WO2024036798A1 - 一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法 - Google Patents

一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法 Download PDF

Info

Publication number
WO2024036798A1
WO2024036798A1 PCT/CN2022/132752 CN2022132752W WO2024036798A1 WO 2024036798 A1 WO2024036798 A1 WO 2024036798A1 CN 2022132752 W CN2022132752 W CN 2022132752W WO 2024036798 A1 WO2024036798 A1 WO 2024036798A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
solution
carbon
preparation
cement
Prior art date
Application number
PCT/CN2022/132752
Other languages
English (en)
French (fr)
Inventor
李绍纯
陈旭
胡孟君
耿永娟
金祖权
高嵩
侯东帅
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2024036798A1 publication Critical patent/WO2024036798A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients

Definitions

  • the invention relates to the technical field of carbon-fixing materials, and specifically relates to a titanium sol carbon-fixing additive, its preparation method and application, and a method for solidifying carbon with cement-based materials.
  • the purpose of the present invention is to provide a titanium sol carbon-fixing additive, its preparation method and application, and a method for solidifying carbon in cement-based materials.
  • the titanium sol carbon-fixing additive prepared by the invention can improve the overall performance and quality of cement-based materials. At the same time, CO 2 is absorbed to a greater extent and at a faster rate.
  • the invention provides a preparation method of titanium sol carbon fixing aid, which includes the following steps:
  • the A solution, B solution and catalyst are mixed and solized to obtain a titanium sol carbon fixing aid.
  • the molar ratio of titanium tetraisopropoxide and ammonia monohydrate in ammonia water is 1:3-15.
  • the mass ratio of the titanium dioxide powder and sodium polyacrylate is 1100-2200:1; the mass ratio of the titanium dioxide powder and methyldiethanolamine in the methyldiethanolamine aqueous solution is 0.35-0.40:1.
  • the amination treatment is performed under ultrasonic conditions; the frequency of the ultrasonic is 20 to 25 Hz, the power is 900 W; and the ultrasonic time is 15 to 20 minutes.
  • the molar ratio of water and ethanol in solution B is 1:5-8.
  • the mass ratio of the titanium dioxide powder to the B solution is 1:3.5-7; the mass ratio of the titanium dioxide powder to the catalyst is 100-150:1.
  • the catalyst is polyvinylpyrrolidone or carboxymethylcellulose.
  • the invention provides a titanium sol carbon fixing aid prepared by the preparation method described in the above technical solution.
  • the present invention provides the application of the titanium sol carbon-fixing additive described in the above technical solution in cement-based materials to solidify carbon.
  • the invention provides a method for solidifying carbon with cement-based materials, which includes the following steps:
  • the titanium sol carbon-fixing additive is coated on the surface of the cement-based material; the titanium sol carbon-fixing additive is the titanium sol carbon-fixing additive described in the above technical solution.
  • the invention provides a method for preparing a titanium sol carbon-fixing additive, which includes the following steps: mixing titanium tetraisopropoxide and ammonia water, performing a hydrolysis reaction, and drying the resulting hydrolysis reaction solution to obtain titanium dioxide powder;
  • the titanium dioxide powder is mixed with sodium polyacrylate and methyldiethanolamine aqueous solution for amination treatment to obtain solution A; water and ethanol are mixed to obtain solution B; solution A, solution B and a catalyst are mixed for solization. , to obtain titanium sol carbon fixing aid.
  • the amination-treated titanium dioxide has the ability to attract CO 2 , making it easier for CO 2 to be adsorbed on the titanium sol carbon-fixing additive, thereby increasing the contact level between CO 2 and cement-based materials.
  • the prepared titanium sol carbon-fixing additive is coated on the surface of cement-based materials to affect the cement hydration process, improve the crystal form and size of calcium hydroxide, increase the contact area between calcium hydroxide and CO2 , and enhance the carbon-fixing effect. Therefore, the titanium sol carbon-fixing additive prepared by the present invention can absorb CO 2 to a greater extent and at a faster rate while improving the overall performance and quality of cement-based materials.
  • the titanium sol carbon-fixing additive prepared by the invention is alkaline, and coating it on the surface of cement-based materials will not affect the hydration process of cement due to pH value.
  • the invention also provides a method for solidifying carbon on a cement-based material, which includes the following steps: coating titanium sol carbon-fixing additive on the surface of the cement-based material.
  • coating titanium sol carbon-fixing additive on the surface of the cement-based material In the existing technology, nanomaterials, oxides or special clinker components are usually incorporated into concrete to accelerate the early carbonization process of concrete.
  • the added materials are evenly dispersed in the concrete material, which affects the surface of the concrete. The improvement of the carbonization effect is not obvious enough; (2)
  • the carbonization depth of the surface layer is difficult to control, which can easily cause carbonation shrinkage of the surface layer volume, increase in surface stiffness, and decrease in toughness.
  • the present invention uses a liquid phase titanium sol carbon-fixing additive to be coated on the surface of the cement-based material.
  • the present invention adopts a coating method to more accurately control the carbonization of the surface layer of the cement-based material and strengthen the cement-based material.
  • the surface carbonization rate improves the carbon solidification effect of cement-based materials.
  • the present invention enhances the compactness of the surface layer of the cement-based material while fixing carbon, and refines the surface structure through carbonization, so that the cement-based material absorbs and solidifies CO2 without suffering the negative effects caused by the continuous carbonization of the cement-based material. Influence.
  • the invention provides a preparation method of titanium sol carbon fixing aid, which includes the following steps:
  • the A solution, B solution and catalyst are mixed and solized to obtain a titanium sol carbon fixing aid.
  • titanium tetraisopropoxide and ammonia are mixed to perform a hydrolysis reaction, and the resulting hydrolysis reaction solution is dried to obtain titanium dioxide powder.
  • the molar ratio of titanium tetraisopropoxide (Ti ⁇ OCH(CH 3 ) 2 ⁇ 4 ) and ammonia monohydrate (NH 4 OH) in ammonia is preferably 1:3 to 15, more preferably 1 :9 ⁇ 10.
  • the mass concentration of the ammonia water is preferably 25%.
  • the hydrolysis reaction is preferably carried out under stirring conditions, more preferably magnetic stirring.
  • the time of the hydrolysis reaction is preferably 30 to 40 minutes, more preferably 35 minutes; the temperature of the hydrolysis reaction is preferably room temperature.
  • the rotation speed of the magnetic stirring is preferably 400 to 600 r/min, and more preferably 500 to 550 r/min.
  • the temperature of the drying treatment is preferably 80 to 100°C, and more preferably 90°C.
  • the average particle size of the titanium dioxide powder is preferably 50 nm.
  • the molar ratio of titanium tetraisopropoxide and titanium dioxide is preferably 1:1.
  • the titanium dioxide powder prepared by the invention has high purity.
  • the present invention mixes the titanium dioxide powder with sodium polyacrylate and methyldiethanolamine aqueous solution, and performs amination treatment to obtain solution A.
  • the mass ratio of the titanium dioxide powder and sodium polyacrylate is preferably 1100-2200:1, more preferably 1600-2000:1; the mass ratio of the titanium dioxide powder and methyldiethanolamine aqueous solution methyldiethanolamine is The mass ratio is preferably 0.35 to 0.40:1, more preferably 0.38 to 0.39:1.
  • the amination treatment is preferably performed under ultrasonic conditions; the frequency of the ultrasonic is preferably 20 to 25 Hz, and the power is preferably 900 W; and the ultrasonic time is preferably 15 to 20 minutes.
  • water and ethanol are mixed to obtain solution B.
  • the molar ratio of water and ethanol in the B solution is preferably 1:5-8, and more preferably 1:6-7.
  • the water is preferably deionized water; the ethanol is preferably anhydrous ethanol.
  • the mixing is preferably performed under magnetic stirring conditions, and the magnetic stirring time is preferably 5 to 10 minutes.
  • the present invention mixes the A solution, the B solution and the catalyst to form a sol to obtain a titanium sol carbon fixing aid.
  • the mass ratio of the titanium dioxide powder and the B solution is preferably 1:3.5-7, more preferably 1:5.5-6; the mass ratio of the titanium dioxide powder and the catalyst is preferably 100-150:1 , more preferably 100:1.
  • the catalyst is preferably polyvinylpyrrolidone (PVP) or carboxymethylcellulose (CMC).
  • the mixing of the A solution, the B solution and the catalyst preferably includes: after mixing the A solution and the B solution, the catalyst is added.
  • the solization temperature is preferably 30 to 40°C, more preferably 35°C; the holding time is preferably 0.5 to 1 hour.
  • the solization is preferably performed under stirring conditions, and the stirring speed is preferably 1300 to 1500 r/min, and more preferably 1400 r/min.
  • the obtained sol material is cooled to room temperature and then stored in an environment of 0 to 10°C.
  • the invention provides a titanium sol carbon fixing aid prepared by the preparation method described in the above technical solution.
  • the titanium sol carbon fixing aid is in liquid phase, and the viscosity is preferably 6 to 8 mm 2 /s.
  • the pH value of the titanium sol carbon fixing assistant is preferably 12.
  • the present invention provides the application of the titanium sol carbon fixing additive described in the above technical solution in the carbon solidification of cement-based materials, and is preferably applied to the carbon solidification of concrete.
  • the invention provides a method for solidifying carbon with cement-based materials, which includes the following steps:
  • the titanium sol carbon-fixing additive is coated on the surface of the cement-based material; the titanium sol carbon-fixing additive is the titanium sol carbon-fixing additive described in the above technical solution.
  • the surface of the cement-based material is preferably cleaned.
  • the present invention has no special limitation on the specific cleaning method, as long as it can remove impurities on the surface of the cement-based material.
  • the cement-based material is preferably concrete.
  • the cement-based material is cement mortar.
  • the coating method is preferably brush coating.
  • the coating amount of the titanium sol carbon-fixing additive is preferably 400 to 500g/m 2 , and more preferably 450g/m 2 .
  • Amination treatment of titanium dioxide powder mix the obtained titanium dioxide powder with sodium polyacrylate and methyldiethanolamine aqueous solution, where the mass ratio of titanium dioxide powder and sodium polyacrylate is 1100:1; titanium dioxide powder and methyldiethanolamine aqueous solution The mass ratio of methyldiethanolamine in the ethanolamine aqueous solution is 0.35:1; ultrasonic dispersion is carried out for 20 minutes, the ultrasonic power is 900W, the frequency is 20Hz, and solution A is obtained.
  • the surface of the mortar exposed to the air should be cleaned to remove the oily release agent on the surface of the mortar.
  • the titanium sol carbon-fixing additive prepared in Example 1 was evenly applied to the cleaned mortar surface by brushing at a dosage of 400 g/m 2 to obtain a test block.
  • Amination treatment of titanium dioxide powder mix the obtained titanium dioxide powder with sodium polyacrylate and methyldiethanolamine aqueous solution, where the mass ratio of titanium dioxide powder and sodium polyacrylate is 1600:1; titanium dioxide powder and methyldiethanolamine aqueous solution The mass ratio of methyldiethanolamine in the ethanolamine aqueous solution is 0.38:1; ultrasonic dispersion is carried out for 20 minutes, the ultrasonic power is 900W, the frequency is 20Hz, and solution A is obtained.
  • the surface of the mortar exposed to the air should be cleaned to remove the oily release agent on the surface of the mortar.
  • the titanium sol carbon-fixing additive prepared in Example 2 was evenly applied to the cleaned mortar surface by brushing at a dosage of 450 g/m 2 to obtain a test block.
  • Amination treatment of titanium dioxide powder mix the obtained titanium dioxide powder with sodium polyacrylate and methyldiethanolamine aqueous solution, where the mass ratio of titanium dioxide powder and sodium polyacrylate is 2200:1; titanium dioxide powder and methyldiethanolamine aqueous solution The mass ratio of methyldiethanolamine in the ethanolamine aqueous solution is 0.40:1; ultrasonic dispersion is carried out for 20 minutes, the ultrasonic power is 900W, the frequency is 20Hz, and solution A is obtained.
  • the surface of the mortar exposed to the air should be cleaned to remove the oily release agent on the surface of the mortar.
  • the titanium sol carbon-fixing additive prepared in Example 3 was evenly applied to the cleaned mortar surface by brushing at a dosage of 500 g/m 2 to obtain a test block.
  • the cement mortar of application examples 1 to 3, blank group and comparative example 1 was prepared according to Table 2.
  • the initial expansion was controlled at 180 to 200 mm.
  • the water consumption was strictly controlled and the working performance was controlled by water reducing agent.
  • test blocks of application examples 1 to 3 blank group and comparative example 1 into a closed carbonization box (CO 2 concentration is constant at 3 ⁇ 0.5%, humidity is constant at 60 ⁇ 5%), and taken out at the specified time of 3d and 28d, Test the carbonization depth/ CO2 absorption, volume change, flexural strength/compressive strength of the test block. For each test time point in each group, 3 test blocks were taken out for each test, and the test results were averaged from the 3 blocks.
  • CO 2 concentration is constant at 3 ⁇ 0.5%
  • humidity is constant at 60 ⁇ 5%
  • the other five surfaces Carry out wax (paraffin) sealing treatment to ensure one-dimensional penetration of CO2 and enhance the accuracy of test results.
  • test blocks of each group into the carbonization box after processing, and test the length of the test blocks before placement, 1d, 2d, and 3d respectively.
  • the test results are as shown in the table below:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明提供了一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法,涉及固碳材料技术领域。本发明提供的钛溶胶固碳助剂的制备方法,包括以下步骤:将四异丙醇钛和氨水混合,进行水解反应,所得水解反应溶液进行烘干处理,得到二氧化钛粉体;将所述二氧化钛粉体和聚丙烯酸钠以及甲基二乙醇胺水溶液混合,进行胺化处理,得到A溶液;将水和乙醇混合,得到B溶液;将所述A溶液、B溶液和催化剂混合,进行溶胶化,得到钛溶胶固碳助剂。本发明制备的钛溶胶固碳助剂能够在提升水泥基材料整体性能、质量的同时,更大程度、更快速率的吸收CO2。

Description

一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法
本申请要求于2022年08月18日提交中国专利局、申请号为CN202210989726.7、发明名称为“一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及固碳材料技术领域,具体涉及一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法。
背景技术
“双碳”战略的发布实施,对建筑行业带来了更高的绿色化发展要求。混凝土作为目前建筑行业用量最大的原材料之一,受到了更多关注,这主要由于混凝土的主要原材料—水泥,是建筑业最主要的碳排放源之一。所以混凝土材料的减碳成为了目前研究人员最为关注的问题。
除了混凝土原材料设计方面的碳减排,利用混凝土能够碳化的条件进行CO 2的固化成为了水泥基材料达成“双碳”目标的重要通路。但是持续碳化反应对混凝土材料会带来严重问题,如混凝土发生碳化收缩开裂、碳化层降低混凝土碱性导致钢筋发生锈蚀、混凝土表层碳化后韧性降低等。如何有效利用混凝土碳化对CO 2固化的优势,同时避免持续碳化对混凝土材料带来的韧性降低问题,成为了目前混凝土材料领域重点研发方向。
发明内容
本发明的目的在于提供一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法,本发明制备的钛溶胶固碳助剂能够在提升水泥基材料整体性能、质量的同时,更大程度、更快速率地吸收CO 2
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种钛溶胶固碳助剂的制备方法,包括以下步骤:
将四异丙醇钛和氨水混合,进行水解反应,所得水解反应溶液进行烘干处理,得到二氧化钛粉体;
将所述二氧化钛粉体和聚丙烯酸钠以及甲基二乙醇胺水溶液混合,进行胺化处理,得到A溶液;
将水和乙醇混合,得到B溶液;
将所述A溶液、B溶液和催化剂混合,进行溶胶化,得到钛溶胶固碳助剂。
优选地,所述四异丙醇钛和氨水中一水合氨的摩尔比为1:3~15。
优选地,所述二氧化钛粉体和聚丙烯酸钠的质量比为1100~2200:1;所述二氧化钛粉体和甲基二乙醇胺水溶液中甲基二乙醇胺的质量比为0.35~0.40:1。
优选地,所述胺化处理在超声条件下进行;所述超声的频率为20~25Hz,功率为900W;所述超声的时间为15~20min。
优选地,所述B溶液中水和乙醇的摩尔比为1:5~8。
优选地,所述二氧化钛粉体和B溶液的质量比为1:3.5~7;所述二氧化钛粉体和催化剂的质量比为100~150:1。
优选地,所述催化剂为聚乙烯吡咯烷酮或羧甲基纤维素。
本发明提供了上述技术方案所述制备方法制备得到的钛溶胶固碳助剂。
本发明提供了上述技术方案所述钛溶胶固碳助剂在水泥基材料固化碳中的应用。
本发明提供了一种水泥基材料固化碳的方法,包括以下步骤:
将钛溶胶固碳助剂涂覆在水泥基材料表面;所述钛溶胶固碳助剂为上述技术方案所述的钛溶胶固碳助剂。
本发明提供了一种钛溶胶固碳助剂的制备方法,包括以下步骤:将四异丙醇钛和氨水混合,进行水解反应,所得水解反应溶液进行烘干处理,得到二氧化钛粉体;将所述二氧化钛粉体和聚丙烯酸钠以及甲基二乙醇胺水溶液混合,进行胺化处理,得到A溶液;将水和乙醇混合,得到B溶 液;将所述A溶液、B溶液和催化剂混合,进行溶胶化,得到钛溶胶固碳助剂。在本发明中,胺化处理后的二氧化钛具有吸引CO 2的能力,能够使CO 2更容易吸附在钛溶胶固碳助剂上,增加了CO 2与水泥基材料的接触水平。本发明将制备的钛溶胶固碳助剂涂覆于水泥基材料表面,影响水泥水化进程,改善氢氧化钙晶型和尺寸,提高氢氧化钙与CO 2接触面积,提升固碳效果。因此,本发明制备的钛溶胶固碳助剂能够在提升水泥基材料整体性能、质量的同时,更大程度、更快速率的吸收CO 2。本发明制备的钛溶胶固碳助剂为碱性,涂覆于水泥基材料表面不会由于pH值而影响水泥的水化进程。
本发明还提供了一种水泥基材料固化碳的方法,包括以下步骤:将钛溶胶固碳助剂涂覆在水泥基材料表面。现有技术通常将纳米材料、氧化物或特殊熟料组分掺入混凝土内部来加速混凝土早期碳化进程,但是会存在以下问题:(1)所加入的材料均匀分散于混凝土材料中,对其表面碳化效果提升不够明显;(2)表层碳化深度难以控制,容易造成表层体积发生碳化收缩,表面刚度增大、韧性降低的问题。本发明采用液相的钛溶胶固碳助剂涂覆在水泥基材料表面,较传统内掺的方式,本发明采用涂覆的方式能够更为精准的控制水泥基材料表层碳化,增强水泥基材料表层碳化速率,提高水泥基材料的碳固化效果。本发明在固碳的同时增强了水泥基材料表层的密实性,通过碳化细化表层结构,使水泥基材料在吸收、固化CO 2的同时,不会受到由于水泥基材料持续碳化带来的负面影响。
具体实施方式
本发明提供了一种钛溶胶固碳助剂的制备方法,包括以下步骤:
将四异丙醇钛和氨水混合,进行水解反应,所得水解反应溶液进行烘干处理,得到二氧化钛粉体;
将所述二氧化钛粉体和聚丙烯酸钠以及甲基二乙醇胺水溶液混合,进行胺化处理,得到A溶液;
将水和乙醇混合,得到B溶液;
将所述A溶液、B溶液和催化剂混合,进行溶胶化,得到钛溶胶固 碳助剂。
本发明将四异丙醇钛和氨水混合,进行水解反应,所得水解反应溶液进行烘干处理,得到二氧化钛粉体。在本发明中,所述四异丙醇钛(Ti{OCH(CH 3) 2} 4)和氨水中一水合氨(NH 4OH)的摩尔比优选为1:3~15,更优选为1:9~10。在本发明中,所述氨水的质量浓度优选为25%。
在本发明中,所述水解反应优选在搅拌条件下进行,更优选为磁力搅拌。在本发明中,所述水解反应的时间优选为30~40min,更优选为35min;所述水解反应的温度优选为室温。在本发明中,所述磁力搅拌的转速优选为400~600r/min,更优选为500~550r/min。
在本发明中,所述烘干处理的温度优选为80~100℃,更优选为90℃。在本发明中,所述二氧化钛粉体的平均粒径优选为50nm。在本发明中,所述四异丙醇钛和二氧化钛的摩尔比优选为1:1。本发明制备的二氧化钛粉体纯度高。
得到二氧化钛粉体后,本发明将所述二氧化钛粉体和聚丙烯酸钠以及甲基二乙醇胺水溶液混合,进行胺化处理,得到A溶液。在本发明中,所述二氧化钛粉体和聚丙烯酸钠的质量比优选为1100~2200:1,更优选为1600~2000:1;所述二氧化钛粉体和甲基二乙醇胺水溶液甲基二乙醇胺的质量比优选为0.35~0.40:1,更优选为0.38~0.39:1。
在本发明中,所述胺化处理优选在超声条件下进行;所述超声的频率优选为20~25Hz,功率优选为900W;所述超声的时间优选为15~20min。
本发明将水和乙醇混合,得到B溶液。在本发明中,所述B溶液中水和乙醇的摩尔比优选为1:5~8,更优选为1:6~7。在本发明中,所述水优选为去离子水;所述乙醇优选为无水乙醇。在本发明中,所述混合优选在磁力搅拌条件下进行,所述磁力搅拌的时间优选为5~10min。
得到A溶液和B溶液后,本发明将所述A溶液、B溶液和催化剂混合,进行溶胶化,得到钛溶胶固碳助剂。在本发明中,所述二氧化钛粉体和B溶液的质量比优选为1:3.5~7,更优选为1:5.5~6;所述二氧化钛粉体和催化剂的质量比优选为100~150:1,更优选为100:1。在本发明中,所述催化剂优选为聚乙烯吡咯烷酮(PVP)或羧甲基纤维素(CMC)。
在本发明中,所述A溶液、B溶液和催化剂混合优选包括:将A溶 液和B溶液混合后,加入催化剂。
在本发明中,所述溶胶化的温度优选为30~40℃,更优选为35℃;保温时间优选为0.5~1h。在本发明中,所述溶胶化优选在搅拌条件下进行,所述搅拌的转速优选为1300~1500r/min,更优选为1400r/min。
本发明优选在所述溶胶化后,将所得溶胶物质冷却至室温后,在0~10℃环境保存。
本发明提供了上述技术方案所述制备方法制备得到的钛溶胶固碳助剂。在本发明中,所述钛溶胶固碳助剂为液相,粘度优选为6~8mm 2/s。在本发明中,所述钛溶胶固碳助剂的pH值优选为12。
本发明提供了上述技术方案所述钛溶胶固碳助剂在水泥基材料固化碳中的应用,优选应用于混凝土的碳固化。
本发明提供了一种水泥基材料固化碳的方法,包括以下步骤:
将钛溶胶固碳助剂涂覆在水泥基材料表面;所述钛溶胶固碳助剂为上述技术方案所述的钛溶胶固碳助剂。本发明在涂覆之前,优选对水泥基材料表面进行清理。本发明对所述清理的具体方法没有特殊限定,能够清除水泥基材料表面的杂质即可。在本发明中,所述水泥基材料优选为混凝土。在本发明的具体实施例中,所述水泥基材料为水泥胶砂。
在本发明中,所述涂覆的方式优选为刷涂。在本发明中,所述钛溶胶固碳助剂的涂覆量优选为400~500g/m 2,更优选为450g/m 2
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)称取四异丙醇钛、质量浓度为25%的氨水,摩尔比为Ti{OCH(CH 3) 2} 4:NH 4OH=1:15,采用磁力搅拌至混合均匀,磁力搅拌时间为40min,磁子转速为600r/min;对所得水解反应溶液进行烘干处理,烘干温度为90℃,烘干至形成粉体,即二氧化钛粉体;
对二氧化钛粉体进行胺化处理:将得到的二氧化钛粉体和聚丙烯酸钠以及甲基二乙醇胺水溶液混合,其中二氧化钛粉体和聚丙烯酸钠的质量比 为1100:1;二氧化钛粉体和甲基二乙醇胺水溶液中甲基二乙醇胺的质量比为0.35:1;超声分散20min,超声的功率为900W,频率为20Hz,得到A溶液。
(2)称取去离子水、无水乙醇,其摩尔比为H 2O:EtOH=1:5,磁力搅拌均匀,磁力搅拌时间为5min,得到B溶液。
(3)将500mLA溶液和1000mLB溶液倒入三口烧瓶中,将三口烧瓶安置于即热式恒温磁力加热搅拌器中,加入0.01g催化剂聚乙烯吡咯烷酮(PVP);设定温度为40℃,转速1500r/min,恒温搅拌1h;关闭仪器,待溶胶物质冷却至室温后,得到钛溶胶固碳助剂。将所得钛溶胶固碳助剂在0~10℃环境保存。
应用例1
在水泥胶砂入模3d完成拆模后,对暴露于空气中的胶砂表面进行清理,清除胶砂表面的油性脱模剂。
将实施例1制备的钛溶胶固碳助剂使用刷涂的方式,以400g/m 2的用量均匀涂覆于已完成清理的胶砂表面,得到测试用试块。
实施例2
(1)称取四异丙醇钛、质量浓度为25%的氨水,摩尔比为Ti{OCH(CH 3) 2} 4:NH 4OH=1:17.5,采用磁力搅拌至混合均匀,磁力搅拌时间为35min,磁子转速为550r/min;对所得水解反应溶液进行烘干处理,烘干温度为90℃,烘干至形成粉体,即二氧化钛粉体;
对二氧化钛粉体进行胺化处理:将得到的二氧化钛粉体和聚丙烯酸钠以及甲基二乙醇胺水溶液混合,其中二氧化钛粉体和聚丙烯酸钠的质量比为1600:1;二氧化钛粉体和甲基二乙醇胺水溶液中甲基二乙醇胺的质量比为0.38:1;超声分散20min,超声的功率为900W,频率为20Hz,得到A溶液。
(2)称取去离子水、无水乙醇,其摩尔比为H 2O:EtOH=1:6,磁力搅拌均匀,磁力搅拌时间为8min,得到B溶液。
(3)将500mLA溶液和500mL B溶液倒入三口烧瓶中,将三口烧瓶安置于即热式恒温磁力加热搅拌器中,加入0.01g催化剂聚乙烯吡咯烷酮(PVP);设定温度为35℃,转速1400r/min,恒温搅拌1h;关闭仪器, 待溶胶物质冷却至室温后,得到钛溶胶固碳助剂。将所得钛溶胶固碳助剂在0~10℃环境保存。
应用例2
在水泥胶砂入模3d完成拆模后,对暴露于空气中的胶砂表面进行清理,清除胶砂表面的油性脱模剂。
将实施例2制备的钛溶胶固碳助剂使用刷涂的方式,以450g/m 2的用量均匀涂覆于已完成清理的胶砂表面,得到测试用试块。
实施例3
(1)称取四异丙醇钛、质量浓度为25%的氨水,摩尔比为Ti{OCH(CH 3) 2} 4:NH 4OH=1:20,采用磁力搅拌至混合均匀,磁力搅拌时间为30min,磁子转速为500r/min;对所得水解反应溶液进行烘干处理,烘干温度为90℃,烘干至形成粉体,即二氧化钛粉体;
对二氧化钛粉体进行胺化处理:将得到的二氧化钛粉体和聚丙烯酸钠以及甲基二乙醇胺水溶液混合,其中二氧化钛粉体和聚丙烯酸钠的质量比为2200:1;二氧化钛粉体和甲基二乙醇胺水溶液中甲基二乙醇胺的质量比为0.40:1;超声分散20min,超声的功率为900W,频率为20Hz,得到A溶液。
(2)称取去离子水、无水乙醇,其摩尔比为H 2O:EtOH=1:7,磁力搅拌均匀,磁力搅拌时间为10min,得到B溶液。
(3)将500mLA溶液和500mL B溶液倒入三口烧瓶中,将三口烧瓶安置于即热式恒温磁力加热搅拌器中,加入0.01g催化剂羧甲基纤维素(CMC);设定温度为30℃,转速1300r/min,恒温搅拌1h;关闭仪器,待溶胶物质冷却至室温后,得到钛溶胶固碳助剂。将所得钛溶胶固碳助剂在0~10℃环境保存。
应用例3
在水泥胶砂入模3d完成拆模后,对暴露于空气中的胶砂表面进行清理,清除胶砂表面的油性脱模剂。
将实施例3制备的钛溶胶固碳助剂使用刷涂的方式,以500g/m 2的用量均匀涂覆于已完成清理的胶砂表面,得到测试用试块。
空白组
在水泥胶砂入模3d完成拆模后,对暴露于空气中的胶砂表面进行清理,清除胶砂表面的油性脱模剂,得到基准组试块。
对比例1
在水泥胶砂制备过程中加入3%的纳米二氧化钛(按水泥用量的质量百分比),在水泥胶砂入模3d完成拆模后,对暴露于空气中的胶砂表面进行清理,清除胶砂表面的油性脱模剂,得到对比例1试块。
测试例
测试应用例1~3、空白组和对比例1中水泥基材料3d CO 2吸收量及碳化深度和28d CO 2吸收量及碳化深度;水泥基材料3d体积变形情况;水泥基材料28d强度变化(抗压强度/抗折强度)。
1、应用例1~3、空白组和对比例1水泥胶砂的制备
表1试验用水泥胶砂原材料基本信息
Figure PCTCN2022132752-appb-000001
根据表2制备应用例1~3、空白组和对比例1的水泥胶砂,初始扩展度控制在180~200mm,严格控制用水量,通过减水剂控制工作性能。
表3每组别成型试块尺寸(mm)及数量(块)
Figure PCTCN2022132752-appb-000002
将应用例1~3、空白组和对比例1的试块放入密闭碳化箱内(CO 2浓 度恒定为3±0.5%、湿度恒定为60±5%),至规定时间3d、28d取出,测试试块的碳化深度/CO 2吸收量、体积变化情况、抗折强度/抗压强度。每组别每个测试时间点每个试验取出试块3块,试验结果取3块的平均值。
2、CO 2吸收量及碳化深度结果:
进行CO 2吸收量及碳化深度试验的试块在放入碳化箱内之前,除涂覆处理面之外(空白组和对比例1试块保留一个平整的非成型面),对其他5个面进行蜡(石蜡)封处理,保证CO 2一维渗入,增强测试结果准确性。
表4各组试块碳化深度(mm)
Figure PCTCN2022132752-appb-000003
表5各组试块固碳(CaCO 3)含量(g)
Figure PCTCN2022132752-appb-000004
从表4中可以发现,没有做任何处理的空白组试块在碳化箱内发生了持续碳化,碳化层在不断增加。内掺了纳米二氧化钛的对比例1,纳米材料的引入增强了水泥胶砂表面密实度,早期碳化深度有所降低,但是随着碳化时间的增加,碳化深度仍呈现一定幅度的增加。而对于外涂的应用例1~3,碳化深度在早期进一步降低,且有效抑制了CO 2的持续扩散,导致28d时碳化深度几乎未发生变化,3d至28d碳化深度增长0.2~0.7mm。
从表5中可以发现,碳化深度的增加直接导致了固碳含量的增加,但是对于加入纳米二氧化钛的对比例1以及外涂钛溶胶固碳助剂的应用例1~3,即使早期碳化深度比空白组小,但是吸收了更多的二氧化碳,且后期应用例1~3的固碳吸收率(考虑碳化深度)要比对比例1更高,主要是由于纳米二氧化钛对水泥水化进程的影响,推进水化进程生产更多的可碳化物质—氢氧化钙。
3、体积变形结果:
将各组别试块处理完放入碳化箱内,分别测试放入前、放入1d、放入2d、放入3d的试块长度,试验结果如下表所示:
表6各组试块放入碳化箱后1~3d尺寸变化(mm)
Figure PCTCN2022132752-appb-000005
通过表6可以发现,对于空白组和对比例1,碳化反应的持续发生,导致试块发生体积收缩,收缩幅度高达1.6mm,若将试块进行同比例放大,对实际工程将造成非常严重的影响。而对于外涂覆钛溶胶固碳助剂的应用例1~3,在固碳过程中,试块的体积几乎未发生变化。
4、强度变化:
参照GB/T 17671-1999《水泥胶砂强度检验方法(ISO法)》,测试各组别试块3d、28d的抗折、抗压强度值,并通过抗折强度与抗压强度的比值来表征试块的韧性,即抗折强度与抗压强度的比值越大,试块的韧性越好,试块越不容易发生脆性断裂,具体的试验结果如表7所示:
表7各组试块放入碳化箱后3d、28d强度变化
Figure PCTCN2022132752-appb-000006
Figure PCTCN2022132752-appb-000007
如表7所示,对于加入纳米二氧化钛的对比例1以及外涂钛溶胶固碳助剂的应用例1~3,水泥胶砂的3d、28d抗压、抗折强度值较空白组均有所提升,且外涂钛溶胶固碳助剂的应用例1~3韧性也有所提高,解决了碳化对水泥基材料韧性降低的问题。另外,空白组试块在碳化环境下韧性较在标准养护条件下有所降低。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (17)

  1. 一种钛溶胶固碳助剂的制备方法,其特征在于,包括以下步骤:
    将四异丙醇钛和氨水混合,进行水解反应,所得水解反应溶液进行烘干处理,得到二氧化钛粉体;
    将所述二氧化钛粉体和聚丙烯酸钠以及甲基二乙醇胺水溶液混合,进行胺化处理,得到A溶液;
    将水和乙醇混合,得到B溶液;
    将所述A溶液、B溶液和催化剂混合,进行溶胶化,得到钛溶胶固碳助剂。
  2. 根据权利要求1所述的制备方法,其特征在于,所述四异丙醇钛和氨水中一水合氨的摩尔比为1:3~15。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述水解反应的时间为30~40min;所述水解反应的温度为室温。
  4. 根据权利要求1所述的制备方法,其特征在于,所述二氧化钛粉体和聚丙烯酸钠的质量比为1100~2200:1。
  5. 根据权利要求1所述的制备方法,其特征在于,所述二氧化钛粉体和甲基二乙醇胺水溶液中甲基二乙醇胺的质量比为0.35~0.40:1。
  6. 根据权利要求1、4或5所述的制备方法,其特征在于,所述胺化处理在超声条件下进行;所述超声的频率为20~25Hz,功率为900W;所述超声的时间为15~20min。
  7. 根据权利要求1所述的制备方法,其特征在于,所述B溶液中水和乙醇的摩尔比为1:5~8。
  8. 根据权利要求1所述的制备方法,其特征在于,所述二氧化钛粉体和B溶液的质量比为1:3.5~7。
  9. 根据权利要求1所述的制备方法,其特征在于,所述二氧化钛粉体和催化剂的质量比为100~150:1。
  10. 根据权利要求1或9所述的制备方法,其特征在于,所述催化剂 为聚乙烯吡咯烷酮或羧甲基纤维素。
  11. 根据权利要求1所述的制备方法,其特征在于,所述溶胶化的温度为30~40℃;保温时间为0.5~1h。
  12. 根据权利要求1或11所述的制备方法,其特征在于,所述溶胶化在搅拌条件下进行,所述搅拌的转速为1300~1500r/min。
  13. 权利要求1~12任一项所述制备方法制备得到的钛溶胶固碳助剂。
  14. 根据权利要求13所述的钛溶胶固碳助剂,其特征在于,所述钛溶胶固碳助剂的pH值为12。
  15. 权利要求13或14所述钛溶胶固碳助剂在水泥基材料固化碳中的应用。
  16. 一种水泥基材料固化碳的方法,其特征在于,包括以下步骤:
    将钛溶胶固碳助剂涂覆在水泥基材料表面;所述钛溶胶固碳助剂为权利要求13或14所述的钛溶胶固碳助剂。
  17. 根据权利要求16所述的方法,其特征在于,所述钛溶胶固碳助剂的涂覆量为400~500g/m 2
PCT/CN2022/132752 2022-08-18 2022-11-18 一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法 WO2024036798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210989726.7A CN115259737B (zh) 2022-08-18 2022-08-18 一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法
CN202210989726.7 2022-08-18

Publications (1)

Publication Number Publication Date
WO2024036798A1 true WO2024036798A1 (zh) 2024-02-22

Family

ID=83753141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132752 WO2024036798A1 (zh) 2022-08-18 2022-11-18 一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法

Country Status (2)

Country Link
CN (1) CN115259737B (zh)
WO (1) WO2024036798A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259737B (zh) * 2022-08-18 2023-04-11 青岛理工大学 一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994247A (en) * 1989-09-08 1991-02-19 Phillips Petroleum Company Preparation of catalyst for oxidation of carbon monoxide
JPH10231157A (ja) * 1997-02-18 1998-09-02 Michio Kashima コンクリートの劣化抑制用のセメントモルタル
WO2012162944A1 (zh) * 2011-06-02 2012-12-06 大连理工大学 捕集混合气体中二氧化碳的复合脱碳溶液
CN106186905A (zh) * 2016-06-30 2016-12-07 大连理工大学 一种掺包硅纳米二氧化钛的水泥基复合材料及其制备方法
CN114105592A (zh) * 2021-12-17 2022-03-01 北方道路科技(辽宁)有限公司 一种超早强混凝土及其制备方法
JP2022044571A (ja) * 2020-09-07 2022-03-17 太平洋セメント株式会社 セメント製造方法、セメント製造システム、セメント硬化物の製造方法
CN114873943A (zh) * 2022-05-20 2022-08-09 青岛理工大学 一种纳米二氧化钛/生物炭复合材料及其制备方法和应用
CN115259737A (zh) * 2022-08-18 2022-11-01 青岛理工大学 一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377674B2 (en) * 2015-02-02 2019-08-13 Carolyn Dry Concrete coatings and compositions that absorb carbon dioxide
CN113402243A (zh) * 2021-06-23 2021-09-17 武汉理工大学 一种利用碳化涂层提高混凝土制品耐久性的方法
CN113563107A (zh) * 2021-07-22 2021-10-29 中国建筑材料科学研究总院有限公司 水泥基材料及其制备方法
CN113956072B (zh) * 2021-11-22 2022-11-22 山东汉博昱洲新材料有限公司 一种水泥碳化体及其制备方法
CN114873941A (zh) * 2022-04-11 2022-08-09 武汉理工大学 一种碳化钢渣水泥强度提升剂及其应用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994247A (en) * 1989-09-08 1991-02-19 Phillips Petroleum Company Preparation of catalyst for oxidation of carbon monoxide
JPH10231157A (ja) * 1997-02-18 1998-09-02 Michio Kashima コンクリートの劣化抑制用のセメントモルタル
WO2012162944A1 (zh) * 2011-06-02 2012-12-06 大连理工大学 捕集混合气体中二氧化碳的复合脱碳溶液
CN106186905A (zh) * 2016-06-30 2016-12-07 大连理工大学 一种掺包硅纳米二氧化钛的水泥基复合材料及其制备方法
JP2022044571A (ja) * 2020-09-07 2022-03-17 太平洋セメント株式会社 セメント製造方法、セメント製造システム、セメント硬化物の製造方法
CN114105592A (zh) * 2021-12-17 2022-03-01 北方道路科技(辽宁)有限公司 一种超早强混凝土及其制备方法
CN114873943A (zh) * 2022-05-20 2022-08-09 青岛理工大学 一种纳米二氧化钛/生物炭复合材料及其制备方法和应用
CN115259737A (zh) * 2022-08-18 2022-11-01 青岛理工大学 一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法

Also Published As

Publication number Publication date
CN115259737B (zh) 2023-04-11
CN115259737A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Qian et al. Carbon dioxide as an admixture for better performance of OPC-based concrete
Wang et al. Accelerators for shotcrete–Chemical composition and their effects on hydration, microstructure and properties of cement-based materials
WO2022041374A1 (zh) 一种低品质骨料的改性材料及处理方法
Siddique et al. Acid and sulfate resistance of seawater based alkali activated fly ash: A sustainable and durable approach
WO2024036798A1 (zh) 一种钛溶胶固碳助剂及其制备方法和应用、水泥基材料固化碳的方法
Li et al. Preparation of building materials from Bayer red mud with magnesium cement
Liu et al. Understanding the early reaction and structural evolution of alkali activated slag optimized using KASH nanoparticles with varying K2O/SiO2 ratios
CN112358224A (zh) 一种混凝土减胶剂及其制备方法和应用
Yang et al. Performances and microstructure of one-part fly ash geopolymer activated by calcium carbide slag and sodium metasilicate powder
Ergenç et al. Assessment on the performances of air lime-ceramic mortars with nano-Ca (OH) 2 and nano-SiO2 additions
Wei et al. Study of untreated phosphogypsum as a fine aggregate for magnesium oxysulfate cement
CN110963759B (zh) 高含泥骨料的抗渗混凝土
Jiang et al. Synergistic effect of glycine and triethanolamine on mechanical properties and permeability of cement mortar
CN110446685A (zh) 基于增强的活性氧化镁水泥的混凝土混合物
Idrees et al. Effectiveness of metakaolin and hybrid polymers incorporated mortar for the compressive strength and acid resistance of industrial and wastewater infrastructure
CN114685090B (zh) 一种缓控释早强复合材料、制备方法和其在水泥基材料中的应用
Shen et al. Preparation of reactive urchin-like recycled concrete aggregate by wet carbonation: Towards improving the bonding capability of the interfacial transition zone in recycled aggregate concrete
CN111892316A (zh) 一种利用纳米二氧化硅改性的再生骨料及其制备方法和应用
Zhang et al. Mitigation of efflorescence for multi-componential geopolymer: Influence of steel slag, flue gas desulfurization gypsum and pre-curing periods
Li et al. Effect of CO32-and Ca2+ on self-healing of cementitious materials due to “build-in” carbonation
Zhu et al. Efflorescence of microwave-heated alkali-activated cement synthesized with ultrafine coal combustion ashes
CN115636613A (zh) 一种提升混凝土抗碳化性能的外加剂及其应用
Xie et al. Effect of carbonation on microstructure evolution of alkali-activated slag pastes
Qian et al. Nanosilica in-situ produced with sodium silicate as a performance enhancing additive for concretes
CN117466603B (zh) 一种注浆加固专用的水泥基灌浆料及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955567

Country of ref document: EP

Kind code of ref document: A1