WO2024037072A1 - 雾化器的控制方法、存储介质、电池杆、电子雾化装置 - Google Patents

雾化器的控制方法、存储介质、电池杆、电子雾化装置 Download PDF

Info

Publication number
WO2024037072A1
WO2024037072A1 PCT/CN2023/094284 CN2023094284W WO2024037072A1 WO 2024037072 A1 WO2024037072 A1 WO 2024037072A1 CN 2023094284 W CN2023094284 W CN 2023094284W WO 2024037072 A1 WO2024037072 A1 WO 2024037072A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
atomization
power
viscosity
core
Prior art date
Application number
PCT/CN2023/094284
Other languages
English (en)
French (fr)
Inventor
刘成川
杨豪
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2024037072A1 publication Critical patent/WO2024037072A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present application relates to the field of atomization technology, and in particular to an atomizer control method, storage medium, battery rod, and electronic atomization device.
  • Electronic atomization devices usually include a liquid storage chamber for storing an aerosol-generating substrate and an atomization core for heating the aerosol-generating substrate.
  • the aerosol-generating matrix in the liquid storage chamber is transferred to the atomizing core through active liquid supply and passive liquid supply.
  • the passive liquid supply is through the aerosol-generating matrix in the liquid storage chamber coming into contact with the liquid-absorbing surface of the atomizing core.
  • the aerosol-generating matrix enters the atomizing core under the action of gravity and is transmitted from the liquid-absorbing surface of the atomizing core to the atomizer.
  • the atomization surface of the core is heated and atomized to generate aerosol.
  • the active liquid supply is the negative pressure provided by the air pump, so that the aerosol-generating substrate in the liquid storage chamber enters the nozzle, and the aerosol-generating substrate is sprayed through the nozzle to the atomizing core to achieve heating and atomization of the aerosol-generating substrate.
  • the main technical problem solved by this application is to provide an atomizer control method, storage medium, battery rod, and electronic atomization device to solve the problem of liquid accumulation in the existing technology when the user accelerates suction and/or increases the suction time. , the problem of insufficient atomization.
  • the first technical solution adopted by this application is to provide a control method for an atomizer.
  • the atomizer includes a liquid storage chamber, a spray assembly and an atomization core.
  • the spray assembly will The aerosol-generating matrix in the liquid storage chamber is sprayed into the mist in a droplet state.
  • the atomizing core atomizes the liquid droplets to generate aerosol; the control method includes:
  • the detection information including viscosity or temperature
  • the atomization power of the atomization core is adjusted.
  • control method further includes:
  • the power of the spray assembly is constant.
  • the detection information includes viscosity; and based on the detection information of the aerosol-generating matrix, adjusting the atomization power of the atomization core includes:
  • the atomization power of the atomization core is adjusted based on the viscosity of the aerosol generation matrix and the preset corresponding relationship between the viscosity of the aerosol generation matrix and the atomization power of the atomization core.
  • obtaining the preset corresponding relationship between the viscosity of the aerosol-generating matrix and the atomization power of the atomization core includes:
  • the viscosity of the aerosol-generating substrate and the viscosity of the atomizing core are obtained.
  • the atomization power of the atomization core corresponding to the aerosol generating matrix of each viscosity is obtained by the following method:
  • the atomization power is obtained based on the upper limit power and the lower limit power.
  • determining the upper limit power includes:
  • determining the lower limit power includes:
  • the atomization conversion rate is the amount of liquid droplets atomized by the atomization core.
  • the ratio to the liquid supply volume is the ratio to the liquid supply volume.
  • obtaining the atomization power based on the upper limit power and the lower limit power includes:
  • the average value of the upper limit power and the lower limit power is taken as the atomization power.
  • obtaining the liquid supply amount of the aerosol-generating matrix of a fixed viscosity injected by the injection component once includes:
  • the liquid supply amount is obtained based on the mass of the liquid storage chamber before injection by the injection assembly and the mass of the liquid storage cavity after one injection by the injection assembly.
  • the detection information includes temperature; and adjusting the atomization power of the atomization core based on the detection information of the aerosol-generating substrate includes:
  • the atomization power of the atomization core is adjusted based on the temperature of the aerosol-generating substrate and the preset corresponding relationship between the temperature of the aerosol-generating substrate and the atomization power of the atomization core.
  • obtaining the preset corresponding relationship between the temperature of the aerosol-generating substrate and the atomization power of the atomization core includes:
  • the temperature of the aerosol generating substrate and the atomizing power of the atomizing core are obtained. Preset correspondence relationship of atomization power.
  • obtaining the preset corresponding relationship between the temperature of the aerosol-generating substrate and the atomization power of the atomization core includes:
  • the second technical solution adopted by this application is to provide a control method for an atomizer.
  • the atomizer includes a liquid storage chamber, a spray assembly and an atomization core.
  • the spray assembly is used to The aerosol-generating matrix in the liquid storage chamber is sprayed in a droplet state, and the atomizing core atomizes the droplets to generate aerosol.
  • the control method includes:
  • the atomization power of the atomization core is adjusted based on the time interval between two adjacent puffs.
  • the third technical solution adopted by this application is to provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a control program.
  • the control program is executed by a processor, A control method for implementing an atomizer as described in any one of the above.
  • the fourth technical solution adopted by this application is to provide a battery rod for coupling to an atomizer, including a memory and a processor, the memory stores program instructions, and the processor The program instructions are retrieved from the memory to execute the atomizer control method as described in any one of the above.
  • the fifth technical solution adopted by this application is to provide an electronic atomization device, including an atomizer and a battery rod;
  • the atomizer includes a liquid storage chamber, a spray assembly and an atomization core,
  • the spray assembly is used to spray the aerosol-generating matrix in the liquid storage chamber in a droplet state, and the atomizing core atomizes the liquid droplets to generate aerosol;
  • the liquid storage chamber is provided with a temperature sensor or viscosity sensor.
  • Sensor the battery rod is the battery rod described above, and the battery rod includes an airflow sensor.
  • the beneficial effects of this application are: different from the situation in the prior art, an atomizer control method, storage medium, battery rod, and electronic atomization device are provided.
  • the atomizer includes a liquid storage cavity, spray assembly and atomization core.
  • the spray assembly injects the aerosol-generating matrix in the liquid storage chamber to the atomization core in the form of droplets, and the atomization core atomizes the droplets to generate aerosol;
  • the control method includes: obtaining the aerosol generation Detection information of the substrate, the detection information including viscosity or temperature; based on the detection information of the aerosol-generating substrate, adjust the atomization power of the atomization core through a preset algorithm.
  • aerosol When accelerating suction and/or increasing suction duration, aerosol is generated in the liquid reservoir
  • the temperature or viscosity of the matrix changes accordingly, and the heating power of the atomizing core is adjusted in real time according to the temperature or viscosity of the aerosol-generating matrix in the liquid storage chamber to ensure that the aerosol-generating matrix is fully atomized and to avoid accumulation in the atomizer. liquid to improve the user experience.
  • Figure 1 is a schematic structural diagram of an electronic atomization device provided by an embodiment of the present application.
  • Figure 2 is a schematic cross-sectional structural diagram of the electronic atomization device shown in Figure 1;
  • Figure 3 is a schematic diagram for adjusting the atomization power of the atomization core in the electronic atomization device shown in Figure 1;
  • Figure 4 is a schematic flowchart of a control method for an atomizer provided by the first embodiment of the present application
  • Figure 5 is a schematic flowchart of obtaining the preset algorithm in step S12 of the atomizer control method provided in Figure 4;
  • Figure 6 is a schematic flowchart of a control method for an atomizer provided by the second embodiment of the present application.
  • Figure 7 is a schematic flowchart of obtaining the preset algorithm in step S22 of the atomizer control method provided in Figure 6;
  • Figure 8 is a schematic flowchart of a control method for an atomizer provided by the third embodiment of the present application.
  • Figure 9 is a schematic diagram of the framework of a computer-readable storage medium provided by an embodiment of the present application.
  • first”, “second” and “third” in this application are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited. All directional indications (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between components in a specific posture (as shown in the drawings). , sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • Figure 1 is a schematic structural diagram of the electronic atomization device provided by the embodiment of the present application.
  • Figure 2 is a schematic cross-sectional structural diagram of the electronic atomization device shown in Figure 1.
  • Figure 3 is a schematic structural diagram of the electronic atomization device shown in Figure 1. Schematic diagram of adjusting the atomization power of the atomization core in the atomization device.
  • the electronic atomization device 100 can be used to atomize an aerosol-generating substrate.
  • the electronic atomization device 100 includes an atomizer 1 and a battery rod 2 that are connected to each other.
  • the atomizer 1 is used to store an aerosol-generating substrate and atomize the aerosol-generating substrate to form an aerosol that can be inhaled by the user.
  • the aerosol-generating substrate can be a liquid substrate such as a medicinal solution or a plant or grass liquid.
  • the atomizer 1 can be used in different fields, such as medical treatment, beauty, recreational smoking, etc.; the following embodiments take recreational smoking as an example.
  • the battery rod 2 includes a battery 21, an airflow sensor (not shown), a controller (not shown), etc.; the battery 21 is used to provide electrical energy to the atomizer 1, so that the atomizer 1 can atomize aerosol to generate matrix. Aerosol; the airflow sensor is used to detect airflow changes in the electronic atomization device 100, and the controller starts the electronic atomization device 100 based on the airflow changes detected by the airflow sensor.
  • the battery pole 2 also includes brackets and other components The components are the same as or similar to the prior art. For details, please refer to the prior art and will not be described again here.
  • the atomizer 1 and the battery rod 2 can be integrated, for example, sharing a shell; they can also be detachably connected and designed according to specific needs.
  • the atomizer 1 includes a housing 11 , an atomizing core 12 , a spray assembly 13 and a liquid storage chamber 14 .
  • the liquid storage chamber 14 is used to store the aerosol-generating substrate
  • the spray assembly 13 is connected with the liquid storage cavity 14
  • the spray assembly 13 is used to spray the aerosol-generating substrate in the liquid storage cavity 14 in a droplet state
  • the atomizing core 12 Atomized droplets generate aerosols.
  • the droplet size of the aerosol generated by the atomization core 12 is much smaller than the size of the droplets ejected by the spray assembly 13 .
  • the housing 11 has an installation space 111, and the atomizing core 12 and the spray assembly 13 are accommodated in the installation space 111.
  • the liquid storage chamber 14 can be accommodated in the installation space 111, or can be arranged outside the installation space 111, and the specific arrangement is based on the actual situation.
  • the spray assembly 13 includes a micropump 131 and a nozzle 132.
  • the micropump 131 is used to transfer the aerosol-generating matrix in the liquid storage chamber 14 to the nozzle 132 through negative pressure, so that the aerosol-generating matrix is ejected through the nozzle 132. Spray in droplet state.
  • the micropump 131 can be controlled by the battery 21 or manually to transport the aerosol-generating matrix in the liquid storage chamber 14 to the nozzle 132; when the micropump 131 is controlled by the battery 21, the micropump 131 can be a piston pump or a piston pump. Vacuum pump.
  • the power of the spray assembly 13 is constant, so that when the temperature of the aerosol-generating substrate in the liquid storage chamber 14 does not change, the amount of liquid supplied by one spray remains basically the same; specifically, the spray assembly 13
  • the constant power of the injection assembly 13 means that the rotation rate of the micropump 131 is constant, or the plug pump movement rate of the micropump 131 is constant.
  • spray assembly 13 includes a spray head assembly.
  • the liquid storage chamber 14 is a high-pressure liquid storage tank.
  • the aerosol-generating matrix in the liquid storage tank exists under high-pressure conditions.
  • the nozzle assembly is connected to the high-pressure liquid storage tank through a pipeline, and a switch is provided on the pipeline. By controlling the switch, the aerosol-generating matrix in the high-pressure liquid storage tank can be sprayed to the atomizing core 12 through the nozzle assembly to form liquid droplets, and the atomizing core 12 heats the liquid droplets to generate aerosol.
  • the power of the spray assembly 13 is constant, so that when the temperature of the aerosol-generating substrate in the liquid storage chamber 14 does not change, the amount of liquid supplied by one spray remains basically the same; specifically, the spray assembly 13
  • the constant power of the injection assembly 13 means that the switch on the pipe connecting the nozzle assembly and the high-pressure liquid storage tank opens the switch to the same extent each time.
  • the atomizing core 12 includes a heating element (not shown).
  • the heating element is used to heat and atomize the liquid droplets formed by the injection assembly 13 to generate aerosol.
  • the heating element may be one of heating wires, heating plates, heating nets, etc.
  • the atomizer 1 also includes a temperature sensor 15 or a viscosity sensor 16 .
  • the temperature sensor 15 is disposed on the inner or outer wall of the liquid storage chamber 14 , and the temperature sensor 15 is used to monitor the temperature information of the aerosol-generating matrix in the liquid storage chamber 14 in real time.
  • the temperature sensor 15 is provided on the bottom wall of the liquid storage chamber 14 so that the temperature of the aerosol-generating substrate can be accurately detected even when there is not much aerosol-generating substrate left in the liquid storage chamber 14 .
  • the viscosity sensor 16 is disposed on the inner wall of the liquid storage chamber 14 , and the viscosity sensor 16 is used to monitor the viscosity information of the aerosol-generating matrix in the liquid storage chamber 14 in real time.
  • the viscosity sensor 16 is provided on the bottom wall and side wall of the liquid storage chamber 14, and can accurately detect the viscosity of the aerosol-generating matrix regardless of whether the atomizer 1 is in a horizontal or vertical direction.
  • the battery rod 2 is coupled to the atomizer 1, and the battery rod 2 is used to power the heating element in the atomizer 1 and control the heating element to heat the atomized aerosol-generating matrix.
  • the battery rod 2 is also used to power the micropump 131 to control the micropump 131 to work.
  • the battery pole 2 includes a battery 21, a processor 22, a memory 23 and an airflow sensor (not shown). Among them, the air flow sensor is used to detect changes in air pressure during the suction process.
  • the processor 22 is electrically connected to the battery 21 and the memory 23 respectively.
  • the battery 21 is used to power the atomizer 1 and the micropump 131 .
  • the memory 23 is used to store program instructions for implementing the control method of the atomizer in any of the embodiments described below. For the control method of the atomizer, please refer to the detailed introduction below.
  • the processor 22 is used to execute the program instructions stored in the memory 23; that is, the processor 22 retrieves the program instructions stored in the memory 23 from the memory 23 to execute the atomizer control method of any embodiment introduced below.
  • the processor 22 can also be called a CPU (Central Processing Unit).
  • the processor 22 may be an integrated circuit chip with signal processing capabilities.
  • the processor 22 may also be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory 23 can be a memory stick, a TF card, etc., and can store all information in the electronic device of the device, including input raw data, computer programs, intermediate operation results and final operation. The results are saved in memory. It stores and retrieves information based on locations specified by the controller. Only with the memory 23 can the device have a memory function and ensure normal operation.
  • the memory 23 can be divided into main memory (internal memory) and auxiliary memory (external memory) according to its purpose. There is also a classification method into external memory and internal memory. External storage is usually magnetic media or optical disks, which can store information for a long time.
  • Memory refers to the storage component on the motherboard, which is used to store data and programs currently being executed, but is only used to temporarily store programs and data. When the power is turned off or the power is turned off, the data will be lost.
  • a preset algorithm is stored in the memory 23 , and the preset algorithm is a preset corresponding relationship between the viscosity of the aerosol-generating matrix and the atomization power of the atomization core 12 .
  • the processor 22 is used to obtain the viscosity of the aerosol-generating matrix detected by the viscosity sensor 16 , and analyze and obtain the current viscosity correspondence according to the preset correspondence between the received viscosity of the aerosol-generating matrix and the atomization power of the atomizing core 12
  • the atomization power of the atomization core 12 is adjusted by adjusting the atomization power of the atomization core 12.
  • a preset algorithm is stored in the memory 23 , and the preset algorithm is a preset corresponding relationship between the temperature of the aerosol-generating substrate and the atomization power of the atomization core 12 .
  • the processor 22 is used to obtain the temperature of the aerosol-generating substrate detected by the temperature sensor 15 , and analyze and obtain the current temperature correspondence according to the preset corresponding relationship between the received temperature of the aerosol-generating substrate and the atomization power of the atomizing core 12
  • the atomization power of the atomization core 12 is adjusted by adjusting the atomization power of the atomization core 12.
  • a preset algorithm is stored in the memory 23 .
  • the preset algorithm is a preset corresponding relationship between the time interval between two adjacent puffs and the atomization power of the atomization core 12 .
  • the processor 22 is configured to obtain the time interval between two adjacent puffs detected by the airflow sensor, and to obtain a preset corresponding relationship between the received time interval between two adjacent puffs and the atomization power of the atomizing core 12 , analyze and obtain the atomization power of the atomization core 12 corresponding to the current time interval between two adjacent puffs, thereby adjusting the atomization power of the atomization core 12.
  • the puff time 3s
  • the time for the atomizer core 12 to be heated Very short, the interval between two puffs (27s) is much longer than the puffing time.
  • the atomizing core 12 is quickly heated to the atomizing temperature during the first puff, the heat of the atomizing core 12 is conducted to the aerosol-generating matrix in the liquid storage chamber 14 so that the aerosol-generating matrix is The time for the temperature to change significantly is much longer than 3 seconds, so before the temperature of the aerosol-generating matrix changes significantly, suction has stopped, that is, the spray assembly 13 has stopped spraying, and the atomizing core 12 has stopped heating.
  • the heat generated by the atomization core 12 will still be conducted to the aerosol-generating matrix in the liquid storage chamber 14 so that the temperature of the aerosol-generating matrix changes.
  • the time interval is longer, and the aerosol-generating matrix cools down to its original temperature during the puffing interval, so that the temperature of the aerosol-generating matrix does not change significantly, so that a stable amount of aerosol can be inhaled with a stable taste.
  • the average user takes a puff in 3s-5s, and special users can reach 7s-8s.
  • the interval between the two puffs is shorter.
  • the atomizing core 12 After the first puff is finished, the atomizing core 12 generates atomization.
  • the heat is transmitted to the aerosol-generating matrix in the liquid storage chamber 14, causing the temperature of the aerosol-generating matrix to change. Since the time interval between taking the next puff is not enough for the aerosol-generating matrix to drop to the original temperature, that is, during the puff, The temperature of the aerosol-generating matrix when taking the next puff is significantly higher than the temperature when taking the first puff. Correspondingly, the viscosity of the aerosol-generating matrix becomes lower and the fluidity is better.
  • the amount of liquid injected at one time increases, and if the atomization core 12 is still atomized with the original predetermined atomization power, some droplets may not be atomized (i.e., liquid accumulation) or the atomization is insufficient. 12
  • the amount of aerosol generated by atomized droplets is unstable and the taste is unstable.
  • the user speeds up puffing that is, when the puffing frequency increases, it indicates that the user desires more aerosols, and atomizing with the original predetermined atomizing power of the atomizing core 12 cannot meet the user's needs.
  • This application uses the temperature sensor 15 to detect the temperature of the aerosol-generating matrix in the liquid storage chamber 14 or the viscosity sensor 16 to detect the viscosity of the aerosol-generating matrix in the liquid storage chamber 14 or the airflow sensor to detect the time between two adjacent puffs. interval, and adjust the atomization power of the atomizing core 12 according to it to ensure that when the user accelerates suction and/or increases the suction time, causing the temperature of the aerosol-generating matrix to increase, the droplets ejected by the spray assembly 13 can all It is atomized and fully atomized to meet the user's demand for a larger amount of aerosol.
  • the atomization power of the atomizing core 12 is adjusted according to the temperature or viscosity of the aerosol-generating matrix or the time interval between two adjacent puffs, the first few puffs will increase as the aerosol-generating matrix increases. As the temperature gradually increases or the viscosity gradually decreases, the aerosol volume in the first few puffs gradually increases, and a stable and larger aerosol volume is achieved after reaching thermal equilibrium.
  • FIG. 4 is a schematic flowchart of a control method for an atomizer provided by the first embodiment of the present application.
  • This embodiment provides a method for controlling an atomizer.
  • the method for controlling an atomizer includes the following steps. Among them, the atomizer control method provided in this embodiment is applied to the electronic atomization device in the above embodiment, and the execution subject of the atomizer control method is the processor 22 in the battery rod 2 .
  • the aerosol-generating matrix used in this embodiment is liquid under normal temperature conditions.
  • S11 Obtain detection information of the aerosol-generating matrix.
  • the detection information includes viscosity.
  • the viscosity of the aerosol-generating matrix in the liquid storage chamber 14 is detected in real time by the viscosity sensor 16 , and the detected viscosity is sent to the processor 22 .
  • the power of the spray assembly 13 is constant.
  • the constant power of the spray assembly 13 refers to the constant rotation of the micropump 131 and the constant opening size of the nozzle 132 .
  • the spray assembly 13 can more easily inject the aerosol-generating substrate. That is to say, the smaller the viscosity of the aerosol-generating matrix, the greater the amount of aerosol-generating matrix that the injection component 13 will inject at a time under constant power.
  • the atomization power of the atomizing core 12 needs to be adjusted.
  • Figure 5 is a schematic flowchart of obtaining the preset algorithm in step S12 of the atomizer control method provided in Figure 4.
  • the preset corresponding relationship between the viscosity of the aerosol-generating matrix and the atomization power of the atomization core is obtained by the following method:
  • Step S1211 Obtain the atomization power of the atomization core corresponding to the aerosol generating matrix of each viscosity.
  • an aerosol-generating matrix with a fixed viscosity is configured, and the power of the spray assembly 13 is fixed to obtain the atomization power of the atomizing core 12 corresponding to the viscosity.
  • Step S1211a Obtain the amount of liquid supplied by the injection component for one injection of the aerosol-generating matrix of a fixed viscosity.
  • the mass of the liquid storage chamber 14 of the spray assembly 13 before spraying and the mass of the liquid storage cavity 14 after the spray assembly 13 sprays a fixed viscosity aerosol-generating matrix are obtained; based on the mass of the liquid storage chamber 14 before the spray assembly 13 sprays
  • the mass and the mass of the liquid storage chamber 14 after one injection by the injection assembly 13 are used to obtain the liquid supply amount. That is to say, the amount of liquid supplied by the injection assembly 13 for injecting an aerosol-generating substrate of a fixed viscosity once under constant power is obtained through the weight loss method.
  • Step S1211b Based on the above liquid supply amount, determine the initial power of the atomizing core.
  • the initial power of the atomization core 12 corresponding to the amount of liquid supplied by the injection assembly 13 for one injection is determined based on empirical values to avoid the initial power being too high and burning the heating element when atomizing the aerosol-generating matrix with the above amount of liquid supply. Or the power is too low to fully atomize.
  • Step S1211c Using the same liquid supply volume, increase the initial power multiple times to determine the upper limit power.
  • the initial power is used as a reference value, and the power of the atomizing core 12 is adjusted upward several times until atomization produces a burnt smell at a certain power, which is determined as the upper limit power.
  • Step S1211d Using the same liquid supply volume, reduce the initial power multiple times to determine the lower limit power.
  • the atomization conversion rate is the amount of atomized liquid droplets in the atomization core 12 and the liquid supply amount.
  • the ratio of The reduction in generated matrix gives the atomization conversion rate.
  • the threshold of the atomization conversion rate is 0.9; the threshold of the atomization conversion rate is designed according to the requirements.
  • Step S1211e Obtain the atomization power based on the upper limit power and the lower limit power.
  • a power is selected as the atomization power between the upper limit power and the lower limit power. This atomization power will neither cause the atomization conversion rate to be too low, resulting in too much energy consumption loss, nor will it produce a burnt smell that affects the taste. In one embodiment, a power is selected as the atomization power between the upper limit power and the lower limit power according to the demand for taste.
  • the average of the upper limit power and the lower limit power as the atomization power.
  • Step S1212 Based on the aerosol generating substrates of different viscosities and the atomizing power of the atomizing core corresponding to the aerosol generating substrate of each viscosity, obtain a preset corresponding relationship between the viscosity of the aerosol generating substrate and the atomizing power of the atomizing core.
  • aerosol-generating substrates of different viscosities are configured, and the atomization power of the atomizing core 12 corresponding to the aerosol-generating substrates of different viscosities is obtained through the same method as step S1211.
  • step S1211 Through matlab/excel, based on each viscosity data and the atomization power data corresponding to each viscosity data, a preset corresponding relationship between the viscosity of the aerosol-generating matrix and the atomization power of the atomization core 12 is obtained by fitting.
  • the preset corresponding relationship between the viscosity of a certain type of aerosol-generating substrate and the atomization power of the atomizing core 12 can be obtained through steps S1211 and S1212. Repeat steps S1211 and step S1211 by changing the type of aerosol-generating substrate.
  • S122 Adjust the atomizing power of the atomizing core based on the viscosity of the aerosol-generating matrix and the preset correspondence between the viscosity of the aerosol-generating matrix and the atomizing power of the atomizing core.
  • this step may also include the step of obtaining the type of aerosol-generating substrate, for example, obtaining the type of aerosol-generating substrate in the liquid storage chamber 14 according to the mark on the liquid storage chamber 14; and according to the type of the aerosol-generating substrate A preset corresponding relationship between the viscosity of the corresponding aerosol-generating matrix and the atomization power of the atomizing core 12 is selected.
  • the control method of the atomizer detects the viscosity of the aerosol-generating matrix in the liquid storage chamber 14 through the viscosity sensor 16, and adjusts the mist of the atomizing core 12 based on the premise that the power of the spray assembly 13 is constant.
  • the power is optimized to ensure that when the user accelerates suction and/or increases the suction duration, causing the temperature of the aerosol-generating substrate to increase, the droplets ejected by the spray assembly 13 can be atomized and fully atomized, satisfying the user's needs for a longer period of time.
  • Atmospheric sol volume requirements are examples of them. Among them, when the atomization power of the atomizing core 12 is adjusted according to the viscosity of the aerosol-generating matrix, the aerosol volume in the first few puffs gradually increases, and a stable and larger aerosol volume is achieved after reaching thermal equilibrium.
  • FIG. 6 is a schematic flowchart of a control method for an atomizer provided by the second embodiment of the present application.
  • the difference between the control method of the atomizer provided by the second embodiment of the present application and the control method of the atomizer provided by the first embodiment of the present application is that the detected information is temperature.
  • the detection information includes temperature.
  • the temperature of the aerosol-generating substrate in the liquid storage chamber 14 is detected in real time by the temperature sensor 15 , and the detected temperature is sent to the processor 22 .
  • the power of the spray assembly 13 is constant.
  • the constant power of the spray assembly 13 refers to the constant rotation of the micropump 131 and the constant opening size of the nozzle 132 .
  • the temperature of the aerosol-generating substrate is related to the viscosity of the aerosol-generating substrate. When the temperature of the aerosol-generating substrate is higher, the viscosity of the aerosol-generating substrate is smaller, and it is easier for the injection assembly 13 to inject the aerosol-generating substrate. That is to say, the higher the temperature of the aerosol-generating substrate, the greater the amount of aerosol-generating substrate that the injection assembly 13 will inject at a time under constant power. In order to avoid liquid accumulation, the atomization power of the atomization core 12 needs to be adjusted.
  • FIG. 7 is a schematic flowchart of obtaining the preset algorithm in step S22 of the atomizer control method provided in FIG. 6 .
  • the preset corresponding relationship between the viscosity of the aerosol-generating matrix and the atomization power of the atomization core is obtained by the following method:
  • Step S2211a Based on aerosol generation substrates at different temperatures and aerosol generation at each temperature The viscosity of the aerosol-generating matrix corresponding to the aerosol-generating matrix is obtained to obtain a preset corresponding relationship between the temperature of the aerosol-generating matrix and the viscosity of the aerosol-generating matrix.
  • the aerosol-generating substrate is heated at different temperatures to obtain aerosol-generating substrates of different temperatures, which are respectively detected using the viscosity sensor 16 to obtain the viscosity of the aerosol-generating substrate corresponding to the aerosol-generating substrate at each temperature.
  • the preset corresponding relationship between the temperature of the aerosol-generating matrix and the viscosity of the aerosol-generating matrix is obtained by fitting.
  • Step S2212a Obtain the preset corresponding relationship between the viscosity of the aerosol-generating matrix and the atomization power of the atomization core.
  • step S2212a is the same as the specific implementation of step S121 in the atomizer control method of the first embodiment, and can achieve the same or similar technical effects, which will not be described again.
  • Step S2213a Obtain the temperature of the aerosol-generating substrate based on the preset correspondence between the temperature of the aerosol-generating substrate and the viscosity of the aerosol-generating substrate and the preset correspondence between the viscosity of the aerosol-generating substrate and the atomization power of the atomizing core. The preset corresponding relationship with the atomization power of the atomization core.
  • step S2211a and step S2212a are in no particular order.
  • the preset corresponding relationship between the temperature of a certain type of aerosol-generating substrate and the atomization power of the atomization core 12 can be obtained through steps S2211a-step S2213a.
  • steps S2211a-step S2213a By changing the type of aerosol-generating substrate and repeating steps S2211a-step S2213a, we obtain Different types of aerosol-generating substrates correspond to preset corresponding relationships between the temperature of the aerosol-generating substrate and the atomization power of the atomizing core.
  • the preset corresponding relationship between the viscosity of the aerosol-generating matrix and the atomization power of the atomization core is obtained by the following method:
  • Step S2211b Obtain the atomization power of the atomization core corresponding to the aerosol generating substrate at each temperature.
  • an aerosol generating substrate with a fixed temperature is configured, and the power of the spray assembly 13 is fixed to obtain the atomization power of the atomization core 12 corresponding to the temperature.
  • step S2211b in this embodiment is similar to the specific implementation of step S121 in the atomizer control method of the first embodiment, and will not be described again.
  • Step S2212b Based on aerosol generation substrates at different temperatures and aerosol generation at each temperature The atomization power of the atomization core corresponding to the matrix is calculated to obtain the preset corresponding relationship between the temperature of the aerosol-generating matrix and the atomization power of the atomization core.
  • aerosol-generating substrates of different temperatures are configured, and the atomization power of the atomizing core 12 corresponding to the aerosol-generating substrates of different temperatures is obtained by the same method as step S2211b.
  • step S2211b Through matlab/excel, based on each temperature data and the atomization power data corresponding to each temperature data, a preset corresponding relationship between the temperature of the aerosol generating substrate and the atomization power of the atomization core 12 is obtained by fitting.
  • Step S222 Adjust the atomization power of the atomization core based on the temperature of the aerosol generation substrate and the preset correspondence between the temperature of the aerosol generation substrate and the atomization power of the atomization core.
  • this step may also include the step of obtaining the type of aerosol-generating substrate, for example, obtaining the type of aerosol-generating substrate in the liquid storage chamber 14 according to the mark on the liquid storage chamber 14; and according to the type of the aerosol-generating substrate Select a corresponding preset corresponding relationship between the temperature of the aerosol generating substrate and the atomization power of the atomization core 12 .
  • the control method of the atomizer detects the temperature of the aerosol-generating matrix in the liquid storage chamber 14 through the temperature sensor 15, and adjusts the mist of the atomizing core 12 based on the premise that the power of the spray assembly 13 is constant.
  • the power is optimized to ensure that when the user accelerates suction and/or increases the suction duration, causing the temperature of the aerosol-generating substrate to increase, the droplets ejected by the spray assembly 13 can be atomized and fully atomized, satisfying the user's needs for a longer period of time.
  • Atmospheric sol volume requirements are examples of them. Among them, when the atomization power of the atomizing core 12 is adjusted according to the temperature of the aerosol-generating substrate, the aerosol volume in the first few puffs gradually increases, and a stable and larger aerosol volume is achieved after reaching thermal equilibrium.
  • FIG. 8 is a schematic flowchart of a control method for an atomizer provided by a third embodiment of the present application.
  • the difference between the control method of the atomizer provided by the third embodiment of the present application and the control method of the atomizer provided by the first embodiment of the present application is that the user's puff frequency is detected, that is, the gap between two adjacent puffs is detected. time interval.
  • the airflow sensor is used to detect the time interval between two adjacent puffs.
  • the aerosol will generate a matrix when the user takes the next puff.
  • the temperature is related to the time interval between two adjacent puffs. If the time interval is large enough, the aerosol-generating matrix will cool down to the original temperature during the puffing interval, so that the temperature of the aerosol-generating matrix will not change significantly; if If the time interval is small, the time interval between taking the next puff is not enough for the aerosol-generating matrix to drop to its original temperature, that is, the temperature of the aerosol-generating matrix when taking the next puff is significantly higher than that of the first puff. temperature at that time.
  • the curve of the temperature of the aerosol-generating matrix in the liquid storage chamber 14 first rising and then dropping to the original temperature can be obtained through experiments in advance, that is, the temperature of the aerosol-generating matrix and the puffing interval time can be obtained corresponding relationship. Therefore, without considering the ambient temperature, the corresponding relationship between atomization power and puff interval time can also be obtained.
  • the corresponding relationship between the atomization power and the puff interval time is stored in the memory in advance.
  • the atomizing power of the atomizing core 12 can be adjusted by calculating the atomizing power of the atomizing core through the puff interval time and the corresponding relationship between the atomizing power and the puffing interval time.
  • a suction interval threshold can also be set. In response to the suction interval being greater than or equal to the suction interval threshold, it indicates that the time interval is large enough. During the suction interval, the aerosol-generating matrix cools down to the original temperature again, and the execution continues. Step S31, that is, the atomization power of the atomization core 12 is not adjusted. In response to the puff interval being less than the puff interval threshold, indicating that the time interval is not sufficient for the aerosol-generating substrate to cool down to its original temperature within the puff interval, step S32 is executed.
  • FIG. 9 is a schematic diagram of the framework of a computer-readable storage medium provided by an embodiment of the present application.
  • the computer-readable storage medium 90 stores program instructions 901 that can be executed by the processor.
  • the program instructions 901 are used to implement the steps of the atomizer control method of any of the above embodiments.
  • the functions or modules included in the device provided by the embodiments of the present disclosure can be used to execute the methods described in the above method embodiments.
  • the functions or modules included in the device provided by the embodiments of the present disclosure can be used to execute the methods described in the above method embodiments.
  • the disclosed methods and devices can be implemented in other ways.
  • the device implementation described above is only illustrative.
  • the division of modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • units or components may be combined or assembled. into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated units may be stored in a computer-readable storage medium if they are implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including a number of instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the various implementation methods of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Secondary Cells (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

本申请提供一种雾化器的控制方法、存储介质、电池杆、电子雾化装置,雾化器的控制方法中,雾化器包括储液腔、喷射组件和雾化芯,喷射组件将储液腔内的气溶胶生成基质以液滴状态喷射至雾化芯,雾化芯雾化液滴生成气溶胶;控制方法包括:获取气溶胶生成基质的检测信息,所述检测信息包括粘度或温度;基于所述气溶胶生成基质的检测信息,调整所述雾化芯的雾化功率。在加速抽吸和/或增加抽吸时长,储液腔内的气溶生成基质的温度或粘度随之发生变化,根据储液腔内的气溶胶生成基质的温度或粘度对雾化芯的加热功率进行实时调整,保证气溶胶生成基质充分雾化,避免雾化器中积液,提高用户的使用体验感。

Description

雾化器的控制方法、存储介质、电池杆、电子雾化装置
相关申请的交叉引用
本申请基于2022年08月16日提交的中国专利申请2022109834465主张其优先权,此处通过参照引入其全部的记载内容。
技术领域
本申请涉及雾化技术领域,特别是涉及一种雾化器的控制方法、存储介质、电池杆、电子雾化装置。
背景技术
电子雾化装置通常包括用于存储气溶胶生成基质的储液腔和用于加热气溶胶生成基质的雾化芯。储液腔的气溶胶生成基质传输到雾化芯的方式包括主动供液和被动供液。其中,被动供液是通过储液腔的气溶胶生成基质与雾化芯的吸液面接触,气溶胶生成基质在重力作用下进入雾化芯,从雾化芯的吸液面传输到雾化芯的雾化面进行加热雾化生成气溶胶。主动供液是通过气泵提供的负压,以使储液腔的气溶胶生成基质进入喷嘴,通过喷嘴将气溶胶生成基质喷射至雾化芯以实现对气溶胶生成基质的加热雾化。
而在主动供液过程中,由于用户加速抽吸和/或增加抽吸时长,雾化过程中存在积液、雾化不充分等风险。
发明内容
本申请主要解决的技术问题是提供一种雾化器的控制方法、存储介质、电池杆、电子雾化装置,以解决现有技术中用户加速抽吸和/或增加抽吸时长,存在积液、雾化不充分的问题。
为解决上述技术问题,本申请采用的第一个技术方案是:提供一种雾化器的控制方法,所述雾化器包括储液腔、喷射组件和雾化芯,所述喷射组件将所述储液腔内的气溶胶生成基质以液滴状态喷射至所述雾 化芯,所述雾化芯雾化所述液滴生成气溶胶;控制方法包括:
获取气溶胶生成基质的检测信息,所述检测信息包括粘度或温度;
基于所述气溶胶生成基质的检测信息,调整所述雾化芯的雾化功率。
在一实施方式中,所述控制方法还包括:
所述雾化器雾化过程中,所述喷射组件的功率恒定。
在一实施方式中,所述检测信息包括粘度;所述基于所述气溶胶生成基质的检测信息,调整所述雾化芯的雾化功率包括:
获取所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系;
基于所述气溶胶生成基质的粘度以及所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系,调整所述雾化芯的雾化功率。
在一实施方式中,所述获取所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系包括:
基于不同粘度的所述气溶胶生成基质和各所述粘度的所述气溶胶生成基质对应的所述雾化芯的雾化功率,得到所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系;
所述各所述粘度的所述气溶胶生成基质对应的所述雾化芯的雾化功率通过以下方法获得:
获取所述喷射组件喷射一次固定粘度的所述气溶胶生成基质的供液量;
基于所述供液量,确定所述雾化芯的初始功率;
采用同样的所述供液量,多次增大所述初始功率,确定上限功率;
采用同样的所述供液量,多次减小所述初始功率,确定下限功率;
基于所述上限功率和所述下限功率得到所述雾化功率。
在一实施方式中,所述采用同样的所述供液量,多次增大所述初始功率,确定上限功率包括:
采用同样的所述供液量,增大所述初始功率至雾化产生焦味,确定其为上限功率。
在一实施方式中,所述采用同样的所述供液量,多次减小所述初始功率,确定下限功率包括:
采用同样的所述供液量,减小所述初始功率至雾化转化率低于阈值,确定其为下限功率,其中,雾化转化率为所述雾化芯雾化所述液滴的量与所述供液量的比值。
在一实施方式中,基于所述上限功率和所述下限功率得到所述雾化功率包括:
取所述上限功率和所述下限功率的平均值为所述雾化功率。
在一实施方式中,所述获取所述喷射组件喷射一次固定粘度的所述气溶胶生成基质的供液量包括:
获取所述喷射组件在喷射前的所述储液腔的质量和所述喷射组件喷射一次所述固定粘度所述气溶胶生成基质后的所述储液腔的质量;
基于所述喷射组件喷射前的所述储液腔的质量与所述喷射组件喷射一次后的所述储液腔的质量得到所述供液量。
在一实施方式中,所述检测信息包括温度;所述基于所述气溶胶生成基质的检测信息,调整所述雾化芯的雾化功率包括:
获取所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系;
基于所述气溶胶生成基质的温度以及所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系,调整所述雾化芯的雾化功率。
在一实施方式中,所述获取所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系包括:
基于不同温度的所述气溶胶生成基质和各所述温度的所述气溶胶生成基质对应的所述雾化芯的雾化功率,得到所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系。
在一实施方式中,所述获取所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系包括:
获取所述气溶胶生成基质的温度与所述气溶胶生成基质的粘度的预设对应关系以及所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系;
基于所述气溶胶生成基质的温度与所述气溶胶生成基质的粘度的预设对应关系以及所述气溶胶生成基质的粘度与所述雾化芯的雾化功 率的预设对应关系,得到所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系。
为解决上述技术问题,本申请采用的第二个技术方案是:提供一种雾化器的控制方法,所述雾化器包括储液腔、喷射组件和雾化芯,所述喷射组件用于将所述储液腔内的气溶胶生成基质以液滴状态喷射,所述雾化芯雾化所述液滴生成气溶胶,所述控制方法包括:
获取所述抽吸相邻两口之间的时间间隔;
基于所述抽吸相邻两口之间的时间间隔,调整所述雾化芯的雾化功率。
为解决上述技术问题,本申请采用的第三个技术方案是:提供一种计算机可读存储介质,所述计算机可读存储介质用于存储控制程序,所述控制程序在被处理器执行时,用于实现如上述中任一项所述的雾化器的控制方法。
为解决上述技术问题,本申请采用的第四个技术方案是:提供一种电池杆,用于耦接于雾化器,包括存储器和处理器,所述存储器存储有程序指令,所述处理器从所述存储器调取所述程序指令以执行如上述任一项所述的雾化器的控制方法。
为解决上述技术问题,本申请采用的第五个技术方案是:提供一种电子雾化装置,包括雾化器和电池杆;所述雾化器包括储液腔、喷射组件和雾化芯,所述喷射组件用于将所述储液腔内的气溶胶生成基质以液滴状态喷射,所述雾化芯雾化所述液滴生成气溶胶;所述储液腔设有温度传感器或粘度传感器;所述电池杆为上述所述的电池杆,所述电池杆包括气流传感器。
本申请的有益效果是:区别于现有技术的情况,提供一种雾化器的控制方法、存储介质、电池杆、电子雾化装置,雾化器的控制方法中,雾化器包括储液腔、喷射组件和雾化芯,喷射组件将储液腔内的气溶胶生成基质以液滴状态喷射至雾化芯,雾化芯雾化液滴生成气溶胶;控制方法包括:获取气溶胶生成基质的检测信息,所述检测信息包括粘度或温度;基于所述气溶胶生成基质的检测信息,通过预置算法调整所述雾化芯的雾化功率。在加速抽吸和/或增加抽吸时长,储液腔内的气溶生成 基质的温度或粘度随之发生变化,根据储液腔内的气溶胶生成基质的温度或粘度对雾化芯的加热功率进行实时调整,保证气溶胶生成基质充分雾化,避免雾化器中积液,提高用户的使用体验感。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的电子雾化装置的结构示意图;
图2是图1所示的电子雾化装置截面结构示意图;
图3是图1所示的电子雾化装置中调整雾化芯雾化功率的原理图;
图4是本申请第一实施例提供的雾化器的控制方法的流程示意图;
图5是图4提供的雾化器的控制方法的步骤S12中获得预置算法的流程示意图;
图6是本申请第二实施例提供的雾化器的控制方法的流程示意图;
图7是图6提供的雾化器的控制方法的步骤S22中获得预置算法的流程示意图;
图8是本申请第三实施例提供的雾化器的控制方法的流程示意图;
图9为本申请实施例提供的计算机可读存储介质的框架示意图。
具体实施方式
下面结合说明书附图,对本申请实施例的方案进行详细说明。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1-图3,图1是本申请实施例提供的电子雾化装置的结构示意图,图2是图1所示的电子雾化装置截面结构示意图,图3是图1所示的电子雾化装置中调整雾化芯雾化功率的原理图。
本实施例提供一种电子雾化装置100,电子雾化装置100可用于气溶胶生成基质的雾化。电子雾化装置100包括相互连接的雾化器1和电池杆2。雾化器1用于存储气溶胶生成基质并雾化气溶胶生成基质以形成可供用户吸食的气溶胶,气溶胶生成基质可以是药液、植物草叶类液体等液态基质。雾化器1可用于不同的领域,比如,医疗、美容、休闲吸食等;以下实施例均以休闲吸食为例。电池杆2包括电池21、气流传感器(图未示)以及控制器(图未示)等;电池21用于为雾化器1提供电能,以使得雾化器1能够雾化气溶胶生成基质形成气溶胶;气流传感器用于检测电子雾化装置100中气流变化,控制器根据气流传感器检测到的气流变化启动电子雾化装置100。电池杆2还包括支架等其他元 件,与现有技术相同或相似,具体可参见现有技术,在此不再赘述。雾化器1与电池杆2可以是一体设置,例如共用一个外壳;也可以是可拆卸连接,根据具体需要进行设计。
具体地,雾化器1包括壳体11、雾化芯12、喷射组件13和储液腔14。其中,储液腔14用于存储气溶胶生成基质,喷射组件13与储液腔14连通,喷射组件13用于将储液腔14内的气溶胶生成基质以液滴状态喷射,雾化芯12雾化液滴生成气溶胶。雾化芯12雾化生成的气溶胶的液滴尺寸远远小于喷射组件13喷射出的液滴的尺寸。其中,壳体11具有安装空间111,雾化芯12和喷射组件13收容于安装空间111。储液腔14可以收容于安装空间111,也可以设置于安装空间111外部,具体根据实际情况进行设置。
在本实施例中,喷射组件13包括微型泵131和喷嘴132,微型泵131用于将储液腔14中的气溶胶生成基质通过负压传输至喷嘴132,以通过喷嘴132将气溶胶生成基质以液滴状态喷射。微型泵131可以通过电池21控制或手动控制,以将储液腔14中的气溶胶生成基质传输至喷嘴132;当微型泵131为电池21控制时,微型泵131可以为活塞泵,也可以为真空泵。在雾化器1雾化过程中,喷射组件13的功率恒定,以使储液腔14内的气溶胶生成基质的温度不变时喷射一次的供液量基本保持一致;具体地,喷射组件13包括微型泵131时,喷射组件13的功率恒定表示微型泵131的转动速率恒定、或微型泵131的塞泵运动速率恒定。
在其他实施例中,喷射组件13包括喷头组件。储液腔14为高压储液罐,储液罐中的气溶胶生成基质在高压条件下存在,喷头组件通过管道与高压储液罐连通,管道上设置有开关。通过控制开关可以将高压储液罐中的气溶胶生成基质通过喷头组件喷向雾化芯12形成液滴,通过雾化芯12加热液滴生成气溶胶。在雾化器1雾化过程中,喷射组件13的功率恒定,以使储液腔14内的气溶胶生成基质的温度不变时喷射一次的供液量基本保持一致;具体地,喷射组件13包括喷头组件时,喷射组件13的功率恒定表示喷头组件与高压储液罐连通的管道上的开关每次打开开关的程度相同。
在本实施例中,雾化芯12包括发热件(图未示),发热件用于将喷射组件13喷射形成的液滴加热雾化生成气溶胶。其中,发热件可以为发热丝、发热板、发热网等中的一种。
雾化器1还包括温度传感器15或粘度传感器16。温度传感器15设置于储液腔14的内壁或外壁,温度传感器15用于实时监测储液腔14中气溶胶生成基质的温度信息。可选的,温度传感器15设于储液腔14的底壁,以便在储液腔14中的气溶胶生成基质剩余不多的时候也可以准确检测气溶胶生成基质的温度。粘度传感器16设置于储液腔14的内壁,粘度传感器16用于实时监测储液腔14中气溶胶生成基质的粘度信息。可选的,粘度传感器16设于储液腔14的底壁和侧壁,无论雾化器1处于水平方向还是竖直方向,均可以准确检测气溶胶生成基质的粘度。
电池杆2与雾化器1耦接,且电池杆2用于为雾化器1中的发热件供电,并控制发热件加热雾化气溶胶生成基质。电池杆2还用于为微型泵131供电,以控制微型泵131进行工作。
电池杆2包括电池21、处理器22、存储器23和气流传感器(图未示)。其中,气流传感器用于检测抽吸过程中的气压变化。处理器22分别与电池21和存储器23电连接。电池21用于为雾化器1和微型泵131供电。存储器23用于存储实现下面介绍的任一实施例的雾化器的控制方法的程序指令,雾化器的控制方法可参见后面的具体介绍。处理器22用于执行存储器23存储的程序指令;即处理器22从存储器23调取存储器23存储的程序指令以执行下面介绍的任一实施例的雾化器的控制方法。
其中,处理器22还可以称为CPU(Central Processing Unit,中央处理单元)。处理器22可能是一种集成电路芯片,具有信号的处理能力。处理器22还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器23可以为内存条、TF卡等,可以存储设备的电子设备中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行 结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器23,设备才有记忆功能,才能保证正常工作。存储器23按用途可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
在一实施方式中,存储器23中存储有一预置算法,预置算法为气溶胶生成基质的粘度与雾化芯12的雾化功率的预设对应关系。处理器22用于获取粘度传感器16检测得到的气溶胶生成基质的粘度,并根据接收的气溶胶生成基质的粘度与雾化芯12的雾化功率的预设对应关系,分析得到当前的粘度对应的雾化芯12的雾化功率,以此调整雾化芯12的雾化功率。
在另一实施方式中,存储器23中存储有一预置算法,预置算法为气溶胶生成基质的温度与雾化芯12的雾化功率的预设对应关系。处理器22用于获取温度传感器15检测得到的气溶胶生成基质的温度,并根据接收的气溶胶生成基质的温度与雾化芯12的雾化功率的预设对应关系,分析得到当前的温度对应的雾化芯12的雾化功率,以此调整雾化芯12的雾化功率。
在又一实施方式中,存储器23中存储有一预置算法,预置算法为抽吸相邻两口之间的时间间隔与雾化芯12的雾化功率的预设对应关系。处理器22用于获取气流传感器检测得到的抽吸相邻两口之间的时间间隔,并根据接收的抽吸相邻两口之间的时间间隔与雾化芯12的雾化功率的预设对应关系,分析得到当前的抽吸相邻两口之间的时间间隔对应的雾化芯12的雾化功率,以此调整雾化芯12的雾化功率。
可以理解,当用户以正常频率和正常的抽吸时长抽吸时,雾化芯12在雾化过程中产生的热量不足以使储液腔14内的气溶胶生成基质的温度或粘度出现明显的变化,在喷射组件13的功率恒定的前提下,每次喷射的液体量几乎恒定,雾化芯12以预定的雾化功率进行雾化,可以保证将喷射组件13喷射的液滴均雾化且雾化较充分。例如,用于以抽3s停27s的频率进行抽吸,抽吸时间(3s)短,雾化芯12被加热的时间 很短,两次抽吸之间的间隔(27s)远大于抽吸时间。一方面,虽然在抽吸第一口的时间内雾化芯12被快速加热至雾化温度,但是雾化芯12的热量传导至储液腔14内的气溶胶生成基质使得气溶胶生成基质的温度发生明显变化的时间远大于3s,因此在气溶胶生成基质的温度发生明显变化之前,抽吸已经停止,即喷射组件13已经停止喷,且雾化芯12已经停止加热。另一方面,虽然雾化芯12停止加热之后,雾化芯12产生的热量还会传导至储液腔14内的气溶胶生成基质使得气溶胶生成基质的温度发生变化,但是由于抽吸下一口的时间间隔较长,在抽吸间隔时间内气溶胶生成基质又降温至原来温度,使气溶胶生成基质的温度不会发生明显变化,用于可以吸食到稳定的气溶胶量且口感稳定。可以理解,一般用户抽吸一口的时间在3s-5s,特殊用户能达到7s-8s,通过雾化芯12与储液腔14之间的隔热设计,可以确保在抽吸一口的时间内,气溶胶生成基质的温度不会由于雾化芯12的温度而发生明显变化。
但是,当用户加速抽吸的时候,例如由抽3s停27s变为抽3s停8s,两次抽吸之间的间隔时间较短,第一口抽吸结束之后,雾化芯12雾化产生的热量传导至储液腔14内的气溶胶生成基质而使得气溶胶生成基质的温度发生变化,由于抽吸下一口的时间间隔内不足以使气溶胶生成基质降至原来的温度,即在抽吸下一口的时候气溶胶生成基质的温度明显高于抽吸第一口的时候的温度,相应的气溶胶生成基质的粘度变低,流动性更好,在喷射组件13的功率恒定的前提下,一次喷射的液体量增加,若还是以雾化芯12原先的预定雾化功率进行雾化,可以会出现部分液滴未雾化(即积液)或雾化不充分的问题,雾化芯12雾化液滴生成气溶胶的量不稳定且口感不稳定。而且,用户加速抽吸的时候,即抽吸频率加大的时候,表明用户渴望得到更多的气溶胶,而以雾化芯12原先的预定雾化功率进行雾化,不能满足用户需求。同样,当用户增加抽吸时长(由抽3s停27s变为抽4s停8s),雾化芯12雾化产生的热量使储液腔14内的气溶胶生成基质温度升高,存在上述类似的问题。也就是说,随着抽吸状态的不同,储液腔14内的气溶胶生成基质的温度或粘度会随之发生变化,当储液腔14内的气溶胶生成基质的温度升高或粘度降低时,雾化芯12以原先的功率进行雾化,存在雾化不充分的 问题。
本申请通过温度传感器15检测储液腔14内的气溶胶生成基质的温度或通过粘度传感器16检测储液腔14内的气溶胶生成基质的粘度或气流传感器检测抽吸相邻两口之间的时间间隔,并根据其调整雾化芯12的雾化功率,保证用户在使用时加速抽吸和/或增加抽吸时长导致气溶胶生成基质的温度升高时,喷射组件13喷射的液滴均能够被雾化且雾化充分,满足用户对较大量气溶胶的需求。其中,根据气溶胶生成基质的温度或粘度或抽吸相邻两口之间的时间间隔对雾化芯12的雾化功率进行调整时,刚开始抽吸的几口,随着气溶胶生成基质的温度逐渐升高或粘度逐渐降低,刚开始的几口的气溶胶量逐渐提升,达到热平衡后实现稳定的较大的气溶胶量。
请参阅图4,图4是本申请第一实施例提供的雾化器的控制方法的流程示意图。
本实施例提供一种雾化器的控制方法,雾化器的控制方法包括如下步骤。其中,本实施例提供的雾化器的控制方法应用于上述实施例中的电子雾化装置,且雾化器的控制方法的执行主体为电池杆2中的处理器22。本实施例中使用的气溶胶生成基质在常温条件下为液体。
S11:获取气溶胶生成基质的检测信息,检测信息包括粘度。
具体地,通过粘度传感器16实时检测储液腔14内气溶胶生成基质的粘度,并将检测得到的粘度发送给处理器22。
S12:基于气溶胶生成基质的检测信息,调整雾化芯的雾化功率。
具体地,雾化器雾化过程中,喷射组件13的功率恒定。喷射组件13的功率恒定指的是微型泵131的转动恒定和喷嘴132的开口大小恒定。当气溶胶生成基质的粘度越小,喷射组件13越容易喷射气溶胶生成基质。也就是说,气溶胶生成基质的粘度越小,喷射组件13在恒定功率下一次喷射气溶胶生成基质的量会越多,为了避免积液,需要对雾化芯12的雾化功率进行调节。
请参阅图5,图5是图4提供的雾化器的控制方法的步骤S12中获得预置算法的流程示意图。
S121:获取气溶胶生成基质的粘度与雾化芯的雾化功率的预设对应 关系。
具体地,气溶胶生成基质的粘度与雾化芯的雾化功率的预设对应关系通过以下方法获得:
步骤S1211:获取各粘度的气溶胶生成基质对应的雾化芯的雾化功率。
具体地,配置固定粘度的气溶胶生成基质,固定喷射组件13的功率得到该粘度对应的雾化芯12的雾化功率。
步骤S1211a:获取喷射组件喷射一次固定粘度的气溶胶生成基质的供液量。
具体地,获取喷射组件13在喷射前的储液腔14的质量和喷射组件13喷射一次固定粘度气溶胶生成基质后的储液腔14的质量;基于喷射组件13喷射前的储液腔14的质量与喷射组件13喷射一次后的储液腔14的质量得到供液量。也就是说,通过减重法获取喷射组件13在恒定功率下喷射一次固定粘度的气溶胶生成基质的供液量。
步骤S1211b:基于上述供液量,确定雾化芯的初始功率。
具体地,根据经验值来确定喷射组件13喷射一次的供液量对应的雾化芯12的初始功率,避免初始功率在雾化上述供液量的气溶胶生成基质时功率过高烧掉发热件或功率过低无法充分雾化。
步骤S1211c:采用同样的供液量,多次增大初始功率,确定上限功率。
具体地,采用同样的供液量,增大初始功率至雾化产生焦味,确定其为上限功率。也就是说,以初始功率为参考值,向上多次调整雾化芯12的功率,至某一功率下雾化产生焦味,确定其为上限功率。
步骤S1211d:采用同样的供液量,多次减小初始功率,确定下限功率。
具体地,采用同样的供液量,减小初始功率至雾化转化率低于阈值,确定其为下限功率,其中,雾化转化率为雾化芯12雾化液滴的量与供液量的比值;换句话说,通过测量喷射前后储液腔14内气溶胶生成基质的减少量以及雾化芯12喷出的气溶胶量,求取雾化芯12喷出的气溶胶量与气溶胶生成基质的减少量得到雾化转化率。也就是说,以初始功 率为参考值,向下多次调整雾化芯12的功率,至雾化转化率低于阈值,确定其为下限功率。可选的,雾化转化率的阈值为0.9;雾化转化率的阈值根据需求进行设计。
步骤S1211e:基于上限功率和下限功率得到雾化功率。
具体地,在上限功率与下限功率之间选择一功率作为雾化功率,该雾化功率既不会雾化转化率太低,使得能耗损失太大,也不会产生焦味影响口感。在一实施方式中,根据对口感的需求在上限功率与下限功率之间选择一功率作为雾化功率。
可选的,取上限功率和下限功率的平均值为雾化功率。在一些实施例中,也可以选择采用上限功率和下限功率的范围中任意一点值作为雾化功率。
步骤S1212:基于不同粘度的气溶胶生成基质和各粘度的气溶胶生成基质对应的雾化芯的雾化功率,得到气溶胶生成基质的粘度与雾化芯的雾化功率的预设对应关系。
具体地,配置不同粘度的的气溶胶生成基质,通过步骤S1211同样的方法得到不同粘度的气溶胶生成基质分别对应的雾化芯12的雾化功率。通过matlab/excel基于各粘度数据与各粘度数据对应的雾化功率数据,拟合得到气溶胶生成基质的粘度与雾化芯12的雾化功率的预设对应关系。
可以理解,通过步骤S1211和步骤S1212可以得到某一类型的气溶胶生成基质的粘度与雾化芯12的雾化功率的预设对应关系,通过更换气溶胶生成基质的类型重复步骤是S1211和步骤S1212,得到不同类型的气溶胶生成基质分别对应的气溶胶生成基质的粘度与雾化芯12的雾化功率的预设对应关系。
S122:基于气溶胶生成基质的粘度以及气溶胶生成基质的粘度与雾化芯的雾化功率的预设对应关系,调整雾化芯的雾化功率。
可以理解,该步骤中还可以包括获取气溶胶生成基质的类型的步骤,例如根据储液腔14上的标识,获取储液腔14内气溶胶生成基质的类型;以及根据气溶胶生成基质的类型选择对应的气溶胶生成基质的粘度与雾化芯12的雾化功率的预设对应关系。
本申请实施例提供的雾化器的控制方法通过粘度传感器16检测储液腔14内的气溶胶生成基质的粘度,喷射组件13的功率恒定的前提下,并根据其调整雾化芯12的雾化功率,保证用户在使用时加速抽吸和/或增加抽吸时长导致气溶胶生成基质的温度升高时,喷射组件13喷射的液滴均能够被雾化且雾化充分,满足用户对较大气溶胶量的需求。其中,根据气溶胶生成基质的粘度对雾化芯12的雾化功率进行调整时,刚开始的几口的气溶胶量逐渐提升,达到热平衡后实现稳定的较大的气溶胶量。
请参阅图6,图6是本申请第二实施例提供的雾化器的控制方法的流程示意图。
本申请第二实施例提供的雾化器的控制方法与本申请第一实施例提供的雾化器的控制方法的不同之处在于:检测信息为温度。
S21:获取气溶胶生成基质的检测信息,检测信息包括温度。
具体地,通过温度传感器15实时检测储液腔14内气溶胶生成基质的温度,并将检测得到的温度发送给处理器22。
S22:基于气溶胶生成基质的检测信息,调整雾化芯的雾化功率。
具体地,雾化器雾化过程中,喷射组件13的功率恒定。喷射组件13的功率恒定指的是微型泵131的转动恒定和喷嘴132的开口大小恒定。气溶胶生成基质的温度与气溶胶生成基质的粘度相关,当气溶胶生成基质的温度越高,气溶胶生成基质的粘度越小,喷射组件13越容易喷射气溶胶生成基质。也就是说,气溶胶生成基质的温度越高,喷射组件13在恒定功率下一次喷射气溶胶生成基质的量会越多,为了避免积液,需要对雾化芯12的雾化功率进行调节。
请参阅图7,图7是图6提供的雾化器的控制方法的步骤S22中获得预置算法的流程示意图。
S221:获取气溶胶生成基质的温度与雾化芯的雾化功率的预设对应关系。
具体地,在一实施方式中,气溶胶生成基质的粘度与雾化芯的雾化功率的预设对应关系通过以下方法获得:
步骤S2211a:基于不同温度的气溶胶生成基质和各温度的气溶胶生 成基质对应的气溶胶生成基质的粘度,得到气溶胶生成基质的温度与气溶胶生成基质的粘度的预设对应关系。
具体地,对气溶胶生成基质采用不同温度进行加热,得到不同温度的气溶胶生成基质,分别使用粘度传感器16进行检测,得到各温度的气溶胶生成基质对应的气溶胶生成基质的粘度。通过matlab/excel基于各温度数据与各温度数据对应的粘度数据,拟合得到气溶胶生成基质的温度与气溶胶生成基质的粘度的预设对应关系。
步骤S2212a:获取气溶胶生成基质的粘度与雾化芯的雾化功率的预设对应关系。
在本实施例中,步骤S2212a的具体实施方式与第一实施例雾化器的控制方法中步骤S121的具体实施方式相同,可以实现相同或类似的技术效果,不再赘述。
步骤S2213a:基于气溶胶生成基质的温度与气溶胶生成基质的粘度的预设对应关系以及气溶胶生成基质的粘度与雾化芯的雾化功率的预设对应关系,得到气溶胶生成基质的温度与雾化芯的雾化功率的预设对应关系。
可以理解,步骤S2211a与步骤S2212a不分先后顺序。通过步骤S2211a-步骤S2213a可以得到某一类型的气溶胶生成基质的温度与雾化芯12的雾化功率的预设对应关系,通过更换气溶胶生成基质的类型重复步骤是S2211a-步骤S2213a,得到不同类型的气溶胶生成基质分别对应的气溶胶生成基质的温度与雾化芯的雾化功率的预设对应关系。
在一实施方式中,气溶胶生成基质的粘度与雾化芯的雾化功率的预设对应关系通过以下方法获得:
步骤S2211b:获取各温度的气溶胶生成基质对应的雾化芯的雾化功率。
具体地,配置固定温度的气溶胶生成基质,固定喷射组件13的功率得到该温度对应的雾化芯12的雾化功率。
在本实施例中步骤S2211b的具体实施方式与第一实施例雾化器的控制方法中步骤S121的具体实施方式类似,不再赘述。
步骤S2212b:基于不同温度的气溶胶生成基质和各温度的气溶胶生 成基质对应的雾化芯的雾化功率,得到气溶胶生成基质的温度与雾化芯的雾化功率的预设对应关系。
具体地,配置不同温度的的气溶胶生成基质,通过步骤S2211b同样的方法得到不同温度的气溶胶生成基质分别对应的雾化芯12的雾化功率。通过matlab/excel基于各温度数据与各温度数据对应的雾化功率数据,拟合得到气溶胶生成基质的温度与雾化芯12的雾化功率的预设对应关系。
步骤S222:基于气溶胶生成基质的温度以及气溶胶生成基质的温度与雾化芯的雾化功率的预设对应关系,调整雾化芯的雾化功率。
可以理解,该步骤中还可以包括获取气溶胶生成基质的类型的步骤,例如根据储液腔14上的标识,获取储液腔14内气溶胶生成基质的类型;以及根据气溶胶生成基质的类型选择对应的气溶胶生成基质的温度与雾化芯12的雾化功率的预设对应关系。
本申请实施例提供的雾化器的控制方法通过温度传感器15检测储液腔14内的气溶胶生成基质的温度,喷射组件13的功率恒定的前提下,并根据其调整雾化芯12的雾化功率,保证用户在使用时加速抽吸和/或增加抽吸时长导致气溶胶生成基质的温度升高时,喷射组件13喷射的液滴均能够被雾化且雾化充分,满足用户对较大气溶胶量的需求。其中,根据气溶胶生成基质的温度对雾化芯12的雾化功率进行调整时,刚开始的几口的气溶胶量逐渐提升,达到热平衡后实现稳定的较大的气溶胶量。
请参阅图8,图8是本申请第三实施例提供的雾化器的控制方法的流程示意图。
本申请第三实施例提供的雾化器的控制方法与本申请第一实施例提供的雾化器的控制方法的不同之处在于:检测用户抽吸频率,即检测抽吸相邻两口之间的时间间隔。
S31:获取抽吸相邻两口之间的时间间隔。
具体地,通过气流传感器检测抽吸相邻两口之间的时间间隔。
S32:基于抽吸相邻两口之间的时间间隔,调整雾化芯的雾化功率。
根据上述分析可以理解,用户在抽吸下一口的时候气溶胶生成基质 的温度与相邻两口之间的时间间隔有关,如果时间间隔足够大,则在抽吸间隔时间内气溶胶生成基质又降温至原来温度,使气溶胶生成基质的温度不会发生明显变化;如果时间间隔较小,则抽吸下一口的时间间隔内不足以使气溶胶生成基质降至原来的温度,即在抽吸下一口的时候气溶胶生成基质的温度明显高于抽吸第一口的时候的温度。由于用户停止抽吸之后,储液腔14内的气溶胶生成基质的温度先升高再降至原来的温度的曲线可以提前通过实验获得,即,得到气溶胶生成基质的温度与抽吸间隔时间的对应关系。因此,在不考虑环境温度的前提下,也可以得到雾化功率与抽吸间隔时间的对应关系。将该雾化功率与抽吸间隔时间的对应关系提前存储至存储器。可以通过抽吸间隔时间、以及雾化功率与抽吸间隔时间的对应关系计算雾化芯的雾化功率,以此调整雾化芯12的雾化功率。
具体地,还可以设定一个抽吸间隔阈值,响应于抽吸间隔时间大于等于抽吸间隔阈值,表明时间间隔足够大,在抽吸间隔时间内气溶胶生成基质又降温至原来温度,继续执行步骤S31,即不调整雾化芯12的雾化功率。响应于抽吸间隔时间小于抽吸间隔阈值,表明时间间隔不足以在抽吸间隔时间内气溶胶生成基质又降温至原来温度,则执行步骤S32。
请参阅图9,图9为本申请实施例提供的计算机可读存储介质的框架示意图。计算机可读存储介质90存储有能够被处理器运行的程序指令901,程序指令901用于实现上述任一实施例的雾化器的控制方法的步骤。
在一些实施例中,本公开实施例提供的装置具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现可以参照上文方法实施例的描述,为了简洁,这里不再赘述。
上文对各个实施例的描述倾向于强调各个实施例之间的不同之处,其相同或相似之处可以互相参考,为了简洁,本文不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如单元或组件可以结合或者可以集 成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性、机械或其它的形式。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上仅为本申请的实施方式,并非因此限制本申请的专利保护范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种雾化器的控制方法,所述雾化器包括储液腔、喷射组件和雾化芯,所述喷射组件用于将所述储液腔内的气溶胶生成基质以液滴状态喷射,所述雾化芯雾化所述液滴生成气溶胶,其中,包括:
    获取气溶胶生成基质的检测信息,所述检测信息包括粘度或温度;
    基于所述气溶胶生成基质的检测信息,调整所述雾化芯的雾化功率。
  2. 根据权利要求1所述的控制方法,其中,所述控制方法还包括:
    所述雾化器雾化过程中,所述喷射组件的功率恒定。
  3. 根据权利要求1所述的控制方法,其中,所述检测信息包括粘度;所述基于所述气溶胶生成基质的检测信息,调整所述雾化芯的雾化功率包括:
    获取所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系;
    基于所述气溶胶生成基质的粘度以及所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系,调整所述雾化芯的雾化功率。
  4. 根据权利要求3所述的控制方法,其中,所述获取所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系包括:
    基于不同粘度的所述气溶胶生成基质和各所述粘度的所述气溶胶生成基质对应的所述雾化芯的雾化功率,得到所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系;
    所述各所述粘度的所述气溶胶生成基质对应的所述雾化芯的雾化功率通过以下方法获得:
    获取所述喷射组件喷射一次固定粘度的所述气溶胶生成基质的供液量;
    基于所述供液量,确定所述雾化芯的初始功率;
    采用同样的所述供液量,多次增大所述初始功率,确定上限功率;
    采用同样的所述供液量,多次减小所述初始功率,确定下限功率;
    基于所述上限功率和所述下限功率得到所述雾化功率。
  5. 根据权利要求4所述的控制方法,其中,所述采用同样的所述 供液量,多次增大所述初始功率,确定上限功率包括:
    采用同样的所述供液量,增大所述初始功率至雾化产生焦味,确定其为上限功率。
  6. 根据权利要求4所述的控制方法,其中,所述采用同样的所述供液量,多次减小所述初始功率,确定下限功率包括:
    采用同样的所述供液量,减小所述初始功率至雾化转化率低于阈值,确定其为下限功率,其中,雾化转化率为所述雾化芯雾化所述液滴的量与所述供液量的比值。
  7. 根据权利要求4所述的控制方法,其中,基于所述上限功率和所述下限功率得到所述雾化功率包括:
    取所述上限功率和所述下限功率的平均值为所述雾化功率。
  8. 根据权利要求4所述的控制方法,其中,所述获取所述喷射组件喷射一次固定粘度的所述气溶胶生成基质的供液量包括:
    获取所述喷射组件在喷射前的所述储液腔的质量和所述喷射组件喷射一次所述固定粘度所述气溶胶生成基质后的所述储液腔的质量;
    基于所述喷射组件喷射前的所述储液腔的质量与所述喷射组件喷射一次后的所述储液腔的质量得到所述供液量。
  9. 根据权利要求1所述的控制方法,其中,所述检测信息包括温度;所述基于所述气溶胶生成基质的检测信息,调整所述雾化芯的雾化功率包括:
    获取所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系;
    基于所述气溶胶生成基质的温度以及所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系,调整所述雾化芯的雾化功率。
  10. 根据权利要求9所述的控制方法,其中,所述获取所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系包括:
    基于不同温度的所述气溶胶生成基质和各所述温度的所述气溶胶生成基质对应的所述雾化芯的雾化功率,得到所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系。
  11. 根据权利要求9所述的控制方法,其中,所述获取所述气溶胶 生成基质的温度与所述雾化芯的雾化功率的预设对应关系包括:
    获取所述气溶胶生成基质的温度与所述气溶胶生成基质的粘度的预设对应关系以及所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系;
    基于所述气溶胶生成基质的温度与所述气溶胶生成基质的粘度的预设对应关系以及所述气溶胶生成基质的粘度与所述雾化芯的雾化功率的预设对应关系,得到所述气溶胶生成基质的温度与所述雾化芯的雾化功率的预设对应关系。
  12. 一种雾化器的控制方法,所述雾化器包括储液腔、喷射组件和雾化芯,所述喷射组件用于将所述储液腔内的气溶胶生成基质以液滴状态喷射,所述雾化芯雾化所述液滴生成气溶胶,其中,包括:
    获取所述抽吸相邻两口之间的时间间隔;
    基于所述抽吸相邻两口之间的时间间隔,调整所述雾化芯的雾化功率。
  13. 一种计算机可读存储介质,其中,所述计算机可读存储介质用于存储控制程序,所述控制程序在被处理器执行时,用于实现如权利要求1-12中任一项所述的雾化器的控制方法。
  14. 一种电池杆,用于耦接于雾化器,其中,包括存储器和处理器,所述存储器存储有程序指令,所述处理器从所述存储器调取所述程序指令以执行如权利要求1-12任一项所述的雾化器的控制方法。
  15. 一种电子雾化装置,其中,包括
    雾化器包括储液腔、喷射组件和雾化芯,所述喷射组件用于将所述储液腔内的气溶胶生成基质以液滴状态喷射,所述雾化芯雾化所述液滴生成气溶胶;所述储液腔设有温度传感器或粘度传感器;
    权利要求14所述的电池杆;所述电池杆包括气流传感器。
PCT/CN2023/094284 2022-08-16 2023-05-15 雾化器的控制方法、存储介质、电池杆、电子雾化装置 WO2024037072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210983446.5A CN117617592A (zh) 2022-08-16 2022-08-16 雾化器的控制方法、存储介质、电池杆、电子雾化装置
CN202210983446.5 2022-08-16

Publications (1)

Publication Number Publication Date
WO2024037072A1 true WO2024037072A1 (zh) 2024-02-22

Family

ID=89940601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094284 WO2024037072A1 (zh) 2022-08-16 2023-05-15 雾化器的控制方法、存储介质、电池杆、电子雾化装置

Country Status (2)

Country Link
CN (1) CN117617592A (zh)
WO (1) WO2024037072A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160021930A1 (en) * 2010-05-15 2016-01-28 R.J. Reynolds Tobacco Company Vaporizer Related Systems, Methods, and Apparatus
CN108697178A (zh) * 2016-03-30 2018-10-23 菲利普莫里斯生产公司 用于气溶胶生成的吸烟装置及方法
CN109069773A (zh) * 2016-03-31 2018-12-21 菲利普莫里斯生产公司 用于气溶胶生成系统的包括片状加热元件和液体递送装置的汽化组合件
CN111713745A (zh) * 2020-06-08 2020-09-29 深圳市康泓威科技有限公司 电子雾化设备溶液粘度的检测与控制方法及其电子雾化设备
CN114365869A (zh) * 2022-01-13 2022-04-19 广州大学 超声雾化高粘度烟油的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160021930A1 (en) * 2010-05-15 2016-01-28 R.J. Reynolds Tobacco Company Vaporizer Related Systems, Methods, and Apparatus
CN108697178A (zh) * 2016-03-30 2018-10-23 菲利普莫里斯生产公司 用于气溶胶生成的吸烟装置及方法
CN109069773A (zh) * 2016-03-31 2018-12-21 菲利普莫里斯生产公司 用于气溶胶生成系统的包括片状加热元件和液体递送装置的汽化组合件
CN111713745A (zh) * 2020-06-08 2020-09-29 深圳市康泓威科技有限公司 电子雾化设备溶液粘度的检测与控制方法及其电子雾化设备
CN114365869A (zh) * 2022-01-13 2022-04-19 广州大学 超声雾化高粘度烟油的装置及方法

Also Published As

Publication number Publication date
CN117617592A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
JP6670956B2 (ja) コットンフリー型超音波アトマイザー及び電子タバコ
WO2018040380A1 (zh) 一种超声波电子烟雾化芯及雾化器
US10278422B2 (en) Electronic cigarette with reduced energy consumption and environmental impact
CN105901775A (zh) 喷射式雾化装置
WO2020199634A1 (zh) 可控制摄入剂量的雾化装置及其控制方法
CN112471613A (zh) 控制雾化组件的加热模式的方法及相关装置
WO2024037072A1 (zh) 雾化器的控制方法、存储介质、电池杆、电子雾化装置
BR112020023646A2 (pt) controle aprimorado da produção de aerossol em um sistema gerador de aerossol
CN209017884U (zh) 烟液可加热的电子烟雾化器
CN212065678U (zh) 雾化装置及电子烟
WO2024037034A1 (zh) 电子雾化装置、电池杆、雾化器及其控制方法、存储介质
WO2022217458A1 (zh) 加热控制方法及电子雾化装置
WO2021213465A1 (zh) 气溶胶生成装置及其控制方法
WO2024037049A1 (zh) 电子雾化装置、电源组件、雾化器的控制方法及存储介质
CN111011928A (zh) 一种能降低危害的电子烟雾器
TWI430817B (zh) 液體霧化噴射給藥裝置
WO2023207311A1 (zh) 电子雾化装置及其控制方法、计算机存储介质
WO2024037202A1 (zh) 电子雾化装置、电源组件、雾化器的控制方法及存储介质
CN208492884U (zh) 一种熏蒸雾化装置及熏蒸雾化器
CN206311997U (zh) 一种农业育种自动控制器
CN217658199U (zh) 一种雾化器及电子雾化装置
CN221044284U (zh) 一种雾化器和雾化装置
CN114848984B (zh) 基于空气加热二次雾化器的控制方法、系统
WO2023193151A1 (zh) 雾化器及电子雾化装置
WO2023124503A1 (zh) 主机及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853979

Country of ref document: EP

Kind code of ref document: A1