WO2024031896A1 - 一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法 - Google Patents

一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法 Download PDF

Info

Publication number
WO2024031896A1
WO2024031896A1 PCT/CN2022/138287 CN2022138287W WO2024031896A1 WO 2024031896 A1 WO2024031896 A1 WO 2024031896A1 CN 2022138287 W CN2022138287 W CN 2022138287W WO 2024031896 A1 WO2024031896 A1 WO 2024031896A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
glue
adhesion
acid resin
layer
Prior art date
Application number
PCT/CN2022/138287
Other languages
English (en)
French (fr)
Inventor
吴腾达
魏婕
李智尧
陈曦
郑伟
Original Assignee
厦门长塑实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门长塑实业有限公司 filed Critical 厦门长塑实业有限公司
Publication of WO2024031896A1 publication Critical patent/WO2024031896A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the invention relates to the technical application field of polylactic acid films, and in particular to a biaxially stretched polylactic acid film that is resistant to glue back-sticking and a preparation method thereof.
  • Biaxially oriented polylactic acid film has good mechanical properties, good transparency, and is biodegradable.
  • the pressure-sensitive adhesive tape made by gluing BOPLA can replace biaxially oriented polypropylene (BOPP) in tape films, and can effectively solve the postal express industry's replacement needs for non-degradable tapes. Since the initial corona value of BOPLA film products is 37 dynes, which is greater than the surface corona value of BOPP ( ⁇ 30 dynes), it has better affinity and adhesion with glue. Therefore, when it is made into a tape and used, the tape peeling force is relatively high. Large, and the glue layer transfers easily to the back of the tape.
  • coating is mainly used to introduce a layer of material to overcome the problem of glue sticking.
  • the patent application with application number 200710055983.9 discloses a polylactic acid that can operate at low temperatures.
  • the release agent is composed of methyl vinyl silicone rubber, a free radical initiator, a cross-linking accelerator and an alkane solvent.
  • the release agent is dried to form a film by coating.
  • patent application with application number 202010415595.2 provides a fully biodegradable tape and its preparation method, including: weighing PBAT, PLA, fillers and auxiliaries respectively; Melt blending in a screw extruder, extrusion, granulation and film formation; coating of release layer and solidification; coating of adhesive; drying, cooling, cutting and winding.
  • the tape structure sequentially includes a release layer, a cellulose film base material layer, a water-proof adhesive film layer, Adhesive layer. Avoid the problem of glue sticking by coating and processing the release layer.
  • the present invention provides a biaxially stretched polylactic acid film that is resistant to glue sticking, which includes Anti-glue anti-adhesion surface layer and polylactic acid anti-adhesion layer, and a polylactic acid resin layer located between the anti-glue anti-adhesion surface layer and the polylactic acid anti-adhesion layer;
  • the raw materials of the anti-glue anti-adhesion surface layer include polylactic acid resin and anti-glue anti-adhesion masterbatch.
  • the components of the anti-glue anti-adhesion masterbatch include polylactic acid resin, polysiloxane and its derivatives, and anti-adhesive agents. and slip agents;
  • the raw material of the polylactic acid resin layer is polylactic acid resin
  • the raw materials of the polylactic acid resin anti-adhesive layer include polylactic acid resin and functional masterbatch.
  • the components of the functional masterbatch include polylactic acid resin, anti-adhesive agent and slippery agent.
  • the levorotatory optical purity of the polylactic acid resin is ⁇ 97%
  • the melting point is 160-180°C
  • the melt index at 190°C and 2.16kg is 2-6g/10min.
  • the mass ratio of the polylactic acid resin in the anti-glue anti-adhesion surface layer to the anti-glue anti-adhesion masterbatch is 92 to 98: 2 to 5;
  • the mass ratio of the polylactic acid resin and the functional masterbatch in the polylactic acid resin anti-adhesion layer is 94-98:2-6.
  • the anti-glue and anti-stick masterbatch includes 87 to 95 parts of polylactic acid resin, 2 to 5 parts of polysiloxane and its derivatives, 2 to 5 parts of anti-adhesive agent and 1 to 3 parts of smoothing agent.
  • the polysiloxane and its derivatives have the following repeating structural units:
  • the polysiloxane and its derivatives are polydimethylsiloxane, polydiethylsiloxane, methyl vinyl silicone oil, cyclopolydimethylsiloxane, phenyl At least one type of silicone oil.
  • the polysiloxane and its derivatives have a kinematic viscosity (25° C.) ranging from 5 to 1200 cSt, and a relative molecular mass of 700 to 30,000.
  • the functional masterbatch in parts by weight, includes 80 to 96 parts of polylactic acid resin, 2 to 10 parts of anti-adhesive agent, and 2 to 8 parts of slip agent.
  • the anti-adhesive agent is one of talc, silica, and calcium carbonate, and the median size of the particle distribution is 2 to 6 ⁇ m;
  • the slip agent is silicone, ethylene bis One of stearamide and oleic acid amide.
  • the invention also provides a method for preparing a biaxially stretched polylactic acid film that is resistant to glue back-adhesion, including the following steps:
  • each layer is melted and co-extruded separately to obtain an unstretched cast sheet
  • the unstretched cast sheet is biaxially stretched to obtain a biaxially stretched polylactic acid film that is resistant to glue back-adhesion;
  • the biaxially stretched polylactic acid film that resists glue back-adhesion at least includes a three-layer structure composed of an anti-glue back-adhesion surface layer, a polylactic acid resin layer, and a polylactic acid anti-adhesion layer.
  • the raw materials of the anti-glue anti-adhesion surface layer include polylactic acid resin and anti-glue anti-adhesion masterbatch.
  • the components of the anti-glue anti-adhesion masterbatch include polylactic acid resin, polysiloxane and its derivatives, and anti-adhesive agents. and slip agents;
  • the raw material of the polylactic acid resin layer is polylactic acid resin
  • the raw materials of the polylactic acid resin anti-adhesive layer include polylactic acid resin and functional masterbatch.
  • the components of the functional masterbatch include polylactic acid resin, anti-adhesive agent and slippery agent.
  • the invention provides a biaxially stretched polylactic acid film that is resistant to glue back-adhesion, has good processability and anti-glue back-adhesion properties, eliminates the need for coating processing steps, and is suitable for use in traditional BOPP tape coating lines while precipitating and transferring
  • the quantity is small and it is especially suitable for the application of biaxially stretched polylactic acid pressure-sensitive adhesive tapes.
  • Figure 1 is a schematic structural diagram of a biaxially stretched polylactic acid film that is resistant to glue back-adhesion provided by one embodiment of the present invention.
  • the biaxially stretched polylactic acid film that is resistant to glue backadhesion includes at least three-layer structures.
  • the three-layer structures are respectively The anti-glue anti-adhesion surface layer 10 and the polylactic acid anti-adhesion layer 30, and the polylactic acid resin layer 20 located between the anti-glue anti-adhesion surface layer 10 and the polylactic acid anti-adhesion layer 30;
  • the raw materials of the anti-glue and anti-adhesive surface layer 10 include polylactic acid resin and anti-glue and anti-adhesive masterbatch, and the components of the anti-glue and anti-adhesive masterbatch include polylactic acid resin, polysiloxane and its derivatives, anti-adhesive resin and anti-adhesive masterbatch.
  • Caking and slip agents include polylactic acid resin, polysiloxane and its derivatives, anti-adhesive resin and anti-adhesive masterbatch.
  • the raw material of the polylactic acid resin layer 20 is polylactic acid resin
  • the raw materials of the polylactic acid resin anti-adhesive layer 30 include polylactic acid resin and functional masterbatch, and the components of the functional masterbatch include polylactic acid resin, anti-adhesive agent and slip agent.
  • One embodiment of the present invention also provides a method for preparing a biaxially stretched polylactic acid film that is resistant to glue back-adhesion, including the following steps:
  • each layer The components of each layer are melted and co-extruded separately to obtain an unstretched cast sheet.
  • the unstretched cast sheet is biaxially stretched to obtain a biaxially stretched polylactic acid film that is resistant to glue back-sticking.
  • the biaxially stretched polylactic acid film that resists glue back-adhesion at least includes a three-layer structure composed of an anti-glue back-adhesion surface layer, a polylactic acid resin layer, and a polylactic acid anti-adhesion layer.
  • the raw materials of the anti-glue anti-adhesion surface layer include polylactic acid resin and anti-glue anti-adhesion masterbatch, and the components of the anti-glue anti-adhesion masterbatch include polylactic acid resin, polysiloxane and its derivatives, anti-adhesion agents and slip agents.
  • the raw material of the polylactic acid resin layer is polylactic acid resin.
  • the raw materials of the polylactic acid resin anti-adhesive layer include polylactic acid resin and functional masterbatch, and the components of the functional masterbatch include polylactic acid resin, anti-adhesive agent and slippery agent.
  • another embodiment of the present invention provides a method for preparing a biaxially stretched polylactic acid film that is resistant to glue back-adhesion, including the following steps:
  • the mixed melt is obtained.
  • the temperature of the three-layer T-shaped die is 205°C;
  • the cast sheet is longitudinally preheated at 62°C and then stretched longitudinally with a longitudinal stretching ratio of 3.2 times and a longitudinal stretching temperature of 65°C, and then enters the longitudinal stretching and shaping zone at 52°C;
  • the heat-set film is subjected to corona treatment (side C), rolling, curing, and slitting to obtain a biaxially oriented polylactic acid film that is resistant to glue back-adhesion;
  • the functional masterbatch is prepared by mixing polylactic acid resin, anti-adhesive agent and slip agent in proportion and extruding and granulating it through a twin-screw extruder at 165-175°C for later use.
  • the preparation method of the anti-glue and anti-stick masterbatch is to mix polylactic acid resin, polysiloxane and its derivatives, anti-adhesive agent and slip agent in proportion and extrude it through a twin-screw extruder at 160-170°C. The grains are obtained and set aside.
  • Figure 1 is a schematic structural diagram of the biaxially stretched polylactic acid film that is resistant to glue and anti-adhesion provided in Embodiment 1 of the present invention. It includes a three-layer structure arranged in sequence, in which the anti-glue and anti-adhesion surface layer 10 is sequentially arranged from top to bottom. , polylactic acid resin layer 20, polylactic acid anti-adhesion layer 30;
  • the components of the anti-glue and anti-stick surface layer 10 are composed of 96.5 parts of polylactic acid resin and 3.5 parts of anti-glue and anti-stick masterbatch Z;
  • composition of the polylactic acid resin layer 20 is 100 parts of polylactic acid resin
  • the components of the polylactic acid anti-adhesion layer 30 are composed of 98 parts of polylactic acid resin and 2 parts of functional masterbatch Y;
  • the thickness of the three-layer structure is 3um/20um/2um from top to bottom.
  • the preparation method of the biaxially oriented polylactic acid film resistant to glue backtack in Example 1 includes the following steps:
  • the mixed melt is obtained.
  • the temperature of the three-layer T-shaped die is 205°C;
  • the cast sheet is longitudinally preheated at 62°C and then stretched longitudinally with a longitudinal stretching ratio of 3.2 times and a longitudinal stretching temperature of 65°C, and then enters the longitudinal stretching and shaping zone at 52°C;
  • the heat-set film is subjected to corona treatment (side C), winding, aging, and slitting to obtain a biaxially oriented polylactic acid film that is resistant to glue back-adhesion.
  • FIG. 1 there is a schematic structural diagram of the biaxially stretched polylactic acid film that is resistant to glue and anti-adhesion provided in Embodiment 2 of the present invention. It includes a three-layer structure arranged in sequence, in which the anti-glue and anti-adhesion surface layer 10, Polylactic acid resin layer 20, polylactic acid anti-adhesion layer 30;
  • the components of the anti-glue and anti-stick surface layer 10 are composed of 98 parts of polylactic acid resin and 2 parts of anti-glue and anti-stick masterbatch Z;
  • composition of the polylactic acid resin layer 20 is 100 parts of polylactic acid resin
  • the components of the polylactic acid anti-adhesion layer 30 are 98 parts of polylactic acid resin and 2 parts of functional masterbatch Y;
  • the thickness of the three-layer structure from top to bottom is 2.5um/24um/1.5um;
  • the preparation method of the biaxially oriented polylactic acid film resistant to glue backtack in Example 2 includes the following steps:
  • the cast sheet is longitudinally preheated at 61°C and then stretched longitudinally with a longitudinal stretching ratio of 2.8 times and a longitudinal stretching temperature of 64°C, and then enters the longitudinal stretching and shaping zone at 52°C;
  • the longitudinally stretched sheet After the longitudinally stretched sheet is transversely preheated at 80°C, it is transversely stretched with a transverse stretch ratio of 3.5 times and a transverse stretching temperature of 82°C, and then enters the transverse stretching and shaping zone at 125°C;
  • the heat-set film is subjected to corona treatment (side C), winding, aging, and slitting to obtain a biaxially oriented polylactic acid film that is resistant to glue back-adhesion.
  • FIG. 1 there is a schematic structural diagram of the biaxially stretched polylactic acid film that is resistant to glue and anti-adhesion provided in Embodiment 2 of the present invention. It includes a three-layer structure arranged in sequence, in which the anti-glue and anti-adhesion surface layer 10, Polylactic acid resin layer 20, polylactic acid anti-adhesion layer 30;
  • the components of the anti-glue and anti-stick surface layer 10 are composed of 93 parts of polylactic acid resin and 4 parts of anti-glue and anti-stick masterbatch Z;
  • composition of the polylactic acid resin layer 20 is 100 parts of polylactic acid resin
  • the components of the polylactic acid anti-adhesion layer 30 are 94 parts of polylactic acid resin and 3 parts of functional masterbatch Y;
  • the thickness of the three-layer structure from top to bottom is 2.5um/24um/1.5um;
  • the preparation method of the biaxially oriented polylactic acid film resistant to glue backtack in Example 2 includes the following steps:
  • the cast sheet is longitudinally preheated at 61°C and then stretched longitudinally with a longitudinal stretching ratio of 2.8 times and a longitudinal stretching temperature of 64°C, and then enters the longitudinal stretching and shaping zone at 52°C;
  • the longitudinally stretched sheet After the longitudinally stretched sheet is transversely preheated at 80°C, it is transversely stretched with a transverse stretch ratio of 3.5 times and a transverse stretching temperature of 82°C, and then enters the transverse stretching and shaping zone at 125°C;
  • the heat-set film is subjected to corona treatment (side C), winding, aging, and slitting to obtain a biaxially oriented polylactic acid film that is resistant to glue back-adhesion.
  • Comparative Example 1 The only difference between Comparative Example 1 and Example 1 is that the quality of the anti-glue anti-adhesion masterbatch of the anti-glue anti-adhesion surface layer 10 is replaced by the functional masterbatch in Example 1, and the remaining components, preparation methods and film thicknesses are the same.
  • Comparative Example 2 The only difference between Comparative Example 2 and Example 2 is that the addition amount of the anti-glue anti-adhesion masterbatch in the anti-glue anti-adhesion surface layer 10 is changed to 8 parts, the polylactic acid resin is changed to 92 parts, and the remaining components, preparation methods and film thickness All are the same.
  • Comparative Example 3 The difference between Comparative Example 3 and Example 2 is only that the proportion of preparation components of the anti-glue and anti-stick masterbatch is different, and the remaining components, preparation methods and film thicknesses are the same;
  • Comparative Example 4 The difference between Comparative Example 4 and Example 2 is only that the proportion of preparation components of the anti-glue and anti-stick masterbatch is different, and the remaining components, preparation methods and film thicknesses are the same;
  • Comparative Example 5 The only difference between Comparative Example 5 and Example 3 is that the kinematic viscosity of phenyl silicone oil in the anti-glue and anti-sticking masterbatch preparation components is 1500 cSt (25°C), and the other components, preparation methods and film thicknesses are the same.
  • the glue-reverse-adhesion-resistant biaxially oriented polylactic acid films prepared in the above examples and comparative examples were tested as follows.
  • the test standards are as follows:
  • the above-mentioned A surface is the surface where the anti-glue anti-adhesion surface layer 10 is located
  • the C surface is the surface where the polylactic acid anti-adhesion layer 30 is located.
  • the anti-glue anti-adhesion biaxially stretched polylactic acid film provided by the present invention maintains good mechanical properties of the film.
  • the wetting tension of surface A decreases, so that A The 180° peel strength of the surface drops significantly, and there is no glue residue.
  • the A side and the C side are wound and stacked around each other, the A side has less impact on the film wetting tension of the C side, ensuring the normal use of the product.
  • Comparative Examples 3 to 5 it can be seen from Comparative Examples 3 to 5 that the addition ratio of polysiloxane and its derivatives and the kinematic viscosity have an important impact on the anti-sticking ability of the film.
  • the invention provides a biaxially stretched polylactic acid film that is resistant to glue backadhesion and a preparation method thereof, wherein the biaxially stretched polylactic acid film that is resistant to glue backadhesion includes an antiglue backadhesion surface layer and a polylactic acid antiadhesion layer, and is located
  • the polylactic acid resin layer between the anti-glue anti-adhesion surface layer and the polylactic acid anti-adhesion layer;
  • the raw materials of the anti-glue anti-adhesion surface layer include polylactic acid resin and anti-glue anti-adhesion masterbatch, and the components of the anti-glue anti-adhesion masterbatch include Polylactic acid resin, polysiloxane and its derivatives, anti-adhesive agents and slip agents;
  • the raw material of the polylactic acid resin layer is polylactic acid resin;
  • the raw material of the polylactic acid resin anti-adhesion layer includes polylactic acid resin and functional masterbatch , and the components of the functional
  • the film has good processability and anti-glue anti-adhesion properties, eliminating the need for coating processes, and is suitable for use in traditional BOPP tape coating lines. It also has low precipitation and transfer, and is especially suitable for biaxially stretched polylactic acid pressure-sensitive adhesives. Belt application has good industrial practicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本发明提供一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法,其中,抗胶水反粘的双向拉伸聚乳酸薄膜包括抗胶水反粘表层和聚乳酸抗黏连层,以及位于抗胶水反粘表层和聚乳酸抗黏连层之间的聚乳酸树脂层;抗胶水反粘表层的原料包含聚乳酸树脂和抗胶水反粘母料,且抗胶水反粘母料的组分包括聚乳酸树脂、聚硅氧烷及其衍生物、抗粘结剂和爽滑剂;聚乳酸树脂层的原料为聚乳酸树脂;聚乳酸树脂抗黏连层的原料包含聚乳酸树脂和功能母料,且功能母料的组分包括聚乳酸树脂、抗粘结剂和爽滑剂。该薄膜具有良好的加工性和抗胶水反粘特性,省去涂布加工工序,适合于传统BOPP胶带涂布线使用,同时析出转移量少,特别适合用于双向拉伸聚乳酸压敏胶粘带的应用。

Description

一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法 技术领域
本发明涉及聚乳酸薄膜技术应用领域,特别涉及一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法。
背景技术
双向拉伸聚乳酸薄膜(BOPLA)具备良好的力学性能、透明性好,并兼具生物基可降解的特点。使用BOPLA上胶后制成的压敏胶粘带,满足替代双向拉伸聚丙烯(BOPP)在胶带薄膜的应用,能够有效解决邮政快递行业对于不可降解胶带的替换需求。由于BOPLA薄膜产品的初始电晕值为37达因,大于BOPP的表面电晕值(<30达因),与胶水的亲和附着力较好,因此在制成胶带使用时,胶带剥离力较大,并且胶层容易转移在胶带背面。
目前主要采用涂布的方式引入一层材料来克服胶水粘黏的问题,如申请号为200710055983.9(公开日为2008年3月5日)的专利申请公开了一种可在低温下操作的聚乳酸胶带专用隔离剂及其制备方法,隔离剂由甲基乙烯基硅橡胶,自由基引发剂、交联促进剂和烷烃溶剂组成,以涂布的方式将隔离剂干燥成膜。
又如申请号为202010415595.2(公开日为2020年9月4日)的专利申请提供了一种全生物降解胶带及其制备方法,包括:分别称取PBAT、PLA、填料和助剂;投入到双螺杆挤出机中进行熔融共混,并挤出造粒并成膜加工;涂上离型层并使之固化;涂覆胶黏剂;干燥、冷 却并切割、收卷。
再如申请号为202022428228.4(2021年2月5日)的专利申请公开了一种可生物降解胶带的结构,该胶带结构依次包括离型层、纤维素膜基材层、隔水胶膜层、胶粘层。通过涂布加工离型层来避免胶水粘黏的问题。
但采用涂布的方式引入一层材料来满足抗胶水粘黏,会增加工序会提高产品成本,有待进一步改进。
发明内容
为解决现有技术中采用涂布的方式引入一层材料来满足抗胶水粘黏,增加工序导致提高产品成本的问题,本发明提供一种抗胶水反粘的双向拉伸聚乳酸薄膜,其包括抗胶水反粘表层和聚乳酸抗黏连层,以及位于所述抗胶水反粘表层和所述聚乳酸抗黏连层之间的聚乳酸树脂层;
所述抗胶水反粘表层的原料包含聚乳酸树脂和抗胶水反粘母料,所述抗胶水反粘母料的组分包括聚乳酸树脂、聚硅氧烷及其衍生物、抗粘结剂和爽滑剂;
所述聚乳酸树脂层的原料为聚乳酸树脂;
所述聚乳酸树脂抗黏连层的原料包含聚乳酸树脂和功能母料,所述功能母料的组分包括聚乳酸树脂、抗粘结剂和爽滑剂。
在一实施例中,所述聚乳酸树脂的左旋光学纯度≥97%,熔点为160~180℃,在190℃、2.16kg下的熔融指数为2~6g/10mi n。
在一实施例中,所述抗胶水反粘表层中的所述聚乳酸树脂与所述抗胶水反粘母料的质量比为92~98:2~5;
所述聚乳酸树脂抗黏连层中的所述聚乳酸树脂和所述功能母料的质量比为94~98:2~6。
在一实施例中,按重量份计,所述抗胶水反粘母料包括聚乳酸树脂87~95份、聚硅氧烷及其衍生物2~5份、抗粘结剂2~5份和爽滑剂1~3份。
在一实施例中,所述聚硅氧烷及其衍生物具有以下重复结构单元:
Figure PCTCN2022138287-appb-000001
在一实施例中,所述聚硅氧烷及其衍生物为聚二甲基硅氧烷、聚二乙基硅氧烷、甲基乙烯基硅油、环聚二甲基硅氧烷、苯基硅油中的至少一种。
在一实施例中,所述聚硅氧烷及其衍生物的运动粘度(25℃)范围为5~1200cSt,相对分子质量700~30000。
在一实施例中,按重量份计,所述功能母料包括聚乳酸树脂80~96份、抗粘结剂2~10份、爽滑剂2~8份。
在一实施例中,所述抗粘结剂为滑石粉、二氧化硅、碳酸钙中的一种,且颗粒分布中位尺寸为2~6um;所述爽滑剂为硅酮、乙撑双硬脂酰胺、油酸酰胺中的一种。
本发明还提供一种抗胶水反粘的双向拉伸聚乳酸薄膜的制备方法,包括以下步骤:
将各层组分分别进行熔融、共挤获得未拉伸的铸片;
将所述未拉伸的铸片进行双向拉伸,得到抗胶水反粘的双向拉伸聚乳酸薄膜;
所述抗胶水反粘的双向拉伸聚乳酸薄膜至少包括由抗胶水反粘表层、聚乳酸树脂层和聚乳酸抗黏连层组成的三层结构,
所述抗胶水反粘表层的原料包含聚乳酸树脂和抗胶水反粘母料,所述抗胶水反粘母料的组分包括聚乳酸树脂、聚硅氧烷及其衍生物、抗粘结剂和爽滑剂;
所述聚乳酸树脂层的原料为聚乳酸树脂;
所述聚乳酸树脂抗黏连层的原料包含聚乳酸树脂和功能母料,所述功能母料的组分包括聚乳酸树脂、抗粘结剂和爽滑剂。
本发明提供的一种抗胶水反粘的双向拉伸聚乳酸薄膜,具有良好的加工性和抗胶水反粘特性,省去涂布加工工序,适合于传统BOPP胶带涂布线使用,同时析出转移量少,特别适合用于双向拉伸聚乳酸压敏胶粘带的应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的一种抗胶水反粘的双向拉伸聚乳酸薄膜的结构示意图。
附图标记:
10抗胶水反粘表层   20聚乳酸树脂层   30聚乳酸抗黏连层
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下文将更详细地解释本发明的各个组分。
本发明一实施例提供一种抗胶水反粘的双向拉伸聚乳酸薄膜,请参考图1,所述抗胶水反粘的双向拉伸聚乳酸薄膜包括至少三层结构,该三层结构分别为抗胶水反粘表层10和聚乳酸抗黏连层30,以及位于所述抗胶水反粘表层10和所述聚乳酸抗黏连层30之间的聚乳酸树脂层20;
所述抗胶水反粘表层10的原料包含聚乳酸树脂和抗胶水反粘母料,且所述抗胶水反粘母料的组分包括聚乳酸树脂、聚硅氧烷及其衍生物、抗粘结剂和爽滑剂;
所述聚乳酸树脂层20的原料为聚乳酸树脂;
所述聚乳酸树脂抗黏连层30的原料包含聚乳酸树脂和功能母料,且所述功能母料的组分包括聚乳酸树脂、抗粘结剂和爽滑剂。
本发明一实施例还提供一种抗胶水反粘的双向拉伸聚乳酸薄膜的制备方法,包括以下步骤:
将各层组分分别进行熔融、共挤获得未拉伸的铸片。
将所述未拉伸的铸片进行双向拉伸,得到抗胶水反粘的双向拉伸聚乳酸薄膜。
所述抗胶水反粘的双向拉伸聚乳酸薄膜至少包括由抗胶水反粘表层、聚乳酸树脂层和聚乳酸抗黏连层依次组成的三层结构。
所述抗胶水反粘表层的原料包含聚乳酸树脂和抗胶水反粘母料,且所述抗胶水反粘母料的组分包括聚乳酸树脂、聚硅氧烷及其衍生物、抗粘结剂和爽滑剂。
所述聚乳酸树脂层的原料为聚乳酸树脂。
所述聚乳酸树脂抗黏连层的原料包含聚乳酸树脂和功能母料,且所述功能母料的组分包括聚乳酸树脂、抗粘结剂和爽滑剂。
具体来说,本发明的另一实施例提供一种抗胶水反粘的双向拉伸聚乳酸薄膜的制备方法,包括以下步骤:
S1.将上述原料充分干燥至200ppm以下,将对应三层的材料投入相应的挤出机,在180~200℃下加热熔融;
S2.将辅挤出机和主挤出机的熔体在三层T型模头中汇合后挤出后,得到混合熔体,三层T型模头的温度为205℃;
S3.将挤出的混合熔体通过气刀贴敷在激冷辊表面形成铸片,其中激冷辊温度为32℃;
S4.将铸片经62℃纵向预热后进行纵向拉伸,纵向拉伸倍率为3.2倍,纵向拉伸温度为65℃,然后再进入52℃的纵向拉伸定型区;
S5.将经纵向拉伸后的片材经81℃横向预热后,进行横向拉伸,横向拉伸倍率为3.5倍,横向拉伸温度83℃,随后进入120℃的横向拉伸定型区;
S6.将热定型后的薄膜经电晕处理(C面)、收卷、熟化、分切得到抗胶水反粘的双向拉伸聚乳酸薄膜;
其中,功能母料的制备方法为将聚乳酸树脂、抗粘结剂和爽滑剂按比例混合并通过双螺杆挤出机在165~175℃挤出造粒得到,备用。
抗胶水反粘母料的制备方法为将聚乳酸树脂、聚硅氧烷及其衍生物、抗粘结剂和爽滑剂按比例混合并通过双螺杆挤出机在160~170℃挤出造粒得到,备用。
为了对本发明更好地理解,下面结合具体的实施例以及对比例对本发明进行详细说明,而不以任何方式限制本发明。
实施例1
(1)功能母料的制备:
以重量份数计,将2份芥酸酰胺、4份碳酸钙(粒径分布中位尺寸4.5um)、94份聚乳酸树脂,通过双螺杆挤出机在165~175℃挤出造粒得到备用;
(2)抗胶水反粘母料的制备:
以重量份数计,将5份聚二甲基硅氧烷(运动粘度100cSt,25℃)、2份芥酸酰胺、4份碳酸钙(粒径分布中位尺寸4.5um)、89份聚乳酸树脂,通过双螺杆挤出机在160~170℃挤出造粒得到备用。
(3)抗胶水反粘的双向拉伸聚乳酸薄膜的制备:
请参考图1,本发明实施例1中所提供的抗胶水反粘的双向拉伸聚乳酸薄膜的结构示意图,包括依次排列的三层结构,其中自上而下依次为抗胶水反粘表层10、聚乳酸树脂层20、聚乳酸抗黏连层30;
以重量份数计:
抗胶水反粘表层10的组分由96.5份聚乳酸树脂和3.5份抗胶水反粘母料Z组成;
聚乳酸树脂层20的组分为100份聚乳酸树脂;
聚乳酸抗黏连层30的组分由98份聚乳酸树脂和2份功能母料Y;
其中,三层结构的厚度自上而下依次为3um/20um/2um。
本实施例1的抗胶水反粘的双向拉伸聚乳酸薄膜的制备方法包括下述步骤:
S1.将上述原料充分干燥至200ppm以下,将对应三层的材料投入相应的挤出机,在180~200℃下加热熔融;
S2.将辅挤出机和主挤出机的熔体在三层T型模头中汇合后挤出后,得到混合熔体,三层T型模头的温度为205℃;
S3.将挤出的混合熔体通过气刀贴敷在激冷辊表面形成铸片,其中激冷辊温度为32℃;
S4.将铸片经62℃纵向预热后进行纵向拉伸,纵向拉伸倍率为3.2 倍,纵向拉伸温度为65℃,然后再进入52℃的纵向拉伸定型区;
S5.将经纵向拉伸后的片材经81℃横向预热后,进行横向拉伸,横向拉伸倍率为3.5倍,横向拉伸温度83℃,随后进入120℃的横向拉伸定型区;
S6.将热定型后的薄膜经电晕处理(C面)、收卷、熟化、分切得到抗胶水反粘的双向拉伸聚乳酸薄膜。
实施例2
(1)功能母料的制备:
采用实施例1功能母料方案;
(2)抗胶水反粘母料的制备:
以重量份数计,将3.5份甲基乙烯基硅油(运动粘度400cSt,25℃)、1.5份芥酸酰胺、4份碳酸钙(粒径分布中位尺寸4.5um)、91份聚乳酸树脂,通过双螺杆挤出机在160~170℃挤出造粒得到备用;
(3)抗胶水反粘的双向拉伸聚乳酸薄膜的制备:
参考图1,本发明实施例2中所提供的抗胶水反粘的双向拉伸聚乳酸薄膜的结构示意图,包括依次排列的三层结构,其中自上而下依次为抗胶水反粘表层10、聚乳酸树脂层20、聚乳酸抗黏连层30;
以重量份数计:
抗胶水反粘表层10的组分由98份聚乳酸树脂和2份抗胶水反粘母料Z组成;
聚乳酸树脂层20的组分为100份聚乳酸树脂;
聚乳酸抗黏连层30的组分为98份聚乳酸树脂和2份功能母料Y;
其中,三层结构的厚度自上而下依次为2.5um/24um/1.5um;
本实施例2的抗胶水反粘的双向拉伸聚乳酸薄膜的制备方法包括下述步骤:
S1.将上述原料充分干燥至200ppm以下,将对应三层的材料投入相应的挤出机,在180~200℃下加热熔融;
S2.将辅挤出机和主挤出机的熔体在三层T型模头中汇合后挤出后,得到混合熔体,所述三层T型模头的温度为205℃;
S3.将挤出的混合熔体通过气刀贴敷在激冷辊表面形成铸片,所述激冷辊温度为32℃;
S4.将铸片经61℃纵向预热后进行纵向拉伸,纵向拉伸倍率为2.8倍,纵向拉伸温度为64℃,然后再进入52℃的纵向拉伸定型区;
S5.将经纵向拉伸后的片材经80℃横向预热后,进行横向拉伸,横向拉伸倍率为3.5倍,横向拉伸温度82℃,随后进入125℃的横向拉伸定型区;
S6.将热定型后的薄膜经电晕处理(C面)、收卷、熟化、分切得到抗胶水反粘的双向拉伸聚乳酸薄膜。
实施例3
(1)功能母料的制备:
采用实施例1功能母料方案;
(2)抗胶水反粘母料的制备:
以重量份数计,将2份苯基硅油(运动粘度1000cSt,25℃)、1.5份芥酸酰胺、4份碳酸钙(粒径分布中位尺寸4.5um)、92.5份聚乳 酸树脂,通过双螺杆挤出机在160~170℃挤出造粒得到备用;
(3)抗胶水反粘的双向拉伸聚乳酸薄膜的制备:
参考图1,本发明实施例2中所提供的抗胶水反粘的双向拉伸聚乳酸薄膜的结构示意图,包括依次排列的三层结构,其中自上而下依次为抗胶水反粘表层10、聚乳酸树脂层20、聚乳酸抗黏连层30;
以重量份数计:
抗胶水反粘表层10的组分由93份聚乳酸树脂和4份抗胶水反粘母料Z组成;
聚乳酸树脂层20的组分为100份聚乳酸树脂;
聚乳酸抗黏连层30的组分为94份聚乳酸树脂和3份功能母料Y;
其中,三层结构的厚度自上而下依次为2.5um/24um/1.5um;
本实施例2的抗胶水反粘的双向拉伸聚乳酸薄膜的制备方法包括下述步骤:
S1.将上述原料充分干燥至200ppm以下,将对应三层的材料投入相应的挤出机,在180~200℃下加热熔融;
S2.将辅挤出机和主挤出机的熔体在三层T型模头中汇合后挤出后,得到混合熔体,所述三层T型模头的温度为205℃;
S3.将挤出的混合熔体通过气刀贴敷在激冷辊表面形成铸片,所述激冷辊温度为32℃;
S4.将铸片经61℃纵向预热后进行纵向拉伸,纵向拉伸倍率为2.8倍,纵向拉伸温度为64℃,然后再进入52℃的纵向拉伸定型区;
S5.将经纵向拉伸后的片材经80℃横向预热后,进行横向拉伸, 横向拉伸倍率为3.5倍,横向拉伸温度82℃,随后进入125℃的横向拉伸定型区;
S6.将热定型后的薄膜经电晕处理(C面)、收卷、熟化、分切得到抗胶水反粘的双向拉伸聚乳酸薄膜。
对比例1
对比例1与实施例1的区别仅为抗胶水反粘表层10的抗胶水反粘母料等质量替换为实施例1中的功能母料,其余组分、制备方法和薄膜厚度均相同。
对比例2
对比例2与实施例2的区别仅为抗胶水反粘表层10中的抗胶水反粘母料的添加量改为8份,聚乳酸树脂改为92份,其余组分、制备方法和薄膜厚度均相同。
对比例3
对比例3与实施例2的区别仅为抗胶水反粘母料的制备组分比例不同,其余组分、制备方法和薄膜厚度均相同;
具体地,对比例3的抗胶水反粘母料的制备组分如下:
以重量份数计,将1份甲基乙烯基硅油(运动粘度400cSt)、1.5份芥酸酰胺、4份碳酸钙(粒径分布中位尺寸4.5um)、93.5份聚乳酸树脂,通过双螺杆挤出机在160~170℃挤出造粒得到备用。
对比例4
对比例4与实施例2的区别仅为抗胶水反粘母料的制备组分比例不同,其余组分、制备方法和薄膜厚度均相同;
具体地,对比例4的抗胶水反粘母料的制备组分如下:
以重量份数计,将7份甲基乙烯基硅油(运动粘度400cSt)、1.5份芥酸酰胺、4份碳酸钙(粒径分布中位尺寸4.5um)、87.5份聚乳酸树脂,通过双螺杆挤出机在160~170℃挤出造粒得到备用。
对比例5
对比例5与实施例3的区别仅在于抗胶水反粘母料制备组分中的苯基硅油的运动粘度为1500cSt(25℃),其余组分、制备方法和薄膜厚度均相同。
需要说明的是,上述实施例中的具体参数或一些常用试剂,为本发明构思下的具体实施例或优选实施例,而非对其限制;本领域技术人员在本发明构思及保护范围内,可以进行适应性调整,此外,若无特殊说明,所采用的原料可以为本领域常规市售产品、或者由本领域常规方法制备得到。
将上述实施例及对比例制备得到的抗胶水反粘的双向拉伸聚乳酸薄膜进行如下测试,测试标准如下:
(1)薄膜拉伸强度测试
根据GB/T 1040.3进行薄膜拉伸强度测试。
(2)润湿张力测试
将膜卷放置4周,根据GB/T 14216-2008进行薄膜A面和C面的润湿张力测试。
(3)180°剥离强度测试
将普通压敏胶粘带贴在薄膜A面上,根据GB/T 2792进行180° 剥离强度测试,并观察A面反粘情况。
其中,上述A面为抗胶水反粘表层10所在的表面,C面为聚乳酸抗黏连层30所在的表面。
测试结果如表1所示,
表1
Figure PCTCN2022138287-appb-000002
表2
Figure PCTCN2022138287-appb-000003
由上表可知,本发明提供的抗胶水反粘的双向拉伸聚乳酸薄膜在保持良好的薄膜力学性能的前提下,引入抗胶水反粘母料后,A面的润湿张力下降,使A面的180°剥离强度下降明显,并且无胶水残留。同时A面与C面在四周的卷绕堆叠时,A面对C面的薄膜润湿张力下降影响较小,保证产品的正常使用。此外,从对比例3至对比例5可以看出,聚硅氧烷及其衍生物的添加比例和运动粘度的大小对薄膜抗粘能力具有重要影响。
尽管本文中较多的使用了诸如抗胶水反粘表层、聚乳酸树脂层、聚乳酸抗黏连层等术语,但并不排除使用其它术语的可能性。使用这 些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
工业实用性
本发明提供一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法,其中,抗胶水反粘的双向拉伸聚乳酸薄膜包括抗胶水反粘表层和聚乳酸抗黏连层,以及位于抗胶水反粘表层和聚乳酸抗黏连层之间的聚乳酸树脂层;抗胶水反粘表层的原料包含聚乳酸树脂和抗胶水反粘母料,且抗胶水反粘母料的组分包括聚乳酸树脂、聚硅氧烷及其衍生物、抗粘结剂和爽滑剂;聚乳酸树脂层的原料为聚乳酸树脂;聚乳酸树脂抗黏连层的原料包含聚乳酸树脂和功能母料,且功能母料的组分包括聚乳酸树脂、抗粘结剂和爽滑剂。该薄膜具有良好的加工性和抗胶水反粘特性,省去涂布加工工序,适合于传统BOPP胶带涂布线使用,同时析出转移量少,特别适合用于双向拉伸聚乳酸压敏胶粘带的应用,具有良好的工业实用性。

Claims (10)

  1. 一种抗胶水反粘的双向拉伸聚乳酸薄膜,其特征在于:包括抗胶水反粘表层和聚乳酸抗黏连层,以及位于所述抗胶水反粘表层和所述聚乳酸抗黏连层之间的聚乳酸树脂层;
    所述抗胶水反粘表层的原料包含聚乳酸树脂和抗胶水反粘母料,且所述抗胶水反粘母料的组分包括聚乳酸树脂、聚硅氧烷及其衍生物、抗粘结剂和爽滑剂;
    所述聚乳酸树脂层的原料为聚乳酸树脂;
    所述聚乳酸树脂抗黏连层的原料包含聚乳酸树脂和功能母料,且所述功能母料的组分包括聚乳酸树脂、抗粘结剂和爽滑剂。
  2. 根据权利要求1所述的抗胶水反粘的双向拉伸聚乳酸薄膜,其特征在于:所述聚乳酸树脂的左旋光学纯度≥97%,熔点为160~180℃,在190℃、2.16kg下的熔融指数为2~6g/10min。
  3. 根据权利要求1所述的抗胶水反粘的双向拉伸聚乳酸薄膜,其特征在于:所述抗胶水反粘表层中的所述聚乳酸树脂与所述抗胶水反粘母料的质量比为92~98:2~5;
    所述聚乳酸树脂抗黏连层中的所述聚乳酸树脂和所述功能母料的质量比为94~98:2~6。
  4. 根据权利要求1所述的抗胶水反粘的双向拉伸聚乳酸薄膜,其特征在于:按重量份计,所述抗胶水反粘母料包括聚乳酸树脂87~95份、聚硅氧烷及其衍生物2~5份、抗粘结剂2~5份和爽滑剂1~3份。
  5. 根据权利要求1所述的抗胶水反粘的双向拉伸聚乳酸薄膜,其 特征在于:所述聚硅氧烷及其衍生物为聚二甲基硅氧烷、聚二乙基硅氧烷、甲基乙烯基硅油、环聚二甲基硅氧烷、苯基硅油中的至少一种。
  6. 根据权利要求1所述的抗胶水反粘的双向拉伸聚乳酸薄膜,其特征在于:所述聚硅氧烷及其衍生物的运动粘度(25℃)范围为5~1200cSt,相对分子质量700~30000。
  7. 根据权利要求1所述的抗胶水反粘的双向拉伸聚乳酸薄膜,其特征在于:按重量份计,所述功能母料包括聚乳酸树脂80~96份、抗粘结剂2~10份和爽滑剂2~8份。
  8. 根据权利要求1所述的抗胶水反粘的双向拉伸聚乳酸薄膜,其特征在于:所述抗粘结剂为滑石粉、二氧化硅和碳酸钙中的一种,且颗粒分布中位尺寸为2~6um。
  9. 根据权利要求1所述的抗胶水反粘的双向拉伸聚乳酸薄膜,其特征在于:所述爽滑剂为硅酮、乙撑双硬脂酰胺和油酸酰胺中的一种。
  10. 一种根据权利要求1~9任一项所述的抗胶水反粘的双向拉伸聚乳酸薄膜的制备方法,其特征在于,包括以下步骤:
    将各层组分分别进行熔融、共挤获得未拉伸的铸片;
    将所述未拉伸的铸片进行双向拉伸,得到抗胶水反粘的双向拉伸聚乳酸薄膜;
    所述抗胶水反粘的双向拉伸聚乳酸薄膜至少包括由抗胶水反粘表层、聚乳酸树脂层和聚乳酸抗黏连层依次组成的三层结构。
PCT/CN2022/138287 2022-08-11 2022-12-12 一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法 WO2024031896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210964227.2 2022-08-11
CN202210964227.2A CN115366515A (zh) 2022-08-11 2022-08-11 一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2024031896A1 true WO2024031896A1 (zh) 2024-02-15

Family

ID=84066678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138287 WO2024031896A1 (zh) 2022-08-11 2022-12-12 一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN115366515A (zh)
WO (1) WO2024031896A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115366515A (zh) * 2022-08-11 2022-11-22 厦门长塑实业有限公司 一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210147673A1 (en) * 2021-01-13 2021-05-20 Qingdao Fullsun Biotechnology Co., Ltd Full biodegradable high-barrier multi-layer composite material and preparation method thereof as well as packaging bag
CN114083866A (zh) * 2021-12-13 2022-02-25 厦门长塑实业有限公司 一种胶带用双轴取向聚乳酸薄膜及其制备方法
CN115366515A (zh) * 2022-08-11 2022-11-22 厦门长塑实业有限公司 一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608502A (zh) * 2020-12-15 2021-04-06 厦门长塑实业有限公司 一种高韧性双向拉伸聚乳酸薄膜、制备方法及应用
CN113895126A (zh) * 2021-10-11 2022-01-07 安徽金田高新材料股份有限公司 一种高收缩双向拉伸聚乳酸薄膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210147673A1 (en) * 2021-01-13 2021-05-20 Qingdao Fullsun Biotechnology Co., Ltd Full biodegradable high-barrier multi-layer composite material and preparation method thereof as well as packaging bag
CN114083866A (zh) * 2021-12-13 2022-02-25 厦门长塑实业有限公司 一种胶带用双轴取向聚乳酸薄膜及其制备方法
CN115366515A (zh) * 2022-08-11 2022-11-22 厦门长塑实业有限公司 一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法

Also Published As

Publication number Publication date
CN115366515A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
JP7235151B2 (ja) 二軸配向ポリプロピレンフィルム
JP7205611B2 (ja) 二軸配向ポリプロピレンフィルム
CN109181242B (zh) 塑料薄膜用开口剂母粒及其制备方法
WO2024031896A1 (zh) 一种抗胶水反粘的双向拉伸聚乳酸薄膜及其制备方法
JPWO2018147335A1 (ja) 二軸配向ポリプロピレンフィルム
CN107849399A (zh) 粘结膜和粘结膜筒
JP5924183B2 (ja) 二軸延伸ポリプロピレンフィルム
KR101268217B1 (ko) 열수축성 폴리에스테르계 단층 필름
JP5742023B2 (ja) 表面保護用フィルムおよびその製造方法
CN109734989A (zh) 一种薄膜及其制备方法和应用
WO2005090073A1 (ja) ポリプロピレン系積層フィルム及びそれを用いた包装体
WO2018097161A1 (ja) 積層ポリプロピレンフィルム
CN102046349B (zh) 聚苯硫醚树脂制离型膜和叠层体
CN116160745A (zh) 一种聚丙烯薄膜及其制备方法和热复合片材
CN114479366A (zh) 一种添加化学改性回收聚酯切片的在线涂硅离型聚酯薄膜及其生产工艺与应用
CN114311898B (zh) 一种冷裱复合膜用聚丙烯薄膜及其制备方法和冷裱复合膜
CN115403849B (zh) 开卷母粒及其制备方法和应用
JPS59215833A (ja) 超高分子量ポリエチレン多孔質フイルムの製造方法
CN114083862B (zh) 一种高界面结合力的双向拉伸聚乳酸复合薄膜及其制备方法和应用
JPH10744A (ja) 剥離フィルムの製造方法
KR101502330B1 (ko) 드라이필름 포토레지스트용 보호필름
US11530282B2 (en) Wrap film with polyisobutylene succinic anhydride
JP2000177057A (ja) 離型フィルムの製造方法
CN114889283B (zh) 一种高粘结强度免底涂预涂膜用bopet薄膜及其制备方法
JP2016064654A (ja) 二軸配向ポリプロピレンフィルムおよび表面保護フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954834

Country of ref document: EP

Kind code of ref document: A1