WO2024036905A1 - 一种Se掺杂固态电解质及其制备方法与应用 - Google Patents

一种Se掺杂固态电解质及其制备方法与应用 Download PDF

Info

Publication number
WO2024036905A1
WO2024036905A1 PCT/CN2023/077433 CN2023077433W WO2024036905A1 WO 2024036905 A1 WO2024036905 A1 WO 2024036905A1 CN 2023077433 W CN2023077433 W CN 2023077433W WO 2024036905 A1 WO2024036905 A1 WO 2024036905A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
cobalt oxide
lithium cobalt
doped solid
preparation
Prior art date
Application number
PCT/CN2023/077433
Other languages
English (en)
French (fr)
Inventor
许建锋
李长东
阮丁山
毛林林
张静静
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024036905A1 publication Critical patent/WO2024036905A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electrochemical energy storage batteries, and specifically to a Se-doped solid electrolyte and its preparation method and application.
  • lithium-ion batteries As the current energy storage system of choice for portable electronics and electric vehicles, the development of lithium-ion batteries (LIB) still lags behind the growing demand for high-energy-density batteries.
  • LIB lithium-ion batteries
  • Se element as a special "anti-aging" element in the human body, can delay cell aging by capturing excess oxygen ion free radicals during the body's metabolism; with the help of Se element, this unique element that captures oxygen ion free radicals Due to the characteristics of the base, the oxygen loss problem of lithium cobalt oxide during high voltage cycling can be slowed down by Se treatment.
  • CN110668509A discloses the preparation of Se-coated lithium cobalt oxide, which is mostly blended and sintered with lithium cobalt oxide in the form of elemental Se. The process is simple.
  • the SeO coating layer formed by elemental Se during the subsequent sintering process has poor ion/Li + conductivity.
  • trace amounts of Se are coated in lithium cobalt oxide in an "isolated island" shape, and there is still an exposed lithium cobalt oxide surface. Direct contact with the electrolyte; these problems will increase the electrochemical polarization of the lithium cobalt oxide cathode material, resulting in a reduction in the material's specific capacity and cycle stability.
  • the purpose of this application is to overcome the above-mentioned shortcomings of the prior art and provide a Se-doped solid electrolyte that can uniformly coat the surface of lithium cobalt oxide and maintain good Li + conductivity of the coated lithium cobalt oxide. Its preparation method and application.
  • a Se-doped solid electrolyte the chemical composition of the Se-doped solid electrolyte is Li 6+x P 1-x Se x S 5 X2 or Li 6+x P 1-x Se x S 5-2x X1 2x
  • the Se-doped solid electrolyte described in this application by doping the Se element into the sulfur-based solid electrolyte, allows the electrolyte to maintain the excellent ion/Li + conductivity of the sulfur-based solid electrolyte, and also improves the electrolyte's conductivity through the doping of the Se element.
  • the interface stability is greatly improved, and the sulfur-based solid electrolyte can also function as a protective layer, enabling stable cycling of lithium cobalt oxide at high voltages.
  • Another purpose of this application is to provide a method for preparing the Se-doped solid electrolyte, which includes the following steps: weigh the materials Li 2 S, SeX1, P 2 S 5 and LiX2 in stoichiometric ratios and premix them, and mix the The material is pulverized to obtain the Se-doped solid electrolyte.
  • the material is placed in a high-energy ball mill and ball-milled under an inert atmosphere.
  • High-energy ball milling is a crushing method that combines physical and chemical methods to achieve uniform dispersion and mixing of different components.
  • the materials are fully mixed through high-energy ball milling, which not only achieves chemical activation and crushing effects of the materials, but also allows alloying to occur between the materials, so that a dense coating layer can be formed during the subsequent sintering process, thereby improving Li + Conductivity.
  • the ball-to-material mass ratio of the ball mill is 15 to 70:1.
  • the inventor found through experiments that when the ball-to-material mass ratio is within this range, the mixing efficiency of the materials is the highest, and neither over-crushing nor over-crushing occurs. It will not cause metal loss to the high-energy ball mill.
  • the inert atmosphere is nitrogen or argon.
  • the ball milling medium is zirconia.
  • the diameter of the zirconia is 5 to 15 mm.
  • the inventor uses the ball milling medium with the diameter according to the hardness of the material, so that the material can be ground more fully.
  • This application also provides the application of the Se-doped solid electrolyte in coating lithium cobalt oxide materials.
  • the step of coating the lithium cobalt oxide material with the Se-doped solid electrolyte is: coating the Se-doped solid electrolyte and the lithium cobalt oxide material in an inert atmosphere, sintering at a low temperature in the inert atmosphere, and cooling. After grinding and screening, the lithium cobalt oxide material with a Se-doped solid electrolyte coating layer is obtained.
  • the mass percentage of Se in the lithium cobalt oxide material in the Se-doped solid electrolyte is: 0 ⁇ Se ⁇ 1%.
  • the lithium cobalt oxide material includes at least one of cobalt carbonate, cobalt hydroxide, cobalt tetraoxide and lithium cobalt oxide.
  • the preparation method of the lithium cobalt oxide material is: after mixing each raw material evenly, place it in a tube furnace, heat it to 550-650°C at a rate of 1-3°C/min, and keep it warm for 1-3 hours. , then raise the temperature to 850-950°C at a rate of 1-3°C/min, keep it warm for 9-11 hours, and after natural cooling, sieve it on a roller to obtain a primary sintering product of lithium cobalt oxide.
  • the coating method is to use a coating fusion machine for coating.
  • the rotation speed of the coating and fusion machine is 40-60 Hz, and the coating time is 2-8 minutes. Under the coating parameters, the coating can be made more complete.
  • the inert atmosphere during coating is nitrogen or argon.
  • the process parameters of the low-temperature sintering are: raising the temperature to 400-800°C at a heating rate of 2-10°C/min, maintaining the temperature for 6-8 hours and then cooling.
  • this application provides a Se-doped solid electrolyte.
  • the interface stability of the electrolyte can be greatly improved, and at the same time, the electrolyte can also have
  • the function of the protective layer is that after coating it on the surface of lithium cobalt oxide, it can form a uniform coating layer on the surface of lithium cobalt oxide, and can also slow down the oxygen loss problem of lithium cobalt oxide during high voltage cycling, so that the coated Lithium cobalt oxide maintains good Li + conductivity, and its specific capacity and cycle performance have also been improved;
  • the process of coating lithium cobalt oxide with the Se-doped solid electrolyte described in this application is simple and does not require complicated processing. It has strong properties and can be directly used in the primary sintering and secondary sintering processes of lithium cobalt oxide.
  • Figure 1 is an SEM image of Se-doped solid electrolyte coating lithium cobalt oxide in Example 1.
  • An embodiment of a Se-doped solid electrolyte described in this application is: weigh Li 2 S and Se in a stoichiometric ratio of 5:0.45:2:1 , P2S5 and LiCl solid powder, after preliminary premixing in a plastic bag, pour into a high-energy ball mill, stir at a speed of 450rmp for 8 hours under a nitrogen atmosphere, and sieve to obtain 5% mass percentage of Se-doped solid powder.
  • Hybrid solid electrolytes are examples of Li 2 S and Se in a stoichiometric ratio of 5:0.45:2:1 , P2S5 and LiCl solid powder, after preliminary premixing in a plastic bag, pour into a high-energy ball mill, stir at a speed of 450rmp for 8 hours under a nitrogen atmosphere, and sieve to obtain 5% mass percentage of Se-doped solid powder.
  • Example 1 The only difference between this embodiment and Example 1 is that in the preparation method of the Se-doped solid electrolyte, Se is replaced with SeS 2 , and the remaining steps are consistent with Example 1.
  • Example 1 The only difference between this embodiment and Example 1 is that in the preparation method of the Se-doped solid electrolyte, SeO2 is used to replace Se, and the remaining steps are consistent with Example 1.
  • Example 1 The only difference between this embodiment and Example 1 is that in the preparation method of the Se-doped solid electrolyte, Li 2 S, Se, P 2 S 5 and LiCl solids are weighed according to the stoichiometric ratio of 6:1:2:1. powder, the rest of the steps are as follows: Same as Example 1.
  • Example 1 The only difference between this embodiment and Example 1 is that in the preparation method of the Se-doped solid electrolyte, LiCl is replaced with LiF, and the remaining steps are consistent with Example 1.
  • Example 1 The only difference between this embodiment and Example 1 is that in the preparation method of the Se-doped solid electrolyte, LiBr is used to replace LiCl, and the remaining steps are consistent with Example 1.
  • Example 1 The only difference between this embodiment and Example 1 is that in the preparation method of the Se-doped solid electrolyte, LiCl is replaced by LiI, and the remaining steps are consistent with Example 1.
  • Example 1 The only difference between this example and Example 1 is that in the preparation method of the Se-doped solid electrolyte, the mass of the Se-doped solid electrolyte is weighed to be 20g. The remaining steps are consistent with Example 1, and the mass of Se is obtained The percentage is 1% high voltage lithium cobalt oxide.
  • Example 1 The only difference between this comparative example and Example 1 is that only elemental Se is used to coat the primary sintering product of lithium cobalt oxide, and the mass of elemental Se is 0.3g, that is, a mass percentage of 0.3% Se-coated lithium cobaltate is obtained. .
  • Example 1 The only difference between this comparative example and Example 1 is that the primary sintering product of lithium cobalt oxide is directly placed in a tube furnace filled with nitrogen, heated to 300°C at a rate of 2°C/min, kept for 2 hours, and then heated to 300°C at a rate of 2°C/min. The temperature is raised to 700°C at a certain rate, and the temperature is maintained for 10 hours. After natural cooling, the mixture is sieved with rollers to obtain pure phase lithium cobalt oxide.
  • the lithium cobalt oxide material of the above-mentioned Example 1-2 and Comparative Example 1-2 was prepared into an electrode piece, and a button battery was prepared using the lithium piece as a counter electrode for electrochemical testing.
  • the results are shown in Table 1 below.
  • CC and DC respectively represent the capacity of the battery after the first full charge and the capacity released after the first full charge.
  • CE% represents the first effect, that is, the capacity released after the battery is fully charged for the first time and the capacity released after the first full charge. Capacity ratio.
  • Example 1 After the Se-doped sulfur-based solid electrolyte was coated on the surface of the lithium cobalt oxide material in Examples 1 and 2, the charge and discharge capacity and cycle performance of the lithium cobalt oxide material were significantly improved, and The cycle retention rate of Example 1 reached 86.6%, and the first effect reached 94.6%; while Comparative Example 1 only used Se-coated lithium cobalt oxide, although the capacity of the first full charge increased, the first discharge capacity was smaller.
  • Comparative Example 2 uses blank lithium cobalt oxide, the first charge capacity and the first discharge capacity There was a significant decrease, and the cycle stability was ⁇ 70%, only 67.1%.

Abstract

本申请公开了一种Se掺杂固态电解质及其制备方法与应用,属于电化学储能电池领域。本申请通过在硫基固态电解质中掺杂Se元素,可使所述电解质的界面稳定性大幅度提高,同时还可使电解质具有保护层的作用;将Se掺杂固态电解质包覆在钴酸锂表面后,可使钴酸锂表面形成均匀的包覆层,还可减缓钴酸锂在高电压循环时的失氧问题,使包覆后的钴酸锂保持良好的Li+电导率,在比容量、循环性能上也得到提升;本申请所述Se掺杂固态电解质包覆钴酸锂的工艺简单,不需要复杂的处理过程,接入性强,可以直接应用于钴酸锂的一次烧结和二次烧结工艺。

Description

一种Se掺杂固态电解质及其制备方法与应用 技术领域
本申请涉及电化学储能电池领域,具体涉及一种Se掺杂固态电解质及其制备方法与应用。
背景技术
锂离子电池(LIB)作为目前便携式电子产品和电动汽车的首选储能系统,其发展仍然落后于人们对高能量密度电池日益增长的需求。作为可充电LIB的正极材料,钴酸锂因其高振实密度,在3C电子设备中占据主导地位;然而,实际应用中的钴酸锂只发挥出其理论容量的1/2(约为140mAh·g-1),这意味着只有一半的Li+是从钴酸锂中脱离出来的;将钴酸锂充电到高电压时虽然可以将能量密度提高40%以上,但高电压下循环钴酸锂时,氧离子氧化还原对参与容量贡献,高氧化态氧离子的易迁徙性导致高电压循环时钴酸锂严重失氧,不仅导致正极材料的不可逆相变阻碍锂离子的传导,而且氧化分解碳酸酯电解液,从而导致电池的循环寿命急剧衰减。
针对电池循环寿命衰减这一难题,已开发出的策略,包括形貌设计、元素掺杂和包覆。Se元素作为人体内一种特殊的具有“抗衰老”功能的元素,其可通过捕捉人体新陈代谢过程中多余的氧离子自由基,从而延缓细胞老化;借助于Se元素这一独特的捕捉氧离子自由基的特点,通过Se化处理可减缓钴酸锂在高电压循环时的失氧问题;CN110668509A公开了制备Se包覆钴酸锂多以单质Se的形式与钴酸锂共混烧结,工艺简单,但单质Se在后续烧结过程中形成的SeO包覆层离子/Li+传导率差,此外,微量Se包覆在钴酸锂中呈类似“孤岛”状包覆,仍有裸露的钴酸锂表面直接与电解液接触;这些问题将会增大钴酸锂正极材料的电化学极化,导致材料的比容量降低,循环稳定性下降。
因此,在钴酸锂表面构建均匀的Se包覆层,同时不降低钴酸锂的离子/Li+的传导率,是实现钴酸锂在高电压下稳定循环的难点之一。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于克服上述现有技术的不足而提供一种可在钴酸锂表面均匀包覆,同时可使包覆后的钴酸锂保持良好的Li+电导率的Se掺杂固态电解质及其制备方法与应用。
为实现上述目的,本申请采取的技术方案为:一种Se掺杂固态电解质,所述Se掺杂固态电解质的化学组成为Li6+xP1-xSexS5X2或Li6+xP1-xSexS5-2xX12xX2,其中,0<x<1;所述X1为O或S,所述X2为F、Cl、Br、I中的至少一种。
本申请所述Se掺杂固态电解质,通过在硫基固态电解质中掺入Se元素,使电解质既保持了硫基固态电解质优异的离子/Li+电导率,又通过Se元素的掺杂使电解质的界面稳定性大幅度提高,同时还可使硫基固态电解质具备保护层的作用,可实现钴酸锂在高电压下稳定循环。
本申请的另一目的在于提供所述Se掺杂固态电解质的制备方法,包含以下步骤:按化学计量比称取物料Li2S、SeX1、P2S5和LiX2进行预混合,将混合后的物料进行粉碎,即得所述Se掺杂固态电解质。
可选地,所述物料的化学计量比为Li2S:SeX1:P2S5:LiX2=(5-6):(0-1):2:1,发明人通过实验发现,物料在此化学计量比下,既能保证足够的Li+传送数量,又能控制生产Se掺杂固态电解质的成本。
可选地,将所述物料置于高能球磨机中,并在惰性气氛下进行球磨,高能球磨是将物理法和化学法结合的粉碎方法,可实现不同组份的均匀分散和混合, 在本申请中通过高能球磨对物料充分混合,不仅可以实现对物料的化学活化以及粉碎效果,还可以使物料之间发生合金化作用,以便后续烧结过程中可形成致密的包覆层,提升Li+电导率。
可选地,所述球磨的球料质量比为15 70:1,发明人通过实验发现,球料质量比在此范围内,可使物料的混合效率最高,既不会发生过粉碎现象,又不会对高能球磨机造成金属损耗。
可选地,所述惰性气氛为氮气或氩气。
可选地,所述球磨的球磨介质为氧化锆。
可选地,所述氧化锆的直径为5 15mm,发明人结合物料的硬度采用所述直径的球磨介质,可使物料研磨更加充分。
本申请还提供了所述Se掺杂固态电解质在包覆钴酸锂材料方面的应用。
可选地,所述Se掺杂固态电解质包覆钴酸锂材料的步骤为:将Se掺杂固态电解质和钴酸锂材料在惰性气氛下进行包覆,并在惰性气氛下进行低温烧结,冷却后进行研磨筛分,即得所述具有Se掺杂固态电解质包覆层的钴酸锂材料。
可选地,所述Se掺杂固态电解质中Se在钴酸锂材料中的质量百分比为:0<Se≤1%。
可选地,所述钴酸锂材料包括碳酸钴、氢氧化钴、四氧化三钴和钴酸锂中的至少一种。
可选地,所述钴酸锂材料的制备方法为:将各原料混合均匀后,置于管式炉中,以1-3℃/min的速率升温至550-650℃,保温1-3h后,再以1-3℃/min的速率升温至850-950℃,保温9-11h,自然冷却后,对辊过筛,得到钴酸锂一次烧结产物。
更可选地,所述包覆方式为采用包覆融合机进行包覆。
最可选地,所述包覆融合机的转速为40-60Hz,包覆时间为2-8min,在所述包覆参数下可使包覆更加充分。
更可选地,所述包覆时的惰性气氛为氮气或氩气。
更可选地,所述低温烧结的工艺参数为:以2-10℃/min的升温速率将温度升至400-800℃,保温6-8h后冷却。
本申请的有益效果在于:本申请提供了一种Se掺杂固态电解质,通过在硫基固态电解质中掺杂Se元素,可使所述电解质的界面稳定性大幅度提高,同时还可使电解质具备保护层的作用,将其包覆在钴酸锂表面后,可使钴酸锂表面形成均匀的包覆层,还可减缓钴酸锂在高电压循环时的失氧问题,使包覆后的钴酸锂保持良好的Li+电导率,在比容量、循环性能上也得到提升;本申请所述Se掺杂固态电解质包覆于钴酸锂的工艺简单,不需要复杂的处理过程,接入性强,可以直接应用于钴酸锂的一次烧结和二次烧结工艺。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为实施例1中Se掺杂固态电解质包覆钴酸锂的SEM图。
具体实施方式
为更好地说明本申请的目的、技术方案和优点,下面将结合具体实施例对本申请作进一步说明。
实施例1
本申请所述一种Se掺杂固态电解质的一种实施例,本实施例所述Se掺杂固态电解质的制备方法为:按化学计量比5:0.45:2:1称取Li2S、Se、P2S5和LiCl固体粉末,在塑封袋中进行初步预混后,倒入高能球磨机中,在氮气氛围下以450rmp的速度搅拌8h,过筛后即得质量百分比为5%的Se掺杂固态电解质。
本实施例所述Se掺杂固态电解质包覆钴酸锂的制备方法包含以下步骤:
(1)称取100g四氧化三钴与45.3g碳酸锂混合均匀后,置于管式炉中,以2℃/min的速率升温至600℃,保温2h,再以2℃/min的速率升温至900℃,保温10h,自然冷却后,对辊过筛,即得纯相钴酸锂一次烧结产物。
(2)称取100g步骤(1)中的纯相钴酸锂一次烧结产物和6g Se掺杂固态电解质,在融合包覆机中以50Hz的频率包覆3min后,置于充满氮气的管式炉,以2℃/min的速率升温至550℃,保温10h,再以2℃/min的速率升温至700℃,保温10h,自然冷却后,对辊过筛,完成Se掺杂固态电解质包覆钴酸锂,即得到质量百分比为0.3%的高电压型钴酸锂,所述高电压型钴酸锂的SEM图如图1所示。
实施例2
本实施例与实施例1的区别仅在于:所述Se掺杂固态电解质的制备方法中,以SeS2替换Se,其余步骤均与实施例1一致。
实施例3
本实施例与实施例1的区别仅在于:所述Se掺杂固态电解质的制备方法中,以SeO2替换Se,其余步骤均与实施例1一致。
实施例4
本实施例与实施例1的区别仅在于:所述Se掺杂固态电解质的制备方法中,按化学计量比6:1:2:1称取Li2S、Se、P2S5和LiCl固体粉末,其余步骤均与实施 例1一致。
实施例5
本实施例与实施例1的区别仅在于:所述Se掺杂固态电解质的制备方法中,以LiF替换LiCl,其余步骤均与实施例1一致。
实施例6
本实施例与实施例1的区别仅在于:所述Se掺杂固态电解质的制备方法中,以LiBr替换LiCl,其余步骤均与实施例1一致。
实施例7
本实施例与实施例1的区别仅在于:所述Se掺杂固态电解质的制备方法中,以LiI替换LiCl,其余步骤均与实施例1一致。
实施例8
本实施例与实施例1的区别仅在于:所述Se掺杂固态电解质的制备方法中,称取的Se掺杂固态电解质的质量为20g,其余步骤均与实施例1一致,制得Se质量百分比为1%的高电压型钴酸锂。
对比例1
本对比例与实施例1的区别仅在于:仅采用单质Se对钴酸锂一次烧结产物进行包覆,且单质Se的质量为0.3g,即得到质量百分比为0.3%Se包覆的钴酸锂。
对比例2
本对比例与实施例1的区别仅在于:将钴酸锂一次烧结产物直接置于充满氮气的管式炉,以2℃/min的速率升温至300℃,保温2h,再以2℃/min的速率升温至700℃,保温10h,自然冷却后,对辊过筛,即得到纯相钴酸锂。
效果例
将上述实施例1-2、对比例1-2的钴酸锂材料制备成极片,以锂片为对电极制备纽扣电池进行电化学测试,结果如下表1所示。
其中,CC和DC分别表示电池第一次充满电的容量和第一次充满电后放出的容量,CE%表示为首效,即电池第一次充满电后放出的容量与第一次充满电的容量的比值。
表1
结果如表1所示,实施例1、2中Se掺杂硫基固态电解质包覆在钴酸锂材料表面后,使钴酸锂材料在充放电容量和循环性能上均有明显的提升,且实施例1的循环保持率达到了86.6%,首效达到了94.6%;而对比例1仅采用Se包覆钴酸锂,第一次充满电的容量虽有上升,但第一次放电容量较低,导致最终首效仅为91.7%,与实施例1、2相比有明显的降低,循环稳定性也比实施例低;对比例2由于采用空白钴酸锂,首次充电容量和首次放电容量均有较明显的降低,且循环稳定性<70%,仅为67.1%。
最后应当说明的是,以上实施例仅用以说明本申请的技术方案而非对本申请保护范围的限制,尽管参照较佳实施例对本申请作了详细说明,本领域的普 通技术人员应当理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的实质和范围。

Claims (10)

  1. 一种Se掺杂固态电解质,其中,所述Se掺杂固态电解质的化学组成为Li6+xP1-xSexS5X2或Li6+xP1-xSexS5-2xX12xX2,其中,0<x<1;所述X1为O或S,所述X2为F、Cl、Br、I中的至少一种。
  2. 如权利要求1所述Se掺杂固态电解质的制备方法,其中,所述制备方法包含以下步骤:按化学计量比称取物料Li2S、SeX1、P2S5和LiX2进行预混合,将混合后的物料进行粉碎,即得所述Se掺杂固态电解质。
  3. 如权利要求2所述Se掺杂固态电解质的制备方法,其中,所述物料的化学计量比为Li2S:SeX1:P2S5:LiX2=(5-6):(0-1):2:1。
  4. 如权利要求2所述Se掺杂固态电解质的制备方法,其中,所述粉碎为将物料在高能球磨机中进行球磨。
  5. 如权利要求4所述Se掺杂固态电解质的制备方法,其中,所述球磨的球料质量比为15 70:1。
  6. 权利要求1所述Se掺杂固态电解质或权利要求2-5所述制备方法得到的Se掺杂固态电解质在包覆钴酸锂材料中的应用。
  7. 如权利要求6所述Se掺杂固态电解质在包覆钴酸锂材料中的应用,其中,所述Se掺杂固态电解质包覆钴酸锂材料的步骤为:将Se掺杂固态电解质和钴酸锂材料在惰性气氛下进行包覆,并在惰性气氛下进行低温烧结,冷却后进行研磨筛分,即得所述具有Se掺杂固态电解质包覆层的钴酸锂材料。
  8. 如权利要求6或7所述Se掺杂固态电解质在包覆钴酸锂材料中的应用,其中,所述Se掺杂固态电解质中Se在钴酸锂材料中的质量百分比为:0<Se≤1%。
  9. 如权利要求6或7或8所述Se掺杂固态电解质在包覆钴酸锂材料中的应用,其中,所述钴酸锂材料包括碳酸钴、氢氧化钴、四氧化三钴和钴酸锂中的至少一种。
  10. 如权利要求7或8或9所述Se掺杂固态电解质在包覆钴酸锂材料中的应用,其中,所述低温烧结的工艺参数为:以2-10℃/min的升温速率将温度升至400-800℃,保温6-8h后冷却。
PCT/CN2023/077433 2022-08-18 2023-02-21 一种Se掺杂固态电解质及其制备方法与应用 WO2024036905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210996067.X 2022-08-18
CN202210996067.XA CN115312843A (zh) 2022-08-18 2022-08-18 一种Se掺杂固态电解质及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2024036905A1 true WO2024036905A1 (zh) 2024-02-22

Family

ID=83861858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077433 WO2024036905A1 (zh) 2022-08-18 2023-02-21 一种Se掺杂固态电解质及其制备方法与应用

Country Status (3)

Country Link
CN (1) CN115312843A (zh)
FR (1) FR3138973A1 (zh)
WO (1) WO2024036905A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312843A (zh) * 2022-08-18 2022-11-08 广东邦普循环科技有限公司 一种Se掺杂固态电解质及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109955A (ja) * 2000-10-02 2002-04-12 Osaka Prefecture 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池
CN103531841A (zh) * 2013-11-01 2014-01-22 中国科学院宁波材料技术与工程研究所 硫化物固体电解质及其制备方法与全固态锂二次电池
CN103918110A (zh) * 2011-11-17 2014-07-09 丰田自动车株式会社 电解质被覆型正极活性物质粒子、全固体电池、和电解质被覆型正极活性物质粒子的制造方法
CN111430808A (zh) * 2020-03-23 2020-07-17 广东东邦科技有限公司 一种具有掺杂物的含锂硫银锗矿固态电解质及其制备方法
CN113321485A (zh) * 2021-05-28 2021-08-31 中南大学 一种硫银锗矿型硫化物固态电解质的制备方法
CN113506911A (zh) * 2021-07-15 2021-10-15 山东威固新能源科技有限公司 一种硫化物固体电解质材料及其制备方法和应用、全固态锂电池
CN115312843A (zh) * 2022-08-18 2022-11-08 广东邦普循环科技有限公司 一种Se掺杂固态电解质及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109955A (ja) * 2000-10-02 2002-04-12 Osaka Prefecture 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池
CN103918110A (zh) * 2011-11-17 2014-07-09 丰田自动车株式会社 电解质被覆型正极活性物质粒子、全固体电池、和电解质被覆型正极活性物质粒子的制造方法
CN103531841A (zh) * 2013-11-01 2014-01-22 中国科学院宁波材料技术与工程研究所 硫化物固体电解质及其制备方法与全固态锂二次电池
CN111430808A (zh) * 2020-03-23 2020-07-17 广东东邦科技有限公司 一种具有掺杂物的含锂硫银锗矿固态电解质及其制备方法
CN113321485A (zh) * 2021-05-28 2021-08-31 中南大学 一种硫银锗矿型硫化物固态电解质的制备方法
CN113506911A (zh) * 2021-07-15 2021-10-15 山东威固新能源科技有限公司 一种硫化物固体电解质材料及其制备方法和应用、全固态锂电池
CN115312843A (zh) * 2022-08-18 2022-11-08 广东邦普循环科技有限公司 一种Se掺杂固态电解质及其制备方法与应用

Also Published As

Publication number Publication date
FR3138973A1 (fr) 2024-02-23
CN115312843A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US10290865B2 (en) Positive electrode material for Li-ion battery, method for preparing the same, and Li-ion power battery containing the same
WO2020062046A1 (zh) 正极添加剂及其制备方法、正极及其制备方法和锂离子电池
CN112271279B (zh) 复合正极材料及其制备方法、应用和锂离子电池
CN107863514A (zh) 双包覆622型镍钴锰三元正极材料及其制备方法
CN112271281B (zh) 复合正极材料及其制备方法、应用和锂离子电池
CN113921773A (zh) 表面包覆改性的锂离子电池正极材料及其制备方法和应用
WO2024036905A1 (zh) 一种Se掺杂固态电解质及其制备方法与应用
CN114678500A (zh) 一种复合包覆的富镍正极材料及其制备方法、应用
CN111446429B (zh) 一种聚多阴离子正极材料及其制备方法和用途
CN112635752A (zh) 三元正极材料及其制备方法、锂电池
CN114105117B (zh) 一种前驱体及磷酸镍铁锂正极材料的制备方法
CN111268727A (zh) 一种钒酸钙复合材料及其制备方法、应用
CN113066988B (zh) 一种负极极片及其制备方法和用途
WO2022047832A1 (zh) 制取具有成分梯度特性的材料的方法及在电池中的应用
CN112993226A (zh) 一种氧化物玻璃正极材料、其制备方法及应用
CN115806319A (zh) 一种层状高熵氧化物、其制备方法及其应用
CN112838208B (zh) 锂离子电池正极材料的制备方法及应用
CN114744184A (zh) 一种高性能的三元正极材料及其制备方法
CN112768756A (zh) 固态电解质材料以及利用该材料制得的复合固态电解质和全固态电池
CN114927674B (zh) 钴酸锂正极材料及其制备方法和应用
JP4056181B2 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
WO2024093072A1 (zh) 一种自修复快离子导体锂金属负极及其制备方法
WO2023082410A1 (zh) 一种硒化物玻璃材料及其制备方法和应用
CN110697798A (zh) 一种石墨烯基碳复合锂离子电池正极材料的制备方法
CN111224096A (zh) 一种动力装置及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853822

Country of ref document: EP

Kind code of ref document: A1