WO2024032830A1 - 一种基于晶体调控原理的天然气水合物储气量提高方法 - Google Patents

一种基于晶体调控原理的天然气水合物储气量提高方法 Download PDF

Info

Publication number
WO2024032830A1
WO2024032830A1 PCT/CN2023/131467 CN2023131467W WO2024032830A1 WO 2024032830 A1 WO2024032830 A1 WO 2024032830A1 CN 2023131467 W CN2023131467 W CN 2023131467W WO 2024032830 A1 WO2024032830 A1 WO 2024032830A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrate
thermodynamic
additive
natural gas
gas
Prior art date
Application number
PCT/CN2023/131467
Other languages
English (en)
French (fr)
Inventor
李小森
余益松
刘建武
孙文哲
陈朝阳
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2024032830A1 publication Critical patent/WO2024032830A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]

Definitions

  • the invention relates to the technical field of natural gas storage and transportation, and specifically relates to a method for increasing the storage capacity of natural gas hydrate based on the principle of crystal regulation.
  • the natural gas solidification storage and transportation process based on the hydrate method is a new natural gas storage and transportation technology developed in recent years. It mainly fixes natural gas in a solid hydrate phase on a large scale and uses the solid natural gas hydrate to form of storage and transportation. Traditionally, 1m3 of hydrate can store 160-180m3 of natural gas under standard conditions. Compared with commercialized natural gas storage and transportation processes such as traditional liquefied natural gas (LNG) and compressed natural gas (CNG), natural gas hydrate solidification storage and transportation technology has the advantages of short process flow, low cost, safety and pollution-free.
  • LNG traditional liquefied natural gas
  • CNG compressed natural gas
  • thermodynamic additives may be the effective and only way to reduce the conditions for the formation of hydrates.
  • thermodynamic additives since the thermodynamic additive itself will occupy part of the hydrate cage space, thereby reducing the hydrate cage available for gas molecules to occupy, thus reducing the gas storage capacity of the hydrate.
  • Natural gas hydrate is a clathrate inclusion compound, with water molecules as the main body, forming a spatial lattice structure, and gas molecules as guests, filling the holes between the lattice. There is no stoichiometric relationship between gas and water. The water molecules forming the lattice are bonded by strong hydrogen bonds, while the force between gas molecules and water molecules is van der Waals force. There are four types of hydrate structures that have been discovered so far, namely type I, type II, type H, and type T. Type I hydrate has a cubic crystal structure.
  • Type I hydrates are the most widely distributed in nature, and the hydrates of pure methane and pure ethane are type I.
  • the general composition of this methane hydrate is CH 4 .5.75H 2 O.
  • Type II hydrate has a rhombic crystal structure. In addition to containing small molecules of C1 and C2, its larger holes tend to accommodate hydrocarbon molecules such as propane (C3) and isobutane (i-C4).
  • Type H hydrate It has a hexagonal crystal structure, and its holes can even accommodate i-C5 molecules and other molecules with diameters between 0.75-0.86nm. Analyzing the four structural characteristics of natural gas hydrate, it can be seen that the ratios of small crystal holes to large crystal holes of type I, type II, type H and type T are 1:3, 2:1, 5:1 and 1: respectively. 4. If methane is allowed to occupy all 5 12 and 5 12 6 2 of Type I, the methane reserves of Type I hydrate will be the largest.
  • the purpose of the present invention is to provide a method for increasing the gas hydrate gas storage capacity based on the principle of crystal regulation, which solves the problem of low natural gas hydrate gas storage capacity in the thermodynamic additive system.
  • a method for increasing the gas storage capacity of natural gas hydrate based on the principle of crystal regulation includes the following steps: introducing a slightly soluble or water-insoluble thermodynamic additive so that methane molecules replace the additive molecules to occupy the large cages in type II hydrate (5 12 6 4 ) Generate type II pure methane hydrate (16(5 12 ) ⁇ 8(5 12 6 4 ) ⁇ 136H 2 O); control the temperature to 274.15K-288.15K and the pressure to 5-9MPa to make unstable II Type I pure methane hydrate (16(5 12 ) ⁇ 8(5 12 6 4 ) ⁇ 136H 2 O) is quickly converted into type I pure methane hydrate (2(5 12 ) ⁇ 6(5 12 6 2 ) ⁇ 46H 2 O).
  • thermodynamic additives that are slightly soluble or insoluble in water in the present invention refer to formation accelerators that can usually form type II hydrate with methane.
  • traditional thermodynamic additives such as cyclopentane, propane, and trimethylethylenated sulfide can meet this requirement.
  • thermodynamic additive that is slightly soluble or insoluble in water has a small solubility in water. Therefore, no matter how much amount is added, the change in solubility in the aqueous solution is small. Therefore, the thermodynamic additive that is slightly soluble or insoluble in water has a small solubility in water. The effect of reducing hydrate formation conditions in the entire system is less affected by the amount of additives added. Therefore, this adjustment scheme can meet the requirements for large-scale crystal adjustment and control, and is suitable for the development requirements of large-scale industrial applications.
  • the crystal adjustment and control principle of the hydrate is as follows: According to the traditional van der Waals and Platteeuw theory, when the hole occupancy rate ( ⁇ L (Gas)) of gas molecules in the 5 12 6 4 cage is higher than that of the additive molecules in When the hole occupancy rate ( ⁇ L (Promoter)) in the cage is 5 12 6 4 , the gas molecules can replace the additive molecules to occupy the large cage of type II hydrate.
  • thermodynamic additive molecules of the present invention cannot occupy the cage of Type I hydrate due to their large molecular diameter.
  • thermodynamic additive that is slightly soluble or insoluble in water and can form a type II structure with methane.
  • the volume ratio of the slightly soluble or water-insoluble thermodynamic additive to water is (15-24): (76-85).
  • the described hydrate crystal adjustment and control process has universal applicability and does not require other auxiliary equipment to be achieved.
  • the pressure and temperature condition control process in step two is realized by refrigeration and heating devices, and the specific process depends on the thermodynamic additive used.
  • thermodynamic additive that is slightly soluble or insoluble in water
  • the pressure is 5-9MPa and the reaction temperature is 274.15K-288.15K.
  • thermodynamic additive that is slightly soluble or insoluble in water
  • the pressure is 5-7MPa and the reaction temperature is 276.15K-283.15K.
  • the method for increasing the gas hydrate storage capacity provided by the present invention is mainly achieved by adjusting and controlling the hydrate crystal structure generated in the system.
  • the problem of low hydrate gas storage capacity in the thermodynamic additive system can be fundamentally solved.
  • the present invention also protects the application of the method for increasing the storage capacity of natural gas hydrate based on the principle of crystal regulation in natural gas storage and transportation.
  • the present invention forms II structure on the basis of adding slightly soluble or water-insoluble thermodynamic additives to the hydrate generation system to reduce hydrate generation conditions, and then regulates and controls the hydrate crystals generated in the system by controlling temperature and pressure.
  • the structure is type I methane hydrate, which provides a method to increase the gas storage capacity of natural gas hydrate and creatively fundamentally solves the problem of low gas storage capacity in thermodynamic additive systems.
  • the invention can be applied to the generation of large-scale gas hydrates and can meet the industrial development requirements of natural gas solidification, storage and transportation technology based on the hydrate method.
  • the present invention does not require the introduction of other equipment and auxiliary devices, will not reduce the effect of additives on reducing hydrate formation conditions, will not cause a significant increase in cost, and has wide applicability.
  • Figure 1 is the PXRD pattern of natural gas hydrate obtained in Example 1;
  • Figure 2 is the PXRD pattern of natural gas hydrate obtained in Example 3.
  • the propane component in the mixed gas of methane + propane in this embodiment is also 0.72 mol%.
  • X-ray powder diffraction results show that there are type II pure methane hydrate and type I pure methane hydrate in the generated hydrate system.

Abstract

一种基于晶体调控原理的天然气水合物储气量提高方法,在向水合物生成系统中添加微溶或不溶于水的热力学添加剂以降低水合物生成条件的基础上形成II结构,然后通过控制温度和压力来调节和控制体系中所生成的水合物晶体结构为I型甲烷水合物,从根本上解决热力学添加剂体系中气体存储量不高的难题。

Description

一种基于晶体调控原理的天然气水合物储气量提高方法 技术领域:
本发明涉及天然气储运技术领域,具体涉及一种基于晶体调控原理的天然气水合物储气量提高方法。
背景技术:
基于水合物法的天然气固化储运工艺是近些年所开发的一项新的天然气存储和运输技术,其主要是通过将天然气大规模固定在固态水合物相中,并以固态天然气水合物的形式进行存储和运输的工艺。传统地,标准状况下1m3的水合物能够存储160-180m3的天然气。相较于传统的液化天然气(LNG)和压缩天然气(CNG)等已商业化的天然气存储和运输工艺,天然气水合物固化储运技术具有工艺流程短、成本低、安全无污染等优点,然而,制约该技术进一步走向工业化的核心问题主要包括以下二方面:第一,天然气水合物的生成条件过高;第二,天然气水合物的储气量较低。针对第一方面的问题,研究者主要通过引入热力学添加剂来降低天然气水合物的生成条件,值得注意的是当前的研究表明添加热力学添加剂可能是目前降低水合物生成条件的有效且唯一的途径。然而,由于热力学添加剂自身会占据部分水合物的笼空间,从而减少了提供给气体分子占据的水合物笼,近而减少了水合物的气体存储量。
一些研究者提出了采用动力学促进剂、分散剂以及搅拌、鼓泡和喷淋等方式来增强气液的传质过程以达到提高表观总气体存储量的目的,专利“水合物促进剂及其在制备高储气密度气体水合物中的应用”(公开(公告)号CN104974713A)提出了采用不同浓度的氨基酸的水溶液来促进气体水合物的生成,结果表明其能够在一定程度上增大储气量,提高储气密 度,专利“一种低能耗水合空气分离的装置与方法”(公开(公告)号CN104841237B)提出了采用若干动力学促进剂和热力学促进剂中的一种或多种协同以促进气体水合物的生成。文章“天然气水合物强化生成技术与方法研究进展[J].油气储运,2012,31(10):725-732”综述了搅拌、鼓泡和喷淋等方式对气体水合物生成的促进作用和储气量的影响。尽管这些方法都能够在一定程度上提高气体水合物的储气量,但都是通过形成更多天然气水合物的方式来实现的。因此,亟需开发出一种方法,其能够在不生成更多天然气水合物的情况下通过调节天然气水合物晶体结构从根本上解决热力学添加剂体系中天然气水合物气体存储量不高的难题。
天然气水合物是一种笼形包合物,水分子作为主体,形成一种空间点阵结构,气体分子作为客体,充填于点阵间的空穴中,气体和水之间没有化学计量关系。形成点阵的水分子之间靠较强的氢键结合,而气体分子和水分子之间的作用力则为范德华力。目前已发现的水合物结构有4种即I型、II型、H型、T型。I型水合物为立方晶体结构,由于其内空腔的体积较小,晶穴平均直径0.78nm,仅能容纳像甲烷、乙烷、氮气、二氧化碳、硫化氢等小分子。I型水合物在自然界分布最为广泛,纯甲烷、纯乙烷的水合物就是I型的。这种甲烷水合物的一般组成是CH4.5.75H2O。II型水合物为菱形晶体结构,除可包容C1,C2小分子外,其较大的空穴倾向于容纳丙烷(C3)及异丁烷(i-C4)等烃类分子,H型水合物为六方晶体结构,它的空穴甚至可以容纳i-C5分子和其它直径在0.75-0.86nm之间的分子。分析天然气水合物的4种结构特征可以看出,I型、II型,H型和T型的小晶穴与大晶穴的比率分别为1:3,2:1,5:1和1:4。如果让甲烷全部占据I型的512和51262,I型水合物的甲烷储量又是最大的。
发明内容:
本发明的目的是提供一种基于晶体调控原理的天然气水合物储气量提高方法,解决了热力学添加剂体系中天然气水合物气体存储量不高的问题。
本发明是通过以下技术方案予以实现的:
一种基于晶体调控原理的天然气水合物储气量提高方法,该方法包括以下步骤:引入微溶或不溶于水的热力学添加剂使得甲烷分子取代添加剂分子占据II型水合物中的大笼子(51264)生成II型的纯甲烷水合物(16(512)·8(51264)·136H2O);通过控制温度为274.15K-288.15K,压力为5-9MPa使得不稳定的II型纯甲烷水合物(16(512)·8(51264)·136H2O)快速转化为I型纯甲烷水合物(2(512)·6(51262)·46H2O)。
本发明所述的微溶或不溶于水的热力学添加剂指的是通常与甲烷能形成II型水合物的生成促进剂。例如传统的热力学添加剂中环戊烷、丙烷、三甲烯化硫等能满足此要求。
所述的微溶或不溶于水的热力学添加剂由于在水中的溶解度较小,因此,无论加入多大的量,其在水溶液中的溶解度变化都较小,从而,微溶或不溶于水的热力学添加剂对整个体系中水合物生成条件的降低效果受添加剂的加入量影响较小。因此,该调节方案能够满足大规模晶体调节和控制的要求,适用于大规模工业化应用的发展要求。
所述的水合物的晶体调节和控制原理如下:根据传统的van der Waals和Platteeuw理论,当气体分子在51264笼子中的空穴占有率(θL(Gas))高于添加剂分子在51264笼子中的空穴占有率(θL(Promoter))时,气体分子便能够取代添加剂分子占据II型水合物的大笼子。空穴占有率(θL)通过公式θLi=CLipi/(1+CL1p1+CL2p2)进行计算,其中CLi为兰格缪尔吸附系数,pi为客体分子(气体或者添加剂)的分压。为了满足θL(Gas)>θL(Promoter),需要升高系统的压力或 者降低水合物生长点周围添加剂在水中的溶解度。因此,选择微溶或不溶型热力学添加剂是实现甲烷分子取代添加剂分子形成甲烷水合物的有效途径。此外,研究表明中低压条件下II型的CH4水合物本身是不稳定的,其会自发地转变为稳定的I型水合物,而这一过程快慢受系统过冷度的影响。通过对过冷度的调节能够使得II型甲烷水合物快速转化为I型甲烷水合物。
值得一提的是本发明热力学添加剂分子由于分子直径较大,没有办法占据I型水合物的笼子。
因此本发明选择微溶或不溶于水的,且能够与甲烷形成II型结构的热力学添加剂。
优选地,微溶或不溶于水的热力学添加剂与水的体积比为(15-24):(76-85)。
所述的水合物的晶体调节和控制过程具有普遍的适用性,不需要通过其它辅助设备来实现。
步骤二中的压力和温度条件控制过程由制冷和加热装置实现,其具体过程取决于所使用的热力学添加剂。
当微溶或不溶于水的热力学添加剂为常用的环戊烷时,压力为5-9MPa,反应温度为274.15K-288.15K。
当微溶或不溶于水的热力学添加剂为常用的丙烷时,压力为5-7MPa,反应温度为276.15K-283.15K。
本发明提供的提高天然气水合物储气量的方法主要是通过调节和控制体系中所生成的水合物晶体结构来实现。通过对水合物晶体结构的调节和控制,能够从根本上解决热力学添加剂体系中水合物气体存储量不高的难题。
因此本发明还保护所述的基于晶体调控原理的天然气水合物储气量提高方法在天然气储运的应用。
本发明的有益效果如下:
本发明在向水合物生成系统中添加微溶或不溶于水的热力学添加剂以降低水合物生成条件的基础上形成II结构,然后通过控制温度和压力来调节和控制体系中所生成的水合物晶体结构为I型甲烷水合物,提供了一种天然气水合物储气量提高方法,创造性地从根本上解决热力学添加剂体系中气体存储量不高的难题。
本发明能够适用于大规模气体水合物的生成,能够满足基于水合物法天然气固化储运技术的工业化发展要求。
2)本发明不需要引入其他设备和辅助装置,不会降低添加剂对水合物生成条件降低的效果,也不会引起成本的显著增加,有着广泛的适用性。
附图说明
图1是实施例1得到的天然气水合物PXRD图谱;
图2是实施例3得到的天然气水合物PXRD图谱。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
以总体积100ml计,用量筒量取76ml的水和24ml的环戊烷置于高压气体水合物反应器(400ml)中;完成后,引入甲烷气体对水合物反应器进行吹扫以移除反应器中的空气,随后,甲烷作为反应气体被引入系统并加压到8.0MPa。反应温度在274.15K和288.15K按 照需求循环震荡,单次循环时间为1.0h。水合物反应持续5.0h后,所获得的水合物储气量达到了152V/V。X射线粉末衍射结果表明所生成的水合物体系中存在II型的纯甲烷水合物和I型的纯甲烷水合物。
实施例2:
以总体积100ml计,用量筒量取85ml的水和15ml的环戊烷置于高压气体水合物反应器中(400ml);完成后,引入甲烷气体对水合物反应器进行吹扫以移除反应器中的空气,随后,甲烷作为反应气体被引入系统并加压到8.0MPa。反应温度在276.15K和283.15K按照需求循环震荡,单次循环时间为1.0h。水合物反应持续5.0h后,所获得的水合物储气量达到了124V/V。X射线粉末衍射结果表明所生成的水合物体系中存在这II型的纯甲烷水合物和I型的纯甲烷水合物。
实施例3:
以总体积100ml计,用量筒量取20ml的水置于高压气体水合物反应器中(400ml);完成后,引入甲烷气体对水合物反应器进行吹扫以移除反应器中的空气,随后,甲烷+丙烷的混合气作为反应气体被引入系统并加压到6.0MPa。反应温度在276.15K和283.15K按照需求循环震荡,单次循环时间为1.0h。水合物反应持续5.0h后,所获得的水合物储气量达到了124V/V。值得注意的是由于商业化天然气的组分中丙烷的摩尔分数在0.72mol%左右,因此,本实施例甲烷+丙烷的混合气中丙烷的组分也为0.72mol%。X射线粉末衍射结果表明所生成的水合物体系中存在这II型的纯甲烷水合物和I型的纯甲烷水合物。

Claims (6)

  1. 一种基于晶体调控原理的天然气水合物储气量提高方法,其特征在于,该方法包括以下步骤:引入微溶或不溶于水的热力学添加剂生成II型的纯甲烷水合物;控制温度为274.15K-288.15K,压力为5-9MPa使得不稳定的II型纯甲烷水合物快速转化为I型纯甲烷水合物。
  2. 根据权利要求1所述的方法,其特征在于,所述的微溶或不溶于水的热力学添加剂选自环戊烷、丙烷、三甲烯化硫中的任一种。
  3. 根据权利要求1所述的方法,其特征在于,微溶或不溶于水的热力学添加剂与水的体积比为(15-24):(76-85)。
  4. 根据权利要求1所述的方法,其特征在于,当热力学添加剂为环戊烷时,压力为7-9MPa,温度为274.15K-288.15K。
  5. 根据权利要求1所述的方法,其特征在于,当热力学添加剂为丙烷时,压力为5-7MPa,温度为276.15K-283.15K。
  6. 权利要求1所述的方法在天然气储运的应用。
PCT/CN2023/131467 2023-10-13 2023-11-14 一种基于晶体调控原理的天然气水合物储气量提高方法 WO2024032830A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202311323644.XA CN117343766A (zh) 2023-10-13 2023-10-13 一种基于晶体调控原理的天然气水合物储气量提高方法
CN202311323644.X 2023-10-13

Publications (1)

Publication Number Publication Date
WO2024032830A1 true WO2024032830A1 (zh) 2024-02-15

Family

ID=89368735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131467 WO2024032830A1 (zh) 2023-10-13 2023-11-14 一种基于晶体调控原理的天然气水合物储气量提高方法

Country Status (2)

Country Link
CN (1) CN117343766A (zh)
WO (1) WO2024032830A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041276A (ja) * 2001-07-26 2003-02-13 Japan National Oil Corp 天然ガス水和物の脱水方法および脱水システム、ならびに天然ガス水和物の遠心脱水装置
CN103055652A (zh) * 2012-12-21 2013-04-24 中国科学院广州能源研究所 一种基于气体溶剂的气体水合物耦合促进剂及其应用
CN103482569A (zh) * 2013-09-17 2014-01-01 中国科学院广州能源研究所 三甲烯化硫作为水合物促进剂的应用
CN109628183A (zh) * 2018-12-18 2019-04-16 中国科学院广州能源研究所 一种储存天然气水合物的方法
CN111378515A (zh) * 2018-12-29 2020-07-07 中国科学院广州能源研究所 一种水合物生成促进剂及其在甲烷存储中的应用
US20210214626A1 (en) * 2019-09-12 2021-07-15 Michael KEZIRIAN Method and System for Extracting Methane Gas, Converting it to Clathrates, and Transporting it for Use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041276A (ja) * 2001-07-26 2003-02-13 Japan National Oil Corp 天然ガス水和物の脱水方法および脱水システム、ならびに天然ガス水和物の遠心脱水装置
CN103055652A (zh) * 2012-12-21 2013-04-24 中国科学院广州能源研究所 一种基于气体溶剂的气体水合物耦合促进剂及其应用
CN103482569A (zh) * 2013-09-17 2014-01-01 中国科学院广州能源研究所 三甲烯化硫作为水合物促进剂的应用
CN109628183A (zh) * 2018-12-18 2019-04-16 中国科学院广州能源研究所 一种储存天然气水合物的方法
CN111378515A (zh) * 2018-12-29 2020-07-07 中国科学院广州能源研究所 一种水合物生成促进剂及其在甲烷存储中的应用
US20210214626A1 (en) * 2019-09-12 2021-07-15 Michael KEZIRIAN Method and System for Extracting Methane Gas, Converting it to Clathrates, and Transporting it for Use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU YI-SONG, SUN WEN-ZHE, CHEN CHANG, LI XIAO-SEN, CHEN ZHAO-YANG: "Kinetics studies of methane hydrate formation and dissociation in the presence of cyclopentane", FUEL, IPC SIENCE AND TECHNOLOGY PRESS , GUILDFORD, GB, vol. 356, 1 January 2024 (2024-01-01), GB , pages 129651, XP093137245, ISSN: 0016-2361, DOI: 10.1016/j.fuel.2023.129651 *

Also Published As

Publication number Publication date
CN117343766A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
Chang et al. A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation
AU2007200041B2 (en) Method and apparatus for producing products from natural gas including helium and liquefied natural gas
US20090035627A1 (en) Method for gas storage, transport, and energy generation
CN114087845B (zh) 一种基于仲氢循环的液氢生产装置、系统及方法
WO2024032830A1 (zh) 一种基于晶体调控原理的天然气水合物储气量提高方法
CN103305200A (zh) 一种复合型水合物抑制剂
WO2019223416A1 (zh) 一种水合物生成促进剂及其在甲烷存储中的应用
Ahmadpanah et al. Effect of cyclopentane and sodium chloride on the formation kinetics of natural gas hydrate in different operating conditions
US9149782B2 (en) Method for the fast formation of a gas hydrate
CN101672425A (zh) 复合型水合物促进剂的制备方法
JP2006224885A (ja) 水素製造設備及び製造方法
CN113817443A (zh) 水合物分解抑制组合物、耦合增强型固态水合物和增强固态水合物储运稳定性的方法
KR101114204B1 (ko) 탄소나노튜브를 이용한 메탄하이드레이트 및 그의 제조방법
CN113817441B (zh) 含有纳米颗粒的水合物促进剂组合物及其应用以及水合物的制备方法
JP2002255865A (ja) 炭化水素ガスの貯蔵及び輸送方法
JP3983910B2 (ja) ガス水和物の生成方法
JP2016141599A (ja) 液化アンモニアの製造システム及び製造方法
JP2003342590A (ja) ガスハイドレートの製造方法
JPH11293263A (ja) 都市ガス、都市ガスの製造方法及びその製造装置
WO2024032831A1 (zh) 天然气水合物生成晶型调控的方法
US20240157351A1 (en) Ni catalyst for ammonia decomposition for hydrogen production and manufacturing method thereof
JP2000063296A (ja) ガス水和物の生成方法及びガス水和物生成促進剤
Omran et al. Driving sustainable energy storage: A multi-scale investigation of methane hydrate formation with green promoters and innovative reactor design
Guo et al. Formation of hydrogen hydrate in the presence of thermodynamic promoters: A review and prospects
CN112479802B (zh) 一种丙烷水合物的生成系统以及生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852048

Country of ref document: EP

Kind code of ref document: A1