手机为例进行示例性说明,如图11所示,在本实施例所示的电子设备安装有对应摄像模组的相机应用的情况下,电子设备1的界面即可显示相机应用的第一图标1001。相机应用包括能够应用摄像模组的应用软件,例如微信、QQ等等。检测元件例如为该电子设备的显示屏,如图12所示,电子设备的显示屏在检测到相机应用的第一图标接收到用户输入的点击触发事件时,处理器响应于该点击操作,可以控制摄像模组靠近或远离固定部件102,实现自动对焦。
接着参考图10,电子设1还包括:振动传感器,振动传感器用于获取摄像装置的抖动数据。
处理器还用于根据抖动数据对第一驱动部件1051或第二驱动部件1052通电,使得所述可动部件101沿第一旋转轴转动,实现光学防抖。其中,第一旋转轴垂直于光学镜头模组的光轴,其中,光轴与可动部件101的中心轴平行。
请参阅图5和图10,第一振动传感器包括第一磁性件、第一霍尔传感器,第一磁性件固定于固定部件102上,第一霍尔传感器固定于可动部件101上,第一霍尔传感器与处理器电性相接。第一霍尔传感器用于感应第一磁性件的磁感应强度。例如,若第一霍尔传感器感测到的磁感应强度为第一预设磁感应强度,意味着可动部件101不在预设位置,若第一霍尔传感器感测到的磁感应强度为第二预设磁感应强度,意味着摄像组件位于预设拍摄位置。从而可以根据第一霍尔传感器检测到的磁感应强度控制第一驱动部件1051加热或冷却伸缩部件,进而精确控制摄像组件的位置信息,防止第一摄像模组在使用过程中发生抖动,提高了对第二摄像模组的控制的精确性,进一步提高摄像模组的工作效率。
接着参阅图5和图10,第二振动传感器包括第二磁性件、第二霍尔传感器,第二磁性件固定于固定部件102上,第二霍尔传感器固定于可动部件101上,第二霍尔传感器与处理器电性相接。第二霍尔传感器用于感应第二磁性件的磁感应强度。例如,若第二霍尔传感器感测到的磁感应强 度为第一预设磁感应强度,意味着可动部件101不在预设位置,若第二霍尔传感器感测到的磁感应强度为第二预设磁感应强度,意味着摄像组件位于预设拍摄位置。从而可以根据第一霍尔传感器检测到的磁感应强度控制第二驱动部件1052加热或冷却伸缩部件,进而精确控制摄像组件的位置信息,防止第二摄像模组在使用过程中发生抖动,提高了对第二摄像模组的控制的精确性,进一步提高摄像模组的工作效率。
需要说明的是,对于前述的各个实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部件分,可以参见其他实施例的相关描述。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种马达,其特征在于,包括:
    可动部件;
    固定部件,所述固定部件和所述可动部件层叠设置;
    弹性支撑件,所述弹性支撑件一端与所述可动部件连接,另一端与所述固定部件连接;
    伸缩部件,所述伸缩部件一端与所述可动部件连接,另一端和所述固定部件连接;
    驱动部件,所述驱动部件与所述伸缩部件连接,所述驱动部件用于在第一通电状态时发热,以加热所述伸缩部件,使得所述伸缩部件产生形变,带动所述可动部件由第一位置移动至第二位置;所述驱动部件还用于在断电后冷却,使得所述伸缩部件的形变恢复,带动所述可动部件由所述第二位置移动至所述第一位置。
  2. 根据权利要求1所述的马达,其特征在于,所述驱动部件与所述伸缩部件的连接方式包括:通过导热胶粘接。
  3. 根据权利要求1或2所述的马达,其特征在于,所述驱动部件与所述伸缩部件的连接方式包括:所述驱动部件缠绕所述伸缩部件。
  4. 根据权利要求1-3任一项所述的马达,其特征在于,所述弹性支撑件包括:簧片、弹簧中的至少一种。
  5. 根据权利要求1-4任一项所述的马达,其特征在于,所述伸缩部件的材质包括:热缩材料。
  6. 根据权利要求1-5任一项所述的马达,其特征在于,所述驱动部件的材质包括:温差半导体。
  7. 根据权利要求1-6任一项所述的马达,其特征在于,所述驱动部件还用于在第二通电状态时制冷,以冷却所述伸缩部件,使得所述伸缩部件的形变恢复,带动所述可动部件由所述第二位置移动至所述第一位置;其中,所述第一通电状态和所述第二通电状态的电流方向相反。
  8. 一种摄像模组,其特征在于,包括光学镜头模组,以及权利要求1-7任一项所述的马达;其中,所述光学镜头模组设置在所述可动部件上。
  9. 一种电子设备,其特征在于,所述电子设备包括:显示屏和外壳,以及如权利要求8所述的摄像模组;
    所述显示屏上开设有第一安装孔,所述摄像模组位于所述第一安装孔内;
    或者,所述外壳上设有第二安装孔,所述摄像模组位于所述第二安装孔内。
  10. 根据权利要求9所述的电子设备,其特征在于,所述电子设备还包括中框;
    所述中框远离所述外壳的一侧表面与所述显示屏相连接;所述中框朝向所述外壳的表面设置有主板;
    所述摄像模组包括模组电路板,所述模组电路板与所述主板电连接。
  11. 根据权利要求9或10所述的电子设备,其特征在于,所述电子设备还包括:控制电路,所述控制电路用于向所述驱动部件施加第一电流,使得所述驱动部件发热。
  12. 根据权利要求11所述的电子设备,其特征在于,所述控制电路还用于向所述驱动部件施加第二电流,使得所述驱动部件降温,其中,所述第二电流与所述第一电流方向相反。
  13. 根据权利要求11或12所述的电子设备,其特征在于,所述电子设备还包括:储能电路,所述驱动部件还用于在所述伸缩部件散热时将所述伸缩部件的热量转化为电流,所述储能电路用于回收所述驱动部件的电流。
  14. 根据权利要求13所述的电子设备,其特征在于,所述电子设备还包括:充放电开关,所述驱动部件通过所述充放电开关与所述储能电路电连接,所述控制电路还用于控制所述充放电开关的通断,使得所述驱动部件通过所述充放电开关向所述储能电路充电,或使得所述储能电路通过所述充放电开关向所述驱动部件供电。
  15. 根据权利要求11-14任一项所述的电子设备,其特征在于,所述电子设备还包括:与所述控制电路电连接的检测元件,所述检测元件用于检测用户输入的触发操作,所述控制电路用于响应于用户的触发操作控制所述摄像模组靠近或远离所述固定部件。
  16. 根据权利要求15所述的电子设备,其特征在于,所述触发操作包括:点击触发、语音触 发或动作触发。
  17. 根据权利要求11-16任一项所述的电子设备,其特征在于,所述电子设备还包括:振动传感器,所述振动传感器用于获取所述摄像模组的抖动数据;
    所述控制电路还用于根据所述抖动数据对所述驱动部件通电,使得所述可动部件沿第一旋转轴转动,所述第一旋转轴垂直于所述光学镜头模组的光轴,其中,所述光轴与所述可动部件的中心轴平行。
  18. 根据权利要求17所述的电子设备,其特征在于,所述振动传感器包括:霍尔磁铁和霍尔传感器,所述霍尔传感器用于检测所述霍尔磁铁的位置;
    所述霍尔磁铁与所述固定部件连接,所述霍尔传感器与所述可动部件连接;
    或者,所述霍尔传感器与所述可动部件连接,所述霍尔磁铁与所述固定部件连接。
PCT/CN2023/104177 2022-08-19 2023-06-29 马达、摄像模组和电子设备 WO2024037218A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211001554.4A CN117650680A (zh) 2022-08-19 2022-08-19 马达、摄像模组和电子设备
CN202211001554.4 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024037218A1 true WO2024037218A1 (zh) 2024-02-22

Family

ID=89940629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104177 WO2024037218A1 (zh) 2022-08-19 2023-06-29 马达、摄像模组和电子设备

Country Status (2)

Country Link
CN (1) CN117650680A (zh)
WO (1) WO2024037218A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003184732A (ja) * 2001-12-12 2003-07-03 Yaskawa Electric Corp 形状記憶合金アクチュエータ
KR100590693B1 (ko) * 2004-12-24 2006-06-19 주식회사 팬택 열전 반도체를 이용한 카메라 모듈의 모터에서 발생하는열을 제어하는 이동통신 단말기 및 방법
CN102472944A (zh) * 2009-08-21 2012-05-23 三美电机株式会社 相机的抖动校正装置
CN107105976A (zh) * 2015-03-17 2017-08-29 奥林巴斯株式会社 摄像单元和内窥镜
CN111988453A (zh) * 2019-05-23 2020-11-24 华为技术有限公司 升降机构、摄像装置和移动终端
CN114513588A (zh) * 2020-11-17 2022-05-17 华为技术有限公司 Sma马达、摄像模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003184732A (ja) * 2001-12-12 2003-07-03 Yaskawa Electric Corp 形状記憶合金アクチュエータ
KR100590693B1 (ko) * 2004-12-24 2006-06-19 주식회사 팬택 열전 반도체를 이용한 카메라 모듈의 모터에서 발생하는열을 제어하는 이동통신 단말기 및 방법
CN102472944A (zh) * 2009-08-21 2012-05-23 三美电机株式会社 相机的抖动校正装置
CN107105976A (zh) * 2015-03-17 2017-08-29 奥林巴斯株式会社 摄像单元和内窥镜
CN111988453A (zh) * 2019-05-23 2020-11-24 华为技术有限公司 升降机构、摄像装置和移动终端
CN114513588A (zh) * 2020-11-17 2022-05-17 华为技术有限公司 Sma马达、摄像模组及电子设备

Also Published As

Publication number Publication date
CN117650680A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2021197148A1 (zh) 摄像模组以及电子设备
US11598975B2 (en) Lens driving mechanism and method for controlling the same
US10338403B2 (en) Lens driving mechanism and method for controlling the same
EP3952291B1 (en) Sma motor control method in camera device and camera device
KR20140113978A (ko) 열 전달 장치
WO2020233577A1 (zh) 升降机构、摄像装置和移动终端
CN112887547B (zh) 电子设备及摄像模组
CN213906776U (zh) 摄像模组及电子设备
WO2020248444A1 (zh) 摄像头模组、电子设备及其光学防抖方法
CN112887576A (zh) 摄像模组和电子设备
CN114302049B (zh) 一种新型马达、摄像模组及电子设备
CN113395432A (zh) 摄像头模组和电子设备
CN112954144B (zh) 马达、摄像装置及终端设备
US10887495B2 (en) Photographing apparatus module, user terminal including the same, and method of operating the user terminal
WO2024037218A1 (zh) 马达、摄像模组和电子设备
CN112305705A (zh) 驱动机构
CN103856701A (zh) 显示设备及其控制方法
CN209497532U (zh) 驱动机构组合件及云台拍摄装置
CN114189604B (zh) 一种摄像模组、终端设备及其控制方法
WO2023030261A1 (zh) 一种摄像头模组和电子设备
CN111050036B (zh) 相机模块的致动器
JP2009141609A (ja) 電子カメラおよびレンズユニット
CN114785923A (zh) 防抖云台、摄像头模组、电子设备、拍摄方法及装置
JP2017028039A (ja) 電子機器および撮像装置
US10841469B2 (en) Image module and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854123

Country of ref document: EP

Kind code of ref document: A1