WO2024032255A1 - 一种电池包和包括其的车辆 - Google Patents

一种电池包和包括其的车辆 Download PDF

Info

Publication number
WO2024032255A1
WO2024032255A1 PCT/CN2023/104929 CN2023104929W WO2024032255A1 WO 2024032255 A1 WO2024032255 A1 WO 2024032255A1 CN 2023104929 W CN2023104929 W CN 2023104929W WO 2024032255 A1 WO2024032255 A1 WO 2024032255A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery core
largest side
battery cell
elastic member
Prior art date
Application number
PCT/CN2023/104929
Other languages
English (en)
French (fr)
Inventor
王贤鹏
Original Assignee
蔚来电池科技(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来电池科技(安徽)有限公司 filed Critical 蔚来电池科技(安徽)有限公司
Publication of WO2024032255A1 publication Critical patent/WO2024032255A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the field of battery technology, and specifically relates to a battery pack and a vehicle including the same.
  • ultra-thin stamped large-surface cooling cold plates are usually used to cool the battery cells.
  • its surface is uneven, which can cause indentations in the battery, lead to lithium deposition, reduce cycle life, and cause safety risks.
  • the technical problem to be solved by this application is to provide a battery pack and a vehicle including the same, so as to solve the problem of potential safety hazards caused by the uneven surface of the cold plate or the expansion of the battery core causing the battery core to be squeezed.
  • a battery pack including: a plurality of battery cells arranged in sequence, a micro-channel cold plate and an elastic member;
  • the plurality of batteries arranged in sequence include a first battery core and a second battery core.
  • the first battery core includes two opposite largest sides of the first battery core
  • the second battery core includes two opposite largest sides.
  • a maximum side of a second battery cell wherein a maximum side of a first battery core and a maximum side of a second battery core are arranged opposite each other, and the micro-channel cold plate is provided on the oppositely arranged first battery core. Between the largest side and the largest side of the second battery cell;
  • the first battery core, the second battery core and the micro-channel cold plate constitute a battery core group, and an elastic member is provided between two adjacent battery core groups.
  • the ratio of the thickness of the battery core to the thickness of the elastic member is 3.6-100.
  • the elastic member has a thickness of 0.1 mm to 10 mm.
  • the elastic member has a thickness of 1.55 mm.
  • the largest side of the second cell of one of the two adjacent cell groups is in contact with all the other side of the second cell of the other cell group.
  • the other first battery cell of the first battery cell has a maximum Set side to side;
  • the elastic member covers all of the largest side of the other second battery core and the largest side of the other first battery core that are oppositely arranged.
  • the largest side of the second cell of one of the two adjacent cell groups is in contact with all the other side of the second cell of the other cell group.
  • the largest side of the other first battery core of the first battery core is arranged opposite to each other;
  • the elastic member covers a portion of the largest side of the other second battery core and the largest side of the other first battery core that are oppositely arranged.
  • the elastic member has an annular structure, or the elastic member is provided with at least one hollow hole.
  • a vehicle including the battery pack according to any of the above embodiments.
  • This application provides a battery pack and a vehicle including the same.
  • a micro-channel cold plate between adjacent first cells and second cells, the first cell of the first cell of the micro-channel cold plate The largest side of the second cell and the largest side of the second cell are in contact with the micro-channel cold plate, which greatly increases the heat dissipation area of the cell and improves the heat dissipation efficiency of the cell.
  • an elastic member between the two connected battery packs, the tolerances during the manufacturing process of the battery cells and/or the micro-channel cold plate, as well as the battery pack space occupied by the expansion of the battery cells, are avoided. Safety hazard caused by being squeezed.
  • Figure 1 is a schematic structural diagram of a battery pack according to an embodiment of the present application.
  • Figure 2 is a partial enlarged schematic diagram of area A in Figure 1.
  • a battery pack including: a plurality of battery cells 1 and a micro-channel cold plate 2 arranged in sequence.
  • a plurality of battery cores 1 arranged in sequence include a first battery core 11 and a second battery core 12.
  • the number of the first battery core 11 is at least one
  • the number of the second battery core 12 is at least one.
  • the number of battery cells 12 is at least one.
  • the first battery core 11 has the largest side surface of the first battery core
  • the second battery core 12 has the largest side surface of the second battery core.
  • the largest side surface refers to the surface with the largest area among the multiple surfaces of the battery core 1 .
  • the areas of the two opposite sides of the battery core 1 are the same. That is to say, the first battery core 11 includes two largest side surfaces of the first battery core, and the second battery core 12 includes two second largest sides. The largest side of the cell.
  • a micro-channel cold plate 2 is disposed between the largest side of the first battery cell and the largest side of the second battery core. Two opposite sides of the microchannel cold plate 2 are in contact with the largest side of the first battery cell and the largest side of the second battery cell respectively.
  • the micro-channel cold plate 2 is arranged between the first battery core 11 and the second battery core 12, and the largest side of the first battery core 11 and the second battery core 12 are connected.
  • the largest sides of the two battery cells are in contact with the opposite sides of the micro-channel cold plate 2, which greatly increases the cooling area of the battery core 1 and improves the cooling efficiency of the battery core 1.
  • the thickness of the microchannel cold plate 2 is limited.
  • the ratio of the thickness of the battery core 1 to the thickness of the microchannel cold plate 2 is 3.5 to 50.
  • the micro-channel cold plate 2 will not occupy too much space in the battery pack. This allows more battery cells 1 to be arranged in the battery pack, thereby ensuring the cooling effect of the micro-channel cold plate 2 on the battery cells 1 and at the same time improving the space utilization of the battery pack.
  • the thickness of the battery core 1 refers to the distance between the two opposite largest sides of the battery core 1 .
  • the thickness of the microchannel cold plate 2 refers to the distance between the two opposite surfaces of the microchannel cold plate 2 that are in contact with the largest side of the first battery cell and the largest side of the second battery cell.
  • the ratio of the thickness of the battery core 1 to the thickness of the microchannel cold plate 2 is 5.6-25.
  • the thickness of the microchannel cold plate 2 is 0.5 mm to 5 mm. By limiting the thickness of the microchannel cold plate 2, the cooling efficiency of the battery core 1 is improved while ensuring the space utilization of the battery pack.
  • the thickness of the microchannel cold plate 2 is 0.8 mm to 2.5 mm.
  • the thickness of the microchannel cold plate 2 is 1.7 mm.
  • the ratio of the width of the heat dissipation channel of the microchannel cold plate 2 to the wall thickness of the microchannel cold plate 2 is 0.5-15.
  • the microchannel cold plate 2 has a hollow structure to form a heat dissipation channel, and the heat generated by the battery core 1 is taken away by the gas or liquid flowing through the heat dissipation channel, thereby achieving the cooling effect of the battery core 1 .
  • the width of the heat dissipation channel of the microchannel cold plate 2 refers to the thickness of the microchannel cold plate 2 minus the wall thickness of the microchannel cold plate 2 .
  • the heat dissipation channel by limiting the wall thickness of the microchannel cold plate 2 and the width of the heat dissipation channel, it is possible to ensure the mechanical strength of the microchannel cold plate 2 and at the same time, make the heat dissipation channel have the maximum width to ensure that the flow through The flow of gas or liquid in the heat dissipation channel achieves the best heat dissipation effect.
  • the ratio of the width of the heat dissipation channel of the microchannel cold plate 2 to the wall thickness of the microchannel cold plate 2 is 1.2 to 7.
  • the wall thickness of the microchannel cold plate 2 is 0.2 mm to 1 mm. By limiting the wall thickness of the microchannel cold plate 2, the microchannel cold plate 2 can have a certain structural strength.
  • the wall thickness of the microchannel cold plate 2 ranges from 0.2 mm to 0.45 mm.
  • the wall thickness of the microchannel cold plate 2 is 0.35 mm.
  • the micro-channel cold plate 2 is integrally formed by extrusion, so as to make the surface of the micro-channel cold plate 2 smooth and avoid squeezing the surface of the soft-packed battery core 1, causing uneven surface of the battery core 1. mark. Indentations on the surface of the battery core 1 may cause lithium deposition in the battery core 1, resulting in a reduction in the service life of the battery core 1 and causing safety issues.
  • the microchannel cold plate 2 can be extruded from an aluminum alloy material (such as AL3003) through an extrusion die.
  • AL3003 aluminum alloy material
  • the battery pack when the microchannel cold plate 2 uses liquid cooling to cool down the battery core 1 , the battery pack further includes a first connecting tube 3 and a second connecting tube 4 .
  • the first connecting tube 3 and the second connecting tube 4 are both arranged outside a plurality of battery cores 1 arranged in sequence to avoid Influence on the arrangement of battery cells 1.
  • the first connecting pipe 3 and the second connecting pipe 4 are both connected to the plurality of micro-channel cold plates 2 and communicate with the heat dissipation channels of the micro-channel cold plates 2 .
  • the first connecting pipe 3 is a water inlet pipe
  • the second connecting pipe 4 is a water outlet pipe.
  • the first connecting pipe 3 and the second connecting pipe 4 may be disposed on the same side of the microchannel cold plate 2 , or may be disposed on opposite sides of the microchannel cold plate 2 .
  • a battery pack including: a plurality of battery cells 1 arranged in sequence, a micro-channel cold plate 2 and an elastic member 5 .
  • the plurality of battery cores 1 arranged in sequence include a first battery core 11 and a second battery core 12.
  • the number of the first battery core 11 is at least one
  • the number of the second battery core 12 is at least one.
  • the quantity is at least one.
  • the first battery core 11 has the largest side surface of the first battery core
  • the second battery core 12 has the largest side surface of the second battery core.
  • the largest side surface refers to the surface with the largest area among the multiple surfaces of the battery core 1 .
  • the areas of the two opposite sides of the battery core 1 are the same. That is to say, the first battery core 11 includes two largest side surfaces of the first battery core, and the second battery core 12 includes two second largest sides. The largest side of the cell.
  • a micro-channel cold plate 2 is disposed between the largest side of the first battery cell and the largest side of the second battery core. Two opposite sides of the microchannel cold plate 2 are in contact with the largest side of the first battery cell and the largest side of the second battery cell respectively.
  • the micro-channel cold plate 2 is arranged between the first battery core 11 and the second battery core 12, and the largest side of the first battery core 11 and the second battery core 12 are connected.
  • the largest sides of the two battery cells are in contact with the opposite sides of the micro-channel cold plate 2, which greatly increases the cooling area of the battery core 1 and improves the cooling efficiency of the battery core 1.
  • the first battery core 11, the second battery core 12 and the micro-channel cold plate 2 constitute a battery core group 6, and an elastic member 5 is provided between adjacent battery core groups 6 to absorb the battery core 1 and / Or the tolerances that occur during the manufacturing process of the micro-channel cold plate 2, and the battery pack space occupied by the expansion of the battery cell 1.
  • the battery pack 6 is provided only to facilitate the description of the battery pack structure, and is not intended to limit the structure of the battery pack.
  • the elastic member 5 can be made of elastic rubber, silicone or foam.
  • the thickness of the elastic member 5 is limited.
  • the ratio of the thickness of the battery core 1 to the thickness of the elastic member 5 is 3.6 to 100.
  • the elastic member 5 will not occupy the space of the battery pack too much, so that more battery cells 1 can be arranged in the battery pack, and then the elastic member 5 can be placed in the battery pack. It is ensured that the elastic member 5 can absorb the tolerances that occur during the manufacturing process of the battery core 1 and/or the micro-channel cold plate 2, as well as the battery pack space occupied by the expansion of the battery core 1, so that the space utilization of the battery pack is improved. promote.
  • the thickness of the battery core 1 refers to the distance between the two opposite largest sides of the battery core 1 .
  • the thickness of the elastic member 5 refers to the distance between the two surfaces of the elastic member 5 that are in contact with the battery core 1 .
  • the ratio of the thickness of the battery core 1 to the thickness of the elastic member 5 is 3.6-50.
  • the thickness of the elastic member 5 is 0.1 mm to 10 mm. By limiting the thickness of the elastic member 5, in addition to ensuring the above-mentioned functions of the elastic member 5, it is also possible to ensure the space utilization of the battery pack.
  • the thickness of the elastic member 5 is 0.5 mm to 5 mm.
  • the thickness of the elastic member 5 is 1.55 mm.
  • the number of elastic members 5 disposed between two adjacent battery core groups 6 is one or more.
  • the elastic member 5 disposed between two adjacent battery packs may be an integral elastic member 5 or multiple independent elastic members 5 .
  • a plurality of elongated elastic members 5 are evenly spaced between two adjacent battery core groups 6 .
  • the elastic members 5 By arranging the elastic members 5 in multiple separate forms, there is a certain gap between the elastic members 5, and part of the heat generated by the battery core 1 can be released through the gap, which can play a certain role in cooling the battery core 1.
  • arranging the plurality of elastic members into a strip-shaped structure is only a specific implementation, and they can also be arranged into a circular, square, etc. structure, and the present application is not limited thereto.
  • the largest side of the second cell 12 of one cell group 6 in two adjacent cell groups 6 is in contact with the other side of the first cell 11 of the other cell group 6 .
  • the largest side of one first battery core is oppositely arranged, and the elastic member 5 covers all of the largest side of the other second battery core and the largest side of the other first battery core that are oppositely arranged.
  • the largest side of the second cell 12 in one of the two adjacent cell groups 6 that is not in contact with the microchannel cold plate 2 is arranged opposite to the largest side of the first cell in the first cell 11 of another cell group 6 that is not in contact with the microchannel cold plate 2 (that is, the largest side of the other first cell).
  • the elastic member 5 is disposed between the largest side of the other second cell and the largest side of the other first cell.
  • the elastic member 5 disposed between the largest side of the opposite second battery core and the largest side of the other first battery covers the largest side of the other second battery core and the other first battery core. All of the largest sides.
  • the elastic member 5 in this embodiment has an integral structure, and the side surface of the elastic member 5 in contact with the battery core 1 The area is greater than or equal to the area of the largest side of battery cell 1.
  • the elastic member 5 disposed between the largest side of the opposite second battery core and the largest side of the other first battery covers the largest side of the other second battery core and the largest side of the other first battery. The part of the largest side of the core.
  • the area of the side surface of the elastic member 5 in contact with the battery core 1 is smaller than the area of the largest side surface of the battery core 1 .
  • the elastic member 5 may be an integral structure, such as an annular structure or at least one hollow hole may be provided on the elastic member 5 .
  • There may also be multiple elastic members 5 and the plurality of elastic members 5 may be, for example, multiple elongated structures, square structures, or circular structures, etc.
  • heat can be dissipated through the portion between two adjacent battery cores 1 of the two battery core groups 6 that is not covered by the elastic member 5 , which can play a certain role in cooling the battery cores 1 .
  • a vehicle including the battery pack of any of the above embodiments.

Abstract

本申请提供一种电池包和包括其的车辆,其中,电池包包括:多个依次排列的电芯、微通道冷板和弹性件;其中,多个依次排列的电芯包括第一电芯和第二电芯,第一电芯包括相对的两个第一电芯最大侧面,第二电芯包括相对的两个第二电芯最大侧面,其中,一个第一电芯最大侧面和一个第二电芯最大侧面相对设置,且微通道冷板设置于相对设置的第一电芯最大侧面和第二电芯最大侧面之间;第一电芯、第二电芯和微通道冷板构成电芯组,相邻的两个电芯组之间设置有弹性件。本申请解决了电芯散热效果差,电池包空间利用率低,以及软包电池因冷却冷板不平整导致安全隐患的问题。

Description

一种电池包和包括其的车辆 技术领域
本申请属于电池技术领域,具体涉及一种电池包和包括其的车辆。
背景技术
对于高比能电芯的热失控、及超过2.5C的快充/放电工况时,在电芯底部或顶部设置大冷板的方案与电芯接触面过小,无法及时将电芯热量散出。导致热失控无法蔓延无法抑制、或快充时电芯温度过高的问题。
而为了解决上述问题,通常采用超薄冲压大面冷却冷板对电芯进行降温。但是,其表面不平整,会造成电池出现压痕,导致析锂,降低循环寿命,造成安全风险。
发明内容
本申请所要解决的技术问题在于,提供一种电池包和包括其的车辆,以解决因冷板表面不平整或者电芯膨胀使得电芯被挤压而导致安全隐患的问题。
为了解决或者一定程度上改善上述技术问题,根据本申请一方面,提供一种电池包,包括:多个依次排列的电芯、微通道冷板和弹性件;
其中,所述多个依次排列的电芯包括第一电芯和第二电芯,所述第一电芯包括相对的两个第一电芯最大侧面,所述第二电芯包括相对的两个第二电芯最大侧面,其中,一个所述第一电芯最大侧面和一个所述第二电芯最大侧面相对设置,且所述微通道冷板设置于相对设置的所述第一电芯最大侧面和所述第二电芯最大侧面之间;
所述第一电芯、所述第二电芯和所述微通道冷板构成电芯组,相邻的两个所述电芯组之间设置有弹性件。
在一些实施方式中,所述电芯的厚度与所述弹性件的厚度之比为3.6~100。
在一些实施方式中,所述弹性件的厚度为0.1毫米~10毫米。
在一些实施方式中,所述弹性件的厚度为1.55毫米。
在一些实施方式中,相邻两个所述电芯组中一个所述电芯组的所述第二电芯的另一个所述第二电芯最大侧面与另一个所述电芯组的所述第一电芯的另一个所述第一电芯最大 侧面相对设置;
所述弹性件覆盖相对设置的另一个所述第二电芯最大侧面和另一个所述第一电芯最大侧面的全部。
在一些实施方式中,相邻两个所述电芯组中一个所述电芯组的所述第二电芯的另一个所述第二电芯最大侧面与另一个所述电芯组的所述第一电芯的另一个所述第一电芯最大侧面相对设置;
所述弹性件覆盖相对设置的另一个所述第二电芯最大侧面和另一个所述第一电芯最大侧面的部分。
在一些实施方式中,设置于相邻两个所述电芯组之间的所述弹性件为一个,一个所述弹性件的面积小于所述第一电芯最大侧面和所述第二电芯最大侧面的面积。
在一些实施方式中,所述弹性件为环状结构,或者所述弹性件上设置有至少一个镂空孔。
在一些实施方式中,设置于相邻两个所述电芯组之间的所述弹性件为多个,所述多个弹性件的总面积小于所述第一电芯最大侧面和所述第二电芯最大侧面的面积。
根据本申请的另一方面,提供一种车辆,包括上述任一项实施方式所述的电池包。
本申请提供的一种电池包和包括其的车辆,通过在相邻的第一电芯和第二电芯之间设置微通道冷板,使得微通道冷板第一电芯的第一电芯最大侧面和第二电芯的第二电芯最大侧面与微通道冷板相接触,极大地提升了电芯的散热面积,提高了电芯的散热效率。通过在相连两个电芯组之间设置弹性件,以吸收电芯和/或微通道冷板在制作过程中出现的公差,以及因电芯膨胀所侵占的电池包空间,避免了因电芯受到挤压而导致的安全隐患。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为本申请一实施例的电池包的结构示意图;
图2为图1中的A区域的局部放大示意图。
【符号说明】
1、电芯
11、第一电芯
12、第二电芯
2、微通道冷板
3、第一连接管
4、第二连接管
5、弹性件
6、电芯组
具体实施方式
为更进一步阐述本申请为达成预定申请目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本申请提出的一种电池包和包括其的车辆的具体实施方式及其功效,详细说明如后。
根据本申请的一实施例,如图1和图2所示,提供一种电池包,包括:多个依次排列的电芯1和微通道冷板2。
如图2所示,多个依次排列的电芯1包括第一电芯11和第二电芯12,在多个依次排列的电芯1中第一电芯11的数量为至少一个,第二电芯12的数量为至少一个。第一电芯11具有第一电芯最大侧面,第二电芯12具有第二电芯最大侧面。
本该实施例中,最大侧面是指电芯1所具有的多个面中,面积最大的面。
通常情况下,电芯1的相对的两个面的面积是相同的,也就是说,第一电芯11包括有两个第一电芯最大侧面,第二电芯12包括有两个第二电芯最大侧面。在该实施例中,在多个电芯1依次排列后,第一电芯11中的一个第一电芯最大侧面和第二电芯12中的一个第二电芯最大侧面是相对设置的,而在相对设置的第一电芯最大侧面与该第二电芯最大侧面之间设置微通道冷板2。微通道冷板2的两个相对的侧面分别与第一电芯最大侧面和第二电芯最大侧面相接触。
在该实施例中,通过在第一电芯11和第二电芯12之间设置微通道冷板2,并将第一电芯11的第一电芯最大侧面和第二电芯12的第二电芯最大侧面分别与微通道冷板2的相对的侧面相接触,极大地提高了电芯1的冷却面积,提升了电芯1的冷却效率。
进一步地,为了在提高电芯1的冷却效率的同时,保证电池包的空间利用率,对微通道冷板2的厚度进行限制。
具体地,电芯1的厚度与微通道冷板2的厚度之比为3.5~50。通过对电芯1的厚度与微通道冷板2的厚度之间比值的限定,使得微通道冷板2不会过多地侵占电池包的空间, 以能够在电池包中布置更多的电芯1,进而在保证了微通道冷板2对电芯1的冷却效果的同时,使得电池包的空间利用率得到提升。
在该实施例中,电芯1的厚度指的是电芯1的两个相对的最大侧面之间的距离。微通道冷板2的厚度指的是微通道冷板2与第一电芯最大侧面和第二电芯最大侧面相接触的相对的两个面之间的距离。
在一些实施方式中,电芯1的厚度与微通道冷板2的厚度之比为5.6~25。
在一实施例中,微通道冷板2厚度为0.5毫米~5毫米。通过对微通道冷板2的厚度限制,以在提高电芯1的冷却效率的同时,保证电池包的空间利用率。
在一些实施方式中,微通道冷板2厚度为0.8毫米~2.5毫米。
优选地,微通道冷板2的厚度为1.7毫米。
在一实施例中,微通道冷板2的散热通道的宽度与微通道冷板2的壁厚之比为0.5~15。
具体地,微通道冷板2为中空结构,以形成散热通道,通过流经散热通道的气体或液体带走电芯1所产生的热量,进而达到对电芯1降温的效果。微通道冷板2的散热通道的宽度指的是微通道冷板2的厚度除去微通道冷板2的壁厚。
在该实施例中,通过对微通道冷板2的壁厚与散热通道的宽度的限定,能够在保证微通道冷板2的机械强度的同时,使得散热通道具备最大的宽度,以保证流经散热通道的气体或液体的流量,达到最佳的散热效果。
在一些实施方式中,微通道冷板2的散热通道的宽度与微通道冷板2的壁厚之比为1.2~7。
进一步地,微通道冷板2的壁厚为0.2毫米~1毫米。通过对微通道冷板2的壁厚的限定,使得微通道冷板2能够具备一定的结构强度。
在一些实施方式中,微通道冷板2的壁厚为0.2毫米~0.45毫米。
优选地,微通道冷板2的壁厚为0.35毫米。
在一实施例中,微通道冷板2为挤压一体成型,以使的微通道冷板2的表面平整,避免对软包电芯1的表面挤压,导致电芯1表面凹凸不平的压痕。电芯1表面的压痕可导致电芯1析锂,导致电芯1的使用寿命降低,并且会存在使用安全的问题。
微通道冷板2可采用铝合金材质(如AL3003)通过挤压模具挤压成型。
在一实施例中,当微通道冷板2采用液冷方式实现对电芯1的降温时,电池包还包括有第一连接管3和第二连接管4。
其中,第一连接管3和第二连接管4均设置于多个依次排列的电芯1的外侧,以避免 对电芯1的排布的影响。该第一连接管3和第二连接管4均连接于多个微通道冷板2,且连通于微通道冷板2的散热通道。
具体地,第一连接管3为进水管,第二连接管4为出水管,通过第一连接管3和第二连接管4的设置实现了微通道冷板2的散热通道内的冷却液的流动,提升了微通道冷板2的降温效果。
第一连接管3和第二连接管4可以设置在微通道冷板2的同侧,也可以设置于微通道冷板2的相对的两侧。
根据本申请的一实施例,如图1所示,提供一种电池包,包括:多个依次排列的电芯1、微通道冷板2和弹性件5。
其中,多个依次排列的电芯1包括第一电芯11和第二电芯12,在多个依次排列的电芯1中第一电芯11的数量为至少一个,第二电芯12的数量为至少一个。第一电芯11具有第一电芯最大侧面,第二电芯12具有第二电芯最大侧面。
本该实施例中,最大侧面是指电芯1所具有的多个面中,面积最大的面。
通常情况下,电芯1的相对的两个面的面积是相同的,也就是说,第一电芯11包括有两个第一电芯最大侧面,第二电芯12包括有两个第二电芯最大侧面。在该实施例中,在多个电芯1依次排列后,第一电芯11中的一个第一电芯最大侧面和第二电芯12中的一个第二电芯最大侧面是相对设置的,而在相对设置的第一电芯最大侧面与该第二电芯最大侧面之间设置微通道冷板2。微通道冷板2的两个相对的侧面分别与第一电芯最大侧面和第二电芯最大侧面相接触。
在该实施例中,通过在第一电芯11和第二电芯12之间设置微通道冷板2,并将第一电芯11的第一电芯最大侧面和第二电芯12的第二电芯最大侧面分别与微通道冷板2的相对的侧面相接触,极大地提高了电芯1的冷却面积,提升了电芯1的冷却效率。
在该实施例中,第一电芯11、第二电芯12和微通道冷板2构成电芯组6,相邻的电芯组6之间设置有弹性件5,以吸收电芯1和/或微通道冷板2在制作过程中出现的公差,以及因电芯1膨胀所侵占的电池包空间。
在该实施例中,电芯组6的设置仅仅是为了便于对电池包结构的描述,并非是用于限制电池包的结构。
该弹性件5可以选用具有弹性的橡胶、硅胶或者泡棉等。
在一实施例中,为了在保证弹性件5的上述功效外,能够同时保证电池包的空间利用率,对弹性件5的厚度进行限制。
具体地,电芯1的厚度与弹性件5的厚度之比为3.6~100。通过对电芯1的厚度与弹性件5的厚度之间比值的限定,使得弹性件5不会过多地侵占电池包的空间,以能够在电池包中布置更多的电芯1,进而在保证了弹性件5能够在吸收电芯1和/或微通道冷板2在制作过程中出现的公差,以及因电芯1膨胀所侵占的电池包空间的同时,使得电池包的空间利用率得到提升。
在该实施例中,电芯1的厚度指的是电芯1的两个相对的最大侧面之间的距离。弹性件5的厚度指的是弹性件5与电芯1相接触的两个面之间的距离。
在一些实施方式中,电芯1的厚度与弹性件5的厚度之比为3.6~50。
在一实施例中,弹性件5的厚度为0.1毫米~10毫米。通过对弹性件5的厚度的限定,在保证弹性件5的上述功效外,能够同时保证电池包的空间利用率。
在一实施方式中,弹性件5的厚度为0.5毫米~5毫米。
优选地,弹性件5的厚度为1.55毫米。
在一实施例中,设置于相邻的两个电芯组6之间的弹性件5的数量为一个或多个。
具体地,设置于相邻的两个电池组之间的弹性件5可以为一个整体的弹性件5,也可以是多个独立的弹性件5。例如,多个长条形的弹性件5均匀间隔设置在两个相邻的电芯组6之间。
通过将弹性件5设置为多个单独的形式,使得弹性件5之间具有一定间隙,电芯1产生的部分热量能够通过该间隙进行释放,对电芯1的冷却能够起到一定的作用。
当然,将多个子弹性件设置为长条形结构仅仅是一具体实施方式,还可以设置为圆形、方形等,本申请并不以此为限。
在一实施例中,相邻两个电芯组6中一个电芯组6的第二电芯12的另一个第二电芯最大侧面与另一个电芯组6的第一电芯11的另一个第一电芯最大侧面相对设置,弹性件5覆盖相对设置的另一个所述第二电芯最大侧面和另一个所述第一电芯最大侧面的全部。
在该实施例中,相邻两个电芯组6中一个电芯组6的第二电芯12中未与微通道冷板2相接触的第二电芯最大侧面(即另一个第二电芯最大侧面),与另一个电芯组6的第一电芯11中未与微通道冷板2相接触的第一电芯最大侧面(即另一个第一电芯最大侧面)相对设置。弹性件5则设置于该另一个第二电芯最大侧面与另一个第一电芯最大侧面之间。
在一具体实施例中,设置于相对的另一个第二电芯最大侧面与另一个第一电芯最大侧面之间的弹性件5覆盖另一个第二电芯最大侧面与另一个第一电芯最大侧面的全部。
也就是说,该实施例中的弹性件5为整体结构,弹性件5与电芯1相接触的侧面的面 积大于或等于电芯1的最大侧面的面积。
在另一具体实施例中,设置于相对的另一个第二电芯最大侧面与另一个第一电芯最大侧面之间的弹性件5覆盖另一个第二电芯最大侧面与另一个第一电芯最大侧面的部分。
也就是说,该实施例中弹性件5与电芯1相接触的侧面的面积小于电芯1的最大侧面的面积。
在该实施例中,弹性件5可以为整体结构,例如环形结构或者在弹性件5上设置至少一个镂空孔等。弹性件5还可以是多个,该多个弹性件5例如是多个长条形结构、方形结构或圆形结构等等。
在该实施例中,可以通过两个电芯组6的相邻的两个电芯1之间未覆盖弹性件5的部分进行散热,对电芯1的冷却能够起到一定的作用。
根据本申请的实施例,还提供一种车辆,包括上述任一实施方式的电池包。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (10)

  1. 一种电池包,包括:多个依次排列的电芯、微通道冷板和弹性件;
    其中,所述多个依次排列的电芯包括第一电芯和第二电芯,所述第一电芯包括相对的两个第一电芯最大侧面,所述第二电芯包括相对的两个第二电芯最大侧面,其中,一个所述第一电芯最大侧面和一个所述第二电芯最大侧面相对设置,且所述微通道冷板设置于相对设置的所述第一电芯最大侧面和所述第二电芯最大侧面之间;
    所述第一电芯、所述第二电芯和所述微通道冷板构成电芯组,相邻的两个所述电芯组之间设置有弹性件。
  2. 根据权利要求1所述的电池包,其中,所述电芯的厚度与所述弹性件的厚度之比为3.6~100。
  3. 根据权利要求1所述的电池包,其中,所述弹性件的厚度为0.1毫米~10毫米。
  4. 根据权利要求3所述的电池包,其中,所述弹性件的厚度为1.55毫米。
  5. 根据权利要求1所述的电池包,其中,相邻两个所述电芯组中一个所述电芯组的所述第二电芯的另一个所述第二电芯最大侧面与另一个所述电芯组的所述第一电芯的另一个所述第一电芯最大侧面相对设置;
    所述弹性件覆盖相对设置的另一个所述第二电芯最大侧面和另一个所述第一电芯最大侧面的全部。
  6. 根据权利要求1所述的电池包,其中,相邻两个所述电芯组中一个所述电芯组的所述第二电芯的另一个所述第二电芯最大侧面与另一个所述电芯组的所述第一电芯的另一个所述第一电芯最大侧面相对设置;
    所述弹性件覆盖相对设置的另一个所述第二电芯最大侧面和另一个所述第一电芯最大侧面的部分。
  7. 根据权利要求6所述的电池包,其中,设置于相邻两个所述电芯组之间的所述弹性件为一个,一个所述弹性件的面积小于所述第一电芯最大侧面和所述第二电芯最大侧面的面积。
  8. 根据权利要求7所述的电池包,其中,所述弹性件为环状结构,或者所述弹性件上设置有至少一个镂空孔。
  9. 根据权利要求6所述的电池包,其中,设置于相邻两个所述电芯组之间的所述弹性件为多个,所述多个弹性件的总面积小于所述第一电芯最大侧面和所述第二电芯最大侧面的面积。
  10. 一种车辆,其中,包括权利要求1-9中任一项所述的电池包。
PCT/CN2023/104929 2022-08-12 2023-06-30 一种电池包和包括其的车辆 WO2024032255A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222132770.4U CN218414751U (zh) 2022-08-12 2022-08-12 一种电池包和包括其的车辆
CN202222132770.4 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032255A1 true WO2024032255A1 (zh) 2024-02-15

Family

ID=85027142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104929 WO2024032255A1 (zh) 2022-08-12 2023-06-30 一种电池包和包括其的车辆

Country Status (2)

Country Link
CN (1) CN218414751U (zh)
WO (1) WO2024032255A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218414751U (zh) * 2022-08-12 2023-01-31 蔚来汽车科技(安徽)有限公司 一种电池包和包括其的车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376994A (zh) * 2010-08-17 2012-03-14 通用汽车环球科技运作有限责任公司 用于电池单元温度控制的挤制散热片
JP2013222656A (ja) * 2012-04-18 2013-10-28 Hitachi Maxell Ltd 電池積層体
US20200075267A1 (en) * 2016-11-25 2020-03-05 Honda Motor Co., Ltd. Electricity storage device
KR20210114113A (ko) * 2020-03-10 2021-09-23 주창석 전기자동차용 배터리 셀간 완충 패드
CN113517505A (zh) * 2021-05-21 2021-10-19 东莞新能安科技有限公司 电池组件和用电设备
WO2022149888A1 (ko) * 2021-01-11 2022-07-14 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
CN217134537U (zh) * 2021-09-30 2022-08-05 蜂巢能源科技(无锡)有限公司 电池模组
CN218414751U (zh) * 2022-08-12 2023-01-31 蔚来汽车科技(安徽)有限公司 一种电池包和包括其的车辆
CN218414811U (zh) * 2022-08-12 2023-01-31 蔚来汽车科技(安徽)有限公司 一种电池包和包括其的车辆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376994A (zh) * 2010-08-17 2012-03-14 通用汽车环球科技运作有限责任公司 用于电池单元温度控制的挤制散热片
JP2013222656A (ja) * 2012-04-18 2013-10-28 Hitachi Maxell Ltd 電池積層体
US20200075267A1 (en) * 2016-11-25 2020-03-05 Honda Motor Co., Ltd. Electricity storage device
KR20210114113A (ko) * 2020-03-10 2021-09-23 주창석 전기자동차용 배터리 셀간 완충 패드
WO2022149888A1 (ko) * 2021-01-11 2022-07-14 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
CN113517505A (zh) * 2021-05-21 2021-10-19 东莞新能安科技有限公司 电池组件和用电设备
CN217134537U (zh) * 2021-09-30 2022-08-05 蜂巢能源科技(无锡)有限公司 电池模组
CN218414751U (zh) * 2022-08-12 2023-01-31 蔚来汽车科技(安徽)有限公司 一种电池包和包括其的车辆
CN218414811U (zh) * 2022-08-12 2023-01-31 蔚来汽车科技(安徽)有限公司 一种电池包和包括其的车辆

Also Published As

Publication number Publication date
CN218414751U (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024032256A1 (zh) 一种电池包和包括其的车辆
CN110010999B (zh) 一种电池散热装置
WO2024032255A1 (zh) 一种电池包和包括其的车辆
WO2024021483A1 (zh) 液冷板及电池包
WO2012062185A1 (zh) 动力电池组
CN107579306A (zh) 一种基于空气和相变材料冷却的蓄电池模块
CN114583326A (zh) 储能电池模组、液冷板及液冷板组合
CN218498198U (zh) 液冷组件以及电池包
CN111403847B (zh) 一种基于相变材料与u型扁平热管耦合的动力电池极耳散热系统
CN209496984U (zh) 一种用于电池冷却的带肋片液冷板
CN214378603U (zh) 一种用于电动汽车锂离子电池的热管理装置
CN110890605B (zh) 一种可双面工作的双侧截面渐缩式液冷板
CN112271352A (zh) 一种动力电池冷却装置及动力电池模组
WO2022135098A1 (zh) 延缓热失控的集成式结构
CN207303188U (zh) 一种隔板设有双冷却水道的电池单元
CN210430028U (zh) 电池冷却装置及动力电池箱
CN207199800U (zh) 一种基于空气和相变材料冷却的蓄电池模块
CN217334178U (zh) 一种软包锂电池模组热管理系统
CN214313316U (zh) 一种锂离子电池包散热装置
CN220209066U (zh) 三层式冷却系统
CN220065814U (zh) 电池包组件和用电装置
CN220209080U (zh) 一种电池组冷却结构
CN218586077U (zh) 一种电池用侧面冷却模块
CN220189776U (zh) 两级相变材料与液体耦合的电池温控装置
CN218602557U (zh) 电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851482

Country of ref document: EP

Kind code of ref document: A1