WO2024031955A1 - 空调除冷凝水的控制方法、装置及空调 - Google Patents

空调除冷凝水的控制方法、装置及空调 Download PDF

Info

Publication number
WO2024031955A1
WO2024031955A1 PCT/CN2023/077512 CN2023077512W WO2024031955A1 WO 2024031955 A1 WO2024031955 A1 WO 2024031955A1 CN 2023077512 W CN2023077512 W CN 2023077512W WO 2024031955 A1 WO2024031955 A1 WO 2024031955A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
compressor
preset threshold
turn
fan
Prior art date
Application number
PCT/CN2023/077512
Other languages
English (en)
French (fr)
Inventor
李荣瑞
牛春雷
孙良凯
罗祖春
李敬胜
李超
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024031955A1 publication Critical patent/WO2024031955A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate

Definitions

  • the embodiments of the present application belong to the technical field of air conditioning, and specifically relate to a control method and device for removing condensed water in an air conditioner, and an air conditioner.
  • hydrophobic or hydrophilic coatings are mainly applied to the fins of the heat exchanger in the internal unit of the air conditioner so that the condensed water on the fins flows out of the air conditioner as quickly as possible.
  • the hydrophobic or hydrophilic coating on the fins becomes less and less effective at removing condensation water as it ages.
  • embodiments of the present application provide A control method, device and air conditioner for removing condensation water from an air conditioner are disclosed.
  • embodiments of the present application provide a control method for removing condensation water from an air conditioner, including:
  • the air conditioner is controlled to switch from the current cooling mode to In the heating mode, at the same time, the fan in the internal unit of the air conditioner is turned off and the compressor is turned on, so that the hot air generated by the air conditioner in the heating mode evaporates the fins of the heat exchanger in the internal unit. Condensation on the chip;
  • the air conditioner is controlled to return from the heating mode to the cooling mode, and at the same time, the compressor is turned on.
  • the method further includes:
  • the compressor is turned off and the fan is turned on, including:
  • the compressor When the first temperature meets the preset condensate removal completion condition, the compressor is turned off and the fan is turned on.
  • turning off the compressor and turning on the fan includes:
  • the first preset threshold is smaller than the second preset threshold; the third preset threshold is larger than the fourth preset threshold.
  • the step of controlling the air conditioner to convert from the current cooling mode to the heating mode includes:
  • the control of converting the air conditioner from heating mode to cooling mode includes:
  • the four-way valve is used to control the air conditioner to switch from heating mode to cooling mode.
  • control device for removing condensation water from an air conditioner including:
  • a starting unit configured to obtain a condensation water removal start instruction; and to turn off the compressor in the outdoor unit of the air conditioner according to the condensation water removal start instruction;
  • a condensation water removal unit is used to control the air conditioner to convert from the current cooling mode to the heating mode after a preset first time, and at the same time, turn off the fan in the internal unit of the air conditioner and turn on the compressor , to realize that the hot air generated by the air conditioner in the heating mode evaporates the condensed water on the fins of the heat exchanger in the indoor unit;
  • the condensation water removal unit is also used to turn off the compressor and turn on the fan after it is determined that the condensation water on the fins of the heat exchanger in the internal unit of the air conditioner has been removed;
  • the end unit is used to control the air conditioner to return from the heating mode to the cooling mode after a preset second time, and at the same time, turn on the compressor.
  • the condensation water removal unit is also used to: obtain the first temperature of the heat exchanger in the indoor unit of the air conditioner;
  • the condensation water removal unit is specifically configured to turn off the compressor and turn on the fan when the first temperature meets the preset condensation water removal completion condition.
  • the condensation water removal unit is specifically configured to start timing when the first temperature reaches a first preset threshold to obtain a first timing duration
  • the first preset threshold is smaller than the second preset threshold; the third preset threshold is larger than the fourth preset threshold.
  • embodiments of the present application provide an air conditioner, including: a processor, a memory, and computer program instructions stored in the memory and executable on the processor.
  • the processor executes the computer program instructions, Methods provided for implementing the first aspect and possible designs in the first aspect.
  • embodiments of the present application may provide a computer-readable storage medium, which stores computer-executable instructions.
  • the computer-executable instructions When executed by the processor, it is used to implement the first aspect and the methods provided by each possible design in the first aspect.
  • embodiments of the present application provide a computer program product, including a computer program, which when executed by a processor is used to implement the first aspect and the methods provided by each possible design in the first aspect.
  • the embodiments of the present application provide a control method, device and air conditioner for removing condensation water in an air conditioner.
  • an instruction to start condensation water removal is obtained; and according to the instruction to start condensation water removal, the air conditioner is turned off.
  • the compressor in the outdoor unit; after the preset first time, the air conditioner is controlled to switch from the current cooling mode to the heating mode.
  • the fan in the indoor unit of the air conditioner is turned off and the compressor is turned on to realize the air conditioner in the cooling mode.
  • the hot air generated in the hot mode evaporates the condensed water on the fins of the heat exchanger in the indoor unit; after it is determined that the condensed water on the fins of the heat exchanger in the indoor unit of the air conditioner has been removed, turn off the compressor and Turn on the fan; after the preset second time, control the air conditioner to return from heating mode to cooling mode, and at the same time, turn on the compressor.
  • This solution can remove the condensed water generated on the fins of the heat exchanger in the indoor unit of the air conditioner when the air conditioner is in the cooling mode by switching between cooling and heating modes. In turn, it can improve the heat and cold exchange effect of the air conditioner, extend the service life of the hydrophilic or hydrophobic coating on the fins, and prevent the problem of water blowing from the air outlet of the air conditioner, improving the user experience.
  • Figure 1 is a schematic flowchart of a control method for removing condensed water in an air conditioner according to an exemplary embodiment of the present application
  • Figure 2 is a schematic flowchart of a control method for removing condensed water in an air conditioner according to another exemplary embodiment of the present application
  • Figure 3 is a schematic diagram of the working process of each main component of the air conditioner during the process of removing condensation water in the air conditioner according to an exemplary embodiment of the present application;
  • Figure 4 is a schematic diagram of the control process of condensation water removal in an air conditioner according to an exemplary embodiment of the present application
  • Figure 5 is a schematic diagram of the process of exiting the air conditioner and removing condensed water according to an exemplary embodiment of the present application
  • Figure 6 is a structural diagram of a control device for removing condensed water in an air conditioner according to an exemplary embodiment of the present application
  • Figure 7 is a structural diagram of an air conditioner according to an exemplary embodiment of the present application.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a removable connection.
  • Detachable connection, or integral connection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection can be a fixed connection or a removable connection.
  • Detachable connection, or integral connection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the specific meanings of the above terms in the embodiments of this application can be understood according to specific circumstances.
  • the hydrophobic or hydrophilic coating on the fins becomes less and less effective at removing condensation water as it ages.
  • the inventive concept of the present application is as follows: when the air conditioner is in the cooling mode, the refrigeration and heating modes are switched to remove the heat generated on the fins of the heat exchanger in the indoor unit of the air conditioner when the air conditioner is in the cooling mode. Condensation water. In turn, it can improve the heat and cold exchange effect of the air conditioner, extend the service life of the hydrophilic or hydrophobic coating on the fins, and prevent the problem of water blowing from the air outlet of the air conditioner, improving the user experience.
  • Figure 1 is a schematic flowchart of a control method for removing condensed water in an air conditioner according to an exemplary embodiment of the present application.
  • control method for removing condensation water in an air conditioner includes:
  • Step 101 Obtain the condensation water removal start instruction; and turn off the compressor in the outdoor unit of the air conditioner according to the condensation water removal start instruction.
  • the execution subject of this application is air conditioning.
  • the air conditioner can obtain a condensed water removal start command, and according to the condensed water start command, shut down the compressor in the outdoor unit of the air conditioner.
  • a condensation water removal start command can be generated, and the air conditioner can obtain the condensation water removal start command. , and according to the condensation water start command, shut down the compressor in the outdoor unit of the air conditioner.
  • the fins on the heat exchanger in the indoor unit of the air conditioner can be used to increase the heat exchange area between the heat exchanger and the indoor air.
  • Step 102 After the preset first time, control the air conditioner to switch from the current cooling mode to the heating mode. At the same time, turn off the fan in the internal unit of the air conditioner and turn on the compressor to realize that the air conditioner generates heat in the heating mode. The hot air evaporates the condensed water on the fins of the heat exchanger in the indoor unit.
  • the preset first time is a time length threshold preset according to the actual situation.
  • the pressure of the air conditioner can be effectively reduced, which is more conducive to the operation of the air conditioner. run.
  • the mode of the air conditioner can be converted from the current cooling mode to the heating mode.
  • the fan in the internal unit of the air conditioner can be turned off and the compressor can be turned on.
  • the hot air generated by the air conditioner can be used to evaporate the condensed water on the fins of the heat exchanger in the internal unit of the air conditioner.
  • turning off the fan in the indoor unit can not only prevent the loss of hot air, but also prevent hot air from blowing into the room to prevent the user's experience from being reduced.
  • Step 103 After it is determined that the removal of condensed water on the fins of the heat exchanger in the indoor unit of the air conditioner is completed, the compressor is turned off and the fan is turned on.
  • the compressor in the external unit of the air conditioner is turned off, and the fan in the internal unit of the air conditioner is turned on.
  • turning on the fan can speed up the heat dissipation of the air conditioner's internal unit and reduce the heat pressure of part of the air conditioner, so that the air conditioner can return to the cooling mode again.
  • the weak wind mode of the fan can be turned on to prevent the user's experience from being reduced.
  • Step 104 After a preset second time, control the air conditioner to return from the heating mode to the cooling mode, and at the same time, turn on the compressor.
  • the preset second time is a time length threshold preset according to the actual situation.
  • the preset first time can be equal to the preset second time, which can both be 40 seconds.
  • the mode of the air conditioner can be restored from the heating mode to the cooling mode, and the compressor can be turned on at the same time.
  • the mode of the air conditioner can be restored to the cooling mode again and cooling can be continued.
  • the method for controlling the condensation water removal of an air conditioner includes: obtaining a condensation water removal start instruction; and turning off the compressor in the outdoor unit of the air conditioner according to the condensation water removal start instruction; and controlling the air conditioner after the preset first time. Convert from the current cooling mode to the heating mode. At the same time, turn off the fan in the internal unit of the air conditioner and turn on the compressor so that the hot air generated by the air conditioner in the heating mode evaporates off the fins of the heat exchanger in the internal unit.
  • FIG. 2 is a schematic flowchart of a control method for removing condensed water in an air conditioner according to another exemplary embodiment of the present application.
  • control method for removing condensed water in an air conditioner includes:
  • Step 201 Obtain a condensation water removal start instruction; and turn off the compressor in the outdoor unit of the air conditioner according to the condensation water removal start instruction.
  • a condensation water removal start command can be generated, and the air conditioner can obtain the condensation water removal start command. , and according to the condensation water start command, shut down the compressor in the outdoor unit of the air conditioner.
  • the user's operation instructions can be obtained, and according to the operation instructions, a condensation water removal start instruction is generated, and a condensation water removal start instruction is obtained.
  • a function button for removing condensation water can be set on the air conditioner. After the user presses the function button for removing condensation water, an operation instruction can be generated.
  • the air conditioner can respond to the user's operation instruction and generate a decondensation function according to the operation instruction. water start command and obtain the condensate removal start command.
  • Step 202 After the preset first time, control the air conditioner to switch from the current cooling mode to the heating mode. At the same time, turn off the fan in the internal unit of the air conditioner and turn on the compressor to realize the air conditioner in the heating mode. The hot air evaporates the condensed water on the fins of the heat exchanger in the indoor unit.
  • the mode of the air conditioner can be converted from the current cooling mode to the heating mode.
  • the fan in the internal unit of the air conditioner can be turned off and the compressor can be turned on.
  • a four-way valve in the air conditioner is used to control the air conditioner to switch from the current cooling mode to the heating mode.
  • the mode of the air conditioner can be converted from the current cooling mode to the heating mode by controlling the reversal of the four-way valve.
  • Step 203 After turning off the fan in the internal unit of the air conditioner and turning on the compressor, obtain the first temperature of the heat exchanger in the internal unit of the air conditioner; when the first temperature meets the preset condensate removal completion conditions, turn off the compressor. , and turn on the fan.
  • the temperature sensor in the heat exchanger of the indoor unit can be used to collect multiple first temperatures of the heat exchanger according to the preset collection frequency; the air conditioner can obtain these multiple first temperatures. a first temperature, and when the first temperature meets the preset condensate removal completion conditions, the compressor is turned off and the fan is turned on.
  • timing is started when the first temperature reaches the first preset threshold, and the first timing duration is obtained; and timing is started when the first temperature reaches the second preset threshold, and the second timing duration is obtained. If it is determined that the first timing duration reaches the third preset threshold, or it is determined that the second timing duration reaches the fourth preset threshold, the compressor is turned off and the fan is turned on; wherein the first preset threshold is smaller than the second preset threshold; The third preset threshold is greater than the fourth preset threshold.
  • the first preset threshold is a temperature threshold preset according to actual conditions.
  • the second preset threshold is a temperature threshold preset according to actual conditions.
  • the third preset threshold is a time length threshold preset according to actual conditions.
  • the fourth preset threshold is a time length threshold preset according to actual conditions.
  • timing is performed to obtain the first timing duration; when it is detected that the first temperature of the heat exchanger of the internal unit reaches the second preset threshold, Timing is performed at the threshold to obtain the second timing duration. If it is determined that the first timing duration reaches the third preset threshold, or it is determined that the second timing duration reaches the fourth preset threshold, the timing is stopped and a condensate removal end instruction is generated.
  • the first preset threshold is smaller than the second preset threshold; the third preset threshold is larger than the fourth preset threshold.
  • Step 204 After a preset second time, the air conditioner is controlled to return from the heating mode to the cooling mode, and at the same time, the compressor is turned on.
  • the mode of the air conditioner can be restored from the heating mode to the cooling mode, and the compressor can be turned on at the same time.
  • the mode of the air conditioner can be restored to the cooling mode again and cooling can be continued.
  • a four-way valve is used to control the air conditioner to switch from the heating mode to the cooling mode.
  • the mode of the air conditioner can be converted from the heating mode to the cooling mode by controlling the direction change of the four-way valve.
  • Figure 3 is a schematic diagram of the working process of each main component of the air conditioner during the process of removing condensation water in the air conditioner according to an exemplary embodiment of the present application.
  • the compressor in the outdoor unit of the air conditioner can be turned off according to the condensation water removal start command. And after the preset first time (the preset first time can be set to 40s), turn on the compressor, and control the compressor to gradually increase the frequency to the preset maximum frequency for condensate removal. At the same time, turn off the internal unit of the air conditioner.
  • the fan in the air conditioner i.e. indoor fan
  • the preset second time (the preset second time can be set to 40 seconds)
  • Figure 4 is a schematic diagram of the control process of condensation water removal in an air conditioner according to an exemplary embodiment of the present application.
  • the indoor unit of the air conditioner detects that there is too much condensation water on the fins of the heat exchanger in the indoor unit, it can generate a condensation water removal start command, and based on the condensation water removal start command, shut down the outdoor unit of the air conditioner.
  • the compressor in Figure 4 (that is, the compressor in Figure 4), and starts timing, let the timing duration be t 4 , when t 4 reaches the preset first time (let the preset first time be 40s), then control
  • the four-way valve reverses direction to convert the mode of the air conditioner from cooling mode to heating mode, and turns off the fan in the internal unit of the air conditioner (i.e., the internal fan in Figure 4).
  • the compressor is turned on and the compressor is controlled to gradually rise.
  • the fan in the indoor unit of the air conditioner is turned on, the compressor is turned off, and the timer is started.
  • the duration is t 5 .
  • t 5 reaches the preset second time (let the preset second time be 40s)
  • the four-way valve is controlled to change direction, and the mode of the air conditioner is restored from the heating mode to the cooling mode, and starts The compressor starts to resume cooling.
  • FIG. 5 is a schematic diagram of the process of exiting the air conditioner and removing condensed water according to an exemplary embodiment of the present application.
  • the temperature sensor in the heat exchanger of the indoor unit of the air conditioner can be used to collect the first temperature of the heat exchanger of the indoor unit of the air conditioner, so that the first temperature is T 0 .
  • the air conditioner uses the cooling and heating process conversion to actively remove condensate according to the condensate removal start command
  • the condensation water removal process is equivalent to the heating process
  • the refrigerant temperature in the heat exchanger of the air conditioner's internal unit is rapidly Heating. Therefore, the temperature changes of the heat exchanger in the overall indoor unit can be monitored by using a temperature sensor to monitor the coil temperature of the indoor unit. then, The exit moment of condensation water removal is determined through dual standards of temperature and time.
  • dual conditions can be set to stably and quickly complete the condensation water removal process by setting different temperature limits and time limits.
  • the temperature sensor in the indoor unit coil can be used to collect the temperature as the first temperature T 0 of the heat exchanger in the indoor unit.
  • T 0 When it is detected that T 0 reaches the first
  • the timing starts when the preset threshold is reached (let the first preset threshold be T 1 ).
  • condition 1 is executed.
  • the duration t 1 reaches the third preset threshold (let the third preset threshold be t 0 )
  • condition 1 is exited.
  • the first preset threshold and the third preset threshold in condition 1 can be determined according to the actual situation. For example, if the first preset threshold is set to 35°C and the third preset threshold is 30s, then condition 1 is to remove condensation.
  • condition 2 is entered and timing starts, and the duration t 2 reaches the fourth preset threshold (let the first preset threshold be T 2 ).
  • the fourth preset threshold is t 3
  • condition 2 is exited.
  • the second preset threshold and the fourth preset threshold in condition 2 are also determined according to the actual situation. For example, the second preset threshold is set to 45°C and the fourth preset threshold is 10 seconds. Then condition 2 is to remove condensation.
  • Condition 1 and Condition 2 are in parallel relationship and take effect at the same time. As long as one of them is satisfied, the condensate removal process will end.
  • the dual conditions can ensure the stability and timeliness of condensate removal, and at the same time will not cause high temperature discomfort to users caused by a sudden rise in the temperature of the internal heat exchanger under a single condition.
  • Figure 6 is a structural diagram of a control device for removing condensed water in an air conditioner according to an exemplary embodiment of the present application.
  • the air conditioner condensation water removal control device 600 includes:
  • the starting unit 610 is used to obtain the condensation water removal start instruction; and turn off the compressor in the outdoor unit of the air conditioner according to the condensation water removal start instruction;
  • the condensate removal unit 620 is used to control the air conditioner to switch from the current cooling mode to the heating mode after a preset first time. At the same time, it turns off the fan in the internal unit of the air conditioner and turns on the compressor to realize the operation of the air conditioner.
  • the hot air generated in heating mode evaporates the condensed water on the fins of the heat exchanger in the indoor unit;
  • condensed water unit 620 In addition to the condensed water unit 620, it is also used to turn off the compressor and turn on the fan after it is determined that the condensed water on the fins of the heat exchanger in the indoor unit of the air conditioner has been removed;
  • the end unit 630 is used to control the air conditioner to switch from the heating mode to the heating mode after the preset second time. Return to cooling mode, and at the same time, turn on the compressor.
  • the condensed water unit 620 In addition to the condensed water unit 620, it is also used to obtain the first temperature of the heat exchanger in the indoor unit of the air conditioner.
  • the condensate water removal unit 620 is specifically configured to turn off the compressor and turn on the fan when the first temperature meets the preset condensate water removal completion condition.
  • the condensed water removal unit 620 is specifically configured to start timing when the first temperature reaches the first preset threshold to obtain the first timing duration;
  • the compressor is turned off and the fan is turned on.
  • the first preset threshold is smaller than the second preset threshold; the third preset threshold is larger than the fourth preset threshold.
  • the condensate removal unit 620 is specifically used to use the four-way valve in the air conditioner to control the air conditioner to switch from the current cooling mode to the heating mode.
  • the end unit 630 is specifically configured to use a four-way valve to control the air conditioner to switch from the heating mode to the cooling mode.
  • control device for removing condensation water in an air conditioner provided by the embodiment of the present application can be used to execute the control method for removing condensation water in an air conditioner in any of the above embodiments.
  • the implementation principles and technical effects are similar and will not be described again here.
  • each unit of the above device is only a division of logical functions. In actual implementation, they can be fully or partially integrated into a physical entity, or they can also be physically separated. And these units can all be implemented in the form of software calling through processing components; they can also all be implemented in the form of hardware; some units can also be implemented in the form of software calling through processing components, and some units can be implemented in the form of hardware. In addition, all or part of these units can be integrated together or implemented independently.
  • the processing element here may be an integrated circuit with signal processing capabilities. During the implementation process, each step of the above method or each of the above units can be completed by instructions in the form of hardware integrated logic circuits or software in the processor element.
  • FIG. 7 is a schematic structural diagram of an air conditioner provided by an embodiment of the present application.
  • the air conditioner may include: a processor 71, a memory 72, and Computer program instructions that can be run on the processor 71.
  • the processor 71 executes the computer program instructions, the control method for removing condensed water in an air conditioner provided by any of the foregoing embodiments is implemented.
  • the air conditioner may also include an interface for interacting with other devices.
  • the above-mentioned components of the air conditioner can be connected through a system bus.
  • the memory 72 may be a separate storage unit or a storage unit integrated in the processor.
  • the number of processors is one or more.
  • the processor 71 can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) wait.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc. The steps of the method applied in this application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the system bus can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the system bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the memory may include random access memory (RAM) and may also include non-volatile memory (NVM), such as at least one disk memory.
  • the aforementioned program can be stored in a readable memory.
  • the steps including the above method embodiments are executed; and the aforementioned memory (storage medium) includes: read-only memory (ROM), RAM, flash memory, hard disk, solid state hard disk, tape (English: magnetic tape), floppy disk (English: floppy disk), optical disk (English: optical disc) and any combination thereof.
  • the air conditioner provided by the embodiments of the present application can be used to execute the control method for removing condensation water from the air conditioner provided by any of the above method embodiments.
  • the implementation principles and technical effects are similar and will not be described again here.
  • Embodiments of the present application provide a computer-readable storage medium.
  • Computer instructions are stored in the computer-readable storage medium. When the computer instructions are run on a computer, they cause the computer to execute the above control method for removing condensation water from an air conditioner.
  • the above-mentioned computer-readable storage medium can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory, electrically erasable programmable read-only memory Memory, erasable programmable read-only memory, programmable read-only memory, read-only memory, magnetic memory, flash memory, magnetic or optical disk.
  • Readable storage media can be any available media that can be accessed by a general purpose or special purpose computer.
  • a readable storage medium is coupled to the processor such that the processor can read information from the readable storage medium and write information to the readable storage medium.
  • the readable storage medium may also be an integral part of the processor.
  • the processor and readable storage medium may be located in Application Specific Integrated Circuits (ASICs).
  • ASICs Application Specific Integrated Circuits
  • the processor and the readable storage medium may also exist as discrete components in the device.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer program.
  • the computer program is stored in a computer-readable storage medium.
  • At least one processor can read the computer program from the computer-readable storage medium. , when at least one processor executes a computer program, the above control method for removing condensed water from an air conditioner can be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提供的一种空调除冷凝水的控制方法、装置及空调,涉及空调技术,包括:获取除冷凝水开始指令;并根据除冷凝水开始指令,关闭空调的外机中的压缩机;在第一时间后,控制空调由当前的制冷模式转换为制热模式,同时,关闭空调内机中的风机,并开启压缩机;在确定对冷凝水完成去除处理后,关闭压缩机,开启风机;在第二时间后,控制空调由制热模式恢复为制冷模式,同时开启压缩机。本方案可以在空调处于制冷模式时,通过制冷、制热模式转换,来去除制冷模式下在空调的内机中换热器的翅片上的冷凝水。进而可以提高空调的冷热交换效果,还能够延长翅片上亲水或疏水涂层的使用年限,更能够防止空调的内机的出风口吹水的问题,提升了用户体验感。

Description

空调除冷凝水的控制方法、装置及空调
本申请要求于2022年08月09日提交中国专利局、申请号为202210950475.1、申请名称为“空调除冷凝水的控制方法、装置及空调”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例属于空调技术领域,具体涉及一种空调除冷凝水的控制方法、装置及空调。
背景技术
在人们日常生活中,空调的使用越来越普及。潮湿地区的用户使用空调长时间制冷时,空调的内机中的换热器的翅片上很容易凝水,这种情况会影响空调的换热效果,甚至还会出现从出风口吹水的问题,影响了用户体验感。
现有技术中,主要通过在空调的内机中的换热器的翅片上加疏水或亲水涂层,使得翅片上的冷凝水尽快流出空调。
但是,翅片上的疏水或亲水涂层,随着使用年限的增加,去除冷凝水的效果会越来越差。
发明内容
为了解决现有技术中的上述问题,即为了解决现有技术中翅片上的疏水或亲水涂层,随着使用年限的增加,去除冷凝水的效果会越来越差,本申请实施例提供了一种空调除冷凝水的控制方法、装置及空调。
第一方面,本申请实施例提供一种空调除冷凝水的控制方法,包括:
获取除冷凝水开始指令;并根据所述除冷凝水开始指令,关闭所述空调的外机中的压缩机;
在预设的第一时间后,控制所述空调由当前的制冷模式转换为 制热模式,同时,关闭所述空调的内机中的风机,并开启所述压缩机,以实现所述空调在制热模式下产生的热空气蒸发掉所述内机中换热器的翅片上的冷凝水;
在确定对所述空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭所述压缩机,并开启所述风机;
在预设的第二时间后,控制所述空调由制热模式恢复为制冷模式,同时,开启所述压缩机。
在上述空调除冷凝水的控制方法的优选技术方案中,所述关闭所述空调的内机中的风机,并开启所述压缩机之后,所述方法还包括:
获取所述空调的内机中换热器的第一温度;
则所述在确定对所述空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭所述压缩机,并开启所述风机,包括:
在所述第一温度满足预设的冷凝水去除完成条件时,关闭所述压缩机,并开启所述风机。
在上述空调除冷凝水的控制方法的优选技术方案中,所述在所述第一温度满足预设的冷凝水去除完成条件时,关闭所述压缩机,并开启所述风机,包括:
当所述第一温度达到第一预设阈值时开始计时,得到第一计时时长;
当所述第一温度达到第二预设阈值时开始计时,得到第二计时时长;
若确定所述第一计时时长达到第三预设阈值,或者确定所述第二计时时长达到第四预设阈值,则关闭所述压缩机,并开启所述风机;
其中,所述第一预设阈值小于所述第二预设阈值;所述第三预设阈值大于所述第四预设阈值。
在上述空调除冷凝水的控制方法的优选技术方案中,所述控制所述空调由当前的制冷模式转换为制热模式,包括:
利用所述空调中的四通阀,控制所述空调由当前的制冷模式转换为制热模式;
所述控制所述空调由制热模式转换为制冷模式,包括:
利用所述四通阀,控制所述空调由制热模式转换为制冷模式。
第二方面,本申请实施例提供一种空调除冷凝水的控制装置,包括:
开始单元,用于获取除冷凝水开始指令;并根据所述除冷凝水开始指令,关闭所述空调的外机中的压缩机;
除冷凝水单元,用于在预设的第一时间后,控制所述空调由当前的制冷模式转换为制热模式,同时,关闭所述空调的内机中的风机,并开启所述压缩机,以实现所述空调在制热模式下产生的热空气蒸发掉所述内机中换热器的翅片上的冷凝水;
所述除冷凝水单元,还用于在确定对所述空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭所述压缩机,并开启所述风机;
结束单元,用于在预设的第二时间后,控制所述空调由制热模式恢复为制冷模式,同时,开启所述压缩机。
在上述空调除冷凝水的控制装置的优选技术方案中,
所述除冷凝水单元还用于:获取所述空调的内机中换热器的第一温度;
所述除冷凝水单元,具体用于在所述第一温度满足预设的冷凝水去除完成条件时,关闭所述压缩机,并开启所述风机。
在上述空调除冷凝水的控制装置的优选技术方案中,
所述除冷凝水单元,具体用于当所述第一温度达到第一预设阈值时开始计时,得到第一计时时长;
当所述第一温度达到第二预设阈值时开始计时,得到第二计时时长;
若确定所述第一计时时长达到第三预设阈值,或者确定所述第二计时时长达到第四预设阈值,则关闭所述压缩机,并开启所述风机;
其中,所述第一预设阈值小于所述第二预设阈值;所述第三预设阈值大于所述第四预设阈值。
第三方面,本申请实施例提供一种空调,包括:处理器、存储器及存储在所述存储器上并可在处理器上运行的计算机程序指令,所述处理器执行所述计算机程序指令时用于实现第一方面以及在第一方面中各可能设计提供的方法。
第四方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令 被处理器执行时用于实现第一方面以及在第一方面中各可能设计提供的方法。
第五方面,本申请实施例提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时用于实现第一方面以及在第一方面中各可能设计提供的方法。
本领域技术人员能够理解的是,本申请实施例提供的空调除冷凝水的控制方法、装置及空调,在该方法中,获取除冷凝水开始指令;并根据除冷凝水开始指令,关闭空调的外机中的压缩机;在预设的第一时间后,控制空调由当前的制冷模式转换为制热模式,同时,关闭空调的内机中的风机,并开启压缩机,以实现空调在制热模式下产生的热空气蒸发掉内机中换热器的翅片上的冷凝水;在确定对空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭压缩机,并开启风机;在预设的第二时间后,控制空调由制热模式恢复为制冷模式,同时,开启压缩机。本方案可以在空调处于制冷模式时,通过制冷、制热模式转换,来去除空调处于制冷模式下时,在空调的内机中的换热器的翅片上生成的冷凝水。进而可以提高空调的冷热交换效果,还能够延长翅片上亲水或疏水涂层的使用年限,更能够防止空调内机出风口吹水的问题,提升了用户体验感。
附图说明
下面参照附图来描述本申请的空调过热保护的控制方法、装置和空调,附图为:
图1为本申请一示例性实施例示出的空调除冷凝水的控制方法的流程示意图;
图2为本申请另一示例性实施例示出的空调除冷凝水的控制方法的流程示意图;
图3为本申请一示例性实施例示出的空调除冷凝水过程中空调各主要部件的工作过程示意图;
图4为本申请一示例性实施例示出的空调除冷凝水的控制过程示意图;
图5为本申请一示例性实施例示出的退出空调除冷凝水过程的示意图;
图6为本申请一示例性实施例示出的空调除冷凝水的控制装置的结构图;
图7为本申请一示例性实施例示出的空调的结构图。
具体实施方式
首先,本领域技术人员应当理解的是,这些实施方式仅仅用于解释本申请的技术原理,并非旨在限制本申请的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
其次,需要说明的是,在本申请实施例的描述中,术语“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示装置或构件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,还需要说明的是,在本申请实施例的描述中,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个构件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本申请实施例中的具体含义。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在介绍本申请的实施例之前,首先对本申请实施例的应用背景进行解释:
在人们日常生活中,空调的使用越来越普及。潮湿地区的用户使用空调长时间制冷时,空调的内机中的换热器的翅片上很容易凝水,这种情况会影响空调的换热效果,甚至还会出现从空调的内机的出风口吹水的问题,影响了用户体验感。
现有技术中,主要通过在空调内机换热器的翅片上加疏水或亲 水涂层,使得翅片上的冷凝水尽快流出空调。
但是,翅片上的疏水或亲水涂层,随着使用年限的增加,去除冷凝水的效果会越来越差。
针对上述问题,本申请的发明构思如下:在空调处于制冷模式时,通过制冷、制热模式转换,来去除空调处于制冷模式下时,在空调的内机中的换热器的翅片上生成的冷凝水。进而可以提高空调的冷热交换效果,还能够延长翅片上亲水或疏水涂层的使用年限,更能够防止空调内机出风口吹水的问题,提升了用户体验感。
下面,通过具体实施例对本申请的技术方案进行详细说明。
需要说明的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图1为本申请一示例性实施例示出的空调除冷凝水的控制方法的流程示意图。
如图1所示,本实施例提供的空调除冷凝水的控制方法包括:
步骤101,获取除冷凝水开始指令;并根据除冷凝水开始指令,关闭空调的外机中的压缩机。
其中,本申请的执行主体为空调。该空调可以获取除冷凝水开始指令,并根据该冷凝水开始指令,关闭该空调的外机中的压缩机。
具体的,当空调当前工作在制冷模式中,且检测到空调的内机中的换热器的翅片上冷凝水过多,则可以生成除冷凝水开始指令,空调可以获取该除冷凝水开始指令,并根据该冷凝水开始指令,关闭该空调的外机中的压缩机。
其中,空调的内机中的换热器上的翅片,可以用于增加换热器与室内空气之间的热量交换面积。
步骤102,在预设的第一时间后,控制空调由当前的制冷模式转换为制热模式,同时,关闭空调的内机中的风机,并开启压缩机,以实现空调在制热模式下产生的热空气蒸发掉内机中换热器的翅片上的冷凝水。
其中,预设的第一时间为根据实际情况预先设置的时间长度阈值。
具体的,在关闭压缩机后经过一段时间再进行空调的制冷、制热模式转换并再次开启压缩机,可以有效减小空调的压力,更利于空调的 运行。
具体的,可以在关闭压缩机的预设的第一时间后,将空调的模式,由当前的制冷模式转换为制热模式,同时,关闭空调的内机中的风机,并开启压缩机。
此时,开启压缩机,使压缩机开始工作,可以利用空调制热产生的热空气,将空调的内机中的换热器的翅片上的冷凝水蒸发掉。
此时,关掉内机中的风机,既可以防止热气流失,也可以不让热风吹到房间中,以防降低用户的体验感。
步骤103,在确定对空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭压缩机,并开启风机。
具体的,在确定对空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭空调外机中的压缩机,并开启空调内机中的风机。
此时,开启风机,可以加快空调的内机的散热,可以降低一部分空调的热量压力,以方便空调接下来再次回到制冷模式。具体的,可以开启风机的微弱风模式,以防止降低用户的体验感。
步骤104,在预设的第二时间后,控制空调由制热模式恢复为制冷模式,同时,开启压缩机。
其中,预设的第二时间为根据实际情况预先设置的时间长度阈值。其中,预设的第一时间可以等于预设的第二时间,都可以为40s。
具体的,在关闭空调的外机中的压缩机的预设的第二时间后,可以将空调的模式由制热模式恢复为制冷模式,并同时开启压缩机。
具体的,利用空调的制热模式去除空调的内机中的换热器的翅片上的冷凝水后,可以将空调的模式,再次恢复为制冷模式,并继续制冷。
本申请提供的空调除冷凝水的控制方法,包括:获取除冷凝水开始指令;并根据除冷凝水开始指令,关闭空调的外机中的压缩机;在预设的第一时间后,控制空调由当前的制冷模式转换为制热模式,同时,关闭空调的内机中的风机,并开启压缩机,以实现空调在制热模式下产生的热空气蒸发掉内机中换热器的翅片上的冷凝水;在确定对空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭压缩机,并开启风机;在预设的第二时间后,控制空调由制热模式恢复为制冷模式,同时,开启压缩机。本申请采用的方法中,可以在空调处于制冷模式时,通过制冷、制热模式转换,来去除空调处于制冷模式下时,在空调的内机中的换热器的 翅片上生成的冷凝水。进而可以提高空调的冷热交换效果,还能够延长翅片上亲水或疏水涂层的使用年限,更能够防止空调内机出风口吹水的问题,提升了用户体验感。
图2为本申请另一示例性实施例示出的空调除冷凝水的控制方法的流程示意图。
如图2所示,本实施例提供的空调除冷凝水的控制方法包括:
步骤201,获取除冷凝水开始指令;并根据除冷凝水开始指令,关闭空调的外机中的压缩机。
具体的,当空调当前工作在制冷模式中,且检测到空调的内机中的换热器的翅片上冷凝水过多,则可以生成除冷凝水开始指令,空调可以获取该除冷凝水开始指令,并根据该冷凝水开始指令,关闭该空调的外机中的压缩机。
具体的,可以获取用户的操作指令,根据操作指令,生成除冷凝水开始指令,并获取除冷凝水开始指令。
具体的,可以在空调上设置除冷凝水的功能按键,用户按下该除冷凝水的功能按键后,可以生成操作指令,空调可以响应用户的该操作指令,并根据该操作指令,生成除冷凝水开始指令,并获取除冷凝水开始指令。
步骤202,在预设的第一时间后,控制空调由当前的制冷模式转换为制热模式,同时,关闭空调的内机中的风机,并开启压缩机,以实现空调在制热模式下产生的热空气蒸发掉内机中换热器的翅片上的冷凝水。
具体的,可以在关闭压缩机的预设的第一时间后,将空调的模式由当前的制冷模式转换为制热模式,同时,关闭空调的内机中的风机,并开启压缩机。
在一种可实现方式中,利用空调中的四通阀,控制空调由当前的制冷模式转换为制热模式。
具体的,可以通过控制四通阀换向,将空调的模式由当前的制冷模式转换为制热模式。
步骤203,关闭空调的内机中的风机,并开启压缩机之后,获取空调的内机中换热器的第一温度;在第一温度满足预设的冷凝水去除完成条件时,关闭压缩机,并开启风机。
具体的,将空调的模式转换为制热模式的同时,可以利用内机的换热器中的温度传感器,按照预设采集频率,采集换热器的多个第一温度;空调可以获取这多个第一温度,并在第一温度满足预设的冷凝水去除完成条件时,关闭压缩机,并开启风机。
在一种可实现方式中,当第一温度达到第一预设阈值时开始计时,得到第一计时时长;当第一温度达到第二预设阈值时开始计时,得到第二计时时长。若确定第一计时时长达到第三预设阈值,或者确定第二计时时长达到第四预设阈值,则关闭压缩机,并开启风机;其中,第一预设阈值小于第二预设阈值;第三预设阈值大于第四预设阈值。
其中,第一预设阈值为根据实际情况预先设置的温度阈值。
其中,第二预设阈值为根据实际情况预先设置的温度阈值。
其中,第三预设阈值为根据实际情况预先设置的时间长度阈值。
其中,第四预设阈值为根据实际情况预先设置的时间长度阈值。
具体的,当检测到内机的换热器的第一温度达到第一预设阈值时进行计时,得到第一计时时长;当检测到内机的换热器的第一温度达到第二预设阈值时进行计时,得到第二计时时长。若确定第一计时时长达到第三预设阈值,或者确定第二计时时长达到第四预设阈值,则停止计时,并生成除冷凝水结束指令。其中,第一预设阈值小于第二预设阈值;第三预设阈值大于第四预设阈值。
步骤204,在预设的第二时间后,控制空调由制热模式恢复为制冷模式,同时,开启压缩机。
具体的,在关闭空调外机中的压缩机的预设的第二时间后,可以将空调的模式由制热模式恢复为制冷模式,并同时开启压缩机。
具体的,利用空调的制热模式去除空调的内机中的换热器的翅片上的冷凝水后,可以将空调的模式,再次恢复为制冷模式,并继续制冷。
在一种可实现方式中,利用四通阀,控制空调由制热模式转换为制冷模式。
具体的,可以通过控制四通阀换向,将空调的模式由制热模式转换为制冷模式。
图3为本申请一示例性实施例示出的空调除冷凝水过程中空调各主要部件的工作过程示意图。
如图3所示,当空调工作在制冷模式下时,在空调获取到除冷凝水开始指令后,可以根据该除冷凝水开始指令,关闭空调的外机中的压缩机。并在预设的第一时间后(预设的第一时间可以设置为40s),开启压缩机,并控制压缩机逐渐升频至预设的除冷凝水最高频率,同时,关闭空调的内机中的风机(即室内风机),并控制四通阀转向,将空调的模式由当前的制冷模式转换为制热模式,开始进入除冷凝水过程。在确定对空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭压缩机,并开启风机。在预设的第二时间后(预设的第二时间可以设置为40s),开启压缩机,并控制四通阀转向,将空调的模式由制热模式恢复为制冷模式,开始恢复制冷。
图4为本申请一示例性实施例示出的空调除冷凝水的控制过程示意图。
如图4所示,当空调的内机检测到内机中换热器的翅片上冷凝水过多后,可以生成除冷凝水开始指令,并根据该除冷凝水开始指令,关闭空调的外机中的压缩机(即图4中的压机),并开始计时,令计时时长为t4,当t4达到预设的第一时间后(令预设的第一时间为40s),则控制四通阀换向,将空调的模式由制冷模式转换为制热模式,并关闭空调的内机中的风机(即图4中的内风机),同时,开启压缩机,并控制压缩机逐渐升频至预设的除冷凝水最高频率。在确定对空调的内机中的换热器的翅片上的冷凝水完成去除处理后,冷凝水去除过程结束,则开启空调的内机中的风机,并关闭压缩机,并开始计时,令计时时长为t5,当t5达到预设的第二时间后(令预设的第二时间为40s),控制四通阀换向,将空调的模式由制热模式恢复为制冷模式,并启动压缩机,开始恢复制冷。
图5为本申请一示例性实施例示出的退出空调除冷凝水过程的示意图。
如图5所示,当空调获取到除冷凝水开始指令后,可以利用空调的内机中换热器中的温度传感器,采集空调的内机中换热器的第一温度,令第一温度为T0
具体的,在空调根据除冷凝水开始指令,使用制冷制热过程转换主动去除冷凝水时,因除冷凝水过程相当于制热过程,所以空调的内机中的换热器内冷媒温度是快速升温的。因此,可以通过利用温度传感器监测内机盘管温度达到监测整体内机中的换热器的温度变化情况。接着, 通过温度和时间双重标准来确定除冷凝水的退出时刻,进一步的,还可以设置双重条件,通过设置不同的温度限值和时间限值来稳定的快速的完成除冷凝水过程。
具体的,将空调的模式转换为制热模式的同时,可以利用内机盘管中的温度传感器采集温度,作为内机中换热器的第一温度T0,当检测到T0达到第一预设阈值(令第一预设阈值为T1)时开始计时,此时执行条件1,持续时间t1达到第三预设阈值(令第三预设阈值为t0)时,退出条件1,条件1中的第一预设阈值和第三预设阈值可以根据实际情况确定具体数值,例如设定第一预设阈值为35℃,第三预设阈值为30s,则条件1为除冷凝水过程在高于35℃的情况下持续30s则结束除冷凝水过程。若检测内机换热器的第一温度到达第二预设阈值(令第一预设阈值为T2)时,则进入条件2,开始计时,持续时间t2达到第四预设阈值(令第四预设阈值为t3)时,退出条件2。同样条件2中第二预设阈值和第四预设阈值也以根据实际情况确定具体数值,例如设定第二预设阈值为45℃,第四预设阈值为10s,则条件2为除冷凝水过程在高于45℃的情况下持续10s则结束除冷凝水过程。条件1和条件2为并列关系,同时生效,只要其中一个满足,则除冷凝水过程就结束。双重条件能够保证去除冷凝水的稳定性和时效性,同时又不会造成单一条件下内机换热器温度骤升给用户带来的高温不舒适性。
图6为本申请一示例性实施例示出的空调除冷凝水的控制装置的结构图。
如图6所示,本申请提供的空调除冷凝水的控制装置600,包括:
开始单元610,用于获取除冷凝水开始指令;并根据除冷凝水开始指令,关闭空调的外机中的压缩机;
除冷凝水单元620,用于在预设的第一时间后,控制空调由当前的制冷模式转换为制热模式,同时,关闭空调的内机中的风机,并开启压缩机,以实现空调在制热模式下产生的热空气蒸发掉内机中换热器的翅片上的冷凝水;
除冷凝水单元620,还用于在确定对空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭压缩机,并开启风机;
结束单元630,用于在预设的第二时间后,控制空调由制热模 式恢复为制冷模式,同时,开启压缩机。
除冷凝水单元620,还用于:获取空调的内机中换热器的第一温度。
除冷凝水单元620,具体用于在第一温度满足预设的冷凝水去除完成条件时,关闭压缩机,并开启风机。
除冷凝水单元620,具体用于当第一温度达到第一预设阈值时开始计时,得到第一计时时长;
当第一温度达到第二预设阈值时开始计时,得到第二计时时长;
若确定第一计时时长达到第三预设阈值,或者确定第二计时时长达到第四预设阈值,则关闭压缩机,并开启风机。
其中,第一预设阈值小于第二预设阈值;第三预设阈值大于第四预设阈值。
除冷凝水单元620,具体用于利用空调中的四通阀,控制空调由当前的制冷模式转换为制热模式。
结束单元630,具体用于利用四通阀,控制空调由制热模式转换为制冷模式。
本申请实施例提供的空调除冷凝水的控制装置,可用于执行上述任一实施例中的空调除冷凝水的控制方法,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过处理元件调用软件的形式实现,部分单元通过硬件的形式实现。此外,这些单元全部或部分可以集成在一起,也可以独立实现。这里的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
图7为本申请实施例提供的空调的结构示意图。如图7所示,该空调可以包括:处理器71、存储器72及存储在存储器72上并 可在处理器71上运行的计算机程序指令,处理器71执行计算机程序指令时实现前述任一实施例提供的空调除冷凝水的控制方法。
可选的,该空调还可以包括与其他设备进行交互的接口。
可选的,该空调的上述各个器件之间可以通过系统总线连接。
存储器72可以是单独的存储单元,也可以是集成在处理器中的存储单元。处理器的数量为一个或者多个。
应理解,处理器71可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所申请的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
系统总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。系统总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。存储器可能包括随机存取存储器(random access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(read-only memory,ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
本申请实施例提供的空调,可用于执行上述任一方法实施例提供的空调除冷凝水的控制方法,其实现原理和技术效果类似,在此不再赘述。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行上述空调除冷凝水的控制方法。
上述的计算机可读存储介质,上述可读存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器,电可擦除可编程只读存储器,可擦除可编程只读存储器,可编程只读存储器,只读存储器,磁存储器,快闪存储器,磁盘或光盘。可读存储介质可以是通用或专用计算机能够存取的任何可用介质。
可选的,将可读存储介质耦合至处理器,从而使处理器能够从该可读存储介质读取信息,且可向该可读存储介质写入信息。当然,可读存储介质也可以是处理器的组成部分。处理器和可读存储介质可以位于专用集成电路(Application Specific Integrated Circuits,ASIC)中。当然,处理器和可读存储介质也可以作为分立组件存在于设备中。
本申请实施例还提供一种计算机程序产品,该计算机程序货品包括计算机程序,该计算机程序存储在计算机可读存储介质中,至少一个处理器可以从该计算机可读存储介质中读取该计算机程序,至少一个处理器执行计算机程序时可实现上述空调除冷凝水的控制方法。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种空调除冷凝水的控制方法,其特征在于,所述方法包括:
    获取除冷凝水开始指令;并根据所述除冷凝水开始指令,关闭所述空调的外机中的压缩机;
    在预设的第一时间后,控制所述空调由当前的制冷模式转换为制热模式,同时,关闭所述空调的内机中的风机,并开启所述压缩机,以实现所述空调在制热模式下产生的热空气蒸发掉所述内机中换热器的翅片上的冷凝水;
    在确定对所述空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭所述压缩机,并开启所述风机;
    在预设的第二时间后,控制所述空调由制热模式恢复为制冷模式,同时,开启所述压缩机。
  2. 根据权利要求1所述的方法,其特征在于,所述关闭所述空调的内机中的风机,并开启所述压缩机之后,所述方法还包括:
    获取所述空调的内机中换热器的第一温度;
    则所述在确定对所述空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭所述压缩机,并开启所述风机,包括:
    在所述第一温度满足预设的冷凝水去除完成条件时,关闭所述压缩机,并开启所述风机。
  3. 根据权利要求2所述的方法,其特征在于,所述在所述第一温度满足预设的冷凝水去除完成条件时,关闭所述压缩机,并开启所述风机,包括:
    当所述第一温度达到第一预设阈值时开始计时,得到第一计时时长;
    当所述第一温度达到第二预设阈值时开始计时,得到第二计时时长;
    若确定所述第一计时时长达到第三预设阈值,或者确定所述第二计时时长达到第四预设阈值,则关闭所述压缩机,并开启所述风机;
    其中,所述第一预设阈值小于所述第二预设阈值;所述第三预设阈值大于所述第四预设阈值。
  4. 根据权利要求1所述的方法,其特征在于,所述控制所述空调由当前的制冷模式转换为制热模式,包括:
    利用所述空调中的四通阀,控制所述空调由当前的制冷模式转换为制热模式;
    所述控制所述空调由制热模式转换为制冷模式,包括:
    利用所述四通阀,控制所述空调由制热模式转换为制冷模式。
  5. 一种空调除冷凝水的控制装置,其特征在于,所述装置包括:
    开始单元,用于获取除冷凝水开始指令;并根据所述除冷凝水开始指令,关闭所述空调的外机中的压缩机;
    除冷凝水单元,用于在预设的第一时间后,控制所述空调由当前的制冷模式转换为制热模式,同时,关闭所述空调的内机中的风机,并开启所述压缩机,以实现所述空调在制热模式下产生的热空气蒸发掉所述内机中换热器的翅片上的冷凝水;
    所述除冷凝水单元,还用于在确定对所述空调的内机中的换热器的翅片上的冷凝水完成去除处理后,关闭所述压缩机,并开启所述风机;
    结束单元,用于在预设的第二时间后,控制所述空调由制热模式恢复为制冷模式,同时,开启所述压缩机。
  6. 根据权利要求5所述的装置,其特征在于,所述除冷凝水单元还用于:获取所述空调的内机中换热器的第一温度;
    所述除冷凝水单元,具体用于在所述第一温度满足预设的冷凝水去除完成条件时,关闭所述压缩机,并开启所述风机。
  7. 根据权利要求6所述的装置,其特征在于,所述除冷凝水单元,具体用于当所述第一温度达到第一预设阈值时开始计时,得到第一计时时长;
    当所述第一温度达到第二预设阈值时开始计时,得到第二计时时长;
    若确定所述第一计时时长达到第三预设阈值,或者确定所述第二计时时长达到第四预设阈值,则关闭所述压缩机,并开启所述风机;
    其中,所述第一预设阈值小于所述第二预设阈值;所述第三预设阈值大于所述第四预设阈值。
  8. 一种空调,其特征在于,包括存储器和处理器;其中,
    所述存储器,用于存储计算机程序;
    所述处理器,用于读取所述存储器存储的计算机程序,并根据所述存储器中的计算机程序执行上述权利要求1-5任一项所述的方法。
  9. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现上述权利要求1-5任一项所述的方法。
  10. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时,实现上述权利要求1-5任一项所述的方法。
PCT/CN2023/077512 2022-08-09 2023-02-21 空调除冷凝水的控制方法、装置及空调 WO2024031955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210950475.1A CN115540172A (zh) 2022-08-09 2022-08-09 空调除冷凝水的控制方法、装置及空调
CN202210950475.1 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024031955A1 true WO2024031955A1 (zh) 2024-02-15

Family

ID=84723388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077512 WO2024031955A1 (zh) 2022-08-09 2023-02-21 空调除冷凝水的控制方法、装置及空调

Country Status (2)

Country Link
CN (1) CN115540172A (zh)
WO (1) WO2024031955A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115540172A (zh) * 2022-08-09 2022-12-30 青岛海尔空调器有限总公司 空调除冷凝水的控制方法、装置及空调

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010443A1 (ja) * 2003-07-24 2005-02-03 Matsushita Electric Industrial Co., Ltd. 多室形空気調和機とその制御方法
CN107525222A (zh) * 2017-08-01 2017-12-29 青岛海尔空调器有限总公司 一种空调防凝露的控制方法及装置
CN109506336A (zh) * 2018-11-19 2019-03-22 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN109812919A (zh) * 2019-02-22 2019-05-28 奥克斯空调股份有限公司 防霉控制方法、装置及空调器
CN111023446A (zh) * 2019-10-30 2020-04-17 宁波奥克斯电气股份有限公司 一种防凝露的控制方法、控制装置、存储介质及空调
CN115540172A (zh) * 2022-08-09 2022-12-30 青岛海尔空调器有限总公司 空调除冷凝水的控制方法、装置及空调

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010443A1 (ja) * 2003-07-24 2005-02-03 Matsushita Electric Industrial Co., Ltd. 多室形空気調和機とその制御方法
CN107525222A (zh) * 2017-08-01 2017-12-29 青岛海尔空调器有限总公司 一种空调防凝露的控制方法及装置
CN109506336A (zh) * 2018-11-19 2019-03-22 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN109812919A (zh) * 2019-02-22 2019-05-28 奥克斯空调股份有限公司 防霉控制方法、装置及空调器
CN111023446A (zh) * 2019-10-30 2020-04-17 宁波奥克斯电气股份有限公司 一种防凝露的控制方法、控制装置、存储介质及空调
CN115540172A (zh) * 2022-08-09 2022-12-30 青岛海尔空调器有限总公司 空调除冷凝水的控制方法、装置及空调

Also Published As

Publication number Publication date
CN115540172A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2022247314A1 (zh) 空调的控制方法、装置、设备、介质及程序产品
WO2024031955A1 (zh) 空调除冷凝水的控制方法、装置及空调
WO2022121351A1 (zh) 一种空调化霜控制方法、装置、存储介质及空调
WO2021073025A1 (zh) 空调控制方法、装置及计算机可读存储介质
WO2022160653A1 (zh) 用于空调自清洁的控制方法及装置、空调
WO2015021853A1 (zh) 一种变频空调的控制方法、控制装置及变频空调
CN112432329B (zh) 空调机组的控制方法、装置及空调系统
WO2021073034A1 (zh) 多联机化霜方法、装置、多联机空调系统及可读存储介质
WO2022160652A1 (zh) 用于空调的控制方法及装置、空调
WO2022242144A1 (zh) 用于空调自清洁的控制方法及装置、空调
JP2020034183A (ja) 空気調和機
WO2023103411A1 (zh) 用于空调控制的方法、装置、空调及存储介质
WO2022242166A1 (zh) 蓄热空调扇蓄热控制方法、蓄热空调扇与存储介质
WO2023103402A1 (zh) 用于空调控制的方法、装置、空调及存储介质
WO2024001534A1 (zh) 空调系统的室外机控制方法、装置、室外机和空调系统
WO2022257523A1 (zh) 空调控制方法、装置及设备
WO2022160649A1 (zh) 用于空调自清洁的控制方法及装置、空调
WO2024027129A1 (zh) 空调过热保护的控制方法、装置和空调
WO2024093393A1 (zh) 空调器及其控制方法
WO2023241068A1 (zh) 一种空调控制方法、系统及存储介质
JP2004003721A (ja) 空気調和機の運転制御方法
WO2023138092A1 (zh) 用于控制空调的方法、装置及空调
CN114593502A (zh) 空调器的除霜控制方法、控制器、空调器及存储介质
CN114135977A (zh) 空调器制热控制方法、装置及空调器
CN113028518A (zh) 一种空调室外机自动除尘方法和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851191

Country of ref document: EP

Kind code of ref document: A1