WO2024031993A1 - 一种可用于空穴传输层的星型分子及其制备方法和应用 - Google Patents

一种可用于空穴传输层的星型分子及其制备方法和应用 Download PDF

Info

Publication number
WO2024031993A1
WO2024031993A1 PCT/CN2023/082965 CN2023082965W WO2024031993A1 WO 2024031993 A1 WO2024031993 A1 WO 2024031993A1 CN 2023082965 W CN2023082965 W CN 2023082965W WO 2024031993 A1 WO2024031993 A1 WO 2024031993A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport layer
hole transport
star
shaped molecule
molecule
Prior art date
Application number
PCT/CN2023/082965
Other languages
English (en)
French (fr)
Inventor
张赟
赵志国
赵东明
李新连
夏渊
秦校军
刘家梁
梁思超
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2024031993A1 publication Critical patent/WO2024031993A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/14Thiadiazoles; Hydrogenated thiadiazoles condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of electron transport materials, and in particular to a star-shaped molecule that can be used in a hole transport layer and its preparation method and application.
  • the hole transport layer of perovskite solar cells with p-i-n structure usually uses PEDOT:PSS, PTAA, NiOx, etc.
  • PEDOT:PSS and PTAA can be prepared by solution processing.
  • PEDOT:PSS is an acidic solution, and the prepared film will damage the transparent electrode layer such as FTO and ITO layers to a certain extent.
  • PEDOT:PSS film It also has the defect of easily absorbing water, which seriously affects the long-term stability of perovskite solar cells; on the other hand, PTAA is a conjugated polymer, its production cost is high, and the inherent characteristics of the polymer make its purification difficult; Third, NiOx thin films are usually prepared by magnetron sputtering, which requires higher equipment and target materials and higher costs.
  • the technical problem to be solved by the present invention is to provide a star-shaped molecule that can be used in a hole transport layer and its preparation method and application.
  • the star-shaped molecule is used as a hole transport layer in perovskite solar cells. , which can effectively improve the luminous efficiency of the battery.
  • the present invention provides a star-shaped molecule that can be used in the hole transport layer and has the structure shown in Formula I:
  • R 1 is selected from substituted or unsubstituted C3 to C16 alkyl groups, or R 1 is -XR 2 ;
  • X is any element in the main group VI;
  • R 2 is selected from substituted or unsubstituted C3-C16 alkyl groups.
  • the star-shaped molecule provided by the invention uses triphenylamine (TPA) as the donor and benzothiadiazole (1,2,5-benzothiadiazole, BDT) as the acceptor.
  • TPA triphenylamine
  • BDT benzothiadiazole
  • the two are connected through a carbon-carbon triple bond to construct It becomes a star-shaped molecule with a large ⁇ conjugated system, and the ends of the molecule are also TPA; among them, the central TPA core and the BDT unit connected to it through triple bonds can ensure certain planar properties of the molecule; in addition, TPA, carbon-carbon triple Bonds and BDT units can build larger ⁇ -conjugated systems, and the combined effect of the two can ensure that star-shaped molecules have high hole mobility.
  • the TPA group at the end of the molecule has a pyramidal conformation structure, which is conducive to hole injection and transport of the molecule.
  • the molecule introduces an alkyl branch on the BDT unit, which can improve the solubility of the molecule, that is, the solution processability; furthermore, the molecule introduces an alkoxy group, an alkylthio group or an alkylselenyl branch on the BDT unit. chain, which can further expand the ⁇ conjugated system while also improving the solution processability of the molecule. It also has the following advantages: 1. The sizes of oxygen atoms, sulfur atoms and selenium atoms are larger, and the outer lone pair electrons are delocalized.
  • R 1 is preferably a substituted or unsubstituted C3-C16 alkyl group, more preferably a substituted or unsubstituted C6-C10 alkyl group, and even more preferably n-hexyl, 2-ethylhexyl, n-octyl, 3 -Ethyl octyl or n-ethyl octyl.
  • the R 1 may also be -XR 2 .
  • X is any one of the main group VI elements, preferably oxygen, sulfur or selenium.
  • R 2 is preferably a substituted or unsubstituted C3-C16 alkyl group, more preferably a substituted or unsubstituted C6-C10 alkyl group, further preferably n-hexyl, 2-ethylhexyl, n-octyl, 3-ethyl Kissinyl or n-Kisinyl.
  • the substituent in the above R 2 is preferably halogen, cyano group, hydroxyl group, amino group, etc.
  • star-shaped molecules can be well soluble in conventional solvents such as chlorobenzene, dichlorobenzene, toluene, xylene, chloroform, tetrahydrofuran, methanol, etc. Therefore, they can be prepared into films through solution processing and applied to the space of perovskite solar cells. hole transport layer.
  • the invention provides a method for preparing the above-mentioned star-shaped molecules that can be used in the hole transport layer, which includes the following steps:
  • R 1 , X and R 2 are the same as above, and will not be repeated here.
  • Y is halogen, specifically F, Cl or Br.
  • R 1 groups can be introduced by replacing different attacking groups of R 1 MgBr in the substitution reaction.
  • reaction route of the above preparation method is as follows:
  • the products I and II can be prepared through a one-step reaction of monomer 1 and monomer 2, or monomer 1 and monomer 3.
  • the monomer 1 is prepared by the following reaction: tris(4-iodophenyl)amine (triiodotriphenylamine) reacts with trimethylsilyl acetylene, and then uses tetrabutylamine fluoride to remove tris(4-iodophenylamine). Methylsilyl gives tris(4-ethynylphenyl)amine.
  • the preparation process of monomer 1 includes: tris(4-iodophenyl)amine and trimethylsilyl acetylene in bistriphenylphosphine palladium chloride and copper iodide as catalysts, triethylamine and tetrahydrofuran
  • the trimethylsilyl ethynyl substituent of triphenylamine is obtained by reacting at room temperature under the conditions of the presence of fluoride.
  • the trimethylsilyl group is then removed by using tetrabutylamine fluoride to obtain tris(4-ethynylphenyl)amine.
  • the monomer 2 or monomer 3 is prepared by the following reaction: in the first step, 4,7-dibromo-benzothiadiazole undergoes an iodo reaction to obtain 4,7-dibromo-6-iodo.
  • Benzothiadiazole in the second step, 4-diphenylamine benzaldehyde is reacted with potassium tert-butoxide and triphenylmethylphosphorus iodide to obtain 4-diphenylamine styrene; in the third step Step, 4-diphenylamine styrene and 4,6,7-tribromobenzothiadiazole react to obtain 4-(6,7-dibromobenzothiadiazole)-vinylene-(4-diphenylamine) Benzene); in the fourth step, the 6-position bromine on the product of the third step is substituted by an alkyl group (R 1 ) or an alkoxy group, an alkylthio group, or an alkylselenyl group (XR 2 ) to obtain monomer 2 or monomer 3.
  • R 1 alkyl group
  • XR 2 alkylselenyl group
  • the preparation process of monomer 2 and monomer 3 includes: 1) 4,7-dibromo-benzothiadiazole in magnesium dichloride (2,2,6,6-tetramethylpiperidine) lithium salt (The bromination reaction occurs under the action of TMPMgCl ⁇ LiCl) to obtain 4,6,7-tribromobenzothiadiazole; 2) 4-dianilinobenzaldehyde in the presence of potassium tert-butoxide and triphenylmethylphosphorus iodide Under the combined action, 4-diphenylamine styrene is obtained; 3) 4-diphenylamine styrene and 4,6,7-tribromobenzothiadiazole react to obtain 4-(6,7-dibromobenzothiadiazole).
  • Azole -vinylidene-(4-diphenylamine-benzene); 4) Attack 4-(6,7-dibromo) with alkyl group (R 1 ) or alkoxy group, alkylthio group, or alkylselenyl group (XR 2 ) The bromine at the 6-position in benzothiadiazole)-vinylene-(4-diphenylamine benzene) undergoes a substitution reaction to obtain the corresponding monomer 2 or monomer 3.
  • the present invention provides the use of the above star-shaped molecules that can be used in the hole transport layer or the star-shaped molecules prepared by the above preparation method that can be used in the hole transport layer in preparing the hole transport layer.
  • the present invention also provides a hole transport layer, including the above star-shaped molecules that can be used in the hole transport layer or the star-shaped molecules prepared by the above preparation method that can be used in the hole transport layer.
  • the star-shaped molecules are processed by solution. method to form a thin film layer.
  • the present invention has no special limitations on the above solution, which can be a solution prepared by dissolving the star-shaped molecule provided by the present invention in a conventional solvent;
  • the conventional solvent is preferably chlorobenzene, dichlorobenzene, toluene, xylene, chloroform, tetrahydrofuran, One or more of methanol, etc., that is, the solution used in the solution processing method includes: one or more of chlorobenzene, dichlorobenzene, toluene, xylene, chloroform, tetrahydrofuran, methanol, etc.
  • the solution processing method includes but is not limited to one or more of spin coating film forming method, blade coating method, slit extrusion coating method, wire rod coating method, roll-to-roll printing and other methods, More preferably, spin coating is used One or more of film method, slot extrusion coating method and wire rod coating method.
  • the thickness of the thin film layer is preferably 10 to 100 nm, more preferably 20 to 60 nm.
  • the preparation process parameters of spin coating film formation are preferably as follows: the compound of formula I is dissolved in a solvent, the solution concentration is preferably 0.2mg/ml ⁇ 10mg/ml, the spin coating speed is preferably 1000rpm/min ⁇ 8000rmp/min, and the resulting film
  • the thickness is preferably 10 to 100 nm, more preferably 20 to 60 nm.
  • the solvent is preferably one or more of chlorobenzene, dichlorobenzene, toluene, xylene, chloroform, tetrahydrofuran, methanol, etc., and is more preferably chlorobenzene.
  • the preparation process parameters of the wire rod coating film are preferably as follows: the compound of formula I is dissolved in a solvent, the solution concentration is preferably 0.2 mg/ml ⁇ 10 mg/ml, the coating speed is preferably 5 ⁇ 40 mm/s, the wire rod
  • the gap with the substrate is preferably 20 to 500 ⁇ m, and the resulting film thickness is preferably 10 to 100 nm, more preferably 20 to 60 nm.
  • the solvent is preferably one or more of chlorobenzene, dichlorobenzene, toluene, xylene, chloroform, tetrahydrofuran, methanol, etc., and is more preferably methanol.
  • the invention provides a perovskite solar cell, including the above hole transport layer.
  • the present invention provides a star-shaped molecule that can be used in the hole transport layer and has the structure shown in Formula I.
  • the star-shaped molecule provided by the invention has a branched structure.
  • the end of the molecule is a triphenylamine molecule with a pyramidal conformation.
  • the central core of the molecule - triphenylamine and benzothiadiazole are connected through carbon-carbon triple bonds.
  • the thiadiazole unit has a substituent group; the star-shaped molecule has the characteristics of high hole mobility and easy solution processing, and can be used in perovskite solar cells to effectively improve the luminous efficiency of the battery.
  • Figure 1 is the hydrogen nuclear magnetic spectrum of monomer 1 prepared in Example 1;
  • Figure 2 is a hydrogen nuclear magnetic spectrum of 4,6,7-tribromobenzothiadiazole prepared in Example 1;
  • Figure 3 is a hydrogen nuclear magnetic spectrum of 4-diphenylamine styrene prepared in Example 1;
  • Figure 4 is a hydrogen nuclear magnetic spectrum of 4-(6,7-dibromobenzothiadiazole)-vinylene-(4-dianilinobenzene) prepared in Example 1;
  • Figure 5 is the hydrogen nuclear magnetic spectrum of monomer 2 prepared in Example 1;
  • Figure 6 is a hydrogen nuclear magnetic spectrum of the star-shaped molecule prepared in Example 1;
  • Figure 7 is a hydrogen nuclear magnetic spectrum of the star-shaped molecule prepared in Example 2.
  • Figure 8 is a hydrogen nuclear magnetic spectrum of the star-shaped molecule prepared in Example 3.
  • Figure 9 is a hydrogen nuclear magnetic spectrum of the star-shaped molecule prepared in Example 4.
  • Figure 10 is a hydrogen nuclear magnetic spectrum of the star-shaped molecule prepared in Example 5.
  • Figure 11 is a schematic structural diagram of a perovskite solar cell prepared by the present invention.
  • star-shaped molecules provided by the present invention that can be used in the hole transport layer and their preparation methods and applications are described in detail below with reference to examples.
  • the present invention can be implemented using conventional organic synthesis techniques and detection methods within the art.
  • efforts were made to ensure the accuracy of the numbers used (including amounts, temperatures, reaction times, etc.), but certain experimental errors and deviations should be considered.
  • the temperatures used in the following examples are expressed in degrees Celsius, and the pressures are atmospheric pressure or near atmospheric pressure. All solvents were purchased as HPLC grade. Unless otherwise stated, all reagents used were obtained from commercial sources.
  • the synthesis steps are as follows: 1) 12mmol 4-diphenylamine styrene, 12mmol 4,6,7-tribromobenzothiadiazole, 0.22mmol palladium acetate [Pd(OAc) 2 ], 12mmol sodium acetate, 1.95mmol tetrabutyl Ammonium bromide was dissolved in 80 ml of nitrogen, nitrogen-dimethylformamide (DMF); 2) The temperature was raised to 100°C and the reaction was stirred for 24 hours, and then 150 ml of deionized water was added to quench the reaction; 3) The reaction mixture was filtered , the obtained precipitate is washed with deionized water, then dissolved in dichloromethane and dried with magnesium sulfate; 4) The remaining solvent is removed by evaporation under reduced pressure, and then the product is purified by silica gel column chromatography, and the eluent is petroleum ether. and dichloromethane mixed solvent (volume ratio is 3:1).
  • the synthesis steps are as follows: 1) 1.7mmol monomer 1, 5.6mmol monomer 2, 0.085mmol (5% molar ratio) bistriphenylphosphine palladium chloride, and 0.085mmol cuprous iodide are added to 80ml triethylamine (TEA) ) and 80 ml of tetrahydrofuran mixed solvent; 2) The mixture was heated to reflux and kept at reflux for 5.5 hours, and then lowered to room temperature; 3) The remaining solvent was distilled under reduced pressure, and then purified by silica gel column chromatography to obtain the product, the eluent was petroleum Mixed solvent of ether and methylene chloride (volume ratio 4:1).
  • n-hexyl group (C 6 H 13 ) in the Grignard reagent in the fifth step of the synthetic route of Example 1 is replaced with n-hexyloxy group (C 6 H 13 O), and the rest remains unchanged.
  • the final product is as follows:
  • the patterned FTO glass is ultrasonically cleaned with deionized water, acetone, and ethanol in sequence, and then UVO treated for 15 minutes before use;
  • the treated FTO glass is used to prepare a 25nm thick NiO x hole transport layer through a magnetron sputtering process
  • step (3) Spin-coat the perovskite precursor solution described in step (4) on the NiO x hole transport layer obtained in step (3): The entire spin-coating process is divided into three steps. First, spin-coat 3 Seconds; then spin coating at 5000rpm/min for 30 seconds; finally, add 200 ⁇ l of chlorobenzene (antisolvent) dropwise during high-speed spin coating at 5000rpm/min for 11 seconds. The requirement is that all antisolvent must be added dropwise within 2 seconds. The thickness of the active layer is controlled at around 500nm;
  • step (5) The sheet obtained in step (5) is annealed in an oven at 130°C for 20 minutes and then taken out after cooling;
  • step (6) The wafer prepared in step (6) is moved into the vacuum evaporation chamber, evacuated until the vacuum degree is lower than 4*10 -4 Pa, and then the thermal evaporation deposition method is started to prepare the electron transport layer and the modification layer; C 60 evaporation
  • the plating rate is less than 0.05 Angstroms/second, and the film thickness is 40nm; the BCP evaporation rate is less than 0.1 Angstroms/second, and the film thickness is 6nm;
  • the chip prepared in step (7) also adopts thermal evaporation deposition method to prepare gold electrodes, and controls the vacuum.
  • the temperature is lower than 4*10 -4 Pa
  • the initial evaporation rate is 0.2nm/second
  • the real-time film thickness is monitored through online film thickness testing equipment. After the film thickness is greater than 10nm, adjust the evaporation rate to 1.5nm/second, and the film thickness is greater than After 20nm, adjust the evaporation rate to 4nm/second, and the final thickness of the gold electrode is 100nm to prepare a perovskite solar cell device.
  • the NiOx hole transport layer prepared by the magnetron sputtering process in step (2) in Example 1 was changed to the solution spin coating method.
  • the preparation process is as follows: the product obtained in Example 1 was dissolved in chlorobenzene, and the solution concentration was 8 mg/ml. , the spin coating speed is 6500rpm/min, the obtained film thickness is 20nm, and the remaining steps are the same as in Comparative Example 1.
  • Figure 11 is a schematic structural diagram of a perovskite solar cell prepared by the present invention, 1-transparent electrode layer; 2-hole transport layer; 3-perovskite active layer; 4-electron transport layer; 5-modification layer; 6-metal electrode.
  • the hole transport layer film prepared by the spin coating method in Device Application Example 1 was changed to the wire rod coating method.
  • the preparation process is as follows: the product obtained in Example 1 was dissolved in chlorobenzene, the solution concentration was 8 mg/ml, and the coating speed 10mm/s, the gap between the wire rod and the substrate is 70 ⁇ m, the resulting film thickness is 20nm, and the remaining steps are the same as in Device Application Example 1.
  • the hole transport layer prepared by using the star-shaped molecules provided by the present invention can be used in perovskite solar cells.
  • star-shaped molecules can use solution processing to prepare the hole transport layer, and perovskite solar cells with this hole transport layer It exhibits better performance parameters, while its preparation process is simplified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种可用于空穴传输层的星型分子及其制备方法和应用,所述可用于空穴传输层的星型分子具有式Ⅰ所示结构。本发明提供的星型分子具有支化结构,分子末端为有角锥形构象的三苯胺分子,分子中心核——三苯胺和苯并噻二唑通过碳-碳三键相连,分子中的苯并噻二唑单元上具有取代基团;所述星型分子同时具备高空穴迁移率和易溶液加工的特性,可应用于钙钛矿太阳能电池中,有效提高电池的发光效率。

Description

一种可用于空穴传输层的星型分子及其制备方法和应用
本申请要求于2022年08月09日提交中国专利局、申请号为202210948587.3、发明名称为“一种可用于空穴传输层的星型分子及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子传输材料技术领域,尤其涉及一种可用于空穴传输层的星型分子及其制备方法和应用。
背景技术
对钙钛矿太阳能电池的制备工艺而言,除了钙钛矿层的溶液可加工性外,其他功能层如载流子传输层(空穴和电子传输层)乃至透明电极和金属电极的溶液可加工能力也是非常重要的研究方向。
p-i-n结构的钙钛矿太阳能电池空穴传输层通常选用PEDOT:PSS、PTAA、NiOx等。其中PEDOT:PSS和PTAA可以采用溶液加工方法制备得到,一方面,PEDOT:PSS为酸性溶液,制备得到的薄膜会对透明电极层如FTO、ITO层有一定程度上的损伤,此外PEDOT:PSS薄膜还存在易吸水的缺陷,故严重影响钙钛矿太阳能电池的长期稳定性;另一方面,PTAA为共轭聚合物,其生产成本较高,而且聚合物的固有特性使得其纯化较为困难;第三,NiOx薄膜通常采用磁控溅射的方法制备得到,对设备及靶材的要求较高,成本较高。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种可用于空穴传输层的星型分子及其制备方法和应用,所述星型分子作为空穴传输层应用于钙钛矿太阳能电池中,可有效提高电池的发光效率。
为达到上述目的,本发明提供了一种可用于空穴传输层的星型分子,具有式Ⅰ所示结构:
其中,R1选自取代或未取代的C3~C16的烷基,或者R1为-XR2
X为第Ⅵ主族元素中的任意一种;
R2选自取代或未取代的C3~C16的烷基。
本发明提供的星型分子以三苯胺(Triphenylamine,TPA)为给体,苯并噻二唑(1,2,5-benzothiadiazole,BDT)为受体,二者通过碳-碳三键连接,构筑成为具备大π共轭体系的星型分子,分子末端同样为TPA;其中,中心的TPA核以及与之通过三键相连的BDT单元可以保证分子一定的平面性能;另外,TPA、碳-碳三键和BDT单元可以构筑较大的π共轭体系,二者的共同作用可以保证星型分子具备较高的空穴迁移率。所述分子末端的TPA基团具有角锥形的构象结构,有利于分子的空穴注入和传输。同时,所述分子在BDT单元上引入烷基支链,可以改善分子的溶解性能即溶液可加工能力;更进一步地,所述分子在BDT上引入烷氧基、烷硫基或烷硒基支链,可以在进一步扩展π共轭体系的同时也改善分子的溶液可加工性能,其还具备以下优点:1、氧原子、硫原子和硒原子的尺寸较大,外层孤对电子的离域性更好,更易于与芳香分子构建π共轭体系,进而提升分子的空穴迁移率;2、较大尺寸的原子(氧、硫、硒)可以优化分子的立体构型,溶液法加工制备得到的薄膜中分子更趋向于无定形态,在溶液加工过程中可以得到高质量的薄膜。最终这样的构建使得所述星型分子同时具备高空穴迁移率和易溶液加工的特性,可作为高效 空穴传输层材料应用于钙钛矿太阳能电池。
其中,R1优选为取代或未取代的C3~C16的烷基,更优选为取代或未取代的C6~C10的烷基,进一步优选为正己基、2-乙基己基、正辛基、3-乙基辛基或正葵基。
所述R1还可以为-XR2
其中,X为第Ⅵ主族元素中的任意一种,优选为氧、硫或硒。
R2优选为取代或未取代的C3~C16的烷基,更优选为取代或未取代的C6~C10的烷基,进一步优选为正己基、2-乙基己基、正辛基、3-乙基辛基或正葵基。上述R2中的取代基优选为卤素、氰基、羟基、氨基等。
上述星型分子可较好的溶于氯苯、二氯苯、甲苯、二甲苯、氯仿、四氢呋喃、甲醇等常规溶剂,因此可通过溶液加工制备成膜,并应用于钙钛矿太阳能电池的空穴传输层。
本发明提供了上述可用于空穴传输层的星型分子的制备方法,包括以下步骤:
1)化合物a和化合物b进行反应,得到化合物c;
2)化合物c和R1MgBr进行反应,得到化合物d;
3)化合物d和化合物e进行反应,得到式Ⅰ所示化合物;

其中,R1、X、R2的范围同上,在此不再赘述。
Y为卤素,具体可以为F、Cl或Br。
上述制备方法中,可通过更换取代反应中R1MgBr不同的进攻基团实现不同的R1基团的引入。
在本发明的一些具体实施例中,上述制备方法的反应路线如下:

如上述反应路线所示,所述产物Ⅰ、Ⅱ可经由单体1和单体2,或单体1和单体3经一步反应制备得到。
优选的,所述单体1由下述反应制备得到:三(4-碘苯)胺(三碘代三苯胺)和三甲基硅基乙炔反应,然后利用四丁基氟化胺脱去三甲基硅基得到三(4-乙炔基苯)胺。
具体的,所述单体1的制备过程包括:三(4-碘苯)胺和三甲基硅基乙炔在双三苯基膦氯化钯、碘化亚铜作为催化剂,三乙胺和四氢呋喃存在的条件下常温反应得到三苯胺的三甲基硅基乙炔基取代物;然后利用四丁基氟化胺脱去三甲基硅基得到三(4-乙炔基苯)胺。
优选的,所述单体2或单体3由下述反应制备得到:第一步,4,7-二溴-苯并噻二唑发生碘代反应得到4,7-二溴-6-碘苯并噻二唑;第二步,4-二苯胺基苯甲醛在叔丁醇钾和三苯基甲基碘化磷的作用下得到4-二苯胺基苯乙烯;第三 步,4-二苯胺基苯乙烯和4,6,7-三溴苯并噻二唑反应得到4-(6,7-二溴苯并噻二唑)-乙烯撑-(4-二苯胺基苯);第四步,第三步产物上的6位溴被烷基(R1)或烷氧基、烷硫基、烷硒基(X-R2)取代得到单体2或单体3。
具体的,单体2和单体3的制备过程包括:1)4,7-二溴-苯并噻二唑在二氯化镁(2,2,6,6-四甲基哌啶)锂盐(TMPMgCl·LiCl)的作用下发生溴代反应得到4,6,7-三溴苯并噻二唑;2)4-二苯胺基苯甲醛在叔丁醇钾和三苯基甲基碘化磷的共同作用下得到4-二苯胺基苯乙烯;3)4-二苯胺基苯乙烯和4,6,7-三溴苯并噻二唑反应得到4-(6,7-二溴苯并噻二唑)-乙烯撑-(4-二苯胺基苯);4)以烷基(R1)或烷氧基、烷硫基、烷硒基(X-R2)进攻4-(6,7-二溴苯并噻二唑)-乙烯撑-(4-二苯胺基苯)中6位上的溴发生取代反应,得到相应的单体2或单体3。
然后将单体1和单体2,或单体1和单体3在四(三苯基膦)钯和碘化亚铜的共同作用下反应得到具有式Ⅰ或式Ⅱ结构的星型分子,其中反应溶剂优选为三乙胺和四氢呋喃。
所述合成路线中,最终产物中不同的第Ⅵ主族元素和取代基团R1、R2可以通过更换单体2和单体3中6位溴取代反应的进攻基团来实现。
上述作为原料的三(4-碘苯)胺、三甲基硅基乙炔、4,7-二溴苯并噻二唑、4-二苯胺基苯甲醛等以及相关的催化剂和溶剂均为商用产品,可直接购买得到。
本发明提供了上述可用于空穴传输层的星型分子或上述制备方法制备的可用于空穴传输层的星型分子在制备空穴传输层中的应用。
本发明还提供了一种空穴传输层,包括上述可用于空穴传输层的星型分子或上述制备方法制备的可用于空穴传输层的星型分子,所述星型分子通过溶液加工的方法形成薄膜层。
本发明对上述溶液并无特殊限定,可以为本发明提供的星型分子溶于常规溶剂制备得到的溶液;所述常规溶剂优选为氯苯、二氯苯、甲苯、二甲苯、氯仿、四氢呋喃、甲醇等中的一种或多种,即所述溶液加工的方法采用的溶液包括:氯苯、二氯苯、甲苯、二甲苯、氯仿、四氢呋喃、甲醇等中的一种或多种。
所述溶液加工的方法包括但不限于旋涂成膜法、刮刀涂布法、狭缝挤出式涂布法、线棒涂布法、卷对卷印刷等方法中的一种或多种,更优选采用旋涂成 膜法、狭缝挤出式涂布法和线棒涂布法中的一种或多种。
所述薄膜层的厚度优选为10~100nm,更优选为20~60nm。
其中,旋涂成膜的制备工艺参数优选如下:将式Ⅰ化合物溶于溶剂中,溶液浓度优选为0.2mg/ml~10mg/ml,旋涂速度优选为1000rpm/min~8000rmp/min,所得膜厚优选为10~100nm,更优选为20~60nm。所述溶剂优选为氯苯、二氯苯、甲苯、二甲苯、氯仿、四氢呋喃、甲醇等中的一种或多种,更优选为氯苯。
所述线棒涂布成膜的制备工艺参数优选如下:将式Ⅰ化合物溶于溶剂中,溶液浓度优选为0.2mg/ml~10mg/ml,涂布速度优选为5~40mm/s,线棒与基片间隙优选为20~500μm,所得膜厚优选为10~100nm,更优选为20~60nm。所述溶剂优选为氯苯、二氯苯、甲苯、二甲苯、氯仿、四氢呋喃、甲醇等中的一种或多种,更优选为甲醇。
本发明提供了一种钙钛矿太阳能电池,包括上述空穴传输层。
与现有技术相比,本发明提供了一种可用于空穴传输层的星型分子,具有式Ⅰ所示结构。本发明提供的星型分子具有支化结构,分子末端为有角锥形构象的三苯胺分子,分子中心核——三苯胺和苯并噻二唑通过碳-碳三键相连,分子中的苯并噻二唑单元上具有取代基团;所述星型分子同时具备高空穴迁移率和易溶液加工的特性,可应用于钙钛矿太阳能电池中,有效提高电池的发光效率。
附图说明
图1为实施例1制备的单体1的核磁氢谱图;
图2为实施例1制备的4,6,7-三溴苯并噻二唑的核磁氢谱图;
图3为实施例1制备的4-二苯胺基苯乙烯的核磁氢谱图;
图4为实施例1制备的4-(6,7-二溴苯并噻二唑)-乙烯撑-(4-二苯胺基苯)的核磁氢谱图;
图5为实施例1制备的单体2的核磁氢谱图;
图6为实施例1制备的星型分子的核磁氢谱图;
图7为实施例2制备的星型分子的核磁氢谱图;
图8为实施例3制备的星型分子的核磁氢谱图;
图9为实施例4制备的星型分子的核磁氢谱图;
图10为实施例5制备的星型分子的核磁氢谱图;
图11为本发明制备的钙钛矿太阳能电池结构示意图。
具体实施方式
为了进一步说明本发明,下面结合实施例对本发明提供的可用于空穴传输层的星型分子及其制备方法和应用进行详细描述。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径获得。
本发明的实施可采用本领域技术内的有机合成的常规技术和检测手段。在以下实施例中努力确保所用数字(包括量、温度、反应时间等)的准确性,但应考虑一定的实验误差和偏差。在以下实施例中所用的温度以℃表示,压力为大气压或接近大气压。所有溶剂均以HPLC级购得。除非另外指出,否则所用试剂均是从商业途径获得。
实施例1
1、单体1的合成,合成路线如下:
合成步骤如下:
1)10mmol三(4-碘苯)胺、1mmol双三苯基膦氯化钯、1mmol碘化亚铜共同加入到预先干燥好的舒伦克瓶中;2)氩气充洗三次,然后加入80ml四氢呋喃、40mmol三甲基硅基乙炔,最后以注射器加入20ml三乙胺;3)混合物搅拌15小时后,以乙醚稀释并以一小片二氧化硅中止反应;4)减压蒸馏除去溶剂后的粗产物移入圆底烧瓶,然后加入40ml二氯甲烷溶解;5)降温至0℃(冰水浴)以注射器缓慢加入30mmol的四丁基氟化铵(30ml的1mol/ml的四氢呋喃溶液);6)反应混合物0℃条件下搅拌2小时;7)产物以硅胶色谱柱纯化,洗脱剂为戊烷和二氯甲烷(体积比9:1)。
制备得到的产物核磁氢谱图如图1所示。
2、4,6,7-三溴苯并噻二唑的合成,合成路线如下:
合成步骤如下:
1)氩气保护和0℃(冰水浴)条件下,10mmol 4,7-二溴苯并噻二唑溶于40ml四氢呋喃中,随后缓慢滴加7.5mmol二氯化镁(2,2,6,6-四甲基哌啶)锂盐溶液(TMPMgCl·LiCl,0.5mol/L的四氢呋喃溶液15ml),整个滴加时间为15分钟;2)控制温度在0℃,反应混合物搅拌3小时后,缓慢滴加15mmol1,2-二溴四氯乙烷(1mol/L的四氢呋喃溶液15ml),在滴加溶液的同时控制温度缓慢升高至25℃,滴加溶液和升温的时间控制在30分钟左右;3)加入40ml饱和氯化铵淬灭反应;4)以二氯甲烷萃取反应后混合物中的水层(萃取三次,每次60ml);5)合并有机层并以硫酸镁干燥,随后减压蒸馏除去剩余溶剂;6)粗产物以快速色谱法纯化得到产物,洗脱剂为戊烷和乙醚(体积比=100:1)。
制备得到的产物核磁氢谱图如图2所示。
3、4-二苯胺基苯乙烯的合成,合成路线如下:
合成步骤如下:
1)氩气保护条件下,30g 4-二苯胺基苯甲醛(约110mmol)溶于45ml四氯呋喃中,随后加入20g叔丁醇钾(约165mmol)和65g三苯基甲基碘化磷(约165mmol);2)混合物在室温和氩气保护下搅拌4.5小时;3)反应后的混合物倒入二氯甲烷和去离子水的混合溶剂20ml(体积比1:1)中淬灭;4)二氯甲烷萃取三次(每次40ml),合并有机相,旋转蒸发除去溶剂;5)剩余反应物以硅胶柱色谱纯化,洗脱剂为正己烷;6)洗脱得到的溶液旋转蒸发除去溶剂,然后倒入二氯甲烷和甲醇(体积比1:20)得到沉淀即为产物。
制备得到的产物核磁氢谱图如图3所示。
4、4-(6,7-二溴苯并噻二唑)-乙烯撑-(4-二苯胺基苯)的合成,合成路线如下:
合成步骤如下:1)12mmol 4-二苯胺基苯乙烯、12mmol 4,6,7-三溴苯并噻二唑、0.22mmol乙酸钯[Pd(OAc)2]、12mmol醋酸钠、1.95mmol四丁基溴化铵共同溶于80ml氮,氮-二甲基甲酰胺(DMF)中;2)升温至100℃搅拌反应24小时,然后加入150ml去离子水淬灭反应;3)反应后的混合物过滤,得到的沉淀以去离子水冲洗,随后溶于二氯甲烷中并以硫酸镁干燥;4)减压蒸镀除去剩余溶剂,随后以硅胶柱色谱纯化即可得到产物,洗脱剂为石油醚和二氯甲烷混合溶剂(体积比为3:1)。
制备得到的产物核磁氢谱图如图4所示。
5、4-(6,7-二溴苯并噻二唑)-乙烯撑-(4-二苯胺基苯)上6位溴的取代反应,合成路线如下:
合成步骤如下:1)惰性气体氩气保护下,0.36mmol 1,3-双(二苯基膦丙烷)二氯化镍[Ni(dpp)Cl2]、36mmol 4-(6,7-二溴苯并噻二唑)-乙烯撑-(4-二苯胺基苯)共同加入80ml四氢呋喃(THF)中;2)0℃下逐滴加入格氏试剂(MgBrC6H13,1.5mol,约12ml);3)滴加反应结束后,回流过夜,缓慢的以盐酸淬灭,之后水洗两次,乙醚萃取两次,旋转蒸干剩余溶剂后真空烘干即可得到产物,即单体2。
制备得到的产物核磁氢谱图如图5所示。
6、星型分子的合成,合成路线如下:
合成步骤如下:1)1.7mmol单体1、5.6mmol单体2、0.085mmol(5%摩尔比)双三苯基膦氯化钯、0.085mmol碘化亚铜共同加入到80ml三乙胺(TEA)和80ml四氢呋喃混合溶剂中;2)混合物加热至回流并保持回流5.5小时,随后降至室温;3)减压蒸馏除去剩余溶剂,之后以硅胶柱色谱纯化即可得到产物,洗脱剂为石油醚和二氯甲烷混合溶剂(体积比为4:1)。
制备得到的产物核磁氢谱图如图6所示。
实施例2
将实施例1合成路线中第五步格氏试剂中的正己基(C6H13)更换成正辛基(C8H17),其余不变,最终得到的产物如下所示:
核磁氢谱图如图7所示。
实施例3
将实施例1合成路线中第五步格氏试剂中的正己基(C6H13)更换成2-乙基己基(CH3CH2C6H12),其余不变,最终得到的产物如下所示:
核磁氢谱图如图8所示。
实施例4
将实施例1合成路线中第五步格氏试剂中的正己基(C6H13)更换成正己氧基(C6H13O),其余不变,最终得到的产物如下所示:
核磁氢谱图如图9所示。
实施例5
将实施例1合成路线中第五步格氏试剂中的正己基(C6H13)更换正己硫基(C6H13S),其余不变,最终得到的产物如下所示:
核磁氢谱图如图10所示。
对比例1
基于NiOx作为空穴传输层的钙钛矿太阳能电池制备
(1)带图案的FTO玻璃依次以去离子水、丙酮、乙醇超声清洗,之后UVO处理15分钟后备用;
(2)处理后的FTO玻璃通过磁控溅射工艺制备25nm厚的NiOx空穴传输层;
(3)覆盖NiOx空穴传输层的FTO玻璃放入高温烘箱,300℃条件下退火30分钟,冷却后取出备用;
(4)取1290.8mg PbI2和445.2mg MAI溶于DMF和DMSO的混合溶剂(DMF和DMSO的体积比为4:1),常温搅拌过夜得到钙钛矿前驱体溶液,溶液中溶质总浓度为1.4mol/ml;
(5)在步骤(3)得到的NiOx空穴传输层上旋涂步骤(4)所述钙钛矿前驱体溶液:整个旋涂过程分为三个步骤,首先以4000rpm/min旋涂3秒;然后以5000rpm/min旋涂30秒;最后在5000rpm/min高速旋涂11秒时滴加200μl的氯苯(反溶剂),要求是所有反溶剂在2秒内滴加完成,钙钛矿活性层的厚度控制在500nm左右;
(6)步骤(5)得到的片子在烘箱中130℃退火20分钟待冷却后取出;
(7)步骤(6)制得的片子移入真空蒸镀腔室,抽真空至真空度低于4*10-4Pa后开始进行热蒸镀沉积法制备电子传输层和修饰层;C60蒸镀速率小于0.05埃/秒,薄膜厚度40nm;BCP蒸镀速率小于0.1埃/秒,薄膜厚度6nm;
(8)步骤(7)制得的片子同样采用热蒸镀沉积法制备金电极,控制真空 度低于4*10-4Pa,初始蒸镀速率0.2nm/秒,同时通过在线膜厚测试设备监测实时膜厚,膜厚大于10nm后,调整蒸镀速率为1.5nm/秒,膜厚大于20nm后,调整蒸镀速率为4nm/秒,金电极最终厚度100nm,制备得到钙钛矿太阳能电池器件。
器件应用例1
将对比例1中步骤(2)的磁控溅射工艺制备NiOx空穴传输层更改为溶液旋涂法制备,制备流程如下:实施例1所得产物溶于氯苯中,溶液浓度为8mg/ml,旋涂速度6500rpm/min,所得膜厚为20nm,其余步骤同对比例1。
图11为本发明制备的钙钛矿太阳能电池结构示意图,1-透明电极层;2-空穴传输层;3-钙钛矿活性层;4-电子传输层;5-修饰层;6-金属电极。
器件应用例2
将器件应用例1中的旋涂速度更改为4000rpm/min,控制膜厚为40nm,其余同器件应用例1。
器件应用例3
将器件应用例1中的旋涂法制备空穴传输层薄膜改为线棒涂布法制备,制备流程如下:实施例1所得产物溶于氯苯中,溶液浓度为8mg/ml,涂布速度10mm/s,线棒与基片间隙70μm,所得膜厚为20nm,其余步骤同器件应用例1。
器件应用例4
基于实施例2制备得到的产物溶液法制备空穴传输层的钙钛矿太阳能电池制备,其中空穴传输层薄膜由旋涂法制备得到,制备方法如器件应用例1所述,所得膜厚为20nm。
器件应用例5
基于实施例3制备得到的产物溶液法制备空穴传输层的钙钛矿太阳能电池制备,其中空穴传输层薄膜由旋涂法制备得到,制备方法如器件应用例1所述,所得膜厚为20nm。
器件应用例6
基于实施例4制备得到的产物溶液法制备空穴传输层的钙钛矿太阳能电池制备,其中空穴传输层薄膜由旋涂法制备得到,制备方法如器件应用例1所述,所得膜厚为20nm。
器件应用例7
基于实施例5制备得到的产物溶液法制备空穴传输层的钙钛矿太阳能电池制备,其中空穴传输层薄膜由旋涂法制备得到,制备方法如器件应用例1所述,所得膜厚为20nm。
性能检测
电池性能测试:上述实施例制备得到的钙钛矿太阳能电池使用太阳光模拟器(氙灯作为光源)在一个标准太阳光强度(AM1.5G,100mW/cm2)下进行测试,所述的太阳光模拟器在美国国家可再生能源实验室中使用硅二极管(具备KG9可见滤光器)进行校正。相应的测试结果如表1所示。
表1依据不同实施例制备得到的钙钛矿太阳能电池性能参数表
从上述电池性能测试数据可以看出,采用本发明所提供的星型分子制备的空穴传输层可用于钙钛矿太阳能电池。相比于采用磁控溅射法制备NiOx用作空穴传输层的钙钛矿电池,星型分子可以采用溶液加工方法制备空穴传输层,同时具有此空穴传输层的钙钛矿太阳能电池表现出更好的性能参数,而其制备工艺则得到了简化。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种可用于空穴传输层的星型分子,具有式Ⅰ所示结构:
    其中,R1选自取代或未取代的C3~C16的烷基,或者R1为-XR2
    X为第Ⅵ主族元素中的任意一种;
    R2选自取代或未取代的C3~C16的烷基。
  2. 根据权利要求1所述的可用于空穴传输层的星型分子,其特征在于,所述R1选自取代或未取代的C6~C10的烷基;
    X为氧、硫或硒;
    R2选自取代或未取代的C6~C10的烷基。
  3. 根据权利要求2所述的可用于空穴传输层的星型分子,其特征在于,所述R1选自正己基、2-乙基己基、正辛基、3-乙基辛基或正葵基;
    X为氧、硫或硒;
    R2选自正己基、2-乙基己基、正辛基、3-乙基辛基或正葵基。
  4. 权利要求1~3任一项所述的可用于空穴传输层的星型分子的制备方法,包括以下步骤:
    1)化合物a和化合物b进行反应,得到化合物c;
    2)化合物c和R1MgBr进行反应,得到化合物d;
    3)化合物d和化合物e进行反应,得到式Ⅰ所示化合物;
    其中,R1选自取代或未取代的C3~C16的烷基,或者R1为-XR2
    X为第Ⅵ主族元素中的任意一种;
    R2选自取代或未取代的C3~C16的烷基;
    Y为卤素。
  5. 权利要求1~3任一项所述的可用于空穴传输层的星型分子或权利要求4所述的制备方法制备的可用于空穴传输层的星型分子在制备空穴传输层中 的应用。
  6. 一种空穴传输层,包括权利要求1~3任一项所述的可用于空穴传输层的星型分子或权利要求4所述的制备方法制备的可用于空穴传输层的星型分子,所述星型分子通过溶液加工的方法形成薄膜层。
  7. 根据权利要求6所述的空穴传输层,其特征在于,所述溶液加工的方法包括:旋涂成膜法、刮刀涂布法、狭缝挤出式涂布法、线棒涂布法、卷对卷印刷中的一种或多种。
  8. 据权利要求6所述的空穴传输层,其特征在于,所述溶液加工的方法采用的溶液包括:氯苯、二氯苯、甲苯、二甲苯、氯仿、四氢呋喃、甲醇中的一种或多种。
  9. 根据权利要求6所述的空穴传输层,其特征在于,所述薄膜层的厚度为10~100nm。
  10. 一种钙钛矿太阳能电池,其特征在于,包括权利要求6~9任一项所述的空穴传输层。
PCT/CN2023/082965 2022-08-09 2023-03-22 一种可用于空穴传输层的星型分子及其制备方法和应用 WO2024031993A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210948587.3A CN115028602B (zh) 2022-08-09 2022-08-09 一种可用于空穴传输层的星型分子及其制备方法和应用
CN202210948587.3 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024031993A1 true WO2024031993A1 (zh) 2024-02-15

Family

ID=83130110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082965 WO2024031993A1 (zh) 2022-08-09 2023-03-22 一种可用于空穴传输层的星型分子及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115028602B (zh)
WO (1) WO2024031993A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028602B (zh) * 2022-08-09 2022-11-15 中国华能集团清洁能源技术研究院有限公司 一种可用于空穴传输层的星型分子及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348537A (zh) * 2008-08-18 2009-01-21 苏州大学 具有双光子聚合引发特性的三苯胺-萘多枝分子
CN103073541A (zh) * 2013-01-07 2013-05-01 中国科学院宁波材料技术与工程研究所 吸电子基团修饰的三苯胺星型材料,其制备方法与用途
CN115028602A (zh) * 2022-08-09 2022-09-09 中国华能集团清洁能源技术研究院有限公司 一种可用于空穴传输层的星型分子及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492428A (zh) * 2008-01-23 2009-07-29 中国科学院化学研究所 以三苯胺为核的星型分子受体材料及其制备方法和用途
KR20160050223A (ko) * 2014-10-29 2016-05-11 경상대학교산학협력단 벤조싸이아다이아졸 유도체 및 이를 이용한 유기태양전지
CN111205245B (zh) * 2020-01-10 2023-04-18 南方科技大学 一种空穴传输材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348537A (zh) * 2008-08-18 2009-01-21 苏州大学 具有双光子聚合引发特性的三苯胺-萘多枝分子
CN103073541A (zh) * 2013-01-07 2013-05-01 中国科学院宁波材料技术与工程研究所 吸电子基团修饰的三苯胺星型材料,其制备方法与用途
CN115028602A (zh) * 2022-08-09 2022-09-09 中国华能集团清洁能源技术研究院有限公司 一种可用于空穴传输层的星型分子及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BALASARAVANAN RAJENDIRAN, SADHASIVAM VELU, SIVA AYYANAR, PANDI MOHAN, THANASEKARAN GANESAN, ARULVASU CHINNASAMY: "Synthesis, Characterization and Photophysical Studies of D-π-A Based Conjugated Triphenylamine Derivatives", CHEMISTRYSELECT, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 1, no. 11, 16 July 2016 (2016-07-16), DE , pages 2792 - 2801, XP093139012, ISSN: 2365-6549, DOI: 10.1002/slct.201600608 *
HE CHANG, HE QINGGUO, YI YUANPING, WU GUANGLONG, BAI FENGLIAN, SHUAI ZHIGANG, LI YONGFANG: "Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry", JOURNAL OF MATERIALS CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 18, no. 34, 1 January 2008 (2008-01-01), GB , pages 4085, XP093139014, ISSN: 0959-9428, DOI: 10.1039/b807456a *
YAN LINYIN, CHEN XUDONG, HE QINGGUO, WANG YINGYING, WANG XUEFEI, GUO QIANJIN, BAI FENGLIAN, XIA ANDONG, AUMILER DAMIR, VDOVIĆ SILV: "Localized Emitting State and Energy Transfer Properties of Quadrupolar Chromophores and (Multi)Branched Derivatives", THE JOURNAL OF PHYSICAL CHEMISTRY A, WASHINGTON DC, US, vol. 116, no. 34, 30 August 2012 (2012-08-30), US , pages 8693 - 8705, XP093139006, ISSN: 1089-5639, DOI: 10.1021/jp305407s *
ZHANG BONG JUNE, JEON SEUNG-JOON: "Two-photon properties of bis-1,4-(p-diarylaminostyryl)-2,5-dicyanobenzene derivatives: two-photon cross-section tendency in multi-branched structures", CHEMICAL PHYSICS LETTERS, ELSEVIER BV, NL, vol. 377, no. 1-2, 24 July 2003 (2003-07-24), NL , pages 210 - 216, XP093139016, ISSN: 0009-2614, DOI: 10.1016/S0009-2614(03)01129-1 *

Also Published As

Publication number Publication date
CN115028602A (zh) 2022-09-09
CN115028602B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
CN108484569B (zh) 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
CN110416412B (zh) 一种用于提高反向钙钛矿太阳能电池稳定性的电子传输层及制备方法
CN112225882B (zh) 一类含非稠环受体单元的n-型聚合物及其制备方法与应用
WO2015003458A1 (zh) 含功能化极性侧链基团的共轭金属聚合物光电材料及其应用
Chen et al. Triphenylamine dibenzofulvene–derived dopant‐free hole transporting layer induces micrometer‐sized perovskite grains for highly efficient near 20% for p‐i‐n perovskite solar cells
CN109467561B (zh) 一种含吩噻嗪结构的双给体空穴传输材料及其制备方法和钙钛矿太阳能电池
CN110028654B (zh) 基于萘酰亚胺-硒吩衍生物的有机n型半导体聚合物材料及其制备方法与应用
CN110408009B (zh) 一种用于提高钙钛矿太阳能电池稳定性的空穴传输层及其制备方法
WO2024031993A1 (zh) 一种可用于空穴传输层的星型分子及其制备方法和应用
CN107805254B (zh) 一种卟啉小分子钙钛矿阴极缓冲层材料及其制备方法与应用
CN110627666B (zh) 一种芴基四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
CN113549169A (zh) 一种苯基芴胺类聚合物空穴传输材料及其制备方法和应用
WO2023142330A1 (zh) 富勒烯衍生物材料及其制备方法及其在钙钛矿太阳能电池中的应用
KR101183528B1 (ko) 반도체성 유기 고분자 재료 및 이를 포함하는 광기전력 소자
CN114349771B (zh) 一种六苯并蔻基非富勒烯受体材料及其制备和应用
CN111138454B (zh) 一种基于茚并[1,2-b]咔唑的空穴传输材料及其制备方法和应用
CN110982047B (zh) 一类引达省并二呋喃基有机太阳能电池给体材料、其制备方法及应用
CN112812277B (zh) 噻吩稠合萘单酰亚胺聚合物及其制备方法和应用
CN111153914B (zh) 一种非对称空穴传输材料及其制备方法和应用
CN111171046B (zh) 一种基于四噻吩并吡咯的免掺杂空穴传输材料及其合成方法和应用
CN110204545B (zh) 一种基于苝酰亚胺的有机光伏材料及其制备方法与应用
CN114133385A (zh) 一种以咔唑为核心、以噻吩嗪或吩恶嗪为端基的空穴传输材料及其合成方法和应用
CN110627667B (zh) 一类哑铃型空穴传输材料、合成方法和钙钛矿太阳能电池
CN109320525B (zh) 一种含吩噁嗪结构的双给体空穴传输材料及其制备方法和钙钛矿太阳能电池
JP5538630B2 (ja) シラフルオレン金属ポルフィリン−ベンゼン有機半導体材料及びその調製方法並びに応用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851228

Country of ref document: EP

Kind code of ref document: A1