WO2024034492A1 - 無アルカリガラス板 - Google Patents

無アルカリガラス板 Download PDF

Info

Publication number
WO2024034492A1
WO2024034492A1 PCT/JP2023/028292 JP2023028292W WO2024034492A1 WO 2024034492 A1 WO2024034492 A1 WO 2024034492A1 JP 2023028292 W JP2023028292 W JP 2023028292W WO 2024034492 A1 WO2024034492 A1 WO 2024034492A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
bao
alkali
mol
cao
Prior art date
Application number
PCT/JP2023/028292
Other languages
English (en)
French (fr)
Inventor
未侑 西宮
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2024034492A1 publication Critical patent/WO2024034492A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]

Definitions

  • the present invention relates to an alkali-free glass plate, and particularly to an alkali-free glass plate suitable for organic EL displays and magnetic recording media.
  • Organic EL displays are thin and excellent in displaying moving images, and have low power consumption, so they are used for applications such as flexible devices and mobile phone displays.
  • Glass plates are widely used as substrates for organic EL displays. Glass plates for this purpose are mainly required to have the following properties. (1) In order to prevent alkali ions from diffusing into the semiconductor material formed during the heat treatment process, glass is made that contains almost no alkali metal oxides, that is, alkali-free glass (the content of alkali oxides in the glass composition). is 0.5 mol% or less), (2) In order to reduce the cost of the glass plate, it must be molded using the overflow down-draw method that easily improves surface quality, and has excellent productivity, especially excellent meltability and devitrification resistance. (3) High strain point in order to reduce thermal shrinkage of the glass plate in the LTPS (low temperature poly silicon) process and oxide TFT process.
  • LTPS low temperature poly silicon
  • magnetic recording media such as magnetic disks and optical disks are used in various information devices.
  • Glass plates are widely used as substrates for magnetic recording media instead of conventional aluminum alloy substrates.
  • an energy-assisted magnetic recording method that is, energy-assisted magnetic recording media
  • a glass plate is also used, and a magnetic layer or the like is formed on the surface of the glass plate.
  • an ordered alloy having a large magnetic anisotropy coefficient Ku hereinafter referred to as "high Ku" is used as the magnetic material of the magnetic layer.
  • organic EL devices are also widely used in organic EL televisions.
  • organic EL televisions are required to be low in cost in order to reduce the price difference with liquid crystal displays, and glass plates are also required to be low in cost.
  • the glass plate becomes larger and thinner, the glass plate becomes more easily bent and the manufacturing cost increases.
  • Glass sheets formed by glass manufacturers go through processes such as cutting, annealing, inspection, and cleaning. During these steps, the glass sheets are loaded into and transported out of cassettes with multiple shelves. .
  • This cassette is normally held horizontally by placing the opposite sides of the glass plate on shelves formed on the left and right inner surfaces, but the large and thin glass plate has a large amount of deflection. Therefore, when a glass plate is put into the cassette, a part of the glass plate comes into contact with the cassette and is likely to be damaged, or when the glass plate is carried out, it is likely to swing greatly and become unstable. Since cassettes of this type are also used by electronic device manufacturers, similar problems will occur. In order to solve this problem, an effective method is to increase the Young's modulus of the glass plate to reduce the amount of deflection.
  • glass plates for magnetic recording media are required to have high rigidity (Young's modulus) in order to avoid large deformations during high-speed rotation.
  • Young's modulus Young's modulus
  • information is written and read along the rotational direction while the medium is rotated at high speed around the central axis and the magnetic head is moved in the radial direction.
  • the number of revolutions to increase the writing speed and reading speed has been increasing from 5,400 rpm to 7,200 rpm, and even 10,000 rpm. You will be assigned a position to record information. Therefore, if the glass plate is deformed during rotation, the position of the magnetic head will shift, making accurate reading difficult.
  • DFH Dynamic Flying Height
  • the DFH mechanism is a mechanism in which a heating section such as a very small heater is provided near the recording/reproducing element section of a magnetic head, and only the periphery of the element section is thermally expanded toward the surface of the medium. Equipped with such a mechanism, the distance between the magnetic head and the magnetic layer of the medium becomes closer, making it possible to pick up signals from smaller magnetic particles, making it possible to achieve higher recording density. .
  • the gap between the read/write element of the magnetic head and the surface of the magnetic recording medium is extremely small, for example, 2 nm or less, there is a risk that the magnetic head will collide with the surface of the magnetic recording medium even with the slightest impact. . This tendency becomes more pronounced as the rotation speed increases. Therefore, during high-speed rotation, it is important to prevent the glass plate from bending or fluttering, which can cause collisions.
  • the base material including the glass plate is heat-treated at a high temperature of about 800°C during or before and after forming the magnetic layer.
  • a high temperature of about 800°C
  • laser irradiation may be performed on the base material including the glass plate. Such heat treatment and laser irradiation also have the purpose of increasing the annealing temperature and coercive force of the magnetic layer containing FePt-based alloy or the like.
  • the present invention was devised in view of the above circumstances, and its technical objective is to provide an alkali-free glass plate that is excellent in productivity and has a sufficiently high strain point and Young's modulus.
  • the alkali-free glass plate of the present invention has a glass composition including, in mol%, SiO 2 60-80%, Al 2 O 3 12-15%, B 2 O 3 1.2-4%, Li 2 O+Na Contains 2 O + K 2 O 0-0.5%, MgO 2-8%, CaO 2-11%, SrO 0-5%, BaO 0-5%, MgO + CaO + SrO + BaO 10-16%, mol% ratio B 2 O 3 /Al 2 O 3 is 0.1 to 0.3, mol% ratio (B 2 O 3 + BaO) / SiO 2 is 0.01 to 0.1, (MgO + CaO + SrO + BaO-Al 2 O 3 ) is -2 to 2 %.
  • Li2O + Na2O + K2O refers to the total amount of Li2O , Na2O and K2O .
  • MgO+CaO+SrO+BaO refers to the total amount of MgO, CaO, SrO and BaO.
  • B2O3 / Al2O3 is the value obtained by dividing the mol% content of B2O3 by the mol% content of Al2O3 .
  • (B 2 O 3 +BaO)/SiO 2 ” is a value obtained by dividing the total mol% content of B 2 O 3 and BaO by the mol% content of SiO 2 .
  • MgO+CaO+SrO+BaO- Al2O3 is the value obtained by subtracting the mol% content of Al2O3 from the total amount of MgO, CaO, SrO, and BaO.
  • alkali-free glass refers to glass in which the content of Li 2 O + Na 2 O + K 2 O is 0.5% or less.
  • the alkali-free glass plate of the present invention has a glass composition including, in mol%, SiO 2 65-75%, Al 2 O 3 12.5-14%, B 2 O 3 1.5-4%, Li Contains 2 O + Na 2 O + K 2 O 0-0.1%, MgO 3.3-7%, CaO 2-11%, SrO 0-5%, BaO 0-5%, MgO + CaO + SrO + BaO 10-16%, mol%
  • the ratio B 2 O 3 /Al 2 O 3 is 0.12 to 0.19, the mol% ratio (B 2 O 3 + BaO) / SiO 2 is 0.016 to 0.07, and (MgO + CaO + SrO + BaO-Al 2 O 3 ) is -2% to +1.2% is preferable.
  • the content of B 2 O 3 is preferably 2 to 3 mol%.
  • the content of B 2 O 3 is restricted to 2 to 3 mol %, chipping will be less likely to occur when polishing the end face.
  • the glass composition does not substantially contain As 2 O 3 and Sb 2 O 3 and further contains 0.001 to 1 mol% of SnO 2 .
  • substantially not containing As 2 O 3 refers to a case where the content of As 2 O 3 is 0.05 mol% or less.
  • substantially not containing Sb 2 O 3 refers to a case where the content of Sb 2 O 3 is 0.05 mol% or less.
  • the Young's modulus is 80 GPa or more, the strain point is 720°C or more, and the liquidus temperature is 1400°C or less.
  • Young's modulus refers to a value measured by a bending resonance method. Note that 1 GPa corresponds to approximately 101.9 Kgf/mm 2 .
  • Stress point refers to a value measured based on the method of ASTM C336.
  • Liquidus temperature is the temperature at which crystals precipitate after passing through a 30 mesh (500 ⁇ m) standard sieve and placing the glass powder remaining on the 50 mesh (300 ⁇ m) in a platinum boat and holding it in a temperature gradient furnace for 24 hours. refers to
  • the strain point is 730° C. or higher.
  • the Young's modulus is higher than 82 GPa.
  • the specific Young's modulus is 31.5 GPa/g ⁇ cm ⁇ 3 or more.
  • “specific Young's modulus” is a value obtained by dividing Young's modulus by density.
  • the average coefficient of thermal expansion in the temperature range of 30 to 380°C is 20 ⁇ 10 ⁇ 7 to 50 ⁇ 10 ⁇ 7 /°C.
  • the "average coefficient of thermal expansion in the temperature range of 30 to 380°C" can be measured with a dilatometer.
  • the annealing point is 800°C or higher.
  • the "annealing point” refers to a value measured based on the method of ASTM C336.
  • liquidus viscosity is 10 3.5 dPa ⁇ s or more.
  • liquidus viscosity refers to the viscosity of glass at liquidus temperature, and can be measured by the platinum ball pulling method.
  • the configurations (1) to (10) above are preferably used for organic EL devices.
  • the alkali-free glass plate of the present invention has excellent productivity and a sufficiently high strain point and Young's modulus.
  • FIG. 2 is a top perspective view showing an example of the shape of a glass substrate for a magnetic recording medium.
  • the alkali-free glass plate of the present invention has a glass composition of 60 to 80% SiO 2 , 12 to 15% Al 2 O 3 , 1.2 to 4% B 2 O 3 , and 0 to 0 Li 2 O + Na 2 O + K 2 O .5%, MgO 2-8%, CaO 2-11%, SrO 0-5%, BaO 0-5%, MgO+CaO+SrO+BaO 10-16%, and the mol% ratio B 2 O 3 /Al 2 O 3 is 0.1 to 0.3, the mol% ratio (B 2 O 3 + BaO)/SiO 2 is 0.01 to 0.1, and the (MgO + CaO + SrO + BaO-Al 2 O 3 ) is -2 to +2%.
  • SiO 2 is a component that forms the skeleton of glass. If the content of SiO 2 is too low, the coefficient of thermal expansion will become high and the density will increase. Therefore, the lower limit amount of SiO 2 is preferably 60%, more preferably 65%, still more preferably 68%, still more preferably 68.5%, still more preferably 69%, still more preferably 69.2%, even more preferably is 69.5%, more preferably 69.8%, still more preferably 70%, still more preferably 70.2%, even more preferably 70.5%, and most preferably 70.7%.
  • the upper limit amount of SiO 2 is preferably 80%, more preferably 77%, still more preferably 76.4%, still more preferably 75.8%, still more preferably 75.5%, and even more preferably 75.3%. %, more preferably 75%, still more preferably 74.5%, most preferably 74%.
  • Al 2 O 3 is a component that forms the skeleton of the glass, a component that increases the Young's modulus, and a component that also increases the strain point. If the content of Al 2 O 3 is too small, the Young's modulus tends to decrease and the strain point tends to decrease. Therefore, the lower limit amount of Al 2 O 3 is preferably 12%, more preferably 12.2%, still more preferably 12.4%, even more preferably more than 12.4%, still more preferably 12.5%, and even more preferably Preferably it is 12.6%, more preferably 12.8%, even more preferably greater than 12.8% and most preferably 13%.
  • the upper limit amount of Al 2 O 3 is preferably 15%, more preferably 14.8%, still more preferably 14.6%, even more preferably 14.4%, still more preferably 14.2%, even more preferably is 14%, more preferably 13.9%, even more preferably 13.8%, even more preferably 13.7%, and most preferably 13.6%.
  • the mol% ratio SiO 2 /Al 2 O 3 is an important component ratio for increasing the strain point and lowering the high temperature viscosity. If the mol% ratio SiO 2 /Al 2 O 3 is too small, the strain point tends to drop. Therefore, the lower limit of the mol% ratio SiO 2 /Al 2 O 3 is preferably 4.5, more preferably 4.7, even more preferably 4.9, even more preferably 5, even more preferably 5.1, even more preferably is greater than 5.1, most preferably 5.2. On the other hand, if the mol% ratio SiO 2 /Al 2 O 3 is too large, the high temperature viscosity increases and the manufacturing cost of the glass plate tends to rise.
  • the upper limit of the mol% ratio SiO 2 /Al 2 O 3 is preferably 6.5, more preferably 6.3, even more preferably 6.1, even more preferably 6, still more preferably 5.9, even more preferably is 5.8, more preferably 5.7, even more preferably 5.6, even more preferably 5.5, and most preferably 5.35.
  • B 2 O 3 is a component that increases chipping resistance, and can also enjoy the effect of increasing meltability and devitrification resistance. Therefore, the lower limit amount of B 2 O 3 is preferably 1.2%, more preferably 1.5%, even more preferably 1.8%, even more preferably 2%, and most preferably more than 2%. On the other hand, if the content of B 2 O 3 is too large, Young's modulus and strain point tend to decrease. Therefore, the upper limit of B 2 O 3 is preferably 4%, more preferably 3.9%, even more preferably 3.8%, even more preferably 3.7%, still more preferably 3.6%, even more preferably is 3.5%, more preferably 3.4%, even more preferably 3.3%, even more preferably 3.2%, and most preferably 3%.
  • the mol% ratio B 2 O 3 /Al 2 O 3 is an important component ratio for increasing Young's modulus and strain point. If the mol% ratio B 2 O 3 /Al 2 O 3 is too small, Young's modulus tends to decrease. Therefore, the lower limit of the mol% ratio B 2 O 3 /Al 2 O 3 is preferably 0.1, more preferably 0.11, even more preferably 0.12, still more preferably 0.13, even more preferably 0. 14, most preferably 0.15. On the other hand, if the mol% ratio B 2 O 3 /Al 2 O 3 is too large, the strain point tends to decrease.
  • the upper limit of the mol% ratio B 2 O 3 /Al 2 O 3 is preferably 0.3, more preferably less than 0.3, even more preferably 0.28, even more preferably 0.25, and still more preferably 0. .23, more preferably 0.2, most preferably 0.19.
  • Li 2 O, Na 2 O, and K 2 O are components that are inevitably mixed in from the glass raw materials, and their total amount is 0 to 0.5%, preferably 0 to 0.1%, and more preferably 0 to 0.09%, more preferably 0.005 to 0.08%, even more preferably 0.008 to 0.06%, and most preferably 0.01 to 0.05%. If the total amount of Li 2 O, Na 2 O, and K 2 O is too large, alkali ions may diffuse into the semiconductor material formed in the heat treatment process.
  • Li 2 O, Na 2 O, and K 2 O are each preferably 0 to 0.3%, more preferably 0 to 0.1%, still more preferably 0 to 0.08%, and Preferably it is 0 to 0.07%, more preferably 0 to 0.05%, most preferably 0.001 to 0.04%.
  • MgO is a component that significantly increases Young's modulus. If the MgO content is too low, meltability and Young's modulus tend to decrease. Therefore, the lower limit amount of MgO is preferably 2%, more preferably 2.1%, more preferably 2.3%, even more preferably 2.5%, still more preferably 2.8%, and even more preferably 3%. , more preferably 3.3%, most preferably 3.5%. On the other hand, if the MgO content is too high, devitrification crystals such as mullite tend to precipitate, and the liquidus viscosity tends to decrease.
  • the upper limit amount of MgO is preferably 8%, more preferably 7.8%, more preferably 7.6%, more preferably 7.5%, more preferably 7.4%, and more preferably 7. Less than 3%, more preferably 7.2%, more preferably 7.1%, even more preferably 7.0%, even more preferably 6.9% and most preferably 6.8%.
  • CaO is a component that lowers high temperature viscosity and significantly increases meltability without lowering strain point. It is also a component that increases Young's modulus. If the content of CaO is too low, meltability tends to decrease. Therefore, the lower limit amount of CaO is preferably 2%, more preferably 2.2%, more preferably 2.5%, even more preferably 2.8%, still more preferably 3%, and still more preferably 3.2%. , more preferably 3.5%, still more preferably 3.8%, and most preferably 4%. On the other hand, if the content of CaO is too large, the liquidus temperature will become high. Therefore, the upper limit of CaO is preferably 11%, more preferably 10.5%, more preferably 10.2%, more preferably 10%, more preferably 9.8%, and still more preferably 9.5%. , more preferably 9.3%, most preferably 9%.
  • the lower limit amount of SrO is preferably 0%, more preferably more than 0%, more preferably 0.1%, still more preferably more than 0.1%, even more preferably 0.2%, and still more preferably 0. 3%, more preferably more than 0.3%, even more preferably 0.4%, even more preferably more than 0.4%, most preferably 0.5%.
  • the upper limit of SrO is preferably 5%, more preferably less than 5%, still more preferably 4.8%, even more preferably 4.5%, still more preferably 4.3%, and most preferably 4%. be.
  • the lower limit amount of BaO is preferably 0%, more preferably more than 0%, more preferably 0.1%, still more preferably more than 0.1%, still more preferably 0.2%, and still more preferably 0. 3%, more preferably 0.4%, even more preferably greater than 0.4%, most preferably 0.5%.
  • the Young's modulus tends to decrease and the density tends to increase. As a result, the specific Young's modulus increases and the glass plate becomes easier to bend.
  • the upper limit amount of BaO is preferably 5%, more preferably less than 5%, more preferably 4.8%, even more preferably 4.5%, even more preferably 4.3%, even more preferably 4%, More preferably, it is 3.8%, still more preferably 3.5%, and most preferably 3%.
  • MgO, CaO, SrO, and BaO are components that increase the density and coefficient of thermal expansion. If the content of MgO+CaO+SrO+BaO is too small, the coefficient of thermal expansion tends to decrease. Therefore, the lower limit amount of MgO+CaO+SrO+BaO is preferably 10%, more preferably 10.2%, more preferably 10.5%, still more preferably 10.8%, still more preferably 11%, and even more preferably 11.3%. , more preferably 11.5%, still more preferably 11.8%, and most preferably 12%. On the other hand, if the content of MgO+CaO+SrO+BaO is too large, the density tends to increase.
  • the upper limit amount of MgO+CaO+SrO+BaO is preferably 16%, more preferably 15.8%, more preferably 15.5%, still more preferably less than 15.3%, even more preferably 15%, and still more preferably 14.8%. %, most preferably 14.5%.
  • the mol% ratio (B 2 O 3 +BaO)/SiO 2 is an important component ratio for increasing Young's modulus and strain point. If the mol% ratio (B 2 O 3 +BaO)/SiO 2 is too small, the strain point tends to decrease. Therefore, the lower limit of the mol% ratio (B 2 O 3 +BaO)/SiO 2 is preferably 0.01, more preferably 0.016, still more preferably 0.02, still more preferably 0.03, and most preferably 0. It is .04. On the other hand, if the mol% ratio (B 2 O 3 +BaO)/SiO 2 is too large, Young's modulus tends to decrease.
  • the upper limit of the mol% ratio (B 2 O 3 +BaO)/SiO 2 is preferably 0.1, more preferably less than 0.1, even more preferably 0.09, still more preferably 0.08, even more preferably 0.07, more preferably 0.065, most preferably 0.060.
  • (MgO+CaO+SrO+BaO-Al 2 O 3 ) is an important parameter for increasing the specific Young's modulus and strain point and increasing the devitrification resistance. If (MgO+CaO+SrO+BaO-Al 2 O 3 ) is too small, the strain point tends to decrease. In addition, the devitrification resistance decreases, and the manufacturing cost of the glass plate tends to rise.
  • the lower limit of (MgO+CaO+SrO+BaO-Al 2 O 3 ) is preferably -2%, more preferably -1.8%, still more preferably -1.5%, still more preferably -1.3%, even more preferably -1%, more preferably -0.8%, even more preferably -0.5%, even more preferably -0.3%, even more preferably -0.2%, and most preferably 0%.
  • (MgO+CaO+SrO+BaO-Al 2 O 3 ) is too large, the specific Young's modulus tends to decrease.
  • the upper limit of (MgO+CaO+SrO+BaO-Al 2 O 3 ) is preferably +2%, more preferably +1.8%, still more preferably +1.6%, still more preferably +1.4%, still more preferably +1.2%. , most preferably +1%.
  • a suitable glass composition range can be obtained by appropriately combining the suitable content ranges of each component, but among these, in order to optimize the effect of the present invention, the glass composition is SiO 2 65 to 65% by mol%. 75%, Al 2 O 3 12.5-14%, B 2 O 3 1.2-4%, Li 2 O + Na 2 O + K 2 O 0-0.1%, MgO 3.3-7%, CaO 2- 11%, SrO 0-5%, BaO 0-5%, MgO+CaO+SrO+BaO 10-16%, the mol% ratio B 2 O 3 /Al 2 O 3 is 0.12-0.19, the mol% ratio (B 2 O 3 +BaO)/SiO 2 is particularly preferably 0.016 to 0.07, and (MgO+CaO+SrO+BaO-Al 2 O 3 ) is particularly preferably -2 to +1.2%.
  • the following components may be added as optional components.
  • the content of other components other than the above-mentioned components is preferably 10% or less, particularly 5% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.
  • P 2 O 5 is a component that increases the strain point, and is also a component that can significantly suppress the precipitation of devitrified crystals of alkaline earth aluminosilicate such as anorthite.
  • the content of P 2 O 5 is preferably 0 to 2.5%, more preferably 0 to 1.5%, even more preferably 0 to 0.5%, even more preferably 0 to 0.3%, even more preferably is from 0 to less than 0.1%, particularly preferably from 0 to less than 0.01%.
  • TiO 2 is a component that lowers high-temperature viscosity and increases meltability, and is also a component that suppresses solarization. However, when a large amount of TiO 2 is contained, the glass becomes colored and the transmittance tends to decrease. .
  • the content of TiO 2 is preferably 0 to 2.5%, more preferably 0.0005 to 1%, even more preferably 0.001 to 0.5%, particularly preferably 0.005 to 0.1%. be.
  • ZnO is a component that increases Young's modulus. However, when a large amount of ZnO is contained, the glass tends to devitrify and the strain point tends to decrease.
  • the content of ZnO is preferably 0 to 3%, more preferably 0 to 2%, even more preferably 0 to 1%, even more preferably 0 to 0.8%, even more preferably 0 to 0.5%, particularly preferably is 0 to less than 0.5%.
  • Fe 2 O 3 is a component that is inevitably mixed in from the glass raw material, and is also a component that lowers the electrical resistivity.
  • the content of Fe 2 O 3 is preferably 0 to 250 molppm, 20 to 200 molppm, particularly 40 to 100 molppm. If the content of Fe 2 O 3 is too low, raw material costs tend to rise. On the other hand, if the content of Fe 2 O 3 is too large, the electrical resistivity of the molten glass will increase, making it difficult to perform electrical melting.
  • ZrO 2 is a component that increases Young's modulus. However, when a large amount of ZrO 2 is contained, the glass tends to devitrify.
  • the content of ZrO 2 is preferably 0 to 2.5%, more preferably 0.0005 to 1%, even more preferably 0.001 to 0.5%, particularly preferably 0.005 to 0.1%. .
  • Y 2 O 3 , Nb 2 O 5 , and La 2 O 3 have the function of increasing strain point, Young's modulus, and the like.
  • the total and individual contents of these components are preferably 0 to 5%, more preferably 0 to 1%, even more preferably 0 to 0.5%, particularly preferably 0 to less than 0.5%. If the total and individual contents of Y 2 O 3 , Nb 2 O 5 , and La 2 O 3 are too large, the density and raw material cost are likely to increase.
  • SnO 2 is a component that has a good clarification effect in a high temperature range, is a component that increases the strain point, and is a component that reduces high temperature viscosity.
  • the content of SnO 2 is preferably 0 to 1%, 0.001 to 1%, 0.01 to 0.5%, particularly 0.05 to 0.3%. If the content of SnO 2 is too large, devitrified crystals of SnO 2 will easily precipitate. Note that if the content of SnO 2 is less than 0.001%, it becomes difficult to enjoy the above effects.
  • SnO 2 is suitable as a fining agent, but as a fining agent, F, SO 3 , C , or Al, Si can be used instead of or together with SnO 2 as long as the glass properties are not impaired.
  • CeO 2 , F, etc. can be added as clarifiers up to 5% each (preferably up to 1%, especially up to 0.5%).
  • As 2 O 3 and Sb 2 O 3 are also effective as clarifying agents.
  • As 2 O 3 and Sb 2 O 3 are components that increase environmental load.
  • As 2 O 3 is a component that reduces solarization resistance. Therefore, it is preferable that the alkali-free glass plate of the present invention does not substantially contain these components.
  • Cl is a component that promotes the initial melting of the glass batch. Furthermore, by adding Cl, the action of the clarifying agent can be promoted. As a result, it is possible to reduce the melting cost and extend the life of the glass manufacturing kiln. However, if the Cl content is too high, the strain point tends to decrease. Therefore, the Cl content is preferably 0 to 3%, more preferably 0.0005 to 1%, particularly preferably 0.001 to 0.5%.
  • a chloride of an alkaline earth metal oxide such as strontium chloride, or a raw material such as aluminum chloride can be used.
  • the alkali-free glass plate of the present invention preferably has the following characteristics.
  • the average coefficient of thermal expansion in the temperature range of 30 to 380°C is preferably 20 x 10 -7 to 50 x 10 -7 /°C, 25 x 10 -7 to 48 x 10 -7 /°C, 30 x 10 -7 to 45 ⁇ 10 ⁇ 7 /°C, 33 ⁇ 10 ⁇ 7 to 44 ⁇ 10 ⁇ 7 /°C, especially 35 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 /°C. This makes it easier to match the coefficient of thermal expansion of Si used in TFTs.
  • Young's modulus is preferably 80 GPa or more, 81 GPa or more, 81.3 GPa or more, 81.5 GPa or more, 81.8 GPa or more, 82 GPa or more, 82.3 GPa or more, 82.5 GPa or more, 82.8 GPa or more, especially 83 to 120 GPa. be. If the Young's modulus is too low, problems due to bending of the glass plate are likely to occur.
  • Specific Young's modulus is preferably 31.5 GPa/g cm -3 or more, 31.8 GPa/g cm -3 or more, 32 GPa/g cm -3 or more, 32.2 GPa/g cm -3 or more, 32 .4GPa/g.cm -3 or more, 32.6GPa/g.cm -3 or more, 32.8GPa/g.cm -3 or more, especially 33 to 37GPa/g.cm -3 . If the specific Young's modulus is too low, problems due to bending of the glass plate are likely to occur.
  • the strain point is preferably 720°C or higher, 725°C or higher, 728°C or higher, 730°C or higher, 735°C or higher, 738°C or higher, particularly 740 to 820°C. In this way, thermal shrinkage of the glass plate can be suppressed in the LTPS process.
  • the annealing point is preferably 800°C or higher, 801°C or higher, 803°C or higher, 805°C or higher, 808°C or higher, particularly 809°C to 900°C. In this way, thermal shrinkage of the glass plate can be suppressed in the LTPS process.
  • the liquidus temperature is preferably 1400°C or lower, 1380°C or lower, 1350°C or lower, 1300°C or lower, 1290°C or lower, 1285°C or lower, 1280°C or lower, 1275°C or lower, 1270°C or lower, 1160°C or higher, 1170°C or lower. °C or higher, especially 1260 to 1180°C.
  • the liquidus temperature is an index of devitrification resistance, and the lower the liquidus temperature is, the better the devitrification resistance is.
  • the liquid phase viscosity is preferably 10 3.5 dPa ⁇ s or more, 10 3.7 dPa ⁇ s or more, 10 3.9 dPa ⁇ s or more, 10 4.2 dPa ⁇ s or more, 10 4.5 dPa ⁇ s Above, 10 4.8 dPa ⁇ s or more, 10 5.1 dPa ⁇ s or more, 10 7.4 dPa ⁇ s or less, 10 7.2 dPa ⁇ s or less, especially 10 5.2 to 10 7 .0 dPa ⁇ s.
  • the liquidus viscosity is an index of devitrification resistance and moldability, and the higher the liquidus viscosity, the better the devitrification resistance and moldability.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is preferably 1750°C or lower, 1730°C or lower, 1710°C or lower, particularly 1600 to 1680°C. If the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is too high, it becomes difficult to melt the glass batch, and the manufacturing cost of the glass plate increases. Note that the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s corresponds to the melting temperature, and the lower this temperature, the better the meltability.
  • the ⁇ -OH value is an indicator of the amount of water in the glass, and lowering the ⁇ -OH value can increase the strain point. Furthermore, even when the glass composition is the same, the smaller the ⁇ -OH value, the smaller the thermal shrinkage rate at temperatures below the strain point.
  • the ⁇ -OH value is preferably 0.35/mm or less, 0.30/mm or less, 0.28/mm or less, 0.25/mm or less, 0.20/mm or less, 0.17/mm or less, In particular, it is 0.15/mm or less. Note that if the ⁇ -OH value is too small, the meltability tends to decrease. Therefore, the ⁇ -OH value is preferably 0.01/mm or more, particularly 0.03/mm or more.
  • Examples of methods for reducing the ⁇ -OH value include the following methods. (1) Select raw materials with low moisture content. (2) Adding components (Cl, SO 3, etc.) that reduce the ⁇ -OH value to the glass. (3) Reduce the amount of moisture in the furnace atmosphere. (4) Perform N2 bubbling in the molten glass. (5) Adopt a small melting furnace. (6) Increase the flow rate of molten glass. (7) Adopt electric melting method.
  • ⁇ -OH value refers to the value obtained by measuring the transmittance of glass using FT-IR and using the following formula 1.
  • ⁇ -OH value (1/X)log(T 1 /T 2 )
  • X Plate thickness (mm)
  • T 1 Transmittance (%) at reference wavelength 3846 cm ⁇ 1
  • T 2 Minimum transmittance (%) near hydroxyl group absorption wavelength 3600 cm ⁇ 1
  • the alkali-free glass plate of the present invention is preferably formed by an overflow down-draw method.
  • the overflow down-draw method molten glass overflows from both sides of a heat-resistant trough-like structure, and the overflowing molten glass joins at the bottom of the trough-like structure while stretching downward to produce a glass plate. It's a method.
  • the surface of the glass plate that is to become the surface does not come into contact with the trough-like refractories and is formed as a free surface. Therefore, an unpolished glass plate having a fired surface with good surface quality can be manufactured at low cost, and the glass plate can be easily made thin.
  • the alkali-free glass plate of the present invention is formed by a float method. Large glass plates can be manufactured at low cost.
  • the surface is a polished surface. Polishing the glass surface can reduce the overall thickness deviation TTV. As a result, a magnetic film can be formed properly, making it suitable for a substrate of a magnetic recording medium.
  • the surface is preferably a fired surface (unpolished surface) formed by an overflow down-draw method.
  • the plate thickness is not particularly limited, but when used in an organic EL device, the thickness is less than 0.7 mm, 0.6 mm or less, less than 0.6 mm, especially 0.05 to 0. .5 mm is preferred. As the plate thickness becomes thinner, the weight of the organic EL device can be reduced.
  • the plate thickness can be adjusted by adjusting the flow rate during glass manufacturing, the plate drawing speed, etc.
  • the plate thickness is preferably 1.5 mm or less, 1.2 mm or less, 0.2 to 1.0 mm, particularly 0.3 to 0.9 mm. If the plate thickness is too thick, it is necessary to etch the plate to a desired thickness, which may increase the processing cost.
  • the average surface roughness Ra of the surface when used in an organic EL device, is preferably 1.0 nm or less, 0.5 nm or less, particularly 0.2 nm or less. If the average surface roughness Ra of the surface is large, it becomes difficult to perform accurate patterning of electrodes, etc. in the display manufacturing process, and as a result, the probability of circuit electrodes breaking or shorting increases, reducing the reliability of the display, etc. becomes difficult to guarantee.
  • the "average surface roughness Ra of the surface” refers to the average surface roughness Ra of the main surface (both surfaces) excluding the end surfaces, and can be measured using, for example, an atomic force microscope (AFM).
  • the alkali-free glass plate of the present invention when used as a substrate for an organic EL television display panel or a carrier for manufacturing an organic EL display panel, the shape is preferably rectangular. Further, it is preferable to use the alkali-free glass plate of the present invention as a substrate for a magnetic recording medium, particularly an energy-assisted magnetic recording medium.
  • the base material, including the glass substrate is heated to a high temperature of about 800°C during or before and after forming the magnetic layer on the substrate. In addition to heat treatment, it can also withstand shock to the substrate caused by high rotation of the magnetic recording medium.
  • the alkali-free glass plate of the present invention is processed into a disk substrate 1 as shown in FIG. 1 by processing such as cutting.
  • the disk substrate 1 preferably has a disk shape, and more preferably has a circular opening C formed in the center.
  • Tables 1 and 2 show Examples (Samples No. 1 to 24) of the present invention and Comparative Example (No. 25).
  • a glass batch containing glass raw materials prepared to have the glass composition shown in the table was placed in a platinum crucible and melted at 1600 to 1680°C for 24 hours. When melting the glass batch, it was stirred using a platinum stirrer to achieve homogenization. Next, the molten glass was poured onto a carbon plate, formed into a plate shape, and then annealed for 30 minutes at a temperature near the annealing point. For each sample obtained, the average thermal expansion coefficient CTE, density ⁇ , Young's modulus E, specific Young's modulus E/ ⁇ , strain point Ps, annealing point Ta, softening point Ts, high temperature viscosity in the temperature range of 30 to 380 ° C.
  • the average coefficient of thermal expansion CTE in the temperature range of 30 to 380°C is a value measured with a dilatometer.
  • the density ⁇ is a value measured by the well-known Archimedes method.
  • Young's modulus E refers to a value measured by a well-known resonance method.
  • the specific Young's modulus E/ ⁇ is the value obtained by dividing the Young's modulus by the density.
  • strain point Ps, annealing point Ta, and softening point Ts are values measured based on the methods of ASTM C336 and C338.
  • the temperatures at high-temperature viscosities of 10 4 dPa ⁇ s, 10 3 dPa ⁇ s, and 10 2.5 dPa ⁇ s are values measured by the platinum ball pulling method.
  • the liquidus temperature TL is the temperature at which crystals precipitate after passing through a standard sieve of 30 mesh (500 ⁇ m) and placing the glass powder remaining on the 50 mesh (300 ⁇ m) in a platinum boat and holding it in a temperature gradient furnace for 24 hours. be.
  • the liquidus viscosity log 10 ⁇ TL is the value of the viscosity of the glass at the liquidus temperature TL measured by the platinum ball pulling method.
  • Chipping resistance was determined by performing a stone flying test based on ISO-20567-1 and visually observing whether the glass surface became white due to scratches.
  • Silica sand is used as the stepping stones, and the silica sand injection device is placed at a distance of 1 m from the alkali-free glass plates of the examples and comparative examples.
  • 500 ml of silica sand was injected toward the alkali-free glass plates of the examples and comparative examples at an injection pressure of 0.5 MPa. If the wound turned white due to scratches, it was marked as ⁇ , and if it did not, it was marked as ⁇ .
  • the alkali-free glass plate of the present invention is suitable as an organic EL device, particularly a substrate for an organic EL television display panel, and a carrier for manufacturing an organic EL display panel.
  • the alkali-free glass plate of the present invention can be used as substrates for displays such as liquid crystal displays, cover glasses for image sensors such as charge-coupled devices (CCDs) and 1x close-up solid-state image sensors (CIS), and solar cells. It is also suitable for use as substrates and cover glasses for industrial applications, substrates for organic EL lighting, and the like.
  • the alkali-free glass plate of the present invention has sufficiently high strain point and Young's modulus, it is also suitable as a glass substrate for magnetic recording media. If the strain point is high, the glass plate will be less likely to deform even if heat treatment at high temperatures such as thermal assist or laser irradiation is performed. As a result, a higher heat treatment temperature can be used when increasing Ku, making it easier to manufacture a magnetic recording device with high recording density. Furthermore, when the Young's modulus is high, the glass substrate is less likely to bend or flutter during high-speed rotation, so collisions between the magnetic recording medium and the magnetic head can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

生産性に優れると共に、歪点とヤング率が十分に高い無アルカリガラス板を提供することである。 本発明の無アルカリガラス板は、ガラス組成として、mol%で、SiO2 60~80%、Al2O3 12~15%、B2O3 1.2~4%、Li2O+Na2O+K2O 0~0.5%、MgO 2~8%、CaO 2~11%、SrO 0~5%、BaO 0~5%、MgO+CaO+SrO+BaO 10~16%を含有し、mol%比B2O3/Al2O3が0.1~0.3、mol%比(B2O3+BaO)/SiO2が0.01~0.1、MgO+CaO+SrO+BaO―Al2O3が―2~2%であることを特徴とする。

Description

無アルカリガラス板
 本発明は、無アルカリガラス板に関し、特に有機ELディスプレイや磁気記録媒体に好適な無アルカリガラス板に関する。
 有機ELディスプレイ等の電子デバイスは、薄型で動画表示に優れると共に、消費電力も低いため、フレキシブルデバイスや携帯電話のディスプレイ等の用途に使用されている。
 有機ELディスプレイの基板として、ガラス板が広く使用されている。この用途のガラス板には、主に以下の特性が要求される。
(1)熱処理工程で成膜された半導体物質中にアルカリイオンが拡散する事態を防止するため、アルカリ金属酸化物をほとんど含まないこと、つまり無アルカリガラス(ガラス組成中のアルカリ酸化物の含有量が0.5mol%以下となるガラス)であること、
(2)ガラス板を低廉化するため、表面品位を高め易いオーバーフローダウンドロー法で成形され、且つ生産性に優れること、特に溶融性や耐失透性に優れること、
(3)LTPS(low temperature poly silicon)プロセス、酸化物TFTプロセスにおいて、ガラス板の熱収縮を低減するため、歪点が高いこと。
 また、各種情報機器において、磁気ディスク、光ディスクなどの磁気記録媒体が使用されている。
 磁気記録媒体用の基板として、従来のアルミニウム合金基板に代わり、ガラス板が広く使用されている。近年では、更なる高記録密度化のニーズに応えるため、エネルギーアシスト磁気記録方式を用いた磁気記録媒体、つまりエネルギーアシスト磁気記録媒体が検討されている。エネルギーアシスト磁気記録媒体についても、ガラス板が使用されると共に、ガラス板の表面上に磁性層等が成膜される。エネルギーアシスト磁気記録媒体では、磁性層の磁性材料として大きな磁気異方性係数Ku(以下、「高Ku」と称する)を有する規則合金が用いられる。
特開2012-106919号公報 特開2021-086643号公報
 ところで、有機ELデバイスは、有機ELテレビにも広く展開されている。有機ELテレビには大型化、薄型化の要求が強く、また8K等の高解像度のディスプレイの需要が高まっている。よって、これらの用途のガラス板には、大型化、薄型化でありながら、高解像度の要求に耐え得る熱的寸法安定性が求められる。更に有機ELテレビには、液晶ディスプレイとの価格差を低減するため、低コストが求められており、ガラス板も同様に低コストであることが求められている。しかし、ガラス板が大型化、薄型化すると、ガラス板が撓み易くなり、製造コストが高騰してしまう。
 ガラスメーカーで成形されたガラス板は、切断、徐冷、検査、洗浄等の工程を経由するが、これらの工程中、ガラス板は、複数段の棚が形成されたカセットに投入、搬出される。このカセットは、通常、左右の内側面に形成された棚に、ガラス板の相対する両辺を載置して水平方向に保持できるようになっているが、大型で薄いガラス板は撓み量が大きいため、ガラス板をカセットに投入する際に、ガラス板の一部がカセットに接触して破損したり、搬出する際に、大きく揺動して不安定となり易い。このような形態のカセットは、電子デバイスメーカーでも使用されるため、同様の不具合が発生することになる。この問題を解決するために、ガラス板のヤング率を高めて、撓み量を低減する方法が有効である。
 また、上記のように、高解像度のディスプレイを得るためのLTPSや酸化物TFTプロセスにおいて、大型のガラス板の熱収縮を低減するため、ガラス板の歪点を高める必要がある。
 しかし、ガラス板のヤング率と歪点を高めようとすると、ガラス組成のバランスが崩れて、生産性が低下し、特に耐失透性が顕著に低下して、液相粘度が増加するためオーバーフローダウンドロー法で成形できなくなる。また、溶融性が低下したり、ガラスの成形温度が高くなって、成形体の寿命が短くなり易い。結果として、ガラス板の原板コストが高騰してしまう。
 また、磁気記録媒体用ガラス板には、高速回転時に大きな変形を起こさないために、高い剛性(ヤング率)を有することが求められる。詳述すると、ディスク状の磁気記録媒体では、媒体を中心軸の周りに高速回転させつつ、磁気ヘッドを半径方向に移動させながら、回転方向に沿って情報の書き込み、読み出しを行う。近年、この書き込み速度や読み出し速度を上げるための回転数は5400rpmから7200rpm、更には10000rpmと高速化の方向に進んでいるが、ディスク状の磁気記録媒体では、予め中心軸からの距離に応じて情報を記録するポジションが割り当てられる。このため、ガラス板が回転中に変形を起こすと、磁気ヘッドの位置ズレが起こり、正確な読み取りが困難になる。
 また、近年、磁気ヘッドにDFH(Dynamic Flying Height)機構を搭載させることで、磁気ヘッドの記録再生素子部と磁気記録媒体表面との間隙の大幅な狭小化(低浮上量化)を達成して、更なる高記録密度化を図ることが行われている。DFH機構とは、磁気ヘッドの記録再生素子部の近傍に極小のヒーター等の加熱部を設けて、素子部周辺のみを媒体表面方向に向けて熱膨張させる機構である。このような機構を備えることにより、磁気ヘッドと媒体の磁性層との距離が近づくため、より小さい磁性粒子の信号を拾うことができるようになり、高記録密度化を達成することが可能となる。その一方で、磁気ヘッドの記録再生素子部と磁気記録媒体の表面との間隙が、例えば2nm以下と極めて小さくなるため、僅かな衝撃によっても磁気ヘッドが磁気記録媒体の表面に衝突する虞がある。この傾向は、高速回転になる程、顕著となる。よって、高速回転時には、この衝突の原因になるガラス板の撓みやバタツキ(フラッタリング)の発生を防ぐことが重要になる。
 さらに、磁性層の規則化の程度(規則度)を高めて高Ku化を図るため、磁性層の成膜時、或いは成膜前後に、ガラス板を含む基材を800℃程度の高温で熱処理することがある。この熱処理温度は高記録密度になる程、高温が必要になるため、従来の磁気記録媒体用ガラス板よりも更に高い耐熱性、つまり歪点が高いことが求められる。また、磁性層の成膜後に、ガラス板を含む基材に対して、レーザー照射を実行することもある。このような熱処理やレーザー照射は、FePt系合金等を含む磁性層のアニール温度や保磁力を高めるという目的もある。
 しかし、上記の通り、ガラス板のヤング率と歪点を高めようとすると、ガラス組成のバランスが崩れて、生産性が低下し、特に耐失透性が顕著に低下して、液相粘度が増加するためオーバーフローダウンドロー法で成形できなくなる。また、溶融性が低下したり、ガラスの成形温度が高くなって、成形体の寿命が短くなり易い。結果として、ガラス板の原板コストが高騰してしまう。
 更に、ディスク上の磁気記録媒体の製造工程において、ガラス板の端面を研磨する工程があるが、端面を研磨する際にチッピングが発生することがある。チッピングの発生により、磁気記録媒体の歩留まりが低下するおそれがある。
 そこで、本発明は、上記事情に鑑み創案されたものであり、その技術的課題は、生産性に優れると共に、歪点とヤング率が十分に高い無アルカリガラス板を提供することである。
(1)本発明の無アルカリガラス板は、ガラス組成として、mol%で、SiO 60~80%、Al 12~15%、B 1.2~4%、LiO+NaO+KO 0~0.5%、MgO 2~8%、CaO 2~11%、SrO 0~5%、BaO 0~5%、MgO+CaO+SrO+BaO 10~16%を含有し、mol%比B/Alが0.1~0.3、mol%比(B+BaO)/SiOが0.01~0.1、(MgO+CaO+SrO+BaO―Al)が―2~2%であることを特徴とする。ここで、「LiO+NaO+KO」は、LiO、NaO及びKOの合量を指す。「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量を指す。「B/Al」は、Bのmol%含有量をAlのmol%含有量で除した値である。「(B+BaO)/SiO」は、B、BaOのmol%含有量の合量をSiOのmol%含有量で除した値である。「MgO+CaO+SrO+BaO―Al」は、MgO、CaO、SrO及びBaOの合量からAlのmol%含有量を減じた値である。なお、本発明でいう「無アルカリガラス」は、LiO+NaO+KOの含有量が0.5%以下のガラスを指すものとする。
(2)本発明の無アルカリガラス板は、ガラス組成として、mol%で、SiO 65~75%、Al 12.5~14%、B 1.5~4%、LiO+NaO+KO 0~0.1%、MgO 3.3~7%、CaO 2~11%、SrO 0~5%、BaO 0~5%、MgO+CaO+SrO+BaO 10~16%を含有し、mol%比B/Alが0.12~0.19、mol%比(B+BaO)/SiOが0.016~0.07、(MgO+CaO+SrO+BaO―Al)が―2~+1.2%であることが好ましい。
(3)上記(1)又は(2)の構成において、Bの含有量が2~3mol%であることが好ましい。ガラス板の製造工程では、端面を研磨する工程があるが、端面を研磨する際にチッピングが発生することがある。このチッピングは、破損の原因になり得る。そこで、Bの含有量を2~3mol%に規制すれば、端面を研磨する際に、チッピングが発生し難くなる。
(4)上記(1)~(3)の構成において、ガラス組成中に実質的にAs、Sbを含有せず、更にSnOを0.001~1mol%含むことが好ましい。ここで、「実質的にAsを含まない」とは、Asの含有量が0.05mol%以下の場合を指す。「実質的にSbを含まない」とは、Sbの含有量が0.05mol%以下の場合を指す。
(5)上記(1)~(4)の構成において、ヤング率80GPa以上であり、歪点が720℃以上であり、且つ液相温度が1400℃以下であることが好ましい。ここで、「ヤング率」は、曲げ共振法により測定した値を指す。なお、1GPaは、約101.9Kgf/mmに相当する。「歪点」は、ASTM C336の方法に基づいて測定した値を指す。「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を指す。
(6)上記(1)~(5)の構成において、歪点が730℃以上であることが好ましい。
(7)上記(1)~(6)の構成において、ヤング率が82GPaより高いことが好ましい。
(8)上記(1)~(7)の構成において、比ヤング率が31.5GPa/g・cm―3以上であることが好ましい。ここで、「比ヤング率」は、ヤング率を密度で除した値である。
(9)上記(1)~(8)の構成において、30~380℃の温度範囲における平均熱膨張係数が20×10-7~50×10-7/℃であることが好ましい。ここで、「30~380℃の温度範囲における平均熱膨張係数」は、ディラトメーターで測定可能である。
 (10)上記(1)~(9)の構成において、徐冷点が800℃以上であることが好ましい。ここで、「徐冷点」は、ASTM C336の方法に基づいて測定した値を指す。
(11)上記(1)~(10)の構成において、液相粘度が103.5dPa・s以上であることが好ましい。ここで、「液相粘度」は、液相温度におけるガラスの粘度を指し、白金球引き上げ法で測定可能である。
(11)上記(1)~(10)の構成において、有機ELデバイスに用いることが好ましい。
(12)上記(1)~(11)の構成において、磁気記録媒体に用いることが好ましい。
 本発明の無アルカリガラス板は、生産性に優れると共に、歪点とヤング率が十分に高い。
磁気記録媒体用ガラス基板の形状の一例を示すための上方斜視図である。
 本発明の無アルカリガラス板は、ガラス組成として、SiO 60~80%、Al 12~15%、B 1.2~4%、LiO+NaO+KO 0~0.5%、MgO 2~8%、CaO 2~11%、SrO 0~5%、BaO 0~5%、MgO+CaO+SrO+BaO 10~16%を含有し、mol%比B/Alが0.1~0.3、mol%比(B+BaO)/SiOが0.01~0.1、(MgO+CaO+SrO+BaO―Al)が―2~+2%であることを特徴とする。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、mol%を表す。また、特に断りがある場合を除き、上限はその値以上であることを表し、下限はその値以下であることを表す。
 SiOは、ガラスの骨格を形成する成分である。SiOの含有量が少な過ぎると、熱膨張係数が高くなり、密度が増加する。よって、SiOの下限量は、好ましくは60%、より好ましくは65%、更に好ましくは68%、更に好ましくは68.5%、更に好ましくは69%、更に好ましくは69.2%、更に好ましくは69.5%、更に好ましくは69.8%、更に好ましくは70%、更に好ましくは70.2%、更に好ましくは70.5%であり、最も好ましくは70.7%である。一方、SiOの含有量が多過ぎると、ヤング率が低下し、更に高温粘度が高くなり、溶融時に必要な熱量が多くなり、溶融コストが高騰すると共に、SiOの導入原料の溶け残りが発生して、歩留まり低下の原因になる虞がある。また、クリストバライト等の失透結晶が析出し易くなって、液相粘度が低下し易くなる。よって、SiOの上限量は、好ましくは80%、より好ましくは77%、更に好ましくは76.4%、更に好ましくは75.8%、更に好ましくは75.5%、更に好ましくは75.3%、更に好ましくは75%、更に好ましくは74.5%、最も好ましくは74%である。
 Alは、ガラスの骨格を形成する成分であり、またヤング率を高める成分であり、更に歪点を上昇させる成分である。Alの含有量が少な過ぎると、ヤング率が低下し易くなり、また歪点が低下し易くなる。よって、Alの下限量は、好ましくは12%、より好ましくは12.2%、更に好ましくは12.4%、更に好ましくは12.4%超、更に好ましくは12.5%、更に好ましくは12.6%、更に好ましくは12.8%、更に好ましくは12.8%超、最も好ましくは13%である。一方、Alの含有量が多過ぎると、ムライト等の失透結晶が析出し易くなって、液相粘度が低下し易くなる。よって、Alの上限量は、好ましくは15%、より好ましくは14.8%、更に好ましくは14.6%、更に好ましくは14.4%、更に好ましくは14.2%、更に好ましくは14%、更に好ましくは13.9%、更に好ましくは13.8%、更に好ましくは13.7%、最も好ましくは13.6%である。
 mol%比SiO/Alは、歪点を高め、高温粘度を下げるために重要な成分比率である。mol%比SiO/Alが小さ過ぎると、歪点が下がり易くなる。そのため、mol%比SiO/Alの下限は、好ましくは4.5、より好ましくは4.7、更に好ましくは4.9、更に好ましくは5、更に好ましくは5.1、更に好ましくは5.1超、最も好ましくは5.2である。一方、mol%比SiO/Alが大き過ぎると、高温粘度が増加して、ガラス板の製造コストが高騰し易くなる。よって、mol%比SiO/Alの上限は、好ましくは6.5、より好ましくは6.3、更に好ましくは6.1、更に好ましくは6、更に好ましくは5.9、更に好ましくは5.8、更に好ましくは5.7、更に好ましくは5.6、更に好ましくは5.5、最も好ましくは5.35である。
 Bは、耐チッピング性を高める成分であり、また溶融性や耐失透性を高める効果を享受し得る。よって、Bの下限量は、好ましくは1.2%、更に好ましくは1.5%、更に好ましくは1.8%、更に好ましくは2%、最も好ましくは2超%である。一方、Bの含有量が多過ぎると、ヤング率や歪点が低下し易くなる。よって、Bの上限量は、好ましくは4%、より好ましくは3.9%、更に好ましくは3.8%、更に好ましくは3.7%、更に好ましくは3.6%、更に好ましくは3.5%、更に好ましくは3.4%、更に好ましくは3.3%、更に好ましくは3.2%、最も好ましくは3%である。
 mol%比B/Alは、ヤング率を高め、歪点を高めるために重要な成分比率である。mol%比B/Alが小さ過ぎると、ヤング率が低下し易くなる。そのため、mol%比B/Alの下限は、好ましくは0.1、より好ましくは0.11、更に好ましくは0.12、更に好ましくは0.13、更に好ましくは0.14、最も好ましくは0.15である。一方、mol%比B/Alが大き過ぎると、歪点が低下しやすくなる。よって、mol%比B/Alの上限は、好ましくは0.3、より好ましくは0.3未満、更に好ましくは0.28、更に好ましくは0.25、更に好ましくは0.23、更に好ましくは0.2、最も好ましくは0.19である。
 LiO、NaO及びKOは、ガラス原料から不可避的に混入する成分であり、その合量は0~0.5%であり、好ましくは0~0.1%、より好ましくは0~0.09%、更に好ましくは0.005~0.08%、更に好ましくは0.008~0.06%、最も好ましくは0.01~0.05%である。LiO、NaO及びKOの合量が多過ぎると、熱処理工程で成膜された半導体物質中にアルカリイオンが拡散する事態を招く虞がある。なお、LiO、NaO及びKOの個別含有量は、それぞれ好ましくは0~0.3%、より好ましくは0~0.1%、更に好ましくは0~0.08%、更に好ましくは0~0.07%、更に好ましくは0~0.05%、最も好ましくは0.001~0.04%である。
 MgOは、アルカリ土類金属酸化物の中では、ヤング率を顕著に高める成分である。MgOの含有量が少な過ぎると、溶融性やヤング率が低下し易くなる。よって、MgOの下限量は、好ましくは2%、より好ましくは2.1%、より好ましくは2.3%、更に好ましくは2.5%、更に好ましくは2.8%、更に好ましくは3%、更に好ましくは3.3%、最も好ましくは3.5%である。一方、MgOの含有量が多過ぎると、ムライト等の失透結晶が析出し易くなって、液相粘度が低下し易くなる。よって、MgOの上限量は、好ましくは8%、より好ましくは7.8%、より好ましくは7.6%、より好ましくは7.5%、より好ましくは7.4%、より好ましくは7.3%未満、より好ましくは7.2%、より好ましくは7.1%、更に好ましくは7.0%、更に好ましくは6.9%、最も好ましくは6.8%である。
 CaOは、歪点を低下させずに、高温粘性を下げて、溶融性を顕著に高める成分である。またヤング率を高める成分である。CaOの含有量が少な過ぎると、溶融性が低下し易くなる。よって、CaOの下限量は、好ましくは2%、より好ましくは2.2%、より好ましくは2.5%、更に好ましくは2.8%、更に好ましくは3%、更に好ましくは3.2%、更に好ましくは3.5%、更に好ましくは3.8%、最も好ましくは4%である。一方、CaOの含有量が多過ぎると、液相温度が高くなる。よって、CaOの上限量は、好ましくは11%、より好ましくは10.5%、より好ましくは10.2%、より好ましくは10%、より好ましくは9.8%、更に好ましくは9.5%、更に好ましくは9.3%、最も好ましくは9%である。
 SrOは、耐失透性を高め、更に歪点を低下させずに、高温粘性を下げて、溶融性を高める成分である。また液相粘度の低下を抑制する成分である。よって、SrOの下限量は、好ましくは0%、より好ましくは0%超、より好ましくは0.1%、更に好ましくは0.1%超、更に好ましくは0.2%、更に好ましくは0.3%、更に好ましくは0.3%超、更に好ましくは0.4%、更に好ましくは0.4%超、最も好ましくは0.5%である。一方、SrOの含有量が多過ぎると、熱膨張係数と密度が増加し易くなる。よって、SrOの上限量は、好ましくは5%、より好ましくは5%未満、更に好ましくは4.8%、更に好ましくは4.5%、更に好ましくは4.3%、最も好ましくは4%である。
 BaOは、耐失透性を高める成分である。よって、BaOの下限量は、好ましくは0%、より好ましくは0%超、より好ましくは0.1%、更に好ましくは0.1%超、更に好ましくは0.2%、更に好ましくは0.3%、更に好ましくは0.4%、更に好ましくは0.4%超、最も好ましくは0.5%である。一方、BaOの含有量が多過ぎると、ヤング率が低下し易くなり、また密度が増加し易くなる。結果として、比ヤング率が上昇して、ガラス板が撓み易くなる。よって、BaOの上限量は、好ましくは5%、より好ましくは5%未満、より好ましくは4.8%、更に好ましくは4.5%、更に好ましくは4.3%、更に好ましくは4%、更に好ましくは3.8%、更に好ましくは3.5%、最も好ましくは3%である。
 MgO、CaO、SrO及びBaOは、密度と熱膨張係数を高める成分である。MgO+CaO+SrO+BaOの含有量が少な過ぎると、熱膨張係数が低下し易くなる。よって、MgO+CaO+SrO+BaOの下限量は、好ましくは10%、より好ましくは10.2%、より好ましくは10.5%、更に好ましくは10.8%、更に好ましくは11%、更に好ましくは11.3%、更に好ましくは11.5%、更に好ましくは11.8%、最も好ましくは12%である。一方、MgO+CaO+SrO+BaOの含有量が多過ぎると、密度が増加し易くなる。よって、MgO+CaO+SrO+BaOの上限量は、好ましくは16%、より好ましくは15.8%、より好ましくは15.5%、更に好ましくは15.3%未満、更に好ましくは15%、更に好ましくは14.8%、最も好ましくは14.5%である。
 mol%比(B+BaO)/SiOは、ヤング率を高め、歪点を高めるために重要な成分比率である。mol%比(B+BaO)/SiOが小さ過ぎると、歪点が低下し易くなる。そのため、mol%比(B+BaO)/SiOの下限は、好ましくは0.01、より好ましくは0.016、更に好ましくは0.02、更に好ましくは0.03、最も好ましくは0.04である。一方、mol%比(B+BaO)/SiOが大き過ぎると、ヤング率が低下し易くなる。よって、mol%比(B+BaO)/SiOの上限は、好ましくは0.1、より好ましくは0.1未満、更に好ましくは0.09、更に好ましくは0.08、更に好ましくは0.07、更に好ましくは0.065、最も好ましくは0.060である。
 (MgO+CaO+SrO+BaO―Al)は、比ヤング率、及び歪点を高め、耐失透性を高めるために重要なパラメータである。(MgO+CaO+SrO+BaO―Al)が小さ過ぎると、歪点が低下しやすくなる。また、耐失透性が低下して、ガラス板の製造コストが高騰し易くなる。そのため、(MgO+CaO+SrO+BaO―Al)の下限は、好ましくは―2%、より好ましくは―1.8%、更に好ましくは―1.5%、更に好ましくは―1.3%、更に好ましくは―1%、更に好ましくは―0.8%、更に好ましくは―0.5%、更に好ましくは―0.3%、更に好ましくは―0.2%、最も好ましくは0%である。一方、(MgO+CaO+SrO+BaO―Al)が大き過ぎると、比ヤング率が低下し易くなる。よって、(MgO+CaO+SrO+BaO―Al)の上限は、好ましくは+2%、より好ましくは+1.8%、更に好ましくは+1.6%、更に好ましくは+1.4%、更に好ましくは+1.2%、最も好ましくは+1%である。
 各成分の好適な含有範囲を適宜組み合わせて、好適なガラス組成範囲とすることができるが、その中でも、本願発明の効果を最適化するために、ガラス組成として、mol%で、SiO 65~75%、Al 12.5~14%、B 1.2~4%、LiO+NaO+KO 0~0.1%、MgO 3.3~7%、CaO 2~11%、SrO 0~5%、BaO 0~5%、MgO+CaO+SrO+BaO 10~16%を含有し、mol%比B/Alが0.12~0.19、mol%比(B+BaO)/SiOが0.016~0.07、(MgO+CaO+SrO+BaO―Al)が―2~+1.2%とすることが特に好ましい。
 上記成分以外にも、例えば、任意成分として、以下の成分を添加してもよい。なお、上記成分以外の他の成分の含有量は、本発明の効果を的確に享受する観点から、合量で10%以下、特に5%以下が好ましい。
 Pは、歪点を高める成分であると共に、アノーサイト等のアルカリ土類アルミノシリケート系の失透結晶の析出を顕著に抑制し得る成分である。但し、Pを多量に含有させると、ガラスが分相し易くなる。Pの含有量は、好ましくは0~2.5%、より好ましくは0~1.5%、更に好ましくは0~0.5%、更に好ましくは0~0.3%、更に好ましくは0~0.1%未満、特に好ましくは0~0.01%未満である。
 TiOは、高温粘性を下げて、溶融性を高める成分であると共に、ソラリゼーションを抑制する成分であるが、TiOを多量に含有させると、ガラスが着色して、透過率が低下し易くなる。TiOの含有量は、好ましくは0~2.5%、より好ましくは0.0005~1%、更に好ましくは0.001~0.5%、特に好ましくは0.005~0.1%である。
 ZnOは、ヤング率を高める成分である。しかし、ZnOを多量に含有させると、ガラスが失透し易くなり、また歪点が低下し易くなる。ZnOの含有量は好ましくは0~3%、より好ましくは0~2%、更に好ましくは0~1%、更に好ましくは0~0.8%、更に好ましくは0~0.5%、特に好ましくは0~0.5%未満である。
 Feは、ガラス原料から不可避的に混入する成分であり、また電気抵抗率を低下させる成分である。Feの含有量は、好ましくは0~250molppm、20~200molppm、特に40~100molppmである。Feの含有量が少な過ぎると、原料コストが高騰し易くなる。一方、Feの含有量が多過ぎると、溶融ガラスの電気抵抗率が上昇して、電気溶融を行い難くなる。
 ZrOは、ヤング率を高める成分である。しかし、ZrOを多量に含有させると、ガラスが失透し易くなる。ZrOの含有量は好ましくは0~2.5%、より好ましくは0.0005~1%、更に好ましくは0.001~0.5%、特に好ましくは0.005~0.1%である。
 Y、Nb、Laには、歪点、ヤング率等を高める働きがある。これらの成分の合量及び個別含有量は、好ましくは0~5%、より好ましくは0~1%、更に好ましくは0~0.5%、特に好ましくは0~0.5%未満である。Y、Nb、Laの合量及び個別含有量が多過ぎると、密度や原料コストが増加し易くなる。
 SnOは、高温域で良好な清澄作用を有する成分であると共に、歪点を高める成分であり、また高温粘性を低下させる成分である。SnOの含有量は0~1%、0.001~1%、0.01~0.5%、特に0.05~0.3%が好ましい。SnOの含有量が多過ぎると、SnOの失透結晶が析出し易くなる。なお、SnOの含有量が0.001%より少ないと、上記効果を享受し難くなる。
 上記の通り、SnOは、清澄剤として好適であるが、ガラス特性が損なわれない限り、清澄剤として、SnOに代えて、或いはSnOと共に、F、SO、C、或いはAl、Si等の金属粉末を各々5%まで(好ましくは1%まで、特に0.5%まで)添加することができる。また、清澄剤として、CeO、F等も各々5%まで(好ましくは1%まで、特に0.5%まで)添加することができる。
 清澄剤として、As、Sbも有効である。しかし、As、Sbは、環境負荷を増大させる成分である。またAsは、耐ソラリゼーション性が低下させる成分である。よって、本発明の無アルカリガラス板は、これらの成分を実質的に含有しないことが好ましい。
 Clは、ガラスバッチの初期溶融を促進させる成分である。また、Clを添加すれば、清澄剤の作用を促進することができる。これらの結果として、溶融コストを低廉化しつつ、ガラス製造窯の長寿命化を図ることができる。しかし、Clの含有量が多過ぎると、歪点が低下し易くなる。よって、Clの含有量は、好ましくは0~3%、より好ましくは0.0005~1%、特に好ましくは0.001~0.5%である。なお、Clの導入原料として、塩化ストロンチウム等のアルカリ土類金属酸化物の塩化物、或いは塩化アルミニウム等の原料を使用することができる。
 本発明の無アルカリガラス板は、以下の特性を有することが好ましい。
 30~380℃の温度範囲における平均熱膨張係数は、好ましくは20×10-7~50×10-7/℃、25×10-7~48×10-7/℃、30×10-7~45×10-7/℃、33×10-7~44×10-7/℃、特に35×10-7~43×10-7/℃である。このようにすれば、TFTに使用されるSiの熱膨張係数に整合し易くなる。
 ヤング率は、好ましくは80GPa以上、81GPa以上、81.3GPa以上、81.5GPa以上、81.8GPa以上、82GPa以上、82.3GPa以上、82.5GPa以上、82.8GPa以上、特に83~120GPaである。ヤング率が低過ぎると、ガラス板の撓みに起因した不具合が発生し易くなる。
 比ヤング率は、好ましくは31.5GPa/g・cm―3以上、31.8GPa/g・cm―3以上、32GPa/g・cm―3以上、32.2GPa/g・cm―3以上、32.4GPa/g・cm―3以上、32.6GPa/g・cm―3以上、32.8GPa/g・cm―3以上、特に33~37GPa/g・cm―3である。比ヤング率が低過ぎると、ガラス板の撓みに起因した不具合が発生し易くなる。
 歪点は、好ましくは720℃以上、725℃以上、728℃以上、730℃以上、735℃以上、738℃以上、特に740~820℃である。このようにすれば、LTPSプロセスにおいて、ガラス板の熱収縮を抑制することができる。
 徐冷点は、好ましくは800℃以上、801℃以上、803℃以上、805℃以上、808℃以上、特に809℃~900℃である。このようにすれば、LTPSプロセスにおいて、ガラス板の熱収縮を抑制することができる。
 液相温度は、好ましくは1400℃以下、1380℃以下、1350℃以下、1300℃以下、1290℃以下、1285℃以下、1280℃以下、1275℃以下、1270℃以下であり、1160℃以上、1170℃以上であり、特に1260~1180℃である。このようにすれば、ガラス製造時に失透結晶が発生して、生産性低下する事態を防止し易くなる。更にオーバーフローダウンドロー法で成形し易くなるため、ガラス板の表面品位を高め易くなると共に、ガラス板の製造コストを低廉化することができる。なお、液相温度は、耐失透性の指標であり、液相温度が低い程、耐失透性に優れる。
 液相粘度は、好ましくは103.5dPa・s以上、103.7dPa・s以上、103.9dPa・s以上、104.2dPa・s以上、104.5dPa・s以上、104.8dPa・s以上、105.1dPa・s以上であり、107.4dPa・s以下、107.2dPa・s以下であり、特に105.2~107.0dPa・sである。このようにすれば、成形時に失透が生じ難くなるため、オーバーフローダウンドロー法で成形し易くなり、結果として、ガラス板の表面品位を高めることが可能になり、またガラス板の製造コストを低廉化することができる。なお、液相粘度は、耐失透性と成形性の指標であり、液相粘度が高い程、耐失透性と成形性が向上する。
 高温粘度102.5dPa・sにおける温度は、好ましくは1750℃以下、1730℃以下、1710℃以下、特に1600~1680℃である。高温粘度102.5dPa・sにおける温度が高過ぎると、ガラスバッチを溶解し難くなって、ガラス板の製造コストが高騰する。なお、高温粘度102.5dPa・sにおける温度は、溶融温度に相当し、この温度が低い程、溶融性が向上する。
 β-OH値は、ガラス中の水分量を示す指標であり、β-OH値を低下させると、歪点を高めることができる。また、ガラス組成が同じ場合でも、β―OH値が小さい方が、歪点以下温度での熱収縮率が小さくなる。β-OH値は、好ましくは0.35/mm以下、0.30/mm以下、0.28/mm以下、0.25/mm以下、0.20/mm以下、0.17/mm以下、特に0.15/mm以下である。なお、β-OH値が小さ過ぎると、溶融性が低下し易くなる。よって、β-OH値は、好ましくは0.01/mm以上、特に0.03/mm以上である。
 β-OH値を低下させる方法として、以下の方法が挙げられる。(1)含水量の低い原料を選択する。(2)ガラス中にβ-OH値を低下させる成分(Cl、SO等)を添加する。(3)炉内雰囲気中の水分量を低下させる。(4)溶融ガラス中でNバブリングを行う。(5)小型溶融炉を採用する。(6)溶融ガラスの流量を多くする。(7)電気溶融法を採用する。
 ここで、「β-OH値」は、FT-IRを用いてガラスの透過率を測定し、下記の数式1を用いて求めた値を指す。
[数1]
β-OH値=(1/X)log(T/T
X:板厚(mm)
:参照波長3846cm-1における透過率(%)
:水酸基吸収波長3600cm-1付近における最小透過率(%)
 本発明の無アルカリガラス板は、オーバーフローダウンドロー法で成形されてなることが好ましい。オーバーフローダウンドロー法は、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス板を製造する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、未研磨で表面品位が良好な火造り面を有するガラス板を安価に製造することができ、薄型化も容易である。
 本発明の無アルカリガラス板は、フロート法で成形されてなることも好ましい。大型のガラス板を安価に製造することができる。
 本発明の無アルカリガラス板は、磁気記録媒体に用いる場合、表面が研磨面であることが好ましい。ガラス表面を研磨すると、全体板厚偏差TTVを低減することができる。その結果、磁性膜が適正に形成し得るため、磁気記録媒体の基板に好適になる。一方、有機ELデバイスに用いる場合、表面はオーバーフローダウンドロー法で成形されてなる火造り面(未研磨面)であることが好ましい。
本発明の無アルカリガラス板において、板厚は、特に限定されるものではないが、有機ELデバイスに用いる場合、0.7mm未満、0.6mm以下、0.6mm未満、特に0.05~0.5mmが好ましい。板厚が薄くなる程、有機ELデバイスの軽量化が可能となる。板厚は、ガラス製造時の流量や板引き速度等で調整可能である。一方、磁気記録媒体に用いる場合、板厚は、好ましくは1.5mm以下、1.2mm以下、0.2~1.0mm、特に0.3~0.9mmである。板厚が厚過ぎると、所望の板厚までエッチングしなければならず、加工コストが高騰する虞がある。
 本発明の無アルカリガラス板において、有機ELデバイスに用いる場合、表面の平均表面粗さRaは、好ましくは1.0nm以下、0.5nm以下、特に0.2nm以下である。表面の平均表面粗さRaが大きいと、ディスプレイの製造工程において、電極等の正確なパターニングを行うことが困難となり、その結果、回路電極が断線、ショートする確率が上昇し、ディスプレイ等の信頼性を担保し難くなる。ここで、「表面の平均表面粗さRa」は、端面を除く主表面(両表面)の平均表面粗さRaを指し、例えば、原子間力顕微鏡(AFM)で測定することができる。
 また、本発明の無アルカリガラス板を有機ELテレビ用ディスプレイパネルの基板、有機ELディスプレイパネルの製造用キャリアとして用いる場合は、形状は矩形状であることが好ましい。また、本発明の無アルカリガラス板を、磁気記録媒体、特にエネルギーアシスト磁気記録媒体用の基板に用いることが好ましい。磁性層の規則化の程度(規則度)を高めて高Ku化を図るため、基板への磁性層の成膜時、或いは成膜前後に、ガラス基板を含む基材を800℃程度の高温で熱処理することに加え、磁気記録媒体の高回転に伴う基板への衝撃にも耐えうる。本発明の無アルカリガラス板は、切断等の加工を行うことにより、図1に示すような、ディスク基板1に加工される。このように磁気記録媒体用ガラス基板に用いる場合、ディスク基板1は、ディスク形状を有することが好ましく、中心部に円形の開口部Cが形成されていることが更に好ましい。
 以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1、2は、本発明の実施例(試料No.1~24)及び比較例(No.25)を表している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 まず表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れ、1600~1680℃で24時間溶融した。ガラスバッチの溶解に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出し、板状に成形した後、徐冷点付近の温度で30分間徐冷した。得られた各試料について、30~380℃の温度範囲における平均熱膨張係数CTE、密度ρ、ヤング率E、比ヤング率E/ρ、歪点Ps、徐冷点Ta、軟化点Ts、高温粘度10dPa・sにおける温度、高温粘度10dPa・sにおける温度、高温粘度102.5dPa・sにおける温度、液相温度TL、液相温度TLにおける粘度log10ηTL、及び耐チッピング性を評価した。
 30~380℃の温度範囲における平均熱膨張係数CTEは、ディラトメーターで測定した値である。
 密度ρは、周知のアルキメデス法によって測定した値である。
 ヤング率Eは、周知の共振法で測定した値を指す。
 比ヤング率E/ρは、ヤング率を密度で除した値である。
 歪点Ps、徐冷点Ta、軟化点Tsは、ASTM C336及びC338の方法に基づいて測定した値である。
 高温粘度10dPa・s、10dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。
 液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度である。
 液相粘度log10ηTLは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値である。
 耐チッピング性は、ISO-20567―1に基づいて飛石試験を実施し、目視でガラス表面が傷で白くなったかどうかで判断した。飛石は珪砂を使用し、珪砂の射出装置を実施例及び比較例に係る無アルカリガラス板と1mの距離になるように配置する。次に、珪砂を射出圧0.5MPaで実施例及び比較例に係る無アルカリガラス板に向かって500ml射出した。傷で白くなった場合×、ならなかった場合を〇とした。
 表から明らかなように、試料No.1~24は、ガラス組成が所定範囲内に規制されているため、ヤング率が81GPa以上、歪点が744℃以上、液相温度が1383℃以下、液相粘度が103.9dPa・s以上、かつ耐チッピング性に優れている。よって、試料No.1~24は、生産性に優れると共に、歪点とヤング率が十分に高いため、有機ELデバイスの基板に好適である。
 試料No.25は、B量が少なく、MgO+CaO+SrO+BaO―Alが大きいため、耐チッピング性が悪く、比ヤング率も低くなっている。
 本発明の無アルカリガラス板は、有機ELデバイス、特に有機ELテレビ用ディスプレイパネルの基板、有機ELディスプレイパネルの製造用キャリアとして好適である。それ以外にも、本発明の無アルカリガラス板は、液晶ディスプレイ等といったディスプレイの基板、電荷結合素子(CCD)や等倍近接型固体撮像素子(CIS)等のイメージセンサー用のカバーガラス、太陽電池用の基板及びカバーガラス、有機EL照明用基板等にも好適である。
 また、本発明の無アルカリガラス板は、歪点とヤング率が十分に高いため、磁気記録媒体用ガラス基板としても好適である。歪点が高いと、熱アシスト等の高温での熱処理やレーザー照射を実行しても、ガラス板の変形が生じ難くなる。結果として、高Ku化を図る際に、より高い熱処理温度を採用し得るため、高記録密度の磁気記録装置を作製し易くなる。また、ヤング率が高いと、高速回転時に、ガラス基板の撓みやバタツキ(フラッタリング)が発生し難くなるため、磁気記録媒体と磁気ヘッドの衝突を防止することができる。
1 ディスク基板(磁気記録媒体用ガラス基板)

Claims (13)

  1.  ガラス組成として、mol%で、SiO 60~80%、Al 12~15%、B 1.2~4%、LiO+NaO+KO 0~0.5%、MgO 2~8%、CaO 2~11%、SrO 0~5%、BaO 0~5%、MgO+CaO+SrO+BaO 10~16%を含有し、mol%比B/Alが0.1~0.3、mol%比(B+BaO)/SiOが0.01~0.1、(MgO+CaO+SrO+BaO―Al)が-2~+2%であることを特徴とする無アルカリガラス板。
  2.  ガラス組成として、mol%で、SiO 65~75%、Al 12.5~14%、B 1.5~4%、LiO+NaO+KO 0~0.1%、MgO 3.3~7%、CaO 2~11%、SrO 0~5%、BaO 0~5%、MgO+CaO+SrO+BaO 10~16%を含有し、mol%比B/Alが0.12~0.19、mol%比(B+BaO)/SiOが0.02~0.07、(MgO+CaO+SrO+BaO―Al)が―2~+1.2%であることを特徴とする無アルカリガラス板。
  3.  Bの含有量が2~3mol%であることを特徴とする請求項1又は2に記載の無アルカリガラス板。
  4.  ガラス組成中に実質的にAs、Sbを含有せず、更にSnOを0.001~1mol%含むことを特徴とする請求項1又は2に記載の無アルカリガラス板。
  5.  ヤング率80GPa以上であり、歪点が720℃以上であり、且つ液相温度が1400℃以下であることを特徴とする請求項1又は2に記載の無アルカリガラス板。
  6.  歪点が730℃以上であることを特徴とする請求項1又は2に記載の無アルカリガラス板。
  7.  ヤング率が82GPaより高いことを特徴とする請求項1又は2に記載の無アルカリガラス板。
  8.  比ヤング率が31.5GPa/g・cm―3以上であることを特徴とする請求項1又は2に記載の無アルカリガラス板。
  9.  30~380℃の温度範囲における平均熱膨張係数が20×10-7~50×10-7/℃であることを特徴とする請求項1又は2に記載の無アルカリガラス板。
  10.  徐冷点が800℃以上であることを特徴とする請求項1又は2に記載の無アルカリガラス板。
  11.  液相粘度が103.5dPa・s以上であることを特徴とする請求項1又は2に記載の無アルカリガラス板。
  12.  有機ELデバイスに用いることを特徴とする請求項1又は2に記載の無アルカリガラス板。
  13.  磁気記録媒体に用いることを特徴とする請求項1又は2に記載の無アルカリガラス板。
PCT/JP2023/028292 2022-08-10 2023-08-02 無アルカリガラス板 WO2024034492A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-127716 2022-08-10
JP2022127716 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034492A1 true WO2024034492A1 (ja) 2024-02-15

Family

ID=89851586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028292 WO2024034492A1 (ja) 2022-08-10 2023-08-02 無アルカリガラス板

Country Status (1)

Country Link
WO (1) WO2024034492A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071523A (ja) * 2012-12-28 2015-04-16 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
WO2017002807A1 (ja) * 2015-06-30 2017-01-05 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
JP2017533171A (ja) * 2014-10-31 2017-11-09 コーニング インコーポレイテッド 寸法安定性の、迅速にエッチングされるガラス
JP2019131429A (ja) * 2018-01-31 2019-08-08 日本電気硝子株式会社 ガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071523A (ja) * 2012-12-28 2015-04-16 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
JP2017533171A (ja) * 2014-10-31 2017-11-09 コーニング インコーポレイテッド 寸法安定性の、迅速にエッチングされるガラス
WO2017002807A1 (ja) * 2015-06-30 2017-01-05 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
JP2019131429A (ja) * 2018-01-31 2019-08-08 日本電気硝子株式会社 ガラス

Similar Documents

Publication Publication Date Title
US9236075B2 (en) Crystallized glass and crystallized glass substrate for information recording medium
KR101601754B1 (ko) 무알칼리 유리
JP2013028512A (ja) 基板用ガラスおよびガラス基板
JP2020121920A (ja) 磁気記録媒体基板用ガラス、磁気記録媒体基板、磁気記録媒体および磁気記録再生装置用ガラススペーサ
WO2019177070A1 (ja) ガラス
WO2019177069A1 (ja) 無アルカリガラス
JP2024014964A (ja) 磁気記録媒体用ガラス基板及びそれを用いた磁気記録装置
CN108137380B (zh) 数据存储介质基板用玻璃、数据存储介质用玻璃基板以及磁盘
WO2024034492A1 (ja) 無アルカリガラス板
JP2019032918A (ja) 磁気記録媒体用ガラス基板
US20230162759A1 (en) Glass disk for magnetic recording medium and magnetic recording device using the same
WO2024057890A1 (ja) 無アルカリガラス板
WO2023276608A1 (ja) 無アルカリガラス板
WO2022239741A1 (ja) 無アルカリガラス板
WO2023084979A1 (ja) 無アルカリガラス板
WO2022239742A1 (ja) 無アルカリガラス板
JP2023007383A (ja) 無アルカリガラス板
JP2022173994A (ja) 無アルカリガラス板
KR20240089604A (ko) 무알칼리 유리판
CN118234690A (zh) 无碱玻璃板
CN117561228A (zh) 无碱玻璃板
CN117295697A (zh) 无碱玻璃板
CN117295698A (zh) 无碱玻璃板
WO2023100893A1 (ja) 磁気記録媒体用ガラス基板、磁気記録媒体用ガラスディスク、磁気記録媒体及びガラスディスクの製造方法
WO2021256466A1 (ja) 無アルカリガラス板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852459

Country of ref document: EP

Kind code of ref document: A1