WO2024029782A1 - 광변조 디바이스 - Google Patents

광변조 디바이스 Download PDF

Info

Publication number
WO2024029782A1
WO2024029782A1 PCT/KR2023/010190 KR2023010190W WO2024029782A1 WO 2024029782 A1 WO2024029782 A1 WO 2024029782A1 KR 2023010190 W KR2023010190 W KR 2023010190W WO 2024029782 A1 WO2024029782 A1 WO 2024029782A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
formula
layer
modulation device
liquid crystal
Prior art date
Application number
PCT/KR2023/010190
Other languages
English (en)
French (fr)
Inventor
김민준
이범진
허두영
오동현
유정선
김진홍
김정운
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP23850289.2A priority Critical patent/EP4443226A1/en
Priority to CN202380016612.7A priority patent/CN118525245A/zh
Publication of WO2024029782A1 publication Critical patent/WO2024029782A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • This application relates to light modulation devices and uses thereof.
  • a light modulation device in which a light modulation layer containing a liquid crystal compound or the like is placed between two substrates is used for various purposes.
  • liquid crystal alignment films are usually formed on both sides of the liquid crystal layer to control the orientation of the liquid crystal compound.
  • Patent Document 1 discloses a light modulation device having a structure in which a liquid crystal alignment film is formed on one side of the liquid crystal layer, and an adhesive layer is formed instead of the liquid crystal alignment film on the other side.
  • Patent Document 1 Since the adhesive layer disclosed in Patent Document 1 has a liquid crystal alignment force, it is described that the desired liquid crystal compound can be aligned without applying a liquid crystal alignment film to one side of the liquid crystal layer.
  • the light modulation device disclosed in Patent Document 1 has the advantage of maintaining excellent adhesion between two opposing substrates because an adhesive is applied to one substrate.
  • Patent Document 1 Republic of Korea Patent Publication No. 1987373
  • This application provides an optical modulation device.
  • the adhesive layer or adhesive layer is applied to secure adhesion between opposing substrates and at the same time stably maintain the orientation of the liquid crystal compound.
  • the alignment state of the desired liquid crystal compound can be stably maintained or implemented for a long period of time even at high temperatures.
  • the purpose is to provide a light modulation device that can
  • the terms vertical, parallel, perpendicular or horizontal and the numerical values of angles that define angles mean substantially vertical, parallel, perpendicular or horizontal and the numerical values within the range that does not impair the intended effect.
  • the range of the vertical, parallel, orthogonal, or horizontal and numerical values includes errors such as manufacturing errors or variations. For example, in each case above, there is an error within approximately ⁇ 3 degrees, an error within approximately ⁇ 2 degrees, an error within approximately ⁇ 1 degree, an error within approximately ⁇ 0.8 degrees, an error within approximately ⁇ 0.6 degrees, or It may contain an error within approximately ⁇ 0.4 degrees.
  • the physical properties are those measured at room temperature.
  • room temperature refers to a temperature in a state where the temperature is not particularly heated or reduced, and is any temperature in the range of about 10°C to 30°C, for example, about 15°C or higher, 18°C or higher, 20°C or higher, or about 23°C or higher. , which may mean a temperature of about 27°C or lower.
  • the unit of temperature referred to in this specification is °C.
  • angles referred to herein are positive numbers.
  • one of the angles measured clockwise and the angle measured counterclockwise is expressed as a positive number, and the other angle is expressed as a positive number.
  • the angle can also be expressed as a negative number.
  • the reference wavelength for transmittance, refractive index, in-plane retardation, or thickness direction retardation is about 550 nm.
  • the term light modulation device may refer to an element capable of switching at least two different states of light.
  • different states of light may mean, for example, states with different transmittances.
  • Examples of states that the light modulation device can implement include transmission and blocking mode states.
  • the light modulation device of the present application may be an element capable of switching between at least the transmission and blocking mode states.
  • the transmittance of the optical modulation device in the transmission mode may be at least 10%, 12%, 14%, 16%, 18%, 20%, 22%, or 24%. In other examples, the transmittance in the transmission mode is 100% or less, 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, It may be 50% or less, 45% or less, 40% or less, 35% or less, or 30% or less. However, since the higher the transmittance in the transmission mode is, the more advantageous it is, so the upper limit is not particularly limited.
  • the transmittance of the light modulation device is 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less. , may be 0.8% or less, 0.6% or less, 0.4% or less, or 0.2% or less. In other examples, the transmittance in the blocking mode may be about 0% or more or 0.1% or more. However, since lower transmittance is more advantageous in blocking mode, the lower limit of the transmittance in the blocking mode is not particularly limited.
  • the transmittance may be, for example, straight light transmittance.
  • the straight light transmittance is the percentage of the ratio of light transmitted in the same direction as the incident direction to the light incident on the device.
  • the transmittance may be defined as the percentage of light that passes through the device in a direction parallel to the normal direction among the light incident in a direction parallel to the normal direction of the surface of the film or sheet. You can.
  • the transmittance is the transmittance for any wavelength within the visible light region, for example, about 400 to 700 nm or about 380 to 780 nm, the transmittance for the entire visible light region, or the transmittance for the entire visible light region. It may be the maximum or minimum transmittance, or it may be the average value of the transmittance in the visible light region.
  • the transmittance may be the transmittance for light with a wavelength of about 550 nm.
  • the optical modulation device of the present application may be designed to be able to switch between at least two states, one selected from the transmission and blocking mode states, and the other state. If necessary, other states in addition to the above states, for example, a third state or a higher state including a state of intermediate transmittance between the transmission mode and the blocking mode state, may be implemented.
  • Switching of the optical modulation device can be controlled depending on whether an external signal is applied, for example, an electrical signal. For example, in the absence of an external signal such as voltage, the optical modulation device may maintain one of the states described above and switch to another state when a voltage is applied. By changing the intensity, frequency, and/or form of the applied voltage, the state of the mode may be changed, or the third other mode state may be implemented.
  • an external signal for example, an electrical signal.
  • the optical modulation device may maintain one of the states described above and switch to another state when a voltage is applied.
  • the state of the mode may be changed, or the third other mode state may be implemented.
  • the light modulation device in the present application may include two opposing substrates and a variable transmittance layer located between the substrates.
  • Figure 2 is a diagram showing an example of the above structure.
  • the light modulation device includes a first substrate 100 and a second substrate 200 that are opposed to each other.
  • the first and second substrates may have a first surface and a second surface, respectively.
  • the first surface may refer to one main surface of the substrate, and the second surface may refer to the main surface on the opposite side.
  • a functional layer 1001 is formed on one surface (e.g., the first surface) of the first substrate 100, and a functional layer 1001 is formed on one surface (e.g., the first surface) of the other second substrate 200.
  • the first surface may have a liquid crystal alignment layer 2001 formed thereon.
  • the functional layer may be a silicone polymer layer described later.
  • a transmittance variable layer 600 is positioned between the first and second substrates 100 and 200 that are opposed to each other. There is no particular limitation on the type of the transmittance variable layer, and a liquid crystal layer can usually be used as the transmittance variable layer.
  • a liquid crystal alignment layer is usually formed on both surfaces of the first and second substrates 100 and 200, but instead of the liquid crystal alignment layer on the first substrate 100, a silicon polymer layer to be described later is used.
  • a liquid crystal alignment layer By forming a liquid crystal alignment layer only on the second substrate 200, an alignment state of the liquid crystal compound that is very useful in specific applications (eg, smart window, sunroof, or eye wear) may be obtained. In this case, a liquid crystal alignment layer is not formed on the first substrate.
  • the layer 1001 can function as an adhesive layer or adhesive layer 1001, the adhesive layer or adhesive layer 1001 can be attached to the spacer to greatly improve the adhesion between the first and second substrates.
  • the light modulation device of the present application includes first and second substrates arranged to face each other; It may include a liquid crystal layer existing between the first and second substrates, and a silicon polymer layer may exist between the first substrate and the liquid crystal layer as the functional layer.
  • the substrate known substrate materials can be used without particular restrictions.
  • the substrate may be a glass film, a crystalline or amorphous silicon film, an inorganic film such as quartz or an ITO (Indium Tin Oxide) film, or a plastic film.
  • Plastic films include TAC (triacetyl cellulose); COP (cyclo olefin copolymer) such as norbornene derivative substrate; PMMA (poly(methyl methacrylate); PC(polycarbonate); PE(polyethylene); PP(polypropylene); PVA(polyvinyl alcohol); DAC(diacetyl cellulose); Pac(Polyacrylate); PES(poly ether sulfone); PEEK(polyetheretherketone) ); PPS (polyphenylsulfone), PEI (polyetherimide); PEN (polyethylenemaphthatlate); PET (polyethyleneterephtalate); PI (polyimide); PSF (polysulfone); PAR (polyarylate); or amorphous fluororesin, etc. can be used.
  • the thickness of this substrate is not particularly limited and may be selected within an appropriate range.
  • an optically anisotropic film may be used as the substrate.
  • Films having such optical anisotropy usually also have anisotropic mechanical properties, and by utilizing this anisotropy, a light modulation device with superior durability, etc. can be provided.
  • the anisotropic film may have an in-plane retardation of about 500 nm or more.
  • the in-plane phase difference is a value for light with a wavelength of 550 nm, and is a physical quantity defined by the following formula A.
  • the in-plane retardation of the retardation film is 600 nm or more, 700 nm or more, 800 nm or more, 900 nm or more, 1,000 nm or more, 1,100 nm or more, 1,200 nm or more, 1,300 nm or more, 1,400 nm or more, 1,500 nm or more.
  • nm or more nm or more
  • 2,500 nm or more nm or more
  • 3,000 nm or more 3,500 nm or more, 4,000 nm or more, 4,500 nm or more, 5,000 nm or more, 5,500 nm or more, 6,000 nm or more, 6,500 nm or more, 7,000 nm or more, 7,500 nm or more, 8,000 nm or more nm or more, 8,500 nm or more, 9,000 nm or more or 9,500 nm or more, 100,000 nm or less, 90,000 nm or less, 80,000 nm or less, 70,000 nm or less, 60,000 nm or less, 50,000 nm or less, 40,000 nm or less, 30,000 nm or less, 20,000 nm Below, 15,000 nm or less, 14,000 nm or less, 13,000 nm or less, 12,000 nm or less, 10,000 nm or less, 9,500
  • an anisotropic polymer film to which optical anisotropy is imparted by stretching may be applied.
  • Polymer films include, for example, polyolefin films such as polyethylene films or polypropylene films, cycloolefin polymer (COP) films such as polynorbornene films, polyvinyl chloride films, polyacrylonitrile films, poly Cellulose ester-based polymer films such as sulfone films, polyacrylate films, PVA (poly(vinyl alcohol)) films, or TAC (Triacetyl cellulose) films, polyester films, or polycarbonate films, or two or more types of monomers forming the polymers Examples include copolymer films of monomers.
  • COP cyclolefin polymer
  • COP cyclolefin polymer
  • Polynorbornene films such as polynorbornene films
  • polyvinyl chloride films polyacrylonitrile films
  • poly Cellulose ester-based polymer films such as sulfone films, polyacrylate films, PVA (poly(vinyl alcohol)) films, or TAC (Triace
  • a polyester film such as a PET (poly(ethylene terephthalate)) film may be used as the film. That is, films exhibiting an in-plane retardation in the above-described range are known in the industry, and in the case of polymer films, such films not only exhibit large optical anisotropy but also exhibit asymmetry in mechanical properties due to stretching during the manufacturing process.
  • a representative example of such a retardation film known in the industry is a stretched polyester film such as a stretched poly(ethyleneterephthalate) (PET) film.
  • a polyester film such as a PET film may be applied as the film, but the type of film applicable to the substrate in the present application is not limited thereto.
  • the in-plane phase difference is a physical quantity according to the following equation A.
  • R in is the in-plane retardation
  • n x is the refractive index in the slow axis direction of the film
  • n y is the refractive index in the fast axis direction of the film
  • d is the thickness of the film.
  • the substrates When the anisotropic film is simultaneously applied to the first and second substrates, the substrates may be arranged so that their slow axes are parallel or perpendicular to each other.
  • the light modulation device may include at least a transmittance variable layer for the switching.
  • the transmittance variable layer may be a layer that generates a polarization component.
  • An example of such a variable transmittance layer is an active liquid crystal layer.
  • active liquid crystal layer refers to a layer that includes at least a liquid crystal compound and can refer to a liquid crystal layer in which the alignment state of the liquid crystal compound can be controlled through an external signal or the like.
  • the application of the active liquid crystal layer is an example of the present application, and if necessary, other known transmittance variable layers, such as electrochromic material layer, photochromic material layer, electrophoretic material layer, or dispersed particle alignment layer, etc. This may also be used.
  • the active liquid crystal layer is a layer containing a liquid crystal compound.
  • the scope of the term active liquid crystal layer includes all layers containing a liquid crystal compound whose orientation can be controlled through the application of an external signal, etc.
  • a liquid crystal compound liquid crystal host
  • the so-called guest host layer containing a dichroic dye is also a type of liquid crystal layer defined in this specification.
  • Any type of liquid crystal compound can be used as long as the orientation direction can be changed by the application of an external signal.
  • the liquid crystal compound may be a smectic liquid crystal compound, a nematic liquid crystal compound, or a cholesteric liquid crystal compound.
  • the liquid crystal compound may be, for example, a compound that does not have a polymerizable group or a crosslinkable group so that its orientation direction can be changed by the application of an external signal.
  • the liquid crystal layer may include a liquid crystal compound having positive or negative dielectric anisotropy.
  • the absolute value of the dielectric anisotropy of the liquid crystal may be appropriately selected in consideration of the purpose of the present application.
  • the term “dielectric anisotropy ( ⁇ )” may refer to the difference ( ⁇ p - ⁇ v) between the horizontal dielectric constant ( ⁇ p) and the vertical dielectric constant ( ⁇ v) of the liquid crystal.
  • the term horizontal dielectric constant ( ⁇ p) refers to a dielectric constant value measured along the direction of the electric field while applying a voltage so that the direction of the electric field due to the director of the liquid crystal molecules and the applied voltage is substantially horizontal
  • the vertical dielectric constant ( ⁇ v) refers to the dielectric constant value measured along the direction of the electric field while applying a voltage so that the direction of the electric field caused by the applied voltage is substantially perpendicular to the director of the liquid crystal molecules.
  • the refractive index anisotropy ( ⁇ n) of the liquid crystal layer may be in the range of 0.01 to 0.5.
  • the refractive index anisotropy is 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, or 0.085 or more, or 0.45 or less, 0.4 or less, 0.35 or less, 0.3 or less, 0.25 or less, 0.2 or less, It may be about 0.15 or less or 0.1 or less.
  • the refractive index anisotropy of the liquid crystal layer is selected depending on the purpose and is not limited to the above.
  • the driving modes of the liquid crystal layer include, for example, Dynamic Scattering (DS) mode, Electrically Controllable Birefringence (ECB) mode, In-Plane Switching (IPS) mode, Fringe-Field Switching (FFS) mode, and Optially Compensated Bend (OCB) mode.
  • DS Dynamic Scattering
  • EBC Electrically Controllable Birefringence
  • IPS In-Plane Switching
  • FFS Fringe-Field Switching
  • OCB Optially Compensated Bend
  • VA Vertical Alignment
  • MVA Multi-domain Vertical Alignment
  • PVA Patterned Vertical Alignment
  • HAN Hybrid Aligned Nematic
  • TN Twisted Nematic
  • STN Super Twisted Nematic
  • R-TN Reversed Twisted Nematic
  • the liquid crystal layer of the present application may be designed (formed) to implement at least twisted orientation among the above modes.
  • the twisted orientation refers to a state in which the liquid crystal compounds in the liquid crystal layer are oriented in a twisted form based on a virtual spiral axis, and this twisted orientation refers to a state in which the liquid crystal compounds in the liquid crystal layer are horizontally aligned, vertically aligned, and obliquely aligned. It can be implemented in a state-of-the-art or spray-oriented state. Additionally, the twisted alignment may be implemented in the initial state of the liquid crystal layer, or may be implemented when an external signal is applied.
  • the liquid crystal layer may be designed (formed) to be able to switch between at least the vertical alignment state and the twisted alignment state.
  • one of the above two states may be implemented in the initial state, or may be switched to another state when an external signal (eg, an electrical signal such as voltage) is applied.
  • the vertical alignment state may be implemented in the initial state.
  • the light modulation device of the present application can be designed so that the alignment state (particularly, the vertical alignment state) of the liquid crystal layer can be stably maintained even at high temperatures.
  • the first and second substrates; And the light modulation device including a liquid crystal layer present between the first and second substrates may have an absolute value of ⁇ T in Equation 1 below within a predetermined range.
  • T 2 is the transmittance measured at 90°C with the light modulation device positioned between two orthogonal polarizers after maintaining the light modulation device at 90°C for 5 minutes.
  • T 1 is the transmittance measured at 25°C with the light modulation device positioned between two orthogonal polarizers before being maintained at 90°C for 5 minutes.
  • the T 1 and T 2 of Equation 1 are transmittances measured when the liquid crystal layer of the light modulation device is vertically aligned, and in the process of maintaining the light modulation device at 90° C. for 5 minutes, the liquid crystal layer is vertically aligned. It is a state.
  • T 1 and T 2 in Formula 1 is %, and this is a value evaluated by the method described in the Examples described later.
  • Figure 1 is a diagram showing the process of checking T 1 and T 2 .
  • the transmittance T 1 and T 2 can be measured with the optical modulation device 200 positioned between two orthogonal polarizers 101 and 102.
  • the transmittance is the transmittance measured on the other polarizer 102 after light is incident on one of the two orthogonal polarizers 101 and 102 (in the direction of the arrow in FIG. 1).
  • the measurement of light incidence and transmittance is performed in a direction parallel to the normal direction of the surface of the polarizers 101 and 102.
  • the orthogonal polarizer refers to a state in which the light absorption axes of the two polarizers 101 and 102 are perpendicular to each other.
  • the point where the lowest transmittance appears is the light of the two polarizers.
  • the absorption axes are viewed as points perpendicular to each other.
  • the slow axis of the substrate is parallel to the light absorption axis of one of the two polarizers. Arrange to do so.
  • the transmittance is measured to be low.
  • T 2 measured above appears to be higher than T 1 .
  • the absolute value of ⁇ T may be below a certain level.
  • the absolute value of ⁇ T is 300% or less, 290% or less, 280% or less, 270% or less, 260% or less, 250% or less, 240% or less, 230% or less, 220% or less, 210% or less.
  • the absolute value of ⁇ T is 0% or more, 0.5% or more, 1% or more, 1.5% or more, 2% or more, 2.5% or more, 3% or more, 3.5% or more, 4% or more, 4.5% or more, 5% or more. , it may be 5.5% or more, 6% or more, 6.5% or more, 7% or more, 7.5% or more, 8% or more, 8.5% or more, 9% or more, 9.5% or more, or 10% or more.
  • the absolute value of ⁇ T may be within a range between any one of the above-described lower limits and any one of the above-described upper limits.
  • T 2 is not particularly limited, but in one example, it may be about 2% or less. In other examples, T 2 may be about 1.8% or less, 1.6% or less, 1.4% or less, 1.2% or less, 1% or less, 0.8% or less, 0.6% or less, 0.4% or less, or 0.2% or less. There is no limit to the lower limit of T 2 , for example, T 2 may be 0% or more.
  • T 1 and T 2 The measurement method of T 1 and T 2 is specifically described in the Examples.
  • the transmittance variable layer which is a liquid crystal layer, basically includes the liquid crystal compound and may also include additional components if necessary.
  • the liquid crystal layer which is a variable transmittance layer, may include a so-called chiral dopant along with the liquid crystal compound.
  • chiral dopants can induce a helical orientation, that is, the twisted orientation, in the liquid crystal compound.
  • the chiral dopant may be used without particular limitation as long as it can induce the desired twisting without damaging liquid crystallinity, for example, nematic regularity.
  • a chiral dopant for inducing rotation in liquid crystal molecules needs to include at least chirality in its molecular structure.
  • Chiral dopants are, for example, compounds with one or more asymmetric carbons, compounds with asymmetric points on heteroatoms such as chiral amines or chiral sulfoxides, or cumulene. ) or a compound having an optically active site (axially asymmetric, optically active site) with an axial agent such as binaphthol may be exemplified.
  • the chiral dopant may be a low molecular weight compound with a molecular weight of 1,500 or less.
  • a commercially available chiral nematic liquid crystal for example, chiral dopant liquid crystal S811 available from Merck or LC756 from BASF, etc. may be applied.
  • the ratio of the chiral dopant there is no particular limitation on the ratio of the chiral dopant, but the ratio of the thickness (d, cell gap) of the transmittance variable layer and the pitch of the helical structure of the liquid crystal compound generated by the addition of the chiral dopant (pitch of the twisted orientation) (p) (d/p) may be added to satisfy the K value described later.
  • the pitch (p) of the so-called twist-oriented light modulation layer (liquid crystal layer) to which the chiral dopant is applied can be measured by a measurement method using a wedge cell, and the Simple method for accurate measurements of the cholesteric pitch using a by D. Podolskyy et al. It can be measured by the method described in stripe-wedge Grandjean-Cano cell (Liquid Crystals, Vol. 35, No. 7, July 8, 2008, 789-791).
  • the content (% by weight) of the chiral dopant is calculated by the formula 100/(HTP (Helixcal Twisting power) ⁇ Pitch (nm), and can be selected at an appropriate ratio considering the desired pitch (p).
  • the liquid crystal layer may be designed so that the ratio (d/p) between the pitch (p) of the twisted orientation and the thickness (d, cell) of the light modulation layer (liquid crystal layer) is less than 1.
  • the ratio (d/p) is 0.95 or less, 0.9 or less, 0.85 or less, 0.8 or less, 0.75 or less, 0.7 or less, 0.65 or less, 0.6 or less, 0.55 or less, 0.5 or less, 0.45 or less, 0.4 or less, 0.35 or less, It may be 0.3 or less, 0.25 or less, or 0.2 or less, or 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, 0.4 or more, 0.45 or more, or 0.5 or more.
  • the liquid crystal layer may be designed so that the pitch (p) of the twisted orientation is within the range of 1 to 100 ⁇ m.
  • the ratio is 2 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, 5 ⁇ m or more, 6 ⁇ m or more, 7 ⁇ m or more, 8 ⁇ m or more, 9 ⁇ m or more, 10 ⁇ m or more, 11 ⁇ m or more, 12 ⁇ m or more, 13 ⁇ m or more.
  • the thickness (d, cell gap) of the liquid crystal layer may be in the range of 0.5 ⁇ m to 50 ⁇ m.
  • the thickness (d, cell gap) is, in other examples, 1 ⁇ m or more, 1.5 ⁇ m or more, 2 ⁇ m or more, 2.5 ⁇ m or more, 3 ⁇ m or more, or 3.5 ⁇ m or more, 4 ⁇ m or more, 4.5 ⁇ m or more, 5 ⁇ m or more, 5.5 ⁇ m.
  • the transmittance variable layer may contain other necessary additional components (for example, dichroic dye, etc.).
  • a silicon polymer layer may exist between the first substrate and the liquid crystal layer.
  • silicone polymer layer refers to at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% by weight of silicone polymer. It refers to a layer containing more than one layer. The upper limit of the ratio of the silicone polymer within the silicone polymer layer may be 100% or less.
  • the silicon polymer layer as described above may be formed directly on the surface of the first substrate facing the liquid crystal layer, or another layer (for example, an electrode layer to be described later) may exist between the first substrate and the silicon polymer layer. It may be possible.
  • the silicone polymer layer may be a so-called adhesive layer or adhesive layer.
  • the silicon polymer layer may be formed on the surface of the first substrate.
  • This silicon polymer layer may be formed to have an area of 70% or more of the total area of the first substrate.
  • the area of the silicon polymer layer may be approximately 75% or more, 80% or more, 85% or more, 90% or more, or 95% or more of the total area of the first substrate.
  • the silicon polymer layer as described above may be included in the light modulation device while in contact with the liquid crystal layer.
  • the material forming the silicone polymer layer is not particularly limited.
  • a silicone adhesive layer or a silicone adhesive layer may be applied as the silicone polymer layer.
  • silicone-based adhesives or silicone-based adhesives known in the industry as so-called OCA (Optically Clear Adhesive) or OCR (Optical Clear Resin), and these adhesives or adhesives are used as a liquid crystal alignment film in a state containing a compound described later. It can be combined with to induce appropriate orientation of the liquid crystal compound.
  • the unique surface properties of the silicon polymer layer can be combined with a liquid crystal alignment layer (particularly, a vertical alignment layer) to induce an alignment state of the liquid crystal compound suitable for the purpose.
  • the silicone-based adhesive or adhesive may be a cured product of a curable silicone adhesive or adhesive composition (hereinafter, simply referred to as a curable silicone composition).
  • a curable silicone composition The type of the curable silicone composition is not particularly limited, and for example, a heat-curable silicone composition can be used.
  • the curable silicone composition is an addition curable silicone composition, which includes (1) a polyorganosiloxane containing two or more alkenyl groups in the molecule and (2) a polyol containing two or more silicon-bonded hydrogen atoms in the molecule. It may contain ganosiloxane.
  • the silicone compound can form a cured product through an addition reaction in the presence of a catalyst such as a platinum catalyst, for example.
  • the polyorganosiloxane (1) above is a main component constituting the silicone cured product, and contains at least two alkenyl groups in one molecule.
  • specific examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, or a heptenyl group.
  • the vinyl group is usually applied, but is not limited thereto.
  • the bonding position of the alkenyl group described above is not particularly limited.
  • the alkenyl group may be bonded to the terminal of the molecular chain and/or to the side chain of the molecular chain.
  • types of substituents that may be included in addition to the alkenyl group described above include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, or heptyl group; Aryl groups such as phenyl group, tolyl group, xylyl group, or naphthyl group; Aralkyl groups such as benzyl group or penentyl group; Halogen-substituted alkyl groups such as chloromethyl group, 3-chloropropyl group, or 3,3,3-trifluoropropyl group are included, and among these, methyl group or phenyl group are usually applied, but are not limited thereto.
  • the molecular structure of the polyorganosiloxane (1) above is not particularly limited, and may have any shape, such as straight chain, branched, ring, network, or partially branched straight chain. Usually, among the above molecular structures, those having a linear molecular structure are particularly applied, but are not limited thereto.
  • polyorganosiloxane examples include dimethylsiloxane-methylvinylsiloxane copolymer with trimethylsiloxane groups blocked at both ends of the molecular chain, methylvinylpolysiloxane with trimethylsiloxane groups blocked at both ends of the molecular chain, and trimethylsiloxane groups blocked at both ends of the molecular chain. Blocked dimethylsiloxane-methylvinylsiloxane-methylphenylsiloxane copolymer, blocked dimethylvinylsiloxane groups at both ends of the molecular chain.
  • Dimethylpolysiloxane blocked dimethylvinylsiloxane groups at both ends of the molecular chain.
  • Methylvinylpolysiloxane blocked dimethylvinylsiloxane groups at both ends of the molecular chain.
  • a polyorganosiloxane copolymer comprising a siloxane unit represented by SiO 4/2 and a siloxane unit represented by R 1 2 R 2 SiO 1/2 and a siloxane unit represented by SiO 4/2
  • Examples include, but are not limited to, ganosiloxane copolymers and mixture
  • R 1 is a hydrocarbon group other than an alkenyl group, and specifically, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a heptyl group; Aryl groups such as phenyl group, tolyl group, xylyl group, or naphthyl group; Aralkyl groups such as benzyl group or penentyl group; It may be a halogen-substituted alkyl group such as a chloromethyl group, 3-chloropropyl group, or 3,3,3-trifluoropropyl group.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a heptyl group
  • Aryl groups such as phen
  • R 2 is an alkenyl group, and may specifically be a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, or a heptenyl group.
  • the molecular structure of the polyorganosiloxane (2) is not particularly limited, and may have any shape, such as straight chain, branched, ring, network, or partially branched straight chain. Among the molecular structures described above, those having a linear molecular structure are generally applied, but are not limited thereto.
  • polyorganosiloxane examples include methylhydrogenpolysiloxane with trimethylsiloxane groups blocked at both ends of the molecular chain, dimethylsiloxane-methylhydrogen copolymer with blocked trimethylsiloxane groups at both ends of the molecular chain, and trimethylsiloxane at both ends of the molecular chain.
  • R 1 is a hydrocarbon group other than an alkenyl group, and specifically, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a heptyl group; Aryl groups such as phenyl group, tolyl group, xylyl group, or naphthyl group; Aralkyl groups such as benzyl group or penentyl group; It may be a halogen-substituted alkyl group such as a chloromethyl group, 3-chloropropyl group, or 3,3,3-trifluoropropyl group.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a heptyl group
  • Aryl groups such as phen
  • the content of the polyorganosiloxane (2) above is not particularly limited as long as it is contained in an amount that allows appropriate curing.
  • the polyorganosiloxane (2) may be included in an amount of 0.5 to 10 silicon-bonded hydrogen atoms per alkenyl group included in the polyorganosiloxane (1) described above. Within this range, hardening can sufficiently proceed and heat resistance can be secured.
  • the addition-curable silicone composition may further include platinum or a platinum compound as a catalyst for curing.
  • platinum or a platinum compound as a catalyst for curing.
  • the specific type of platinum or platinum compound is not particularly limited.
  • the ratio of catalyst can also be adjusted to a level where appropriate curing can be achieved.
  • the addition-curable silicone composition may also contain appropriate additives in an appropriate ratio from the viewpoint of improving storage stability, handling, and workability.
  • the silicone polymer layer may be a cured layer of a curable composition (eg, the addition-curable silicone composition, etc.).
  • the curable composition containing polyorganosiloxane containing siloxane units of the following formula (1) is suitable for forming a desired light modulation device.
  • R is an alkyl group, an alkoxy group, or an aryl group.
  • the alkyl group of Formula 1 may be an alkyl group, a methyl group, or an ethyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkyl group may be straight-chain, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • the alkyl group may be an unsubstituted straight-chain alkyl group.
  • the alkoxy group of Formula 1 may be an alkoxy group, a methoxy group, or an ethoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkoxy group may be straight-chain, branched-chain, or cyclic, and may be optionally substituted with one or more substituents. In an appropriate example, the alkoxy group may be an unsubstituted straight-chain alkoxy group.
  • the aryl group of Formula 1 is a monovalent group derived from a compound or derivative thereof containing a benzene ring or a structure in which two or more benzene rings are connected to each other by an appropriate linker, or are condensed or bonded while sharing one or two or more carbon atoms. It may be a residue.
  • the scope of the aryl group may include functional groups commonly referred to as aryl groups as well as so-called aralkyl groups or arylalkyl groups.
  • the aryl group may be, for example, an aryl group having 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
  • aryl group examples include phenyl group, dichlorophenyl, chlorophenyl, phenylethyl group, phenylpropyl group, benzyl group, tolyl group, xylyl group, or naphthyl group.
  • R in Formula 1 may be an alkyl group.
  • the ratio of the number of moles of the siloxane units of Formula 1 to the total siloxane units included in the polyorganosiloxane containing the siloxane units of Formula 1 may be controlled.
  • the ratio of the number of moles of the siloxane units of Formula 1 to the number of moles of all siloxane units of the polyorganosiloxane is 0.001 mol% or more, 0.005 mol% or more, 0.01 mol% or more, 0.05 mol% or more, 0.1 mole.
  • the ratio of the number of moles of the siloxane units of Formula 1 may be within the range of any one of the above-described upper limits and any one of
  • the polyorganosiloxane may include a siloxane unit of Formula 1 and may have a straight-chain or branched-chain structure.
  • siloxane units polyorganosiloxanes containing only the so-called M units (monofunctional siloxane units) and D units (bifunctional siloxane units) have a straight chain structure, and polyorganosiloxanes with a branched chain structure include the so-called There are siloxane units that are T units (trifunctional siloxane units) and/or Q units (tetrafunctional siloxane units).
  • the total ratio of the T units and Q units is 10 mol% or less, 9 mol% or less, based on the number of moles of total siloxane units in the polyorganosiloxane. It is about 8 mol% or less, 7 mol% or less, 6 mol% or less, 5 mol% or less, 4 mol% or less, 3 mol% or less, 2 mol% or less, 1 mol% or less, or 0.5 mol% or less, or 0 mol%. Excess is appropriate. When the polyorganosiloxane has a linear structure, the total ratio of the T units and Q units is 0 mol%.
  • the terminal of the chain of the polyorganosiloxane may be a siloxane unit of the following formula (2). That is, the ends of the polyorganosiloxane may be blocked by siloxane units of the following formula (2).
  • R 1 is hydrogen, an alkyl group, an alkoxy group, or an aryl group.
  • R 1 in Formula 2 may be an alkyl group, an alkoxy group, an aryl group, or an alkyl group.
  • the polyorganosiloxane may further include a siloxane unit of the following formula (3).
  • R 2 is an alkyl group, an alkoxy group, or an aryl group.
  • alkyl group, alkoxy group, and aryl group in Formula 3 are the same as R in Formula 1.
  • R 2 in Formula 3 may be an alkyl group.
  • the polyorganosiloxane may have a molar mass ranging from 200 g/mol to 2,000,000 g/mol.
  • the molar mass is a value calculated from the number of moles and molar masses of silicon atoms, oxygen atoms, carbon atoms, and hydrogen atoms included in the polyorganosiloxane.
  • the molar mass of the polyorganosiloxane may also be at least 500 g/mol, at least 1,000 g/mol, at least 3,000 g/mol, at least 5,000 g/mol, at least 7,000 g/mol, at least 9,000 g/mol, and at least 10,000 g/mol.
  • the molar mass may be within the range of any of the lower limits described above and any upper limit of the upper limits described above.
  • the polyorganosiloxane may be a polyorganosiloxane represented by the following formula (4).
  • R is each independently an alkyl group, an alkoxy group, or an aryl group, and m and n are arbitrary numbers.
  • siloxane unit of HRSiO 2/2 and the siloxane unit of R 2 SiO 2/2 are shown as constituting a block copolymer, but this is for convenience of explanation, and the siloxane unit constitutes a random copolymer. It may be included in the form
  • m is 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more, or 1,000 or less, 900 or less, 800 or less, 700 or less, 600 or less, 500 or less, 400 or less, 300 or less, 200 or less, 100 or less, 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 40 or less, 30 or less, 20 or less, 15 or less, 10 or less, 9 or less , it may be 8 or less, 7 or less, 6 or less, or 5 or less.
  • the m may be within the range of any one of the above-described upper limits and any of the above-described lower limits.
  • n is 0 or more, 20 or more, 40 or more, 60 or more, 80 or more, 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, or 900 or more, 20,000 or less, 15,000 or less, 10,000 or less, 5,000 or less, 1,000 or less, 950 or less, 900 or less, 850 or less, 800 or less, 750 or less, 700 or less, 650 or less, 600 or less, 550 or less, 500 or less, 450 or less, 400 or less , 350 or less, 300 or less, 250 or less, 200 or less, 150 or less, 100 or less, 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, or 40 or less.
  • the n may be within the range of any one of the above-described upper limits and any of the above-described lower limits.
  • polyorganosiloxane of Formula 4 in one example, 50 mol% or more, 55 mol% or more, 60 mol% or more, 65 mol% or more, 70 mol% or more, 75 mol% relative to the total number of moles of R of Formula 4. Above, 80 mol% or more, 85 mol% or more, 90 mol% or more, or 95 mol% or more of the polyorganosiloxane containing the alkyl group may be used. There is no particular limitation on the upper limit of the ratio of the alkyl group, but the alkyl group may be included in an amount of 100 mol% or less or less than 100 mol% relative to the total number of moles of R.
  • the polyorganosiloxane containing the siloxane unit of Formula 1 or the polyorganosiloxane of Formula 4 can form the desired silicone polymer layer by appropriately crosslinking the alkenyl group-containing polyorganosiloxane.
  • the content of the polyorganosiloxane containing the siloxane unit of Formula 1 or the polyorganosiloxane of Formula 4 in the silicone polymer layer may be adjusted.
  • the content is 2% by weight or more, 2.5% by weight or more, 3% by weight or more, 3.5% by weight or more, 4% by weight or more, 4.5% by weight or more, 5% by weight or more, 5.5% by weight or more, 6 weight% or more.
  • the content is 50% by weight or less, 48% by weight or less, 46% by weight or less, 44% by weight or less, 42% by weight or less, 40% by weight or less, 38% by weight or less, 36% by weight or less, 34% by weight or less.
  • a light modulation device with excellent durability can be formed while achieving the desired alignment state of the liquid crystal compound.
  • the silicone polymer layer containing the polyorganosiloxane may have ⁇ in the following formula 2 within a predetermined range.
  • M 1 is the molar mass (g/mol) of the siloxane unit of Formula 1 (in the case of polyorganosiloxane of Formula 4, HRSiO 2/2 unit) contained in the polyorganosiloxane
  • m is the number of moles (m in the case of Formula 4) of the siloxane unit of Formula 1 contained in the polyorganosiloxane
  • is the content in the silicone polymer layer of the polyorganosiloxane containing the siloxane unit of Formula 1 ( % by weight)
  • M 2 is the molar mass (g/mol) of the polyorganosiloxane.
  • ⁇ in Equation 2 is greater than 10, 10.5 or more, 11 or more, 12 or more, 13 or more, 14 or more, 15 or more, 16 or more, 17 or more, 18 or more, 19 or more, 20 or more, 21 or more, 22 or more.
  • the ⁇ is calculated for each polyorganosiloxane, and the sum of the values is calculated as the This can be pointed out by the ⁇ value.
  • a light modulation device with excellent durability can be formed while achieving the desired alignment state of the liquid crystal compound.
  • M 1 is, in one example, about 50 g/mol or more, 55 g/mol or more, or 60 g/mol or more, or 200 g/mol or less, 180 g/mol or less, 160 g/mol or less, or 140 g. /mol or less, 120 g/mol or less, 100 g/mol or less, 80 g/mol or less, 75 g/mol or less, 70 g/mol or less, or 65 g/mol or less.
  • the M 1 may be controlled within the range of any one of the above-described upper limits and any one of the above-described lower limits.
  • m is 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more, or 1,000 or less, 900 or less, 800 or less, 700 or less, 600 or less, 500 or less, 400 or less, 300 or less, 200 or less, 100 or less, 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 40 or less, 30 or less, 20 or less, 15 or less, 10 or less, 9 or less , it may be 8 or less, 7 or less, 6 or less, or 5 or less.
  • the m may be within the range of any one of the above-described upper limits and any of the above-described lower limits.
  • M 2 in Formula 2 is, for example, 200 g/mol or more, 500 g/mol or more, 1,000 g/mol or more, 3,000 g/mol or more, 5,000 g/mol or more, 7,000 g/mol or more, 9,000 g/mol or more, 10,000 g/mol or more, 30,000 g/mol or more, 40,000 g/mol or more, or 45,000 g/mol or more, or 2,000,000 g/mol or less, 1,500,000 g/mol or less, 1,000,000 g/mol or less, 500,000 g/mol or less, 100,000 g/mol or less, 90,000 g/mol or less, 70,000 g/mol or less, 50,000 g/mol or less, 30,000 g/mol or less, 10,000 g/mol or less, 9,000 g/mol or less, 7,000 g/mol or less, It may be 5,000 g/mol or less, 4,500 g/mol or less, 4,000 g/mol or less, 3,500 g/mol or less,
  • is 2% by weight or more, 2.5% by weight or more, 3% by weight or more, 3.5% by weight or more, 4% by weight or more, 4.5% by weight or more, 5% by weight or more, 5.5% by weight or more, 6% by weight. % or more, 6.5% by weight or more, 7% by weight or more, 7.5% by weight or more, 8% by weight or more, 8.5% by weight or more, 9% by weight or more, 9.5% by weight or more, 10% by weight or more, 10.5% by weight or more, 11 weight% or more % or more, 11.5 wt% or more, 12 wt% or more, 12.5 wt% or more, or 13 wt% or more.
  • is 50% by weight or less, 48% by weight or less, 46% by weight or less, 44% by weight or less, 42% by weight or less, 40% by weight or less, 38% by weight or less, 36% by weight or less, 34% by weight or less. , 32% by weight or less, 30% by weight or less, 28% by weight or less, 26% by weight or less, 24% by weight or less, 22% by weight or less, 20% by weight or less, 18% by weight or less, 16% by weight or less, 14% by weight or less.
  • the ratio can be controlled within the range of any one of the above-described upper limits and any one of the above-described lower limits.
  • a curable composition for forming the silicone polymer layer a known addition curable composition can be used without particular limitation as long as it contains the polyorganosiloxane of the formula (1) to satisfy the above conditions. All silicone adhesives or adhesives known in the industry as OCA or OCR, etc. can be applied in the present application.
  • the silicone polymer layer can be formed by mixing the polyorganosiloxane of Chemical Formula 1 with the silicone adhesive or adhesive to satisfy the above conditions.
  • the curable composition may include an alkenyl group-containing polyorganosiloxane in addition to the polyorganosiloxane of Formula 1.
  • an alkenyl group-containing polyorganosiloxane a polyorganosiloxane containing two or more alkenyl groups in the molecule (1) described above may be used.
  • the polyorganosiloxane of Formula 1 exists, it is a polyorganosiloxane with a structure different from the polyorganosiloxane of Formula 1, and contains two or more silicon-bonded hydrogen atoms in the (2) molecules described above. It may further include polyorganosiloxane containing.
  • the content of the alkenyl group-containing polyorganosiloxane and/or polyorganosiloxane containing two or more silicon bond hydrogen atoms in the molecule in the silicone polymer layer or curable composition is, for example, , 60% by weight or more, 65% by weight or more, 70% by weight or more, 75% by weight or more, 80% by weight or more, 85% by weight or more, 90% by weight or more, or 95% by weight or more.
  • the content may be less than 100% by weight, less than 95% by weight, less than 90% by weight, or less than 87% by weight.
  • the ratio can be controlled within the range of any one of the above-described upper limits and any one of the above-described lower limits.
  • the curable composition or silicone polymer layer may contain any necessary components in addition to the above components (for example, a catalyst for addition curing, etc.).
  • the type of the curable composition is not particularly limited and may be appropriately selected depending on the intended use.
  • a solid, semi-solid or liquid curable composition may be used.
  • the solid or semi-solid curable composition may be cured before the adhesive object is cemented.
  • the liquid curable composition is called optical clear resin (OCR), and can be cured after the adhesive object is bonded.
  • the thickness of the silicone polymer layer formed from the above curable composition is not particularly limited and can be adjusted depending on the purpose, and can usually be formed to a thickness within the range of 1 ⁇ m to 100 ⁇ m.
  • the liquid crystal alignment layer may not be formed on the first substrate. Therefore, in this case, a liquid crystal alignment layer may not exist between the first substrate and the liquid crystal layer.
  • a liquid crystal alignment layer may exist between the liquid crystal layer and the second substrate.
  • This liquid crystal alignment layer may be formed on the surface of the second substrate, for example, the surface facing the liquid crystal layer.
  • the type of liquid crystal alignment film that can be formed in the light modulation device.
  • the alignment layer a known vertical or horizontal alignment layer or other alignment layer may be applied considering the desired initial orientation, etc.
  • the type of alignment layer may be a contact alignment layer such as a rubbing alignment layer or a non-contact alignment layer such as a photo alignment layer.
  • a vertical alignment layer may be used as the alignment layer.
  • the combination of a vertical alignment layer and the aforementioned silicon polymer layer can induce an alignment state of the liquid crystal compound suitable for various uses.
  • the initial orientation of the liquid crystal compound formed by the liquid crystal alignment film and/or the silicone polymer layer and the liquid crystal alignment film in the liquid crystal layer may be vertical alignment, horizontal alignment, oblique alignment, or spray alignment.
  • the liquid crystal compound in the vertical alignment, horizontal alignment, inclined alignment, or spray alignment, the liquid crystal compound may be twisted and exist in the twisted or cholesteric alignment, or it may not exist.
  • the initial orientation refers to the orientation of the liquid crystal compound in the initial state, that is, in a state in which no external energy is applied to the liquid crystal layer.
  • the meaning of horizontal orientation, inclined orientation, vertical orientation or spray orientation is as known in the industry.
  • the liquid crystal compound of the transmittance variable layer may maintain the horizontal orientation, inclined orientation, vertical orientation, or spray orientation in the initial state, but may change to a different orientation state according to an external signal.
  • the initial orientation of the liquid crystal compound in the transmittance variable layer is vertical alignment or an alignment state similar to vertical alignment, and the twisted alignment can be implemented when an external signal is applied.
  • This alignment state is obtained by applying a vertical alignment film as the liquid crystal alignment film.
  • This type of orientation is useful in devices that implement the so-called Reversed Twisted Nematic (R-TN) orientation.
  • the in-plane retardation (based on a 550 nm wavelength) of the transmittance variable layer in the vertical alignment or an orientation similar to the vertical alignment is, for example, about 30 nm or less, 25 nm or less, 20 nm or less, 15 nm or less, 10 nm or less, or It may be less than or equal to 5 nm, greater than or equal to 0 nm, or greater than 0 nm.
  • Equation A The in-plane phase difference is obtained according to Equation A.
  • n x , n y , and d in Equation A are the refractive index in the slow axis direction, the refractive index in the fast axis direction, and the thickness of the light modulation layer, respectively.
  • the light modulation device may further include a spacer that maintains a gap between the first and second substrates.
  • the spacer is a commonly applied spacer, and may be a ball spacer, a column spacer, a partition-type spacer, or a combination of two or more of the above.
  • the partition-type spacer may be used as the spacer, and in particular, a partition-type spacer in which the partition walls form at least one closed shape may be used.
  • the closed shape formed by the partition-type spacer may be a hexagon (eg, regular hexagon, etc.) or a quadrangle (eg, square or rectangle).
  • the partition-type spacer whose closed shape is a hexagon, especially a regular hexagon, is also called a so-called honeycomb-type spacer.
  • honeycomb-type or square partition-type spacers are formed on a substrate when the shape of the partition-type spacer is observed from the normal direction of the substrate, and the shape formed by the partition-type spacer is honeycomb-type or square. it means.
  • the honeycomb shape is usually a combination of regular hexagons, and in the case of a square, it may be a square, a rectangle, or a combination of a square and a rectangle.
  • a partition-type spacer may be used as the spacer, but is not limited thereto.
  • the pitch of the spacer may also be appropriately selected in consideration of the desired adhesion force or cell gap maintenance efficiency.
  • the pitch of the partition-type spacer when a partition-type spacer is applied, the pitch of the partition-type spacer may be in the range of 50 ⁇ m to 2,000 ⁇ m.
  • the method of calculating the pitch in a partition-type spacer is known. For example, if the partition-type spacer is a honeycomb type, the pitch is obtained through the spacing between opposing sides of the hexagon forming the honeycomb, and if it is a square, the pitch is obtained through the length of the sides of the square. If the spacing between opposing sides of the hexagon forming the honeycomb or the length of the sides of the square is not constant, the average value thereof can be defined as the pitch.
  • the area of the closed shape i.e., the area of a hexagon or a square, for example
  • the area of the closed shape is, for example, about 1 mm 2 to 200 mm 2 It can be within range.
  • the areas are an arithmetic average.
  • the line width of the partition-type spacer for example, the width of each hexagonal or square wall forming the honeycomb, may be within a range of, for example, about 5 ⁇ m to 50 ⁇ m. In other examples, the line width may be about 10 ⁇ m or more, or 15 ⁇ m or less, or 45 ⁇ m or less, 40 ⁇ m or less, 35 ⁇ m or less, 30 ⁇ m or less, 25 ⁇ m or less, or 20 ⁇ m or less.
  • the cell gap is properly maintained and excellent adhesion between substrates can be maintained.
  • combination with a partition-type spacer can provide excellent adhesion between substrates.
  • An electrode layer may be formed on each substrate of the optical modulation device as a component for applying an external signal to the variable transmittance layer.
  • a first substrate between the first surface and the functional layer (liquid crystal alignment film, adhesive or adhesive layer (between 100 and 1001 in FIG. 2)) and/or between the first surface and the liquid crystal alignment film in the second substrate.
  • An electrode layer may be present between 200 and 2001 in FIG. 2 (if a spacer is present, between the spacer and the alignment layer).
  • a known transparent electrode layer can be used as the electrode layer.
  • a so-called conductive polymer layer, a conductive metal layer, a conductive nanowire layer, or a metal oxide layer such as ITO (Indium Tin Oxide) can be used as the electrode layer.
  • ITO Indium Tin Oxide
  • various materials and forming methods that can form a transparent electrode layer are known, and can be applied without limitation.
  • the light modulation device basically includes the light modulation device, but may also include additional other configurations as needed. That is, depending on the driving mode, the optical modulation device alone can implement the above-described transmission, blocking, high-reflection, and/or low-reflection modes and switch between them, but in order to facilitate implementation and switching of these modes, additional Configuration inclusion is also possible.
  • the device may further include a polarizing layer (passive polarizing layer) disposed on one or both sides of the optical modulation device.
  • FIG. 3 is an example of the above structure, where the polarization layer 400 is disposed on only one side of the light modulation device in the structure of FIG. 2, and FIG. 4 shows the polarization layer 400 on both sides of the light modulation device in the structure of FIG. 2. This is the case where it is placed.
  • the partition-type spacer is used as a spacer and its shape is square (square or rectangular), it is appropriate that the sides of the square and the absorption axis of the polarizing layer are arranged to be substantially perpendicular or horizontal to each other.
  • the term polarizing layer may refer to an element that changes natural light or non-polarized light into polarized light.
  • the polarizing layer may be a linear polarizing layer.
  • the linearly polarized layer refers to a case where the selectively transmitted light is linearly polarized light vibrating in one direction, and the light selectively absorbed or reflected is linearly polarized light vibrating in a direction perpendicular to the vibration direction of the linearly polarized light. That is, the linear polarization layer may have a transmission axis and an absorption axis or reflection axis that are orthogonal to each other in the plane direction.
  • the polarizing layer may be an absorbing polarizing layer or a reflective polarizing layer.
  • the absorption type polarizing layer for example, a polarizing layer dyed with iodine on a polymer stretched film such as a PVA (poly(vinyl alcohol)) stretched film or a liquid crystal polymerized in an aligned state is used as a host, and the liquid crystal A guest-host type polarizing layer using a dichroic dye arranged according to orientation as a guest may be used, but is not limited thereto.
  • a reflective polarizing layer for example, a reflective polarizing layer known as DBEF (Dual Brightness Enhancement Film) or a reflective polarizing layer formed by coating a liquid crystal compound such as LLC (Lyotropic liquid crystal) may be used. However, it is not limited to this.
  • the polarization layer may be disposed on both sides of the light modulation device.
  • the angle formed by the transmission axis of the polarizing layer disposed on both sides may be within the range of 85 degrees to 95 degrees or approximately vertical.
  • the optical element may be configured without including a polarizing layer.
  • an optical element may be constructed without applying a polarizing layer after mixing a dichroic dye as an additional component in the liquid crystal layer.
  • the light modulation device may include other necessary components in addition to the above configurations.
  • the light modulation device may further include an optically anisotropic film that satisfies the refractive index relationship of Equation 4 below.
  • Such a film can further improve the performance of the device by optically compensating the substrate or the light modulation layer.
  • n y is the refractive index for a 550 nm wavelength in the fast axis direction of the optically anisotropic film
  • n z is the refractive index for a 550 nm wavelength in the thickness direction of the optically anisotropic film.
  • An optically anisotropic film that satisfies the relationship of Equation 4 above is a film that exhibits the properties of a so-called negative C plate.
  • the thickness direction retardation of this optically anisotropic film may range from less than 0 nm to more than -600 nm based on a wavelength of 550 nm.
  • the optically anisotropic film may exist in one or two or more layers in the optical element, and the thickness direction retardation is the thickness direction retardation of the film of the first layer when the optically anisotropic film exists in one layer. If present, it is the sum of the phase differences in the thickness direction of the mode film.
  • phase difference in the thickness direction is a physical quantity determined by Equation 5 below.
  • Equation 5 R th is the retardation in the thickness direction, n z is the refractive index in the thickness direction of the film, n y is the refractive index in the fast axis direction of the film, and d is the thickness of the film.
  • the meaning of the thickness direction and true axis above is known in the industry.
  • optically anisotropic film a known retardation film that satisfies Equation 4 can be applied.
  • various films such as stretched polymer films and liquid crystal films are known as this type of film. .
  • the optically anisotropic film may be present on the first and/or second substrate, for example formed on a first surface of the first and/or second substrate. At this time, the optically anisotropic film may be present between the first and/or second substrate and the transmittance variable layer, and when the liquid crystal alignment film or the silicon polymer layer is formed on the first surface, the optically anisotropic film may be present between the first and/or second substrate. and the liquid crystal alignment film, etc., and when an electrode layer is formed on the first surface, it may be formed between the first and/or second substrate and the electrode layer.
  • the light modulation device may also include other configurations if necessary.
  • an adhesive layer or adhesive layer for attaching other components.
  • a hard coating film for attaching other components.
  • an anti-reflection film for attaching other components.
  • a NIR (Near-Infrared) blocking layer for attaching other components.
  • the method of manufacturing the light modulation device is not particularly limited, and the device can be manufactured through a known method other than applying the above elements as each component.
  • optical elements can be used for a variety of purposes, for example, eyewear such as sunglasses or eyewear for AR (Argumented Reality) or VR (Virtual Reality), the exterior wall of a building, or the sunroof of a vehicle. there is.
  • This application may provide a light modulation device and its use.
  • the adhesive layer or adhesive layer is applied to secure adhesion between opposing substrates and at the same time stably maintain the orientation of the liquid crystal compound.
  • the alignment state of the desired liquid crystal compound can be stably maintained or implemented for a long period of time even at high temperatures.
  • An optical modulation device and its use can be provided.
  • Figure 1 is a diagram showing the process of measuring transmittance T 1 and T 2 .
  • FIGS. 2 to 4 are schematic diagrams of exemplary light modulation devices of the present application.
  • the in-plane retardation value (R in ) of the film was measured for light with a wavelength of 550 nm using Agilent's UV/VIS spectroscope 8453 equipment. Install two polarizers on a UV/VIS spectroscope so that their transmission axes are orthogonal to each other, install the slow axis of the film between the two polarizers at 45 degrees with the transmission axes of the two polarizers, and measure the transmittance according to the wavelength. Measured. Obtain the phase retardation order of each peak from the transmittance graph according to wavelength.
  • Equation A the waveform satisfies Equation A below
  • Tmax the maximum peak (Tmax) condition in the sine waveform satisfies Equation B below.
  • T in formula A and T in formula B are the same, so expand the formula.
  • R is obtained for each ⁇ n, ⁇ n+1, ⁇ n+2, and ⁇ n+3.
  • R is obtained for each ⁇ n, ⁇ n+1, ⁇ n+2, and ⁇ n+3.
  • the Y value when 550 nm is substituted for x in the above function is the R in value for light with a wavelength of 550 nm.
  • n ( ⁇ n -3 ⁇ n+1)/(2 ⁇ n+1 +1-2 ⁇ n)
  • R means the in-plane phase difference (Rin)
  • means the wavelength
  • n means the peak order of the sinusoidal waveform.
  • the transmittance was measured in the following manner.
  • a device for measuring transmittance was manufactured in the following manner.
  • the light modulation device manufactured in Example or Comparative Example was placed between two sheets of poly(vinyl alcohol) (PVA) polarizing layer.
  • the polarizing layers were arranged so that their absorption axes were orthogonal to each other, and in the optical modulation device, the slow axis of the substrate was perpendicular to the absorption axis of one of the two polarizing layers and the absorption axis of the other polarizing layer.
  • the sides were placed horizontally.
  • the transmittance (T 1 in Equation 1) for light with a wavelength of 370 nm to 780 nm was evaluated at room temperature (about 25°C).
  • the transmittance T 1 was determined by measuring the transmittance up to 780 nm at 2 nm wavelength intervals using 370 nm as the starting wavelength, and then calculating the average value of the measured transmittance.
  • the transmittance was measured by irradiating light of the above wavelength in the normal direction of the polarization layer toward any one of the two polarization layers, and measuring it along the normal direction of the surface of the polarization layer from the opposite side of the polarization layer.
  • a temperature control device (LTS-350, Kinkam) was then installed in the device.
  • the temperature control device was located between the light modulation device and the polarizer (polarizer close to the transmittance measurement section) in a structure in which the light source, polarizer, light modulation device, polarizer, and transmittance measurement section of the transmittance measurement device are sequentially arranged.
  • the light modulation device was maintained at 90°C for 5 minutes using the temperature control device, and the transmittance (T 2 in Equation 1) was evaluated in the same manner as above while maintaining the temperature at 90°C.
  • the transmittance was evaluated using Blue Wave equipment (manufacturer: Stellar Net).
  • the substrate was cut to manufacture a light modulation device in the same manner as in Example 1 , and the transmittance (T i ) was measured.
  • the remaining substrate (substrate on which the silicon polymer layer is formed) is maintained at room temperature/normal pressure/normal humidity conditions for 30 days, and then a light modulation device is manufactured using the same substrate, and the same as above.
  • Transmittance (T a ) was measured.
  • ⁇ T 30 was obtained by substituting the transmittances T i and T a in the following equation A.
  • the absolute value of was 300% or less, it was evaluated as OK, and when it was more than 300%, it was evaluated as NG.
  • a PET (poly(ethylene terephthalate)) film manufactured by SKC, high-stretch PET with a thickness of approximately 145 ⁇ m and an ITO (Indium Tin Oxide) electrode layer formed on one side was used as the first substrate.
  • the in-plane retardation of the PET film was approximately 10,000 nm based on a wavelength of 550 nm.
  • a silicone polymer layer was formed on the ITO electrode layer of the PET film.
  • the silicone polymer layer was formed using a silicone OCA (Optically Clear Adhesive) composition (HA-578A product manufactured by Si-Feliz, solid content 60% by weight) that forms an adhesive layer.
  • OCA Optically Clear Adhesive
  • a platinum catalyst (manufactured by Si-Feliz, HA-04C) was added as a catalyst to the silicon OCA (Optically Clear Adhesive) composition (manufactured by Si-Feliz, HA-578A) at a ratio of about 1.67% by weight, and the formula was as follows:
  • a coating solution was prepared by adding polyorganosiloxane (manufactured by Gelest) of A.
  • the polyorganosiloxane of Formula A was added so that the polyorganosiloxane was present at a concentration of about 13.3% by weight in the formed silicone polymer layer.
  • R is a methyl group
  • m is a number of about 7
  • n is a number of about 600.
  • the coating solution was bar coated on the ITO layer of the first substrate and cured by maintaining the temperature at about 140° C. for 4 minutes to form a silicone polymer layer with a thickness of about 8 ⁇ m.
  • the coating was formed so that the silicone polymer layer covered the entire area of the ITO layer formed on the entire surface of the PET film.
  • M 1 of Formula 2 is the molar mass (g/mol) of the siloxane unit HMeSiO 2/2 unit and is about 60.13 g/mol, and m is about 8. , ⁇ is 13.3% by weight.
  • the molar mass of the polyorganosiloxane of Formula A is about 45,075 g/mol.
  • Equation 2 60.13 is substituted for M 1 , 7 is substituted for m, 13.3 is substituted for ⁇ , and 45,075 is substituted for M 2 , and ⁇ is calculated to be approximately 12.4.
  • a PET (poly(ethylene terephthalate)) film manufactured by Toyobo, SRF) with a thickness of approximately 80 ⁇ m with an ITO (Indium Tin Oxide) layer formed on the surface was used as the second substrate.
  • the in-plane retardation of the second substrate was approximately 9,000 nm at a wavelength of 550 nm.
  • the partition-type spacer with a pitch of about 350 ⁇ m, a line width of about 10 ⁇ m, and a height of about 6 ⁇ m has an area ratio of about 9% ( It was formed by the ratio of the area occupied by the spacer to the total substrate area.
  • a vertical alignment film (5661LB3, Nissan) was formed on the spacer.
  • the alignment layer was formed by diluting the alignment layer material (5661LB3, Nissan) in a solvent to have a solid content of about 2.2% by weight, applying #2 bar coating, and maintaining it at 100°C for about 10 minutes.
  • the vertical alignment layer was formed by rubbing in one direction. The rubbing direction was perpendicular to the slow axis direction of the second substrate.
  • the liquid crystal composition was coated on the vertical alignment layer of the second substrate, and the surface of the second substrate on which the vertical alignment layer was formed was stacked so that the silicon polymer layer of the first substrate faced each other to manufacture a light modulation device. During the stacking, the slow axes of the first and second substrates were parallel to each other.
  • liquid crystal composition a composition containing a nematic liquid crystal compound (Merck, MAT-19-1205) and a chiral dopant (Merck, S811) was used.
  • the content of the chiral dopant was adjusted so that the pitch (chiral pitch) (p) of the twisted orientation was about 20 ⁇ m.
  • a light modulation device was manufactured in the same manner as Example 1, except that polyorganosiloxane of formula B below was used instead of polyorganosiloxane of formula A during the formation of the silicone polymer layer.
  • the polyorganosiloxane of Formula B was added so that the polyorganosiloxane was present at a concentration of about 5% by weight in the formed silicone polymer layer.
  • R is a methyl group, m is a number of about 1, and n is a number of about 17.
  • M 1 of Formula 2 is the molar mass (g/mol) of the siloxane unit HMeSiO 2/2 unit and is about 60.13 g/mol, m is 1, ⁇ is 5% by weight.
  • the molar mass of the polyorganosiloxane of Formula B is about 1,483 g/mol.
  • Equation 2 60.13 is substituted for M 1 , 1 is substituted for m, 5 is substituted for ⁇ , and 1,483 is substituted for M 2 , so that ⁇ is calculated to be approximately 20.3.
  • a light modulation device was manufactured in the same manner as Example 1, except that polyorganosiloxane of formula C below was used instead of polyorganosiloxane of formula A during the formation of the silicone polymer layer.
  • the polyorganosiloxane of formula C was added so that the polyorganosiloxane was present at a concentration of about 3.30% by weight in the formed silicone polymer layer.
  • R is a methyl group
  • m is a number of about 5
  • n is a number of about 19.
  • M 1 of formula 2 is the molar mass (g/mol) of the siloxane unit HMeSiO 2/2 unit and is about 60.13 g/mol, and m is about 5.
  • is 3.30% by weight.
  • the molar mass of the polyorganosiloxane of formula C is about 1,872 g/mol.
  • Equation 2 60.13 is substituted for M 1 , 5 is substituted for m, 3.3 is substituted for ⁇ , and 1,872 is substituted for M 2 , and ⁇ is calculated to be approximately 53.
  • the polyorganosiloxane of the formula B of Example 2 and the polyorganosiloxane of the formula C of Example 3 were applied together instead of the polyorganosiloxane of the formula A.
  • a light modulation device was manufactured in the same way.
  • the polyorganosiloxane of Formula B was added so that the polyorganosiloxane was present at a concentration of about 2.5% by weight in the formed silicone polymer layer.
  • R is a methyl group, m is a number of about 1, and n is a number of about 17.
  • M 1 of Formula 2 is the molar mass (g/mol) of the siloxane unit HMeSiO 2/2 unit and is about 60.13 g/mol, and m is about 1. , ⁇ is 2.5% by weight.
  • the molar mass of the polyorganosiloxane of Formula B is about 1,483 g/mol.
  • Equation 2 60.13 is substituted for M 1 , 1 is substituted for m, 2.5 is substituted for ⁇ , and 1,483 is substituted for M 2 , and ⁇ is calculated to be approximately 10.1.
  • the polyorganosiloxane of the formula C was added so that the polyorganosiloxane was present at a concentration of about 0.8% by weight in the formed silicone polymer layer.
  • R is a methyl group, m is about 5, and n is about 19.
  • M 1 of formula 2 is the molar mass (g/mol) of the siloxane unit HMeSiO 2/2 unit and is about 60.13 g/mol, and m is about 5. , ⁇ is 0.8% by weight.
  • the molar mass of the polyorganosiloxane of formula C is about 1,872 g/mol.
  • Equation 2 60.13 is substituted for M 1 , 5 is substituted for m, 0.8 is substituted for ⁇ , and 1,872 is substituted for M 2 , and ⁇ is calculated to be approximately 12.8.
  • a coating solution about 1.67% by weight of a platinum catalyst (HA-04C, manufactured by Si-Feliz) was added to a silicone OCA (Optically Clear Adhesive) composition (made by Si-Feliz, HA-578A, solid content about 60% by weight).
  • H-04C platinum catalyst
  • HA-578A Optically Clear Adhesive
  • a light modulation device was manufactured in the same manner as in Example 1, except that during the preparation of the coating solution, polyorganosiloxane of Chemical Formula A was added so that the polyorganosiloxane was present at a concentration of about 6.7% by weight in the formed silicone polymer layer. Manufactured.
  • Equation 2 60.13 is substituted for M 1 , 7 is substituted for m, 6.7 is substituted for ⁇ , and 45,075 is substituted for M 2 , so that ⁇ is calculated to be approximately 6.3.
  • a light modulation device was manufactured in the same manner as in Example 2, except that during the preparation of the coating solution, polyorganosiloxane of Chemical Formula B was added so that the polyorganosiloxane was present at a concentration of about 2.5% by weight in the formed silicone polymer layer. Manufactured.
  • Equation 2 60.13 is substituted for M 1 , 1 is substituted for m, 2.5 is substituted for ⁇ , and 1,483 is substituted for M 2 , and ⁇ is calculated to be approximately 10.1.
  • a light modulation device was manufactured in the same manner as in Example 3, except that during the preparation of the coating solution, polyorganosiloxane of formula C was added so that the polyorganosiloxane was present at a concentration of about 1.7% by weight in the formed silicone polymer layer. Manufactured.
  • Equation 2 60.13 is substituted for M 1 , 5 is substituted for m, 1.7 is substituted for ⁇ , and 1,872 is substituted for M 2 , and ⁇ is calculated to be approximately 27.3.
  • T on measures the transmittance in the same way as measuring the transmittance T 1 in the section explaining the method of measuring the transmittance, but applies a voltage to the optical modulation device under square wave form conditions (48Vrms, 60Hz). This is the transmittance measured in one state.
  • Example Comparative example One 2 3 4 One 2 3 4 M 1 in Equation 2 60.13 60.13 60.13 60.13 - 60.13 60.13 m in equation 2 7 One 5 One 5 - 7 One 5 ⁇ in Equation 2 13.3 5 3.3 2.5 0.8 - 6.7 2.5 1.7 M 2 in equation 2 45075 1483 1872 1483 1872 - 45075 1483 1872 ⁇ 12.4 20.3 53 22.9 - 6.3 10.1 27.3 T 1 (%) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 T2 (%) 0.18 0.2 0.18 0.18 8 7.8 7.8 6.8 T on (%) 24.3 25.1 24.4 24.2 25.2 25.1 24.9 24.4 30 days change over time OK OK OK OK OK NG NG NG NG NG NG NG NG NG NG NG NG .
  • the light modulation device of the present application showed excellent reliability both when maintained under high temperature conditions and when maintained for a long period of time.
  • Comparative Example 1 which does not contain the polyorganosiloxane of Formula 1
  • Comparative Examples 2 and 3 which contain it but the ⁇ value does not exceed 10
  • Comparative Example 4 which has a low content of the polyorganosiloxane, are all It did not show appropriate results.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

본 출원은 광변조 디바이스 및 그 용도를 제공할 수 있다. 본 출원에서는, 점착제층 또는 접착제층을 적용하여 대향 배치된 기판간의 접착력을 확보하면서 동시에 액정 화합물의 배향을 안정적으로 유지하며, 특히 고온에서도 목적하는 액정 화합물의 배향 상태를 안정적으로 장기간 동안 유지 내지 구현할 수 있는 광변조 디바이스 및 그 용도를 제공할 수 있다.

Description

광변조 디바이스
본 출원은 광변조 디바이스 및 그 용도에 관한 것이다.
두 개의 기판의 사이에 액정 화합물 등을 포함하는 광변조층을 위치시킨 광변조 디바이스는 다양한 용도에 사용되고 있다.
광변조 디바이스가 목적하는 성능을 나타내기 위해서는, 상기 기판 사이에서 상기 액정 화합물의 배향 상태를 제어하는 것이 중요하다. 따라서, 광변조층이 액정층인 경우에는 통상 액정 화합물의 배향을 조절하기 위해서, 액정층의 양측에 모두 액정 배향막을 형성한다.
특허문헌 1에는 액정층의 한측에는 액정 배향막을 형성하고, 다른 측에는 액정 배향막 대신 접착층을 형성한 구조의 광변조 디바이스를 개시한다.
특허문헌 1에 개시된 접착층은, 액정 배향력을 가지기 때문에, 액정층의 한쪽에 액정 배향막을 적용하지 않고, 목적하는 액정 화합물의 배향이 가능한 점을 기재한다.
특허문헌 1에 개시된 광변조 디바이스는, 접착제를 한쪽 기판에 적용하였기 때문에, 대향 배치된 2개의 기판의 접착력을 우수하게 유지할 수 있는 장점을 가진다.
그렇지만, 특허문헌 1에 개시된 접착층만으로는 액정 화합물의 배향을 충분히 안정적으로 유지하는 것이 쉽지 않고, 특히 고온 조건에서 액정 화합물의 배향이 깨져서 광학적 결함이 발생하는 문제가 있다.
[선행기술문헌]
(특허문헌 1) 대한민국 등록특허공보 제1987373호
본 출원은 광변조 디바이스를 제공한다. 본 출원에서는, 점착제층 또는 접착제층을 적용하여 대향 배치된 기판간의 접착력을 확보하면서 동시에 액정 화합물의 배향을 안정적으로 유지하며, 특히 고온에서도 목적하는 액정 화합물의 배향 상태를 안정적으로 장기간 동안 유지 내지 구현할 수 있는 광변조 디바이스를 제공하는 것을 목적으로 한다.
본 명세서에서 각도를 정의하는 수직, 평행, 직교 또는 수평의 용어와 각도의 수치는, 목적 효과를 손상시키지 않는 범위에서의 실질적인 수직, 평행, 직교 또는 수평과 상기 수치를 의미한다. 상기 수직, 평행, 직교 또는 수평과 수치의 범위는 제조 오차(error) 또는 편차(variation) 등의 오차를 포함하는 것이다. 예를 들면, 상기 각각의 경우는, 약 ±3도 이내의 오차, 약 ±2 도 이내의 오차, 약 ±1 도 이내의 오차, 약 ±0.8 도 이내의 오차, 약 ±0.6 도 이내의 오차 또는 약 ±0.4도 이내의 오차를 포함할 수 있다.
본 명세서에서 언급하는 물성 중에서 측정 온도가 해당 물성에 영향을 미치는 경우에 특별히 달리 규정하지 않는 한, 상기 물성은 상온에서 측정한 물성이다. 용어 상온은 특별히 가온 및 감온되지 않은 상태에서의 온도로서, 약 10℃ 내지 30℃의 범위 내의 어느 한 온도, 예를 들면, 약 15℃ 이상, 18℃ 이상, 20℃ 이상 또는 약 23℃ 이상이면서, 약 27℃ 이하의 온도를 의미할 수 있다. 또한, 특별히 달리 규정하지 않는 한, 본 명세서에서 언급하는 온도의 단위는 ℃이다.
특별히 달리 규정하지 않는 한, 본 명세서에서 언급하는 어느 2개의 방향이 이루는 각도는 상기 두 개의 방향이 이루는 예각 내지 둔각 중 예각이거나, 또는 시계 방향 및 반시계 방향으로 측정된 각도 중에서 작은 각도일 수 있다. 따라서, 특별히 달리 규정하지 않는 한, 본 명세서에서 언급하는 각도는 양수이다. 다만, 경우에 따라서 시계 방향 또는 반시계 방향으로 측정된 각도간의 측정 방향을 표시하기 위해서 상기 시계 방향으로 측정된 각도 및 반시계 방향으로 측정된 각도 중에서 어느 하나의 각도를 양수로 표기하고, 다른 하나의 각도를 음수로 표기할 수도 있다.
또한, 본 명세서에서 특별히 달리 규정하지 않는 한, 투과율, 굴절률, 면내 위상차 또는 두께 방향 위상차 등의 기준 파장은 약 550 nm이다.
본 출원에서 용어 광변조 디바이스는, 적어도 2개 이상의 다른 광의 상태를 스위칭할 수 있는 소자를 의미할 수 있다. 상기에서 다른 광의 상태는, 예를 들면, 투과율이 다른 상태를 의미할 수 있다.
상기 광변조 디바이스가 구현할 수 있는 상태의 예로는, 투과 및 차단 모드 상태가 예시될 수 있다. 일 예시에서 본 출원의 광변조 디바이스는 적어도 상기 투과 및 차단 모드 상태의 사이를 스위칭할 수 있는 소자일 수 있다.
상기 투과 모드 상태에서의 광변조 디바이스의 투과율이 적어도 10% 이상, 12% 이상, 14% 이상, 16% 이상, 18% 이상, 20% 이상, 22% 이상 또는 24% 이상 정도일 수 있다. 상기 투과 모드에서의 투과율은 다른 예시에서 100% 이하, 95% 이하, 90% 이하, 85% 이하, 80% 이하, 75% 이하, 70% 이하, 65% 이하, 60% 이하, 55% 이하, 50% 이하, 45% 이하, 40% 이하, 35% 이하 또는 30% 이하 정도일 수도 있다. 그렇지만, 투과 모드에서의 투과율은 높을수록 유리하기 때문에, 그 상한이 특별히 제한되는 것은 아니다.
상기 차단 모드 상태에서 광변조 디바이스의 투과율은 10% 이하, 9% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 4% 이하, 3% 이하, 2% 이하, 1% 이하, 0.8% 이하, 0.6% 이하, 0.4% 이하 또는 0.2% 이하일 수 있다. 상기 차단 모드에서의 투과율은 다른 예시에서 0% 이상 또는 0.1% 이상 정도일 수도 있다. 그렇지만, 차단 모드에서는 투과율이 낮을수록 유리하기 때문에, 상기 차단 모드 상태의 투과율의 하한은 특별히 제한되지 않는다.
상기 투과율은, 예를 들면, 직진광 투과율일 수 있다. 직진광 투과율은, 상기 소자로 입사한 광에 대한 상기 입사 방향과 동일 방향으로 투과된 광의 비율의 백분율이다. 예를 들어, 상기 소자가 필름 또는 시트 형태라면, 상기 필름 또는 시트 표면의 법선 방향과 나란한 방향으로 입사한 광 중에서 역시 상기 법선 방향과 나란한 방향으로 상기 소자를 투과한 광의 백분율을 상기 투과율로 정의할 수 있다.
상기 투과율은, 각각 가시광 영역, 예를 들면, 약 400 내지 700 nm 또는 약 380 내지 780 nm 범위 내의 어느 한 파장에 대한 투과율이거나, 상기 가시광 영역 전체에 대한 투과율이거나, 상기 가시광 영역 전체에 대한 투과율 중에서 최대 또는 최소 투과율이거나, 상기 가시광 영역 내의 투과율의 평균치일 수 있다.
다른 예시에서 상기 투과율은 약 550 nm 파장의 광에 대한 투과율일 수 있다.
본 출원의 광변조 디바이스는, 상기 투과 및 차단 모드 상태에서 선택된 어느 한 상태 및 다른 한 상태의 적어도 2개 이상의 상태의 사이를 스위칭할 수 있도록 설계될 수 있다. 필요하다면, 상기 상태 외에 다른 상태, 예를 들면, 상기 투과 모드 및 차단 모드 상태의 중간 투과율의 상태 등을 포함한 기타 제 3의 상태 또는 그 이상의 상태도 구현될 수 있다.
상기 광변조 디바이스의 스위칭은, 외부 신호의 인가, 예를 들면, 전기적 신호의 인가 여부에 따라 조절할 수 있다. 예를 들면, 전압과 같은 외부 신호의 인가가 없는 상태에서 광변조 디바이스는 상기 기술한 상태 중에서 어느 한 상태를 유지하다가, 전압이 인가되면 다른 상태로 스위칭될 수 있다. 인가되는 전압의 세기, 주파수 및/또는 형태를 변경함으로써 또 모드의 상태를 변경하거나, 혹은 상기 제 3 의 다른 모드 상태를 구현할 수도 있다.
본 출원에서의 광변조 디바이스는, 대향 배치된 2개의 기판과 상기 기판 사이에 위치한 투과율 가변층을 포함할 수 있다. 도 2는 상기 구조의 일 예시를 나타내는 도면이다. 도면과 같이 광변조 디바이스는, 대향 배치된 제 1 기판(100)과 제 2 기판(200)을 포함한다. 상기 제 1 및 제 2 기판은, 각각 제 1 표면과 제 2 표면을 가질 수 있다. 상기에서 제 1 표면은 기판의 하나의 주표면이고, 제 2 표면은 그와 반대측의 주표면을 의미할 수 있다.
도 2에 나타난 바와 같이 제 1 기판(100)의 하나의 표면(예를 들면, 제 1 표면)상에는 기능성층(1001)이 형성되고, 다른 제 2 기판(200)의 하나의 표면(예를 들면, 제 1 표면)에는 액정 배향막(2001)이 형성되어 있을 수 있다. 상기에서 기능성층은, 후술하는 실리콘 폴리머층일 수 있다. 상기 대향 배치된 제 1 기판(100)과 제 2 기판(200)의 사이에 투과율 가변층(600)이 위치한다. 투과율 가변층의 종류에는 특별한 제한은 없으며, 통상 액정층이 투과율 가변층으로 사용될 수 있다. 투과율 가변층이 액정층인 경우에 통상적으로 제 1 및 제 2 기판(100, 200)의 양쪽 표면 모두에 액정 배향막이 형성되지만, 제 1 기판(100)상에 액정 배향막 대신 후술하는 실리콘 폴리머층을 형성하고, 제 2 기판(200)에만 액정 배향막을 형성함으로써, 특정 용도(예를 들면, smart window, sunroof나 eye wear)에서 매우 유용한 액정 화합물의 배향 상태가 얻어질 수도 있다. 이러한 경우에는 상기 제 1 기판에는 액정 배향막이 형성되지 않는다. 도면에는 도시되어 있지 않지만, 광변조 디바이스의 제 1 및 제 2 기판 중 어느 한 기판에는 제 1 및 제 2 기판의 간격(cell gap)을 유지하는 스페이서가 존재하는데, 제 1 기판(100)상의 기능성층(1001)이 점착제층 또는 접착제층(1001)의 역할을 할 수 있다면, 상기 스페이서에 상기 점착제층 또는 접착제층(1001)이 부착되어 제 1 및 제 2 기판간의 합착력을 크게 개선할 수 있다.
따라서, 일 예시에서 본 출원의 광변조 디바이스는, 대향 배치되어 있는 제 1 및 제 2 기판; 상기 제 1 및 제 2 기판 사이에 존재하는 액정층을 포함할 수 있고, 상기 제 1 기판과 액정층의 사이에는 상기 기능성층으로서, 실리콘 폴리머층이 존재할 수 있다.
상기 기판으로는, 특별한 제한 없이 공지의 기판 소재가 사용될 수 있다. 예를 들면, 기판으로는 유리 필름, 결정성 또는 비결정성 실리콘 필름, 석영 또는 ITO(Indium Tin Oxide) 필름 등의 무기 필름이나 플라스틱 필름 등을 사용할 수 있다. 플라스틱 필름으로는, TAC(triacetyl cellulose); 노르보르넨 유도체 기판 등의 COP(cyclo olefin copolymer); PMMA(poly(methyl methacrylate); PC(polycarbonate); PE(polyethylene); PP(polypropylene); PVA(polyvinyl alcohol); DAC(diacetyl cellulose); Pac(Polyacrylate); PES(poly ether sulfone); PEEK(polyetheretherketon); PPS(polyphenylsulfone), PEI(polyetherimide); PEN(polyethylenemaphthatlate); PET(polyethyleneterephtalate); PI(polyimide); PSF(polysulfone); PAR(polyarylate) 또는 비정질 불소 수지 등을 포함하는 기판을 사용할 수 있지만 이에 제한되는 것은 아니다. 이러한 기판의 두께는 특별히 제한되지 않고, 적절한 범위에서 선택될 수 있다.
하나의 예시에서 상기 기판으로는, 광학적 비등방성인 필름을 적용할 수도 있다. 이러한 광학적 비등방성을 가지는 필름은, 통상 기계적 물성도 비등방성이며, 이러한 비등방성을 활용하여 보다 우수한 내구성 등을 가지는 광변조 디바이스를 제공할 수 있다.
일 예시에서 상기 비등방성 필름은, 면내 위상차가 약 500 nm 이상일 수 있다. 상기 면내 위상차는, 550 nm 파장의 광에 대한 값이고, 하기 수식 A로 규정되는 물리량이다. 상기 위상차 필름의 면내 위상차는 다른 예시에서, 600 nm 이상, 700 nm 이상, 800 nm 이상, 900 nm 이상, 1,000 nm 이상, 1,100 nm 이상, 1,200 nm 이상, 1,300 nm 이상, 1,400 nm 이상, 1,500 nm 이상, 2,000 nm 이상, 2,500 nm 이상, 3,000 nm 이상, 3,500 nm 이상, 4,000 nm 이상, 4,500 nm 이상, 5,000 nm 이상, 5,500 nm 이상, 6,000 nm 이상, 6,500 nm 이상, 7,000 nm 이상, 7,500 nm 이상, 8,000 nm 이상, 8,500 nm 이상, 9,000 nm 이상 또는 9,500 nm 이상이거나, 100,000 nm 이하, 90,000 nm 이하, 80,000 nm 이하, 70,000 nm 이하, 60,000 nm 이하, 50,000 nm 이하, 40,000 nm 이하, 30,000 nm 이하, 20,000 nm 이하, 15,000 nm 이하, 14,000 nm 이하, 13,000 nm 이하, 12,000 nm 이하, 10,000 nm 이하, 9,500 nm 이하, 9,000 nm 이하, 8,500 nm 이하, 8,000 nm 이하,7,500 nm 이하, 7,000 nm 이하, 6,500 nm 이하, 6,000 nm 이하, 5,500 nm 이하, 5,000 nm 이하 또는 4,500 nm 이하 정도일 수도 있다.
기판으로 적용할 수 있는 상기 필름의 구체적이 종류는, 상기 언급한 범위의 면내 위상차를 나타내는 한 특별한 제한은 없다. 예를 들면, 연신에 의해서 광학적 이방성을 부여한 이방성 고분자 필름 등이 적용될 수 있다. 고분자 필름으로는, 예를 들면, 폴리에틸렌 필름 또는 폴리프로필렌 필름 등의 폴리올레핀 필름, 폴리노르보넨 필름 등의 고리형 올레핀 폴리머(COP: Cycloolefin polymer) 필름, 폴리염화비닐 필름, 폴리아크릴로니트릴 필름, 폴리설폰 필름, 폴리아크릴레이트 필름, PVA(poly(vinyl alcohol)) 필름 또는 TAC(Triacetyl cellulose) 필름 등의 셀룰로오스 에스테르계 폴리머 필름, 폴리에스테르 필름 또는 폴리카보네이트 필름이나 상기 폴리머를 형성하는 단량체 중에서 2종 이상의 단량체의 공중합체 필름 등이 예시될 수 있다.
하나의 예시에서 상기 필름으로는, PET(poly(ethylene terephthalate)) 필름 등과 같은 폴리에스테르 필름이 적용될 수 있다. 즉, 전술한 범위의 면내 위상차를 나타내는 필름은 업계에서 공지되어 있고, 고분자 필름의 경우, 상기와 같은 필름은 광학적으로 큰 비등방성은 물론 제조 과정에서의 연신 등에 의해 기계적 물성도 비대칭성을 나타낸다. 업계에 공지된 이러한 위상차 필름의 대표적인 예로는, 연신 PET(poly(ethyleneterephthalate)) 필름 등과 같은 연신 폴리에스테르 필름이다.
하나의 예시에서 상기 필름으로는 PET 필름과 같은 폴리에스테르 필름을 적용할 수 있지만, 본 출원에서 기판으로 적용 가능한 필름의 종류에 이에 제한되는 것은 아니다.
상기 면내 위상차는 하기 수식 A에 따른 물리량이다.
[수식 A]
Rin = d × (nx - ny)
수식 A에서 Rin은 면내 위상차이고, nx는 필름의 지상축 방향 굴절률이며, ny는 필름의 진상축 방향 굴절률이고, d는 필름의 두께이다. 상기에서 지상축과 진상축의 의미는 업계에서 공지되어 있다.
상기 비등방성 필름이 제 1 및 제 2 기판으로 동시에 적용되는 경우에, 그들간의 지상축이 서로 평행 또는 수직하도록 상기 기판들이 배치될 수 있다.
광변조 디바이스는, 상기 스위칭을 위해서 적어도 투과율 가변층을 포함할 수 있다. 상기 투과율 가변층은, 일 예시에서 편광 성분을 생성하는 층일 수 있다. 이러한 투과율 가변층의 예로는, 능동 액정층이 있다.
용어 능동 액정층은, 액정 화합물을 적어도 포함하는 층으로서, 상기 액정 화합물의 배향 상태를 외부 신호 인기 등을 통해 제어할 수 있는 액정층을 의미할 수 있다. 다만, 능동 액정층의 적용은 본 출원의 하나의 예시이며, 필요하다면, 다른 공지의 투과율 가변층, 예를 들면, 전기 변색 물질층, 광 변색 물질층, 전기 영동 물질층 또는 분산 입자 배향층 등이 사용될 수도 있다.
능동 액정층은 액정 화합물을 포함하는 층이다. 본 명세서에서 용어 능동 액정층의 범위에는, 외부 신호 인가 등을 통해 그 배향을 제어할 수 있는 액정 화합물을 포함하고 있는 층이 모두 포함되며, 예를 들어 후술하는 바와 같이 액정 화합물(액정 호스트)과 이색성 염료를 포함하는 소위 게스트 호스트층도 본 명세서에서 규정하는 액정층의 일종이다. 액정 화합물로는 외부 신호의 인가에 의하여 그 배향 방향이 변경될 수 있는 것이라면 모든 종류의 액정 화합물을 사용할 수 있다. 예를 들며, 액정 화합물로는 스멕틱(smectic) 액정 화합물, 네마틱(nematic) 액정 화합물 또는 콜레스테릭(cholesteric) 액정 화합물 등을 사용할 수 있다. 또한, 외부 신호의 인가에 의하여 그 배향 방향이 변경될 수 있도록, 액정 화합물은 예를 들어 중합성기 또는 가교성기를 가지지 않는 화합물일 수 있다.
상기 액정층은 유전율 이방성이 양수 또는 음수인 액정 화합물을 포함할 수 있다. 액정의 유전율 이방성의 절대값은 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 용어 「유전율 이방성(△ε)」은 액정의 수평 유전율(εp)과 수직 유전율(εv)의 차이(εp - εv)를 의미할 수 있다. 본 명세서에서 용어 수평 유전율(εp)은 액정 분자의 방향자와 인가 전압에 의한 전기장의 방향이 실질적으로 수평하도록 전압을 인가한 상태에서 상기 전기장의 방향을 따라 측정한 유전율 값을 의미하고, 수직 유전율(εv)은 액정 분자의 방향자와 인가 전압에 의한 전기장의 방향이 실질적으로 수직하도록 전압을 인가한 상태에서 상기 전기장의 방향을 따라 측정한 유전율 값을 의미한다.
예를 들면, 상기 액정층의 굴절률 이방성(△n)은 0.01 내지 0.5의 범위 내에 있을 수 있다. 상기 굴절률 이방성은 다른 예시에서 0.02 이상, 0.03 이상, 0.04 이상, 0.05 이상, 0.06 이상, 0.07 이상, 0.08 이상 또는 0.085 이상이거나, 0.45 이하, 0.4 이하, 0.35 이하, 0.3 이하, 0.25 이하, 0.2 이하, 0.15 이하 또는 0.1 이하 정도일 수 있다. 액정층의 굴절률 이방성은 목적에 따라 선택되는 것으로 상기에 제한되는 것은 아니다.
액정층의 구동 모드는, 예를 들어, DS(Dynamic Scattering) 모드, ECB(Electrically Controllable Birefringence) 모드, IPS(In-Plane Switching) 모드, FFS(Fringe-Field Wwitching)모드, OCB(Optially Compensated Bend) 모드, VA(Vertical Alignment) 모드, MVA(Multi-domain Vertical Alignment) 모드, PVA(Patterned Vertical Alignment) 모드, HAN(Hybrid Aligned Nematic) 모드, TN(Twisted Nematic) 모드, STN (Super Twisted Nematic) 모드 또는 R-TN(Reversed Twisted Nematic) 모드 등을 예시할 수 있다.
본 출원의 액정층은, 상기 모드 중에서 적어도 트위스티드(twisted) 배향을 구현할 수 있도록 설계(형성)되어 있을 수 있다. 상기 트위스티드 배향은 액정층 내의 액정 화합물들이 가상의 나선축을 기준으로 꼬인 형태로 배향된 상태를 의미하고, 이러한 트위스티드 배향은, 액정층의 액정 화합물이 수평 배향된 상태, 수직 배향된 상태, 경사 배향된 상태 또는 스프레이 배향된 상태에서 구현될 수 있다. 또한, 상기 트위스티드 배향은, 액정층의 상기 초기 상태에서 구현되거나, 혹은 외부 신호가 인가된 상태에서 구현될 수도 있다.
일 예시에서 상기 액정층은, 적어도 수직 배향 상태 및 상기 트위스티드 배향 상태의 사이를 스위칭할 수 있도록 설계(형성)되어 있을 수 있다. 예를 들어, 상기 2가지 상태 중 어느 한 상태를 초기 상태에서 구현하거나, 외부 신호(예를 들면, 전압 등의 전기적 신호)가 인가되면 다른 상태로 스위칭될 수 있다.
하나의 예시에서 상기 초기 상태에서는 상기 수직 배향 상태가 구현될 수 있다.
본 출원의 광변조 디바이스는 상기 액정층의 배향 상태(특히, 상기 수직 배향 상태)가 고온에서도 안정적으로 유지될 수 있도록 설계될 수 있다.
예를 들면, 상기 제 1 및 제 2 기판; 및 상기 제 1 및 제 2 기판의 사이에 존재하는 액정층을 포함하는 광변조 디바이스는 하기 식 1의 △T의 절대값이 소정 범위 내에 있을 수 있다.
[식 1]
Figure PCTKR2023010190-appb-img-000001
식 1에서 T2는, 상기 광변조 디바이스를 90℃에서 5분 동안 유지한 후에 상기 광변조 디바이스를 2매의 직교 편광자의 사이에 위치시킨 상태에서 90℃에서 측정한 투과율이다. 식 1에서 T1은, 상기 90℃에서 5분 동안 유지하기 전의 상기 광변조 디바이스를 2매의 직교 편광자의 사이에 위치시킨 상태에서 25℃에서 측정한 투과율이다.
식 1의 상기 T1 및 T2는, 상기 광변조 디바이스의 액정층이 수직 배향인 상태에서 측정한 투과율이고, 상기 광변조 디바이스를 90℃에서 5분 동안 유지하는 과정에서 상기 액정층은 수직 배향 상태이다.
식 1의 T1과 T2의 단위는 %이고, 이는 후술하는 실시예에 기재된 방식으로 평가한 값이다.
도 1은, 상기 T1 및 T2를 확인하는 과정을 보여주는 도면이다.
도 1과 같이 2매의 직교 편광자(101, 102)의 사이에 상기 광변조 디바이스(200)를 위치시킨 상태에서 상기 투과율 T1 및 T2를 측정할 수 있다. 투과율은 도 1에 나타난 바와 같이 2매의 직교 편광자(101, 102) 중 어느 한 편광자(101)쪽에 광이 입사(도 1의 화살표 방향)하도록 한 후에 다른 편광자(102)쪽에서 측정한 투과율이다. 상기 광의 입사와 투과율의 측정은 편광자(101, 102)의 표면의 법선 방향과 평행한 방향으로 수행한다.
상기에서 직교 편광자는, 2매의 편광자(101, 102)의 광 흡수축이 서로 수직한 상태를 의미한다. 통상 2매의 편광자 중 하나의 편광자의 광 흡수축을 고정한 상태에서 다른 하나의 편광자의 광 흡수축을 상기 광 흡수축에 대해서 회전시키면서 투과율을 측정할 때에 가장 낮은 투과율이 나타나는 지점이 2매의 편광자의 광 흡수축이 서로 수직한 지점으로 본다. 상기 T1 및 T2를 측정하는 과정에서 광변조 디바이스의 제 1 및/또는 제 2 기판이 비등방성 기판인 경우에 해당 기판의 지상축을 2매의 편광자 중 어느 하나의 편광자의 광 흡수축과 평행하도록 배치한다.
액정층이 수직 배향 상태인 경우에 도 1과 같이 2매의 직교 편광자의 사이에 위치되고, 투과율을 측정하면, 투과율은 낮게 측정된다. 그런데, 액정층이 수직 배향된 상태에서 고온에서 일정 시간 유지(90℃에서 5분 유지)되는 동안 액정층의 수직 배향성이 손상되거나 떨어지는 경우에 상기에서 측정되는 T2는 T1 대비 높게 나타나게 된다.
그렇지만, 본 출원의 광변조 디바이스에서는 액정층의 배향성(특히 수직 배향성)이 고온에서도 안정적으로 유지될 수 있기 때문에, 상기 △T의 절대값은 일정 수준 이하일 수 있다. 예를 들면, 상기 △T의 절대값은, 300% 이하, 290% 이하, 280% 이하, 270% 이하, 260% 이하, 250% 이하, 240% 이하, 230% 이하, 220% 이하, 210% 이하, 200% 이하, 190% 이하, 180% 이하, 170% 이하, 160% 이하, 150% 이하, 140% 이하, 130% 이하, 120% 이하, 110% 이하, 100% 이하, 95% 이하, 90% 이하, 85% 이하, 80% 이하, 75% 이하, 70% 이하, 65% 이하, 60% 이하, 55% 이하, 50% 이하, 45% 이하, 40% 이하, 35% 이하, 30% 이하, 25% 이하, 20% 이하, 15% 이하, 10% 이하, 5% 이하, 4% 이하, 3% 이하, 2% 이하, 1% 이하 또는 0.5% 이하 정도이거나, 실질적으로 0%일 수 있다. 상기 △T의 절대값은 0% 이상, 0.5% 이상, 1% 이상, 1.5% 이상, 2% 이상, 2.5% 이상, 3% 이상, 3.5% 이상, 4% 이상, 4.5% 이상, 5% 이상, 5.5% 이상, 6% 이상, 6.5% 이상, 7% 이상, 7.5% 이상, 8% 이상, 8.5% 이상, 9% 이상, 9.5% 이상 또는 10% 이상 정도일 수도 있다. 상기 △T의 절대값은, 상기 기술된 하한 중 임의의 어느 한 하한과 상기 기술된 상한 중 임의의 어느 한 상한의 사이의 범위 내일 수도 있다.
상기 T2의 구체적인 수치는 특별히 제한은 없으나, 일 예시에서 2% 이하 정도일 수 있다. T2는 다른 예시에서, 1.8% 이하, 1.6% 이하, 1.4% 이하, 1.2% 이하, 1% 이하, 0.8% 이하, 0.6% 이하, 0.4% 이하 또는 0.2% 이하 정도일 수 있다. T2의 하한에는 제한이 없으며, 예를 들면, T2는 0% 이상일 수 있다.
상기 T1과 T2의 측정 방법은 구체적으로는 실시예에서 기술한다.
액정층인 투과율 가변층은, 상기 액정 화합물을 기본적으로 포함하고, 필요한 경우에 추가적인 성분도 포함할 수 있다.
예를 들면, 투과율 가변층인 액정층은 액정 화합물과 함께 소위 키랄 도펀트(chiral dopant)를 포함할 수도 있다. 이러한 키랄 도펀트는 액정 화합물에 나선 구조의 배향, 즉 상기 트위스티드 배향을 유도할 수 있다.
키랄 도펀트(Chiral dopant)로는, 액정성, 예를 들면, 네마틱 규칙성을 손상시키지 않고 목적하는 회전(twisting)을 유도할 수 있는 것이라면, 특별히 제한되지 않고 사용될 수 있다. 액정 분자에 회전을 유도하기 위한 키랄 도펀트는 분자 구조 중에 키랄리티(chirality)를 적어도 포함할 필요가 있다. 키랄 도펀트는, 예를 들면, 1개 또는 2개 이상의 비대칭 탄소(asymmetric carbon)를 가지는 화합물, 키랄 아민 또는 키랄 술폭시드 등의 헤테로원자 상에 비대칭점(asymmetric point)이 있는 화합물 또는 크물렌(cumulene) 또는 비나프톨(binaphthol) 등의 축부제를 가지는 광학 활성인 부위(axially asymmetric, optically active site)를 가지는 화합물이 예시될 수 있다. 키랄 도펀트는 예를 들면, 분자량이 1,500 이하인 저분자 화합물일 수 있다. 키랄 도펀트로는, 시판되는 키랄 네마틱 액정, 예를 들면, Merck사에서 시판되는 키랄 도판트 액정 S811 또는 BASF사의 LC756 등이 적용될 수 있다.
키랄 도펀트의 비율에도 특별한 제한은 없으나, 투과율 가변층의 두께(d, cell gap) 와 상기 키랄 도펀트의 첨가에 의해 발생하는 액정 화합물의 나선 구조의 피치(상기 트위스티드 배향의 피치)(p)의 비율(d/p)이 후술하는 K값을 만족시킬 수 있도록 첨가될 수 있다.
키랄 도펀트가 적용된 소위 트위스트 배향의 광변조층(액정층)의 피치(p)는, Wedge cell을 이용한 계측 방법으로 측정할 수 있고, D.Podolskyy 등의 Simple method for accurate measurements of the cholesteric pitch using a stripe-wedge Grandjean-Cano cell(Liquid Crystals, Vol. 35, No. 7, July 8, 2008, 789-791)에 기재된 방식으로 측정할 수 있다. 또한, 키랄 도펀트의 함량(중량%)은, 100/(HTP(Helixcal Twisting power) × 피치(nm)의 수식으로 계산되며, 목적하는 피치(p)를 고려하여 적정 비율로 선택될 수 있다.
액정층은, 상기 트위스티드 배향의 피치(p)와 광변조층(액정층)의 두께(d, cell)의 비율(d/p)은, 1 미만이 되도록 설계될 수 있다. 상기 비율(d/p)은 다른 예시에서 0.95 이하, 0.9 이하, 0.85 이하, 0.8 이하, 0.75 이하, 0.7 이하, 0.65 이하, 0.6 이하, 0.55 이하, 0.5 이하, 0.45 이하, 0.4 이하, 0.35 이하, 0.3 이하, 0.25 이하 또는 0.2 이하이거나, 0.1 이상, 0.15 이상, 0.2 이상, 0.25 이상, 0.3 이상, 0.35 이상, 0.4 이상, 0.45 이상 또는 0.5 이상 정도일 수도 있다.
액정층은, 상기 트위스티드 배향의 피치(p)가, 1 내지 100μm의 범위 내가 되도록 설계될 수 있다. 상기 비율은 다른 예시에서 2μm 이상, 3 μm 이상, 4 μm 이상, 5 μm 이상, 6 μm 이상, 7 μm 이상, 8 μm 이상, 9μm 이상, 10 μm 이상, 11 μm 이상, 12 μm 이상, 13 μm 이상, 14 μm 이상, 15 μm 이상, 16 μm 이상, 17μm 이상, 18 μm 이상, 19 μm 이상 또는 19.5 μm 이상이거나, 95μm 이하, 90μm 이하, 85μm 이하, 80μm 이하, 75μm 이하, 70μm 이하, 65μm 이하, 60μm 이하, 55μm 이하, 50μm 이하, 45μm 이하, 40μm 이하, 35μm 이하, 30 μm 이하 또는 25 μm 이하 정도일 수도 있다.
상기 액정층의 두께(d, cell gap)는, 0.5μm 내지 50μm의 범위 내에 있을 수 있다. 상기 두께(d, cell gap)는, 다른 예시에서 1 μm 이상, 1.5 μm 이상, 2 μm 이상, 2.5 μm 이상, 3 μm 이상 또는 3.5 μm 이상, 4μm 이상, 4.5 μm 이상, 5 μm 이상, 5.5 μm 이상, 6 μm 이상, 6.5 μm 이상, 7 μm 이상, 7.5 μm 이상, 8μm 이상, 8.5 μm 이상, 9 μm 이상, 9.5 μm 이상 또는 10 μm 이상이거나, 48 μm 이하, 46μm 이하, 44μm 이하, 42μm 이하, 30μm 이하, 38μm 이하, 36μm 이하, 34μm 이하, 32μm 이하, 30μm 이하, 28μm 이하, 26μm 이하, 24μm 이하, 22μm 이하, 20μm 이하, 18μm 이하, 16μm 이하, 14μm 이하, 12 μm 이하 또는 10μm 이하 정도일 수도 있다.
위와 같은 설계를 통해 본 출원의 목적이 보다 효율적으로 달성되는 광변조 디바이스를 제공할 수 있다.
상기 투과율 가변층(액정층)에는, 기타 필요한 추가 성분(예를 들면, 이색성 색소 등)이 포함되어 있을 수도 있다.
상기와 같은 광변조 디바이스에서 상기 제 1 기판과 상기 액정층의 사이에는 실리콘 폴리머층이 존재할 수 있다. 용어 실리콘 폴리머층은, 실리콘 폴리머를 중량 기준으로 50% 이상, 55% 이상, 60% 이상, 65% 이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상 또는 95% 이상 포함하는 층을 의미한다. 상기 실리콘 폴리머의 실리콘 폴리머층 내에서의 비율의 상한은 100% 이하 또는 100% 미만 정도일 수 있다.
상기와 같은 실리콘 폴리머층은 상기 제 1 기판의 상기 액정층을 향하는 표면상에 직접 형성되어 있거나, 상기 제 1 기판과 상기 실리콘 폴리머층의 사이에는 다른 층(예를 들면, 후술하는 전극층)이 존재할 수도 있다.
하나의 예시에서 상기 실리콘 폴리머층은 소위 접착제층 또는 점착제층일 수 있다.
상기 실리콘 폴리머층은, 상기 제 1 기판의 표면상에 형성되어 있을 수 있다. 이러한 실리콘 폴리머층은, 상기 제 1 기판의 전체 면적의 70% 이상의 면적을 가지도록 형성되어 있을 수 있다. 상기 실리콘 폴리머층의 면적은, 제 1 기판의 전체 면적의 75% 이상, 80% 이상, 85% 이상, 90% 이상 또는 95% 이상 정도일 수 있다. 상기 실리콘 폴리머층의 면적의 상한에는 특별한 제한은 없고, 예를 들면, 상기 제 1 기판의 전체 면적의 100% 이하 또는 100% 미만 정도일 수 있다.
상기와 같은 실리콘 폴리머층은, 상기 액정층과 접한 상태로 광변조 디바이스에 포함되어 있을 수 있다.
상기 실리콘 폴리머층을 형성하는 재료는 특별히 제한되지 않는다. 일 예시에서 상기 실리콘 폴리머층이 접착제층 또는 점착제층인 경우에 실리콘 점착제층 또는 실리콘 접착제층을 상기 실리콘 폴리머층으로 적용할 수 있다. 예를 들면, 업계에서 소위 OCA(Optically Clear Adhesive) 또는 OCR(Opticall Clear Resin)로 공지된 다양한 유형의 실리콘계 점착제 또는 실리콘계 접착제가 존재하며, 이러한 점착제 또는 접착제들은 후술하는 화합물을 포함하는 상태에서 액정 배향막과 조합되어 액정 화합물의 적합한 배향을 유도할 수 있다.
상기 실리콘 폴리머층의 특유의 표면 특성은 액정 배향막(특히, 수직 배향막)과 조합되어 목적에 적합한 액정 화합물의 배향 상태를 유도할 수 있다.
상기 실리콘계 점착제 또는 접착제는, 경화성 실리콘 접착제 또는 점착제 조성물(이하, 단순히 경화성 실리콘 조성물이라 호칭할 수 있다.)의 경화물을 사용할 수 있다. 경화성 실리콘 조성물의 종류는 특별히 제한되지 않으며, 예를 들어 가열 경화성 실리콘 조성물을 사용할 수 있다.
하나의 예시에서 상기 경화성 실리콘 조성물은 부가 경화성 실리콘 조성물로서, (1) 분자 중에 2개 이상의 알케닐기를 함유하는 폴리오르가노실록산 및 (2) 분자 중에 2개 이상의 규소결합 수소원자를 함유하는 폴리오르가노실록산을 포함할 수 있다. 상기 실리콘 화합물은, 예를 들면, 백금 촉매 등의 촉매의 존재 하에서, 부가 반응에 의하여 경화물을 형성할 수 있다.
상기 (1) 폴리오르가노실록산은, 실리콘 경화물을 구성하는 주성분으로서, 1 분자 중 적어도 2개의 알케닐기를 포함한다. 이 때, 알케닐기의 구체적인 예에는, 비닐기, 알릴기, 부테닐기, 펜테닐기, 헥세닐기 또는 헵테닐기 등이 포함되고, 이 중 비닐기가 통상 적용되지만, 이에 제한되는 것은 아니다. 상기 (1) 폴리오르가노실록산에서, 전술한 알케닐기의 결합 위치는 특별히 한정되지 않는다. 예를 들면, 상기 알케닐기는 분자쇄의 말단 및/또는 분자쇄의 측쇄에 결합되어 있을 수 있다. 또한, 상기 (1) 폴리오르가노실록산에서, 전술한 알케닐 외에 포함될 수 있는 치환기의 종류로는, 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기 또는 헵틸기 등의 알킬기; 페닐기, 톨릴기, 크실릴기 또는 나프틸기 등의 아릴기; 벤질기 또는 페넨틸기 등의 아랄킬기; 클로로메틸기, 3-클로로프로필기 또는 3,3,3-트리플루오로프로필기 등의 할로겐 치환 알킬기 등을 들 수 있고, 이 중 메틸기 또는 페닐기가 통상 적용되지만, 이에 제한되는 것은 아니다.
상기 (1) 폴리오르가노실록산의 분자 구조는 특별히 한정되지 않고, 예를 들면, 직쇄상, 분지상, 고리상, 망상 또는 일부가 분지상을 이루는 직쇄상 등과 같이, 어떠한 형상이라도 가질 수 있다. 통상 상기와 같은 분자 구조 중 특히 직쇄상의 분자 구조를 가지는 것이 적용되지만, 이에 제한되는 것은 아니다.
상기 (1) 폴리오르가노실록산의 보다 구체적인 예로는, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸비닐실록산 공중합체, 분자쇄 양말단 트리메틸실록산기 봉쇄 메틸비닐폴리실록산, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸비닐실록산-메틸페닐실록산 공중합체, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 디메틸폴리실록산, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 메틸비닐폴리실록산, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 디메틸실록산-메틸비닐실록산 공중합체, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 디메틸실록산-메틸비닐실록산-메틸페닐실록산 공중합체, R1 2SiO2/2로 표시되는 실록산 단위와 R1 2R2SiO1/2로 표시되는 실록산 단위와 SiO4/2로 표시되는 실록산 단위를 포함하는 폴리오르가노실록산 공중합체, R1 2R2SiO1/2로 표시되는 실록산 단위와 SiO4/2로 표시되는 실록산 단위를 포함하는 폴리오르가노실록산 공중합체, R1R2SiO2/2로 표시되는 실록산 단위와 R1SiO3/2로 표시되는 실록산 단위 또는 R2SiO3/2로 표시되는 실록산 단위를 포함하는 폴리오르가노실록산 공중합체 및 상기 중 2 이상의 혼합물을 들 수 있으나, 이에 제한되는 것은 아니다. 상기에서, R1은 알케닐기 외의 탄화수소기로서, 구체적으로는 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기 또는 헵틸기 등의 알킬기; 페닐기, 톨릴기, 크실릴기 또는 나프틸기 등의 아릴기; 벤질기 또는 페넨틸기 등의 아랄킬기; 클로로메틸기, 3-클로로프로필기 또는 3,3,3-트리플루오로프로필기 등의 할로겐 치환 알킬기 등일 수 있다. 또한, 상기에서 R2는 알케닐기로서, 구체적으로는 비닐기, 알릴기, 부테닐기, 펜테닐기, 헥세닐기 또는 헵테닐기 등일 수 있다.
상기 (2) 폴리오르가노실록산의 분자 구조는 특별히 한정되지 않고, 예를 들면, 직쇄상, 분지상, 고리상, 망상 또는 일부가 분지상을 이루는 직쇄상 등과 같이, 어떠한 형상이라도 가질 수 있다. 상기와 같은 분자 구조 중 통상 직쇄상의 분자 구조를 가지는 것이 적용되지만, 이에 제한되는 것은 아니다.
상기 (2) 폴리오르가노실록산의 보다 구체적인 예로는, 분자쇄 양말단 트리메틸실록산기 봉쇄 메틸하이드로젠폴리실록산, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸하이드로젠 공중합체, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸하이드로젠실록산-메틸페닐실록산 공중합체, 분자쇄 양말단 디메틸하이드로젠실록산기 봉쇄 디메틸폴리실록산, 분자쇄 양말단 디메틸하이드로젠실록산기 봉쇄 디메틸실록산-메틸페닐실록산 공중합체, 분자쇄 양말단 디메틸하이드로젠실록산기 봉쇄 메틸페닐폴리실록산, R1 3SiO1/2로 표시되는 실록산 단위와 R1 2HSiO1/2로 표시되는 실록산 단위와 SiO4/2로 표시되는 실록산 단위를 포함하는 폴리오르가노실록산 공중합체, R1 2HSiO1/2로 표시되는 실록산 단위와 SiO4/2로 표시되는 실록산 단위를 포함하는 폴리오르가노실록산 공중합체, R1HSiO2/2로 표시되는 실록산 단위와 R1SiO3/2로 표시되는 실록산 단위 또는 HSiO3/2로 표시되는 실록산 단위를 포함하는 폴리오르가노실록산 공중합체 및 상기 중 2 이상의 혼합물을 들 수 있으나, 이에 제한되는 것은 아니다. 상기에서, R1은 알케닐기 외의 탄화수소기로서, 구체적으로는 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기 또는 헵틸기 등의 알킬기; 페닐기, 톨릴기, 크실릴기 또는 나프틸기 등의 아릴기; 벤질기 또는 페넨틸기 등의 아랄킬기; 클로로메틸기, 3-클로로프로필기 또는 3,3,3-트리플루오로프로필기 등의 할로겐 치환 알킬기 등 일 수 있다.
상기 (2) 폴리오르가노실록산의 함량은, 적절한 경화가 이루어질 수 있을 정도로 포함된다면 특별히 한정되지 않는다. 예를 들면, 상기 (2) 폴리오르가노실록산은, 전술한 (1) 폴리오르가노실록산에 포함되는 알케닐기 하나에 대하여, 규소결합 수소원자가 0.5 내지 10개가 되는 양으로 포함될 수 있다. 이러한 범위에서 경화를 충분하게 진행시키고, 내열성을 확보할 수 있다.
상기 부가경화성 실리콘 조성물은, 경화를 위한 촉매로서, 백금 또는 백금 화합물을 추가로 포함할 수 있다. 이와 같은, 백금 또는 백금 화합물의 구체적인 종류는 특별한 제한은 없다. 촉매의 비율도 적절한 경화가 이루어질 수 있는 수준으로 조절되면 된다.
상기 부가경화성 실리콘 조성물은, 저장 안정성, 취급성 및 작업성 향상의 관점에서 필요한 적절한 첨가제를 적정 비율로 또한 포함할 수도 있다.
상기 실리콘 폴리머층은 경화성 조성물(예를 들면, 상기 부가경화성 실리콘 조성물 등)의 경화층일 수 있다.
상기 경화성 조성물은, 하기 화학식 1의 실록산 단위를 포함하는 폴리오르가노실록산을 포함하는 것이 목적하는 광변조 디바이스의 형성에 적합하다.
[화학식 1]
(HRSiO2/2)
화학식 1에서 R은 알킬기, 알콕시기 또는 아릴기이다.
화학식 1의 알킬기로는, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기 또는 메틸기 또는 에틸기가 적용될 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의로 하나 이상의 치환기로 치환되어 있을 수 있다. 적절한 예시에서 상기 알킬기는 비치환된 직쇄형 알킬기일 수 있다.
화학식 1의 알콕시기로는, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기 또는 메톡시기 또는 에톡시기가 적용될 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의로 하나 이상의 치환기로 치환되어 있을 수 있다. 적절한 예시에서 상기 알콕시기는 비치환된 직쇄형 알콕시기일 수 있다.
화학식 1의 아릴기는, 벤젠 고리 또는 2개 이상의 벤젠 고리가 적절한 링커로 서로 연결되어 있거나, 하나 또는 2개 이상의 탄소 원자를 공유하면서 축합 또는 결합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기일 수 있다. 상기 아릴기의 범위에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다. 아릴기는, 예를 들면, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 아릴기일 수 있다. 아릴기로는, 페닐기, 디클로로페닐, 클로로페닐, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 예시될 수 있다.
적절한 예시에서 화학식 1에서 R은 알킬기일 수 있다.
상기 화학식 1의 실록산 단위를 포함하는 폴리오르가노실록산이 포함하는 전체 실록산 단위 대비 상기 화학식 1의 실록산 단위의 몰수의 비율이 제어될 수 있다. 하나의 예시에서 상기 폴리오르가노실록산의 전체 실록산 단위의 몰수 대비 상기 화학식 1의 실록산 단위의 몰수의 비율은, 0.001몰% 이상, 0.005몰% 이상, 0.01몰% 이상, 0.05몰% 이상, 0.1몰% 이상, 0.5몰% 이상, 1몰% 이상, 5몰% 이상, 10몰% 이상, 15몰% 이상, 20몰% 이상, 25몰% 이상 또는 30몰% 이상 정도이거나, 100몰% 미만, 95몰% 이하, 90몰% 이하, 85몰% 이하, 80몰% 이하, 75몰% 이하, 70몰% 이하, 65몰% 이하, 60몰% 이하, 55몰% 이하, 50몰% 이하, 45몰% 이하, 40몰% 이하, 35몰% 이하, 30몰% 이하, 25몰% 이하, 20몰% 이하, 15몰% 이하, 10몰% 이하, 5몰% 이하 또는 1몰% 이하 정도일 수도 있다. 상기 화학식 1의 실록산 단위의 몰수의 비율은 상기 기술한 상한 중 임의의 하나의 상한과 상기 기재된 하한 중 임의의 하나의 하한의 범위 내에 있을 수도 있다.
상기 폴리오르가노실록산은, 상기 화학식 1의 실록산 단위를 포함하면서 직쇄 또는 분지쇄의 구조를 가질 수 있다. 공지된 바와 같이 실록산 단위로서, 소위 M 단위(단관능성 실록산 단위)와 D 단위(이관능성 실록산 단위)만을 포함하는 폴리오르가노실록산은 직쇄 구조를 구지며, 분지쇄 구조의 폴리오르가노실록산에는 소위 T 단위(삼관능성 실록산 단위) 및/또는 Q 단위(사관능성 실록산 단위)인 실록산 단위가 존재한다.
일 예시에서 상기 폴리오르가노실록산이 분지쇄 구조를 가지는 경우에도 해당 폴리오르가노실록산 내의 전체 실록산 단위의 몰수를 기준으로 상기 T 단위 및 Q 단위의 합계 비율은 10몰% 이하, 9몰% 이하, 8몰% 이하, 7몰% 이하, 6몰% 이하, 5몰% 이하, 4몰% 이하, 3몰% 이하, 2몰% 이하, 1몰% 이하 또는 0.5몰% 이하 정도이거나, 0몰% 초과인 것이 적절하다. 폴리오르가노실록산이 직쇄 구조인 경우에 상기 T 단위 및 Q 단위의 합계 비율은 0몰%이다.
상기 폴리오르가노실록산의 사슬의 말단은 하기 화학식 2의 실록산 단위일 수 있다. 즉, 상기 폴리오르가노실록산은, 말단이 하기 화학식 2의 실록산 단위에 의해 봉쇄되어 있을 수 있다.
[화학식 2]
(R1 3SiO1/2)
화학식 2에서 R1은 수소, 알킬기, 알콕시기 또는 아릴기이다.
화학식 2에서 알킬기, 알콕시기 및 아릴기의 구체적인 예는 화학식 1의 R과 같다. 적절한 예시에서 화학식 2에서 R1은 알킬기, 알콕시기 또는 아릴기이거나, 알킬기일 수 있다.
상기 폴리오르가노실록산은, 하기 화학식 3의 실록산 단위를 추가로 포함할 수도 있다.
[화학식 3]
(R2 2SiO2/2)
화학식 3에서 R2는 알킬기, 알콕시기 또는 아릴기이다.
화학식 3에서 알킬기, 알콕시기 및 아릴기의 구체적인 예는 화학식 1의 R과 같다. 적절한 예시에서 화학식 3에서 R2는 알킬기일 수 있다.
상기 폴리오르가노실록산은, 몰질량이 200g/mol 내지 2,000,000 g/mol의 범위 내에 있을 수 있다. 상기 몰질량은 상기 폴리오르가노실록산에 포함되는 규소 원자, 산소 원자, 탄소 원자 및 수소 원자 등의 몰수와 그들의 몰질량을 통해 계산된 값이다. 상기 폴리오르가노실록산의 몰질량은 또한 500 g/mol 이상, 1,000 g/mol 이상, 3,000 g/mol 이상, 5,000 g/mol 이상, 7,000 g/mol 이상, 9,000 g/mol 이상, 10,000 g/mol 이상, 30,000 g/mol 이상, 50,000 g/mol 이상 또는 70,000 g/mol 이상 정도이거나, 1,500,000 g/mol 이하, 1,000,000 g/mol 이하, 500,000 g/mol 이하, 100,000 g/mol 이하, 90,000 g/mol 이하, 70,000 g/mol 이하, 50,000 g/mol 이하, 30,000 g/mol 이하, 10,000 g/mol 이하, 9,000 g/mol 이하, 7,000 g/mol 이하, 5,000 g/mol 이하 또는 4,500 g/mol 이하 정도일 수도 있다. 상기 몰질량은 상기 기재된 하한 중 어느 한 하한과 상기 기재된 상한 중 어느 한 상한의 범위 내에 있을 수도 있다.
구체적인 예시에서 상기 폴리오르가노실록산은, 하기 화학식 4로 표시되는 폴리오르가노실록산일 수 있다.
[화학식 4]
Figure PCTKR2023010190-appb-img-000002
화학식 4에서 R은 각각 독립적으로 알킬기, 알콕시기 또는 아릴기이고, m 및 n은 임의의 수이다.
화학식 4에서는 HRSiO2/2의 실록산 단위와 R2SiO2/2의 실록산 단위가 블록 공중합체를 구성하는 형태로 도시되어 있지만, 이는 설명의 편의를 위한 것으로 상기 실록산 단위는 랜덤 공중합체를 구성하는 형태로 포함되어 있을 수도 있다.
화학식 4에서 m은, 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상 또는 10 이상 정도이거나, 1,000 이하, 900 이하, 800 이하, 700 이하, 600 이하, 500 이하, 400 이하, 300 이하, 200 이하, 100 이하, 90 이하, 80 이하, 70 이하, 60 이하, 50 이하, 40 이하, 30 이하, 20 이하, 15 이하, 10 이하, 9 이하, 8 이하, 7 이하, 6 이하 또는 5 이하 정도일 수도 있다. 상기 m은 상기 기재한 상한 중 임의의 어느 한 상한과 상기 기재한 하한 중 임의의 어느 한 하한의 범위 내에 있을 수도 있다.
화학식 4에서 n은, 0 이상, 20 이상, 40 이상, 60 이상, 80 이상, 100 이상, 200 이상, 300 이상, 400 이상, 500 이상, 600 이상, 700 이상, 800 이상 또는 900 이상 정도이거나, 20,000 이하, 15,000 이하, 10,000 이하, 5,000 이하, 1,000 이하, 950 이하, 900 이하, 850 이하, 800 이하, 750 이하, 700 이하, 650 이하, 600 이하, 550 이하, 500 이하, 450 이하, 400 이하, 350 이하, 300 이하, 250 이하, 200 이하, 150 이하, 100 이하, 90 이하, 80 이하, 70 이하, 60 이하, 50 이하 또는 40 이하 정도일 수 있다. 상기 n은 상기 기재한 상한 중 임의의 어느 한 상한과 상기 기재한 하한 중 임의의 어느 한 하한의 범위 내에 있을 수도 있다.
화학식 4의 폴리오르가노실록산으로는, 일 예시에서 상기 화학식 4의 R의 전체 몰수 대비 50몰% 이상, 55몰% 이상, 60몰% 이상, 65몰% 이상, 70몰% 이상, 75몰% 이상, 80몰% 이상, 85몰% 이상, 90몰% 이상 또는 95몰% 이상이 상기 알킬기인 폴리오르가노실록산이 사용될 수 있다. 상기 알킬기의 비율의 상한에는 특별한 제한은 없으나, 상기 알킬기는 상기 R의 전체 몰수 대비 100몰% 이하 또는 100몰% 미만으로 포함될 수도 있다.
상기 화학식 1의 실록산 단위를 포함하는 폴리오르가노실록산 또는 상기 화학식 4의 폴리오르가노실록산은, 상기 알케닐기 함유 폴리오르가노실록산을 적절하게 가교시켜서 목적하는 실리콘 폴리머층을 형성할 수 있다.
상기 화학식 1의 실록산 단위를 포함하는 폴리오르가노실록산 또는 상기 화학식 4의 폴리오르가노실록산의 실리콘 폴리머층 내에서의 함량이 조절될 수 있다. 예를 들면, 상기 함량은, 2 중량% 이상, 2.5 중량% 이상, 3 중량% 이상, 3.5 중량% 이상, 4 중량% 이상, 4.5 중량% 이상, 5 중량% 이상, 5.5 중량% 이상, 6 중량% 이상, 6.5 중량% 이상, 7 중량% 이상, 7.5 중량% 이상, 8 중량% 이상, 8.5 중량% 이상, 9 중량% 이상, 9.5 중량% 이상, 10 중량% 이상, 10.5 중량% 이상, 11 중량% 이상, 11.5 중량% 이상, 12 중량% 이상, 12.5 중량% 이상 또는 13 중량% 이상 정도일 수 있다. 상기 함량은 다른 예시에서 50 중량% 이하, 48 중량% 이하, 46 중량% 이하, 44 중량% 이하, 42 중량% 이하, 40 중량% 이하, 38 중량% 이하, 36 중량% 이하, 34 중량% 이하, 32 중량% 이하, 30 중량% 이하, 28 중량% 이하, 26 중량% 이하, 24 중량% 이하, 22 중량% 이하, 20 중량% 이하, 18 중량% 이하, 16 중량% 이하, 14 중량% 이하, 12 중량% 이하, 10 중량% 이하, 9 중량% 이하, 8 중량% 이하, 7 중량% 이하, 6 중량% 이하, 5 중량% 이하 또는 4 중량% 이하, 정도일 수 있다. 상기 기술한 상한 중 임의의 하나의 상한과 상기 기술한 하한 중 임의의 하나의 하한의 범위 내에서 상기 비율이 제어될 수 있다.
이러한 함량 범위에서 목적하는 액정 화합물의 배향 상태를 달성하면서 내구성이 우수한 광변조 디바이스를 형성할 수 있다.
상기 폴리오르가노실록산을 포함하는 실리콘 폴리머층은 하기 식 2의 δ가 소정 범위 내에 있을 수 있다.
[식 2]
Figure PCTKR2023010190-appb-img-000003
식 2에서 M1은, 상기 폴리오르가노실록산에 포함되는 상기 화학식 1의 실록산 단위(화학식 4의 폴리오르가노실록산의 경우, HRSiO2/2 단위)의 몰질량(g/mol)이고, m은 상기 폴리오르가노실록산에 포함되는 상기 화학식 1의 실록산 단위의 몰수(화학식 4의 경우는 m)이며, β는, 화학식 1의 실록산 단위를 포함하는 폴리오르가노실록산의 실리콘 폴리머층 내에서의 함량(중량%)이고, M2는, 상기 폴리오르가노실록산의 몰질량(g/mol)이다.
본 출원에서 상기 식 2의 δ는, 10 초과, 10.5 이상, 11 이상, 12 이상, 13 이상, 14 이상, 15 이상, 16 이상, 17 이상, 18 이상, 19 이상, 20 이상, 21 이상, 22 이상, 23 이상, 24 이상, 25 이상, 26 이상, 27 이상, 28 이상, 29 이상, 30 이상, 31 이상, 32 이상, 33 이상, 34 이상, 35 이상, 36 이상, 37 이상, 38 이상, 39 이상, 40 이상, 41 이상, 42 이상, 43 이상, 44 이상, 45 이상, 46 이상, 47 이상, 48 이상, 49 이상 또는 50 이상 정도이거나, 100 이하, 95 이하, 90 이하, 85 이하, 80 이하, 75 이하, 70 이하, 65 이하, 60 이하, 55 이하, 50 이하, 45 이하, 40 이하, 35 이하, 30 이하, 25 이하, 20 이하 또는 15 이하 정도일 수 있다. 상기 기술한 상한 중 임의의 하나의 상한과 상기 기술한 하한 중 임의의 하나의 하한의 범위 내에서 상기 δ가 제어될 수 있다.
상기 실리콘 폴리머층에서 상기 화학식 1의 실록산 단위를 포함하는 폴리오르가노실록산이 2종 이상 존재하는 경우에 각각의 폴리오르가노실록산에 대해서 상기 δ을 계산한 후에 이를 합산한 값을 상기 실리콘 폴리머층의 δ값으로 지적할 수 있다.
이러한 함량 범위에서 목적하는 액정 화합물의 배향 상태를 달성하면서 내구성이 우수한 광변조 디바이스를 형성할 수 있다.
식 2에서 M1은, 일 예시에서 50 g/mol 이상, 55 g/mol 이상 또는 60 g/mol 이상 정도이거나, 200 g/mol 이하, 180 g/mol 이하, 160 g/mol 이하, 140 g/mol 이하, 120 g/mol 이하, 100 g/mol 이하, 80 g/mol 이하, 75 g/mol 이하, 70 g/mol 이하 또는 65 g/mol 이하 정도일 수 있다. 상기 기술한 상한 중 임의의 하나의 상한과 상기 기술한 하한 중 임의의 하나의 하한의 범위 내에서 상기 M1이 제어될 수 있다.
식 2에서 m은, 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상 또는 10 이상 정도이거나, 1,000 이하, 900 이하, 800 이하, 700 이하, 600 이하, 500 이하, 400 이하, 300 이하, 200 이하, 100 이하, 90 이하, 80 이하, 70 이하, 60 이하, 50 이하, 40 이하, 30 이하, 20 이하, 15 이하, 10 이하, 9 이하, 8 이하, 7 이하, 6 이하 또는 5 이하 정도일 수도 있다. 상기 m은 상기 기재한 상한 중 임의의 어느 한 상한과 상기 기재한 하한 중 임의의 어느 한 하한의 범위 내에 있을 수도 있다.
식 2의 M2는, 예를 들면, 200g/mol 이상, 500 g/mol 이상, 1,000 g/mol 이상, 3,000 g/mol 이상, 5,000 g/mol 이상, 7,000 g/mol 이상, 9,000 g/mol 이상, 10,000 g/mol 이상, 30,000 g/mol 이상, 40,000 g/mol 이상 또는 45,000 g/mol 이상 정도이거나, 2,000,000 g/mol 이하, 1,500,000 g/mol 이하, 1,000,000 g/mol 이하, 500,000 g/mol 이하, 100,000 g/mol 이하, 90,000 g/mol 이하, 70,000 g/mol 이하, 50,000 g/mol 이하, 30,000 g/mol 이하, 10,000 g/mol 이하, 9,000 g/mol 이하, 7,000 g/mol 이하, 5,000 g/mol 이하, 4,500 g/mol 이하, 4,000 g/mol 이하, 3,500 g/mol 이하, 3,000 g/mol 이하, 2,500 g/mol 이하, 2,000 g/mol 이하 또는 1,500 g/mol 이하 정도일 수도 있다. M2는 상기 기재된 하한 중 어느 한 하한과 상기 기재된 상한 중 어느 한 상한의 범위 내에 있을 수도 있다.
또한, 식 2에서 β는, 2 중량% 이상, 2.5 중량% 이상, 3 중량% 이상, 3.5 중량% 이상, 4 중량% 이상, 4.5 중량% 이상, 5 중량% 이상, 5.5 중량% 이상, 6 중량% 이상, 6.5 중량% 이상, 7 중량% 이상, 7.5 중량% 이상, 8 중량% 이상, 8.5 중량% 이상, 9 중량% 이상, 9.5 중량% 이상, 10 중량% 이상, 10.5 중량% 이상, 11 중량% 이상, 11.5 중량% 이상, 12 중량% 이상, 12.5 중량% 이상 또는 13 중량% 이상 정도일 수 있다. 상기 β는 다른 예시에서 50 중량% 이하, 48 중량% 이하, 46 중량% 이하, 44 중량% 이하, 42 중량% 이하, 40 중량% 이하, 38 중량% 이하, 36 중량% 이하, 34 중량% 이하, 32 중량% 이하, 30 중량% 이하, 28 중량% 이하, 26 중량% 이하, 24 중량% 이하, 22 중량% 이하, 20 중량% 이하, 18 중량% 이하, 16 중량% 이하, 14 중량% 이하, 12 중량% 이하, 10 중량% 이하, 9 중량% 이하, 8 중량% 이하, 7 중량% 이하, 6 중량% 이하, 5 중량% 이하 또는 4 중량% 이하, 정도일 수 있다. 상기 기술한 상한 중 임의의 하나의 상한과 상기 기술한 하한 중 임의의 하나의 하한의 범위 내에서 상기 비율이 제어될 수 있다.
상기 실리콘 폴리머층을 형성하는 경화성 조성물로는 상기 화학식 1의 폴리오르가노실록산을 상기 조건을 만족하도록 포함하는 것이라면, 특별한 제한 없이 공지의 부가 경화형 조성물을 사용할 수 있다. 업계에서 OCA 또는 OCR 등으로 알려진 실리콘 점착제 또는 접착제가 모두 본 출원에서 적용될 수 있다. 상기 실리콘 접착제 또는 점착제에 상기 화학식 1의 폴리오르가노실록산을 상기 조건을 만족하도록 배합하여 상기 실리콘 폴리머층을 형성할 수 있다.
예를 들면, 상기 경화성 조성물은, 상기 화학식 1의 폴리오르가노실록산에 추가로 알케닐기 함유 폴리오르가노실록산을 포함할 수 있다. 상기 알케닐기 함유 폴리오르가노실록산으로는 상기에서 기술한 (1) 분자 중에 2개 이상의 알케닐기를 함유하는 폴리오르가노실록산이 사용될 수 있다.
또한, 상기 화학식 1의 폴리오르가노실록산이 존재한다면, 상기 화학식 1의 폴리오르가노실록산과는 다른 구조를 가지는 폴리오르가노실록산으로서, 상기에서 기술한 (2) 분자 중에 2개 이상의 규소결합 수소원자를 함유하는 폴리오르가노실록산을 추가로 포함할 수 있다.
이러한 경우에 상기 알케닐기 함유 폴리오르가노실록산 및/또는 분자 중에 2개 이상의 규소결합 수소원자를 함유하는 폴리오르가노실록산의 실리콘 폴리머층 또는 경화성 조성물 내에서의 함량은, 예를 들면, 상기 함량은, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상, 90 중량% 이상 또는 95 중량% 이상 정도일 수 있다. 상기 함량은 다른 예시에서 100 중량% 미만, 95 중량% 이하, 90 중량% 이하 또는 87 중량% 이하, 정도일 수 있다. 상기 기술한 상한 중 임의의 하나의 상한과 상기 기술한 하한 중 임의의 하나의 하한의 범위 내에서 상기 비율이 제어될 수 있다.
상기 경화성 조성물 또는 실리콘 폴리머층은 상기 성분에 추가로 필요한 임의의 성분(예를 들면, 부가 경화용 촉매 등)을 포함할 수도 있다.
상기 경화성 조성물의 유형은 특별히 제한되지 않고, 목적하는 용도에 따라 적절히 선택될 수 있다. 예를 들면, 고상, 반고상 또는 액상의 경화성 조성물이 사용될 수 있다. 고상 또는 반고상의 경화성 조성물은 접착 대상이 합착되기 전에 경화될 수 있다. 액상의 경화성 조성물은, 소위 광학 투명 레진(OCR; Optical Clear Resin)으로 호칭되고, 접착 대상이 합착된 후에 경화될 수 있다.
상기와 같은 경화성 조성물로 형성된 실리콘 폴리머층의 두께는 목적에 따라 조절되는 것으로 특별히 제한되지 않으며, 통상 1 μm 내지 100μm의 범위 내의 두께로 형성될 수 있다.
제 1 기판에 상기와 같은 실리콘 폴리머층이 형성되는 경우에, 제 1 기판에는 액정 배향막은 형성되지 않을 수 있다. 따라서, 이러한 경우에 상기 제 1 기판과 상기 액정층의 사이에는 액정 배향막이 존재하지 않을 수 있다.
광변조 디바이스에서 상기 액정층과 상기 제 2 기판의 사이에는 액정 배향막이 존재할 수 있다. 이러한 액정 배향막은 상기 제 2 기판의 표면, 예를 들면, 상기 액정층을 향하는 표면에 형성될 수 있다.
광변조 디바이스에서 형성될 수 있는 액정 배향막의 종류에는 특별한 제한은 없다. 상기 배향막으로는 목적하는 초기 배향 등을 고려하여 공지의 수직 혹은 수평 배향막이나 기타 배향막을 적용할 수 있다. 배향막의 유형도 러빙 배향막과 같은 접촉식 배향막이나 광배향막과 같은 비접촉식 배향막이 적용될 수 있다. 하나의 예시에서 상기 배향막으로는 수직 배향막을 사용할 수 있다. 예를 들어, 수직 배향막과 전술한 실리콘 폴리머층의 조합은 다양한 용도에 적합한 액정 화합물의 배향 상태를 유도할 수 있다.
액정층에서 상기 액정 배향막 및/또는 실리콘 폴리머층과 액정 배향막에 의해 형성되는, 액정 화합물의 초기 배향은, 수직 배향, 수평 배향, 경사 배향 또는 스프레이 배향일 수 있다. 또한, 상기 수직 배향, 수평 배향, 경사 배향 상태 또는 스프레이 배향 상태에서 액정 화합물은 트위스티드되어 상기 트위스티드 배향 또는 콜레스테릭 배향 상태로 존재하거나, 그렇지 않을 수도 있다. 상기 초기 배향은, 초기 상태, 즉 액정층에 외부 에너지가 인가되지 않은 상태에서의 액정 화합물의 배향을 의미한다.
상기 수평 배향, 경사 배향, 수직 배향 또는 스프레이 배향의 의미는 업계에서 공지된 바와 같다. 투과율 가변층의 액정 화합물은 초기 상태에서 상기 수평 배향, 경사 배향, 수직 배향 또는 스프레이 배향의 상태를 유지하다가, 외부 신호에 따라서 그와는 다른 배향 상태로 변경될 수 있다.
하나의 예시에서 상기 투과율 가변층에서의 액정 화합물의 초기 배향은 수직 배향 또는 수직 배향과 유사한 배향 상태이고, 외부 신호 인가 시에 상기 트위스티드 배향이 구현될 수 있다. 이러한 배향 상태는 상기 액정 배향막으로서 수직 배향막을 적용함으로써 얻어진다. 이와 같은 배향은 소위 R-TN(Reversed Twisted Nematic) 배향을 구현하는 소자에서 유용하다.
상기 수직 배향 또는 수직 배향과 유사한 배향 상태에서 투과율 가변층의 면내 위상차(550 nm 파장 기준)는, 예를 들면, 약 30 nm 이하, 25 nm 이하, 20 nm 이하, 15 nm 이하, 10 nm 이하 또는 5 nm 이하이거나, 0 nm 이상 또는 0 nm 초과일 수 있다.
상기 면내 위상차는, 상기 수식 A에 따라서 구해지고, 이 경우 수식 A에서 nx, ny 및 d는 각각 광변조층의 지상축 방향 굴절률, 진상축 방향 굴절률 및 두께이다.
광변조 디바이스는, 상기 제 1 및 제 2 기판의 간격(spacer)을 유지하는 스페이서를 추가로 포함할 수 있다. 스페이서로는 통상적으로 적용되는 스페이서로서, 볼 스페이서, 컬럼 스페이서 또는 격벽형 스페이서 또는 상기 중 2종 이상의 조합이 적용될 수 있다. 적절한 예시에서 상기 스페이서로는 상기 격벽형 스페이서가 사용될 수 있으며, 특히 상기 격벽들이 적어도 하나의 폐도형을 형성하고 있는 격벽형 스페이서가 적용될 수 있다. 상기 격벽형 스페이서가 형성하는 폐도형으로는 육각형(예를 들면, 정육각형 등)이나 사각형(예를 들면, 정사각형 또는 직사각형)이 예시될 수 있다. 상기 폐도형이 육각형, 특히 정육각형인 격벽형 스페이서는 소위 허니콤(honeycomb)형 스페이서로도 불리운다. 이와 같은 허니콤형 또는 사각형의 격벽형 스페이서는 공지된 바와 같이 기판상에 형성된 격벽형 스페이서의 형태를 기판의 법선 방향에서 관찰한 때에 상기 격벽형 스페이서에 의해 형성되는 도형이 허니콤형 또는 사각형인 경우를 의미한다. 상기 허니콤형은 통상 정육각형의 조합으로 되고, 사각형의 경우, 정사각형, 직사각형 또는 정사각형과 직사각형의 조합 등이 있을 수 있다. 제 1 및 제 2 기판간의 부착력을 고려하여 스페이서로는 격벽형 스페이서를 적용할 수 있지만, 이에 제한되는 것은 아니다.
스페이서의 피치 등도 목적하는 부착력이나 셀갭의 유지 효율 등을 고려하여 적절하게 선택될 수 있다. 예를 들어, 격벽형 스페이서가 적용되는 경우, 상기 격벽형 스페이서의 피치가 50μm 내지 2,000μm의 범위 내일 수 있다. 격벽형 스페이서에서 피치를 구하는 방식은 공지이다. 예를 들어, 격벽형 스페이서가 허니콤형이라면, 상기 허니콤을 이루는 육각형에서 마주보는 변들의 간격을 통해 피치를 구하고, 사각형인 경우에 사각형의 변의 길이를 통해 피치를 구한다. 상기 허니콤을 이루는 육각형에서 마주보는 변들의 간격이나, 사각형의 변의 길이가 일정하지 않은 경우에는 그들의 평균치를 피치로 규정할 수 있다.
상기 격벽형 스페이서가 폐도형을 구성하는 경우에, 예를 들면, 상기 폐도형의 면적(즉, 예를 들면, 육각형이나 사각형의 면적)은, 예를 들면, 약 1 mm2 내지 200 mm2의 범위 내일 수 있다. 격벽형 스페이서에 의해서 복수의 폐도형이 형성되고, 그 폐도형들의 면적이 각기 상이한 경우에는 상기 면적은 산술 평균치이다.
상기 격벽형 스페이서의 선폭, 예를 들면, 상기 허니콤을 이루는 육각형이나 사각형의 각 벽의 폭은, 예를 들면, 약 5μm 내지 50μm의 범위 내에 있을 수 있다. 상기 선폭은 다른 예시에서 약 10 μm 이상 또는 15 μm 이상이거나, 45 μm 이하, 40 μm 이하, 35 μm 이하, 30 μm 이하, 25 μm 이하 또는 20 μm 이하 정도일 수도 있다.
위와 같은 범위에서 셀갭이 적절하게 유지되고, 기판간의 부착력도 우수하게 유지할 수 있다. 예를 들어, 제 1 기판에 상기 실리콘 폴리머층이 형성되는 경우에 격벽형 스페이서와의 조합은 매우 탁월한 기판간의 접착력을 부여할 수 있다.
상기 광변조 디바이스의 각 기판에는 투과율 가변층에 외부 신호를 인가하기 위한 구성요소로서, 전극층이 형성되어 있을 수 있다. 예를 들면, 제 1 기판에서 제 1 표면과 상기 기능성층(액정 배향막, 점착제 또는 접착제층의 사이(도 2에서 100과 1001의 사이)) 및/또는 제 2 기판에서 제 1 표면과 액정 배향막의 사이(도 2에서 200과 2001의 사이)(스페이서가 존재하는 경우, 스페이서 및 배향막의 사이)에는 전극층이 존재할 수 있다. 제 2 기판의 경우, 제 1 표면에 우선 전극층을 형성하고, 그 상부에 스페이서 및 배향막을 순차 형성하는 것이 일반적이기 때문에 스페이서가 존재하는 경우, 전극층은 제 2 기판의 제 1 표면과 스페이서 및 배향막의 사이에 위치할 수 있다.
전극층으로는, 공지의 투명 전극층이 적용될 수 있는데, 예를 들면, 소위 전도성 고분자층, 전도성 금속층, 전도성 나노와이어층 또는 ITO(Indium Tin Oxide) 등의 금속 산화물층이 상기 전극층으로 사용될 수 있다. 이외에도 투명 전극층을 형성할 수 있는 다양한 소재 및 형성 방법이 공지되어 있고, 이를 제한없이 적용할 수 있다.
광변조 디바이스는 상기 광변조 디바이스를 기본적으로 포함하면서, 필요에 따라서 추가의 다른 구성을 포함할 수도 있다. 즉, 구동 모드에 따라서는 상기 광변조 디바이스 단독으로도 전술한 투과, 차단, 고반사 및/또는 저반사 모드의 구현 및 그들간의 스위칭이 가능하지만, 이러한 모드의 구현 내지 스위칭을 용이하게 하기 위해서 추가적인 구성의 포함도 가능하다.
예를 들면, 상기 소자는, 상기 광변조 디바이스의 일측 또는 양측에 배치된 편광층(수동 편광층)를 추가로 포함할 수 있다. 도 3은 상기 구조의 예시로서, 도 2의 구조에서 광변조 디바이스의 일면에만 편광층(400)이 배치된 경우이고, 도 4는 도 2의 구조에서 광변조 디바이스의 양면에 편광층(400)이 배치된 경우이다. 또한, 스페이서로서 상기 격벽형 스페이서가 적용되고, 그 형태가 사각형(정사각형 또는 직사각형)인 경우에 상기 사각형의 변과 상기 편광층의 흡수축은 서로 실질적으로 수직 또는 수평을 이루도록 배치되는 것이 적절하다.
용어 편광층은 자연광 내지 비편광을 편광으로 변화시키는 소자를 의미할 수 있다. 하나의 예시에서, 상기 편광층은 선 편광층일 수 있다. 선편광층은 선택적으로 투과하는 광이 어느 하나의 방향으로 진동하는 선 편광이고 선택적으로 흡수 또는 반사하는 광이 상기 선편광의 진동 방향과 직교하는 방향으로 진동하는 선편광인 경우를 의미한다. 즉, 상기 선 편광층은 면 방향으로 서로 직교하는 투과축 및 흡수축 내지 반사축을 가질 수 있다.
상기 편광층은 흡수형 편광층 또는 반사형 편광층일 수 있다. 상기 흡수형 편광층으로는, 예를 들어, PVA(poly(vinyl alcohol)) 연신 필름 등과 같은 고분자 연신 필름에 요오드를 염착한 편광층 또는 배향된 상태로 중합된 액정을 호스트로 하고, 상기 액정의 배향에 따라 배열된 이색성 염료를 게스트로 하는 게스트-호스트형 편광층을 사용할 수 있으나 이에 제한되는 것은 아니다.
상기 반사형 편광층으로는, 예를 들면, 소위 DBEF(Dual Brightness Enhancement Film)으로 공지되어 있는 반사형 편광층이나 LLC(Lyotropic liquid crystal)과 같은 액정 화합물을 코팅하여 형성되는 반사형 편광층을 사용할 수 있으나, 이에 제한되는 것은 아니다.
도 4와 같이 광변조 디바이스의 양측 모두에 상기 편광층이 배치된 구조일 수도 있다. 이러한 경우에 상기 양측에 배치된 편광층의 투과축이 이루는 각도는 85도 내지 95도의 범위 내 또는 대략 수직일 수 있다.
일 예시에서 상기 광학 소자는 편광층을 포함하지 않고, 구성될 수도 있다. 예를 들면, 상기 액정층에 추가 성분으로서 이색성 염료를 배합한 후에 편광층을 적용하지 않고, 광학 소자가 구성될 수도 있다.
광변조 디바이스는 상기 구성에 추가로 필요한 다른 구성을 포함할 수 있다.
예를 들면, 광변조 디바이스는, 하기 수식 4의 굴절률 관계를 만족하는 광학 이방성 필름을 추가로 포함할 수 있다. 이러한 필름은, 기판이나, 광변조층을 광학적으로 보상하여 상기 다바이스의 성능을 보다 개선할 수 있다.
[수식 4]
nz < ny
수식 4에서 ny는 광학 이방성 필름의 진상축 방향의 550 nm 파장에 대한 굴절률이고, nz는 광학 이방성 필름의 두께 방향의 550 nm 파장에 대한 굴절률이다.
상기 수식 4의 관계를 만족하는 광학 이방성 필름은 소위 네거티브(Negative) C 플레이트의 성질을 나타내는 필름이다.
이러한 광학 이방성 필름의 두께 방향 위상차는 예를 들면, 550 nm 파장을 기준으로 0 nm 미만에서 -600 nm 이상의 범위 내일 수 있다. 상기 광학 이방성 필름은, 광학 소자 내에 1층 또는 2층 이상 존재할 수도 있는데, 상기 두께 방향 위상차는, 광학 이방성 필름이 1층 존재하는 경우에는 그 1층의 필름의 두께 방향 위상차이고, 2층 이상 복수 존재하는 경우에는 모드 필름의 두께 방향 위상차의 합계이다.
또한, 상기 두께 방향 위상차는 하기 수식 5에 의해 정해지는 물리량이다.
[수식 5]
Rth = d × (nz - ny)
수식 5에서 Rth는 두께 방향 위상차이고, nz는 필름의 두께 방향 굴절률이며, ny는 필름의 진상축 방향 굴절률이고, d는 필름의 두께이다. 상기에서 두께 방향과 진상축의 의미는 업계에서 공지되어 있다.
상기 광학 이방성 필름으로는, 공지된 위상차 필름으로서, 상기 수식 4을 만족하는 필름을 적용할 수 있으며, 업계에서는 이러한 종류의 필름으로서, 예를 들면, 연신 고분자 필름이나 액정 필름 등이 다양하게 알려져 있다.
상기 광학 이방성 필름은, 제 1 및/또는 제 2 기판에 존재할 수 있는데, 예를 들면, 제 1 및/또는 제 2 기판의 제 1 표면상에 형성될 수 있다. 이 때 광학 이방성 필름은, 제 1 및/또는 2 기판과 투과율 가변층의 사이에 존재할 수 있으며, 상기 제 1 표면상에 액정 배향막이나 상기 실리콘 폴리머층이 형성되는 경우에는 제 1 및/또는 2 기판과 상기 액정 배향막 등의 사이에 형성될 수 있고, 상기 제 1 표면상에 전극층이 형성되는 경우에는 제 1 및/또는 제 2 기판과 상기 전극층의 사이에 형성될 수도 있다.
광변조 디바이스는 상기 구성 외에도 필요한 경우에 다른 구성을 포함할 수도 있다. 예를 들면, 상기 제 1 기판의 제 1 표면상에 형성되는 실리콘 폴리머층 외에 다른 구성 요소를 부착시키기 위한 점착제층이나 접착제층, 하드코팅 필름, 반사 방지 필름 및/또는 NIR(Near-Infrared) 차단(cut)층 등과 같이 광변조 디바이스의 구동 내지 사용에 필요한 임의의 다른 구성이 추가될 수 있다.
상기 광변조 디바이스를 제조하는 방식은 특별히 제한되지 않으며, 각 구성 요소로서 상기 요소가 적용되는 것 외에는 공지의 방식을 통해 상기 소자를 제조할 수 있다.
이러한 광학 소자는 다양한 용도로 사용될 수 있으며, 예를 들면, 선글라스나 AR(Argumented Reality) 또는 VR(Virtual Reality)용 아이웨어(eyewear) 등의 아이웨어류, 건물의 외벽이나 차량용 선루프 등에 사용될 수 있다.
본 출원은 광변조 디바이스 및 그 용도를 제공할 수 있다. 본 출원에서는, 점착제층 또는 접착제층을 적용하여 대향 배치된 기판간의 접착력을 확보하면서 동시에 액정 화합물의 배향을 안정적으로 유지하며, 특히 고온에서도 목적하는 액정 화합물의 배향 상태를 안정적으로 장기간 동안 유지 내지 구현할 수 있는 광변조 디바이스 및 그 용도를 제공할 수 있다.
도 1은 투과율 T1 및 T2를 측정하는 과정을 보여주는 도면이다.
도 2 내지 4는 본 출원의 예시적인 광변조 디바이스의 모식도이다.
이하 실시예를 통하여 본 출원의 광 변조 장치를 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
1. 위상차 평가
필름의 면내 위상차 값(Rin)은 Agilent사의 UV/VIS spectroscope 8453 장비를 이용하여 550nm 파장의 광에 대하여 측정하였다. UV/VIS spectroscope에 2장의 편광자를 투과축이 서로 직교하도록 설치하고, 상기 2장의 편광자 사이에 필름의 지상축이 2장의 편광자의 투과축과 각각 45도를 이루도록 설치한 후, 파장에 따른 투과율을 측정하였다. 파장에 따른 투과율 그래프에서 각 피크(peak)들의 위상 지연 차수(Phase retardation order)를 구한다. 구체적으로, 파장에 따른 투과율 그래프에서 파형은 하기 수식 A를 만족하고, 사인(Sine) 파형에서 최대 피크(Tmax) 조건은 하기 수식 B을 만족한다. 수식 A에서 λmax인 경우, 수식 A의 T와 수식 B의 T는 동일하기 때문에 수식을 전개한다. n+1, n+2 및 n+3에 대해서도 수식을 전개하고, n과 n+1 수식을 정리해서 R을 소거하여 n을 λn 및 λn+1 수식으로 정리하면, 하기 수식 C가 도출된다. 수식 A의 T와 수식 B의 T가 동일함에 근거하여 n과 λ를 알 수 있으므로 각 λn, λn+1, λn+2 및 λn+3 대해 R을 구한다. 4 포인트에 대해 파장에 따른 R값의 직선 추세선을 구하고 수식 550 nm에 대한 R 값을 산정한다. 직선 추세선의 함수는 Y = ax+b이고, a 및 b는 상수이다. 상기 함수의 x에 550nm를 대입했을 때의 Y 값이 550nm파장의 광에 대한 Rin 값이다.
[수식 A]
T = sin2[(2πR/λ)]
[수식 B]
T = sin2[((2n+1)π/2)]
[수식 C]
n = (λn -3λn+1)/(2λn+1 +1-2λn)
상기에서 R은 면내 위상차(Rin)를 의미하고, λ는 파장을 의미하고, n은 사인파형의 꼭지 차수를 의미한다
2. 투과율의 측정
광변조 디바이스에 대해서 투과율은 다음의 방식으로 측정하였다. 투과율 측정을 위한 장치는 다음의 방식으로 제조하였다. 실시예 또는 비교예에서 제조된 광변조 디바이스를 2장의 PVA(poly(vinyl alcohol)) 편광층의 사이에 위치시켰다. 상기 편광층은 서로의 흡수축이 직교하도록 배치하였고, 광변조 디바이스는 기판의 지상축이 상기 2장의 편광층 중 어느 하나의 편광층의 흡수축과는 수직하고, 다른 하나의 편광층의 흡수축과는 수평하도록 배치하였다.
상기 상태에서 상온(약 25℃)에서 370 nm 내지 780 nm 파장의 광에 대한 투과율(식 1의 T1)을 평가하였다. 상기 투과율 T1은, 370 nm를 시작 파장으로 하여 2 nm 파장 간격으로 780 nm까지의 투과율을 각각 측정한 후에 해당 측정된 투과율의 평균값을 구하여 상기 T1으로 하였다. 투과율은 상기 2장의 편광층 중 어느 하나의 편광층을 향해서 상기 편광층의 법선 방향으로 상기 파장의 광을 조사하고, 반대측의 편광층의 측에서 상기 편광층 표면의 법선 방향을 따라서 측정하였다.
이어서 상기 장치에 온도 조절 장치(LTS-350, Kinkam)을 설치하였다. 상기 온도 조절 장치는, 투과율 측정 장치의 광원, 편광자, 광변조 디바이스, 편광자 및 투과율 측정부가 순차 배치된 구조에서 상기 광변조 디바이스와 편광자(투과율 측정부에 가까운 편광자)의 사이에 위치시켰다.
그리고 상기 온도 조절 장치를 사용하여 광변조 디바이스를 90℃에서 5분 동안 유지시키고, 온도를 90℃로 유지한 상태에서 상기와 동일한 방식으로 투과율(식 1의 T2)을 평가하였다.
상기 투과율 T1 및 T2의 평가 과정과 광변조 디바이스를 90℃에서 5분 동안 유지시키는 과정에서 광변조 디바이스에는 전원을 인가하지 않았고, 따라서 액정층은 수직 배향 상태였다.
상기 투과율은 Blue Wave 장비(제조사: Stellar Net사)를 사용하여 평가하였다.
3. 30일 경시 변화 측정
30일 경시 변화는 다음의 방식으로 측정하였다. 실시예 또는 비교예에서 기재한 바와 같이 일면에 ITO(Indium Tin Oxide) 전극층이 형성되어 있는 두께가 약 145μm 정도의 PET(poly(ethylene terephthalate)) 필름(SKC제, 고연신 PET, Rin=약 10,000nm)상에 실리콘 폴리머층을 약 8 μm 정도의 두께로 형성하였다.
상기 실리콘 폴리머층을 형성한 직후에 상기 기판을 재단하여 실시예 1과 동일한 방식으로 광변조 디바이스를 제조하고, 상기 투과율의 항목에서 기술한 투과율 T1을 측정하는 방법과 동일한 방식으로 투과율(Ti)을 측정하였다.
상기 광변조 디바이스를 제조하는 것에 사용한 것 외에 나머지 기판(실리콘 폴리머층이 형성된 기판)은 상온/상압/상습 조건에서 30일간 유지한 후에 동일하게 해당 기판으로 광변조 디바이스를 제조하고, 상기와 동일하게 투과율(Ta)을 측정하였다.
이어서 하기 식 A에 상기 투과율 Ti와 Ta를 대입하여 △T30를 구하고, 상기 의 절대값이 300% 이하인 경우를 OK, 300% 초과인 경우를 NG로 평가하였다.
<식 A>
Figure PCTKR2023010190-appb-img-000004
실시예 1
일면에 ITO(Indium Tin Oxide) 전극층이 형성되어 있는 두께가 약 145μm 정도의 PET(poly(ethylene terephthalate)) 필름(SKC제, 고연신 PET)을 제 1 기판으로 사용하였다. 상기 PET 필름의 면내 위상차는, 550 nm 파장을 기준으로 약 10,000 nm 정도였다.
상기 PET 필름의 ITO 전극층상에 실리콘 폴리머층을 형성하였다. 상기 실리콘 폴리머층은, 점착제층을 형성하는 실리콘 OCA(Optically Clear Adhesive) 조성물(Si-Feliz제, HA-578A 제품, 고형분 60 중량%)을 사용하여 형성하였다.
상기 실리콘 OCA(Optically Clear Adhesive) 조성물(Si-Feliz제, HA-578A 제품)에 촉매로서 백금 촉매(Si-Feliz제, HA-04C 제품)를 약 1.67 중량%의 비율이 되도록 투입하고, 하기 화학식 A의 폴리오르가노실록산(gelest사제)을 투입하여 코팅액을 제조하였다. 상기 화학식 A의 폴리오르가노실록산은, 형성된 실리콘 폴리머층 내에 상기 폴리오르가노실록산이 약 13.3 중량%의 농도로 존재하도록 투입하였다.
[화학식 A]
Figure PCTKR2023010190-appb-img-000005
화학식 A에서 R은 메틸기이고, m은 약 7 정도의 수이며, n은 약 600 정도의 수이다.
이어서, 상기 코팅액을 상기 제 1 기판의 ITO층상에 바 코팅하고, 약 140℃ 정도의 온도에서 4분 동안 유지함으로써 경화시켜서 약 8 μm 정도의 두께의 실리콘 폴리머층을 형성하였다.
상기 코팅은 PET 필름 표면 전체에 형성되어 있는 상기 ITO층의 전 면적을 실리콘 폴리머층이 덮도록 형성하였다.
상기 화학식 A의 폴리오르가노실록산이 첨가된 실리콘 폴리머층에서 식 2의 M1은, 실록산 단위 HMeSiO2/2 단위의 몰질량(g/mol)으로서 약 60.13 g/mol이고, m은 약 8이고, β는, 13.3 중량%이다.
또한, 상기 화학식 A의 폴리오르가노실록산의 몰질량은 약 45,075 g/mol이다.
따라서, 하기 식 2에서 M1으로는 60.13, m으로는 7, β로는, 13.3, M2로는 45,075가 대입되어서 δ는 약 12.4로 계산된다.
[식 2]
Figure PCTKR2023010190-appb-img-000006
표면에 ITO(Indium Tin Oxide)층이 형성되어 있는 두께 80 μm 정도의 PET(poly(ethylene terephthalate)) 필름(Toyobo제, SRF 제품)을 제 2 기판으로 사용하였다. 상기 제 2 기판의 면내 위상차는 550 nm 파장에서 약 9,000 nm 정도였다.
상기 PET 필름의 ITO층상에 사각형의 폐도형을 형성하는 격벽형 스페이서로서, 피치가 약 350 μm 정도이고, 선폭이 약 10 μm 정도이며, 높이가 6μm 정도인 격벽형 스페이서를 약 9%의 면적비(전체 기판 면적 중 스페이서가 차지하는 면적의 비율)로 형성하였다.
상기 스페이서상에 수직 배향막(5661LB3, Nissan社)을 형성하였다. 상기 배향막은 상기 배향막 재료(5661LB3, Nissan社)를 용매에 약 2.2 중량%의 고형분을 가지도록 희석하고, #2 바코팅 후에 100℃에서 10분 정도 유지하여 형성하였다. 상기 수직 배향막은 일 방향으로 러빙 처리하여 형성하였다. 상기 러빙 방향은 제 2 기판의 지상축 방향과 수직하도록 하였다.
이어서 액정 조성물을 상기 제 2 기판의 수직 배향막상에 코팅하고, 상기 수직 배향막이 형성된 제 2 기판의 표면과 상기 제 1 기판의 실리콘 폴리머층이 서로 마주보도록 적층하여 광변조 디바이스를 제조하였다. 상기 적층 시에 제 1 및 제 2 기판의 지상축이 서로 평행하도록 하였다.
상기 액정 조성물로는, 네마틱 액정 화합물(Merck, MAT-19-1205) 및 키랄 도펀트(Merck, S811)를 포함하는 조성물을 사용하였다. 상기 키랄 도펀트의 함량은 트위스티드 배향의 피치(키랄 피치)(p)가 약 20 μm 정도가 되도록 조절하였다.
실시예 2
실리콘 폴리머층의 형성 과정에서 화학식 A의 폴리오르가노실록산 대신 하기 화학식 B의 폴리오르가노실록산을 적용한 것을 제외하고는 실시예 1과 같은 방식으로 광변조 디바이스를 제조하였다.
코팅액의 제조 시에 상기 화학식 B의 폴리오르가노실록산은, 형성된 실리콘 폴리머층 내에 상기 폴리오르가노실록산이 약 5 중량%의 농도로 존재하도록 투입하였다.
[화학식 B]
Figure PCTKR2023010190-appb-img-000007
화학식 B에서 R은 메틸기이고, m은 약 1 정도의 수이며, n은 약 17 정도의 수이다.
상기 화학식 B의 폴리오르가노실록산이 첨가된 실리콘 폴리머층에서 식 2의 M1은, 실록산 단위 HMeSiO2/2 단위의 몰질량(g/mol)으로서 약 60.13 g/mol이고, m은 1이고, β는, 5 중량%이다.
또한, 상기 화학식 B의 폴리오르가노실록산의 몰질량은 약 1,483 g/mol이다.
따라서, 하기 식 2에서 M1으로는 60.13, m으로는 1, β로는 5, M2로는 1,483이 대입되어서 δ는 약 20.3으로 계산된다.
[식 2]
Figure PCTKR2023010190-appb-img-000008
실시예 3
실리콘 폴리머층의 형성 과정에서 화학식 A의 폴리오르가노실록산 대신 하기 화학식 C의 폴리오르가노실록산을 적용한 것을 제외하고는 실시예 1과 같은 방식으로 광변조 디바이스를 제조하였다.
코팅액의 제조 시에 상기 화학식 C의 폴리오르가노실록산은, 형성된 실리콘 폴리머층 내에 상기 폴리오르가노실록산이 약 3.30 중량%의 농도로 존재하도록 투입하였다.
[화학식 C]
Figure PCTKR2023010190-appb-img-000009
화학식 C에서 R은 메틸기이고, m은 약 5 정도의 수이며, n은 약 19 정도의 수이다.
상기 화학식 C의 폴리오르가노실록산이 첨가된 실리콘 폴리머층에서 식 2의 M1은, 실록산 단위 HMeSiO2/2 단위의 몰질량(g/mol)으로서 약 60.13 g/mol이고, m은 약 5이고, β는, 3.30 중량%이다.
또한, 상기 화학식 C의 폴리오르가노실록산의 몰질량은 약 1,872 g/mol이다.
따라서, 하기 식 2에서 M1으로는 60.13, m으로는 5, β로는 3.3, M2로는 1,872가 대입되어서 δ는 약 53으로 계산된다.
[식 2]
Figure PCTKR2023010190-appb-img-000010
실시예 4
실리콘 폴리머층의 형성 과정에서 화학식 A의 폴리오르가노실록산 대신 상기 실시예 2의 화학식 B의 폴리오르가노실록산과 실시예 3의 화학식 C의 폴리오르가노실록산을 함께 적용한 것을 제외하고는 실시예 1과 같은 방식으로 광변조 디바이스를 제조하였다.
코팅액의 제조 시에 상기 화학식 B의 폴리오르가노실록산은, 형성된 실리콘 폴리머층 내에 상기 폴리오르가노실록산이 약 2.5 중량%의 농도로 존재하도록 투입하였다.
[화학식 B]
Figure PCTKR2023010190-appb-img-000011
화학식 B에서 R은 메틸기이고, m은 약 1 정도의 수이며, n은 약 17 정도의 수이다.
상기 화학식 B의 폴리오르가노실록산이 첨가된 실리콘 폴리머층에서 식 2의 M1은, 실록산 단위 HMeSiO2/2 단위의 몰질량(g/mol)으로서 약 60.13 g/mol이고, m은 약 1 이고, β는, 2.5 중량%이다.
또한, 상기 화학식 B의 폴리오르가노실록산의 몰질량은 약 1,483 g/mol이다.
따라서, 하기 식 2에서 M1으로는 60.13, m으로는 1, β로는 2.5, M2로는 1,483이 대입되어서 δ는 약 10.1로 계산된다.
[식 2]
Figure PCTKR2023010190-appb-img-000012
또한, 코팅액의 제조 시에 상기 화학식 C의 폴리오르가노실록산은, 형성된 실리콘 폴리머층 내에 상기 폴리오르가노실록산이 약 0.8 중량%의 농도로 존재하도록 투입하였다.
[화학식 C]
Figure PCTKR2023010190-appb-img-000013
화학식 C에서 R은 메틸기이고, m은 약 5 정도이며, n은 약 19 정도이다.
상기 화학식 C의 폴리오르가노실록산이 첨가된 실리콘 폴리머층에서 식 2의 M1은, 실록산 단위 HMeSiO2/2 단위의 몰질량(g/mol)으로서 약 60.13 g/mol이고, m은 약 5 이고, β는, 0.8 중량%이다.
또한, 상기 화학식 C의 폴리오르가노실록산의 몰질량은 약 1,872 g/mol이다.
따라서, 하기 식 2에서 M1으로는 60.13, m으로는 5, β로는 0.8, M2로는 1,872가 대입되어서 δ는 약 12.8로 계산된다.
[식 2]
Figure PCTKR2023010190-appb-img-000014
따라서, 실시예 4의 경우, 최종적인 δ는 약 22.9(=10.1+12.8)로 계산된다.
비교예 1
코팅액으로서, 실리콘 OCA(Optically Clear Adhesive) 조성물(Si-Feliz제, HA-578A 제품, 고형분 약 60 중량%)에 촉매로서 백금 촉매(Si-Feliz제, HA-04C 제품)를 약 1.67 중량%의 비율이 되도록 투입하여 제조한 코팅액을 사용한 것을 제외하고는 실시예 1과 동일하게 광변조 디바이스를 제조하였다.
비교예 2
코팅액의 제조 시에 화학식 A의 폴리오르가노실록산을, 형성된 실리콘 폴리머층 내에 상기 폴리오르가노실록산이 약 6.7 중량%의 농도로 존재하도록 투입한 것을 제외하고는 실시예 1과 동일하게 광변조 디바이스를 제조하였다.
이러한 경우에, 하기 식 2에서 M1으로는 60.13, m으로는 7, β로는 6.7, M2로는 45,075가 대입되어서 δ는 약 6.3으로 계산된다.
[식 2]
Figure PCTKR2023010190-appb-img-000015
비교예 3
코팅액의 제조 시에 화학식 B의 폴리오르가노실록산을, 형성된 실리콘 폴리머층 내에 상기 폴리오르가노실록산이 약 2.5 중량%의 농도로 존재하도록 투입한 것을 제외하고는 실시예 2와 동일하게 광변조 디바이스를 제조하였다.
따라서, 하기 식 2에서 M1으로는 60.13, m으로는 1, β로는 2.5, M2로는 1,483이 대입되어서 δ는 약 10.1로 계산된다.
[식 2]
Figure PCTKR2023010190-appb-img-000016
비교예 4
코팅액의 제조 시에 화학식 C의 폴리오르가노실록산을, 형성된 실리콘 폴리머층 내에 상기 폴리오르가노실록산이 약 1.7 중량%의 농도로 존재하도록 투입한 것을 제외하고는 실시예 3과 동일하게 광변조 디바이스를 제조하였다.
따라서, 하기 식 2에서 M1으로는 60.13, m으로는 5, β로는 1.7, M2로는 1,872가 대입되어서 δ는 약 27.3로 계산된다.
[식 2]
Figure PCTKR2023010190-appb-img-000017
상기 실시예 및 비교예의 광변조 디바이스에 대한 평가 결과를 하기 하기 표 1에 정리하여 기재하였다.
하기 표 1에서 Ton은, 상기 투과율의 측정 방법을 설명하는 항목에서 투과율 T1을 측정하는 방법과 동일하게 투과율을 측정하되, 광변조 디바이스에 square wave form 조건(48Vrms, 60Hz)으로 전압을 인가한 상태에서 측정한 투과율이다.
실시예 비교예
1 2 3 4 1 2 3 4
식2의 M1 60.13 60.13 60.13 60.13 60.13 - 60.13 60.13 60.13
식2의 m 7 1 5 1 5 - 7 1 5
식2의 β 13.3 5 3.3 2.5 0.8 - 6.7 2.5 1.7
식2의 M2 45075 1483 1872 1483 1872 - 45075 1483 1872
δ 12.4 20.3 53 22.9 - 6.3 10.1 27.3
T1(%) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
T2(%) 0.18 0.2 0.18 0.18 8 7.8 7.8 6.8
Ton(%) 24.3 25.1 24.4 24.2 25.2 25.1 24.9 24.4
30일
경시변화
OK OK OK OK NG NG NG NG
표 1에 나타난 바와 같이, 본 출원의 광변조 디바이스는, 고온 조건에서 유지되는 경우에 장기간 유지되는 경우 모두 우수한 신뢰성을 나타내었다.
그러나, 화학식 1의 폴리오르가노실록산을 포함하지 않는 비교예 1, 포함하지만, δ값이 10을 초과하지 않는 비교예 2 및 3, 그리고 상기 폴리오르가노실록산의 함량이 낮은 비교예 4는, 모두 적절한 결과를 나타내지 못하였다.

Claims (19)

  1. 대향 배치되어 있는 제 1 및 제 2 기판;
    상기 제 1 및 제 2 기판 사이에 존재하는 액정층;
    상기 제 1 기판과 액정층의 사이에 존재하는 실리콘 폴리머층을 포함하고,
    상기 실리콘 폴리머층은, 하기 화학식 1의 실록산 단위를 가지는 폴리오르가노실록산을 포함하는 경화성 조성물의 경화층이며,
    하기 식 1의 △T의 절대값이 300% 이하인 광변조 디바이스:
    [화학식 1]
    (HRSiO2/2)
    화학식 1에서 R은 알킬기, 알콕시기 또는 아릴기이다:
    [식 1]
    Figure PCTKR2023010190-appb-img-000018
    식 1에서 T2는, 90℃에서 5분 동안 유지된 상기 광변조 디바이스가 직교 편광자 사이에 위치한 상태에서의 90℃에서의 투과율이고, T1은, 상기 90℃에서 5분 동안 유지하기 전의 상기 광변조 디바이스가 직교 편광자 사이에 위치한 상태에서의 25℃에서의 투과율이며, 상기 T1 및 T2는 상기 액정층이 수직 배향 상태에서의 투과율이고, 상기 90℃에서 5분 동안 유지하는 동안 상기 액정층은 수직 배향 상태이다.
  2. 제 1 항에 있어서, 실리콘 폴리머층은 점착제층 또는 접착제층인 광변조 디바이스.
  3. 제 1 항에 있어서, 실리콘 폴리머층은, 제 1 기판의 표면에 형성되어 있고, 상기 실리콘 폴리머층의 면적은 상기 제 1 기판의 전체 면적의 70% 이상인 광변조 디바이스.
  4. 제 3 항에 있어서, 실리콘 폴리머층은 액정층과 접하고 있는 광변조 디바이스.
  5. 제 1 항에 있어서, 액정층과 제 1 기판의 사이에는 액정 배향막이 존재하지 않는 광변조 디바이스.
  6. 제 1 항에 있어서, 폴리오르가노실록산의 전체 실록산 단위의 몰수 대비 화학식 1의 실록산 단위의 몰수의 비율이 0.001몰% 이상 내지 100몰% 미만인 광변조 디바이스.
  7. 제 1 항에 있어서, 폴리오르가노실록산은 직쇄 또는 분지쇄 구조를 가지고, 말단이 하기 화학식 2의 실록산 단위에 의해 봉쇄되어 있는 광변조 디바이스:
    [화학식 2]
    (R1 3SiO1/2)
    화학식 2에서 R1은 수소, 알킬기, 알콕시기 또는 아릴기이다.
  8. 제 1 항에 있어서, 폴리오르가노실록산은, 하기 화학식 3의 실록산 단위를 추가로 포함하는 광변조 디바이스:
    [화학식 3]
    (R2 2SiO2/2)
    화학식 2에서 R2는 수소, 알킬기, 알콕시기 또는 아릴기이다.
  9. 제 1 항에 있어서, 폴리오르가노실록산은, 하기 화학식 4로 표시되는 광변조 디바이스:
    [화학식 4]
    Figure PCTKR2023010190-appb-img-000019
    화학식 4에서 R은 각각 독립적으로 알킬기, 알콕시기 또는 아릴기이고, m은 1 내지 1,000의 범위 내의 수이며, n은 0 내지 20,000의 범위 내의 수이다.
  10. 제 1 항에 있어서, 실리콘 폴리머층 내의 화학식 1의 실록산 단위를 가지는 폴리오르가노실록산의 함량이 2 중량% 이상인 광변조 디바이스.
  11. 제 1 항에 있어서, 하기 식 2의 δ가 10.5 이상인 광변조 디바이스:
    [식 2]
    Figure PCTKR2023010190-appb-img-000020
    식 2에서 M1은, 화학식 1의 실록산 단위의 몰질량(g/mol)이고, m은 상기 화학식 1의 실록산 단위를 가지는 폴리오르가노실록산 내에서의 상기 화학식 1의 실록산 단위의 몰수이며, β는, 상기 화학식 1의 실록산 단위를 가지는 폴리오르가노실록산의 실리콘 폴리머층 내에서의 함량(중량%)이고, M2는, 상기 화학식 1의 실록산 단위를 가지는 폴리오르가노실록산의 몰질량(g/mol)이다.
  12. 제 1 항에 있어서, 액정층과 제 2 기판의 사이에는 액정 배향막이 존재하는 광변조 디바이스.
  13. 제 12 항에 있어서, 액정 배향막은 수직 배향막인 광변조 디바이스.
  14. 제 1 항에 있어서, 제 1 및 제 2 기판의 사이에는 상기 기판들의 간격을 유지하는 격벽형 스페이서가 형성되어 있는 광변조 디바이스.
  15. 제 1 항에 있어서, 액정층은 초기 상태에서 수직 배향 상태인 광변조 디바이스.
  16. 제 1 항에 있어서, 액정층은 수직 배향 상태 및 트위스티드 배향 상태의 사이를 스위칭할 수 있도록 형성되어 있는 광변조 디바이스.
  17. 제 1 항에 있어서, 제 1 및 제 2 기판은 각각 550 nm 파장의 광에 대한 면내 위상차가 500 nm 이상인 광변조 디바이스.
  18. 제 1 항의 광변조 디바이스를 포함하는 윈도우.
  19. 제 1 항의 광변조 디바이스를 포함하는 선루프.
PCT/KR2023/010190 2022-08-02 2023-07-17 광변조 디바이스 WO2024029782A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23850289.2A EP4443226A1 (en) 2022-08-02 2023-07-17 Light modulation device
CN202380016612.7A CN118525245A (zh) 2022-08-02 2023-07-17 光调制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220096243A KR20240018238A (ko) 2022-08-02 2022-08-02 광변조 디바이스
KR10-2022-0096243 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024029782A1 true WO2024029782A1 (ko) 2024-02-08

Family

ID=89849229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010190 WO2024029782A1 (ko) 2022-08-02 2023-07-17 광변조 디바이스

Country Status (5)

Country Link
EP (1) EP4443226A1 (ko)
KR (1) KR20240018238A (ko)
CN (1) CN118525245A (ko)
TW (1) TW202422186A (ko)
WO (1) WO2024029782A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264658A (ja) * 2003-03-03 2004-09-24 Ricoh Co Ltd 液晶素子およびその製造方法
KR101987373B1 (ko) 2015-02-16 2019-06-10 주식회사 엘지화학 액정 소자
KR20200093587A (ko) * 2017-12-25 2020-08-05 다우 도레이 캄파니 리미티드 실리콘 고무 조성물 및 그것을 사용하여 이루어지는 복합체
EP3604371B1 (en) * 2013-06-07 2021-01-13 Kaneka Corporation Curable resin composition, structural adhesive, coating material or fiber reinforced composite material using the same, foam body using the same, laminate using the same, and cured material thereof
KR20220003865A (ko) * 2020-07-02 2022-01-11 주식회사 엘지화학 광변조 디바이스 및 이의 제조 방법
KR20220015965A (ko) * 2020-07-31 2022-02-08 주식회사 엘지화학 광변조 디바이스

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264658A (ja) * 2003-03-03 2004-09-24 Ricoh Co Ltd 液晶素子およびその製造方法
EP3604371B1 (en) * 2013-06-07 2021-01-13 Kaneka Corporation Curable resin composition, structural adhesive, coating material or fiber reinforced composite material using the same, foam body using the same, laminate using the same, and cured material thereof
KR101987373B1 (ko) 2015-02-16 2019-06-10 주식회사 엘지화학 액정 소자
KR20200093587A (ko) * 2017-12-25 2020-08-05 다우 도레이 캄파니 리미티드 실리콘 고무 조성물 및 그것을 사용하여 이루어지는 복합체
KR20220003865A (ko) * 2020-07-02 2022-01-11 주식회사 엘지화학 광변조 디바이스 및 이의 제조 방법
KR20220015965A (ko) * 2020-07-31 2022-02-08 주식회사 엘지화학 광변조 디바이스

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. PODOLSKYY ET AL., LIQUID CRYSTALS, vol. 35, 8 July 2008 (2008-07-08), pages 789 - 791

Also Published As

Publication number Publication date
EP4443226A1 (en) 2024-10-09
CN118525245A (zh) 2024-08-20
KR20240018238A (ko) 2024-02-13
TW202422186A (zh) 2024-06-01

Similar Documents

Publication Publication Date Title
WO2017095176A1 (ko) 광학 소자
WO2017074007A1 (ko) 광학 소자
WO2018199716A1 (ko) 광변조 디바이스
WO2021080361A1 (ko) 광변조 디바이스
WO2017105051A1 (ko) 액정 윈도우 및 이를 포함하는 광학 소자
WO2021091207A1 (ko) 광변조 디바이스의 제조 방법
WO2014092518A1 (ko) 액정 소자
WO2009091225A2 (en) Composition for liquid crystal alignment layer, preparation method of liquid crystal alignment layer using the same, and optical film comprising the liquid crystal alignment layer
WO2014116076A1 (ko) 액정 소자
WO2022025684A1 (ko) 광변조 디바이스
WO2018199619A1 (ko) 광학 디바이스
WO2018199615A1 (ko) 광학 디바이스
WO2012008814A2 (ko) 액정 필름
WO2015008925A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2018199618A1 (ko) 광학 디바이스
WO2020050612A1 (ko) 투과도 가변 디바이스
WO2017034338A1 (ko) 액정셀
WO2022019679A1 (ko) 광변조 디바이스
WO2016159601A1 (ko) 반사형 액정 소자 및 이의 용도
WO2019013516A1 (ko) 원편광판
WO2020050614A1 (ko) 투과도 가변 디바이스
WO2020091550A1 (ko) 편광판
WO2022005244A1 (ko) 점착제 및 액정셀
WO2024029782A1 (ko) 광변조 디바이스
WO2020050613A1 (ko) 투과도 가변 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850289

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023850289

Country of ref document: EP

Ref document number: 23850289.2

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023850289

Country of ref document: EP

Effective date: 20240704