WO2024032831A1 - 天然气水合物生成晶型调控的方法 - Google Patents

天然气水合物生成晶型调控的方法 Download PDF

Info

Publication number
WO2024032831A1
WO2024032831A1 PCT/CN2023/131536 CN2023131536W WO2024032831A1 WO 2024032831 A1 WO2024032831 A1 WO 2024032831A1 CN 2023131536 W CN2023131536 W CN 2023131536W WO 2024032831 A1 WO2024032831 A1 WO 2024032831A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
natural gas
hydrate
thermodynamic
soluble
Prior art date
Application number
PCT/CN2023/131536
Other languages
English (en)
French (fr)
Inventor
李小森
余益松
刘建武
孙文哲
陈朝阳
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2024032831A1 publication Critical patent/WO2024032831A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas

Definitions

  • the invention relates to the technical field of gas hydrates, and in particular to a method for regulating the formation of crystal forms of natural gas hydrates.
  • Gas hydrates also known as gas clathrates, are non-stoichiometric crystalline inclusion compounds.
  • the bulk water molecules are connected in space through hydrogen bonds, forming a series of polyhedral holes, and gas fills these holes.
  • the crystal lattice is disrupted, for example by increasing the storage temperature of gas hydrates, the gas is released. Because gas hydrates have such unique physical and chemical properties, gas hydrate technology is widely used in separation, capture, storage or transportation of gases.
  • Natural gas hydrate is a clathrate inclusion compound, with water molecules as the main body, forming a spatial lattice structure, and gas molecules as guests, filling the holes between the lattice. There is no stoichiometric relationship between gas and water. The water molecules forming the lattice are bonded by strong hydrogen bonds, while the force between gas molecules and water molecules is van der Waals force. There are four types of hydrate structures that have been discovered so far, namely type I, type II, type H, and type T. Type I hydrate has a cubic crystal structure.
  • Type I hydrates are the most widely distributed in nature, and the hydrates of pure methane and pure ethane are type I.
  • the general composition of this methane hydrate is CH 4 .5.75H 2 O.
  • Type II hydrate has a rhombic crystal structure. In addition to being able to accommodate C1 and C2 small molecules, its larger holes tend to accommodate hydrocarbon molecules such as propane (C3) and isobutane (i-C4).
  • H-type hydrate The material has a hexagonal crystal structure, and its holes can even accommodate i-C5 molecules and other molecules with a diameter between 0.75-0.86nm. Analyzing the four structural characteristics of natural gas hydrate, it can be seen that the ratios of small crystal holes to large crystal holes of type I, type II, type H and type T are 1:3, 2:1, 5:1 and 1: respectively. 4. If methane is allowed to occupy all 5 12 and 5 12 6 2 of Type I, the methane reserves of Type I hydrate will be the largest.
  • the purpose of the present invention is to provide a method for regulating the crystal form of natural gas hydrate, which solves the problem of low storage capacity of natural gas in natural gas hydrate generated in a water-soluble thermodynamic additive system.
  • a method for regulating the crystal form of natural gas hydrate formation which method includes the following steps: introducing a composition consisting of salt substances and surfactants, water-soluble thermodynamic additives and water during the formation process of natural gas hydrate, and then controlling the temperature It is 274.15K-288.15K and the pressure is 6-8MPa.
  • the composition is ultrasonically dispersed.
  • the natural gas hydrate is a hydrate formed from methane, a gas with low solubility in water.
  • the water-soluble thermodynamic additives mainly include hydrate thermodynamic additives that are easily soluble in water, such as tetrahydrofuran, tetrabutylammonium bromide, and tetrabutylammonium fluoride.
  • the mole fraction of water-soluble thermodynamic additives in water is 1.0%-5.6%.
  • the type and concentration of the salts and surfactants depend on the type and concentration of the water-soluble thermodynamic additive selected during the experiment.
  • the ratio of the total mass of salt substances and surfactants to the mass of water-soluble thermodynamic additives is between (1/9)-(1/3); the mass ratio of surfactants and salt substances is between (1/2 )-(1/6).
  • Surfactants include commonly used sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and lauryl Disodium sulfosuccinate monoester (DLS), etc. It is worth noting that the surfactants are foaming surfactants, among which high-foaming surfactants are more effective. Salt substances include commonly used sodium chloride (NaCl), potassium chloride (KCl), and potassium nitrate (KBr).
  • the adjustment and control of methane hydrate crystals mainly includes two steps: first, methane molecules replace additive molecules to occupy the large cage (5 12 ) of Type II hydrate to form Type II pure methane hydrate. Second, since Type II pure methane hydrate is unstable, by controlling thermodynamic conditions, Type II pure methane hydrate can be converted into Type I methane hydrate quickly.
  • the first step is the key to the adjustment and control of hydrate crystals. For the realization of the first step process, according to the classical thermodynamic theory, it can be found that it is necessary to ensure that the occupancy rate of methane molecules in the large cage (5 12 ) of type II hydrate is higher than the occupancy rate of additive molecules in the large cage (5 12 ).
  • thermodynamic additives in water
  • water-soluble thermodynamic additives such as soluble/easily soluble and miscible.
  • the addition of mixed reagents of salts and surfactants can change the local solubility of these thermodynamic additives in water, allowing the adjustment and control process of hydrate crystals to be realized.
  • the present invention also protects the application of the above-mentioned method for controlling the crystal form of natural gas hydrate formation in natural gas storage and transportation.
  • the surfactant of the present invention itself can increase the contact area of gas and liquid, reduce the mass transfer resistance between gas and liquid, and increase the formation rate of gas hydrates.
  • salt substances and surfactants also cooperate with water-soluble thermodynamic accelerators. The addition of salts and surfactants can change the local solubility of water-soluble thermodynamic additives in water, allowing the adjustment and control process of hydrate crystals to be realized, thereby increasing the gas storage capacity of hydrates.
  • the method for controlling the crystal form of gas hydrate formation of the present invention also provides a method for the storage capacity of water-soluble natural gas hydrate, creatively and fundamentally solving the problem of low storage capacity of natural gas in water-soluble thermodynamic additive systems.
  • the present invention can be applied to the generation of large-scale gas hydrates and can meet the industrial development requirements of natural gas solidification, storage and transportation technology based on the hydrate method.
  • Figure 1 is the PXRD pattern of natural gas hydrate obtained in Example 1.
  • the reaction solution was used to generate methane hydrate, and the methane gas storage capacity obtained was 71.43V/V under the conditions of initial pressure 7MPa and initial temperature 274.15K. At the same time, pure Type I methane hydrate was found in the generated hydrate.
  • Example 1 the difference is that sodium chloride and sodium dodecyl sulfate are not added, and it is found that the generated hydrate is only type II THF/CH 4 mixed hydrate (16(CH 4 ) ⁇ 8(THF) ⁇ 136H 2 O or 16(CH 4 ) ⁇ 8(THF+CH 4 ) ⁇ 136H 2 O).
  • the reaction solution was used to generate methane hydrate, and the methane gas storage capacity obtained was 90.84V/V under the conditions of initial pressure 7MPa and initial temperature 274.15K. At the same time, pure Type I methane hydrate was found in the generated hydrate.
  • the reaction solution was used to generate methane hydrate, and the methane gas storage capacity obtained was 121.81V/V under the conditions of initial pressure 7MPa and initial temperature 274.15K.
  • pure Type I methane hydrate was found in the generated hydrate, which means that the solution provided by the present invention enables the adjustment and control process of hydrate crystals to be smooth even at a THF molar concentration close to 5.60 mol%. accomplish.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种天然气水合物生成晶型调控的方法,在天然气水合物生成过程中引入由盐类物质和表面活性剂与水溶性的热力学添加剂和水组成的组合物。盐类物质和表面活性剂还与水溶性热力学促进剂协同作用,盐类物质和表面活性剂加入能够改变水溶性热力学添加剂在水中的局部溶解度,使得水合物晶体的调节和控制过程得以实现,从而提高水合物储气量,解决了水溶性热力学添加剂体系中生成天然气水合物中天然气存储量不高的问题。

Description

天然气水合物生成晶型调控的方法 技术领域:
本发明涉及气体水合物技术领域,具体涉及一种天然气水合物生成晶型调控的方法。
背景技术:
气体水合物,也称为气体笼形包合物,是非化学计量的晶状包合物。在水合物中,主体水分子通过氢键在空间相连,形成一系列多面体孔穴,气体填充在这些孔穴中。当晶格被破坏,例如通过提高气体水合物的储存温度,气体就会被释放出来。由于气体水合物具有这种独特的物理化学特性,因此气体水合物技术被广泛应用于分离、捕获、存储或运输气体等方面。
天然气的储存和输运一直是国际天然气贸易以及边缘油气田开发的一大难题。管输天然气、压缩天然气和液化天然气等当前主要的天然气输运方式面临着投资运行费用高、工艺流程长和安全性低等缺点。天然气水合物固化储运技术作为一种新的天然气储运方式,具有成本低、安全性高及工艺流程短等优点。近些年来,该工艺在世界各国研究者的努力下得到了快速的发展,但其工业化进程中依然面临着水合物储气量较低的核心难题。特别是在采用热力学添加剂解决水合物生成条件高的问题后,水合物储气量低的缺点愈发明显。这主要是由于添加剂分子本身参与水合物笼子的构建占据了部分水合物笼子,从而留下了更少的笼子供给甲烷分子占据的缘故。
科研工作者们通过各种途径以增加液态水或固态冰和甲烷气体之间的界面接触,以提高气体水合物的形成速率和储气密度。包括应用高压,剧烈搅拌,采用干水,使用表面活性剂,如十二烷基硫酸钠(SDS),使用载体,如多孔二氧化硅或者聚合物等。
尽管这些方法都能够在一定程度上提高气体水合物的储气量,但都是通过形成更多天然气水合物的方式来实现的。
亟需在不生成更多天然气水合物的情况下解决天然气水合物气体存储量不高的难题。
天然气水合物是一种笼形包合物,水分子作为主体,形成一种空间点阵结构,气体分子作为客体,充填于点阵间的空穴中,气体和水之间没有化学计量关系。形成点阵的水分子之间靠较强的氢键结合,而气体分子和水分子之间的作用力则为范德华力。目前已发现的水合物结构有4种即I型、II型、H型、T型。I型水合物为立方晶体结构,由于其内空腔的体积较小,晶穴平均直径0.78nm,仅能容纳像甲烷、乙烷、氮气、二氧化碳、硫化氢等小分子。I型水合物在自然界分布最为广泛,纯甲烷、纯乙烷的水合物就是I型的。这种甲烷水合物的一般组成是CH4.5.75H2O。II型水合物为菱形晶体结构,除可包容C1,C2小分子外,其较大的空穴则倾向于容纳丙烷(C3)及异丁烷(i-C4)等烃类分子,H型水合物为六方晶体结构,它的空穴甚至可以容纳i-C5分子和其它直径在0.75-0.86nm之间的分子。分析天然气水合物的4种结构特征可以看出,I型、II型,H型和T型的小晶穴与大晶穴的比率分别为1:3,2:1,5:1和1:4。如果让甲烷全部占据I型的512和512 62,I型水合物的甲烷储量又是最大的。
前人的研究(1.Yu Y S,Zhang Q Z,Lv Q N,et al.A kinetic study of methane hydrate formation in the corn Cobs+Tetrahydrofuran solution system[J].Fuel,2021,302:121143.;2.Kim D Y,Park J,Lee J,et al.Critical guest concentration and complete tuning pattern appearing in the binary clathrate hydrates[J].Journal of the American Chemical Society,2006,128(48):15360-15361.)表明甲烷气体在四氢呋喃水溶液中所形成的水合物仅为II的THF/CH4混合水 合物(16(CH4)·8(THF+CH4)·136H2O)。
因此,亟需开发出一种天然气水合物生成晶型调控的方法,能够在添加水溶性热力学添加剂体系中以降低天然气水合物生成条件的基础上且不生成更多天然气水合物的情况下生成I型水合物,从根本上解决天然气水合物气体存储量不高的难题。
发明内容:
本发明的目的是提供一种天然气水合物生成晶型调控的方法,解决了水溶性热力学添加剂体系中生成天然气水合物中天然气气体存储量不高的问题。
本发明是通过以下技术方案予以实现的:
一种天然气水合物生成晶型调控的方法,该方法包括以下步骤:在天然气水合物生成过程中引入由盐类物质和表面活性剂与水溶性的热力学添加剂和水组成的组合物,然后控制温度为274.15K-288.15K,压力为6-8MPa。
特别地,所述组合物经超声波分散。
所述的天然气水合物由在水中溶解度较小的气体甲烷形成的水合物。
所述的水溶性的热力学添加剂主要包括四氢呋喃、四丁基溴化铵及四丁基氟化铵等易溶于水的水合物热力学添加剂。
水溶性的热力学添加剂在水中的摩尔分数为1.0%-5.6%。
所述的盐类物质和表面活性剂的种类和浓度取决于实验过程中所选用的水溶性热力学添加剂种类和浓度。盐类物质和表面活性剂的总质量与水溶性热力学添加剂的质量的比为(1/9)-(1/3)之间;表面活性剂和盐类物质的质量比则在(1/2)-(1/6)之间。
表面活性剂包括常用的十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠(SDBS)和月桂基 磺化琥珀酸单脂二钠(DLS)等,值得注意的是表面活性剂为有泡表面活性剂,其中高泡表面活性剂效果更优。盐类物质包括常用的氯化钠(NaCl)、氯化钾(KCl)和硝酸钾(KBr)等。
本发明的原理如下:甲烷水合物晶体调整和控制主要包括二个步骤:第一,甲烷分子取代添加剂分子占据II型水合物的大笼子(512),形成II型纯甲烷水合物。第二,由于II型的纯甲烷水合物不稳定,通过控制热力学条件,使得II型的纯甲烷水合物能够较快地转变为I型甲烷水合物。其中,第一步是水合物晶体调整和控制的关键。对于第一步过程的实现,根据经典的热力学理论可以发现这需要保证甲烷分子在II型水合物大笼子(512)中的占有率高于添加剂分子在大笼子(512)的占有率。这意味第一步过程的实现需要降低添加剂在水溶液中的溶解度。因此,如何改变水溶性热力学添加剂在水中的溶解度成为了在可溶/易溶及互溶等水溶性热力学添加剂中实现水合物晶体调节和控制的关键。盐类物质和表面活性剂的混合试剂的加入能够改变这些热力学添加剂在水中的局部溶解度,使得水合物晶体的调节和控制过程得以实现。
本发明还保护上述天然气水合物生成晶型调控的方法在天然气储运的应用。
本发明的有益效果如下:
1)本发明的表面活性剂本身能够增加气液的接触面积,降低气液间的传质阻力,提高气体水合物的形成速率,此外盐类物质和表面活性剂还与水溶性热力学促进剂协同作用,盐类物质和表面活性剂加入能够改变水溶性热力学添加剂在水中的局部溶解度,使得水合物晶体的调节和控制过程得以实现,从而提高水合物储气量。
2)本发明所提供的技术方案中所涉及的材料易得,生产工艺及产业链成熟,价格低廉。 不需要再建设原料供给生态。
3)本发明气体水合物生成晶型调控的方法也提供了一种水溶性天然气水合物储气量方法,创造性地从根本上解决水溶性热力学添加剂体系中天然气气体存储量不高的难题。
4)本发明能够适用于大规模气体水合物的生成,能够满足基于水合物法天然气固化储运技术的工业化发展要求。
附图说明:
图1是实施例1得到的天然气水合物PXRD图谱。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
以总质量100.00g计,用天平秤取1.3g氯化钠(NaCl)、0.5g十二烷基硫酸钠(SDS)和15.00g的四氢呋喃(THF),其余为水的质量。首先将已秤取的氯化钠(NaCl)、十二烷基硫酸钠(SDS)和四氢呋喃(THF)烷置于闭口锥形瓶中并进行超声波分散3.5小时,完成后向分散后的液体中加入秤取的水并继续进行超声波分散1.5小时。完成后,采用该反应液进行甲烷水合物的生成反应,在初始压力7MPa和初始温度274.15K条件下所获得甲烷储气量在71.43V/V。同时在所生成的水合物中发现了纯的I型甲烷水合物。
对比例1:
参考实施例1,不同之处在于,没有加入氯化钠和十二烷基硫酸钠,结果发现所生成的水合物中仅为II型的THF/CH4混合水合物(16(CH4)·8(THF)·136H2O或16(CH4)·8(THF+CH4)·136H2O)。
实施例2:
以总质量100.00g计,用天平秤2.4g氯化钠(NaCl)、0.6g十二烷基苯磺酸钠(SDBS)和17.00g的四氢呋喃(THF),其余为水的质量。首先将已秤取的氯化钠(NaCl)、十二烷基硫酸钠(SDS)和四氢呋喃(THF)烷置于闭口锥形瓶中并进行超声波分散5小时,完成后向分散后的液体中加入秤取的水并继续进行超声波分散2小时。完成后,采用该反应液进行甲烷水合物的生成反应,在初始压力7MPa和初始温度274.15K条件下所获得甲烷储气量在90.84V/V。同时在所生成的水合物中发现了纯的I型甲烷水合物。
实施例3:
以总质量100.00g计,用天平秤取4.30g氯化钠(NaCl)、0.80g十二烷基硫酸钠(SDS)和18.00g的四氢呋喃(THF),其余为水的质量。首先将已秤取的氯化钠(NaCl)、十二烷基硫酸钠(SDS)和四氢呋喃(THF)烷置于闭口锥形瓶中并进行超声波分散4小时,完成后向分散后的液体中加入秤取的水并继续进行超声波分散1.5小时。完成后,采用该反应液进行甲烷水合物的生成反应,在初始压力7MPa和初始温度274.15K条件下所获得甲烷储气量在121.81V/V。同时在所生成的水合物中发现了纯的I型甲烷水合物,这意味着本发明所提供的方案使得水合物晶体的调整和控制过程在THF摩尔浓度接近5.60mol%的条件下也能够顺利实现。

Claims (8)

  1. 一种天然气水合物生成晶型调控的方法,其特征在于,该方法包括以下步骤:在天然气水合物生成过程中引入由盐类物质和表面活性剂与水溶性的热力学添加剂和水组成的组合物,然后控制温度为274.15K-288.15K,压力为6-8MPa。
  2. 根据权利要求1所述的方法,其特征在于,所述组合物经超声波分散。
  3. 根据权利要求1所述的方法,其特征在于,所述的水溶性的热力学添加剂选自四氢呋喃、四丁基溴化铵及四丁基氟化铵中的任一种。
  4. 根据权利要求1所述的方法,其特征在于,水溶性的热力学添加剂在水中的摩尔分数为1.0%-5.6%。
  5. 根据权利要求1所述的方法,其特征在于,盐类物质和表面活性剂的总质量与水溶性热力学添加剂的质量的比为(1/9)-(1/3)之间,表面活性剂和盐类物质的质量的比在(1/2)-(1/6)之间。
  6. 根据权利要求1所述的方法,其特征在于,表面活性剂选自十二烷基硫酸钠、十二烷基苯磺酸钠和月桂基磺化琥珀酸单脂二钠中的任一种。
  7. 根据权利要求1所述的方法,其特征在于,盐类物质选自氯化钠、氯化钾和硝酸钾中的任一种。
  8. 权利要求1所述的天然气水合物生成晶型调控的方法在天然气储运的应用。
PCT/CN2023/131536 2023-10-13 2023-11-14 天然气水合物生成晶型调控的方法 WO2024032831A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202311325588.3A CN117229828A (zh) 2023-10-13 2023-10-13 天然气水合物生成晶型调控的方法
CN202311325588.3 2023-10-13

Publications (1)

Publication Number Publication Date
WO2024032831A1 true WO2024032831A1 (zh) 2024-02-15

Family

ID=89098268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131536 WO2024032831A1 (zh) 2023-10-13 2023-11-14 天然气水合物生成晶型调控的方法

Country Status (2)

Country Link
CN (1) CN117229828A (zh)
WO (1) WO2024032831A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514300A (zh) * 2009-03-23 2009-08-26 江苏工业学院 一种气体水合物促进剂的制备方法
CN101672425A (zh) * 2008-09-12 2010-03-17 江苏工业学院 复合型水合物促进剂的制备方法
WO2012030181A2 (ko) * 2010-09-01 2012-03-08 한국화학연구원 천연가스 하이드레이트 제조용 촉진제
WO2015101923A1 (en) * 2013-12-31 2015-07-09 Indian Institute Of Technology Madras Apparatus for storing and transporting gaseous hydrocarbons
CN111378515A (zh) * 2018-12-29 2020-07-07 中国科学院广州能源研究所 一种水合物生成促进剂及其在甲烷存储中的应用
CN113201373A (zh) * 2021-04-09 2021-08-03 华南理工大学 一种天然气水合物的低压保存方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672425A (zh) * 2008-09-12 2010-03-17 江苏工业学院 复合型水合物促进剂的制备方法
CN101514300A (zh) * 2009-03-23 2009-08-26 江苏工业学院 一种气体水合物促进剂的制备方法
WO2012030181A2 (ko) * 2010-09-01 2012-03-08 한국화학연구원 천연가스 하이드레이트 제조용 촉진제
WO2015101923A1 (en) * 2013-12-31 2015-07-09 Indian Institute Of Technology Madras Apparatus for storing and transporting gaseous hydrocarbons
CN111378515A (zh) * 2018-12-29 2020-07-07 中国科学院广州能源研究所 一种水合物生成促进剂及其在甲烷存储中的应用
CN113201373A (zh) * 2021-04-09 2021-08-03 华南理工大学 一种天然气水合物的低压保存方法

Also Published As

Publication number Publication date
CN117229828A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
He et al. Surfactant-based promotion to gas hydrate formation for energy storage
Kumar et al. Enhanced carbon dioxide hydrate formation kinetics in a fixed bed reactor filled with metallic packing
Veluswamy et al. Hydrogen storage in clathrate hydrates: Current state of the art and future directions
Bishnoi et al. Formation and decomposition of gas hydrates
Xia et al. Review of methods and applications for promoting gas hydrate formation process
Liu et al. Formation kinetics, mechanism of CO2 hydrate and its applications
Pandey et al. Morphology study of mixed methane–tetrahydrofuran hydrates with and without the presence of salt
Yang et al. Multi-cycle methane hydrate formation in micro droplets of gelatinous dry solution
Jiang et al. Review of morphology studies on gas hydrate formation for hydrate-based technology
CN104437290B (zh) 一种复配型气体水合物生成促进剂及其制备方法
Kumar et al. Influence of kinetic and thermodynamic promoters on post-combustion carbon dioxide capture through gas hydrate crystallization
Nguyen et al. “Nanoreactors” for boosting gas hydrate formation toward energy storage applications
Liu et al. High-efficiency natural-gas storage method involving formation of gas hydrate in water/oil-cyclopentane emulsion
Lal et al. Introduction to gas hydrates
Yang et al. Enhanced clathrate hydrate phase change with open-cell copper foam for efficient methane storage
Wu et al. Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage
Lee et al. Thermodynamic and kinetic properties of CO2 hydrates and their applications in CO2 capture and separation
WO2024032831A1 (zh) 天然气水合物生成晶型调控的方法
Li et al. Molecular dynamics simulations of CH4/CO2 hydrates nucleation in kaolinite particles
Sahu et al. Kinetics of methane hydrate formation in the presence of 1-dodecyl-2-pyrrolidinone and tetrahydrofuran in pure water
Lal et al. Gas hydrate promoters
Shen et al. Ultrarapid formation and direct observation of methane hydrate in the presence of L-tryptophan
Uchida et al. Nucleation behavior of single-gas hydrates in the batch-type stirred reactor and their promotion effect with ultrafine bubbles: A mini review and perspectives
Zhao et al. Magnetically recyclable− SO3–-coated nanoparticles promote gas storage via forming hydrates
Yousif The kinetics of hydrate formation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852049

Country of ref document: EP

Kind code of ref document: A1