WO2024036433A1 - 触控显示面板及触控显示装置 - Google Patents

触控显示面板及触控显示装置 Download PDF

Info

Publication number
WO2024036433A1
WO2024036433A1 PCT/CN2022/112457 CN2022112457W WO2024036433A1 WO 2024036433 A1 WO2024036433 A1 WO 2024036433A1 CN 2022112457 W CN2022112457 W CN 2022112457W WO 2024036433 A1 WO2024036433 A1 WO 2024036433A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
area
lines
electrodes
display panel
Prior art date
Application number
PCT/CN2022/112457
Other languages
English (en)
French (fr)
Inventor
贾倩
刘丽艳
王英涛
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002662.5A priority Critical patent/CN117897684A/zh
Priority to PCT/CN2022/112457 priority patent/WO2024036433A1/zh
Publication of WO2024036433A1 publication Critical patent/WO2024036433A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present disclosure relates to the field of touch technology, and in particular to touch display panels and touch display devices.
  • touch technology can be divided into resistive (Resistive), capacitive (Capacitive), sonic (Surface Acoustic Wave) and optical (Optics).
  • resistive Resistive
  • capacitive Capacitive
  • sonic Surface Acoustic Wave
  • Optics optical
  • a touch display panel includes: a display panel and a touch panel disposed on one side of the display panel; the touch panel includes a touch structural layer; the display panel Comprising an anode layer, the touch structure layer includes a plurality of touch lines, and the plurality of touch lines define a plurality of touch grids; wherein the touch display panel includes a first area and a second area, The plurality of touch lines include a plurality of first touch lines located in the first area and a plurality of second touch lines located in the second area; at least one of the plurality of first touch lines The line width of the first touch line is smaller than the line width of at least one of the second touch lines; the reflectivity of the first area and the second area is equal, and the reflectivity is, The incident light from one side of the touch structure layer passes through the plurality of touch lines and irradiates onto the anode layer, and then the light reflected from the anode layer to one side of the touch structure layer interacts with the The proportion of
  • the touch display panel further includes a third area, and the plurality of touch lines include a plurality of third touch lines located in the third area.
  • the plurality of third touch lines A line width of at least one third touch line among the second touch lines is greater than a line width of at least one second touch line among the second touch lines.
  • the break rate of the first area is smaller than the break rate of the second area, and the break rate of the second area
  • the fracture rate is smaller than the fracture rate of the third area; the fracture rate is the ratio of the touch lines with fractures among the multiple touch lines in a region to all the touch lines in the region.
  • the density of interruptions in the first area is less than the density of interruptions in the second area, and the density of interruptions in the second area is less than the density of interruptions in the third area; and/ Or, the size of the break in the first area is smaller than the size of the break in the second area, and the size of the break in the second area is smaller than the size of the break in the third area.
  • the first region has a fracture rate of 20%
  • the second region has a fracture rate of 23% to 27%
  • the third region has a fracture rate of 28% to 32%.
  • the opening rate of the first area is smaller than the opening rate of the second area, and the second area
  • the opening rate of the area is smaller than the opening rate of the third area; the opening rate is the ratio of the touch lines with openings among the multiple touch lines in an area to all the touch lines in the area.
  • the density of openings in the first region is less than the density of openings in the second region, and the density of openings in the second region is less than the density of openings in the third region; And/or, the size of the openings in the first region is smaller than the size of the openings in the second region, and the size of the openings in the second region is smaller than the size of the openings in the third region.
  • the first region has an opening rate of 20%
  • the second region has an opening rate of 23% to 27%
  • the third region has an opening rate of 28% to 32%.
  • the shape of the orthographic projection of the opening on the display panel may be circular, rectangular, or elliptical.
  • At least part of the plurality of touch lines are metal touch lines, and another part of the touch lines are transparent conductive touch lines; in the first area, the transparent conductive touch lines occupy The ratio of the plurality of first touch lines is smaller than the ratio of the transparent conductive touch lines to the plurality of second touch lines in the second area; the ratio of the transparent conductive touch lines in the second area is The ratio of the plurality of second touch lines is smaller than the ratio of the transparent conductive touch lines in the third area to the plurality of third touch lines.
  • the first area is a touch area
  • the second area and the third area are non-touch areas; among the plurality of touch lines, a plurality of touch lines located in the first area A touch line is disconnected from a plurality of touch lines located in the second area and the third area.
  • the fracture rate of the first region is 20%
  • the fracture rate of the second region in the non-touch region is 25% to 40%
  • the fracture rate of the third region in the non-touch region is 20%.
  • the rate is 30% to 50%.
  • the touch structure layer includes a first touch structure layer and a second touch structure layer; the touch structure layer includes a plurality of touch sub-electrodes; the first touch structure layer includes a plurality of first touch sub-electrodes and a plurality of first connection electrodes arranged along a first direction, the plurality of first touch sub-electrodes and the plurality of first connection electrodes being alternately distributed one by one and electrically connected in sequence, A first touch electrode extending along the first direction is formed; the first touch structure layer also includes a plurality of second touch sub-electrodes arranged sequentially and equally spaced along the second direction, the second touch sub-electrodes The control structure layer includes a plurality of second connection electrodes arranged along the second direction, and the plurality of second touch sub-electrodes and the plurality of second connection electrodes are alternately distributed one by one and electrically connected in sequence to form a structure along the second direction.
  • a second touch electrode extending in a second direction; wherein the first direction intersects the second direction; the plurality of first touch sub-electrodes, the plurality of first connection electrodes, the plurality of The second touch sub-electrode and the plurality of second connection electrodes are composed of the plurality of touch lines.
  • a part of the plurality of touch lines located in a boundary area between adjacent first touch sub-electrodes and the second touch sub-electrode is provided with a separation fracture, and the plurality of touch lines are
  • the fractures provided on at least part of the touch lines in the line include the dividing fracture; the dividing fracture divides the touch line into two touch sub-lines, and the two touch sub-line segments One of them belongs to the first touch sub-electrode, and the other belongs to the second touch sub-electrode, so that the adjacent first touch sub-electrode and the second touch sub-electrode are insulated from each other.
  • the plurality of first touch lines, the plurality of second touch lines and the plurality of third touch lines located in the boundary area between the adjacent first touch sub-electrodes and the second touch sub-electrodes
  • the number of fractures on the three touch lines is greater than the number of fractures on the plurality of first touch lines, the plurality of second touch lines and the plurality of third touch lines in the non-demarcation area; wherein the non-demarcation area is the Other areas other than the boundary area in the area where the multiple touch lines are located.
  • the orthographic projection of each touch grid on the display panel is a hexagon, located on all adjacent
  • the number of fractures in each touch grid defined by the plurality of touch lines in the boundary area between the first touch sub-electrode and the second touch sub-electrode is 1, 2 or 3, and the number of fractures located in the non-boundary area
  • the number of breaks in each touch grid defined by the plurality of touch lines is 0, 1 or 2.
  • the orthographic projection of each touch grid on the display panel is a quadrilateral, located on the adjacent third
  • the number of breaks in each touch grid defined by the plurality of touch lines in the boundary area between a touch sub-electrode and the second touch sub-electrode is 1 or 2
  • the plurality of breaks located in the non-boundary area is 0 or 1.
  • the touch structure layer includes a plurality of touch sub-electrodes, at least part of the plurality of touch sub-electrodes are metal touch sub-electrodes, and another part of the touch sub-electrodes are metal touch sub-electrodes.
  • Transparent conductive touch sub-electrodes the ratio of transparent conductive touch sub-electrodes to the plurality of touch sub-electrodes in the first region is smaller than the proportion of transparent conductive touch sub-electrodes to the plurality of touch sub-electrodes in the second region.
  • the ratio of the touch sub-electrodes; the ratio of the transparent conductive touch sub-electrodes to the plurality of touch sub-electrodes in the second area is smaller than the ratio of the transparent conductive touch sub-electrodes to the plurality of touch sub-electrodes in the third area.
  • the plurality of touch sub-electrodes in the first area are all metal touch sub-electrodes.
  • the touch display device includes: the touch display panel as described in any embodiment of the above aspect.
  • Figure 1A is a structural diagram of a touch display device according to some embodiments.
  • Figure 1B is a plan view of a touch display device according to some embodiments.
  • Figure 1C is an enlarged view of area A in Figure 1B;
  • Figure 2A is a schematic diagram of light reflection in the display area in some embodiments of the prior art
  • Figure 2B is a schematic diagram of light reflection in the non-display area in some embodiments of the prior art
  • Figure 3A is a structural diagram of a touch display panel according to some embodiments.
  • Figure 3B is a plan view of a touch display panel according to some embodiments.
  • FIG. 4A is a line width structure diagram of the first touch line in the first area according to some embodiments of the present disclosure
  • FIG. 4B is a line width structure diagram of the second touch line in the second area according to some embodiments of the present disclosure.
  • 4C is a line width structure diagram of the third touch line in the third area according to some embodiments of the present disclosure.
  • Figure 5A is a structural diagram of the fracture arrangement of the first touch line in the first region according to some embodiments of the present disclosure
  • Figure 5B is a structural diagram of the fracture arrangement of the second touch line in the second area according to some embodiments of the present disclosure
  • Figure 5C is a structural diagram of the fracture arrangement of the third touch line in the third region according to some embodiments of the present disclosure.
  • Figure 5D is a schematic diagram of light reflection at non-broken parts of the touch line
  • Figure 5E is a schematic diagram of light reflection at the break of the touch line
  • Figure 6A is a structural diagram of the opening arrangement of the first touch line in the first area according to some embodiments of the present disclosure
  • Figure 6B is a structural diagram of the opening arrangement of the second touch line in the second area according to some embodiments of the present disclosure
  • Figure 6C is a structural diagram of the opening arrangement of the third touch line in the third area according to some embodiments of the present disclosure.
  • Figure 6D is a schematic diagram of light reflection at non-opening locations of a touch line according to some embodiments of the present disclosure
  • Figure 6E is a schematic diagram of light reflection at the opening of the touch line according to some embodiments of the present disclosure.
  • Figure 6F is a material diagram of a touch line according to some embodiments of the present disclosure.
  • Figure 7A is a structural diagram of a touch structural layer according to some embodiments of the present disclosure.
  • Figure 7B is a cross-sectional view at EE of Figure 7A;
  • Figure 7C is a cross-sectional view of other embodiments of Figure 7A at EE;
  • Figure 8A is an enlarged structural view of a touch unit according to some embodiments of the present disclosure.
  • Figure 8B is another enlarged structural view of a touch unit according to some embodiments of the present disclosure.
  • Figure 9A is a structural diagram of the arrangement of touch materials in the third area according to some embodiments of the present disclosure.
  • Figure 9B is a structural diagram of the arrangement of touch materials in the second area according to some embodiments of the present disclosure.
  • Figure 9C is a structural diagram of the arrangement of touch materials in the first area according to some embodiments of the present disclosure.
  • Figure 10A is a schematic diagram of light reflection through metal touch sub-electrodes
  • Figure 10B is a schematic diagram of light reflection through transparent conductive touch sub-electrodes.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying the relative importance or implicitly indicating the quantity of the indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plural means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • Flexible multiple layer on cell technology FMLOC will transform the display structure Integrated with the touch structure, it can meet the development trend of thin, foldable and narrow bezel display technology.
  • Metal mesh has the advantages of small resistance, small thickness, and fast response speed. Due to the thinness of the product and the Considering the increase in resistive capacitive loading (RC Loading), the single-layer metal mesh (Metal Mesh) is designed as an FMLOC structure.
  • the touch display device 1000 includes a stacked display panel 10 and a touch structure layer 20 .
  • the touch structure layer 20 is located on the display surface side of the display panel 10 , wherein the display panel 10 includes an anode layer, and the touch structure layer 20 includes a metal mesh.
  • the mobile phone screen is a notch screen.
  • the notch screen means that there is a non-display area BB (notch area) directly above the screen, and the display area is other than the notch area.
  • BB notch area
  • AA there are cameras and other devices in the notch area. This area needs to be drilled to place the camera in the through hole.
  • the metal grid used to implement touch is distributed in the display area and non-display area. Among them, the metal grid It is composed of a plurality of metal wires 201'. For example, as shown in FIG. 1C, the plurality of metal wires surround a metal grid, and the shape of the metal grid is hexagonal or quadrilateral.
  • the actual line width of the metal line 201' located around the hole deviates from the designed line width.
  • a dispersion compensation design is made. For example, near the through hole area, the line width of the metal line 201' is larger. In the area far away from the through hole, the line width of the metal line 201' is smaller.
  • the metal grid in the display area AA is not designed to compensate for dispersion.
  • the value ⁇ CD1 is 0.
  • the metal grid in the non-display area BB is designed for dispersion compensation.
  • the compensation value ⁇ CD2 is x.
  • the line width of the metal grid in the display area AA is smaller than the line width of the metal grid in the non-display area BB. .
  • Figure 2A shows the path diagram of the light passing through the touch line at DD in Figure 1C
  • Figure 2B is The reflection situation in the area with optical compensation (that is, the non-display area BB)
  • Figure 2B shows the path diagram of the light passing through the touch line at CC in Figure 1C
  • the reflection amount of the area i.e., display area AA
  • the area with optical compensation i.e., non-display area BB
  • the anode layer reflected light in the area with a larger line width of the metal grid is less than the anode layer reflected light in the area with a smaller line width of the metal grid. Therefore, the touch display panel
  • the middle performance is poor light and dark partitioning, which affects the display effect and thus affects the user experience.
  • the touch display device 1000 may be a product with a touch function and an image display function.
  • the touch display device may be a monitor with a touch function, a television, a personal computer, a notebook computer, a billboard, a digital photo frame, a laser printer with a display function, a telephone, a mobile phone, a digital camera, an electronic picture screen, or a camcorder , viewfinders, monitors, navigators, vehicles, large-area walls or information query equipment (such as business query equipment in e-government, banks, hospitals, electric power and other departments), vehicle-mounted displays, etc.
  • embodiments of the present disclosure are suitable for touch display devices The uses are not limited.
  • the touch display device may be a rollable or bendable flexible touch display device, or may be a flat rigid touch display device.
  • the touch display device 1000 may also be a touch display panel 100 (which may also be called a touch display screen).
  • the touch display device 1000 may also include other electronic components, such as a touch chip and a motherboard.
  • the touch chip is coupled to the touch display panel and is configured to determine the touch position (eg, touch coordinates) based on the touch signal provided by the touch display panel.
  • the mainboard is coupled to the touch display panel and is configured to output corresponding image data to the touch display panel based on the touch position determined by the touch chip.
  • the following describes a touch display panel 100 and a touch display device 1000 provided by the present disclosure respectively.
  • FIG. 3A and FIG. 3B are structural diagrams of the touch display panel 100.
  • FIG. 7A, FIG. 9A, FIG. 9B and FIG. 9C are partial enlarged views of the touch display panel 100.
  • FIG. 4A to FIG. 4C, FIG. 5A to 5C, Figures 6A to 6C, 8A and 8B are further enlarged views of Figures 7A, 9A, 9B and 9C.
  • Figures 7B and 7C are cross-sectional views at EE in Figure 7A.
  • FIG. 7B and FIG. 7C only illustrate schematic diagrams of the touch structure layer.
  • FIG. 3A is a side view of the touch display panel 100 provided in some embodiments
  • Figure 3B is a top view of Figure 3A.
  • the touch display panel 100 includes a display panel 10 and a touch panel 20' disposed on one side of the display panel 10.
  • the touch panel 20' includes a touch structure layer 20, and the touch structure layer 20 includes a plurality of A plurality of touch lines 201 define a plurality of touch grids 202 .
  • FIG. 3B only illustrates touch lines in a local area. In fact, the touch structure layer 20 is distributed in the entire planar area of the touch display panel 100 .
  • the display panel 10 is a screen with a display function, which can be coupled to the above-mentioned mainboard, and is configured to accept image data sent by the mainboard and display corresponding images.
  • the display panel 10 may be a self-luminous display panel, such as an OLED (Organic Light Emiing Diode, organic light-emitting diode) display panel, a QLED (Quantum Dot Light Emiing Diode, quantum dot light-emitting diode) display panel, or a micro-LED (including: Mini LED mini light-emitting diode or Micro LED micro light-emitting diode) display panel, etc.
  • OLED Organic Light Emiing Diode, organic light-emitting diode
  • QLED Quantum Dot Light Emiing Diode, quantum dot light-emitting diode
  • micro-LED including: Mini LED mini light-emitting diode or Micro LED micro light-emitting diode
  • the display panel 10 has a display surface and a non-display surface opposite to each other in the thickness direction of the display panel 10 .
  • the user can face the display surface of the display panel 10 to view the picture. That is to say, the side of the display surface of the display panel 10 away from the non-display surface is the side for viewing by the user, and this side is hereinafter referred to as the display side of the display panel 10 .
  • the touch structure layer 20 is configured to provide a touch signal, and the touch signal can reflect the user's touch position on the display panel 10 .
  • the touch structure layer 20 can be coupled with the above touch chip to provide touch signals to the touch chip.
  • the touch structure layer 20 may be located on the display side of the display panel 10 .
  • the touch structure layer 20 may be a component independent of the display panel 10; for example, the display panel 10 and the touch structure layer 20 are formed separately, and then the two are formed through a process such as optically clear adhesive (OCA). glue together.
  • OCA optically clear adhesive
  • the touch structure layer 20 may also be a structure integrated on the display panel 10 .
  • the display panel 10 is used as a substrate, and the touch structure layer 20 is formed on the display surface of the display panel 10 . At this time, the touch structure layer 20 is in direct contact with the display surface of the display panel 10 .
  • the display panel 10 is an OLED display panel or a QLED display panel.
  • the display panel 10 may include a display substrate and an encapsulation layer covering the display substrate; the touch structure layer 20 may be formed on the encapsulation layer.
  • other functional layers may also be disposed between the touch structure layer 20 and the display surface of the display panel 10 .
  • the touch structure layer 20 may also be disposed inside the display panel 10 .
  • the display panel 10 includes a first substrate and a second substrate facing each other, and the touch structure layer 20 may be located between the first substrate and the second substrate.
  • Capacitive touch technology can be divided into self-capacitive touch technology and mutual capacitive touch technology.
  • the touch layer uses self-capacitive touch technology
  • the touch electrodes and ground form a capacitance, that is, self-capacitance.
  • the capacitance of the finger will be superimposed on the touch electrode, causing the capacitance formed by the touch electrode and ground to change.
  • the coordinates of the touch point can be determined to implement touch sensing.
  • touch driving electrodes can be divided into touch driving electrodes and touch sensing electrodes.
  • the touch driving electrodes can be configured to transmit touch driving signals and touch sensing
  • the measurement electrodes may be configured to transmit touch sensing signals, thereby forming stable capacitance between the touch driving electrodes and the touch sensing electrodes.
  • the following uses a touch display device applying mutual capacitance touch technology, and the touch layer is arranged on one side of the light-emitting surface of the display panel, and the film layer closest to the touch layer in the display panel is used as the touch layer.
  • the base layer as an example, the solution of the present disclosure is explained.
  • Some embodiments of the present disclosure provide a touch structural layer, which can be applied to the above-mentioned touch display device or other touch devices without excessive limitations.
  • the display panel 10 may include a plurality of sub-pixels, each sub-pixel including a pixel driving circuit and a light-emitting device coupled to each other, and the pixel driving circuit is configured to drive the light-emitting device to emit light.
  • the pixel driving circuit may include electronic device components such as multiple transistors and capacitors.
  • each pixel driving circuit may include three transistors and a capacitor, forming a 3T1C (ie, one driving transistor, two switching transistors and one capacitor). It is also possible to include more than three transistors and at least one capacitor, such as 4T1C (i.e. one drive transistor, three switching transistors and one capacitor), 5T1C (i.e.
  • the transistor can be a thin film transistor (Thin Film Transistor, TFT for short), a field effect transistor (Metal Oxide Semiconductor, MOS for short) or other switching devices with the same characteristics.
  • the light-emitting device can be OLED or QLED.
  • the display panel 10 includes: a substrate 11 , a pixel driving circuit layer 12 , a light-emitting device layer 13 and a first packaging layer 14 that are stacked in sequence, wherein the light-emitting device layer 13 Including the anode layer 131, the first packaging layer 14 may be a packaging film or a packaging substrate.
  • the structure of the above-mentioned base 11 can be selected and set according to actual needs.
  • the substrate 11 may be a rigid substrate.
  • the rigid substrate may include, for example, a glass substrate PMMA (Polymethyl methacrylate).
  • the above-mentioned display panel 10 may be a rigid display panel.
  • the substrate 11 may be a flexible substrate.
  • the flexible substrate may include, for example, a PET (Polyethylene terephthalate, polyethylene terephthalate) substrate, a PEN (Polyethylene naphthalate two formic acid glycol ester, polyethylene naphthalate) substrate or a PI (Polyimide, polyacyl ester) substrate. imine) base.
  • the above-mentioned display panel 10 may be a flexible display panel.
  • the touch display panel 100 further includes a glass cover 15 located on the side of the display panel 10 away from the touch structure layer 20 to protect the display panel 10 .
  • the touch panel 20' further includes a second encapsulation layer 26.
  • the second encapsulation layer 26 encapsulates the touch structure layer 20 to isolate the touch structure layer from the outside.
  • the material of the second encapsulation layer 26 may be an inorganic insulating material such as nitride, oxide, oxynitride, nitrate, carbide or any combination thereof. Of course, it may also be an organic insulating material, such as acrylic, hexagonal, etc. Based on disiloxane, polyacrylate, polycarbonate, polystyrene and other materials.
  • FIG. 3B is a plan view of the touch display panel 100 .
  • the touch display panel 100 includes a first area 101 (touch area) and a non-touch area 102 .
  • the first area 101 is the touch display panel 100
  • the first area 101 is an area used to display the screen.
  • the first area 101 can also realize touch control, corresponding to the display area AA in Figure 1B.
  • the non-touch area 102 is embedded inside the first area 101.
  • the touch display panel 10 is a notch screen, and no screen is displayed in the notch area.
  • the notch area is the non-touch area 102, and the first area 101 half surrounds the non-touch area 102, where the non-touch area 102 includes a second area 1021 and a through-hole area 1023, and a camera and other devices are provided in the through-hole area 1023.
  • the plurality of touch lines 201 include a plurality of first touch lines 2011 located in the first area 101 and a plurality of second touch lines 2012 located in the second area 1021;
  • the line width of at least one of the first touch lines 2011 is smaller than the line width of at least one of the second touch lines 2012 of the plurality of second touch lines 2012 .
  • an optical compensation design is made.
  • the line width of the first touch line 2011 is L1
  • the line width of the second touch line 2012 is L2
  • the line width of the third touch line 2013 is L3.
  • L1 ⁇ L2 ⁇ L3 where, as mentioned above, the wider the line width of the touch line 201, the more of the incident light entering from the outside world is blocked by the touch line 201, and the blocked light from the side view The more light the anode layer reflects, the worse the light and dark division will be, affecting the display effect.
  • the touch display panel 100 may be a rectangle, or a shape similar to a rectangle, such as a rounded rectangle.
  • the reflectivity of the first area 101 and the second area 1021 is equal, and the reflectivity is such that incident light from one side of the touch structure layer 20 passes through multiple
  • the touch line 201 irradiates the anode layer 131, and then the light reflected from the anode layer 131 to the side of the touch structure layer 20 is the ratio of the incident light.
  • Figure 2A and Figure 2B For a schematic diagram of the light path, refer to Figure 2A and Figure 2B.
  • the reflectivity of the first area 101 and the second area 1021 is equal, the amount of reflection is also the same. Therefore, even if the line widths of the touch lines 201 in different areas of the entire touch display panel 100 are different, because The reflectivity of the first area 101 and the second area 1021 is set to be equal, that is, the incident light passes through the plurality of touch lines 201 and irradiates onto the anode layer 131, and then is reflected by the anode layer 131 to the side of the touch structure layer 20.
  • the ratio of light to incident light is equal, the display screen of the touch display panel 100 will not show poor light and dark divisions, which can reduce the risk of visualization of the reflective structure and improve the display effect of the touch display panel 100 .
  • the touch display panel 100 further includes a third area 1022 .
  • the third area 1022 is a part of the non-touch area 102, and the non-touch area 102 includes two through-hole areas 1023, and the third area 1022 is located between the two through-hole areas 1023 of the non-touch area 102.
  • the area in the non-touch area 102 except the through hole area 1023 and the third area 1022 is the second area 1021.
  • the plurality of touch lines 201 also include a plurality of third touch lines 2013 located in the third area 1022, and at least one of the plurality of third touch lines 201 is a line of the third touch line 2013. The width is greater than the line width of at least one of the second touch lines 2012 .
  • the line width of at least one of the plurality of first touch lines 2011 is smaller than that of at least one of the plurality of second touch lines 2012 .
  • the line width of the line 2012, the line width of at least one second touch line 2012 among the plurality of second touch lines 2012 is smaller than the line width of at least one third touch line 2013 among the plurality of third touch lines 2013. This is because the line width of the touch line 201 will deviate around the through hole area 1023 due to the limitation of process conditions around the through hole area 1023. In order to avoid the line width deviation of the touch line 201, an optical compensation design is made.
  • the line width of at least one first touch line 2011 among the plurality of first touch lines 2011 is smaller than the line width of at least one second touch line 2012 among the plurality of second touch lines 2012.
  • the line width of at least one second touch line 2012 among the control lines 2012 is smaller than the line width of at least one third touch line 2013 among the plurality of third touch lines 2013.
  • the reflectivity of the third region 1022 is equal to the reflectivity of the first region 101 and the second region 1021 . It can be understood that when the reflectivity of the first area 101 , the second area 1021 and the third area 1022 is equal, the amount of reflection is also the same. Therefore, even if the touch lines 201 in different areas of the entire touch display panel 100 The line widths of The ratio of light to the side of the touch structure layer 20 is equal to the incident light, so that the display screen of the touch display panel 100 will not show poor light and dark divisions, which can reduce the risk of visualization of the reflective structure and improve the quality of the touch display panel 100 display effect.
  • FIG. 5A, FIG. 5B and FIG. 5C respectively illustrate the arrangement of touch lines in the first area 101, the second area 1021 and the third area 1022.
  • a break 2010 is provided on one touch line 201 means that the touch line 201 is disconnected from the break 2010, that is, A part of the touch line 201 is missing at the break 2010.
  • the light incident from the outside is not blocked, and the light can pass through the break 2010 and be incident on the anode layer 131, thereby improving the reflectivity of the light.
  • Figure 5D shows a schematic diagram of the path of the light at a position where the touch line 201 is not provided with a break 2010.
  • Figure 5E shows a schematic diagram of the path of the light at a position where the touch line 201 is provided with a break 2010. It can be seen that at the fracture 2010, the light incident from the outside is not blocked, and the light can pass through the fracture 2010 and be incident on the anode layer 131, thereby improving the reflectivity of the light.
  • the fracture rate of the first region 101 is less than the fracture rate of the second region 1021, and the fracture rate of the second region 1021 is less than the fracture rate of the third region 1022; wherein the fracture rate is that of multiple contacts in one region.
  • the ratio of touch lines 201 with breaks 2010 in the control lines 201 to all touch lines 201 in the area Referring to FIG. 4A, FIG. 4B and FIG.
  • the line width relationship of the touch lines 201 in the first area 101, the second area 1021 and the third area 1022 is L1 ⁇ L2 ⁇ L3, that is, the third touch line 2013
  • the line width of The reflectivity of 1022 is equal, and the display screen of the touch display panel 100 will not show poor light and dark divisions, which can reduce the risk of visualization of the reflective structure and improve the display effect of the touch display panel 100 .
  • the density of the interruptions 2010 in the first area 101 is less than the density of the interruptions 2010 in the second area 1021, and the density of the interruptions 2010 in the second area 1021 is less than that of the interruptions 2010 in the second area 1021.
  • the density of fractures 2010 reflects the density of each area or the number of fractures 2010.
  • the density of fractures 2010 in the first area 101 By setting the density of fractures 2010 in the first area 101 to be smaller than the density of fractures 2010 in the second area 1021, the density of fractures 2010 in the second area 1021
  • the density of 2010 is smaller than the density of 1022 interruptions 2010 in the third area.
  • the arrangement of 101 interruptions 2010 in the first area is sparser than that of the 1021 interruptions 2010 in the second area, and the arrangement of 1021 interruptions 2010 in the second area is sparser.
  • the 1022 interrupt ports 2010 in the third area are sparsely arranged.
  • the number of the 101 interrupt ports 2010 in the first area is less than the number of the 1021 interrupt ports 2010 in the second area.
  • the number of the 1021 interrupt ports 2010 in the second area is less than that in the third area.
  • the number of fractures 2010 in area 1022. Therefore, setting the density relationship of fractures 2010 in the first area 101, the second area 1021 and the third area 1022 as above can ensure that the first area 101, the second area 1021 and the third area 1022
  • the reflectivity of the touch display panel 100 is equal, so that the display screen of the touch display panel 100 will not show poor light and dark divisions, which can reduce the risk of visualization of the reflective structure and improve the display effect of the touch display panel 100 .
  • the size of the interrupt port 2010 in the first area 101 is smaller than the size of the interrupt port 2010 in the second area 1021, and the size of the interrupt port 2010 in the second area 1021 is smaller than the size of the interrupt port 2010 in the third area 1022.
  • the size of the fracture 2010 reflects the area size of the fracture 2010.
  • the size of the fracture 2010 in the first area 101 is smaller than the size of the fracture 2010 in the second area 1021.
  • the size of the fracture 2010 in the second area 1021 is smaller than the size of the fracture 2010 in the third area.
  • the size of the interruption opening 2010 in the area 1022 can be understood as the area size of the interruption opening 2010 in the first area 101 is smaller than the area size of the interruption opening 2010 in the second area 1021, and the area size of the interruption opening 2010 in the second area 1021 is smaller than the area size of the interruption opening 2010 in the third area. 1022 is the area size of the break 2010.
  • the area size relationship of the break 2010 in the first area 101, the second area 1021 and the third area 1022 is set as above, which can ensure that the first area 101, the second area 1021 and the third area
  • the reflectivity of 1022 is equal, so that the display screen of the touch display panel 100 will not show poor light and dark divisions, which can reduce the risk of visualization of the reflective structure and improve the display effect of the touch display panel 100 .
  • the arrangement of the breaks 2010 can also be a combination of the above two embodiments, that is, the density of the breaks 2010 in the first area 101,
  • the density of the interrupt ports 2010 in the second area 1021 is smaller than the density of the interrupt ports 2010 in the second area 1021.
  • the density of the interrupt ports 2010 in the second area 1021 is smaller than the density of the interrupt ports 2010 in the third area 1022; and the size of the interrupt ports 2010 in the first area 101 is smaller than the interrupt port 2010 in the second area 1021.
  • 2010, the size of the interrupt port 2010 in the second area 1021 is smaller than the size of the interrupt port 2010 in the third area 1022.
  • the combination of the above two embodiments, and the density and area size relationship of the fractures 2010 in the first region 101, the second region 1021 and the third region 1022 are set as above, can ensure that the first region 101, the second region The reflectivity of 1021 and the third area 1022 is equal, so that the display screen of the touch display panel 100 will not show poor light and dark divisions, which can reduce the risk of visualization of the reflective structure and improve the display effect of the touch display panel 100 .
  • the first region 101 has a fracture rate of 20%
  • the second region 1021 has a fracture rate of 23% to 27%
  • the third region 1022 has a fracture rate of 28% to 32%.
  • the fracture rate of the first region 101 is 20%, the fracture rate of the second region 1021 is 23%, and the fracture rate of the third region 1022 is 28%.
  • the fracture rate of the first region 101 is 20%, the fracture rate of the second area 1021 is 25%, and the fracture rate of the third area 1022 is 30%.
  • the fracture rate of the first area 101 is 20%, and the fracture rate of the second area 1021 is 27%.
  • the fracture rate of the third area 1022 is 32%, etc.
  • the fracture rate of the first area 101 is smaller than the fracture rate of the second area 1021, and the fracture rate of the second area 1021 is smaller than the third area.
  • the first area 101 and the second area 1021 can be It is consistent with the reflectivity of the third area 1022, ultimately improving the problem of poor optics in the area.
  • Figure 6A, Figure 6B and Figure 6C respectively represent the structure of the touch lines in the first area 101, the second area 1021 and the third area 1022.
  • the opening 2020 is a hole provided on the touch line 201, that is, a part of the touch line 201 is in the opening 2020.
  • the light incident from the outside is not blocked, and the light can pass through the opening 2020 and be incident on the anode layer 131, thereby improving the reflectivity of the light.
  • the difference between the opening 2020 and the break 2010 is that in the touch line 201 with the opening 2020, the touch line 201 is still connected, and in the touch line 201 with the disconnection, the touch line 201 Being disconnected and divided into two, both designs can increase the incidence rate of incident light from the outside entering the anode layer 131 .
  • Figure 6D shows a schematic diagram of the path of light at a position where the touch line 201 is not provided with an opening 2020.
  • Figure 6E shows a schematic diagram of the path of the light at a position where the touch line 201 is provided with an opening 2020. From the schematic diagram, it can be seen that at the opening 2020, the light incident from the outside is not blocked, and the light can pass through the opening 2020 and be incident on the anode layer 131, thereby improving the reflectivity of the light.
  • the opening rate of the first region 101 is less than the opening rate of the second region 1021, and the opening rate of the second region 1021 is less than the opening rate of the third region 1022; wherein the opening rate is,
  • the ratio of the touch lines 201 provided with openings 2020 among the plurality of touch lines 201 in the area accounts for all the touch lines 201 in the area.
  • the line width relationship of the touch lines 201 in the first area 101, the second area 1021 and the third area 1022 is L1 ⁇ L2 ⁇ L3, that is, the third touch line 2013
  • the line width of The reflectivity of 1022 is equal, and the display screen of the touch display panel 100 will not show poor light and dark divisions, which can reduce the risk of visualization of the reflective structure and improve the display effect of the touch display panel 100 .
  • the density of the openings 2020 in the first region 101 is less than the density of the openings 2020 in the second region 1021
  • the density of the openings 2020 in the second region 1021 is less than the density of the openings 2020 in the third region 1022 .
  • the density of openings 2020 reflects the density of each area or the number of openings 2020.
  • the density of openings 2020 in the first area 101 is smaller than the density of openings 2020 in the second area 1021, the second area
  • the density of openings 2020 in area 1021 is less than the density of openings 2020 in third area 1022.
  • the arrangement of openings 2020 in first area 101 is sparser than the arrangement of openings 2020 in second area 1021.
  • the arrangement of openings 2020 in 1021 is sparser than the arrangement of openings 2020 in third area 1022.
  • the number of openings 2020 in first area 101 is smaller than the number of openings 2020 in second area 1021.
  • the number of openings 2020 in the second area 1021 is less than the number of openings 2020 in the third area 1022. Therefore, the density relationship of the openings 2020 in the first area 101, the second area 1021 and the third area 1022 can be set as above. Ensure that the reflectivity of the first area 101, the second area 1021 and the third area 1022 is equal, so that the display screen of the touch display panel 100 will not show poor light and dark partitions, which can reduce the visualization risk of the reflective structure and improve the touch control The display effect of the display panel 100.
  • the size of the opening 2020 in the first region 101 is smaller than the size of the opening 2020 in the second region 1021
  • the size of the opening 2020 in the second region 1021 is smaller than the size of the opening 2020 in the third region 1022 .
  • the size of the opening 2020 reflects the area size of the opening 2020.
  • the size of the opening 2020 in the first area 101 is smaller than the size of the opening 2020 in the second area 1021.
  • the size is smaller than the size of the opening 2020 in the third area 1022. It can be understood that the area size of the opening 2020 in the first area 101 is smaller than the area size of the opening 2020 in the second area 1021.
  • the area size of the opening 2020 in the second area 1021 The area size of 2020 is smaller than the area size of the opening 2020 in the third area 1022.
  • the area size relationship of the openings 2020 in the first area 101, the second area 1021 and the third area 1022 is set as above, which can ensure the first The reflectivity of the area 101, the second area 1021 and the third area 1022 is equal, so that the display screen of the touch display panel 100 will not show poor light and dark divisions, which can reduce the risk of visualization of the reflective structure and improve the performance of the touch display panel 100. display effect.
  • the arrangement of the openings 2020 can also be a combination of the above two embodiments, that is, the arrangement of the openings 2020 in the first area 101
  • the density is less than the density of the openings 2020 in the second area 1021
  • the density of the openings 2020 in the second area 1021 is less than the density of the openings 2020 in the third area 1022
  • the size of the openings 2020 in the first area 101 is less than
  • the size of the opening 2020 in the second area 1021 is smaller than the size of the opening 2020 in the third area 1022 .
  • the combination of the above two embodiments, and the density and area size relationship of the openings 2020 in the first area 101, the second area 1021 and the third area 1022 are set as above, can ensure that the first area 101, the second area The reflectivity of the area 1021 and the third area 1022 is equal, so that the display screen of the touch display panel 100 will not show poor light and dark divisions, which can reduce the risk of visualization of the reflective structure and improve the display effect of the touch display panel 100 .
  • the first region 101 has an opening rate of 20%
  • the second region 1021 has an opening rate of 23% to 27%
  • the third region 1022 has an opening rate of 28% to 32%.
  • the opening rate of the first region 101 is 20%, the opening rate of the second region 1021 is 23%, and the opening rate of the third region 1022 is 28%.
  • the opening rate of the first region 101 is 23%.
  • the opening rate of the second area 1021 is 20%, the opening rate of the second area 1021 is 25%, and the opening rate of the third area 1022 is 30%.
  • the opening rate of the first area 101 is 20%, and the opening rate of the second area 1021 is 20%.
  • the opening rate of the third area 1022 is 27%, the opening rate of the third area 1022 is 32%, etc.
  • the opening rate of the first area 101 is smaller than the opening rate of the second area 1021
  • the opening ratio of the second area 1021 is smaller than the opening ratio of the third area 1022.
  • more incident light from one side of the touch structure layer 20 can pass through more of the multiple touch lines 201.
  • Each opening 2020 is irradiated onto the anode layer 131, and then reflected from the anode layer 131 to the side of the touch structure layer 20 to enhance the reflectivity.
  • Different opening ratios can change the reflectivity. In the above example, corresponding to different areas are obtained.
  • the opening ratio is 100%
  • the reflectivity of the first area 101, the second area 1021, and the third area 1022 can be made consistent, ultimately improving the problem of poor regional optics.
  • the shape of the orthographic projection of the opening 2020 on the display panel 10 may be circular, rectangular, or elliptical.
  • the shape of the orthographic projection of the opening 2020 on the display panel 10 is a circle, a rectangle, an ellipse, etc., and the shape is not limited here.
  • the maximum size of the opening 2020 provided in the first area 101, the second area 1021 and the third area 1022 corresponds to a line smaller than the first touch line 2011, the second touch line 2012 and the third touch line 2013. Width.
  • At least part of the touch lines 201 among the plurality of touch lines 201 is provided with openings 2020 , and at least another part of the touch lines 201 is provided with breaks 2010 , and the fracture rate of the first region 101 is less than the fracture rate of the second region 1021, the fracture rate of the second region 1021 is less than the fracture rate of the third region 1022, and/or the opening rate of the first region 101 is less than the second region
  • the opening ratio of the second area 1021 is smaller than the opening ratio of the third area 1022 .
  • the sum of the fracture rate and the opening rate of the first region 101 is less than the sum of the fracture rate and the opening rate of the second region 1021, and is smaller than the sum of the fracture rate and the opening rate of the third region 1022.
  • At least part of the touch lines 201 among the plurality of touch lines 201 is a metal touch line 201a, and another part of the touch lines 201 is a transparent conductive touch line 201b; in In FIG. 6F , the touch line without pattern filling is used as the transparent conductive touch line 201b, and the touch line with pattern filling is used as the metal touch line 201a.
  • the ratio of the transparent conductive touch lines 201b to the plurality of first touch lines 201 in the first area 101 is smaller than the ratio of the transparent conductive touch lines 201b to the plurality of second touch lines 201 in the second area 1021; the second area
  • the ratio of the transparent conductive touch lines 201b to the plurality of second touch lines 201 in 1021 is smaller than the ratio of the transparent conductive touch lines 201b to the plurality of third touch lines 201 in the third area 1022.
  • the transmittance of the transparent conductive touch line 201b is higher than that of the metal touch line 201a. Therefore, in a region, the transparent conductive touch line 201b occupies a plurality of first touch lines 201. The greater the ratio of , the higher the overall transmittance of a region.
  • the transmittance is the amount of incident light from the side of the touch structure layer 20 in a region that passes through the plurality of touch lines 201. The ratio of the incident amount on the anode layer to the total incident amount.
  • the material of the metal touch line 201a is alloys such as magnesium aluminum alloy (MgAl) and lithium aluminum alloy (LiAl), or magnesium (Mg), aluminum (Al), lithium (Li) and silver (Ag), which are transparent
  • the conductive touch line 201b is made of indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium zinc oxide (GZO), zinc oxide (ZnO), and indium oxide (In 2 O 3 ). , aluminum zinc oxide (AZO) and carbon nanotubes.
  • the transmittance of the first area 101 is less than the transmittance of the second area 1021, and the transmittance of the second area 1021 is less than the transmittance of the third area 1022, by setting the ratio of the material of the touch line 201.
  • Change the transmittance of each area thereby enhancing the reflectivity, so that the reflectivity of the first area 101, the second area 1021, and the third area 1022 are consistent, ultimately improving the problem of poor optics in the area, thereby enhancing the display of the touch display panel 100 Effect.
  • At least a part of the touch lines 201 among the plurality of touch lines 201 is provided with openings 2020, and at least another part of the touch lines 201 is provided with a break 2010, and multiple At least part of the touch lines 201 is a metal touch line 201a, and another part of the touch line 201 is a transparent conductive touch line 201b. That is to say, the touch line 201 can be provided with an opening 2020, a touch A break 2010 is provided on the control line 201.
  • the touch line 201 can be freely combined using different materials and in various ways, as long as the reflectivity of the first area 101, the second area 1021 and the third area 1022 can be equalized.
  • the first area 101 is a touch area
  • the second area 1021 and the third area 1022 are non-touch areas; among the multiple touch lines 201, multiple touch lines located in the first area 101
  • the line 201 is disconnected from the plurality of touch lines 201 located in the second area 1021 and the third area 1022.
  • the first area 101 is an area on the touch display panel 100 used to display images, and can realize touch control.
  • the non-touch area 102 is not used to display images, and does not require a touch function.
  • the first area 101 and the non-touch area 102 are not used to display images. There may be no electrical connection between the touch areas 102, that is, there may be electrical insulation between the two. Therefore, when multiple touch lines 201 located in the first area 101 and the non-touch area 102 are provided, the touch areas 102 are in the third area.
  • the multiple touch lines 201 at the boundary between the first area 101 and the non-touch area 102 can be disconnected, so that the density of fractures in the multiple touch lines can be further expanded.
  • the first area 101 when the plurality of touch lines 201 located in the first area 101 and the multiple touch lines 201 located in the second area 1021 and the third area 1022 are disconnected, the first area 101 The fracture rate is 20%, the fracture rate of the second area 1021 in the non-touch area 102 is 25% to 40%, and the fracture rate of the third area 1022 in the non-touch area 102 is 30% to 50%.
  • the fracture rate of the first region 101 is 20%, the fracture rate of the second region 1021 is 25%, and the fracture rate of the third region 1022 is 30%.
  • the fracture rate of the first region 101 is 20%, the fracture rate of the second area 1021 is 30%, and the fracture rate of the third area 1022 is 40%.
  • the fracture rate of the first area 101 is 20%, and the fracture rate of the second area 1021 is 40%.
  • the fracture rate of the third area 1022 is 50%, etc.
  • the multiple touch lines 201 at the boundary between the first area 101 and the non-touch area 102 can be disconnected, corresponding to the difference in the fracture rate, where, The fracture rate of the first region 101 is smaller than the fracture rate of the second region 1021 , and the fracture rate of the second region 1021 is smaller than the fracture rate of the third region 1022 .
  • the incident light passes through the multiple fractures 2010 of the multiple touch lines 201, irradiates the anode layer 131, and then is reflected by the anode layer 131 to the side of the touch structure layer 20 to enhance the reflectivity. Different fracture rates can be changed.
  • Reflectivity when obtaining the fracture rates corresponding to different areas in the above example, can make the reflectivity of the first area 101, the second area 1021 and the third area 1022 consistent, ultimately improving the problem of poor optics in the area, thereby enhancing the touch display The display effect of panel 100.
  • the touch structure layer 20 includes a first touch structure layer 21 and a second touch structure layer 22 .
  • the first touch structure layer 21 and the second touch structure layer 22 are The relative positions can be interchanged.
  • the first touch structure layer 21 is located on the side of the second touch structure layer 22 away from the display panel, or the first touch structure layer 21 is located on the side of the second touch structure layer 22 close to the display panel.
  • Figure 7A illustrates the second situation.
  • the touch structure layer 20 includes a plurality of touch sub-electrodes TR
  • the first touch structure layer 21 includes a plurality of first touch sub-electrodes 213 and a plurality of first connection electrodes 212 arranged along the first direction X, and a plurality of first touch sub-electrodes 212 are arranged along the first direction X.
  • a touch sub-electrode 213 and a plurality of first connection electrodes 212 are alternately distributed one by one and electrically connected in sequence to form a plurality of first touch electrodes 210 extending along the first direction X;
  • the first touch structure layer 21 also includes a A plurality of second touch sub-electrodes 211 are arranged sequentially and equally spaced in the second direction Y.
  • the second touch structure layer 22 includes a plurality of second connection electrodes 214 arranged along the second direction Y, and a plurality of second touch sub-electrodes 211 are arranged in the second direction Y.
  • the control electrodes 211 and the plurality of second connection electrodes 214 are alternately distributed one by one and electrically connected in sequence to form a second touch electrode 220 extending along the second direction Y; where the first direction A plurality of first touch sub-electrodes 213 , a plurality of first connection electrodes 212 , a plurality of second touch sub-electrodes 211 and the plurality of second connection electrodes 214 are composed of a plurality of touch lines 201 .
  • FIG. 7A shows a structural diagram of the touch structure layer 20 provided by at least one embodiment of the present disclosure.
  • the touch structure layer 20 includes a plurality of first touch electrodes 210 extending along the first direction X and a plurality of second touch electrodes 220 extending along the second direction Y.
  • the first touch electrode 210 is a touch sensing electrode Tx
  • the second touch electrode 220 is a touch driving electrode Rx.
  • This embodiment of the present disclosure is not limited to this.
  • the first touch electrode 210 may be a touch driving electrode
  • the second touch electrode 220 may be a touch sensing electrode.
  • each first touch electrode 210 includes first touch sub-electrodes 213 that are sequentially arranged along the first direction X and connected to each other, and each second touch electrode 220 includes one that is sequentially arranged along the second direction Y. and the second touch sub-electrodes 211 connected to each other.
  • the main outline of each first touch sub-electrode 213 and second touch sub-electrode 211 is a rhombus.
  • the first touch sub-electrode 213 and the second touch sub-electrode 211 may also be in other shapes, such as triangles, strips, etc., and the shapes are not limited here.
  • the first touch sub-electrodes 213 adjacent in the first direction X are electrically connected through the first connection electrodes 212 to form the first touch electrode 210, and the second touch sub-electrodes 211 adjacent in the second direction Y
  • a plurality of second touch electrodes 220 are electrically connected through the second connection electrodes 214 .
  • the plurality of second connection electrodes 214 and the plurality of second touch sub-electrodes 211 are arranged in different layers.
  • the plurality of second connection electrodes 214 and the plurality of second touch sub-electrodes 211 are arranged in different layers.
  • the relative position relationship can have two situations. As shown in FIG. 7B , the plurality of second connection electrodes 214 are located on the side of the plurality of second touch sub-electrodes 211 away from the display panel 10 .
  • the plurality of second connection electrodes 214 may also be located on the side of the plurality of second touch sub-electrodes 211 close to the display panel 10 .
  • FIG. 7B is a cross-sectional view of FIG. 7A at EE.
  • FIG. 7B shows an embodiment in which the second connection electrode 214 is located on the side of the second touch sub-electrode 211 away from the display panel 10 , wherein the second connection electrode 214 is located on the side of the second touch sub-electrode 211 away from the display panel 10 . Both ends of the connection electrode 214 can be electrically connected to the second touch sub-electrode 211 through at least one via hole P.
  • both ends of the second connection electrode 214 can be electrically connected to the second touch sub-electrode 211 through two via holes P, which can improve the reliability of the electrical connection between the second connection electrode 214 and the second touch sub-electrode 211 , and at the same time, the equivalent resistance of the second connection electrode 214 and the second touch sub-electrode 211 can be reduced, thereby reducing the power consumption of the display panel and improving the display and touch effects.
  • FIG. 7C is a cross-sectional view of some other embodiments at EE in FIG. 7A .
  • FIG. 7C shows an embodiment in which the second connection electrode 214 is located on the side of the second touch sub-electrode 211 close to the display panel 10 , wherein both ends of the second connection electrode 214 can be electrically connected to the second touch sub-electrode 211 through at least one via hole P.
  • both ends of the second connection electrode 214 can be electrically connected to the second touch sub-electrode 211 through two via holes P, which can improve the reliability of the electrical connection between the second connection electrode 214 and the second touch sub-electrode 211 , and at the same time, the equivalent resistance of the second connection electrode 214 and the second touch sub-electrode 211 can be reduced, thereby reducing the power consumption of the display panel and improving the display and touch effects.
  • the touch panel 20' also includes an insulating layer 23, a buffer layer 24 and a protective layer 25.
  • the insulating layer 23 is disposed between the second connection electrode 214 and the second touch sub-electrode 211, that is, the insulating layer 23 extends between the first touch structure layer 21 and the second touch structure layer 22.
  • the insulating layer 23 can insulate the first touch structure layer 21 and the second touch structure layer 22 .
  • the buffer layer 24 is disposed on the side of the touch structure layer 20 close to the display panel 10 , and the touch structure layer 20 and the buffer layer 24 can be in direct contact.
  • the protective layer 25 is disposed on the side of the touch structural layer 20 away from the display panel 10.
  • the protective layer 25 covers the touch structural layer 20 and is mainly used to protect the touch structural layer 20.
  • the protective layer 25 is made of a material with high oxidation resistance. It can block external water and oxygen and avoid corrosion of the touch structure layer 20 .
  • the insulating layer 23 , the buffer layer 24 and the protective layer 25 may be equivalent to the second encapsulation layer 26 mentioned above.
  • the material of the protective layer 25 may refer to the introduction of the second encapsulation layer 26 above.
  • it can be an inorganic insulating material such as silicon oxide, aluminum oxide, and silicon nitride compound (SiNx).
  • SiNx silicon nitride compound
  • it can also be an organic insulating material.
  • the materials of the protective layer 25 and the insulating layer 23 can be the same or different. .
  • the buffer layer 24 and the insulating layer 23 may be made of the same material, such as silicon nitride or polyimide, or may be different.
  • each first touch electrode 210 and each second touch electrode 220 are insulated and cross each other and form a plurality of touch units 200 at the intersections.
  • Each touch unit 200 includes a plurality of touch units 200 connected at the intersections. A portion of each of the two first touch electrode portions and at least a portion of each of the two second touch electrode portions connected at the intersection.
  • Figure 8A shows an enlarged structural view of a touch unit 200.
  • a plurality of first touch sub-electrodes 213, a plurality of first connection electrodes 212, a plurality of second The touch sub-electrodes 211 and the plurality of second connection electrodes 214 are composed of a plurality of touch lines.
  • Each touch unit 200 includes half areas of two adjacent first touch sub-electrodes 213 and half areas of two adjacent second touch sub-electrodes 211 , that is, an average of one first touch unit 200 and one half area of two adjacent second touch sub-electrodes 211 .
  • the area of the touch sub-electrode 213 and the area of a second touch sub-electrode 211, and the intersection point in each touch unit 200 are formed for Calculate the base point for coordinates.
  • the coupling between the first touch sub-electrode 213 and the second touch sub-electrode 211 near the touch point is affected, thereby changing the mutual capacity between the two electrodes.
  • the touch sensing signal changes according to the change in capacitance of the touch screen, whereby the coordinates of each touch point can be calculated based on the reference point.
  • the area of each touch unit 200 is equivalent to the area where a human finger touches the touch display panel 100. If the area of the touch unit 200 is too large, it may cause a touch blind spot on the panel, and if it is too small, it may cause an accidental touch. Signal.
  • the average side length of each touch unit 200 is L, and the size range of L is 3.5 mm to 5 mm.
  • L is 4 mm; because the diameter of a human finger's contact with the touch display panel 100 is about 4 mm.
  • the average side length of each touch unit 200 is the same as the average diagonal length of each first touch sub-electrode 213 and the average diagonal length of each second touch sub-electrode 211 , and is also the same as the adjacent third touch sub-electrode 213 .
  • the center distance of one touch sub-electrode 213 and the center distance of the adjacent second touch sub-electrode 211 are the same.
  • the portion of the plurality of touch lines 201 located in the boundary area D1 between the adjacent first touch sub-electrodes 213 and the second touch sub-electrodes 211 is provided with a separation break 20101
  • the breaks 2010 provided on at least part of the touch lines 201 among the plurality of touch lines 201 include separation breaks 20101.
  • the separation break 20101 separates the touch line 201 into two touch sub-lines 20100.
  • each separation break 20101 is located in the middle of the first touch line, and the two touch sub-lines 20100 are located in the middle.
  • the touch sub-line 20100 here can be a part of the first touch line, the second touch line or the third touch line, that is, the separation break 20101 separates the touch line 201 into two The first touch line, the second touch line or the third touch line.
  • the first touch sub-electrode 213 and the second touch sub-electrode 211 are insulated from each other through the fracture 2010. Compared with isolation by setting up dummy electrodes, the performance of the touch electrodes can be improved. Set the area to increase the density of touch electrodes, thereby improving touch sensitivity.
  • the number of breaks 2010 on the plurality of touch lines 201 located in the boundary area D1 of the adjacent first touch sub-electrode 213 and the second touch sub-electrode 211 is greater than that of multiple touch lines in the non-boundary area.
  • the plurality of touch lines 201 include a plurality of first touch lines 2011, a plurality of second touch lines 2012 and a plurality of third touch lines 2013.
  • the non-demarcation area is an area other than the boundary area D1 in the area where the plurality of touch lines 201 are located.
  • the boundary area D1 between the adjacent first touch sub-electrodes 213 and the second touch sub-electrodes 211 refers to the portion where they are insulated and intersect with each other, while the non-insulated portion belongs to the non-boundary area.
  • the demarcation area D1 refers to the area located at the diagonal position of a touch unit 200
  • the non-demarcation area refers to a touch unit 200.
  • Other areas except the demarcation area D1.
  • a plurality of touch grids 202 defined by a plurality of first touch lines, a plurality of second touch lines and a plurality of third touch lines
  • the number of breaks set in each touch grid 202 is 2, 3, or 4
  • the number of fractures set in each touch grid 202 is 0, 1 or 2. Therefore, the number of fractures 2010 set in the multiple touch grids 202 located in the boundary area D1 The sum of is greater than the sum of the number of breaks 2010 set in multiple touch grids 202 in the non-demarcation area.
  • the orthographic projection of each touch grid 202 on the touch display panel is a hexagon, located on the adjacent first
  • the number of breaks in each touch grid defined by the multiple touch lines 201 in the boundary area D1 between the touch sub-electrode 213 and the second touch sub-electrode 211 is 2, 3 or 4.
  • the multiple touch lines located in the non- boundary area The number of breaks in each touch grid 202 defined by the control line 201 is 0, 1 or 2.
  • the orthographic projection of each touch grid 202 on the touch display panel is a hexagon.
  • area D1 in a plurality of touch grids 202 defined by a plurality of first touch lines, a plurality of second touch lines and a plurality of third touch lines, the number of fractures set in each touch grid 202 is 2, 3 or 4, and in the non-demarcation area, in the plurality of touch grids 202 defined by the plurality of first touch lines, the plurality of second touch lines and the plurality of third touch lines, each touch The number of breaks 2010 set in the touch grid 202 is 0, 1 or 2. Therefore, the sum of the number of breaks 2010 set in the multiple touch grids 202 located in the boundary area D1 is greater than the number of breaks 2010 set in the multiple touch grids 202 in the non-boundary area. The sum of the number of fractures in 2010.
  • the orthographic projection of each touch grid 202 on the touch display panel is a quadrilateral, and is located on the adjacent first touch grid.
  • the number of breaks in each touch grid 202 defined by the multiple touch lines 201 in the boundary area D1 between the sub-electrode 213 and the second touch sub-electrode 211 is 2 or 3.
  • the multiple touch lines 201 located in the non-boundary area The defined number of breaks in each touch grid 202 is 0, 1 or 2.
  • each touch grid 202 is a quadrilateral, and in the boundary area D1 , in a plurality of touch grids 202 defined by a plurality of first touch lines, a plurality of second touch lines and a plurality of third touch lines, the number of breaks set in each touch grid 202 is 2 or 3.
  • each touch grid 202 The number of set fractures is 0, 1 or 2. Therefore, the sum of the number of fractures 2010 set in the multiple touch grids 202 located in the boundary area D1 is greater than the number of fractures 2010 set in the multiple touch grids 202 in the non-demarcation area. sum.
  • the touch structure layer 20 includes a plurality of touch sub-electrodes TR, at least part of the plurality of touch sub-electrodes TR are metal touch sub-electrodes, Another part of the touch sub-electrodes TR are transparent conductive touch sub-electrodes; the ratio of the transparent conductive touch sub-electrodes in the first area 101 to the plurality of touch sub-electrodes TR is smaller than the proportion of the transparent conductive touch sub-electrodes in the second area 1021 The ratio of multiple touch sub-electrodes TR; the ratio of transparent conductive touch sub-electrodes to multiple touch sub-electrodes TR in the second area 1021 is smaller than the ratio of transparent conductive touch sub-electrodes to multiple touch sub-electrodes TR in the third area 1022 Ratio of electrode TR.
  • the touch sub-electrodes TR with pattern filling represent metal touch sub-electrodes
  • the touch sub-electrodes TR without pattern filling represent transparent conductive touch sub-electrodes.
  • the transmittance of the transparent conductive touch sub-electrodes is higher than that of the metal touch sub-electrodes. Therefore, in a region, the transparent conductive touch sub-electrodes account for a portion of the plurality of touch sub-electrodes TR. The larger the ratio, the higher the overall transmittance of a region.
  • the transmittance is the amount of incident light from the side of the touch structure layer 20 in a region that passes through the plurality of touch lines 201 and reaches the anode. The ratio of the incident amount on the layer to the total incident amount.
  • the transmittance of the first area 101 is less than the transmittance of the second area 1021, and the transmittance of the second area 1021 is less than the transmittance of the third area 1022.
  • the ratio of the touch sub-electrodes changes the transmittance of each area, thereby enhancing the reflectivity, so that the reflectivity of the first area 101, the second area 1021 and the third area 1022 is consistent, ultimately improving the problem of poor regional optics.
  • Figure 10A shows a schematic diagram of the path of light passing through the metal touch sub-electrode
  • Figure 10B shows a schematic diagram of the path of light passing through the transparent conductive touch sub-electrode.
  • the transparent conductive touch sub-electrode is transparent. The pass rate is high, and most of the light incident from the outside can pass through the transparent conductive touch sub-electrode and be incident on the anode layer 131, thereby improving the reflectivity of the light.
  • the ratio of the metal touch sub-electrodes and the transparent conductive touch sub-electrodes gradually increases.
  • Figure 9A is a partial view of the third area 1022, in which the metal touch sub-electrode occupies a smaller proportion than the transparent conductive touch sub-electrode. Therefore, the metal touch sub-electrode and the transparent conductive touch sub-electrode occupy a smaller area.
  • the ratio of the number of touch sub-electrodes is small and less than 1. For example, the ratio of metal touch sub-electrodes to transparent conductive touch sub-electrodes is 1/3.
  • Figure 9B is a partial view of the second area 1021, in which the metal touch sub-electrodes account for a similar proportion to the transparent conductive touch sub-electrodes. Therefore, the metal touch sub-electrodes and the transparent conductive touch sub-electrodes The ratio of the number of control sub-electrodes is close to 1.
  • FIG. 9C is a partial view of the first area 101 , in which the metal touch sub-electrodes occupy a larger proportion than the transparent conductive touch sub-electrodes. Therefore, the metal touch sub-electrodes and the transparent conductive touch sub-electrodes are separated from each other. The ratio of the number of control sub-electrodes is larger and greater than 1.
  • the plurality of touch sub-electrodes TR in the first area 101 are all metal touch sub-electrodes.
  • the transmittance of each area can be changed by changing the proportion of the metal touch sub-electrodes and the transparent conductive touch sub-electrodes, thereby enhancing the reflectivity, so that the first area 101 and the second area
  • the reflectivity of 1021 and the third area 1022 is consistent, ultimately improving the problem of poor optics in the area.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

提供一种触控显示面板及触控显示装置。触控显示面板包括显示面板和设置于显示面板一侧的触控面板,触控面板包括触控结构层;显示面板包括阳极层;触控结构层包括多条触控线,多条触控线定义出多个触控网格;其中,触控显示面板包括第一区和第二区,多条触控线包括位于第一区的多条第一触控线和位于第二区的多条第二触控线;多条第一触控线中至少一条第一触控线的线宽小于多条第二触控线中至少一条第二触控线的线宽;第一区和第二区的反射率相等,反射率为,来自触控结构层一侧的入射光线穿过多条触控线照射到阳极层上,再由阳极层反射至触控结构层一侧的光线与入射光线的比例。

Description

触控显示面板及触控显示装置 技术领域
本公开涉及触控技术领域,尤其涉及触控显示面板及触控显示装置。
背景技术
自触控技术兴起以来,由于其具有简单、快捷、人性化等特点,普及度越来越高,市面上具有触控功能的产品也越来越多,例如手机、平板电脑以及笔记本电脑等。
依据感应原理,触控技术可分为电阻式(Resistive)、电容式(Capacitive)、音波式(Surface Acoustic Wave)及光学式(Optics)等多种。其中,应用了电容式触控技术的触控装置由于具有高耐久性,长寿命,支持多点触控等优点,具有广阔的发展前景。
发明内容
一方面,提供一种触控显示面板,所述触控显示面板包括:显示面板和设置于所述显示面板一侧的触控面板,所述触控面板包括触控结构层;所述显示面板包括阳极层,所述触控结构层包括多条触控线,所述多条触控线定义出多个触控网格;其中,所述触控显示面板包括第一区和第二区,所述多条触控线包括位于所述第一区的多条第一触控线和位于所述第二区的多条第二触控线;所述多条第一触控线中至少一条第一触控线的线宽小于所述第二触控线中至少一条第二触控线的线宽;所述第一区和所述第二区的反射率相等,所述反射率为,来自所述触控结构层一侧的入射光线穿过所述多条触控线照射到所述阳极层上,再由所述阳极层反射至所述触控结构层一侧的光线与所述入射光线的比例。
在一些实施例中,所述触控显示面板还包括第三区,所述多条触控线包括位于所述第三区的多条第三触控线,所述多条第三触控线中至少一条第三触控线的线宽大于所述第二触控线中至少一条第二触控线的线宽。
在一些实施例中,所述多条触控线中的至少一部分触控线上设置有断口,所述第一区的断口率小于所述第二区的断口率,所述第二区的断口率小于所述第三区的断口率;所述断口率为,一区域中多条触控线中设置有断口的触控线占该区域中所有触控线的比值。
在一些实施例中,所述第一区中断口的密度,小于所述第二区中断口的密度,所述第二区中断口的密度,小于所述第三区中断口的密度;和/或,所述第一区中断口的大小,小于所述第二区断口的大小,所述第二区断口的大小, 小于所述第三区中断口的大小。
在一些实施例中,所述第一区的断口率为20%,所述第二区的断口率为23%~27%,所述第三区的断口率为28%~32%。
在一些实施例中,所述多条触控线中的至少一部分触控线上设置有开孔,所述第一区的开孔率小于所述第二区的开孔率,所述第二区的开孔率小于所述第三区的开孔率;所述开孔率为,一区域中多条触控线中设置有开孔的触控线占该区域中所有触控线的比值。
在一些实施例中,所述第一区中开孔的密度小于所述第二区中开孔的密度,所述第二区中开孔的密度小于所述第三区中开孔的密度;和/或,所述第一区中开孔的尺寸小于所述第二区中开孔的尺寸,所述第二区中开孔的尺寸小于所述第三区中开孔的尺寸。
在一些实施例中,所述第一区的开孔率为20%,所述第二区的开孔率为23%~27%,所述第三区的开孔率为28%~32%。
在一些实施例中,所述开孔在显示面板上的正投影的形状可以为圆形、矩形或椭圆。
在一些实施例中,所述多条触控线中的至少部分触控线为金属触控线,另一部分触控线为透明导电触控线;所述第一区中透明导电触控线占所述多条第一触控线的比值,小于所述第二区中透明导电触控线占所述多条第二触控线的比值;所述第二区中透明导电触控线占所述多条第二触控线的比值,小于所述第三区中透明导电触控线占所述多条第三触控线的比值。
在一些实施例中,所述第一区为触控区,所述第二区和所述第三区为非触控区;所述多条触控线中,位于所述第一区的多条触控线,和位于所述第二区和所述第三区的多条触控线之间断开。
在一些实施例中,所述第一区的断口率为20%,所述非触控区中第二区的断口率为25%~40%,所述非触控区中第三区的断口率为30%~50%。
在一些实施例中,所述触控结构层包括第一触控结构层和第二触控结构层;所述触控结构层包括多个触控子电极;所述第一触控结构层包括沿第一方向布置的多个第一触控子电极以及多个第一连接电极,所述多个第一触控子电极和所述多个第一连接电极一一交替分布且依次电连接,形成沿所述第一方向延伸的第一触控电极;所述第一触控结构层还包括沿第二方向依次布置且等间隔布置的多个第二触控子电极,所述第二触控结构层包括沿第二方向布置的多个第二连接电极,且所述多个第二触控子电极和所述多个第二连接电极一一交替分布且依次电连接,形成沿所述第二方向延伸的第二触控电极; 其中,所述第一方向与所述第二方向相交;所述多个第一触控子电极、所述多个第一连接电极、所述多个第二触控子电极和所述多个第二连接电极由所述多条触控线构成。
在一些实施例中,所述多条触控线中位于相邻的第一触控子电极与所述第二触控子电极的分界区的部分设置有分隔断口,所述多条触控线中的至少一部分触控线上设置的断口包括所述分隔断口;所述分隔断口将所在的触控线分为两隔为两条触控子线,所述两条触控子线段中的一条属于所述第一触控子电极,另一条属于所述第二触控子电极,以使所述相邻的第一触控子电极与第二触控子电极相互绝缘。
在一些实施例中,位于相邻的所述第一触控子电极与所述第二触控子电极的分界区的多条第一触控线、多条第二触控线和多条第三触控线上的断口数量大于非分界区的多条第一触控线、多条第二触控线和多条第三触控线上的断口数量;其中,所述非分界区为所述多条触控线所在的区域中除所述分界区之外的其他区域。
在一些实施例中,所述多条触控线定义的所述多个触控网格中,每一触控网格在所述显示面板上的正投影为六边形,位于相邻的所述第一触控子电极与所述第二触控子电极的分界区的所述多条触控线定义的每一触控网格的断口数量为1、2或3,位于非分界区的所述多条触控线定义的每一触控网格的断口数量为0、1或2。
在一些实施例中,所述多条触控线定义的所述多个触控网格中,每一触控网格在所述显示面板上的正投影为四边形,位于相邻的所述第一触控子电极与所述第二触控子电极的分界区的所述多条触控线定义的每一触控网格的断口数量为1或2,位于非分界区的所述多条触控线定义的每一触控网格的断口数量为0或1。
在一些实施例中,所述触控结构层包括多个触控子电极,所述多个触控子电极中的至少部分触控子电极为金属触控子电极,另一部分触控子电极为透明导电触控子电极;所述第一区中透明导电触控子电极占所述多个触控子电极的比值,小于所述第二区中透明导电触控子电极占所述多个触控子电极的比值;所述第二区中透明导电触控子电极占所述多个触控子电极的比值,小于所述第三区中透明导电触控子电极占所述多个触控子电极的比值。
在一些实施例中,所述第一区中的多个触控子电极均为金属触控子电极。
另一方面,提供触控显示装置。所述触控显示装置包括:如上一方面的任一实施例中所述的触控显示面板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1A为根据一些实施例的触控显示装置的结构图;
图1B为根据一些实施例的触控显示装置的平面图;
图1C为图1B中A区域的放大图;
图2A为现有技术的一些实施例中显示区的光线反射示意图;
图2B为现有技术的一些实施例中非显示区的光线反射示意图;
图3A为根据一些实施例的触控显示面板的结构图;
图3B为根据一些实施例的触控显示面板的平面图;
图4A为根据本公开的一些实施例的第一区中第一触控线的线宽结构图;
图4B为根据本公开的一些实施例的第二区中第二触控线的线宽结构图;
图4C为根据本公开的一些实施例的第三区中第三触控线的线宽结构图;
图5A为根据本公开的一些实施例的第一区中第一触控线的断口设置结构图;
图5B为根据本公开的一些实施例的第二区中第二触控线的断口设置结构图;
图5C为根据本公开的一些实施例的第三区中第三触控线的断口设置结构图;
图5D为触控线的非断口处的光线反射示意图;
图5E为触控线的断口处的光线反射示意图;
图6A为根据本公开的一些实施例的第一区中第一触控线的开孔设置结构图;
图6B为根据本公开的一些实施例的第二区中第二触控线的开孔设置结构图;
图6C为根据本公开的一些实施例的第三区中第三触控线的开孔设置 结构图;
图6D为根据本公开的一些实施例的触控线的非开孔处的光线反射示意图;
图6E为根据本公开的一些实施例的触控线的开孔处的光线反射示意图;
图6F为根据本公开的一些实施例的触控线的材料示意图;
图7A为根据本公开的一些实施例的触控结构层的结构图;
图7B为图7A在EE处的截面图;
图7C为图7A在EE处的另一些实施例的截面图;
图8A为根据本公开的一些实施例的一个触控单元的放大结构图;
图8B为根据本公开的一些实施例的一个触控单元的另一种放大结构图;
图9A为根据本公开的一些实施例的第三区中触控材料的设置结构图;
图9B为根据本公开的一些实施例的第二区中触控材料的设置结构图;
图9C为根据本公开的一些实施例的第一区中触控材料的设置结构图;
图10A为光线经过金属触控子电极的反射示意图;
图10B为光线经过透明导电触控子电极的反射示意图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗 示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中 所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
随着显示技术的发展,单元柔性多层(Flexible Multiple Layer on Cell,FMLOC)技术正逐步应用在有机发光二极管(Organic Light Emitting Diode,OLED)显示装置中,单元上柔性多层技术FMLOC将显示结构和触控结构集成在一起,可以满足显示技术轻薄、可折叠、窄边框的发展趋势。
目前,随着柔性产品的出现,在相关技术中,触控技术采用金属网格(Metal Mesh)结构设计,金属网格具有电阻小、厚度小和反应速度快等优点,出于产品较薄以及电阻电容负载(RC Loading)加大的考虑,将单层金属网格(Metal Mesh)设计为FMLOC结构。
在一些实施例中,如图1A所示,触控显示装置1000包括堆叠设置的显示面板10和触控结构层20,触控结构层20位于显示面板10的显示面一侧,其中,显示面板10包括阳极层,触控结构层20包括金属网格。
参照图1B和图1C,以触控显示装置1000为手机为例,手机屏幕为刘海屏,刘海屏即为在屏幕正上方有一个非显示区BB(刘海区域),除刘海区域外为显示区AA,在该刘海区域内设置有摄像头等器件,该区域需要打通孔,以在通孔内放置摄像头,用于实现触控的金属网格分布在显示区和非显示区,其中,金属网格由多条金属线201’构成,例如,如图1C所示,多条金属线围合成一个金属网格,金属网格的形状呈六边形或四边形。摄像头孔周边由于工艺条件限制,位于孔周围的金属线201’的实际线宽相对于设计线宽存在偏差,为避免这种线宽偏差做了色散补偿设计,示例性地,在靠近通孔的区域,金属线201’的线宽较大,在远离通孔的区域,金属线201’的线宽较小,如图1C所示,显示区AA中的金属网格没有做色散补偿设计,补偿值ΔCD1为0,非显示区BB中的金属网格做了色散补偿设计,补偿值ΔCD2为x,显示区AA中的金属网格的线宽小于非显示区BB中的金属网格的线宽。
然而,在暗态强反射光条件下,色散补偿设计的区域和没有色散补偿的区域会出现亮暗分区且有明显的边界光学不良问题。这种亮暗分区有明显边界的光学不良是由于侧视角下金属网格遮挡光线,阳极反射的光线量不同引起的,在与触控显示面板所在的平面呈45°一侧方向上向触控显示面板上打光,在与触控显示面板所在的平面呈45°的另一侧方向上人眼去观测,可见亮暗分区边界的光学不良现象。如图2A和图2B所示,图2A为没有光学补偿的区域(即显示区)呈现的反射情况,例如图2A表示光线穿过图1C的DD处的触控线的路径图;图2B为具有光学补偿的区域(即非显示区BB)呈现的反 射情况,例如图2B表示光线穿过图1C的CC处的触控线的路径图;根据图2A和图2B可得,没有光学补偿的区域(即显示区AA)的反射量大于具有光学补偿的区域(即非显示区BB),这是由于具有光学补偿的区域的金属线201’较宽,遮挡了部分从外界射向阳极层的光,从而造成阳极层反射光也减少,在金属网格的线宽较大的区域的阳极层反射光小于金属网格的线宽较小的区域的阳极层反射光,因此,触控显示面板中表现为亮暗分区不良,影响显示效果,从而影响用户的使用体验。
为了解决这一问题,本公开的实施例提供了一种触控显示装置1000。该触控显示装置1000可以是具有触控功能和图像显示功能的产品。例如,触控显示装置可以是具有触控功能的显示器,电视,个人计算机,笔记本电脑,广告牌,数码相框,具有显示功能的激光打印机,电话,手机,数码相机,电子画屏,便携式摄录机,取景器,监视器,导航仪,车辆,大面积墙壁或信息查询设备(如电子政务、银行、医院、电力等部门的业务查询设备),车载显示器等,本公开实施例对触控显示装置的用途不作限制。此外,该触控显示装置可以是可卷曲的或者可弯曲的柔性触控显示装置,也可以为平板状的刚性触控显示装置。又如,触控显示装置1000还可以是触控显示面板100(也可以称为触控显示屏)。又如,触控显示装置1000除了触控显示面板100之外,还可以包括其他电子器件,例如触控芯片和主板等。其中,触控芯片与触控显示面板耦接,被配置为基于触控显示面板提供的触摸信号,确定触摸位置(例如触摸坐标)。主板与触控显示面板耦接,被配置为基于触控芯片确定的触摸位置,向触控显示面板输出相应的图像数据。
以下对本公开提供的一种触控显示面板100及触控显示装置1000分别进行介绍。
在本公开中,图3A、图3B为触控显示面板100的结构图,图7A、图9A、图9B和图9C均为触控显示面板100的局部放大图,图4A~图4C,图5A~图5C,图6A~图6C、图8A和图8B为图7A、图9A、图9B和图9C的进一步放大图,图7B和图7C为图7A中在EE处的截面图,为了方便对触控显示面板100的描述,图7B和图7C仅示意出触控结构层的示意图。
本公开的一些实施例提供了一种触控显示面板100,如图3A所示,图3A为一些实施例提供的触控显示面板100的侧视图,图3B为图3A的俯视图。参见图3A和图3B,触控显示面板100包括显示面板10和设置于显示面板10一侧的触控面板20’,触控面板20’包括触控结构层20,触控结构层20包括多条触控线201,多条触控线201定义出多个触控网格202。需要说明的是, 在图3B中仅示意出一个局部区域内的触控线,实际上,触控结构层20分布在触控显示面板100的整个平面区域中。
示例性地,参见图3A,显示面板10是具有显示功能的屏幕,可以与上文中的主板耦接,被配置为接受主板发送的图像数据,并显示相应的图像。例如,显示面板10可以是自发光显示面板,例如可以为OLED(Organic Light Emiing Diode,有机发光二极管)显示面板、QLED(Quantum Dot Light Emiing Diodes,量子点发光二极管)显示面板、微LED(包括:Mini LED迷你发光二极管或Micro LED微型发光二极管)显示面板等,当触控显示装置1000中的显示面板10为液晶显示面板时,触控显示装置1000为液晶触控显示装置1000;当触控显示装置1000中的显示面板10为自发光显示面板时,触控显示装置1000为自发光触控显示装置1000。
显示面板10具有沿显示面板10的厚度方向相对的显示面和非显示面。用户可以面朝显示面板10的显示面观看画面。也就是说,显示面板10的显示面远离非显示面的一侧为供用户观看的一侧,下文将这一侧称为显示面板10的显示侧。
继续参见图3A,触控结构层20被配置为提供触摸信号,触摸信号可以反映出用户在显示面板10上的触摸位置。触控结构层20可以与上文中的触控芯片耦接,以将触控信号提供给触控芯片。
在一些可能的实施方式中,触控结构层20可以位于显示面板10的显示侧。触控结构层20可以是独立于显示面板10的一个部件;示例性地,显示面板10与触控结构层20二者均单独形成,之后二者通过诸如光学胶(Optically Clear Adhesive,简称OCA)之类的粘合剂粘合在一起。触控结构层20也可以是集成在显示面板10上的结构。示例性地,以显示面板10作为基底,在显示面板10的显示面上形成触控结构层20,此时触控结构层20与显示面板10的显示面直接接触。例如,显示面板10为OLED显示面板或QLED显示面板,该显示面板10可以包括显示基板和覆盖在显示基板上的封装层;触控结构层20可以形成在封装层上。示例性地,触控结构层20与显示面板10的显示面之间也可以设置有其他功能层。
在另一些可能的实施方式中,触控结构层20也可以设置于显示面板10的内部。示例性地,显示面板10包括相对的第一基板和第二基板,触控结构层20可以位于第一基板和第二基板之间。
在电容式触控技术的应用中,可以将用于实现触摸感测的多个膜层结构层叠设置形成触控层,触控层中包括多个触控电极。电容式触控技术可以分为 自容式触控技术和互容式触控技术等。当该触控层应用自容式触控技术时,触控电极与地构成电容,即自电容。当手指触摸触控显示装置时,手指的电容将会叠加到触控电极上,使触控电极与地构成的电容发生变化。根据触摸前后多个触控电极与地构成的电容的变化量,便可以确定触摸点的坐标,实现触摸感测。当该触控层应用互容式触控技术时,多个触控电极可以分为触控驱动电极和触控感测电极,触控驱动电极可以被配置为传输触控驱动信号,触控感测电极可以被配置为传输触控感测信号,从而在触控驱动电极和触控感测电极之间形成稳定电容。当手指触碰到触控显示装置时,会影响到触摸位置附近的触控驱动电极和触控感测电极之间的耦合,从而改变这两个触控电极之间的电容,同样根据触摸前后驱动电极和感测电极间电容的变化量,可以确定触摸点的坐标。
为了表述的简便,以下以触控显示装置应用互容式触控技术,且触控层设置在显示面板出光面的一侧,显示面板中最靠近触控层的一个膜层用做触控层的基底层为例,对本公开的方案进行解释说明。
本公开的一些实施例提供一种触控结构层,可以应用于上述的触控显示装置中,也可以应用于其它的触控装置中,对此不作过多限制。
显示面板10可以包括多个子像素,每个子像素包括相互耦接的像素驱动电路和发光器件,像素驱动电路被配置为驱动发光器件发光。像素驱动电路可以包括多个晶体管和电容器等电子器件元件。例如,像素驱动电路均可以包括三个晶体管和一个电容器,构成3T1C(即一个驱动晶体管、两个开关晶体管和一个电容器)。还可以包括三个以上的晶体管和至少一个电容器,如4T1C(即一个驱动晶体管、三个开关晶体管和一个电容器)、5T1C(即一个驱动晶体管、四个开关晶体管和一个电容器)或7T2C(即一个驱动晶体管、六个开关晶体管和两个电容器)等。其中,晶体管可以为薄膜晶体管(Thin Film Transistor,简称TFT)、场效应晶体管(Metal Oxide Semiconductor,简称MOS)或其他特性相同的开关器件。发光器件可以是OLED或QLED。
为了实现上述子像素的结构,示例性地,参见图3A,显示面板10包括:依次层叠设置的基底11、像素驱动电路层12、发光器件层13和第一封装层14,其中发光器件层13包括阳极层131,第一封装层14可以为封装薄膜,也可以为封装基板。
上述基底11的结构可以根据实际需要选择设置。
例如,基底11可以为刚性基底。该刚性基底例如可以包括玻璃基底PMMA(Polymethyl methacrylate,聚甲基丙烯酸甲酯)。在此情况下,上述显示 面板10可以为刚性显示面板。
又如,基底11可以为柔性基底。该柔性基底例如可以包括PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)基底、PEN(Polyethylene naphthalate two formic acid glycol ester,聚萘二甲酸乙二醇酯)基底或PI(Polyimide,聚酰亚胺)基底。在此情况下,上述显示面板10可以为柔性显示面板。
在一些实施例中,触控显示面板100还包括位于显示面板10远离触控结构层20一侧的玻璃盖板15,以对显示面板10形成保护。
在一些实施例中,触控面板20’还包括第二封装层26,第二封装层26将触控结构层20包覆封装,以使触控结构层与外部隔绝。其中,第二封装层26的材料可以是氮化物、氧化物、氮氧化物、硝酸盐、碳化物或其任何组合等无机绝缘材料,当然,也可以是有机绝缘材料,例如,腈纶、六甲基二硅氧皖、聚丙烯酸酯类、聚碳酸脂类、聚苯乙烯等材料。
参照图3B,图3B为触控显示面板100的平面图,其中,触控显示面板100包括第一区101(触控区)和非触控区102,其中第一区101为触控显示面板100上用于显示画面的区域,同时第一区101也能实现触控,对应图1B中的显示区AA。非触控区102嵌设在第一区101内部,例如,在一些实施例中,触控显示面板10为刘海屏,在刘海区域不显示画面,刘海区域为非触控区102,第一区101半包围非触控区102,其中,非触控区102包括第二区1021以及通孔区域1023,在通孔区域1023设置有摄像头等器件。
其中,如图4A和图4B所示,多条触控线201包括位于第一区101的多条第一触控线2011和位于第二区1021的多条第二触控线2012;多条第一触控线2011中至少一条第一触控线2011的线宽小于多条第二触控线2012中至少一条第二触控线2012的线宽。这是由于在通孔区域1023的周边会受到工艺条件限制,触控线201的线宽在通孔区域1023的周边会发生偏差,为避免触控线201的线宽的偏差做了光学补偿设计,使得多条触控线201中靠近通孔区域1023的触控线201的线宽越大,而第二区1021相较于第一区101更靠近通孔区域1023的位置,因此,多条第一触控线2011中至少一条第一触控线2011的线宽小于多条第二触控线2012中至少一条第二触控线2012的线宽,具体参照前边的介绍。
如图4A、图4B和图4C所示,第一触控线2011的线宽为L1,第二触控线2012的线宽为L2,第三触控线2013的线宽为L3,从图中可以得出,L1<L2<L3,其中,如前所述,触控线201的线宽越宽,从外界进入的入射光中 被触控线201遮挡的越多,侧视角下遮挡的阳极层反射光越多,因此,表现为亮暗分区不良,影响显示效果。
示例性地,触控显示面板100可以是矩形,也可以是圆角矩形等与矩形类似的形状。
在一些实施例中,本公开提供的触控显示面板100中,第一区101和第二区1021的反射率相等,反射率为,来自触控结构层20一侧的入射光线穿过多条触控线201照射到阳极层131上,再由阳极层131反射至触控结构层20一侧的光线与入射光线的比例。光线路径示意图可以参照图2A和图2B。
可以理解的是,在第一区101和第二区1021反射率相等的情况下,反射量也相同,因此,即便整个触控显示面板100中不同区域的触控线201的线宽不同,由于第一区101和第二区1021的反射率设置为相等,也即入射光线穿过多条触控线201照射到阳极层131上,再由阳极层131反射至触控结构层20一侧的光线与入射光线的比例相等,触控显示面板100的显示画面不会表现为亮暗分区不良,可以减少反光结构的可视化风险,能够提升触控显示面板100的显示效果。
在一些实施例中,继续参照图3B,触控显示面板100还包括第三区1022。其中,第三区1022为非触控区102中的一部分区域,且非触控区102包括两个通孔区域1023,第三区1022位于非触控区102的两个通孔区域1023之间,非触控区102中除通孔区域1023和第三区1022之外的区域为第二区1021。
其中,如图4C所示,多条触控线201还包括位于第三区1022的多条第三触控线2013,多条第三触控线201中至少一条第三触控线2013的线宽大于第二触控线2012中至少一条第二触控线2012的线宽。
结合上述介绍及图4A和图4B所示可得,多条第一触控线2011中至少一条第一触控线2011的线宽小于多条第二触控线2012中至少一条第二触控线2012的线宽,多条第二触控线2012中至少一条第二触控线2012的线宽小于多条第三触控线2013中至少一条第三触控线2013的线宽。这是由于在通孔区域1023的周边会受到工艺条件限制,触控线201的线宽在通孔区域1023的周边会发生偏差,为避免触控线201的线宽的偏差做了光学补偿设计,使得多条触控线201中靠近通孔区域1023的触控线201的线宽越大,而第三区1022相较于第一区101和第二区1021更靠近通孔区域1023的位置,因此,多条第一触控线2011中至少一条第一触控线2011的线宽小于多条第二触控线2012中至少一条第二触控线2012的线宽,多条第二触控线2012中至少一条第二触控线2012的线宽小于多条第三触控线2013中至少一条第三触控线 2013的线宽,具体参照前边的介绍。
在一些实施例中,第三区1022的反射率与第一区101和第二区1021的反射率相等。可以理解的是,在第一区101、第二区1021和第三区1022的反射率相等的情况下,反射量也相同,因此,即便整个触控显示面板100中不同区域的触控线201的线宽不同,由于第一区101、第二区1021和第三区1022的反射率相等,也即入射光线穿过多条触控线201照射到阳极层131上,再由阳极层131反射至触控结构层20一侧的光线与入射光线的比例相等,进而触控显示面板100的显示画面不会表现为亮暗分区不良,可以减少反光结构的可视化风险,能够提升触控显示面板100的显示效果。
以下介绍使得触控显示面板100的第一区101、第二区1021和第三区1022的反射率相等的几种实施例。
在一种实现方式中,参照图5A、图5B和图5C所示,图5A、图5B和图5C分别表示第一区101、第二区1021和第三区1022的触控线的排布结构图,多条触控线201中的至少一部分触控线201上设置有断口2010,其中,一条触控线201上设置有断口2010是指该触控线201从断口2010处断开,即触控线201的一部分在断口2010处缺失,在断口2010处,从外界射入的光线没有被遮挡,光线能够穿过断口2010入射到阳极层131上,从而能够提高光线的反射率。
如图5D和图5E所示,图5D表示在触控线201没有设置断口2010的位置处,光线的路径示意图,图5E表示在触控线201设置断口2010的位置处,光线的路径示意图,可见,在断口2010处,从外界射入的光线没有被遮挡,光线能够穿过断口2010入射到阳极层131上,从而能够提高光线的反射率。
在一些实施方式中,第一区101的断口率小于第二区1021的断口率,第二区1021的断口率小于第三区1022的断口率;其中,断口率为,一区域中多条触控线201中设置有断口2010的触控线201占该区域中所有触控线201的比值。参照图4A、图4B和图4C所示,由于第一区101、第二区1021和第三区1022的触控线201的线宽关系为L1<L2<L3,即第三触控线2013的线宽最宽,遮挡光线最多,因此将第一区101、第二区1021和第三区1022的断口率的关系如上述设置,可以保证第一区101、第二区1021和第三区1022的反射率相等,触控显示面板100的显示画面不会表现为亮暗分区不良,可以减少反光结构的可视化风险,能够提升触控显示面板100的显示效果。
在一些实施例中,继续参照图5A、图5B和图5C,第一区101中断口2010的密度,小于第二区1021中断口2010的密度,第二区1021中断口2010 的密度,小于第三区1022中断口2010的密度。
需要说明的是,断口2010的密度反应各个区域的疏密程度或断口2010数量,通过设置第一区101中断口2010的密度,小于第二区1021中断口2010的密度,第二区1021中断口2010的密度,小于第三区1022中断口2010的密度,可以理解为第一区101中断口2010排布较第二区1021中断口2010排布稀疏,第二区1021中断口2010排布较第三区1022中断口2010排布稀疏,同样,也可以理解为第一区101中断口2010的数量,小于第二区1021中断口2010的数量,第二区1021中断口2010的数量,小于第三区1022中断口2010的数量,因此将第一区101、第二区1021和第三区1022的断口2010的密度关系如上述设置,可以保证第一区101、第二区1021和第三区1022的反射率相等,进而触控显示面板100的显示画面不会表现为亮暗分区不良,可以减少反光结构的可视化风险,能够提升触控显示面板100的显示效果。
在另一些实施例中,第一区101中断口2010的大小,小于第二区1021中断口2010的大小,第二区1021中断口2010的大小,小于第三区1022中断口2010的大小。
需要说明的是,断口2010的大小反应断口2010的面积尺寸,第一区101中断口2010的大小,小于第二区1021中断口2010的大小,第二区1021中断口2010的大小,小于第三区1022中断口2010的大小,可以理解为,第一区101中断口2010的面积尺寸,小于第二区1021中断口2010的面积尺寸,第二区1021中断口2010的面积尺寸,小于第三区1022中断口2010的面积尺寸,因此将第一区101、第二区1021和第三区1022的断口2010的面积尺寸关系如上述设置,可以保证第一区101、第二区1021和第三区1022的反射率相等,进而触控显示面板100的显示画面不会表现为亮暗分区不良,可以减少反光结构的可视化风险,能够提升触控显示面板100的显示效果。
在一些实施例中,在第一区101、第二区1021和第三区1022中,断口2010的设置方式也可以为上述两种实施例的结合,即第一区101中断口2010的密度,小于第二区1021中断口2010的密度,第二区1021中断口2010的密度,小于第三区1022中断口2010的密度;并且第一区101中断口2010的大小,小于第二区1021中断口2010的大小,第二区1021中断口2010的大小,小于第三区1022中断口2010的大小。示例性地,上述两种实施例的结合,将第一区101、第二区1021和第三区1022的断口2010的密度和面积尺寸关系如上述设置,可以保证第一区101、第二区1021和第三区1022的反射率相等,进而触控显示面板100的显示画面不会表现为亮暗分区不良,可以 减少反光结构的可视化风险,能够提升触控显示面板100的显示效果。
在一些实施例中,第一区101的断口率为20%,第二区1021的断口率为23%~27%,第三区1022的断口率为28%~32%。
示例性地,例如,第一区101的断口率为20%,第二区1021的断口率为23%,第三区1022的断口率为28%,又例如,第一区101的断口率为20%,第二区1021的断口率为25%,第三区1022的断口率为30%,再例如,第一区101的断口率为20%,第二区1021的断口率为27%,第三区1022的断口率为32%等,上述关于不同区域设置不同的断口率中,第一区101的断口率小于第二区1021的断口率,第二区1021的断口率小于第三区1022的断口率,通过这样的设置,可以让更多的来自触控结构层20一侧的入射光线穿过多条触控线201的多个断口2010处,照射到阳极层131上,再由阳极层131反射至触控结构层20一侧,增强反射率,不同的断口率可以改变反射率,在取得上述示例中不同区域对应的断口率时,能够使得第一区101、第二区1021和第三区1022的反射率一致,最终改善区域光学不良的问题。
在另一种实现方式中,如图6A、图6B和图6C所示,图6A、图6B和图6C分别表示第一区101、第二区1021和第三区1022的触控线的结构图,多条触控线201中的至少一部分触控线201上设置有开孔2020,其中,开孔2020为在触控线201上设置的孔,即触控线201的一部分在开孔2020处缺失,在开孔2020处,从外界射入的光线没有被遮挡,光线能够穿过开孔2020入射到阳极层131上,从而能够提高光线的反射率。
开孔2020与断口2010的区别是,在开设有开孔2020的触控线201中,该触控线201依旧为连接状态,在设置有断开的触控线201中,该触控线201被断开,一分为二,这两种设计均能提高外界入射的光线射入阳极层131上的入射率。
如图6D和图6E所示,图6D表示在触控线201没有设置开孔2020的位置处,光线的路径示意图,图6E表示在触控线201设置开孔2020的位置处,光线的路径示意图,可见,在开孔2020处,从外界射入的光线没有被遮挡,光线能够穿过开孔2020入射到阳极层131上,从而能够提高光线的反射率。
在一些实施方式中,第一区101的开孔率小于第二区1021的开孔率,第二区1021的开孔率小于第三区1022的开孔率;其中,开孔率为,一区域中多条触控线201中设置有开孔2020的触控线201占该区域中所有触控线201的比值。参照图4A、图4B和图4C所示,由于第一区101、第二区1021和第三区1022的触控线201的线宽关系为L1<L2<L3,即第三触控线2013的 线宽最宽,遮挡光线最多,因此将第一区101、第二区1021和第三区1022的断口率的关系如上述设置,可以保证第一区101、第二区1021和第三区1022的反射率相等,触控显示面板100的显示画面不会表现为亮暗分区不良,可以减少反光结构的可视化风险,能够提升触控显示面板100的显示效果。
在一些实施例中,第一区101中开孔2020的密度小于第二区1021中开孔2020的密度,第二区1021中开孔2020的密度小于第三区1022中开孔2020的密度。
需要说明的是,开孔2020的密度反应各个区域的疏密程度或开孔2020数量,通过设置第一区101中开孔2020的密度,小于第二区1021中开孔2020的密度,第二区1021中开孔2020的密度,小于第三区1022中开孔2020的密度,可以理解为第一区101中开孔2020排布较第二区1021中开孔2020排布稀疏,第二区1021中开孔2020排布较第三区1022中开孔2020排布稀疏,同样,也可以理解为第一区101中开孔2020的数量,小于第二区1021中开孔2020的数量,第二区1021中开孔2020的数量,小于第三区1022中开孔2020的数量,因此将第一区101、第二区1021和第三区1022的开孔2020的密度关系如上述设置,可以保证第一区101、第二区1021和第三区1022的反射率相等,进而触控显示面板100的显示画面不会表现为亮暗分区不良,可以减少反光结构的可视化风险,能够提升触控显示面板100的显示效果。
在另一些实施例中,第一区101中开孔2020的尺寸小于第二区1021中开孔2020的尺寸,第二区1021中开孔2020的尺寸小于第三区1022中开孔2020的尺寸。
需要说明的是,开孔2020的尺寸反应开孔2020的面积尺寸,第一区101中开孔2020的尺寸,小于第二区1021中开孔2020的尺寸,第二区1021中开孔2020的尺寸,小于第三区1022中开孔2020的尺寸,可以理解为,第一区101中开孔2020的面积尺寸,小于第二区1021中开孔2020的面积尺寸,第二区1021中开孔2020的面积尺寸,小于第三区1022中开孔2020的面积尺寸,因此将第一区101、第二区1021和第三区1022的开孔2020的面积尺寸关系如上述设置,可以保证第一区101、第二区1021和第三区1022的反射率相等,进而触控显示面板100的显示画面不会表现为亮暗分区不良,可以减少反光结构的可视化风险,能够提升触控显示面板100的显示效果。
在一些实施例中,在第一区101、第二区1021和第三区1022中,开孔2020的设置方式也可以为上述两种实施例的结合,即第一区101中开孔2020的密度,小于第二区1021中开孔2020的密度,第二区1021中开孔2020的 密度,小于第三区1022中开孔2020的密度;并且第一区101中开孔2020的尺寸,小于第二区1021中开孔2020的尺寸,第二区1021中开孔2020的尺寸,小于第三区1022中开孔2020的尺寸。示例性地,上述两种实施例的结合,将第一区101、第二区1021和第三区1022的开孔2020的密度和面积尺寸关系如上述设置,可以保证第一区101、第二区1021和第三区1022的反射率相等,进而触控显示面板100的显示画面不会表现为亮暗分区不良,可以减少反光结构的可视化风险,能够提升触控显示面板100的显示效果。
在一些实施例中,第一区101的开孔率为20%,第二区1021的开孔率为23%~27%,第三区1022的开孔率为28%~32%。
示例性地,例如,第一区101的开孔率为20%,第二区1021的开孔率为23%,第三区1022的开孔率为28%,又例如,第一区101的开孔率为20%,第二区1021的开孔率为25%,第三区1022的开孔率为30%,再例如,第一区101的开孔率为20%,第二区1021的开孔率为27%,第三区1022的开孔率为32%等,上述关于不同区域设置不同的开孔率中,第一区101的开孔率小于第二区1021的开孔率,第二区1021的开孔率小于第三区1022的开孔率,通过这样的设置,可以让更多的来自触控结构层20一侧的入射光线穿过多条触控线201的多个开孔2020处,照射到阳极层131上,再由阳极层131反射至触控结构层20一侧,增强反射率,不同的开孔率可以改变反射率,在取得上述示例中不同区域对应的开孔率时,能够使得第一区101、第二区1021和第三区1022的反射率一致,最终改善区域光学不良的问题。
在一些实施例中,开孔2020在显示面板10上的正投影的形状可以为圆形、矩形或椭圆。
示例性地,开孔2020在显示面板10上的正投影的形状为圆形,矩形和椭圆等,这里对形状不作限定。其中,在第一区101、第二区1021和第三区1022上设置的开孔2020的最大尺寸对应小于第一触控线2011、第二触控线2012和第三触控线2013的线宽。
在再一种实现方式中,如图6A~图6C所示,多条触控线201中的至少一部分触控线201上设置有开孔2020,至少另一部分触控线201上设置有断口2010,且第一区101的断口率小于第二区1021的断口率,第二区1021的断口率小于第三区1022的断口率,和/或,第一区101的开孔率小于第二区1021的开孔率,第二区1021的开孔率小于第三区1022的开孔率。示例性地,第一区101的断口率与开孔率之和,小于第二区1021的断口率与开孔率之和,且小于第三区1022的断口率与开孔率之和,在各区域中,对断口2010的密 度和大小,以及开孔2020的密度和尺寸设置不设限,只要能满足使得第一区101、第二区1021和第三区1022的反射率相等即可。
在又一种实现方式中,如图6F所示,多条触控线201中的至少部分触控线201为金属触控线201a,另一部分触控线201为透明导电触控线201b;在图6F中,以无图案填充的触控线作为透明导电触控线201b,有图案填充的触控线作为金属触控线201a。第一区101中透明导电触控线201b占多条第一触控线201的比值,小于第二区1021中透明导电触控线201b占多条第二触控线201的比值;第二区1021中透明导电触控线201b占多条第二触控线201的比值,小于第三区1022中透明导电触控线201b占所述多条第三触控线201的比值。
在上述实施例中,透明导电触控线201b的透过率较金属触控线201a的透过率较高,因此,一区域中,透明导电触控线201b占多条第一触控线201的比值越大,则一区域的整体透过率越高,其中,透过率为,一区域中来自触控结构层20一侧的入射光线中,穿过多条触控线201的照射到阳极层上的入射量与整个入射总量的比值。
在一些示例中,金属触控线201a的材料为镁铝合金(MgAl)和锂铝合金(LiAl)等合金或者镁(Mg)、铝(Al)、锂(Li)和银(Ag),透明导电触控线201b的材料为氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)、氧化锌(ZnO)、氧化铟(In 2O 3)、氧化铝锌(AZO)和碳纳米管。
示例性地,第一区101的透过率小于第二区1021的透过率,第二区1021的透过率小于第三区1022的透过率,通过设置触控线201材质的比例来改变各区域的透过率,进而增强反射率,使得第一区101、第二区1021和第三区1022的反射率一致,最终改善区域光学不良的问题,从而增强触控显示面板100的显示效果。
如图6F所示,在一种实现方式中,多条触控线201中的至少一部分触控线201上设置有开孔2020,至少另一部分触控线201上设置有断口2010,且多条触控线201中的至少部分触控线201为金属触控线201a,另一部分触控线201为透明导电触控线201b,也就是说可以将触控线201上设置有开孔2020、触控线201上设置有断口2010,触控线201采用不同材料等多种方式自由组合,只要能满足使得第一区101、第二区1021和第三区1022的反射率相等即可。
在一些实施例中,第一区101为触控区,第二区1021和所述第三区1022 为非触控区;多条触控线201中,位于第一区101的多条触控线201,和位于第二区1021和第三区1022的多条触控线201之间断开。
示例性地,第一区101为触控显示面板100上用于显示画面的区域,且能实现触控,非触控区102不用于显示画面,不需要触控功能,第一区101和非触控区102之间可以不存在电性连接关系,也即二者之间电绝缘,所以,在设置位于第一区101和位于非触控区102的多条触控线201时,处于第一区101和非触控区102边界的多条触控线201之间可以断开连接,这样多条触控线中的断口密度可以进一步扩大。
在一些实施例中,在位于第一区101的多条触控线201,和位于第二区1021和第三区1022的多条触控线201之间断开的情况下,第一区101的断口率为20%,非触控区102中第二区1021的断口率为25%~40%,非触控区102中第三区1022的断口率为30%~50%。
示例性地,例如,第一区101的断口率为20%,第二区1021的断口率为25%,第三区1022的断口率为30%,又例如,第一区101的断口率为20%,第二区1021的断口率为30%,第三区1022的断口率为40%,再例如,第一区101的断口率为20%,第二区1021的断口率为40%,第三区1022的断口率为50%等,上述关于不同区域因第一区101和非触控区102边界的多条触控线201之间可以断开连接,对应断口率的不同,其中,第一区101的断口率小于第二区1021的断口率,第二区1021的断口率小于第三区1022的断口率,通过这样的设置,可以让更多的来自触控结构层20一侧的入射光线穿过多条触控线201的多个断口2010处,照射到阳极层131上,再由阳极层131反射至触控结构层20一侧,增强反射率,不同的断口率可以改变反射率,在取得上述示例中不同区域对应的断口率时,能够使得第一区101、第二区1021和第三区1022的反射率一致,最终改善区域光学不良的问题,从而增强触控显示面板100的显示效果。
在一些实施例中,参照图7A所示,触控结构层20包括第一触控结构层21和第二触控结构层22,第一触控结构层21和第二触控结构层22的相对位置可以互换,例如第一触控结构层21位于第二触控结构层22远离显示面板一侧,或者第一触控结构层21位于第二触控结构层22靠近显示面板一侧,图7A示意出第二种情况。触控结构层20包括多个触控子电极TR,第一触控结构层21包括沿第一方向X布置的多个第一触控子电极213以及多个第一连接电极212,多个第一触控子电极213和多个第一连接电极212一一交替分布且依次电连接,形成沿第一方向X延伸的多条第一触控电极210;第一触 控结构层21还包括沿第二方向Y依次布置且等间隔布置的多个第二触控子电极211,第二触控结构层22包括沿第二方向Y布置的多个第二连接电极214,且多个第二触控子电极211和多个第二连接电极214一一交替分布且依次电连接,形成沿第二方向Y延伸的第二触控电极220;其中,第一方向X与第二方向Y相交,多个第一触控子电极213、多个第一连接电极212、多个第二触控子电极211和所述多个第二连接电极214由多条触控线201构成。
示例性地,图7A示出了本公开至少一实施例提供的触控结构层20的结构图。如图7A所示,该触控结构层20包括沿第一方向X延伸的多条第一触控电极210和沿第二方向Y延伸的多条第二触控电极220。例如,在图7A中,该第一触控电极210为触控感测电极Tx,第二触控电极220为触控驱动电极Rx,本公开实施例并不对此进行限制,在其他示例中,第一触控电极210可以是触控驱动电极,第二触控电极220为触控感测电极。
在一些实施例中,每条第一触控电极210包括沿第一方向X依次布置且彼此连接的第一触控子电极213,每条第二触控电极220包括沿第二方向Y依次布置且彼此连接的第二触控子电极211。示例性地,如图7A所示,每个第一触控子电极213和第二触控子电极211的主体轮廓均为菱形。在其他示例中,该第一触控子电极213和第二触控子电极211也可以是其他形状,如三角形、条形等形状,这里并不对此形状作限定。
其中,在第一方向X上相邻的第一触控子电极213通过第一连接电极212电连接形成第一触控电极210,在第二方向Y上相邻的第二触控子电极211通过第二连接电极214电连接形成多条第二触控电极220。
在一些实施例中,多个第二连接电极214与多个第二触控子电极211为异层设置,可选的,多个第二连接电极214与多个第二触控子电极211的相对位置关系可以有两种情形,如图7B所示,多个第二连接电极214位于多个第二触控子电极211远离显示面板10一侧。或者,如图7C所示,多个第二连接电极214也可以位于多个第二触控子电极211靠近显示面板10一侧。
请参照图7B,图7B为图7A在EE处的截面图,图7B中示出了第二连接电极214位于第二触控子电极211远离显示面板10一侧的实施例,其中,第二连接电极214的两端均可以通过至少一个过孔P与第二触控子电极211电连接。
示例性地,第二连接电极214的两端可以通过两个过孔P与第二触控子电极211电连接,能够提升第二连接电极214与第二触控子电极211电连接的可靠性,同时可以降低第二连接电极214与第二触控子电极211的等效电 阻,从而降低显示面板的功耗,提升显示以及触控效果。
请参照图7C,图7C为图7A在EE处的另一些实施例的截面图,图7C中示出了第二连接电极214位于第二触控子电极211靠近显示面板10一侧的实施例,其中,第二连接电极214的两端均可以通过至少一个过孔P与第二触控子电极211电连接。
示例性地,第二连接电极214的两端可以通过两个过孔P与第二触控子电极211电连接,能够提升第二连接电极214与第二触控子电极211电连接的可靠性,同时可以降低第二连接电极214与第二触控子电极211的等效电阻,从而降低显示面板的功耗,提升显示以及触控效果。
继续参照图7B和图7C,触控面板20’还包括绝缘层23、缓冲层24和保护层25。其中,绝缘层23设置于第二连接电极214与第二触控子电极211之间,也即绝缘层23延展于第一触控结构层21与第二触控结构层22之间,绝缘层23能够使第一触控结构层21与第二触控结构层22之间绝缘。缓冲层24设置于触控结构层20靠近显示面板10一侧,触控结构层20与缓冲层24可以直接接触。保护层25设置于触控结构层20远离显示面板10的一侧,保护层25覆盖触控结构层20,主要用于保护触控结构层20,保护层25具有较高抗氧化性能的材料,能够阻挡外界的水和氧气,避免对触控结构层20造成腐蚀。
示例性地,请参见图3A,绝缘层23、缓冲层24和保护层25可以相当于前文中的第二封装层26,保护层25的材料可以参照上文中第二封装层26的介绍。例如,可以是氧化硅、氧化铝和氮硅化合物(SiNx)等无机绝缘材料,当然,也可以是有机绝缘材料,其中,保护层25与绝缘层23,二者的材料可以相同,也可以不同。
作为一种可能的设计,缓冲层24与绝缘层23,二者的材料可以相同,例如,氮化硅或聚酰亚胺(Polyimide),也可以不同。
如图7A所示,每条第一触控电极210和每条第二触控电极220彼此绝缘交叉并在交叉处形成多个触控单元200,每个触控单元200包括在交叉处连接的两个第一触控电极部的各一部分以及在该交叉处连接的两个第二触控电极部的各至少一部分。如图8A所示,图8A中示出了一个触控单元200的放大结构图,从图8A中可知,多个第一触控子电极213、多个第一连接电极212、多个第二触控子电极211和多个第二连接电极214由多条触控线构成。其中,每个触控单元200包括彼此邻接的两个第一触控子电极213的各一半区域以及彼此邻接的两个第二触控子电极211的各一半区域,也即平均包括一个第 一触控子电极213的区域和一个第二触控子电极211的区域,每个触控单元200中的交汇点(也即第一连接电极212与第二连接电极214的交叉处)形成用于计算做坐标的基准点。当手指触摸到触摸屏时,影响了触摸点附近第一触控子电极213和第二触控子电极211之间的耦合,从而改变了这两个电极之间的互容量。触控感测信号根据触摸屏电容变化量而改变,由此可以基于基准点计算处每一个触摸点的坐标。例如,每个触控单元200的面积与人的手指接触触控显示面板100的面积相当,该触控单元200的面积过大可能会造成面板上出现触控盲点,过小则会造成误触信号。
示例性地,每个触控单元200的平均边长为L,L的大小范围为3.5mm~5mm,例如L为4mm;因为人的手指与触控显示面板100接触的直径约为4mm左右。每个触控单元200的平均边长与每个第一触控子电极213的平均对角线长度以及每个第二触控子电极211的平均对角线长度相同,也与相邻的第一触控子电极213的中心距离、相邻的第二触控子电极211的中心距离相同。
在一些实施例中,如图8A所示,多条触控线201中位于相邻的第一触控子电极213与第二触控子电极211的分界区D1的部分设置有分隔断口20101,多条触控线201中的至少一部分触控线201上设置的断口2010包括分隔断口20101。
其中,分隔断口20101将所在的触控线201分隔为两条触控子线20100,例如每个分隔断口20101位于所在的第一触控线的中部,两条触控子线20100中的一条属于第一触控子电极213,另一条属于第二触控子电极211,以使所述相邻的第一触控子电极213与第二触控子电极211相互绝缘。
可以理解的是,这里的触控子线20100可以为第一触控线、第二触控线或第三触控线的一部分,即分隔断口20101将所在的触控线201分隔为两条第一触控线、第二触控线或第三触控线。
本公开的至少一实施例提供的第一触控子电极213与第二触控子电极211相互绝缘通过断口2010实现,相较于通过设置虚拟(dummy)电极进行绝缘,可以提高触控电极的设置面积,提高触控电极的密度,从而提高触控的灵敏度。
在一些实施例中,位于相邻的第一触控子电极213与第二触控子电极211的分界区D1的多条触控线201上的断口2010数量大于非分界区的多条触控线201上的断口2010数量,多条触控线201包括多条第一触控线2011、多条第二触控线2012和多条第三触控线2013。其中,非分界区为多条触控线201所在的区域中除分界区D1之外的其他区域。
需要说明的是,相邻的第一触控子电极213与第二触控子电极211的分界区D1是指彼此绝缘交叉的部分,而处于非绝缘的部分属于非分界区。例如,在一个触控单元200中,如图8A和图8B所示,分界区D1是指位于一个触控单元200的对角线位置的区域,非分界区是指一个触控单元200中,除分界区D1之外的其他区域。
示例性地,继续参照图8A和图8B,在分界区D1,多条第一触控线、多条第二触控线和多条第三触控线定义的多个触控网格202中,每一触控网格202中设置的断口数量为2、3、或4,而在非分界区中,多条第一触控线、多条第二触控线和多条第三触控线定义的多个触控网格202中,每一触控网格202中设置的断口数量为0、1或2,因此,位于分界区D1多个触控网格202中设置的断口2010数量的总和大于非分界区多个触控网格202中设置的断口2010数量的总和。
在一些实施例中,多条触控线201定义的多个触控网格202中,每一触控网格202在触控显示面板上的正投影为六边形,位于相邻的第一触控子电极213与第二触控子电极211的分界区D1的多条触控线201定义的每一触控网格的断口数量为2、3或4,位于非分界区的多条触控线201定义的每一触控网格202的断口数量为0、1或2。
示例性地,如图8A所示,多条触控线201定义的多个触控网格202中,每一触控网格202在触控显示面板上的正投影为六边形,在分界区D1,多条第一触控线、多条第二触控线和多条第三触控线定义的多个触控网格202中,每一触控网格202中设置的断口数量为2、3或4,而在非分界区中,多条第一触控线、多条第二触控线和多条第三触控线定义的多个触控网格202中,每一触控网格202中设置的断口数量为0、1或2,因此,位于分界区D1多个触控网格202中设置的断口2010数量的总和大于非分界区多个触控网格202中设置的断口2010数量的总和。
在一些实施例中,多条触控线201定义的多个触控网格202中,每一触控网格202在触控显示面板上的正投影为四边形,位于相邻的第一触控子电极213与第二触控子电极211的分界区D1的多条触控线201定义的每一触控网格202的断口数量为2或3,位于非分界区的多条触控线201定义的每一触控网格202的断口数量为0、1或2。
示例性地,如图8B所示,多条触控线201定义的多个触控网格202中,每一触控网格202在触控显示面板上的正投影为四边形,在分界区D1,多条第一触控线、多条第二触控线和多条第三触控线定义的多个触控网格202中, 每一触控网格202中设置的断口数量为2或3,而在非分界区中,多条第一触控线、多条第二触控线和多条第三触控定义的多个触控网格202中,每一触控网格202中设置的断口数量为0、1或2,因此,位于分界区D1多个触控网格202中设置的断口2010数量的总和大于非分界区多个触控网格202中设置的断口2010数量的总和。
在一些实施例中,如图9A~图9C,触控结构层20包括多个触控子电极TR,多个触控子电极TR中的至少部分触控子电极TR为金属触控子电极,另一部分触控子电极TR为透明导电触控子电极;第一区101中透明导电触控子电极占多个触控子电极TR的比值,小于第二区1021中透明导电触控子电极占多个触控子电极TR的比值;第二区1021中透明导电触控子电极占多个触控子电极TR的比值,小于第三区1022中透明导电触控子电极占多个触控子电极TR的比值。
需要说明的是,在图9A~图9C中,有图案填充的触控子电极TR表示金属触控子电极,无图案填充的触控子电极TR表示透明导电触控子电极。
在一些实施例中,透明导电触控子电极的透过率较金属触控子电极的透过率较高,因此,一区域中,透明导电触控子电极占多个触控子电极TR的比值越大,则一区域的整体透过率越高,其中,透过率为,一区域中来自触控结构层20一侧的入射光线中,穿过多条触控线201的照射到阳极层上的入射量与整个入射总量的比值。
示例性地,第一区101的透过率小于第二区1021的透过率,第二区1021的透过率小于第三区1022的透过率,通过设置金属触控子电极和透明导电触控子电极的比例来改变各区域的透过率,进而增强反射率,使得第一区101、第二区1021和第三区1022的反射率一致,最终改善区域光学不良的问题。
如图10A和图10B所示,图10A表示光线穿过金属触控子电极的路径示意图,图10B表示光线穿过透明导电触控子电极的路径示意图,可见,透明导电触控子电极的透过率较高,从外界射入的大部分光线能够透过透明导电触控子电极入射到阳极层131上,从而能够提高光线的反射率。
在一些实施例中,在第三区1022、第二区1021和第一区101中,金属触控子电极和透明导电触控子电极的比值逐渐增大。
示例性地,如图9A所示,图9A为第三区1022的局部图,其中,金属触控子电极较透明导电触控子电极占比较小,所以,金属触控子电极与透明导电触控子电极的数量比值较小,且小于1,例如,金属触控子电极与透明导电触控子电极比值为1/3。
示例性地,如图9B所示,图9B为第二区1021的局部图,其中,金属触控子电极较透明导电触控子电极占比相当,所以,金属触控子电极与透明导电触控子电极的数量比值接近于1。
示例性地,如图9C所示,图9C为第一区101的局部图,其中,金属触控子电极较透明导电触控子电极占比较大,所以,金属触控子电极与透明导电触控子电极的数量比值较大,且大于1。
在一些实施例中,第一区101中的多个触控子电极TR均为金属触控子电极。
示例性地,通过以上设置,能够通过改变金属触控子电极和透明导电触控子电极的占比,来改变各区域的透过率,进而增强反射率,使得第一区101、第二区1021和第三区1022的反射率一致,最终改善区域光学不良的问题。
本公开的上述实施例中的触控显示装置1000的有益效果和上述一些实施例所述的触控显示面板100的有益效果相同,此处不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种触控显示面板,包括:
    显示面板;所述显示面板包括阳极层;
    设置于所述显示面板一侧的触控面板,所述触控面板包括触控结构层;所述触控结构层包括多条触控线,所述多条触控线定义出多个触控网格;
    其中,所述触控显示面板包括第一区和第二区,所述多条触控线包括位于第一区的多条第一触控线和位于第二区的多条第二触控线;所述多条第一触控线中至少一条第一触控线的线宽小于所述多条第二触控线中至少一条第二触控线的线宽;
    所述第一区和所述第二区的反射率相等,所述反射率为,来自所述触控结构层一侧的入射光线穿过所述多条触控线照射到所述阳极层上,再由所述阳极层反射至所述触控结构层一侧的光线与所述入射光线的比例。
  2. 根据权利要求1所述的触控显示面板,其中,所述触控显示面板还包括第三区,所述多条触控线还包括位于第三区的多条第三触控线,所述多条第三触控线中至少一条第三触控线的线宽大于所述第二触控线中至少一条第二触控线的线宽;
    所述第三区的反射率与所述第一区和所述第二区的反射率相等。
  3. 根据权利要求2所述的触控显示面板,其中,所述多条触控线中的至少一部分触控线上设置有断口,所述第一区的断口率小于所述第二区的断口率,所述第二区的断口率小于所述第三区的断口率;
    所述断口率为,一区域中多条触控线中设置有断口的触控线占该区域中所有触控线的比值。
  4. 根据权利要求3所述的触控显示面板,其中,所述第一区中断口的密度,小于所述第二区中断口的密度,所述第二区中断口的密度,小于所述第三区中断口的密度;
    和/或,
    所述第一区中断口的大小,小于所述第二区断口的大小,所述第二区断口的大小,小于所述第三区中断口的大小。
  5. 根据权利要求3所述的触控显示面板,其中,所述第一区的断口率为20%,所述第二区的断口率为23%~27%,所述第三区的断口率为28%~32%。
  6. 根据权利要求1~5中任一项所述的触控显示面板,其中,所述多条触控线中的至少一部分触控线上设置有开孔,所述第一区的开孔率小于所述第二区的开孔率,所述第二区的开孔率小于所述第三区的开孔率;
    所述开孔率为,一区域中多条触控线中设置有开孔的触控线占该区域中 所有触控线的比值。
  7. 根据权利要求6所述的触控显示面板,其中,所述第一区中开孔的密度小于所述第二区中开孔的密度,所述第二区中开孔的密度小于所述第三区中开孔的密度;
    和/或,
    所述第一区中开孔的尺寸小于所述第二区中开孔的尺寸,所述第二区中开孔的尺寸小于所述第三区中开孔的尺寸。
  8. 根据权利要求7所述的触控显示面板,其中,
    所述第一区的开孔率为20%,所述第二区的开孔率为23%~27%,所述第三区的开孔率为28%~32%。
  9. 根据权利要求6~8中任一项所述的触控显示面板,其中,所述开孔在显示面板上的正投影的形状为圆形、矩形或椭圆。
  10. 根据权利要求1~9中任一项所述的触控显示面板,其中,所述多条触控线中的至少部分触控线为金属触控线,另一部分触控线为透明导电触控线;
    所述第一区中透明导电触控线占所述多条第一触控线的比值,小于所述第二区中透明导电触控线占所述多条第二触控线的比值;所述第二区中透明导电触控线占所述多条第二触控线的比值,小于所述第三区中透明导电触控线占所述多条第三触控线的比值。
  11. 根据权利要求1~10中任一项所述的触控显示面板,其中,所述第一区为触控区,所述第二区和所述第三区为非触控区;所述多条触控线中,位于所述第一区的多条触控线,和位于所述第二区和所述第三区的多条触控线之间断开。
  12. 根据权利要求11中所述的触控显示面板,其中,所述第一区的断口率为20%,所述非触控区中第二区的断口率为25%~40%,所述非触控区中第三区的断口率为30%~50%。
  13. 根据权利要求1~12任一项所述的触控显示面板,其中,所述触控结构层包括第一触控结构层和第二触控结构层;所述触控结构层包括多个触控子电极;
    所述第一触控结构层包括沿第一方向布置的多个第一触控子电极以及多个第一连接电极,所述多个第一触控子电极和所述多个第一连接电极一一交替分布且依次电连接,形成沿所述第一方向延伸的第一触控电极;
    所述第一触控结构层还包括沿第二方向依次布置的多个第二触控子电极,所述第二触控结构层包括沿第二方向布置的多个第二连接电极,且所述多个 第二触控子电极和所述多个第二连接电极一一交替分布且依次电连接,形成沿所述第二方向延伸的第二触控电极;
    其中,所述第一方向与所述第二方向相交;所述多个第一触控子电极、所述多个第一连接电极、所述多个第二触控子电极和所述多个第二连接电极由所述多条触控线构成。
  14. 根据权利要求13所述的触控显示面板,其中,所述多条触控线中位于相邻的第一触控子电极与所述第二触控子电极的分界区的部分设置有分隔断口,所述多条触控线中的至少一部分触控线上设置的断口包括所述分隔断口;
    所述分隔断口将所在的触控线分隔为两条触控子线,所述两条触控子线中的一条属于所述第一触控子电极,另一条属于所述第二触控子电极,以使所述相邻的第一触控子电极与第二触控子电极相互绝缘。
  15. 根据权利要求14所述的触控显示面板,其中,位于相邻的所述第一触控子电极与所述第二触控子电极的分界区的多条触控线上的断口数量大于非分界区的多条触控线上的断口数量;
    其中,所述非分界区为所述多条触控线所在的区域中除所述分界区之外的其他区域。
  16. 根据权利要求15所述的触控显示面板,其中,所述多条触控线定义的所述多个触控网格中,每一触控网格在所述显示面板上的正投影为六边形,位于相邻的所述第一触控子电极与所述第二触控子电极的分界区的所述多条触控线定义的每一触控网格的断口数量为2、3或4,位于非分界区的所述多条触控线定义的每一触控网格的断口数量为0、1或2。
  17. 根据权利要求15所述的触控显示面板,其中,所述多条触控线定义的所述多个触控网格中,每一触控网格在所述显示面板上的正投影为四边形,位于相邻的所述第一触控子电极与所述第二触控子电极的分界区的所述多条触控线定义的每一触控网格的断口数量为2或3,位于非分界区的所述多条触控线定义的每一触控网格的断口数量为0、1或2。
  18. 根据权利要求13~17中任一项所述的触控显示面板,其中,所述触控结构层包括多个触控子电极,所述多个触控子电极中的至少部分触控子电极为金属触控子电极,另一部分触控子电极为透明导电触控子电极;
    所述第一区中透明导电触控子电极占所述多个触控子电极的比值,小于所述第二区中透明导电触控子电极占所述多个触控子电极的比值;所述第二区中透明导电触控子电极占所述多个触控子电极的比值,小于所述第三区中 透明导电触控子电极占所述多个触控子电极的比值。
  19. 根据权利要求18所述的触控显示面板,其中,所述第一区中的多个触控子电极均为金属触控子电极。
  20. 一种触控显示装置,包括如权利要求1~19任一项所述的触控显示面板。
PCT/CN2022/112457 2022-08-15 2022-08-15 触控显示面板及触控显示装置 WO2024036433A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002662.5A CN117897684A (zh) 2022-08-15 2022-08-15 触控显示面板及触控显示装置
PCT/CN2022/112457 WO2024036433A1 (zh) 2022-08-15 2022-08-15 触控显示面板及触控显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112457 WO2024036433A1 (zh) 2022-08-15 2022-08-15 触控显示面板及触控显示装置

Publications (1)

Publication Number Publication Date
WO2024036433A1 true WO2024036433A1 (zh) 2024-02-22

Family

ID=89940264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112457 WO2024036433A1 (zh) 2022-08-15 2022-08-15 触控显示面板及触控显示装置

Country Status (2)

Country Link
CN (1) CN117897684A (zh)
WO (1) WO2024036433A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714706A (zh) * 2013-12-13 2015-06-17 胜华科技股份有限公司 触控面板
US20180113347A1 (en) * 2015-07-24 2018-04-26 Fujifilm Corporation Conductive film for touch panel, touch panel, and touch panel-equipped display device
US20180329534A1 (en) * 2015-12-23 2018-11-15 Lg Chem, Ltd. Touch screen sensor
CN110188702A (zh) * 2019-05-31 2019-08-30 上海天马微电子有限公司 一种显示面板和显示装置
CN111752417A (zh) * 2020-06-29 2020-10-09 武汉天马微电子有限公司 一种显示面板及显示装置
CN114327163A (zh) * 2021-12-30 2022-04-12 武汉天马微电子有限公司 一种触控显示面板和触控显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714706A (zh) * 2013-12-13 2015-06-17 胜华科技股份有限公司 触控面板
US20180113347A1 (en) * 2015-07-24 2018-04-26 Fujifilm Corporation Conductive film for touch panel, touch panel, and touch panel-equipped display device
US20180329534A1 (en) * 2015-12-23 2018-11-15 Lg Chem, Ltd. Touch screen sensor
CN110188702A (zh) * 2019-05-31 2019-08-30 上海天马微电子有限公司 一种显示面板和显示装置
CN111752417A (zh) * 2020-06-29 2020-10-09 武汉天马微电子有限公司 一种显示面板及显示装置
CN114327163A (zh) * 2021-12-30 2022-04-12 武汉天马微电子有限公司 一种触控显示面板和触控显示装置

Also Published As

Publication number Publication date
CN117897684A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
TWI660372B (zh) 觸控面板及觸控面板整合型有機發光顯示裝置
US11061266B2 (en) Touch electrode structure and touch display device
US9891743B2 (en) Driving method of an input device
US11093065B2 (en) Display device
US11237683B2 (en) Display device
KR20210010733A (ko) 표시 장치
US11294519B2 (en) Touch panel
US11552132B2 (en) Display device and method of manufacturing the same
KR20210013506A (ko) 표시 장치
US11842019B2 (en) Touch substrate and display panel
US11602053B2 (en) Display device
US20240045555A1 (en) Display device
KR20220039976A (ko) 표시 장치
WO2024036433A1 (zh) 触控显示面板及触控显示装置
US11605679B2 (en) Display device
KR20230046341A (ko) 터치 감지부 및 이를 포함하는 표시 장치
US11874987B2 (en) Touch sensor and display apparatus
US11914827B2 (en) Touch sensor and display apparatus
KR20230020049A (ko) 터치 감지 장치, 그를 포함하는 표시 장치, 및 그의 제조 방법
US11917875B2 (en) Display device
US20220246880A1 (en) Display device
US11907467B2 (en) Touch sensor and display apparatus
US11839115B2 (en) Touch sensor and display apparatus
US11755139B2 (en) Touch sensor and display apparatus
WO2023241310A1 (zh) 触控层、触控显示装置以及触控层的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002662.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955215

Country of ref document: EP

Kind code of ref document: A1