WO2024032829A1 - 一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料及其制备方法 - Google Patents

一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料及其制备方法 Download PDF

Info

Publication number
WO2024032829A1
WO2024032829A1 PCT/CN2023/128311 CN2023128311W WO2024032829A1 WO 2024032829 A1 WO2024032829 A1 WO 2024032829A1 CN 2023128311 W CN2023128311 W CN 2023128311W WO 2024032829 A1 WO2024032829 A1 WO 2024032829A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
powder material
thermal barrier
vapor deposition
barrier coating
Prior art date
Application number
PCT/CN2023/128311
Other languages
English (en)
French (fr)
Inventor
吕伯文
毛熙烨
王超
谭僖
张小锋
毛杰
邓春明
邓畅光
刘敏
Original Assignee
广东省科学院新材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院新材料研究所 filed Critical 广东省科学院新材料研究所
Publication of WO2024032829A1 publication Critical patent/WO2024032829A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/482Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to the technical field of thermal barrier coating ceramic powder materials. Specifically, it relates to a sintering-resistant high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition and a preparation method thereof.
  • Thermal barrier coating is one of the key technologies for high-temperature protection of hot-end components of aero engines and heavy-duty gas turbines. It is widely used in aviation, marine power and ground, ocean power generation and other important fields related to national security and national economy. With the continuous improvement of performance requirements such as thrust-to-weight ratio and energy conversion efficiency, the surface temperature of the thermal barrier coating of new generation gas turbines has exceeded 1200°C.
  • the traditional thermal barrier coating ceramic material yttria-stabilized zirconia (YSZ) will undergo sintering and phase change during long-term service at temperatures exceeding this temperature. The former will lead to rapid degradation of coating strength and thermal properties, and the latter will cause The volume expansion is about 5%. Under the combined effect of the two, the internal stress level of the thermal barrier coating increases, and buckling and fracture failures are prone to occur.
  • Plasma spray physical vapor deposition is a new plasma spray thermal barrier coating preparation technology developed based on the low-pressure plasma spray (LPPS/VPS) process.
  • LPPS/VPS low-pressure plasma spray
  • the length of the plasma flame flow is significantly increased, which can fully melt and vaporize the ceramic powder material of the thermal barrier coating, perform solid-liquid-gas multi-phase deposition, and form a unique feather-shaped columnar structure.
  • Preliminary research results show that the columnar structure is beneficial to improving the anti-sintering performance of thermal barrier coatings. From the perspective of structural design, preparing feather-shaped columnar structures through plasma spray physical vapor deposition technology is an effective way to improve the anti-sintering performance of thermal barrier coatings.
  • the plasma spray physical vapor deposition process has special requirements for ceramic powder materials.
  • the particle size of the powder material cannot be too small. If the particle size of the powder is too small, it will easily cause the spray gun to clog.
  • the particle size of the powder material cannot be too large. If the particle size of the powder is too large, it will lead to insufficient melting and difficulty in gasification, making it impossible to achieve Vapor phase deposition prevents the formation of feather-shaped columnar structures;
  • the morphology of the powder material requires a high degree of sphericity, and the irregular morphology with multiple edges and corners will lead to poor fluidity and is not conducive to powder feeding.
  • high-entropy ceramics originated from high-entropy alloys, which are single-phase multi-component solid solution materials composed of five or more multi-metal cations in (nearly) equal amounts. Since being proposed in 2015, high-entropy ceramic materials have developed rapidly and have formed multiple systems such as high-entropy carbides, nitrides, oxides, borides, silicides, and sulfides. Among them, high-entropy rare earth zirconates have good high-temperature phase stability, a thermal expansion coefficient similar to that of high-temperature alloy substrates, and ultra-low thermal conductivity. They are a promising thermal barrier coating ceramic material.
  • the existing preparation method of high-entropy rare earth zirconate ceramic materials for thermal barrier coatings is mainly the solid-phase sintering-crushing-briquetting process (CN110272278A), and the powder morphology and particle size distribution are not suitable for plasma spray physical vapor deposition. .
  • high-temperature phase stability CN114920559A, CN114230339A, CN114149260A, CN113816751A, CN113023776A
  • molten salt corrosion resistance CN112341197A
  • thermal barrier coatings for long term ultra-high temperature applications. Under ultra-high temperature conditions of 1500°C, the only widely used ceramic material for thermal barrier coating, yttria-stabilized zirconia (YSZ), has serious sintering and phase change problems. The mechanical and thermal properties rapidly degrade with the increase of sintering time, and the anti-sintering performance Insufficient and cannot be applied to ultra-high temperature thermal barrier coatings.
  • YSZ yttria-stabilized zirconia
  • the technical problem to be solved by the present invention is to provide a sintering-resistant high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition, so as to solve the problem that existing high-entropy ceramic materials are not suitable for plasma spraying physical vapor deposition thermal barrier coating.
  • a sintering-resistant high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition characterized in that the chemical formula of the powder material is (Y 0.2 La 0.2 Nd 0.2 Sm 0.2 Eu 0.2 ) 2 Zr 2 O 7 , with spherical morphology and particle size of 5-50 ⁇ m.
  • the anti-sintering coefficient R s >0.5.
  • the invention also provides a method for preparing the above-mentioned anti-sintering high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition, which includes the following steps:
  • the solid phase reaction time is 2 ⁇ 1 h.
  • the spray drying conditions are feed temperature 240 ⁇ 10°C, rotation speed 35 ⁇ 5rpm, and pressure 2.0 ⁇ 0.5bar.
  • the grinding conditions are: using absolute ethanol as the medium, ZrO 2 balls as ball milling beads, and ball milling and mixing at a rotation speed of 300 ⁇ 50 rpm for 10 ⁇ 2 hours;
  • the drying conditions are drying at 70 ⁇ 10°C for 20 ⁇ 2h.
  • the present invention has the following beneficial effects:
  • the sintering-resistant high-entropy ceramic thermal barrier coating powder material (YLNSE) used for plasma spraying physical vapor deposition according to the invention has good anti-sintering performance under ultra-high temperature conditions of 1500°C, and the morphology of the powder material is consistent with the particle size.
  • the diameter distribution is suitable for the plasma spraying physical vapor deposition process, which is beneficial to the application of feather-shaped columnar structure anti-sintering high-entropy ceramic thermal barrier coatings, and synergistically improves the anti-sintering performance of the thermal barrier coating from both material and structure levels; the powder material
  • the preparation process is simple and is conducive to batch preparation and engineering application of anti-sintering high-entropy ceramic thermal barrier coating powder materials for plasma spraying physical vapor deposition.
  • Figure 1 is a submicron scale element distribution diagram after solid phase reaction of a sintering-resistant high-entropy ceramic thermal barrier coating powder material (YLNSE) for plasma spraying physical vapor deposition of the present invention.
  • YLNSE sintering-resistant high-entropy ceramic thermal barrier coating powder material
  • Figure 2 is a photo of the micromorphology of a sintering-resistant high-entropy ceramic thermal barrier coating powder material (YLNSE) for plasma spraying physical vapor deposition of the present invention after solid-state reaction and spray granulation.
  • YLNSE sintering-resistant high-entropy ceramic thermal barrier coating powder material
  • Figure 3 is a micron-scale element distribution diagram of a sintering-resistant high-entropy ceramic thermal barrier coating powder material (YLNSE) for plasma spraying physical vapor deposition of the present invention after solid-phase reaction, spray granulation, and briquetting.
  • YLNSE sintering-resistant high-entropy ceramic thermal barrier coating powder material
  • Figure 4 shows a sintering-resistant high-entropy ceramic thermal barrier coating powder material (YLNSE) for plasma spraying physical vapor deposition of the present invention and the only widely used thermal barrier coating ceramic material yttria stabilized zirconia (YSZ) at 1500°C.
  • YLNSE high-entropy ceramic thermal barrier coating powder material
  • YSZ yttria stabilized zirconia
  • Figure 5 shows a sintering-resistant high-entropy ceramic thermal barrier coating powder material (YLNSE) for plasma spraying physical vapor deposition of the present invention and the only widely used thermal barrier coating ceramic material yttria stabilized zirconia (YSZ) at 1500°C.
  • the slurry is put into a blast drying box and dried at 70°C for 20 hours until completely dried. After drying, the The mixed powder is put into a high-temperature box furnace for solid-state reaction at 1600°C, with a holding time of 2 hours; after solid-phase sintering, the powder is ground, crushed and refined by ball milling for 10 hours, and then dried in a spray dryer. Carry out agglomeration and granulation, with a feeding temperature of 240°C, a rotation speed of 35 rpm, and a pressure of 2.0 bar; the particle size distribution of the powder material is obtained through a laser particle size analyzer, and the submicron-scale element distribution of the powder material after solid-phase reaction is obtained through a transmission electron microscope energy spectrometer.
  • the morphology of the powder material after spray granulation was obtained through scanning electron microscopy, and the distribution of each element at the micron scale was obtained through scanning electron microscopy energy spectrometer.
  • the average particle size was obtained through statistics of the image method, respectively, through nanoindentation and
  • the elastic modulus and thermal conductivity are obtained by the laser flash method, and the dimensionless coefficients that comprehensively consider the degree of degradation of force and thermal properties are calculated according to Lv et al., J.Eur.Ceram.Soc., 38 (2018) 1946-1956 formula (15) Anti-sintering performance evaluation parameter R s value.
  • the sintering-resistant high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition after solid-state reaction has a submicron structure.
  • the transmission electron microscope energy spectrum analysis results show that the powder material has a submicron scale.
  • the rare earth elements are evenly distributed without segregation or aggregation.
  • the anti-sintering high-entropy ceramic thermal barrier coating powder material for plasma spray physical vapor deposition after spray granulation is agglomerated from sub-micron/micron-sized rare earth oxide original powder to form a spherical morphology, with high sphericity .
  • the high sphericity and suitable particle size indicate that the powder is suitable for plasma spray physical vapor deposition process.
  • the scanning electron microscope energy spectrum analysis results show that the anti-sintering high-entropy ceramic thermal barrier coating powder material for spray granulation agglomeration plasma spray physical vapor deposition has a uniform distribution of rare earth elements on the micron scale after briquetting. , no segregation or aggregation occurred.
  • the average grain size of the anti-sintering high-entropy ceramic thermal barrier coating powder material used for plasma spraying physical vapor deposition in the prepared state is small, only 0.89 ⁇ m.
  • the dimensionless anti-sintering performance evaluation parameter R s value of the sintering-resistant high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition in the prepared state is 1.0.
  • the slurry is put into a blast drying box and dried at 70°C for 20 hours until completely dried. After drying, the The mixed powder is put into a high-temperature box furnace for solid-state reaction at 1600°C, with a holding time of 2 hours; after solid-phase sintering, the powder is ground, crushed and refined by ball milling for 10 hours, and then dried in a spray dryer.
  • the average grain size of the sintering-resistant high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition increased after sintering in a uniform temperature field at 1500°C for 20 hours, from the initial 0.89 ⁇ m to 1.06 ⁇ m. An increase of 19%.
  • the main process of this embodiment is the same as that of Embodiment 2, except that the duration of the 1500°C uniform temperature field anti-sintering experiment was changed to 200 hours.
  • the average grain size of the sintering-resistant high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition further increased from the initial 0.89 ⁇ m to 1.82 ⁇ m after sintering in a uniform temperature field at 1500°C for 200 hours. , an increase of 104%.
  • the dimensionless anti-sintering performance evaluation parameter R s value further reduced to 0.59 after the anti-sintering high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition was sintered in a uniform temperature field at 1500°C for 200 hours.
  • the original powder of yttria-stabilized zirconia YSZ (99.9%, 10 ⁇ m, Oerlikon Metco) was subjected to solid-phase reaction at 1600°C in a high-temperature box furnace with a holding time of 2 hours; after crushing, grinding, and sieving, it was dried in a spray dryer Carry out agglomeration and granulation, with a feeding temperature of 240°C, a rotation speed of 35 rpm, and a pressure of 2.0 bar.
  • the powder material after spray granulation is compacted and the average particle size is obtained through scanning electron microscopy combined with image method statistics. Nanoindentation and laser flash methods are used respectively.
  • the elastic modulus and thermal conductivity are obtained, and the dimensionless anti-sintering performance evaluation parameter R s value is calculated according to the formula (15) of Lv et al., J.Eur.Ceram.Soc., 38 (2018) 1946-1956.
  • the average grain size of the yttria-stabilized zirconia thermal barrier coating powder material used for plasma spraying physical vapor deposition in the preparatory state is 0.77 ⁇ m, which is similar to the sintering-resistant high-entropy ceramic thermal barrier used in the preparatory plasma spraying physical vapor deposition.
  • the average grain sizes of the coating powder materials are similar.
  • the dimensionless anti-sintering performance evaluation parameter R s value of the yttria-stabilized zirconia thermal barrier coating powder material used for plasma spraying physical vapor deposition in the prepared state is 1.0, which is the same as the anti-sintering resistance used in the prepared plasma spraying physical vapor deposition.
  • the dimensionless anti-sintering performance evaluation parameter R s of high-entropy ceramic thermal barrier coating powder materials has the same value.
  • the original powder of yttria-stabilized zirconia YSZ (99.9%, 10 ⁇ m, Oerlikon Metco) was subjected to solid-phase reaction at 1600°C in a high-temperature box furnace with a holding time of 2 hours; after crushing, grinding, and sieving, it was dried in a spray dryer Carry out agglomeration and granulation, with a feeding temperature of 240°C, a rotation speed of 35rpm, and a pressure of 2.0bar.
  • the powder material after spray granulation is compacted into briquettes and subjected to a 1500°C uniform temperature field anti-sintering experiment in a high-temperature box furnace for 20 hours.
  • the average grain size of the yttria-stabilized zirconia thermal barrier coating powder material used for plasma spraying physical vapor deposition increased after sintering in a uniform temperature field at 1500°C for 20 hours, from the initial 0.77 ⁇ m to 1.14 ⁇ m.
  • the increase is 48%, which is higher than the 19% increase in the average grain size of the anti-sintering high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition in Example 2 after sintering in a uniform temperature field at 1500°C for 20 hours.
  • the comparison results show that the sintering-resistant high-entropy ceramic thermal barrier coating powder material used for plasma spraying physical vapor deposition has slower grain growth under ultra-high temperature conditions of 1500°C.
  • the dimensionless anti-sintering performance evaluation parameter R s value decreased, from the initial 1.0 to 0.49, which is lower than the dimensionless anti-sintering performance evaluation parameter R s value of 0.83 after the anti-sintering high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition in Example 2 was sintered in a uniform temperature field at 1500°C for 20 hours.
  • the comparison results show that the dimensionless anti-sintering performance evaluation parameter R s value of the anti-sintering high-entropy ceramic thermal barrier coating powder material used for plasma spraying physical vapor deposition under ultra-high temperature conditions of 1500°C decreases less, that is, the degree of degradation of mechanical and thermal properties. Less, better sintering resistance.
  • the main process of this comparative example is the same as that of Comparative Example 2, except that the duration of the 1500°C uniform temperature field anti-sintering experiment was changed to 200 hours.
  • the average grain size of the yttria-stabilized zirconia thermal barrier coating powder material used for plasma spraying physical vapor deposition further increased from the initial 0.77 ⁇ m to 2.43 ⁇ m after sintering in a uniform temperature field at 1500°C for 200 hours.
  • an increase of 216% which is significantly higher than the average grain size increase of 104% after the anti-sintering high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition in Example 3 was sintered in a uniform temperature field at 1500°C for 200 hours.
  • the comparison results show that the grain growth of anti-sintering high-entropy ceramic thermal barrier coating powder materials for plasma spraying physical vapor deposition is still slow under long-term ultra-high temperature conditions of 1500°C.
  • the dimensionless anti-sintering performance evaluation parameter R s value further decreased, from the initial 1.0 to 0.34, which is lower than the dimensionless anti-sintering performance evaluation parameter R s value of 0.59 after the sintering-resistant high-entropy ceramic thermal barrier coating powder material for plasma spraying physical vapor deposition in Example 3 was sintered in a uniform temperature field at 1500°C for 20 hours.
  • the anti-sintering high-entropy ceramic thermal barrier coating powder material (YLNSE) for plasma spraying physical vapor deposition provided by the embodiment of the present invention is more effective than the only widely used thermal barrier coating ceramic material oxidation at present.
  • Yttrium-stabilized zirconia (YSZ) has good anti-sintering performance under ultra-high temperature conditions of 1500°C.
  • the morphology and particle size distribution of the powder material are suitable for plasma spraying physical vapor deposition process, which is beneficial to the feather-shaped columnar structure with high sintering resistance.
  • entropy ceramic thermal barrier coatings synergistically improves the anti-sintering performance of thermal barrier coatings from both material and structure levels; the powder material preparation process is simple and is conducive to anti-sintering high-entropy ceramic thermal barrier coatings for plasma spraying physical vapor deposition Batch preparation and engineering application of layer powder materials.

Abstract

一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料及其制备方法。该粉体材料由亚微米/微米级稀土氧化物原始粉体团聚形成,具有高球形度,粒径分布集中于5-50μm范围内,在1500℃超高温条件下晶粒生长速率低,抗烧结系数R s>0.5,由Y、La、Nd、Sm、Eu五种稀土元素以等摩尔比组成,在微米和纳米两个尺度上均呈现出均匀的元素分布。其制备方法包括固相烧结与喷雾造粒两个步骤。粉体材料适用于等离子喷涂物理气相沉积,在1500℃超高温条件下具有较好的抗烧结性能,制备工艺简单,利于批量制备与工程应用。

Description

一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料及其制备方法 技术领域:
本发明涉及热障涂层陶瓷粉体材料技术领域,具体而言,涉及一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料及其制备方法。
背景技术:
热障涂层是航空发动机与重型燃气轮机热端部件高温防护关键技术之一,广泛应用于航空、航海动力与地面、远洋发电等关乎国家安全与国民经济的重要领域。随着推重比、能源转换效率等性能要求的不断提高,新一代燃气轮机热障涂层表面温度已超过1200℃。传统热障涂层陶瓷材料氧化钇稳定氧化锆(YSZ)在超过该温度条件下长时服役过程中会发生烧结与相变现象,前者会导致涂层力、热学性能快速退化,后者会引起约5%体积膨胀,二者综合作用下热障涂层内部应力水平升高,易发生屈曲与断裂失效。
等离子喷涂物理气相沉积(PS-PVD)是在低压等离子喷涂(LPPS/VPS)工艺基础上发展起来的新型等离子喷涂热障涂层制备技术。通过提高喷涂舱室真空度与喷枪功率,等离子焰流长度显著增加,可以使热障涂层陶瓷粉体材料充分熔融、气化,进行固-液-气多相沉积,形成独特的羽毛型柱状结构。前期研究结果表明,柱状结构有利于提高热障涂层的抗烧结性能。从结构设计角度出发,通过等离子喷涂物理气相沉积技术制备羽毛型柱状结构,是提高热障涂层抗烧结性能的有效途径。然而,等离子喷涂物理气相沉积工艺对陶瓷粉体材料具有特殊要求。首先,粉体材料粒径不能太小,粉体粒径过小容易导致喷枪堵塞;其次,粉体材料粒径不能太大,粉体粒径过大会导致融化不充分、难以气化,无法实现气相沉积,从而不能形成羽毛型柱状结构;再次,粉体材料形貌需要较高的球形度,多棱角的不规则形貌会导致流动性较差不利于送粉。
高熵陶瓷概念起源于高熵合金,是由五种及以上多元金属阳离子以(近)等物质的量组成的单相多组元固溶材料。自2015年提出以来,高熵陶瓷材料快速发展,已形成高熵碳化物、氮化物、氧化物、硼化物、硅化物、硫化物等多个体系。其中,高熵稀土锆酸盐具有良好的高温相稳定性、与高温合金基底相近的热膨胀系数以及超低的热导率,是一种极具潜力的热障涂层陶瓷材料。然而,现有热障涂层高熵稀土锆酸盐陶瓷材料的制备方法主要为固相烧结-破碎-压块工艺(CN110272278A),粉体形貌及粒径分布不适用于等离子喷涂物理气相沉积。面向1500℃及以上的超高温热障涂层应用环境,目前的高熵陶瓷材料研究仅关注了高温相稳定性(CN114920559A、CN114230339A、CN114149260A、CN113816751A、CN113023776A)与抗熔盐腐蚀性能(CN112341197A),缺乏针对抗烧结性能的定量表征与评价,难以进行热障涂层抗烧结高熵陶瓷材料开发,无法为热障涂层超高温服役过程结构与性能退化行为预测提供依据,不利于实现高熵陶瓷热障涂层长时超高温应用。1500℃超高温条件下,目前唯一广泛应用热障涂层陶瓷材料氧化钇稳定氧化锆(YSZ)存在严重的烧结与相变问题,力、热学性能随烧结时间的增加而快速退化,抗烧结性能不足,无法应用于超高温热障涂层。
发明内容:
本发明所要解决的技术问题在于提供一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料,以解决现有高熵陶瓷材料不适用于等离子喷涂物理气相沉积热障涂层制备,以及目前唯一广泛应用热障涂层陶瓷材料氧化钇稳定氧化锆(YSZ)抗烧结性能不足的问题。
本发明解决上述技术问题所采用的技术方案是:
一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料,其特征在于,所述粉体材料的化学式为(Y0.2La0.2Nd0.2Sm0.2Eu0.2)2Zr2O7,具有球状形貌,粒径为5-50μm。
优选地,所述粉体材料在1500℃条件下烧结200h后,抗烧结系数Rs>0.5。
本发明还提供上述等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料的制备方法,包括如下步骤:
将Y2O3、La2O3、Nd2O3、Sm2O3、Eu2O3以及ZrO2粉体按1:1:1:1:1:5摩尔比混合,经研磨、干燥后,在1600±50℃下固相反应,得到混合粉体;混合粉体经破碎、研磨、过筛后,经喷雾干燥团聚造粒,即得所述抗烧结高熵陶瓷热障涂层粉体材料。
优选地,所述固相反应的时间为2±1h。
优选地,所述喷雾干燥的条件为送料温度240±10℃、转速35±5rpm,压力2.0±0.5bar。
优选地,所述研磨的条件为:以无水乙醇为介质、ZrO2球为球磨珠,以300±50rpm的转速球磨混合10±2h;
所述干燥的条件为在70±10℃下干燥20±2h。
相对于现有技术,本发明具有以下有益效果:
本发明所述一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料(YLNSE),在1500℃超高温条件下具有较好的抗烧结性能,粉体材料形貌与粒径分布适于等离子喷涂物理气相沉积工艺,有利于羽毛型柱状结构抗烧结高熵陶瓷热障涂层应用,从材料与结构两个层级协同提升热障涂层抗烧结性能;所述粉体材料制备工艺简单,有利于等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料批量制备与工程应用。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料(YLNSE)经固相反应后的亚微米尺度元素分布图。
图2为本发明一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料(YLNSE)经固相反应、喷雾造粒后的微观形貌照片。
图3为本发明一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料(YLNSE)经固相反应、喷雾造粒、压块后的微米尺度元素分布图。
图4为本发明一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料(YLNSE)与目前唯一广泛应用热障涂层陶瓷材料氧化钇稳定氧化锆(YSZ)在1500℃超高温抗烧结性能实验中晶粒尺寸随烧结时间变化规律图。
图5为本发明一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料(YLNSE)与目前唯一广泛应用热障涂层陶瓷材料氧化钇稳定氧化锆(YSZ)在1500℃超高温抗烧结性能实验中无量纲抗烧结性能评价参数Rs值随烧结时间变化规律图。
具体实施方式:
以下结合附图和具体实施方式对本发明作进一步说明。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
将Y2O3(99.99%,0.2μm)、La2O3(99.99%,5μm)、Nd2O3(99.99%,5μm)、Sm2O3(99.9%,5μm)、Eu2O3(99.999%,5μm)五种稀土氧化物以及ZrO2(99.99%,0.2μm)原始粉体按1:1:1:1:1:5的摩尔比进行称料;以无水乙醇为介质、ZrO2球为球磨珠,在行星球磨机上以300rpm的转速球磨混合10h,得到混合料浆;将料浆放入鼓风干燥箱中,在70℃下干燥20h直至完全烘干;烘干后得到的混合粉体放入高温箱式炉中,在1600℃下进行固相反应,保温时间为2h;固相烧结后的粉体经研磨、破碎以及10h的球磨细化后,在喷雾干燥机中进行团聚造粒,送料温度240℃、转速35rpm,压力2.0bar;通过激光粒度仪得到粉体材料粒径分布,通过透射电子显微镜能谱仪得到固相反应后粉体材料亚微米尺度各元素分布,通过扫描电子显微镜得到喷雾造粒后粉体材料形貌,将其压块并通过扫描电子显微镜能谱仪得到微米尺度各元素分布,结合图像法统计得到平均粒径,分别通过纳米压痕与激光闪光法得到弹性模量与热导率,根据Lv et al.,J.Eur.Ceram.Soc.,38(2018)1946-1956公式(15)计算综合考虑力、热学性能退化程度的无量纲抗烧结性能评价参数Rs值。
激光粒度仪分析结果表明,本实施例等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料D10=5.72μm,D90=48.0μm,呈现近似正态分布,粒径集中分布于5-50μm范围内。
如图1所示,固相反应后等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料具有亚微米结构,透射电子显微镜能谱分析结果表明,该粉体材料在亚微米尺度上各稀土元素分布均匀,未出现偏析或聚集。
如图2所示,喷雾造粒后等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料由亚微米/微米级稀土氧化物原始粉体团聚形成球状形貌,具有高球形度。较高的球形度和适宜的粒径表明该粉体适用于等离子喷涂物理气相沉积工艺。
如图3所示,扫描电子显微镜能谱分析结果表明,喷雾造粒团聚等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料经压块后在微米尺度上各稀土元素分布均匀,未出现偏析或聚集。
如图4所示,制备态等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料平均晶粒尺寸较小,仅为0.89μm。
如图5所示,制备态等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料无量纲抗烧结性能评价参数Rs值为1.0。
实施例2
将Y2O3(99.99%,0.2μm)、La2O3(99.99%,5μm)、Nd2O3(99.99%,5μm)、Sm2O3(99.9%,5μm)、Eu2O3(99.999%,5μm)五种稀土氧化物以及ZrO2(99.99%,0.2μm)原始粉体按1:1:1:1:1:5的摩尔比进行称料;以无水乙醇为介质、ZrO2球为球磨珠,在行星球磨机上以300rpm的转速球磨混合10h,得到混合料浆;将料浆放入鼓风干燥箱中,在70℃下干燥20h直至完全烘干;烘干后得到的混合粉体放入高温箱式炉中,在1600℃下进行固相反应,保温时间为2h;固相烧结后的粉体经研磨、破碎以及10h的球磨细化后,在喷雾干燥机中进行团聚造粒,送料温度240℃、转速35rpm,压力2.0bar;通过激光粒度仪得到粉体材料粒径分布,通过透射电子显微镜得到固相反应后粉体材料亚微米尺度各元素分布,将喷雾造粒后粉体材料压块并在高温箱式炉中进行1500℃均匀温度场抗烧结实验,时长20h,通过扫描电子显微镜得到微米尺度各元素分布,结合图像法统计得到平均粒径,分别通过纳米压痕与激光闪光法得到弹性模量与热导率,根据Lv et al.,J.Eur.Ceram.Soc.,38(2018)1946-1956公式(15)计算无量纲抗烧结性能评价参数Rs值。
如图4所示,等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃均匀温度场烧结20h后平均晶粒尺寸增大,由初始0.89μm增大到1.06μm,增幅19%。
如图5所示,等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃均匀温度场烧结20h后无量纲抗烧结性能评价参数Rs值降低,由初始1.0降低到0.83。
实施例3
本实施例主要过程与实施例2一致,仅1500℃均匀温度场抗烧结实验时长变为200h。
如图4所示,等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃均匀温度场烧结200h后平均晶粒尺寸进一步增大,由初始0.89μm增大到1.82μm,增幅104%。
如图5所示,等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃均匀温度场烧结200h后无量纲抗烧结性能评价参数Rs值进一步降低到0.59。
对比例1
将氧化钇稳定氧化锆YSZ(99.9%,10μm,Oerlikon Metco)原始粉体在高温箱式炉中进行1600℃固相反应,保温时间2h;经破碎、研磨、过筛后,在喷雾干燥机中进行团聚造粒,送料温度240℃、转速35rpm,压力2.0bar;将喷雾造粒后粉体材料压块并通过扫描电子显微镜结合图像法统计得到平均粒径,分别通过纳米压痕与激光闪光法得到弹性模量与热导率,根据Lv et al.,J.Eur.Ceram.Soc.,38(2018)1946-1956公式(15)计算无量纲抗烧结性能评价参数Rs值。
如图4所示,制备态等离子喷涂物理气相沉积用氧化钇稳定氧化锆热障涂层粉体材料平均晶粒尺寸为0.77μm,与制备态等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料平均晶粒尺寸相近。
如图5所示,制备态等离子喷涂物理气相沉积用氧化钇稳定氧化锆热障涂层粉体材料无量纲抗烧结性能评价参数Rs值为1.0,与制备态等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料无量纲抗烧结性能评价参数Rs值相同。
对比例2
将氧化钇稳定氧化锆YSZ(99.9%,10μm,Oerlikon Metco)原始粉体在高温箱式炉中进行1600℃固相反应,保温时间2h;经破碎、研磨、过筛后,在喷雾干燥机中进行团聚造粒,送料温度240℃、转速35rpm,压力2.0bar;将喷雾造粒后粉体材料压块并在高温箱式炉中进行1500℃均匀温度场抗烧结实验,时长20h,通过扫描电子显微镜结合图像法统计得到平均粒径,分别通过纳米压痕与激光闪光法得到弹性模量与热导率,根据Lv et al.,J.Eur.Ceram.Soc.,38(2018)1946-1956公式(15)计算无量纲抗烧结性能评价参数Rs值。
如图4所示,等离子喷涂物理气相沉积用氧化钇稳定氧化锆热障涂层粉体材料在1500℃均匀温度场烧结20h后平均晶粒尺寸增大,由初始0.77μm增大到1.14μm,增幅48%,高于实施例2等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃均匀温度场烧结20h后平均晶粒尺寸增幅19%。对比结果表明,等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃超高温条件下晶粒生长较慢。
如图5所示,等离子喷涂物理气相沉积用氧化钇稳定氧化锆热障涂层粉体材料在1500℃均匀温度场烧结20h后无量纲抗烧结性能评价参数Rs值降低,由初始1.0降低到0.49,低于实施例2等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃均匀温度场烧结20h后无量纲抗烧结性能评价参数Rs值0.83。对比结果表明,等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃超高温条件下无量纲抗烧结性能评价参数Rs值降低较少,即力、热学性能退化程度较少,抗烧结性能更好。
对比例3
本对比例主要过程与对比例2一致,仅1500℃均匀温度场抗烧结实验时长变为200h。
如图4所示,等离子喷涂物理气相沉积用氧化钇稳定氧化锆热障涂层粉体材料在1500℃均匀温度场烧结200h后平均晶粒尺寸进一步增大,由初始0.77μm增大到2.43μm,增幅216%,显著高于实施例3等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃均匀温度场烧结200h后平均晶粒尺寸增幅104%。对比结果表明,等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃长时超高温条件下晶粒生长仍然较慢。
如图5所示,等离子喷涂物理气相沉积用氧化钇稳定氧化锆热障涂层粉体材料在1500℃均匀温度场烧结200h后无量纲抗烧结性能评价参数Rs值进一步降低,由初始1.0降低到0.34,低于实施例3等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃均匀温度场烧结20h后无量纲抗烧结性能评价参数Rs值0.59。对比结果表明,等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料在1500℃长时超高温条件下无量纲抗烧结性能评价参数Rs值仍然降低较少,即力、热学性能在较长抗烧结性能评价实验时长内退化程度仍然较少,在超高温条件下较长时间内保持了更好的抗烧结性能。
综上所述,本发明实施例所提供的一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料(YLNSE)相较于目前唯一广泛应用的热障涂层陶瓷材料氧化钇稳定氧化锆(YSZ),在1500℃超高温条件下具有较好的抗烧结性能,粉体材料形貌与粒径分布适于等离子喷涂物理气相沉积工艺,有利于羽毛型柱状结构抗烧结高熵陶瓷热障涂层应用,从材料与结构两个层级协同提升热障涂层抗烧结性能;所述粉体材料制备工艺简单,有利于等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料批量制备与工程应用。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料,其特征在于,所述粉体材料的化学式为(Y0.2La0.2Nd0.2Sm0.2Eu0.2)2Zr2O7,具有球状形貌,粒径为5-50μm。
  2. 根据权利要求1所述的等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料,其特征在于,所述粉体材料在1500℃条件下烧结200h后,抗烧结系数Rs>0.5。
  3. 一种权利要求1或2所述的等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料的制备方法,其特征在于,包括如下步骤:
    将Y2O3、La2O3、Nd2O3、Sm2O3、Eu2O3以及ZrO2粉体按1:1:1:1:1:5摩尔比混合,经研磨、干燥后,在1600±50℃下固相反应,得到混合粉体;混合粉体经破碎、研磨、过筛后,经喷雾干燥团聚造粒,即得所述抗烧结高熵陶瓷热障涂层粉体材料。
  4. 根据权利要求3所述的制备方法,其特征在于,所述固相反应的时间为2±1h。
  5. 根据权利要求3所述的制备方法,其特征在于,所述喷雾干燥的条件为送料温度240±10℃、转速35±5rpm,压力2.0±0.5bar。
  6. 根据权利要求3所述的制备方法,其特征在于,所述研磨的条件为:以无水乙醇为介质、ZrO2球为球磨珠,以300±50rpm的转速球磨混合10±2h;
    所述干燥的条件为在70±10℃下干燥20±2h。
PCT/CN2023/128311 2023-08-03 2023-10-31 一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料及其制备方法 WO2024032829A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310967859.9 2023-08-03
CN202310967859.9A CN117229054A (zh) 2023-08-03 2023-08-03 一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024032829A1 true WO2024032829A1 (zh) 2024-02-15

Family

ID=89097465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128311 WO2024032829A1 (zh) 2023-08-03 2023-10-31 一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料及其制备方法

Country Status (2)

Country Link
CN (1) CN117229054A (zh)
WO (1) WO2024032829A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496470A (zh) * 2014-12-16 2015-04-08 广东省工业技术研究院(广州有色金属研究院) 一种高弹性纳米氧化锆基陶瓷的制备方法
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
CN112839915A (zh) * 2018-10-09 2021-05-25 欧瑞康美科(美国)公司 用于热障涂层(tbc)面涂层的高熵氧化物
CN114149260A (zh) * 2021-12-14 2022-03-08 内蒙古工业大学 一种低热导率高熵陶瓷热障涂层材料
CN116377372A (zh) * 2023-03-30 2023-07-04 广东省科学院新材料研究所 一种高熵陶瓷热障涂层及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1613920A (zh) * 2004-09-10 2005-05-11 中国科学院长春应用化学研究所 一种热障涂层材料
CN113023776B (zh) * 2021-03-10 2022-07-19 上海交通大学 一种热障涂层用萤石结构高熵氧化物粉体及其制备方法
CN113045312B (zh) * 2021-03-23 2022-05-27 陕西科技大学 一种具有类玻璃热导率的高熵钇烧绿石陶瓷及其制备方法
CN114751737A (zh) * 2021-08-19 2022-07-15 厦门稀土材料研究所 一种锆酸稀土基高熵陶瓷纳米纤维及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496470A (zh) * 2014-12-16 2015-04-08 广东省工业技术研究院(广州有色金属研究院) 一种高弹性纳米氧化锆基陶瓷的制备方法
CN112839915A (zh) * 2018-10-09 2021-05-25 欧瑞康美科(美国)公司 用于热障涂层(tbc)面涂层的高熵氧化物
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
CN114149260A (zh) * 2021-12-14 2022-03-08 内蒙古工业大学 一种低热导率高熵陶瓷热障涂层材料
CN116377372A (zh) * 2023-03-30 2023-07-04 广东省科学院新材料研究所 一种高熵陶瓷热障涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, FEI, ET AL.: "High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials", JOURNAL OF ADVANCED CERAMICS, vol. 8, no. 4, 31 December 2019 (2019-12-31), XP093133150, ISSN: 2226-4108, DOI: 10.1007/s40145-019-0342-4 *

Also Published As

Publication number Publication date
CN117229054A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN106380210B (zh) 一种多元稀土氧化物掺杂改性ysz热喷涂粉末及其制备方法
CN113683430B (zh) 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法
US20220112132A1 (en) Zirconia/titanium oxide/cerium oxide doped rare earth tantalum/niobate reta/nbo4 ceramic powder and preparation method thereof
CN101182207B (zh) 一种含氧化钇的喷涂粉末及其制备方法
CN106884132A (zh) 一种高温热障涂层材料
US7837967B2 (en) Thermal spray powder and method for forming thermal spray coating
CN112358293B (zh) 热障涂层用粉末、其制备方法和应用以及具有热障涂层的复合材料
JP2022532847A (ja) 低融点酸化物による腐食を防止する希土類タンタル酸塩セラミックス及びその製造方法
CN104891990A (zh) 共晶结构热障涂层材料及其可用于热喷涂的粉粒制造方法
CN112725716B (zh) 一种热喷涂用的核壳结构陶瓷复合粉体及其制备方法
CN102584224A (zh) 喷涂用纳米氧化锆陶瓷粉末的制备方法
CN114000107B (zh) 一种利用eb-pvd技术制备的高熵氧化物超高温热障涂层及其方法
CN108439977B (zh) 一种高温低热导氧化铪基热障涂层材料及其制备方法
WO2024027858A1 (zh) 一种高熵陶瓷热障涂层及其制备方法
CN107585786B (zh) Sm-Gd-Dy三稀土离子钽酸盐及其制备方法与应用
CN111057985A (zh) 热喷涂用高性能钙钛矿型氧化物粉体及其制备方法与应用
CN110078120B (zh) 一种基于超临界分散焙烧的氧化钇稳定氧化锆粉体的制备方法
Qiu et al. Medium-entropy (Me, Ti) 0.1 (Zr, Hf, Ce) 0.9 O2 (Me= Y and Ta): Promising thermal barrier materials for high-temperature thermal radiation shielding and CMAS blocking
CN114920559A (zh) 一种热障涂层用高熵氧化物粉末材料及其制备方法和应用
CN108640692B (zh) 一种等离子物理气相沉积用稀土氧化物掺杂锆酸钆粉末及其制备方法
WO2024032829A1 (zh) 一种等离子喷涂物理气相沉积用抗烧结高熵陶瓷热障涂层粉体材料及其制备方法
CN107662947B (zh) Sm-Eu-Gd三稀土离子钽酸盐及其制备方法与应用
Guo et al. Preparation and characterization of nanostructured Lu2Si2O7 feedstocks for plasma-sprayed environmental barrier coatings
WO2024093144A1 (zh) 一种高断裂韧性、抗cmas腐蚀及超高温烧结热障涂层材料及其制备和应用、热障涂层
Huang et al. Compatibility of low thermal conductivity and high infrared emissivity of plasma-sprayed Sm2Hf2O7 and Pr2Hf2O7 coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852047

Country of ref document: EP

Kind code of ref document: A1