WO2023241068A1 - 一种空调控制方法、系统及存储介质 - Google Patents

一种空调控制方法、系统及存储介质 Download PDF

Info

Publication number
WO2023241068A1
WO2023241068A1 PCT/CN2023/074928 CN2023074928W WO2023241068A1 WO 2023241068 A1 WO2023241068 A1 WO 2023241068A1 CN 2023074928 W CN2023074928 W CN 2023074928W WO 2023241068 A1 WO2023241068 A1 WO 2023241068A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
defrost
control method
air conditioning
Prior art date
Application number
PCT/CN2023/074928
Other languages
English (en)
French (fr)
Inventor
赵江龙
黄罡
孟相宏
闫红波
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023241068A1 publication Critical patent/WO2023241068A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/009Indoor units, e.g. fan coil units characterised by heating arrangements
    • F24F1/0093Indoor units, e.g. fan coil units characterised by heating arrangements with additional radiant heat-discharging elements, e.g. electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioning control, and in particular to an air conditioning control method, system and storage medium.
  • This application provides an air conditioning control method, system and storage medium to solve the defects of existing air conditioning defrosting processes that cause indoor environment temperature fluctuations, achieve small indoor temperature fluctuations during air conditioning defrosting, and improve user experience.
  • This application provides an air conditioning control method, including:
  • a temperature control instruction is generated, which is used to turn on the indoor electric auxiliary heat and adjust the indoor fan speed;
  • a work instruction is generated, and the work instruction is used to control the air conditioner to enter the normal operating mode.
  • determining that the air conditioner is in defrost mode specifically includes:
  • the air conditioner is in defrost mode, which specifically includes:
  • a work instruction is generated, which specifically includes:
  • the compressor stops during the preset time period and the outdoor fan runs
  • the compressor starts, the outdoor fan stops, the indoor electric heating is turned on, and the indoor fan adjusts its speed according to the evaporator temperature.
  • the compressor starts, the outdoor fan stops, and the indoor fan adjusts the speed according to the evaporator temperature, specifically including:
  • the indoor fan runs at the minimum speed
  • the indoor fan runs at the maximum speed.
  • the work instruction is used to control the air conditioner to enter a normal working mode, specifically including:
  • the defrosting mode After reaching the temperature and maintenance time of the outdoor heat exchanger that meets the second judgment condition, the defrosting mode is exited and the system switches to the normal operating mode.
  • This application also provides an air conditioning control system, which includes:
  • the defrost working module generates temperature control instructions when it is determined that the air conditioner is in defrost mode.
  • the temperature control instructions are used to turn on the indoor electric auxiliary heat and adjust the indoor fan speed;
  • the defrost end module generates a work instruction when it is determined that the air conditioner has ended the defrost mode, and the work instruction is used to control the air conditioner to enter the normal operating mode.
  • This application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, it implements any of the above air conditioning control methods. .
  • This application also provides a non-transitory computer-readable storage medium on which a computer program is stored When the computer program is executed by the processor, it implements any one of the above air conditioning control methods.
  • the present application also provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the computer program When executed by a processor, it implements any one of the above air conditioning control methods.
  • This application provides an air conditioning control method, system and storage medium. After entering the defrost mode, the temperature detected by the defrost sensor and the ambient temperature of the outdoor unit are judged. After entering the defrost mode, the indoor electric auxiliary heat and the indoor fan speed control are turned on. , to ensure that the indoor temperature will not fluctuate significantly and cause the temperature to drop, so that the existing temperature can be maintained indoors and the user's experience can be improved.
  • FIG 1 is one of the schematic flow diagrams of an air conditioning control method provided by this application.
  • FIG. 2 is the second schematic flow diagram of an air conditioning control method provided by this application.
  • FIG. 3 is the third schematic flow chart of an air conditioning control method provided by this application.
  • Figure 4 is the fourth schematic flow chart of an air conditioning control method provided by this application.
  • FIG. 5 is a schematic diagram of module connections of an air conditioning control system provided by this application.
  • Figure 6 is a schematic structural diagram of an electronic device provided by this application.
  • the air conditioner will automatically defrost after working for a period of time in winter to ensure the normal operation of the subsequent air conditioner. No heating is performed during the defrosting process, which can easily cause the indoor ambient temperature to drop.
  • the indoor electric auxiliary heat can be started, and the indoor fan speed can be adjusted according to the evaporator temperature to continue heating and ensure that the indoor temperature does not fluctuate significantly.
  • Obtaining the preset first judgment condition and determining that the air conditioner is in defrost mode specifically includes the following steps.
  • Determine that the air conditioner is in defrost mode including: determining the temperature range of the dew point temperature;
  • Te is used to represent the defrost sensor detection temperature
  • Tes is used to represent the condensation point temperature
  • Ta is used to represent the evaporator temperature
  • Tao is used to represent the outdoor unit ambient temperature.
  • the first judgment condition is:
  • is a fixed value, generally 6.
  • controlling the air conditioner to enter the defrost mode will help to accurately determine when to perform indoor auxiliary heating.
  • a work instruction is generated, which specifically includes the following steps.
  • the compressor first stops running for one minute, the outdoor fan runs at high speed for 50 seconds, and the four-way valve is controlled to close. After 55 seconds, the outdoor fan stops running.
  • the compressor starts, the electronic expansion valve enters the reference opening, the outdoor fan stops, the indoor electric heating is turned on, and the indoor fan adjusts its speed according to the evaporator temperature.
  • the compressor starts, the outdoor fan stops, and the indoor fan adjusts the speed according to the evaporator temperature, including:
  • the indoor fan runs at the minimum speed
  • the indoor fan runs at the maximum speed.
  • the work instruction is used to control the air conditioner to enter the normal working mode, which specifically includes the following steps.
  • the second determination conditions include:
  • Condition 1 The outdoor heat exchanger temperature exceeds 5 degrees for 60 seconds continuously;
  • Condition 3 Defrost operation for 9 minutes continuously (calculating 1 minute before and after defrost, 11 minutes in total).
  • the second judgment condition is met, and the air conditioner is controlled to exit the defrost mode.
  • the compressor stops, the four-way valve opens 50 seconds after the outdoor fan is turned on, and the compressor operates according to the normal startup process and returns to the normal operating mode 60 seconds after the outdoor fan is turned on.
  • the second determination condition it is possible to accurately determine when it is appropriate to exit the defrost mode, accurately control the operating status of the air conditioner, defrost in time and avoid huge fluctuations in indoor temperature.
  • This application provides an air conditioning control method. After entering the defrost mode, the temperature detected by the defrost sensor and the ambient temperature of the outdoor unit are judged. After entering the defrost mode, the indoor electric auxiliary heat and the indoor fan speed control are turned on to ensure that the indoor temperature does not change. It will fluctuate significantly, causing the temperature to drop, allowing the existing temperature to be maintained indoors and improving the user experience.
  • This application also discloses an air conditioning control system, which includes:
  • the defrost working module 110 generates a temperature control instruction when it is determined that the air conditioner is in defrost mode.
  • the temperature control instruction is used to turn on the indoor electric auxiliary heat and adjust the indoor fan speed;
  • the defrost end module 120 generates a work instruction when it is determined that the air conditioner has ended the defrost mode, and the work instruction is used to control the air conditioner to enter the normal operating mode.
  • the defrost working module 110 obtains the temperature detected by the defrost sensor and the ambient temperature of the outdoor unit;
  • the air conditioner is in defrost mode, which specifically includes:
  • the dew point corresponds to different defrosting times in different temperature ranges. Adjust the defrosting time based on the actual situation.
  • controlling the air conditioner to enter the defrost mode will help to accurately determine when to perform indoor auxiliary heating.
  • the compressor stops and the outdoor fan runs within a preset time period
  • the compressor starts, the outdoor fan stops, the indoor electric heating is turned on, and the indoor fan adjusts its speed according to the evaporator temperature;
  • the indoor fan runs at the minimum speed
  • the indoor fan runs at the maximum speed.
  • the indoor electric heating Since the indoor electric heating is turned on, heated air can be continuously released into the room.
  • the indoor fan speed is adjusted according to the evaporator so that the heated air can be released evenly to the outside, maintaining the stability of the indoor environment and avoiding large fluctuations.
  • the defrost end module 120 obtains the outdoor heat exchanger temperature and maintenance time
  • the defrosting mode After reaching the temperature and maintenance time of the outdoor heat exchanger that meets the second judgment condition, the defrosting mode is exited and the system switches to the normal operating mode.
  • the outdoor heat exchanger When the outdoor heat exchanger is set to work and maintains a certain temperature for a long time, it can be judged to end the defrost mode and switch back to the normal operating mode. Through the second determination condition, it is possible to accurately determine when it is appropriate to exit the defrost mode, accurately control the operating status of the air conditioner, defrost in time and avoid huge fluctuations in indoor temperature.
  • Figure 6 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 610, a communications interface (Communications Interface) 620, a memory (memory) 630 and a communication bus 640.
  • the processor 610, the communication interface 620, and the memory 630 complete communication with each other through the communication bus 640.
  • the processor 610 may call logical instructions in the memory 630 to execute an air conditioning control method. The method includes: when it is determined that the air conditioner is in the defrost mode, generating a temperature control instruction for starting the defrosting mode. Turn on the indoor electric auxiliary heating and adjust the indoor fan speed;
  • a work instruction is generated, and the work instruction is used to control the air conditioner to enter the normal operating mode.
  • the above-mentioned logical instructions in the memory 630 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • the present application also provides a computer program product.
  • the computer program product includes a computer program.
  • the computer program can be stored on a non-transitory computer-readable storage medium.
  • the computer can Executing an air conditioning control method provided by each of the above methods, the method includes: when it is determined that the air conditioner is in defrost mode, generating a temperature control instruction, the temperature control instruction is used to turn on the indoor electric auxiliary heat and adjust the indoor fan speed ;
  • a work instruction is generated, and the work instruction is used to control the air conditioner to enter the normal operating mode.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by a processor to execute an air conditioning control method provided by each of the above methods.
  • the method includes: generating a temperature control instruction when it is determined that the air conditioner is in defrost mode, and the temperature control instruction is used to turn on indoor electric auxiliary heating and adjust the indoor fan speed;
  • a work instruction is generated, and the work instruction is used to control the air conditioner to enter the normal operating mode.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. A person of ordinary skill in the art, without exerting creative efforts, It can be understood and implemented.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调控制方法,包括:在确定空调处于除霜模式的情况下,生成温控指令,温控指令用于开启室内电辅热并调节室内风机转速;在确定空调结束除霜模式的情况下,生成工作指令,工作指令用于控制空调转入正常工作模式。还提供了一种空调控制系统、实现该空调控制方法的电子设备、存储介质及计算机程序产品。解决了现有空调除霜过程中导致室内环境温度波动的缺陷,实现在空调除霜时保持室内温度的波动小,提升用户体验。

Description

一种空调控制方法、系统及存储介质
相关申请的交叉引用
本申请要求于2022年06月14日提交的申请号为202210674596.8,名称为“一种空调控制方法、系统及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调控制技术领域,尤其涉及一种空调控制方法、系统及存储介质。
背景技术
在冬季制热过程中,由于室外机的换热器吸热过程中会在表面结霜,结霜又会降低室外换热器的换热效果,因此现有空调都设有除霜程序,根据室外换热器的结霜情况进行除霜。除霜过程相当于空调制冷循环,同时为了防止室内吹冷风,还会将室内风机停转。虽然这种方式可以避免冷风吹进室内侧,但由于室内换热器温度减低,依然会引起室内的温度波动。在实测环境温度模拟时,除霜过程中室内平均温度会波动3~6℃左右。因没有制热和室内换热器吸热,导致室内温度降低,影响用户体验。
发明内容
本申请提供一种空调控制方法、系统及存储介质,用以解决现有空调除霜过程中导致室内环境温度波动的缺陷,实现在空调除霜时保持室内温度的波动小,提升用户体验。
本申请提供一种空调控制方法,包括:
在确定空调处于除霜模式的情况下,生成温控指令,所述温控指令用于开启室内电辅热并调节室内风机转速;
在确定所述空调结束除霜模式的情况下,生成工作指令,所述工作指令用于控制所述空调转入正常工作模式。
根据本申请提供的一种空调控制方法,所述确定空调处于除霜模式,具体包括:
获取除霜传感器检测温度和室外机环境温度;
根据所述除霜传感器检测温度和室外机环境温度计算凝露点温度;
若所述凝露点温度满足第一判定条件,则确定空调处于除霜模式。
根据本申请提供的一种空调控制方法,所述凝露点温度满足第一判定条件,则确定空调处于除霜模式,具体包括:
确定凝露点温度所处的温度范围;
根据温度范围确定进入除霜模式,并匹配预设的除霜工作间隔时间。
根据本申请提供的一种空调控制方法,在确定所述空调结束除霜模式的情况下,生成工作指令,具体包括:
压缩机在预设时间段内停转,室外风机运转;
预设时间段结束后,压缩机启动,室外风机停转,打开室内电加热,室内风机根据蒸发器温度调整转速。
根据本申请提供的一种空调控制方法,所述预设时间段结束后,压缩机启动,室外风机停转,室内风机根据蒸发器温度调整转速,具体包括:
当蒸发器温度低于第一温度阈值时,室内风机按照最小转速运行;
当蒸发器温度大于第二温度阈值时,室内风机按照最大转速运行。
根据本申请提供的一种空调控制方法,所述工作指令用于控制所述空调转入正常工作模式,具体包括:
获取室外热交换器温度及维持时间;
达到符合第二判定条件的室外热交换机的温度及维持时间后,退出除霜模式,转为正常工作模式。
本申请还提供一种空调控制系统,所述系统包括:
除霜工作模块,在确定空调处于除霜模式的情况下,生成温控指令,所述温控指令用于开启室内电辅热并调节室内风机转速;
除霜结束模块,在确定所述空调结束除霜模式的情况下,生成工作指令,所述工作指令用于控制所述空调转入正常工作模式。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述空调控制方法。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程 序,该计算机程序被处理器执行时实现如上述任一种所述空调控制方法。
本申请还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述空调控制方法。
本申请提供的一种空调控制方法、系统及存储介质,通过除霜传感器检测温度和室外机环境温度判断进入除霜模式后,在进入除霜模式后通过开启室内电辅热和室内风机转速控制,保证室内温度不会大幅波动导致温度下降,使室内能维持现有温度,提升用户的使用体验。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的一种空调控制方法的流程示意图之一;
图2是本申请提供的一种空调控制方法的流程示意图之二;
图3是本申请提供的一种空调控制方法的流程示意图之三;
图4是本申请提供的一种空调控制方法的流程示意图之四;
图5是本申请提供的一种空调控制系统的模块连接示意图;
图6是本申请提供的电子设备的结构示意图。
附图标记:
110:除霜工作模块;120:除霜结束模块;
610:处理器;620:通信接口;630:存储器;640:通信总线。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1-图4描述本申请的一种空调控制方法,包括下述步骤。
S100、在确定空调处于除霜模式的情况下,生成温控指令,所述温控 指令用于开启室内电辅热并调节室内风机转速。
S200、在确定所述空调结束除霜模式的情况下,生成工作指令,所述工作指令用于控制所述空调转入正常工作模式。
正常空调在冬季工作一段时间后会进行自动除霜,以保证后续空调的正常运转。在除霜过程中不再进行制热,容易导致室内环境温度下降。本申请中在判定空调进入除霜模式后,能够启动室内电辅热,并根据蒸发器温度调整室内风机的转速,实现继续制热,保证室内温度不出现大幅度波动。
获取预设的第一判定条件,确定空调处于除霜模式,具体包括下述步骤。
S101、获取除霜传感器检测温度和室外机环境温度。
S102、根据所述除霜传感器检测温度和室外机环境温度计算凝露点温度。
S103、若所述凝露点温度满足第一判定条件,则确定空调处于除霜模式。
确定空调处于除霜模式,具体包括:确定凝露点温度所处的温度范围;
根据温度范围确定进入除霜模式,并匹配预设的除霜工作间隔时间。
本申请中,用Te表示除霜传感器检测温度,用Tes表示凝露点温度,用Ta表示蒸发器温度,用Tao表示室外机环境温度。
第一判定条件为:
压缩机连续运转t分钟后,开始通过除霜传感器检测温度Te和室外机环境温度Tao,连续2分钟满足以下任意条件,认为满足结霜条件:
Tes(凝露点温度)=C×Tao-α,Te≤Tes。
其中:C:Tao<0℃,C=0.8(0XFD),Tao≥0℃,C=0.6(0XFC),
α为固定值,一般为6。
当Tes≥-5℃范围内的时候,则Te≤-5℃且两次除霜的间隔时间是t1分钟(除霜基准时间StandTime);
当C×Tao-α计算的数据在-10℃≤C×Tao-α<-5℃范围内的时候,则Te≤Tes且两次除霜的间隔时间是t2分钟(除霜基准时间(StandTime));
当C×Tao-α计算的数据在-13℃<C×Tao-α≤-10℃范围内的时 候,则Te≤Tes且两次除霜的间隔时间是t3分钟(与除霜基准时间差20分Def1.放在(0XF6)中);
当C×Tao-α计算的数据在-15℃≤C×Tao-α≤-13℃范围内的时候,则Te≤Tes且两次除霜的间隔时间是t4分钟(与除霜基准时间差30分Def2,放在(0XF7)中);
当C×Tao-α计算的数据在C×Tao-α<-15℃范围内的时候,则Te≤-15℃且两次除霜的间隔时间是75分钟(与除霜基准时间差30分(0XF7)Def2)。
在准确判断除霜传感器检测温度和室外机环境温度是否满足第一判定条件后,控制空调进入除霜模式,有助于后续准确判断何时进行室内辅助加热。
在确定所述空调结束除霜模式的情况下,生成工作指令,具体包括下述步骤。
S201、压缩机在预设时间段内停转,室外风机运转。
S202、预设时间段结束后,压缩机启动,室外风机停转,打开室内电加热,室内风机根据蒸发器温度调整转速。
在本申请中,空调进入除霜模式后,压缩机先停止运行一分钟,室外风机高速运转50秒,控制四通阀关闭,55秒后,室外风机停止运转。
一分钟后,压缩机启动,电子膨胀阀进入基准开度,室外风机停转,室内电加热打开,室内风机根据蒸发器温度调整转速。
预设时间段结束后,压缩机启动,室外风机停转,室内风机根据蒸发器温度调整转速,具体包括:
当蒸发器温度低于第一温度阈值时,室内风机按照最小转速运行;
当蒸发器温度大于第二温度阈值时,室内风机按照最大转速运行。
本申请中,根据蒸发器温度调整室内风机转速具体包括:
Ta≤-10℃时,        室内风机转速f=V1(最小风机转速)
-10℃<Ta≤0℃     室内风机转速f=V2
0℃<Ta≤10℃      室内风机转速f=V3
10℃<Ta≤23℃      室内风机转速f=V4
23℃<Ta            室内风机转速f=V5(最大风机转速)
除霜期间压机电流、压机吐气等保护有效,除霜期间压机因保护或故障停机则退出除霜。
进入除霜,必须保证最小运行时间2分钟后才能退出除霜。
通过打开电加热,实现了在除霜期间室内也能吹热风,并根据蒸发器温度调整室内风机转速,使室内温度保持稳定,避免产生较大波动。
工作指令用于控制所述空调转入正常工作模式,具体包括下述步骤。
S301、获取室外热交换器温度及维持时间。
S302、达到符合第二判定条件的室外热交换机的温度及维持时间后,退出除霜模式,转为正常工作模式。
在本申请中,第二判定条件包括:
条件1:室外热交换器温度连续60秒超过5度以上;
条件2:室外热交换器温度连续20秒超过10度以上;
条件3:连续9分除霜运行(计算上除霜前后的各1分钟,共11分钟)。
满足以上三个条件中的任一条,即符合第二判定条件,控制空调退出除霜模式。压缩机停机,室外风机开启50秒后四通阀打开,室外风机开启60秒后压缩机按照正常启动过程运行,恢复正常的运行模式。
通过第二判定条件,能够准确判断出何时适合退出除霜模式,准确把控空调的运行状态,能够及时除霜又能避免室内温度发生巨大波动。
本申请提供的一种空调控制方法,通过除霜传感器检测温度和室外机环境温度判断进入除霜模式后,在进入除霜模式后通过开启室内电辅热和室内风机转速控制,保证室内温度不会大幅波动导致温度下降,使室内能维持现有温度,提升用户的使用体验。
本申请还公开了一种空调控制系统,所述系统包括:
除霜工作模块110,在确定空调处于除霜模式的情况下,生成温控指令,所述温控指令用于开启室内电辅热并调节室内风机转速;
除霜结束模块120,在确定所述空调结束除霜模式的情况下,生成工作指令,所述工作指令用于控制所述空调转入正常工作模式。
除霜工作模块110,获取除霜传感器检测温度和室外机环境温度;
根据所述除霜传感器检测温度和室外机环境温度计算凝露点温度;
若所述凝露点温度满足第一判定条件,则确定空调处于除霜模式。
凝露点温度满足第一判定条件,则确定空调处于除霜模式,具体包括:
确定凝露点温度所处的温度范围;
根据温度范围确定进入除霜模式,并匹配预设的除霜工作间隔时间。
凝露点在不同的温度范围内对应的除霜时间不同,根据实际情况在除霜基准时间上进行调整除霜时长。
在准确判断除霜传感器检测温度和室外机环境温度是否满足第一判定条件后,控制空调进入除霜模式,有助于后续准确判断何时进行室内辅助加热。
在空调进入除霜模式后,压缩机在预设时间段内停转,室外风机运转;
预设时间段结束后,压缩机启动,室外风机停转,打开室内电加热,室内风机根据蒸发器温度调整转速;
当蒸发器温度低于第一温度阈值时,室内风机按照最小转速运行;
当蒸发器温度大于第二温度阈值时,室内风机按照最大转速运行。
由于室内电加热开启,所以能够持续向室内释放加热空气,根据蒸发器调整室内风机的转速,使加热的空气能够均匀向外释放,保持室内环境屋内的的稳定,避免大幅波动。
除霜结束模块120,获取室外热交换器温度及维持时间;
达到符合第二判定条件的室外热交换机的温度及维持时间后,退出除霜模式,转为正常工作模式。
当室外热交换机工作设定时长切保持一定温度后,可以判断结束除霜模式,转换回正常工作模式。通过第二判定条件,能够准确判断出何时适合退出除霜模式,准确把控空调的运行状态,能够及时除霜又能避免室内温度发生巨大波动。
图6示例了一种电子设备的实体结构示意图,如图6所示,该电子设备可以包括:处理器(processor)610、通信接口(Communications Interface)620、存储器(memory)630和通信总线640,其中,处理器610,通信接口620,存储器630通过通信总线640完成相互间的通信。处理器610可以调用存储器630中的逻辑指令,以执行一种空调控制方法,该方法包括:在确定空调处于除霜模式的情况下,生成温控指令,所述温控指令用于开 启室内电辅热并调节室内风机转速;
在确定所述空调结束除霜模式的情况下,生成工作指令,所述工作指令用于控制所述空调转入正常工作模式。
此外,上述的存储器630中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的一种空调控制方法,该方法包括:在确定空调处于除霜模式的情况下,生成温控指令,所述温控指令用于开启室内电辅热并调节室内风机转速;
在确定所述空调结束除霜模式的情况下,生成工作指令,所述工作指令用于控制所述空调转入正常工作模式。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的一种空调控制方法,该方法包括:在确定空调处于除霜模式的情况下,生成温控指令,所述温控指令用于开启室内电辅热并调节室内风机转速;
在确定所述空调结束除霜模式的情况下,生成工作指令,所述工作指令用于控制所述空调转入正常工作模式。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况 下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种空调控制方法,包括:
    在确定空调处于除霜模式的情况下,生成温控指令,所述温控指令用于开启室内电辅热并调节室内风机转速;
    在确定所述空调结束除霜模式的情况下,生成工作指令,所述工作指令用于控制所述空调转入正常工作模式。
  2. 根据权利要求1所述的空调控制方法,其中,所述确定空调处于除霜模式,包括:
    获取除霜传感器检测温度和室外机环境温度;
    根据所述除霜传感器检测温度和室外机环境温度计算凝露点温度;
    若所述凝露点温度满足第一判定条件,则确定空调处于除霜模式。
  3. 根据权利要求2所述的空调控制方法,其中,所述凝露点温度满足第一判定条件,则确定空调处于除霜模式,包括:
    确定凝露点温度所处的温度范围;
    根据温度范围确定进入除霜模式,并匹配预设的除霜工作间隔时间。
  4. 根据权利要求1所述的空调控制方法,其中,在确定所述空调结束除霜模式的情况下,生成工作指令,包括:
    压缩机在预设时间段内停转,室外风机运转;
    预设时间段结束后,压缩机启动,室外风机停转,打开室内电加热,室内风机根据蒸发器温度调整转速。
  5. 根据权利要求4所述的空调控制方法,其中,所述预设时间段结束后,压缩机启动,室外风机停转,室内风机根据蒸发器温度调整转速,包括:
    当蒸发器温度低于第一温度阈值时,室内风机按照最小转速运行;
    当蒸发器温度大于第二温度阈值时,室内风机按照最大转速运行。
  6. 根据权利要求1所述的空调控制方法,其中,所述工作指令用于控制所述空调转入正常工作模式,包括:
    获取室外热交换器温度及维持时间;
    达到符合第二判定条件的室外热交换机的温度及维持时间后,退出 除霜模式,转为正常工作模式。
  7. 一种空调控制系统,包括:
    除霜工作模块,在确定空调处于除霜模式的情况下,生成温控指令,所述温控指令用于开启室内电辅热并调节室内风机转速;
    除霜结束模块,在确定所述空调结束除霜模式的情况下,生成工作指令,所述工作指令用于控制所述空调转入正常工作模式。
  8. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1至6任一项所述一种空调控制方法。
  9. 一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述一种空调控制方法。
  10. 一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述一种空调控制方法。
PCT/CN2023/074928 2022-06-14 2023-02-08 一种空调控制方法、系统及存储介质 WO2023241068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210674596.8A CN115111658A (zh) 2022-06-14 2022-06-14 一种空调控制方法、系统及存储介质
CN202210674596.8 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023241068A1 true WO2023241068A1 (zh) 2023-12-21

Family

ID=83328243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074928 WO2023241068A1 (zh) 2022-06-14 2023-02-08 一种空调控制方法、系统及存储介质

Country Status (2)

Country Link
CN (1) CN115111658A (zh)
WO (1) WO2023241068A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111658A (zh) * 2022-06-14 2022-09-27 青岛海尔空调器有限总公司 一种空调控制方法、系统及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109323372A (zh) * 2018-10-17 2019-02-12 青岛海尔空调器有限总公司 空调器除霜控制方法
CN109916000A (zh) * 2019-03-20 2019-06-21 珠海格力电器股份有限公司 一种空调的除霜控制方法、装置、空调及存储介质
CN110260493A (zh) * 2019-07-03 2019-09-20 芜湖美智空调设备有限公司 运行控制方法及控制装置、空调器和计算机可读存储介质
CN110470014A (zh) * 2019-08-03 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法及装置、空调
CN110469995A (zh) * 2019-07-28 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法、装置及空调
CN113531777A (zh) * 2021-07-07 2021-10-22 青岛海尔空调器有限总公司 空调器的除霜控制方法、装置及空调器
US20210348789A1 (en) * 2018-12-11 2021-11-11 Mitsubishi Electric Corporation Air-conditioning apparatus
CN114076384A (zh) * 2020-08-20 2022-02-22 广东美的制冷设备有限公司 空调设备的控制方法、系统、空调设备和存储介质
CN115111658A (zh) * 2022-06-14 2022-09-27 青岛海尔空调器有限总公司 一种空调控制方法、系统及存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109323372A (zh) * 2018-10-17 2019-02-12 青岛海尔空调器有限总公司 空调器除霜控制方法
US20210348789A1 (en) * 2018-12-11 2021-11-11 Mitsubishi Electric Corporation Air-conditioning apparatus
CN109916000A (zh) * 2019-03-20 2019-06-21 珠海格力电器股份有限公司 一种空调的除霜控制方法、装置、空调及存储介质
CN110260493A (zh) * 2019-07-03 2019-09-20 芜湖美智空调设备有限公司 运行控制方法及控制装置、空调器和计算机可读存储介质
CN110469995A (zh) * 2019-07-28 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法、装置及空调
CN110470014A (zh) * 2019-08-03 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法及装置、空调
CN114076384A (zh) * 2020-08-20 2022-02-22 广东美的制冷设备有限公司 空调设备的控制方法、系统、空调设备和存储介质
CN113531777A (zh) * 2021-07-07 2021-10-22 青岛海尔空调器有限总公司 空调器的除霜控制方法、装置及空调器
CN115111658A (zh) * 2022-06-14 2022-09-27 青岛海尔空调器有限总公司 一种空调控制方法、系统及存储介质

Also Published As

Publication number Publication date
CN115111658A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN107131611B (zh) 空调器除霜控制方法
CN107166639B (zh) 一种空调器除霜控制方法、控制装置以及空调器
WO2021103815A1 (zh) 空调器及其空调控制方法、控制装置和可读存储介质
CN110657563B (zh) 一种低温制热机组的控制方法、装置及多联机设备
CN112665117B (zh) 多联机化霜方法、装置、多联机空调系统及可读存储介质
CN112283878B (zh) 一种空调控制方法、装置、存储介质及空调
WO2023241068A1 (zh) 一种空调控制方法、系统及存储介质
CN107120796B (zh) 空调器除霜控制方法
JP2020079655A (ja) 空調制御システム
WO2023071151A1 (zh) 一种空调除霜控制方法、控制装置及空调器
CN107289576B (zh) 空调器除霜控制方法
CN111306853A (zh) 一种实现连续制热的空调化霜方法及空调化霜系统
JP3019081B1 (ja) 外気温検出機能を備えた空調室外機
JP5730689B2 (ja) 空調運転制御システム
WO2023071152A1 (zh) 一种空调除霜控制方法、控制装置及空调器
CN111397094A (zh) 空调室内换热器清洗方法、空调器及计算机存储介质
CN112432320B (zh) 空调系统防结霜的控制方法及其控制器、空调系统
CN114593502A (zh) 空调器的除霜控制方法、控制器、空调器及存储介质
CN114963429A (zh) 一种空调器除湿控制方法、系统、存储介质及空调器
JP6939894B2 (ja) 建築設備の管理システム
CN110836450A (zh) 空调器除霜控制方法
CN110836436A (zh) 空调器除霜控制方法
CN110836453A (zh) 空调器除霜控制方法
CN112013502A (zh) 一种空调换热器的除霜方法及空调
CN110836482A (zh) 空调器除霜控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822640

Country of ref document: EP

Kind code of ref document: A1