CN110204545B - 一种基于苝酰亚胺的有机光伏材料及其制备方法与应用 - Google Patents

一种基于苝酰亚胺的有机光伏材料及其制备方法与应用 Download PDF

Info

Publication number
CN110204545B
CN110204545B CN201910487905.9A CN201910487905A CN110204545B CN 110204545 B CN110204545 B CN 110204545B CN 201910487905 A CN201910487905 A CN 201910487905A CN 110204545 B CN110204545 B CN 110204545B
Authority
CN
China
Prior art keywords
perylene
organic photovoltaic
photovoltaic material
pdi
imide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910487905.9A
Other languages
English (en)
Other versions
CN110204545A (zh
Inventor
赖文勇
左超
李祥春
汪洋
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201910487905.9A priority Critical patent/CN110204545B/zh
Publication of CN110204545A publication Critical patent/CN110204545A/zh
Application granted granted Critical
Publication of CN110204545B publication Critical patent/CN110204545B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种基于苝酰亚胺的有机光伏材料及其制备方法与应用。该有机光伏材料以苝酰亚胺作为基本构筑单元,通过碳氮双键连接不同共轭基团而构成。该有机光伏材料通过氨基苝酰亚胺与单醛基共轭基团或者双醛基共轭基团通过席夫碱反应缩合制备得到,该合成方法原料易得、成本低廉、易于纯化,有望成为商业化的有机光伏材料。所得的有机光伏材料具备良好的热稳定性、电学稳定性以及可溶液加工的性能,可应用于制备二元、多元或者叠层等有机太阳能电池器件。

Description

一种基于苝酰亚胺的有机光伏材料及其制备方法与应用
技术领域
本发明属于光电材料技术领域,具体涉及一种基于苝酰亚胺的有机光伏材料及其制备方法与应用。
背景技术
有机太阳能电池(OSC)可以通过绿色低成本印刷技术制备大面积柔性薄膜电池模块,展现出巨大的发展潜力。过去的二十年,有机太阳能电池电子给体材料和富勒烯基电子受体材料取得了显著进展。但是,富勒烯基电子受体材料本身的缺点限制了有机太阳能电池光电转换效率的进一步提升,例如可见光谱区域中的光吸收弱、能级调节受限、合成成本高以及共混膜中的形态稳定性差等。近年来,非富勒烯电子受体材料的开发受到了广泛关注,由于其可实现更宽的光谱吸收、具有优异的化学和光稳定性以及与电子给体更好的相容性等,使得基于非富勒烯电子受体材料的有机太阳能电池器件获得了更高的光电转换效率。
在非富勒烯电子受体材料体系中,苝酰亚胺(PDI)衍生物由于其良好的电子接受能力、高的电子迁移率、特别是分子结构的易修饰特性等,得到广泛研究。然而,其光电转换效率仍落后于富勒烯基电子受体材料。这主要是因为PDI的电子受体由于其较强的π-π堆积倾向通常易于在活性层中以大尺寸聚集,抑制了电子给体的电荷分离。由于激子的扩散长度通常仅为5-20nm,因此中等微观相分离对于有机太阳能电池实现高的光电转换效率起着至关重要的作用。此外,较大的聚集体促进了准分子形成,这会形成激子,从而限制PDI中的扩散长度并导致光诱导激子的损失,从而极大限制了有机太阳能电池器件光电转换效率的提高。另外一方面,有机太阳能电池的推广应用,还涉及到材料的合成方法和成本问题。为了更好地推动有机太阳能电池技术的实用化进程,从材料合成角度出发,如何优化分子结构、简化合成步骤、大幅降低了材料合成成本,将会更有利于有机太阳能电池技术的低成本化和商业化推广。
发明内容
技术问题:本发明提供一种基于苝酰亚胺的有机光伏材料及其制备方法与应用,以解决目前非富勒烯电子受体材料稳定性差、光吸收效果不理想、材料制备方法复杂、成本高等问题,克服非富勒烯电子受体材料性能难以有效调控等难题。
技术方案:为解决上述问题,本发明采用以下技术方案:
本发明提供一种基于苝酰亚胺的有机光伏材料,该材料以苝酰亚胺作为基本构筑单元,通过碳氮双键连接不同共轭基团而构成,具有如下式I或式II所示的通式结构:
Figure BDA0002086009650000021
其中,Ar为共轭结构芳香基团;R为C1~C10的烷基链、C1~C10烷氧基链、C5~C30环烷基、C2~C30杂烷基链中的一种;N是氮原子;O为氧原子。
所述的Ar单元,选自下式结构中的一种:
Figure BDA0002086009650000022
其中,*为连接位置,R为C1~C10的烷基链、C1~C10烷氧基链、C5~C30环烷基、或C2~C30杂烷基链中的一种;O是氧原子;N是氮原子;S是硫原子。
同时,本发明提供一种如上所述的基于苝酰亚胺的有机光伏材料的制备方法,结构为式I的有机光伏材料,其制备方法包括以下步骤:
Figure BDA0002086009650000031
步骤1:将苝酰亚胺(A)溶于二氯甲烷中,将发烟硝酸逐滴加入到上述溶液中,常温搅拌2-10小时,反应结束后分离提纯获得硝基苝酰亚胺(B);
步骤2:将硝基苝酰亚胺(B)溶于四氢呋喃中,加入钯碳催化剂,并逐滴加入水合肼反应6-12小时,反应结束后分离提纯获得氨基苝酰亚胺(C);
步骤3:将氨基苝酰亚胺(C)和单醛基的共轭单元溶于乙醇中,加入乙酸,搅拌12-24小时,反应结束后分离提纯获得式I结构材料(D)。
结构为式II的有机光伏材料,其制备方法包括以下步骤:
Figure BDA0002086009650000032
将氨基苝酰亚胺(C)和双醛基的共轭单元溶于溶剂中,加入乙酸,搅拌24-36小时,反应结束后分离提纯获得式II结构材料(E)。
优选的,步骤1中,所述苝酰亚胺溶于二氯甲烷中,制成浓度为0.01-0.1mol/L的PDI溶液,每10g苝酰亚胺对应滴加发烟硝酸10mL,再经洗涤、萃取、干燥、纯化后得到硝基苝酰亚胺PDI-NO2
优选的,步骤2中,所述硝基苝酰亚胺PDI-NO2溶于四氢呋喃中制成浓度为0.01-0.1mol/L的PDI-NO2溶液,添加的钯碳与PDI-NO2的摩尔比为(0.01~0.1):1,每5g硝基苝酰亚胺对应滴加水合肼5mL,再经抽滤除去钯碳、纯化后得到氨基苝酰亚胺PDI-NH2
优选的,步骤3中,所述氨基苝酰亚胺PDI-NH2 1.4mmol和单醛基的共轭单元2-4mmol溶于乙醇中制成浓度为0.01-0.1mol/L的PDI-NH2溶液,加入乙酸1mL,80℃搅拌,再经萃取、干燥、纯化后得到基于苝酰亚胺的有机光伏材料。
优选的,步骤3中,所述氨基苝酰亚胺PDI-NH2 1.4mmol和双醛基的共轭单元0.3-0.4mmol溶于乙醇中制成浓度为0.01-0.1mol/L的PDI-NH2溶液,加入乙酸1mL,80℃搅拌,再经萃取、干燥、纯化后得到基于苝酰亚胺的有机光伏材料。
该材料可以作为活性层材料或辅助组分应用于二元、多元或叠层等有机太阳能电池器件。
有益效果:与现有技术相比,本发明具有以下优势:
(1)本发明的材料光电性质可调,即采用不同的桥连单元,可以简单的实现材料光电性质的调控。
(2)本发明的材料结构简单、原料来源广泛、合成简便、易于纯化、成本低廉。
(3)本发明的材料具有良好的热稳定性、电学稳定性以及可溶液加工的性能,可应用于制备二元、多元或者叠层等有机太阳能电池器件。
(4)本发明的制备方法合成步骤少、原料易得、合成方法简单、无需采用过渡金属催化剂、合成成本低等。
附图说明
图1为PDINCB的1H NMR谱图。
图2为PDINCB的13C NMR谱图。
图3为PDINCB的MALDI-TOF谱图。
图4为2PDINCB的1H NMR谱图。
图5为2PDINCB的13C NMR谱图。
图6为2PDINCB的MALDI-TOF谱图。
图7为PDINCB和2PDINCB薄膜态的吸收光谱。
图8为PDINCB和2PDINCB作为电子受体制备的有机光伏器件的开路电压与短路电流的曲线。
图9为PDINCB和2PDINCB的热失重分析曲线
具体实施方式
以下通过若干实施例对本发明作进一步说明,但实施例不限制本发明的涵盖范围。
实施例1:PDINCB的制备
Figure BDA0002086009650000051
PDI-NO2:将PDI(10g,14.3mmol)溶于500mL二氯甲烷中,将发烟硝酸(10mL)逐滴加入到上述PDI溶液中,常温搅拌,将反应溶液用氢氧化钠洗涤,二氯甲烷萃取三次,用MgSO4干燥,然后通过柱色谱纯化,得到PDI-NO2(8g),产率75%。如图1所示,1H NMR(400MHz,CDCl3,δ,ppm):9.78(d,J=8.3Hz,1H),8.92(s,1H),8.64(t,J=17.8Hz,5H),5.17(qd,J=9.7,4.7Hz,2H),2.30-2.16(m,4H),1.91-1.77(m,4H),1.36-1.22(m,24H),0.83(t,J=6.8Hz,12H).13C NMR(101MHz,CDCl3,δ,ppm):164.32(s),165.05-161.78(m),161.78-160.77(m),147.68(s),135.46(s),133.29(s),132.94(s),132.24(d,J=134.2Hz),131.13(s),129.56-129.04(m),127.90(s),127.74-126.33(m),126.14(s),124.47(s),124.01(s),55.25(s),54.96(s),32.22(d,J=9.0Hz),31.69(d,J=2.6Hz),26.58(d,J=1.9Hz),23.09-22.15(m),14.02(s).MALDI-TOF-MS(m/z):Calcd for C49H74OS2,Exact Mass:742.5,Found:741.6[M+].
Figure BDA0002086009650000052
PDI-NH2:将PDI-NO2(5g,6.7mmol)置于单口反应烧瓶中,抽换氮气加入钯碳,用无水四氢呋喃溶解,50℃回流,并逐滴加入水合肼(5mL)。抽滤除去钯碳,通过柱色谱纯化反应溶液,得到PDI-NH2(3.8g),产率80%。1H NMR(400MHz,CDCl3,δ,ppm):8.56(s,1H),8.41(s,2H),8.21(s,2H),8.07(dd,J=21.1,7.6Hz,2H),5.70(s,2H),5.14(d,J=6.0Hz,2H),2.20(s,4H),1.83(s,4H),1.18(s,24H),0.77(d,J=4.9Hz,12H).13C NMR(101MHz,CDCl3,δ,ppm):163.83(s),146.25(s),136.10(s),135.02(s),129.61(s),128.31(s),127.27(s),123.71(s),122.68(s),121.07(s),115.37(s),54.66(d,J=16.6Hz),32.33(s),31.75(s),26.66(s),22.55(s),14.00(s).Calcd for MS:713.40,Found:(M+).713.47.
Figure BDA0002086009650000061
PDINCB:将PDI-NH2(1g,1.4mmol)和苯甲醛(212mg,2mmol)溶于无水乙醇中,加入1mL乙酸,80℃搅拌过夜,用DCM萃取,MgSO4干燥,用柱色谱纯化,得到PDINCB(0.96g),产率94%。如图1所示,1H NMR(400MHz,CDCl3,δ,ppm):9.14(d,J=8.0Hz,1H),8.86(s,1H),8.79-8.63(m,5H),8.36(s,1H),8.14(d,J=7.1Hz,2H),7.68(t,J=6.9Hz,3H),5.22(d,J=6.0Hz,2H),2.29(s,4H),1.89(d,J=6.0Hz,4H),1.30(d,J=3.6Hz,24H),0.90-0.83(m,12H).如图2所示,13C NMR(101MHz,CDCl3,δ,ppm)164.65(d,J=15.4Hz),163.71(d,J=8.3Hz),162.20(s),149.85(s),135.53(s),134.47(d,J=30.7Hz),134.25-133.82(m),132.84(s),132.17-131.87(m),131.82(s),131.87-130.65(m),130.26(s),129.62(s),129.42(s),129.06(s),127.91(s),127.33(s),127.08(s),126.46(s),125.73(s),125.39(s),123.42(s),122.33(s),54.73(d,J=19.4Hz),32.33(s),31.77(s),29.72(s),26.65(s),22.59(s),14.07(s).如图3所示,Calcd for MS:801.5,Found:(M+).802.39.
实施例2:2PDINCB的制备
Figure BDA0002086009650000071
2PDINCB:将PDI-NH2(1g,1.4mmol)和对苯二甲醛(54mg,0.4mmol)溶于无水乙醇中,加入1mL乙酸,80℃搅拌过夜,用DCM萃取,MgSO4干燥,用柱色谱纯化,得到2PDINCB(964mg),产率91%。如图4所示,1H NMR(400MHz,CDCl3,δ,ppm)9.11(d,J=8.3Hz,2H),8.99(s,2H),8.78-8.66(m,10H),8.38(s,6H),5.27-5.16(m,4H),2.28(dd,J=15.5,6.1Hz,8H),1.92-1.81(m,8H),1.29(dd,J=17.3,6.0Hz,48H),0.84(dd,J=13.4,6.7Hz,24H).如图5所示,13C NMR(101MHz,CDCl3,δ,ppm)164.81(d,J=11.5Hz),163.72(d,J=5.8Hz),161.25(s),149.32(s),139.02(s),134.94-134.17(m),131.86(s),131.13(s),130.42(s),129.09(s),127.95(s),127.57(s),127.09(s),125.79(s),123.54(s),122.49(s),55.21-54.99(m),54.80(d,J=22.0Hz),32.34(s),31.78(s),29.72(s),26.67(d,J=4.0Hz),22.60(d,J=2.8Hz),14.08(d,J=3.0Hz).如图6所示,Calcd for MS:1524.9,Found:(M+).1524.33.
实施例3:PDINCF的制备
Figure BDA0002086009650000072
PDINCF:将PDI-NH2(1g,1.4mmol)和芴醛(256mg,4mmol)溶于无水乙醇中,加入1mL乙酸,80℃搅拌过夜,用DCM萃取,MgSO4干燥,用柱色谱纯化,得到PDINCF(0.97g),产率93%。
实施例4:2PDINCF的制备
Figure BDA0002086009650000081
2PDINCF:将PDI-NH2(1g,1.4mmol)和芴二醛(58mg,0.3mmol)溶于无水乙醇中,加入1mL乙酸,80℃搅拌过夜,用DCM萃取,MgSO4干燥,用柱色谱纯化,得到2PDINCB(988mg),产率92%。
实施例5:PDINCI的制备
Figure BDA0002086009650000082
PDINCI:将PDI-NH2(1g,1.4mmol)和稠环醛(2.86g,4mmol)溶于无水乙醇中,加入1mL乙酸,80℃搅拌过夜,用DCM萃取,MgSO4干燥,用柱色谱纯化,得到PDINCI(1.82g),产率90%。
实施例6:2PDINCI的制备
Figure BDA0002086009650000083
2PDINCI:将PDI-NH2(1g,1.4mmol)和稠环二醛(2.15g,0.3mmol)溶于无水乙醇中,加入1mL乙酸,80℃搅拌过夜,用DCM萃取,MgSO4干燥,用柱色谱纯化,得到2PDINCI(1.96g),产率92%。
实施例7:将实施例1中的产物PDINCB应用于有机光伏器件,器件制备过程为:首先将图案化的ITO玻璃基材在洗涤剂、去离子水、丙酮和异丙醇中连续超声波处理预清洁,并通过高压空气流干燥衬底,然后进一步在臭氧室中暴露处理30分钟。其次将ZnO前体溶液(2M二乙基锌在甲苯中的溶液,用无水四氢呋喃稀释成0.2M,然后用滤器过滤)在干燥空气中以6000rpm、30s的旋转速率旋转涂布到ITO基底上,随后在150℃的热板上退火30分钟以形成薄ZnO层(约30nm)。将涂覆的基材移入充满氩气的手套箱中。在旋转之前,光敏层的前体在90℃下搅拌过夜。对于给体(PBDB-T):受体,优化的总浓度为20mg mL-1,进料比为1:1(w/w)。旋转速度为2000rpm,相应的厚度约为100nm。退火后,衬底立即移入蒸发器。在高真空下,通过阴影掩模将三氧化钼中间层(MoO3,10nm)和Ag层(100nm)沉积到有源层的表面上。每个器件的面积为0.1平方厘米。器件参数如下:
Figure BDA0002086009650000091
从实验结果中我们可以发现,基于实施例1中得到的产物PDINCB作为电子受体在二元有机光伏器件中光电转化效率达到了2.3%。此外,在制备活性层薄膜的过程中不需要添加任何添加剂,从而简化了制膜工艺,有利于制备大面积有机光伏器件,且该材料合成方法原料易得、成本低廉、易于纯化,表明该材料在有机光伏器件中具有商业化的前途。
实施例8:将实施例2中的产物2PDINCB应用于有机光伏器件,器件制备过程为:首先将图案化的ITO玻璃基材在洗涤剂、去离子水、丙酮和异丙醇中连续超声波处理预清洁,并通过高压空气流干燥衬底,然后进一步在臭氧室中暴露处理30分钟。其次将ZnO前体溶液(2M二乙基锌在甲苯中的溶液,用无水四氢呋喃稀释成0.2M,然后用滤器过滤)在干燥空气中以6000rpm、30s的旋转速率旋转涂布到ITO基底上,随后在150℃的热板上退火30分钟以形成薄ZnO层(约30nm)。将涂覆的基材移入充满氩气的手套箱中。在旋转之前,光敏层的前体在90℃下搅拌过夜。对于给体(PBDB-T):受体,优化的总浓度为20mg mL-1,进料比为1:1(w/w)。旋转速度为2000rpm,相应的厚度约为100nm。退火后,衬底立即移入蒸发器。在高真空下,通过阴影掩模将三氧化钼中间层(MoO3,10nm)和Ag层(100nm)沉积到有源层的表面上。每个器件的面积为0.1平方厘米。器件参数如下:
Figure BDA0002086009650000101
从实验结果中我们可以发现,基于实施例2中得到的产物2PDINCB作为电子受体在二元有机光伏器件中光电转化效率达到了4.3%。此外,在制备活性层薄膜的过程中不需要添加任何添加剂,从而简化了制膜工艺,有利于制备大面积有机光伏器件,且该材料合成方法原料易得、成本低廉、易于纯化,表明该材料在有机光伏器件中具有商业化的前途。
图7为以目标产物PDINCB和2PDINCB作为电子受体制备的有机光伏器件的电压-电流密度曲线图,表明材料作为电子受体在有机光伏器件中取得了良好的效果。
图8为目标产物PDINCB和2PDINCB薄膜态的吸收光谱图,它们在450-750nm间均有有广泛的吸收,这表明材料具有高效的吸光效应,从而能够有效的提升有机光伏器件中的光电流。
图9为目标产物PDINCB和2PDINCB的热失重分析曲线。如图所示,材料从400℃左右才开始慢慢分解,说明该材料具有良好的热稳定性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的原理下所做的改进和变换,均应为等效的置换方式,都包含在本发明的保护范围内。

Claims (7)

1.一种基于苝酰亚胺的有机光伏材料,其特征在于,该材料以苝酰亚胺作为基本构筑单元,通过碳氮双键连接不同共轭基团而构成,具有如下式I所示的通式结构:
Figure FDA0002766665680000011
其中,N是氮原子;O为氧原子;
所述的Ar单元为苯基化合物,选自下式结构中的一种:
Figure FDA0002766665680000012
其中,*为连接位置,R为C1~C10的烷基链、C1~C10烷氧基链、C5~C30环烷基、C2~C30杂烷基链中的一种;O是氧原子;N是氮原子。
2.一种如权利要求1所述的基于苝酰亚胺的有机光伏材料的制备方法,其特征在于,包括以下步骤:
Figure FDA0002766665680000013
步骤1:将苝酰亚胺(A)溶于二氯甲烷中,将发烟硝酸逐滴加入到上述溶液中,常温搅拌2-10小时,反应结束后分离提纯获得硝基苝酰亚胺(B);
步骤2:将硝基苝酰亚胺(B)溶于四氢呋喃中,加入钯碳催化剂,并逐滴加入水合肼反应6-12小时,反应结束后分离提纯获得氨基苝酰亚胺(C);
步骤3:将氨基苝酰亚胺(C)和单醛基的共轭单元溶于乙醇中,加入乙酸,搅拌12-36小时,反应结束后分离提纯获得基于苝酰亚胺的有机光伏材料(D)。
3.一种如权利要求2所述的基于苝酰亚胺的有机光伏材料的制备方法,其特征在于,步骤3中,将氨基苝酰亚胺(C)和单醛基的共轭单元溶于溶剂中,加入乙酸,搅拌12-24小时,反应结束后分离提纯获得式I结构材料(D):
Figure FDA0002766665680000021
4.根据权利要求2所述的一种基于苝酰亚胺的有机光伏材料的制备方法,其特征在于,步骤1中,所述苝酰亚胺溶于二氯甲烷中,制成浓度为0.01-0.1mol/L的PDI溶液,每10g苝酰亚胺对应滴加发烟硝酸10mL,再经洗涤、萃取、干燥、纯化后得到硝基苝酰亚胺PDI-NO2
5.根据权利要求2所述的一种基于苝酰亚胺的有机光伏材料的制备方法,其特征在于,步骤2中,所述硝基苝酰亚胺PDI-NO2溶于四氢呋喃中制成浓度为0.01-0.1mol/L的PDI-NO2溶液,添加的钯碳与PDI-NO2的摩尔比为(0.01~0.1):1,每5g硝基苝酰亚胺对应滴加水合肼5mL,再经抽滤除去钯碳、纯化后得到氨基苝酰亚胺PDI-NH2
6.根据权利要求2所述的一种基于苝酰亚胺的有机光伏材料的制备方法,其特征在于,步骤3中,所述氨基苝酰亚胺PDI-NH2 1.4mmol和单醛基的共轭单元2-4mmol溶于乙醇中制成浓度为0.01-0.1mol/L的PDI-NH2溶液,加入乙酸1mL,80℃搅拌,再经萃取、干燥、纯化后得到基于苝酰亚胺的有机光伏材料。
7.一种如权利要求1所述的基于苝酰亚胺的有机光伏材料的应用,其特征在于,该材料作为活性层材料或辅助组分应用于二元、多元或叠层等有机太阳能电池器件。
CN201910487905.9A 2019-06-05 2019-06-05 一种基于苝酰亚胺的有机光伏材料及其制备方法与应用 Active CN110204545B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910487905.9A CN110204545B (zh) 2019-06-05 2019-06-05 一种基于苝酰亚胺的有机光伏材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910487905.9A CN110204545B (zh) 2019-06-05 2019-06-05 一种基于苝酰亚胺的有机光伏材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110204545A CN110204545A (zh) 2019-09-06
CN110204545B true CN110204545B (zh) 2021-02-02

Family

ID=67791129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910487905.9A Active CN110204545B (zh) 2019-06-05 2019-06-05 一种基于苝酰亚胺的有机光伏材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110204545B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479989B (zh) * 2020-11-16 2022-06-21 山东师范大学 同侧湾位双识别基团的苝系衍生物与制备方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9290494B2 (en) * 2008-11-21 2016-03-22 Cynora Gmbh Systems for the light-induced separation of charges
DE102009048848A1 (de) * 2009-10-09 2011-05-05 Langhals, Heinz, Prof. Dr. Benzothiadiazoloperylene-amorphe funktionale Materialien
CN108832000B (zh) * 2018-06-19 2021-11-05 南京邮电大学 一种三元聚合物太阳能电池
CN108997346B (zh) * 2018-09-10 2020-01-10 北京化工大学 一种基于苝酰亚胺c3对称的螺浆烷衍生物及其合成与应用
CN109553757B (zh) * 2018-12-21 2021-03-02 福州大学 一种二维结构的萘二酰亚胺类受体聚合物及其制备方法与应用

Also Published As

Publication number Publication date
CN110204545A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
CN108484569B (zh) 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
US9831433B2 (en) Conjugated polymers and devices incorporating the same
CN109265410B (zh) 一种以吩噁嗪为核心结构的空穴传输材料及其合成方法和应用
CN111533757B (zh) 基于二噻吩并苯并咪唑的无掺杂空穴传输材料及其制备方法与在钙钛矿太阳能电池中的应用
CN109776449B (zh) 一种以吩噻嗪二氧化物为核心结构的空穴传输材料及其合成方法和应用
CN111909169B (zh) 一种以苯并二噻吩二酮为核心的空穴传输材料与合成方法及在钙钛矿太阳能电池中的应用
CN111333654B (zh) 一种以吡咯并吡咯为核心结构的有机小分子功能材料的制备方法及其用途
CN112608309B (zh) 一种含芴环基团的非稠环有机小分子材料及其制备方法和应用
CN112707882B (zh) 螺[芴-9,9’-氧杂蒽]核空穴传输材料及其制备方法和应用
CN110194778B (zh) 一种多臂结构有机光伏材料及其制备方法与应用
CN108864415B (zh) 基于萘酰亚胺-硒吩的有机n型半导体聚合物材料及其制备方法与应用
CN111138440B (zh) 一种以三蝶烯并三吡嗪为核的有机空穴传输材料的制备及应用
CN110204545B (zh) 一种基于苝酰亚胺的有机光伏材料及其制备方法与应用
CN111747971B (zh) 一种苝二酰亚胺类电子传输材料及其合成方法和应用
CN115785126B (zh) 一种共轭有机分子、光活性层材料、三元有机太阳能电池及其制备方法
WO2024031993A1 (zh) 一种可用于空穴传输层的星型分子及其制备方法和应用
CN113087636B (zh) 一种碘化物及其制备方法,及基于其的全无机钙钛矿太阳电池及制备方法
CN110845503B (zh) 一种芳胺取代苯并二吲哚类有机空穴传输材料的制备及应用
CN110982047A (zh) 一类引达省并二呋喃基有机太阳能电池给体材料、其制备方法及应用
CN117024439A (zh) 一种基于双螺芴结构可绿色加工的有机空穴传输材料及其合成方法和应用
CN116478164B (zh) 一种以苯并二吡嗪为核的芳胺类空穴传输材料的制备及应用
CN114316220B (zh) 聚合物给体材料及其制备方法
CN113087875B (zh) 一类水/醇溶性全呋喃聚合物材料、其制备方法及应用
CN112358430B (zh) 席夫碱金属配合物及其制备方法、钙钛矿太阳能电池及其制备方法
CN110194775B (zh) 基于引达省并二噻吩类非富勒烯有机太阳能电池受体材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant