WO2024029480A1 - ガラスセラミックス固体電解質及びリチウムイオン電池 - Google Patents

ガラスセラミックス固体電解質及びリチウムイオン電池 Download PDF

Info

Publication number
WO2024029480A1
WO2024029480A1 PCT/JP2023/027919 JP2023027919W WO2024029480A1 WO 2024029480 A1 WO2024029480 A1 WO 2024029480A1 JP 2023027919 W JP2023027919 W JP 2023027919W WO 2024029480 A1 WO2024029480 A1 WO 2024029480A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
peak
lithium
ceramic solid
glass
Prior art date
Application number
PCT/JP2023/027919
Other languages
English (en)
French (fr)
Inventor
直也 増田
恒太 寺井
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2024029480A1 publication Critical patent/WO2024029480A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials

Definitions

  • the present invention relates to a glass ceramic solid electrolyte and a lithium ion battery.
  • Lithium-ion batteries currently on the market use electrolytes containing flammable organic solvents, so it is necessary to install safety devices to suppress temperature rise in the event of short circuits and to improve structures and materials to prevent short circuits. Is required.
  • lithium-ion batteries in which the electrolyte is replaced with a solid electrolyte to make the battery completely solid, do not use flammable organic solvents inside the battery, which simplifies safety equipment and reduces manufacturing costs and productivity. It is considered to be excellent in Sulfide solid electrolytes are known as solid electrolytes used in lithium ion batteries (see, for example, Patent Document 1).
  • Li 3 PS 4 glass has a high filling rate in a lithium ion conductive sulfide solid electrolyte.
  • Li 3 PS 4 glass had a low ionic conductivity of less than 1 mS/cm.
  • An object of the present invention is to provide a glass-ceramic solid electrolyte that has a high filling rate and high ionic conductivity.
  • the following glass ceramic solid electrolytes and the like are provided.
  • 1. Contains lithium, phosphorus, sulfur and halogen as constituent elements,
  • the molar ratio (Li/P) of the lithium (Li) to the phosphorus (P) is 2.0 to 5.3
  • the molar ratio (S/P) of the sulfur (S) to the phosphorus (P) is 2.0 to 4.5
  • the molar ratio (X/P) of the halogen (X) to the phosphorus (P) is 0.1 to 2.3
  • the peak intensity ratio (I B /I A ) of the peak intensity (I B ) of the peak B and the peak intensity (I A ) of the peak A is less than 0.050, A glass ceramic solid electrolyte with a crystallite size of 5 to 20 nm. 2.
  • the glass ceramic solid electrolyte according to 1 or 2 which shows a peak derived from lithium halide in powder X-ray diffraction using CuK ⁇ radiation. 4. 4.
  • 1 is an X-ray diffraction pattern of the glass ceramic solid electrolyte produced in Examples 1 to 4. This is an X-ray diffraction pattern of the glass-ceramic solid electrolyte produced in Examples 5 to 8. This is an X-ray diffraction pattern of the glass ceramic solid electrolyte produced in Examples 9 to 12. This is an X-ray diffraction pattern of the glass ceramic solid electrolyte produced in Examples 13 to 16. This is an X-ray diffraction pattern of the glass ceramic solid electrolyte produced in Examples 17 to 21.
  • 1 is an X-ray diffraction pattern of glass ceramic solid electrolytes produced in Comparative Examples 1 to 5. This is an X-ray diffraction pattern of glass-ceramic solid electrolytes produced in Comparative Examples 6 to 11.
  • this embodiment an embodiment of the present invention (hereinafter sometimes referred to as “this embodiment”) will be described.
  • the upper and lower limits of numerical ranges of "more than”, “less than”, and “ ⁇ ” can be arbitrarily combined, and the numerical values of Examples are used as the upper and lower limits. You can also do that.
  • the glass-ceramic solid electrolyte according to one embodiment of the present invention contains lithium, phosphorus, sulfur, and halogen as constituent elements.
  • the glass-ceramic solid electrolyte of this embodiment satisfies the following requirements A to C.
  • A. In powder X-ray diffraction using CuK ⁇ rays, peak A is located at 2 ⁇ 20 ⁇ 1°.
  • B. In powder X-ray diffraction, if there is no peak B at the position of 2 ⁇ 23.6 ⁇ 1°, or if there is a peak B, the peak intensity of peak B (I B ) and the peak intensity of peak A (I A ) are The peak intensity ratio (I B /I A ) is less than 0.05.
  • C. The crystallite size of the glass ceramic solid electrolyte calculated from peak A using Scherrer's equation is 5 to 20 nm.
  • the glass ceramic solid electrolyte of the embodiment of the present invention has a filling rate as high as or higher than that of conventional glass solid electrolytes, and has high ionic conductivity.
  • a glass ceramic solid electrolyte is a solid electrolyte in which a peak derived from the solid electrolyte is observed in the X-ray diffraction pattern in powder X-ray diffraction (XRD) measurement, and in which a peak derived from the solid electrolyte raw material is observed. It is a material that does not matter whether or not it has a peak. That is, the glass-ceramic solid electrolyte includes a crystal structure derived from a solid electrolyte, and even if part of it is a crystal structure derived from the solid electrolyte, or all of it is a crystal structure derived from the solid electrolyte. It's good.
  • the glass-ceramic solid electrolyte may contain an amorphous component (also referred to as a "glass component"). It is.
  • the crystalline solid electrolyte includes so-called glass ceramics obtained by heating an amorphous solid electrolyte (glass component) to a temperature higher than the crystallization temperature.
  • the molar ratio of lithium (Li) to phosphorus (P) is preferably 3.0 to 5.25, more preferably 3.5 to 5. It is 20.
  • the molar ratio (S/P) of the sulfur (S) to phosphorus (P) is preferably 3.0 to 4.4, more preferably 3.5 to 4.3.
  • the molar ratio (X/P) of halogen (X) to phosphorus (P) is preferably greater than 0.75, more preferably greater than 0.86.
  • halogen (X) preferably contains one or more selected from fluorine (F), chlorine (Cl), bromine (Br), and iodine (I), It is more preferable to include. Moreover, it is preferable that halogen (X) contains bromine (Br) and iodine (I).
  • the molar ratio of iodine (I) to phosphorus (P) (I/P) is 0.0 to 1.8, and the molar ratio of bromine (Br) to phosphorus (P) (Br/P) is 0.0 to 1.8. It is preferably 0 to 1.5.
  • the types and molar ratios of constituent elements of the glass-ceramic solid electrolyte can be confirmed using, for example, an ICP emission spectrometer.
  • the molar ratio of the constituent elements of the glass-ceramic solid electrolyte can be adjusted by controlling the raw material composition. Note that the molar ratio of the constituent elements in the raw material and the molar ratio of the constituent elements in the resulting glass-ceramic solid electrolyte are approximately equal.
  • the amount of PS 4 3- tetrahedral structure which is the main skeleton of the glass-ceramic solid electrolyte, is increased, which has the effect of reducing the amount of hydrogen sulfide generated in a low dew point environment. . Furthermore, since the amount of P 2 S 6 4- structure and P 2 S 7 4- structure, which are larger and more rigid than PS 4 3- structure, is reduced, the effect of improving the softness of the glass-ceramic solid electrolyte can be obtained.
  • ⁇ in formula (1) may be 0 to 0.3, 0 to 0.1, or 0.
  • the crystallite size of the glass ceramic solid electrolyte calculated from peak A is preferably 2 to 18 nm.
  • the small crystallite size allows the glass-ceramic solid electrolyte to be compressed without breaking the crystallites.
  • the ionic conductivity of the glass-ceramic solid electrolyte can also be maintained high. Thereby, the glass-ceramic solid electrolyte of this embodiment can achieve both high filling rate and high ionic conductivity.
  • diffraction peaks in powder X-ray diffraction measurements have a width, and the width of the peak that is half the height of the peak after subtracting the background is called the half-width. It is known that there is a correlation between half width and crystallite size. When the crystallite size is large, the crystallinity becomes high and the repeating regularity of the crystal structure becomes high, so that the intensity of the diffraction peak in powder X-ray diffraction measurement becomes strong and the half-width becomes narrow. Details of the measurement method are shown in Examples.
  • the peak intensity of peak B (I B ) and the peak intensity of peak A (I The peak intensity ratio (I B /I A ) of A ) is less than 0.05.
  • the above peak A and peak B both have a Li 4-x Ge 1-x P x S 4 -based thio-LISICON Region II (thio-LISICON Region II) type crystal structure or a crystal structure similar to the thio-LISICON Region II type. This is a diffraction peak.
  • the glass-ceramic solid electrolyte of this embodiment is characterized in that, although the peak A is observed with high intensity, the peak B is not observed or has an extremely low intensity.
  • a glass ceramic solid electrolyte having such a peak has a filling rate as high as or higher than that of conventional glass ceramic solid electrolytes, and has high ionic conductivity.
  • the peak intensity ratio I B /I A is preferably zero.
  • the glass ceramic solid electrolyte exhibits a diffraction peak derived from lithium halide in powder X-ray diffraction measurement using CuK ⁇ radiation.
  • Lithium halide observed in powder X-ray diffraction measurements of glass-ceramic solid electrolytes has lower crystallinity than the raw material lithium halide. Since lithium halide itself is a soft material, even if it has enough crystallinity to detect a peak of lithium halide in powder X-ray diffraction measurement, it has almost no hardening effect on the glass-ceramic solid electrolyte of this embodiment. You can think about it.
  • the crystallite size calculated from the peak half-value width of the peak with the maximum intensity among the diffraction peaks derived from lithium halide is preferably 5 to 100 nm, and preferably 10 to 90 nm. It is more preferable that
  • the crystallite size can be adjusted by the composition and crystallization temperature. For example, the molar ratio of lithium (Li) to phosphorus (P) (Li/P), the molar ratio of bromine (Br) to halogen (X) (Br/X), the molar ratio of iodine (I) to phosphorus (P)
  • the crystallite size can be adjusted by adjusting (I/P).
  • the crystallite size can also be adjusted by changing the crystallization temperature.
  • the peak half-width is calculated based on the peak of a type of lithium halide that has a large amount of halogen added as a raw material when manufacturing the glass ceramic solid electrolyte.
  • the peak intensity of the lithium halide having the highest peak intensity is used for calculation.
  • the glass ceramic solid electrolyte preferably has a true density (g/cm 3 ) of 2.0 to 3.0 g/cm 3 .
  • the fact that the true density is within the above range means that the main skeleton PS 4 3- structure and total halogen content of the glass ceramic solid electrolyte are within a certain range, and the glass ceramic solid electrolyte of this embodiment has high conductivity. and high softness.
  • the true density of the glass ceramic solid electrolyte of this embodiment is more preferably 2.01 to 2.9 g/cm 3 , particularly preferably 2.02 to 2.8 g/cm 3 .
  • the true density of the glass ceramic solid electrolyte can be measured, for example, by a gas phase displacement method using He gas. A method for measuring the true density of a glass ceramic solid electrolyte is shown in Examples.
  • the relative density is 90% or more when the glass ceramic solid electrolyte is made into a 400 MPa green compact.
  • the relative density can be 90.5% or more, or 91% or more.
  • the relative density of a 400 MPa green compact is 99% or less.
  • pellet density pellet density / true density
  • density true density
  • a higher relative density means a higher filling rate. Details of the method for measuring the relative density of a 400 MPa green compact will be described in Examples.
  • the ionic conductivity of the glass ceramic solid electrolyte of this embodiment can be 1 mS/cm or more, and can also be 1.5 mS/cm or more.
  • the method for measuring ionic conductivity will be shown in Examples.
  • the glass-ceramic solid electrolyte of the present embodiment is produced by, for example, mixing and pulverizing the starting materials of a known lithium ion sulfide solid electrolyte so that the molar ratio of the constituent elements satisfies a predetermined range and vitrifying the mixture, and then subjecting it to heat treatment. It can be manufactured by making it into ceramics.
  • raw materials for the glass-ceramic solid electrolyte of this embodiment two or more compounds or single substances containing lithium, phosphorus, sulfur, and halogen as constituent elements can be used in combination, and ions resulting from the contained metal atoms can be used. Any material that exhibits conductivity can be used without particular limitation.
  • Examples of raw materials containing lithium (Li) include lithium compounds such as lithium sulfide (Li 2 S), lithium oxide (Li 2 O), and lithium carbonate (Li 2 CO 3 ), and simple lithium metal. Among these, lithium compounds are preferred, and lithium sulfide is more preferred.
  • lithium sulfide can be used without any particular restrictions, but one with high purity is preferred.
  • Lithium sulfide can be produced, for example, by the methods described in JP-A-7-330312, JP-A-9-283156, JP-A-2010-163356, and JP-A-2011-84438.
  • lithium hydroxide and hydrogen sulfide are reacted at 70°C to 300°C in a hydrocarbon-based organic solvent to produce lithium hydrosulfide, and then this reaction solution is desulfurized to produce sulfide.
  • Lithium can be synthesized (Japanese Unexamined Patent Publication No. 2010-163356).
  • Lithium sulfide can also be synthesized by reacting lithium hydroxide and hydrogen sulfide in an aqueous solvent at 10°C to 100°C to produce lithium hydrogensulfide, and then desulfurizing this reaction solution (especially Publication No. 2011-84438).
  • Examples of raw materials containing phosphorus (P) include phosphorus sulfides such as diphosphorus trisulfide (P 2 S 3 ) and diphosphorus pentasulfide (P 2 S 5 ), and phosphorus such as sodium phosphate (Na 3 PO 4 ). Examples include compounds, phosphorus alone, and the like. Among these, phosphorus sulfide is preferred, and diphosphorus pentasulfide (P 2 S 5 ) is more preferred. Phosphorus compounds such as diphosphorus pentasulfide (P 2 S 5 ) and phosphorus alone can be used without particular limitation as long as they are industrially produced and sold.
  • the raw material containing halogen (X) preferably includes, for example, a halogen compound represented by the following formula. M l -X m
  • M is sodium (Na), lithium (Li), boron (B), aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), germanium (Ge), arsenic (As). , selenium (Se), tin (Sn), antimony (Sb), tellurium (Te), lead (Pb), bismuth (Bi), or these elements combined with oxygen element or sulfur element, and lithium ( Li) or phosphorus (P) is preferred, and lithium (Li) is more preferred.
  • X is a halogen element selected from fluorine (F), chlorine (Cl), bromine (Br), and iodine (I).
  • l is an integer of 1 or 2
  • m is an integer of 1 to 10.
  • Xs may be the same or different.
  • SiBrCl 3 which will be described later, m is 4, and X is composed of different elements, Br and Cl.
  • the halogen compound represented by the above formula includes sodium halides such as NaI, NaF, NaCl, and NaBr; lithium halides such as LiF, LiCl, LiBr, and LiI; BCl 3 , BBr 3 , and BI 3 Boron halides such as AlF 3 , AlBr 3 , AlI 3 , AlCl 3 ; Aluminum halides such as SiF 4 , SiCl 4 , SiCl 3 , Si 2 Cl 6 , SiBr 4 , SiBrCl 3 , SiBr 2 Cl 2 , SiI 4 Silicon halides such as PF3 , PF5 , PCl3, PCl5 , POCl3 , PBr3 , POBr3 , PI3 , P2Cl4 , P2I4 ; phosphorous halides such as SF2 , SF4 , SF 6 , S 2 F 10 , SCl 2 , S 2 Cl 2 , S 2
  • lithium halides such as lithium chloride (LiCl), lithium bromide (LiBr), and lithium iodide (LiI), phosphorus pentachloride (PCl 5 ), phosphorus trichloride (PCl 3 ), and phosphorus pentabromide (PBr 5 ), phosphorus tribromide (PBr 3 ), and other phosphorus halides are preferred.
  • lithium halides such as LiCl, LiBr, and LiI and PBr 3 are preferred, lithium halides such as LiCl, LiBr, and LiI are more preferred, and LiI and LiBr are more preferred.
  • the halogen compound may be used alone or in combination of two or more of the above compounds. That is, at least one of the above compounds can be used.
  • the raw material contains a lithium compound, a phosphorus compound, and one or more halogen compounds, and it is preferable that at least one of the lithium compound and the phosphorus compound contains a sulfur element, and lithium sulfide and phosphorus sulfide.
  • a combination of lithium sulfide, diphosphorus pentasulfide, and two or more lithium halides is more preferred, and a combination of lithium sulfide, diphosphorus pentasulfide, and two or more lithium halides is even more preferred.
  • the molar ratio of lithium sulfide to diphosphorus pentasulfide in the input raw materials is preferably 65-85:15-35, more preferably 70-80:20-30, even more preferably 72-78:22-28, and particularly preferably 75:25.
  • the amount of Li 3 PS 4 calculated from the constituent elements Li, P, and S of lithium sulfide and diphosphorus pentasulfide is 100 parts by mole
  • the amount of lithium halide is preferably 10 to 250 parts by mole. , more preferably 50 to 225 mole parts, and may be 70 to 200 mole parts.
  • mechanical stress is applied to the above raw materials to cause them to react, resulting in an intermediate (glass-like powder).
  • applying mechanical stress means mechanically applying shearing force, impact force, etc.
  • means for applying mechanical stress include pulverizers such as planetary ball mills, vibration mills, and rolling mills, and kneaders.
  • the raw material powder is pulverized and mixed by strong mechanical stress until at least a part of it cannot maintain its crystallinity.
  • the rotation speed may be several tens to several hundreds of revolutions/minute, and the treatment may be performed for 0.5 to 100 hours. More specifically, in the case of the planetary ball mill (manufactured by Fritsch, model number P-5) used in the Examples of the present application, the rotation speed of the planetary ball mill is preferably 100 rpm or more and 400 rpm or less, and more preferably 150 rpm or more and 300 rpm or less. For example, when a zirconia ball is used as the grinding media, the diameter thereof is preferably 0.2 to 20 mm.
  • the temperature during pulverization is not particularly specified, it is preferably 200° C. or lower in order to prevent the solid electrolyte itself from crystallizing and hardening.
  • the intermediate produced by pulverization and mixing is heat-treated.
  • the heating temperature of the intermediate is determined by simultaneous differential thermal and thermogravimetric analysis (TGDTA device) of the intermediate at a heating condition of 10° C./min. TGDTA), and the range is preferably 5°C or lower, more preferably 10°C or lower, and still more preferably 15°C or lower, starting from the peak top temperature (T c1 ) of the exothermic peak observed at the lowest temperature side.
  • the lower limit is not particularly limited, but it may be about ⁇ 10° C. or higher, the temperature at the top of the exothermic peak observed on the lowest temperature side. By setting it as such a temperature range, the glass ceramic solid electrolyte of this embodiment can be obtained more efficiently.
  • the heating temperature for obtaining the glass-ceramic solid electrolyte of this embodiment cannot be unconditionally defined, it is usually preferably 250°C or lower, more preferably 225°C or lower, even more preferably 200°C or lower, and the lower limit is is not particularly limited, but is preferably 100°C or higher, more preferably 110°C or higher, even more preferably 120°C or higher.
  • the heating time is not particularly limited as long as the desired glass ceramic solid electrolyte can be obtained, but for example, it is preferably 10 minutes or more, more preferably 30 minutes or more, even more preferably 60 minutes or more, and 2 hours. The above is even more preferred. Further, the upper limit of the heating time is not particularly limited, but is preferably 10 hours or less, more preferably 8 hours or less, even more preferably 6 hours or less, and even more preferably 4 hours or less.
  • the atmosphere for the heat treatment is not particularly limited, and may be under a hydrogen sulfide stream, under an inert gas atmosphere such as nitrogen or argon, or under a vacuum atmosphere.
  • the glass-ceramic solid electrolyte of this embodiment has a filling factor as high as or higher than that of conventional glass-ceramic solid electrolytes, and has high ionic conductivity, so it is suitably used in batteries. It is particularly suitable when lithium element is employed as the conductive species.
  • the glass ceramic solid electrolyte of this embodiment may be used for a positive electrode layer, a negative electrode layer, or an electrolyte layer.
  • a lithium ion battery according to an embodiment of the present invention includes the glass ceramic solid electrolyte of the present invention described above.
  • an all-solid-state lithium ion battery can be manufactured by using the glass-ceramic solid electrolyte of the present invention in place of a liquid electrolyte.
  • An all-solid-state lithium ion battery mainly consists of a positive electrode layer, a negative electrode layer, and an electrolyte layer, and the glass ceramic solid electrolyte of the present invention can be used for any of them.
  • each layer can be manufactured by a known method.
  • a positive electrode composite material or a negative electrode composite material is obtained by mixing and dispersing a positive electrode active material or a negative electrode active material in the glass ceramic solid electrolyte of the present invention.
  • the positive electrode active material is one that can promote a battery chemical reaction accompanied by the movement of lithium ions due to the lithium element, which is preferably employed as an element that exhibits ionic conductivity in this embodiment. If so, it can be used without any particular restrictions.
  • positive electrode active materials capable of intercalating and deintercalating lithium ions include oxide-based positive electrode active materials, sulfide-based positive electrode active materials, and the like.
  • oxide-based positive electrode active materials include LMO (lithium manganate), LCO (lithium cobalt oxide), NMC (lithium nickel manganese cobalt oxide), NCA (lithium nickel cobalt aluminate), LNCO (lithium nickel cobalt oxide), and olivine.
  • LMO lithium manganate
  • LCO lithium cobalt oxide
  • NMC lithium nickel manganese cobalt oxide
  • NCA lithium nickel cobalt aluminate
  • LNCO lithium nickel cobalt oxide
  • sulfide-based positive electrode active materials examples include titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), nickel sulfide (Ni 3 S 2 ), etc. .
  • TiS 2 titanium sulfide
  • MoS 2 molybdenum sulfide
  • FeS, FeS 2 iron sulfide
  • CuS copper sulfide
  • Ni 3 S 2 nickel sulfide
  • the positive electrode active materials can be used alone or in combination.
  • the negative electrode active material an element that is preferably adopted as an element that exhibits ionic conductivity in this embodiment, preferably a metal that can form an alloy with lithium element, an oxide thereof, an alloy of the metal and lithium element, etc. Any material can be used without particular limitation as long as it can promote a battery chemical reaction accompanied by the movement of lithium ions, preferably caused by the lithium element.
  • the negative electrode active material capable of intercalating and deintercalating lithium ions any known negative electrode active material in the field of batteries can be used without limitation.
  • negative electrode active materials include metal lithium, metals that can form alloys with metal lithium, such as metal lithium, metal indium, metal aluminum, metal silicon, and metal tin, oxides of these metals, and metals that can form alloys with metal lithium, and oxides of these metals.
  • metal lithium metals that can form alloys with metal lithium, such as metal lithium, metal indium, metal aluminum, metal silicon, and metal tin, oxides of these metals, and metals that can form alloys with metal lithium, and oxides of these metals.
  • examples include alloys with metallic lithium.
  • the electrode active material used in this embodiment may have a coating layer on its surface.
  • the material forming the coating layer is an element that exhibits ionic conductivity in the crystalline sulfide solid electrolyte used in this embodiment, preferably an ionic conductor such as a nitride, oxide, or a composite thereof of the lithium element.
  • an ionic conductor such as a nitride, oxide, or a composite thereof of the lithium element.
  • One example is the body.
  • lithium nitride (Li 3 N) a conductor having a lithicon type crystal structure such as Li 4-2x Zn x GeO 4 whose main structure is Li 4 GeO 4 , and a Li 3 PO 4 type skeleton
  • a conductor having a thiolisicone crystal structure such as Li 4-x Ge 1-x P x S 4
  • a conductor having a perovskite crystal structure such as La 2/3-x Li 3x TiO 3
  • a conductor having a perovskite crystal structure such as LiTi 2
  • Examples include conductors having a NASICON type crystal structure such as (PO 4 ) 3 and the like.
  • lithium titanate such as Li y Ti 3-y O 4 (0 ⁇ y ⁇ 3) and Li 4 Ti 5 O 12 (LTO), metals belonging to Group 5 of the periodic table such as LiNbO 3 and LiTaO 3 Lithium metal oxides, as well as Li 2 O-B 2 O 3 -P 2 O 5 series, Li 2 O-B 2 O 3 -ZnO series, Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO Examples include oxide-based conductors such as 2 -based conductors.
  • an electrode active material having a coating layer for example, a solution containing various elements constituting the material forming the coating layer is deposited on the surface of the electrode active material, and the electrode active material after deposition is preferably heated at a temperature of 200°C or higher and 400°C or lower. It can be obtained by firing at
  • the solution containing various elements a solution containing alkoxides of various metals such as lithium ethoxide, titanium isopropoxide, niobium isopropoxide, and tantalum isopropoxide may be used.
  • the solvent may be an alcoholic solvent such as ethanol or butanol, an aliphatic hydrocarbon solvent such as hexane, heptane, or octane; or an aromatic hydrocarbon solvent such as benzene, toluene, or xylene.
  • the above-mentioned attachment may be performed by dipping, spray coating, or the like.
  • the firing temperature is preferably 200°C or more and 400°C or less, more preferably 250°C or more and 390°C or less, and the firing time is usually about 1 minute to 10 hours. and preferably 10 minutes to 4 hours.
  • the coverage rate of the coating layer is preferably 90% or more, more preferably 95% or more, and even more preferably 100% based on the surface area of the electrode active material, that is, the entire surface is preferably covered.
  • the thickness of the coating layer is preferably 1 nm or more, more preferably 2 nm or more, and the upper limit is preferably 30 nm or less, more preferably 25 nm or less.
  • the thickness of the coating layer can be measured by cross-sectional observation using a transmission electron microscope (TEM), and the coverage rate can be calculated from the thickness of the coating layer, elemental analysis value, and BET surface area.
  • TEM transmission electron microscope
  • a current collector in addition to the positive electrode layer, electrolyte layer, and negative electrode layer, and a known current collector can be used.
  • a layer such as Au, Pt, Al, Ti, or Cu, which reacts with the glass ceramic solid electrolyte, coated with Au or the like can be used.
  • Powder X-ray diffraction (XRD) measurement The glass solid electrolyte powder produced in each example was cut into a groove with a diameter of 20 mm and a depth of 0.2 mm and filled with glass. The filled sample was measured using a Kapton film for XRD without exposing it to air. The 2 ⁇ position of the diffraction peak was determined by Le Bail analysis using the XRD analysis program RIETAN-FP. Powder X-ray diffraction measurements were carried out under the following conditions.
  • the XRD analysis program RIETAN-FP was used, the baseline was corrected with an 11th-order Legendre orthogonal polynomial, and the peak position was determined.
  • the capacity and weight of the blank cell are measured three times using the above method, and the average value is defined as the empty cell capacity V 1 and the weight is defined as the empty cell weight W 1 .
  • the capacity of the gas phase part of the cell and the total weight of the cell are measured three times using the above method, and the average value is taken as the capacity V2 excluding the sample, and the total weight of the cell is It was set as W 2 .
  • the true density of the sample was calculated three times using the above procedure and the above formula, and the average value was used as the true density of the sample.
  • the standard deviation of true density calculated by this method is 0.05 g/cm 3 or less.
  • FIG. 10 A schematic diagram of the pellet density measuring device is shown in FIG.
  • the sample 10 was filled into a cylindrical jig 11 (manufactured by Macor (registered trademark)), and pressurized at 400 MPa using a uniaxial press machine via a stainless steel piston 12.
  • the pellet By measuring the height of the sample (pellet) from the difference between the length of the device when it is not filled with a sample (blank) L int and the length of the device containing the sample after pressurization L after , the pellet The density d pellet was calculated.
  • the piston 12 was inserted into the cylindrical jig 11 with a diameter of 10 mm (cross-sectional area S pellet : 0.785 cm 2 ) before the sample was introduced.
  • the cylindrical jig 11 was rotated every 90 degrees in a direction perpendicular to the pressurizing direction, and measurements were taken four times, and the average value was taken as L int (cm). At that time, the measurement was performed while pressurizing the piston 12 by tightening the screw 13 and nut 14 to 8 N ⁇ m using a torque wrench. Next, 0.3 g of glass solid electrolyte powder as a sample was weighed using an electronic balance and placed in the cylindrical jig 11. After charging, the sample was pressure-molded by pressurizing the piston 12 using a single-axis press machine. The pressure was maintained at 185 MPa for 2 minutes, and then the pressure was released. The cell was rotated 120° perpendicularly from the pressing direction and pressed in the same manner.
  • Ionic conductivity A circular pellet with a diameter of 10 mm (cross-sectional area S: 0.785 cm 2 ) and a height (L) of 0.1 to 0.3 cm was molded from the glass-ceramic solid electrolyte produced in each example. And so. Electrode terminals were taken from the top and bottom of the sample, and measurements were taken at 25° C. by the AC impedance method (frequency range: 5 MHz to 0.5 Hz, amplitude: 10 mV) to obtain a Cole-Cole plot.
  • Example 1 [Preparation of glass ceramic solid electrolyte] 2.319 g of lithium sulfide, 3.740 g of diphosphorus pentasulfide, and 3.941 g of lithium iodide were weighed, and 600 g of a zirconia ball with a diameter of 10 mm was placed in a 500 mL zirconia pot and sealed. Table 1 shows the molar ratios of starting materials. Using a planetary ball mill (manufactured by Fritsch, model number P-5), the mixture was pulverized (mechanical milling) at room temperature at a rotation speed of 220 rpm for 40 hours to obtain an intermediate (glass-like powder).
  • the ionic conductivity ( ⁇ ) of the obtained glass ceramic solid electrolyte was 3.8 mS/cm.
  • Figure 1 shows the XRD pattern of the glass ceramic solid electrolyte.
  • Example 2 to 21 Comparative Examples 1 to 11 A glass ceramic solid electrolyte was produced and evaluated in the same manner as in Example 1, except that the raw material composition ratio and the heating temperature of the intermediate were changed as shown in Table 1. The results are shown in Tables 1 and 2.
  • Table 1 the amount of Li 3 PS 4 was 100 mol parts, which corresponds to 150 mol parts of Li 2 S and 50 mol parts of P 2 S 5 as starting materials.
  • the heating temperature in Examples 2 to 21 and Comparative Examples 1, 4 to 7, and 9 to 11, the peak top of the exothermic peak observed at the lowest temperature side was determined by simultaneous differential thermal and thermogravimetric measurement (TGDTA). The temperature was set to be 15° C. or lower than the temperature (T c1 ), the same temperature as T c1 in Comparative Example 2, and higher temperature than T c1 in Comparative Examples 3 and 8.
  • FIG. 2 shows the X-ray diffraction patterns of the glass-ceramic solid electrolytes produced in Examples 1 to 4.
  • FIG. 3 shows the X-ray diffraction patterns of the glass ceramic solid electrolytes produced in Examples 5 to 8.
  • FIG. 4 shows the X-ray diffraction patterns of the glass ceramic solid electrolytes produced in Examples 9 to 12.
  • FIG. 5 shows the X-ray diffraction patterns of the glass ceramic solid electrolytes produced in Examples 13 to 16.
  • FIG. 6 shows the X-ray diffraction patterns of the glass ceramic solid electrolytes produced in Examples 17 to 21.
  • FIG. 7 shows the X-ray diffraction patterns of the glass ceramic solid electrolytes produced in Comparative Examples 1 to 5.
  • FIG. 8 shows the X-ray diffraction patterns of the glass ceramic solid electrolytes produced in Comparative Examples 6 to 11.
  • the glass ceramic solid electrolyte of the present invention is suitable as a structural material for lithium ion batteries. Furthermore, the lithium ion battery of the present invention is suitably used in, for example, batteries used in information-related equipment and communication equipment such as personal computers, video cameras, and mobile phones, and vehicles such as electric cars.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

リチウム、リン、硫黄及びハロゲンを構成元素として含み、リン(P)に対するリチウム(Li)のモル比(Li/P)が、2.0~5.3であり、リン(P)に対する硫黄(S)のモル比(S/P)が、2.0~4.5であり、リン(P)に対するハロゲン(X)のモル比(X/P)が、0.1~2.3であり、CuKα線を使用した粉末X線回折において、2θ=20±1°の位置にピークAがあり、粉末X線回折において、2θ=23.6±1°の位置にピークBがないか、ピークBがある場合は、ピークBのピーク強度(IB)とピークAのピーク強度(IA)のピーク強度比(IB/IA)が0.050未満であり、結晶子サイズが5~20nmである、ガラスセラミックス固体電解質。

Description

ガラスセラミックス固体電解質及びリチウムイオン電池
 本発明は、ガラスセラミックス固体電解質及びリチウムイオン電池に関する。
 近年におけるパソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。該電池の中でも、エネルギー密度が高いという観点から、リチウムイオン電池が注目を浴びている。
 現在市販されているリチウムイオン電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、電解液を固体電解質に変えて、電池を全固体化したリチウムイオン電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
 リチウムイオン電池に用いられる固体電解質として、硫化物固体電解質が知られている(例えば、特許文献1参照。)。
 ところで、リチウムイオン電池の性能を向上するには、固体電解質粉末の充填率(圧密性)を高めることが重要である。充填率の向上には、固体電解質を機械的に柔らかくする(圧縮変形しやすい)ことが有効である。
 リチウムイオン伝導性の硫化物固体電解質において、LiPSガラスは充填率が高いことが知られている。しかしながら、LiPSガラスはイオン伝導度が1mS/cm未満と低かった。
特表2019-506699号公報
 本発明の目的は、充填率が高く、かつ、高いイオン伝導度を有するガラスセラミックス固体電解質を提供することである。
 本発明によれば、以下のガラスセラミックス固体電解質等が提供される。
1.リチウム、リン、硫黄及びハロゲンを構成元素として含み、
 前記リン(P)に対する前記リチウム(Li)のモル比(Li/P)が、2.0~5.3であり、
 前記リン(P)に対する前記硫黄(S)のモル比(S/P)が、2.0~4.5であり、
 前記リン(P)に対する前記ハロゲン(X)のモル比(X/P)が、0.1~2.3であり、
 CuKα線を使用した粉末X線回折において、2θ=20±1°の位置にピークAがあり、前記粉末X線回折において、2θ=23.6±1°の位置にピークBがないか、前記ピークBがある場合は、前記ピークBのピーク強度(I)と前記ピークAのピーク強度(I)のピーク強度比(I/I)が0.050未満であり、
 結晶子サイズが5~20nmである、ガラスセラミックス固体電解質。
2.ピーク強度比(I/I)が0である、1に記載のガラスセラミックス固体電解質。
3.CuKα線を使用した粉末X線回折において、ハロゲン化リチウムに由来するピークを示す、1又は2に記載のガラスセラミックス固体電解質。
4.前記ハロゲン化リチウムに由来するピークのうち、強度が最大であるピークから算出したハロゲン化リチウムの結晶子サイズが5~100nmである、3に記載のガラスセラミックス固体電解質。
5.400MPa圧粉体の相対密度が90%以上である、1~4のいずれかに記載のガラスセラミックス固体電解質。
6.真密度が2.0~3.0g/cmである、1~5のいずれかに記載のガラスセラミックス固体電解質。
7.前記モル比(X/P)が、0.86超である、1~6のいずれかに記載のガラスセラミックス固体電解質。
8.前記ハロゲンを2種以上含む、1~7のいずれかに記載のガラスセラミックス固体電解質。
9.前記ハロゲンがヨウ素及び臭素を含む、8に記載のガラスセラミックス固体電解質。
10.前記リン(P)に対する前記ヨウ素(I)のモル比(I/P)が、0.0<(I/P)<1.8であり、
 前記リン(P)に対する前記臭素(Br)のモル比(Br/P)が、0.0<(Br/P)<1.5である、9に記載のガラスセラミックス固体電解質。
11.イオン伝導度が1mS/cm以上である、1~10のいずれかに記載のガラスセラミックス固体電解質。
12.1~11のいずれかに記載のガラスセラミックス固体電解質を含む、リチウムイオン電池。
 本発明によれば、充填率が高く、かつ、高いイオン伝導度を有するガラスセラミックス固体電解質を提供できる。
ペレット密度測定装置を説明するための概略図である。 実施例1~4で作製したガラスセラミックス固体電解質のX線回折パターンである。 実施例5~8で作製したガラスセラミックス固体電解質のX線回折パターンである。 実施例9~12で作製したガラスセラミックス固体電解質のX線回折パターンである。 実施例13~16で作製したガラスセラミックス固体電解質のX線回折パターンである。 実施例17~21で作製したガラスセラミックス固体電解質のX線回折パターンである。 比較例1~5で作製したガラスセラミックス固体電解質のX線回折パターンである。 比較例6~11で作製したガラスセラミックス固体電解質のX線回折パターンである。
 以下、本発明の実施形態(以下、「本実施形態」と称することがある。)について説明する。なお、本明細書において、「以上」、「以下」、「~」の数値範囲に係る上限及び下限の数値は任意に組み合わせできる数値であり、また実施例の数値を上限及び下限の数値として用いることもできる。
 本発明の一実施形態に係るガラスセラミックス固体電解質は、リチウム、リン、硫黄及び、ハロゲンを構成元素として含む。そして、上記構成元素のリンに対するモル比((Li,S,X)/P)が、下記の範囲を満たす。
 Li/P=2.0~5.3
  S/P=2.0~4.5
  X/P=0.1~2.3
 また、本実施形態のガラスセラミックス固体電解質は、下記の要件A~Cを満たす。
A.CuKα線を使用した粉末X線回折において、2θ=20±1°の位置にピークAがある。
B.粉末X線回折において、2θ=23.6±1°の位置にピークBがないか、ピークBがある場合は、ピークBのピーク強度(I)とピークAのピーク強度(I)のピーク強度比(I/I)が0.05未満である。
C.ピークAからシェラーの式より算出したガラスセラミックス固体電解質の結晶子サイズが5~20nmである。
 本発明の実施形態のガラスセラミックス固体電解質は、上記の組成及び回折ピークの条件を満たすことにより、従来のガラス固体電解質と同等以上に充填率が高く、かつ、高いイオン伝導度を有する。
 なお、本願においてガラスセラミックス固体電解質とは、粉末X線回折(XRD)測定においてX線回折パターンに、固体電解質由来のピークが観測される固体電解質であって、これらにおいての固体電解質の原料由来のピークの有無は問わない材料である。すなわち、ガラスセラミックス固体電解質は、固体電解質に由来する結晶構造を含み、その一部が該固体電解質に由来する結晶構造であっても、その全部が該固体電解質に由来する結晶構造であってもよいものである。そして、ガラスセラミックス固体電解質は、上記のようなX線回折パターンを有していれば、その一部に非晶性成分(「ガラス成分」とも称される。)が含まれていてもよいものである。なお、結晶性固体電解質には、非晶性固体電解質(ガラス成分)を結晶化温度以上に加熱して得られる、いわゆるガラスセラミックスが含まれる。
 本実施形態のガラスセラミックス固体電解質において、リン(P)に対するリチウム(Li)のモル比(Li/P)が、好ましくは3.0~5.25であり、より好ましくは3.5~5.20である。リン(P)に対する前記硫黄(S)のモル比(S/P)が、好ましくは3.0~4.4であり、より好ましくは3.5~4.3である。リン(P)に対するハロゲン(X)のモル比(X/P)は0.75超であることが好ましく、0.86超であることがより好ましい。
 本実施形態のガラスセラミックス固体電解質において、ハロゲン(X)は、フッ素(F)、塩素(Cl)、臭素(Br)、及びヨウ素(I)から選ばれる1種以上含むことが好ましく、Br又はIを含むことがより好ましい。また、ハロゲン(X)は、臭素(Br)及びヨウ素(I)を含むことが好ましい。
 リン(P)に対するヨウ素(I)のモル比(I/P)が、0.0~1.8であり、リン(P)に対する臭素(Br)のモル比(Br/P)が、0.0~1.5であることが好ましい。
 ガラスセラミックス固体電解質の構成元素の種類及びモル比は、例えば、ICP発光分光分析装置により確認することができる。
 ガラスセラミックス固体電解質の構成元素のモル比は、原料配合を制御することにより調整できる。なお、原料における構成元素のモル比と、得られるガラスセラミックス固体電解質の構成元素のモル比はほぼ等しい。
 本実施形態のガラスセラミックス固体電解質において、リン(P)に対するリチウム(Li)のモル比(Li/P)について、リン(P)に対するハロゲン(X)のモル比(X/P)と、以下の関係式(1)を満たすことが好ましい。
   Li/P=3±α+X/P   (1)
 (式中、αは0~0.5である。)
 式(1)を満たすことにより、ガラスセラミックス固体電解質の主骨格である、PS 3-四面体構造の生成量が多くなり、低露点環境下での硫化水素の発生量を低減する効果がある。また、PS 3-構造より大きく剛直な、P 4-構造やP 4-構造の生成量が減少するため、ガラスセラミックス固体電解質の柔らかさを向上する効果が得られる。
 式(1)のαは、0~0.3であってもよく、0~0.1であってもよく、0であってもよい。
 本実施形態のガラスセラミックス固体電解質は、CuKα線を使用した粉末X線回折測定において、2θ=20±1°の位置にピークAがあり、ピークAより算出されるガラスセラミックス固体電解質の結晶子サイズは1~20nmである。ピークAより算出されるガラスセラミックス固体電解質の結晶子サイズは、2~18nmであることが好ましい。結晶子サイズが小さいことで、ガラスセラミックス固体電解質の圧縮時に結晶子が壊れることなく圧縮できる。また結晶子サイズが小さすぎないことで、ガラスセラミックス固体電解質のイオン伝導度も高く維持することができる。これにより、本実施形態のガラスセラミックス固体電解質は、高い充填率と高いイオン伝導度を両立できる。
 一般に、粉末X線回折測定の回折ピークには幅があり、バックグランドを引いたピーク高さの半分の高さのピークの幅を半値幅という。半値幅と結晶子サイズとは相関があることが知られている。結晶子サイズが大きいと結晶性は高くなり、結晶構造の繰り返し規則性が高くなるため、粉末X線回折測定の回折ピークの強度が強くなると共に半値幅が狭くなる。
 測定方法の詳細は実施例で示す。
 また、粉末X線回折測定において、2θ=23.6±1°の位置にピークBがないか、ピークBがある場合は、ピークBのピーク強度(I)とピークAのピーク強度(I)のピーク強度比(I/I)が0.05未満である。
 上記ピークA及びピークBは、いずれもLi4-xGe1-x系チオリシコンリージョンII(thio-LISICON Region II)型結晶構造又は該チオリシコンリージョンII型と類似の結晶構造の回折ピークである。
 本実施形態のガラスセラミックス固体電解質では、上記ピークAは高強度で観測されるものの、上記ピークBは観測されないか、きわめて強度が低いことを特徴とする。本実施形態は、このようなピークを有するガラスセラミックス固体電解質が、従来のガラスセラミックス固体電解質と同等以上に充填率が高く、かつ、高いイオン伝導度を有することを見出したものである。
 ピーク強度比I/Iは0であることが好ましい。
 一実施形態において、ガラスセラミックス固体電解質は、CuKα線を使用した粉末X線回折測定において、ハロゲン化リチウムに由来する回折ピークを示す。ガラスセラミックス固体電解質の粉末X線回折測定にて観察されるハロゲン化リチウムは、原料のハロゲン化リチウムよりも結晶性が低下している。ハロゲン化リチウム自体が柔らかい材料であるため、粉末X線回折測定においてハロゲン化リチウムのピークを検出できる程度の結晶性があっても、本実施形態のガラスセラミックス固体電解質への硬化効果はほとんどないものと考えることができる。
 また、本実施形態のガラスセラミックス固体電解質において、ハロゲン化リチウムに由来する回折ピークのうち、強度が最大であるピークのピーク半値幅から算出される結晶子サイズは5~100nmが好ましく、10~90nmであることがより好ましい。
 結晶子サイズは、組成や結晶化温度によって調整可能である。例えば、リン(P)に対するリチウム(Li)のモル比(Li/P)、ハロゲン(X)に対する臭素(Br)のモル比(Br/X)、リン(P)に対するヨウ素(I)のモル比(I/P)を調整することで結晶子サイズを調整することができる。また、結晶化温度を高めることで結晶子サイズも大きくなるため、結晶化温度によっても結晶子サイズを調整することができる。
 ピーク半値幅は、XRDパターンから算出する。測定及び算出法の詳細は実施例に示す。
 ピーク半値幅の算出対象は、例えばハロゲン化リチウムがLiFである場合には2θ=45.0±1°の回折ピークの強度とし、LiClである場合には2θ=30.1±1°の回折ピークの強度とし、LiBrである場合には2θ=28±1°の回折ピークの強度とし、LiIである場合には2θ=25.5±1°の回折ピークの強度とする。
 なお、ピーク半値幅は、ガラスセラミックス固体電解質の製造に際し、原料として添加しているハロゲン量が多い種類のハロゲン化リチウムのピークで計算する。2種のハロゲン化リチウムの量がモル比で等量の場合は、ピーク強度が最大であるハロゲン化リチウムのピークで計算する。
 一実施形態において、ガラスセラミックス固体電解質の真密度(g/cm)は2.0~3.0g/cmであることが好ましい。真密度が上記範囲にあることは、ガラスセラミックス固体電解質の主骨格のPS 3-構造と総ハロゲン量が一定の範囲に収まることを意味し、本実施形態のガラスセラミックス固体電解質が高い伝導度と高い柔らかさを両立できる。
 本実施形態のガラスセラミックス固体電解質の真密度は、2.01~2.9g/cmであることがより好ましく、2.02~2.8g/cmであることが特に好ましい。
 ガラスセラミックス固体電解質の真密度は、例えば、Heガスを用いた気相置換法により測定できる。ガラスセラミックス固体電解質の真密度の測定方法は実施例に示す。
 本実施形態のガラスセラミックス固体電解質においては、ガラスセラミックス固体電解質を400MPa圧粉体としたときの相対密度が90%以上であることが好ましい。該相対密度は90.5%以上とすることも可能であり、91%以上とすることも可能である。通常、400MPa圧粉体の相対密度は99%以下である。
 本願において、400MPa圧粉体の相対密度とは、ガラスセラミックス固体電解質の真密度に対する、ガラスセラミックス固体電解質を400MPaで圧縮したときの密度(ペレット密度という。)の比率(相対密度=ペレット密度/真密度)である。相対密度が高いほど充填率が高いことを意味する。
 400MPa圧粉体の相対密度の測定方法の詳細については、実施例で記載する。
 本実施形態のガラスセラミックス固体電解質のイオン伝導度は、1mS/cm以上とすることができ、1.5mS/cm以上とすることもできる。
 イオン伝導度の測定方法は、実施例で示す。
 本実施形態のガラスセラミックス固体電解質は、例えば、公知のリチウムイオン硫化物固体電解質の出発原料を、構成元素のモル比が所定範囲を満たすように混合粉砕してガラス化したものを、さらに熱処理によりセラミックス化することで製造することができる。
 本実施形態のガラスセラミックス固体電解質の原料としては、リチウム、リン、硫黄及び、ハロゲンを構成元素として含む2種以上の化合物又は単体を組み合わせて使用することができ、含まれる金属原子に起因するイオン伝導度を発現するものであれば特に制限なく採用することができる。
 リチウム(Li)を含む原料としては、例えば、硫化リチウム(LiS)、酸化リチウム(LiO)、炭酸リチウム(LiCO)等のリチウム化合物、及びリチウム金属単体等が挙げられる。中でも、リチウム化合物が好ましく、硫化リチウムがより好ましい。
 上記硫化リチウムは、特に制限なく使用できるが、高純度のものが好ましい。硫化リチウムは、例えば、特開平7-330312号公報、特開平9-283156号公報、特開2010-163356号公報、特開2011-84438号公報に記載の方法により製造することができる。
 具体的には、炭化水素系有機溶媒中で水酸化リチウムと硫化水素とを70℃~300℃で反応させて、水硫化リチウムを生成し、次いでこの反応液を脱硫化水素化することにより硫化リチウムを合成できる(特開2010-163356号公報)。
 また、水溶媒中で水酸化リチウムと硫化水素とを10℃~100℃で反応させて、水硫化リチウムを生成し、次いでこの反応液を脱硫化水素化することにより硫化リチウムを合成できる(特開2011-84438号公報)。
 リン(P)を含む原料としては、例えば、三硫化二リン(P)、五硫化二リン(P)等の硫化リン、リン酸ナトリウム(NaPO)等のリン化合物、及びリン単体等が挙げられる。これらの中でも、硫化リンが好ましく、五硫化二リン(P)がより好ましい。五硫化二リン(P)等のリン化合物、リン単体は、工業的に製造され、販売されているものであれば、特に限定なく使用することができる。
 ハロゲン(X)を含む原料としては、例えば、下記式で表される、ハロゲン化合物を含むことが好ましい。
   M-X
 式中、Mは、ナトリウム(Na)、リチウム(Li)、ホウ素(B)、アルミニウム(Al)、ケイ素(Si)、リン(P)、硫黄(S)、ゲルマニウム(Ge)、ヒ素(As)、セレン(Se)、スズ(Sn)、アンチモン(Sb)、テルル(Te)、鉛(Pb)、ビスマス(Bi)、又はこれらの元素に酸素元素、硫黄元素が結合したものを示し、リチウム(Li)又はリン(P)が好ましく、リチウム(Li)がより好ましい。
 Xは、フッ素(F)、塩素(Cl)、臭素(Br)、及びヨウ素(I)から選択されるハロゲン元素である。
 また、lは1又は2の整数であり、mは1~10の整数である。mが2~10の整数の場合、すなわち、Xが複数存在する場合は、Xは同じであってもよいし、異なっていてもよい。例えば、後述するSiBrClは、mが4であって、XはBrとClという異なる元素からなるものである。
 上記式で表されるハロゲン化合物としては、具体的には、NaI、NaF、NaCl、NaBr等のハロゲン化ナトリウム;LiF、LiCl、LiBr、LiI等のハロゲン化リチウム;BCl、BBr、BI等のハロゲン化ホウ素;AlF、AlBr、AlI、AlCl等のハロゲン化アルミニウム;SiF、SiCl、SiCl、SiCl、SiBr、SiBrCl、SiBrCl、SiI等のハロゲン化ケイ素;PF、PF、PCl、PCl、POCl、PBr、POBr、PI、PCl、P等のハロゲン化リン;SF、SF、SF、S10、SCl、SCl、SBr等のハロゲン化硫黄;GeF、GeCl、GeBr、GeI、GeF、GeCl、GeBr、GeI等のハロゲン化ゲルマニウム;AsF、AsCl、AsBr、AsI、AsF等のハロゲン化ヒ素;SeF、SeF、SeCl、SeCl、SeBr、SeBr等のハロゲン化セレン;SnF、SnCl、SnBr、SnI、SnF、SnCl、SnBr、SnI等のハロゲン化スズ;SbF、SbCl、SbBr、SbI、SbF、SbCl等のハロゲン化アンチモン;TeF、Te10、TeF、TeCl、TeCl、TeBr、TeBr、TeI等のハロゲン化テルル;PbF、PbCl、PbF、PbCl、PbBr、PbI等のハロゲン化鉛;BiF、BiCl、BiBr、BiI等のハロゲン化ビスマス等が挙げられる。
 中でも、塩化リチウム(LiCl)、臭化リチウム(LiBr)、ヨウ化リチウム(LiI)等のハロゲン化リチウム、五塩化リン(PCl)、三塩化リン(PCl)、五臭化リン(PBr)、三臭化リン(PBr)等のハロゲン化リンが好ましく挙げられる。中でも、LiCl、LiBr、LiI等のハロゲン化リチウム、PBrが好ましく、LiCl、LiBr、LiI等のハロゲン化リチウムがより好ましく、LiIとLiBrがより好ましい。
 ハロゲン化合物は、上記の化合物の中から一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。すなわち上記の化合物の少なくとも1つを用いることができる。
 本実施形態では、原料がリチウム化合物、リン化合物、及び1種又は2種以上のハロゲン化合物を含み、該リチウム化合物、及びリン化合物の少なくとも一方が硫黄元素を含むことが好ましく、硫化リチウムと硫化リンと2種以上のハロゲン化リチウムとの組合せであることがより好ましく、硫化リチウムと五硫化二リンと2種以上のハロゲン化リチウムの組合せであることが更に好ましい。
 例えば、本発明のガラスセラミックス固体電解質の原料として、硫化リチウム、五硫化二リン、2種以上のハロゲン化リチウムを使用する場合には、投入原料のモル比における硫化リチウムと五硫化二リンとのモル比は、65~85:15~35が好ましく、70~80:20~30がより好ましく、72~78:22~28が更に好ましく、75:25が特に好ましい。
 また、硫化リチウム及び五硫化二リンの構成元素Li,P及びSから計算したLiPSの物質量を100モル部としたときに、ハロゲン化リチウムを10~250モル部とすることが好ましく、より好ましくは50~225モル部であり、70~200モル部としてもよい。
 本実施形態においては、上記の原料に機械的応力を加えて反応させ、中間体(ガラス状の粉末)とする。ここで、「機械的応力を加える」とは、機械的にせん断力や衝撃力等を加えることである。機械的応力を加える手段としては、例えば、遊星ボールミル、振動ミル、転動ミル等の粉砕機や、混練機等を挙げることができる。強い機械的応力により、原料粉末の少なくとも一部が結晶性を維持できない状態まで粉砕混合する。
 粉砕混合の条件としては、例えば、粉砕機として遊星ボールミル機を使用した場合、回転速度を数十~数百回転/分とし、0.5時間~100時間処理すればよい。より具体的に、本願実施例で使用した遊星型ボールミル(フリッチュ社製:型番P-5)の場合、遊星型ボールミルの回転数は100rpm以上400rpm以下が好ましく、150rpm以上300rpm以下がより好ましい。
 粉砕メディアであるボールは、例えば、ジルコニア製ボールを使用した場合、その直径は0.2~20mmが好ましい。
 粉砕時の温度は特に指定しないが、固体電解質自体が結晶化して硬化することを防ぐため、200℃以下が好ましい。
 粉砕混合で作製した中間体を加熱処理する。中間体の加熱温度は、具体的には、該中間体を、示差熱・熱重量同時分析装置(TGDTA装置)を用いて、10℃/分の昇温条件で示差熱・熱重量同時測定(TGDTA)を行い、最も低温側で観測される発熱ピークのピークトップの温度(Tc1)を起点に、好ましくは5℃以下、より好ましくは10℃以下、更に好ましくは15℃以下の範囲とすればよく、下限としては特に制限はないが、最も低温側で観測される発熱ピークのピークトップの温度-10℃以上程度とすればよい。このような温度範囲とすることで、より効率的に本実施形態のガラスセラミックス固体電解質が得られる。
 本実施形態のガラスセラミックス固体電解質を得るための加熱温度としては、一概に規定することはできないが、通常、250℃以下が好ましく、225℃以下がより好ましく、200℃以下が更に好ましく、下限としては特に制限はないが、好ましくは100℃以上、より好ましくは110℃以上、更に好ましくは120℃以上である。
 加熱時間は、所望のガラスセラミックス固体電解質が得られる時間であれば特に制限されるものではないが、例えば、10分以上が好ましく、30分以上がより好ましく、60分以上が更に好ましく、2時間以上がより更に好ましい。また、加熱時間の上限は特に制限されるものではないが、10時間以下が好ましく、8時間以下がより好ましく、6時間以下が更に好ましく、4時間以下がより更に好ましい。
 熱処理の雰囲気は特に限定はなく、硫化水素気流下でもよく、窒素、アルゴン等の不活性ガス雰囲気下でもよく、真空雰囲気下でもよい。
 本実施形態のガラスセラミックス固体電解質は、従来のガラスセラミックス固体電解質と同等以上に充填率が高く、かつ、高いイオン伝導度を有するため、電池に好適に用いられる。伝導種としてリチウム元素を採用した場合、特に好適である。本実施形態のガラスセラミックス固体電解質は、正極層に用いてもよく、負極層に用いてもよく、電解質層に用いてもよい。
 本発明の一実施形態に係るリチウムイオン電池は、上述した本発明のガラスセラミックス固体電解質を含む。例えば、液体の電解質に替えて本発明のガラスセラミックス固体電解質を使用することにより、全固体リチウムイオン電池を製造できる。
 全固体リチウムイオン電池は、主に正極層、負極層及び電解質層からなるが、本発明のガラスセラミックス固体電解質は、いずれにも用いることができる。なお、各層は、公知の方法により製造することができる。
 例えば、正極層及び負極層に用いる場合には、本発明のガラスセラミックス固体電解質に、正極活物質又は負極活物質を混合分散させて正極合材、又は負極合材が得られる。
 正極活物質としては、負極活物質との関係で、本実施形態においてイオン伝導度を発現させる元素として好ましく採用されるリチウム元素に起因するリチウムイオンの移動を伴う電池化学反応を促進させ得るものであれば特に制限なく用いることができる。このようなリチウムイオンの挿入脱離が可能な正極活物質としては、酸化物系正極活物質、硫化物系正極活物質等が挙げられる。
 酸化物系正極活物質としては、LMO(マンガン酸リチウム)、LCO(コバルト酸リチウム)、NMC(ニッケルマンガンコバルト酸リチウム)、NCA(ニッケルコバルトアルミ酸リチウム)、LNCO(ニッケルコバルト酸リチウム)、オリビン型化合物(LiMeNPO、Me=Fe、Co、Ni、Mn)等のリチウム含有遷移金属複合酸化物が好ましく挙げられる。
 硫化物系正極活物質としては、硫化チタン(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS)、硫化銅(CuS)、硫化ニッケル(Ni)等が挙げられる。
 また、上記正極活物質の他、セレン化ニオブ(NbSe)等も使用可能である。
 本実施形態において、正極活物質は、一種単独で、又は複数種を組み合わせて用いることが可能である。
 負極活物質としては、本実施形態においてイオン伝導度を発現させる元素として好ましく採用される元素、好ましくはリチウム元素と合金を形成し得る金属、その酸化物、当該金属とリチウム元素との合金等の、好ましくはリチウム元素に起因するリチウムイオンの移動を伴う電池化学反応を促進させ得るものであれば特に制限なく用いることができる。このようなリチウムイオンの挿入脱離が可能な負極活物質としては、電池分野において負極活物質として公知のものを制限なく採用することができる。
 このような負極活物質としては、例えば、金属リチウム、金属インジウム、金属アルミ、金属ケイ素、金属スズ等の金属リチウム又は金属リチウムと合金を形成し得る金属、これら金属の酸化物、またこれら金属と金属リチウムとの合金等が挙げられる。
 本実施形態で用いられる電極活物質は、その表面がコーティングされた、被覆層を有するものであってもよい。
 被覆層を形成する材料としては、本実施形態で用いられる結晶性硫化物固体電解質においてイオン伝導度を発現する元素、好ましくはリチウム元素の窒化物、酸化物、又はこれらの複合物等のイオン伝導体が挙げられる。具体的には、窒化リチウム(LiN)、LiGeOを主構造とする、例えばLi4-2xZnGeO等のリシコン型結晶構造を有する伝導体、LiPO型の骨格構造を有する例えばLi4-xGe1-x等のチオリシコン型結晶構造を有する伝導体、La2/3-xLi3xTiO等のペロブスカイト型結晶構造を有する伝導体、LiTi(PO等のNASICON型結晶構造を有する伝導体等が挙げられる。
 また、LiTi3-y(0<y<3)、LiTi12(LTO)等のチタン酸リチウム、LiNbO、LiTaO等の周期表の第5族に属する金属の金属酸リチウム、またLiO-B-P系、LiO-B-ZnO系、LiO-Al-SiO-P-TiO系等の酸化物系の伝導体等が挙げられる。
 被覆層を有する電極活物質は、例えば電極活物質の表面に、被覆層を形成する材料を構成する各種元素を含む溶液を付着させ、付着後の電極活物質を好ましくは200℃以上400℃以下で焼成することにより得られる。
 ここで、各種元素を含む溶液としては、例えばリチウムエトキシド、チタンイソプロポキシド、ニオブイソプロポキシド、タンタルイソプロポキシド等の各種金属のアルコキシドを含む溶液を用いればよい。この場合、溶媒としては、エタノール、ブタノール等のアルコール系溶媒、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒等を用いればよい。
 また、上記の付着は、浸漬、スプレーコーティング等により行えばよい。
 焼成温度としては、製造効率及び電池性能の向上の観点から、上記200℃以上400℃以下が好ましく、より好ましくは250℃以上390℃以下であり、焼成時間としては、通常1分~10時間程度であり、好ましくは10分~4時間である。
 被覆層の被覆率としては、電極活物質の表面積を基準として好ましくは90%以上、より好ましくは95%以上、更に好ましくは100%、すなわち全面が被覆されていることが好ましい。また、被覆層の厚さは、好ましくは1nm以上、より好ましくは2nm以上であり、上限として好ましくは30nm以下、より好ましくは25nm以下である。
 被覆層の厚さは、透過型電子顕微鏡(TEM)による断面観察により測定することができ、被覆率は、被覆層の厚さ、元素分析値、BET表面積から算出することができる。
 また、上記電池は、正極層、電解質層及び負極層の他に集電体を使用することが好ましく、集電体は公知のものを用いることができる。例えば、Au、Pt、Al、Ti、又は、Cu等のように、上記のガラスセラミックス固体電解質と反応するものをAu等で被覆した層が使用できる。
 以下、実施例に基づき本発明を具体的に説明する。本発明は、実施例に限定されない。各例で作製した試料の評価方法を以下に示す。
(1)粉末X線回折(XRD)測定
 各例で製造したガラス固体電解質の粉末を、直径20mm、深さ0.2mmの溝にガラスで摺り切って充填した。充填した試料を、XRD用カプトンフィルムで空気に触れさせずに測定した。回折ピークの2θ位置は、XRD解析プログラムRIETAN-FPを用いてLe Bail解析にて決定した。
 粉末X線回折測定は下記の条件にて実施した。
   使用装置:BRUKER社製「D2 PHASER」
   管電圧:30kV
   管電流:10mA
   X線波長:Cu-Kα線(1.5418Å)
   光学系:集中法
   スリット構成:ソーラースリット4°、発散スリット1mm、Kβフィルター(Ni板)使用
   検出器:半導体検出器
   測定範囲:2θ=10-60°(deg)
   ステップ幅、スキャンスピード:0.05°、0.05°/sec
 また、測定結果より結晶構造の存在を確認するためのピーク位置の解析では、XRD解析プログラムRIETAN-FPを用い、11次のルジャンドル直交多項式にてベースラインを補正し、ピーク位置を求めた。
(2)ピーク半値幅
 一例として、2θ=20±1°の範囲にあるピークの計算方法を以下に示す。なお、ハロゲン化リチウムピーク半値幅では、LiIの場合は2θ=25.5±1°のピークで計算し、LiBrの場合は2θ=28±1°のピークで計算する。
 上述したピークが存在する範囲(2θ=19~21°)において、強度(XRDパターンの縦軸値)の実測値と、下記の計算値との差異が最小になるように半値幅Eを決定した。
 ローレンツ関数の割合をA(0≦A≦1)、強度補正値をB、強度が最大になる2θの角度をC、計算する強度の角度(2θ)をD、半値幅をE、バックグラウンドをFとした。なお、バックグラウンドは、非晶質の影響を受けることがあるため、均一なバックグラウンドOとピーク位置に従って変化する一次関数Pを用いて、F=O+P×Dとして計算してもよい。
 計算する強度の角度(2θ)における強度の実測値をGとし、変数をA、B、C、E、O、Pとして、強度を測定した角度(2θ)毎に、下記式(2)により強度の測定値と計算値とのズレHを計算した。
   H=G-{B×{A/(1+4×(D-C)/E)+(1-A)×exp(-1×(D-C)/E)×(4ln(2))}+O+P×D}   (2)
 2θ=19~21°の範囲でHを合計し、合計値を表計算ソフトエクセル(マイクロソフト)のソルバー機能を用いて、GRG非線形でHの合計を最小化することにより、半値幅Eを含む上記変数を決定した。
(3)結晶子サイズ
 装置由来の半値幅の広がりを補正するために、NIST標準Si(640d、結晶子径525nm)で、上記手法で算出した半値幅Eを補正した。補正した半値幅をBcorrectionとすると、結晶子サイズの算出に用いる、補正した半値幅βは以下の式で表せる。
   β=E―Bcorrection
 実際の結晶子サイズLは下記式で計算した。
   L=K×λ/(βcos(C/2))
 ここで定数Kは0.9とし、λは測定に使用したX線の波長を用いた。なおCは半値幅を計算したときのピーク中心位置の角度(2θ)である。
(4)400MPa圧粉体の相対密度
(真密度の測定)
 真密度はHeガスを用いた気相置換法(マイクロトラックベル社製:BELMAX)により測定した。Heガスの圧力を、55KPa、60KPa、65KPa、70KPa、75KPa,80KPa,85KPa、90KPa,95KPa,100KPa,105KPa,110KPaとした際のセル内部の容積を計算し、平均値をセル内部容積とした。また,セル重量は電子天秤を用いて算出した。ブランクセルの容量、重量を上記の手法にて3回測定し、平均値を空セル容量Vとし、重量を空セル重量Wとする。ガラス固体電解質をセルに投入したときのセルの気相部分の容量、セル総重量を上記の手法にて3回測定し、平均値を、試料を除いた容量Vとし、セルの総重量をWとした。
ガラス固体電解質の真密度dは以下の式で計算できる。
   d= (W-W)/(V-V)
 なお試料の真密度は上記操作、上式から3回算出した平均値を試料の真密度とした。本手法で算出した、真密度の標準偏差は0.05g/cm以下である。
(ペレット密度の測定)
 ペレット密度の測定装置の概略図を図1に示す。
 試料10を円筒状の治具11(マコール(登録商標)製)内に充填し、ステンレス製のピストン12を介して単軸プレス機にて400MPaで加圧した。試料を充填していない状態(ブランク)の装置の長さLintと、加圧後の試料を含む装置の長さLafterの差から、試料(ペレット)の高さを測定することにより、ペレット密度dpelletを算出した。
 具体的に、試料投入前の直径10mm(断面積Spellet:0.785cm)の円筒治具11に、ピストン12を挿入した。加圧方向に対し垂直方向に円筒治具11を90°毎に回転させ、4回測定し、その平均値をLint(cm)とした。その際、トルクレンチを用い、ねじ13とナット14を8N・mで締めることにより、ピストン12を加圧しながら測定した。
 次に、試料であるガラス固体電解質の粉体0.3gを電子天秤で秤量し、円筒治具11に投入した。投入後、単軸プレス機にてピストン12を加圧することにより試料を加圧成形した。圧力を185MPaとし2分間維持した後、脱圧した。セルを加圧方向から垂直方向に120°回転させ、同様にプレスした。その後、再度120°回転させ同様にプレスした。次に、圧力を400MPaとして、185MPaの場合と同様に操作して試料を加圧した。
 成形後、Lintと同様にして4回測定し、その平均値をLafter(cm)とした。ペレット密度dpelletは、以下の下記式で算出した。
   dpellet=0.3/{(Lafter-Lint)×Spellet
(相対密度の算出)
 下記式により計算した。
    相対密度(%)=ペレット密度×100/真密度
(5)イオン伝導度
 各例で製造したガラスセラミックス固体電解質から、直径10mm(断面積S:0.785cm)、高さ(L)0.1~0.3cmの円形ペレットを成形して試料とした。その試料の上下から電極端子を取り、25℃において交流インピーダンス法により測定し(周波数範囲:5MHz~0.5Hz、振幅:10mV)、Cole-Coleプロットを得た。高周波側領域に観測される円弧の右端付近で、-Z’’(Ω)が最小となる点での実数部Z’(Ω)を電解質のバルク抵抗R(Ω)とし、以下式に従い、イオン伝導度σ(S/cm)を計算した。
       R=ρ(L/S)
       σ=1/ρ
(6)ICP測定
 各例で製造した固体電解質の粉末を秤量し、アルゴン雰囲気中で、バイアル瓶に採取した。バイアル瓶にKOHアルカリ水溶液を入れ、硫黄分の捕集に注意しながらサンプルを溶解し、適宜希釈、測定溶液とした。これを、パッシェンルンゲ型ICP-OES装置(SPECTRO社製SPECTRO ARCOS)にて測定し、組成を決定した。
 検量線溶液は、Li、P、SはICP測定用1000mg/L標準溶液を、Cl、Brはイオンクロマトグラフ用1000mg/L標準溶液を用いて調製した。
 各試料で2つの測定溶液を調整し、各測定溶液で5回の測定を行い、平均値を算出した。その2つの測定溶液の測定値の平均で組成を決定した。
実施例1
[ガラスセラミックス固体電解質の作製]
 硫化リチウムを2.319g、五硫化二リンを3.740g、ヨウ化リチウムを3.941gとなるように秤量し、直径10mmのジルコニア製ボール600gを、500mLのジルコニア製ポットに投入し密閉した。表1に出発原料のモル比を示す。
 遊星型ボールミル装置(フリッチュ社製、型番P-5)を用いて、室温下、回転速度220rpmで40時間粉砕処理(メカニカルミリング)して中間体(ガラス状の粉末)を得た。
 上記中間体の粉末約2gを真空下で、155℃で2時間保持した。その後、徐冷し、ガラスセラミックス固体電解質を得た。
 なお、示差熱・熱重量同時分析装置(TGDTA装置)を用いて、10℃/分の昇温条件で示差熱・熱重量同時測定(TGDTA)を行い、最も低温側で観測される発熱ピークのピークトップの温度(Tc1)は、170℃であった。
 得たガラスセラミックス固体電解質のイオン伝導度(σ)は、3.8mS/cmであった。ガラスセラミックス固体電解質のXRDパターンを図1に示す。
実施例2~21、比較例1~11
 原料組成比及び中間体の加熱温度を、表1に示すように変更した他は、実施例1と同様にしてガラスセラミックス固体電解質を作製し、評価した。結果を表1及び表2に示す。
 なお、表1においてLiPSの物質量を100モル部としたが、これは出発原料であるLiSが150モル部及びPが50モル部に相当する。
 また、加熱温度について、実施例2~21、比較例1、4~7、9~11では、示差熱・熱重量同時測定(TGDTA)で、最も低温側で観測される発熱ピークのピークトップの温度(Tc1)の15℃以下の温度とし、比較例2ではTc1と同じ温度とし、比較例3、8ではTc1よりも高温とした。
 実施例2,17,19、比較例5及び8についてICPにてガラスセラミックス固体電解質のリン(P)に対する各元素のモル比(X/P)を測定した。結果を以下に示す。
 実施例2:Li/P=3.95、S/P=3.96、Br/P=0、I/P=1.03
 実施例17:Li/P=3.95、S/P=3.95、Br/P=0.53、I/P=0.52
 実施例19:Li/P=3.95、S/P=3.95、Br/P=1.04、I/P=0
 比較例5:Li/P=3.55、S/P=4.01、Br/P=0.27、I/P=0.27
 比較例8:Li/P=3.94、S/P=3.95、Br/P=0、I/P=1.03
Figure JPOXMLDOC01-appb-T000001
 図2に、実施例1~4で作製したガラスセラミックス固体電解質のX線回折パターンを示す。図3に、実施例5~8で作製したガラスセラミックス固体電解質のX線回折パターンを示す。図4に、実施例9~12で作製したガラスセラミックス固体電解質のX線回折パターンを示す。図5に実施例13~16で作製したガラスセラミックス固体電解質のX線回折パターンを示す。図6に実施例17~21で作製したガラスセラミックス固体電解質のX線回折パターンを示す。図7に比較例1~5で作製したガラスセラミックス固体電解質のX線回折パターンを示す。図8に比較例6~11で作製したガラスセラミックス固体電解質のX線回折パターンを示す。
 実施例で得られたX線回折パターンでは、結晶性の低いXRDスペクトルを得られることから、ガラスセラミックス固体電解質の圧縮時に結晶子の破壊を防ぐことができる観点から、高いイオン伝導度を維持でき、また大きい結晶子間の空隙を防ぐことができる観点から、充填率も高く維持できる。またハロゲン化リチウムは結晶性の低いXRDスペクトルを得られることから、ガラスセラミックス固体電解質を硬化するような影響は与えないものと考えられる。
 本発明のガラスセラミックス固体電解質は、リチウムイオン電池の構性材料として好適である。また、本発明のリチウムイオン電池は、例えば、パソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器、電気自動車等の車両に用いられる電池等に好適に用いられる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。

Claims (12)

  1.  リチウム、リン、硫黄及びハロゲンを構成元素として含み、
     前記リン(P)に対する前記リチウム(Li)のモル比(Li/P)が、2.0~5.3であり、
     前記リン(P)に対する前記硫黄(S)のモル比(S/P)が、2.0~4.5であり、
     前記リン(P)に対する前記ハロゲン(X)のモル比(X/P)が、0.1~2.3であり、
     CuKα線を使用した粉末X線回折において、2θ=20±1°の位置にピークAがあり、前記粉末X線回折において、2θ=23.6±1°の位置にピークBがないか、前記ピークBがある場合は、前記ピークBのピーク強度(I)と前記ピークAのピーク強度(I)のピーク強度比(I/I)が0.050未満であり、
     結晶子サイズが5~20nmである、ガラスセラミックス固体電解質。
  2.  ピーク強度比(I/I)が0である、請求項1に記載のガラスセラミックス固体電解質。
  3.  CuKα線を使用した粉末X線回折において、ハロゲン化リチウムに由来するピークを示す、請求項1又は2に記載のガラスセラミックス固体電解質。
  4.  前記ハロゲン化リチウムに由来するピークのうち、強度が最大であるピークから算出したハロゲン化リチウムの結晶子サイズが5~100nmである、請求項3に記載のガラスセラミックス固体電解質。
  5.  400MPa圧粉体の相対密度が90%以上である、請求項1~4のいずれかに記載のガラスセラミックス固体電解質。
  6.  真密度が2.0~3.0g/cmである、請求項1~5のいずれかに記載のガラスセラミックス固体電解質。
  7.  前記モル比(X/P)が、0.86超である、請求項1~6のいずれかに記載のガラスセラミックス固体電解質。
  8.  前記ハロゲンを2種以上含む、請求項1~7のいずれかに記載のガラスセラミックス固体電解質。
  9.  前記ハロゲンがヨウ素及び臭素を含む、請求項8に記載のガラスセラミックス固体電解質。
  10.  前記リン(P)に対する前記ヨウ素(I)のモル比(I/P)が、0.0<(I/P)<1.8であり、
     前記リン(P)に対する前記臭素(Br)のモル比(Br/P)が、0.0<(Br/P)<1.5である、請求項9に記載のガラスセラミックス固体電解質。
  11.  イオン伝導度が1mS/cm以上である、請求項1~10のいずれかに記載のガラスセラミックス固体電解質。
  12.  請求項1~11のいずれかに記載のガラスセラミックス固体電解質を含む、リチウムイオン電池。

     
PCT/JP2023/027919 2022-08-03 2023-07-31 ガラスセラミックス固体電解質及びリチウムイオン電池 WO2024029480A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022123820 2022-08-03
JP2022-123820 2022-08-03

Publications (1)

Publication Number Publication Date
WO2024029480A1 true WO2024029480A1 (ja) 2024-02-08

Family

ID=89849311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027919 WO2024029480A1 (ja) 2022-08-03 2023-07-31 ガラスセラミックス固体電解質及びリチウムイオン電池

Country Status (1)

Country Link
WO (1) WO2024029480A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019200851A (ja) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 固体電解質、全固体電池および固体電解質の製造方法
WO2021193192A1 (ja) * 2020-03-23 2021-09-30 三井金属鉱業株式会社 硫化物固体電解質、及びそれを用いた電極合剤、固体電解質層並びに電池
WO2022075471A1 (ja) * 2020-10-09 2022-04-14 出光興産株式会社 硫化物固体電解質ガラスセラミクス及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019200851A (ja) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 固体電解質、全固体電池および固体電解質の製造方法
WO2021193192A1 (ja) * 2020-03-23 2021-09-30 三井金属鉱業株式会社 硫化物固体電解質、及びそれを用いた電極合剤、固体電解質層並びに電池
WO2022075471A1 (ja) * 2020-10-09 2022-04-14 出光興産株式会社 硫化物固体電解質ガラスセラミクス及びその製造方法

Similar Documents

Publication Publication Date Title
US11760649B2 (en) Solid electrolyte material and battery
US11355780B2 (en) Sulfide solid electrolyte particles
KR102319569B1 (ko) 황화물 고체 전해질
JP6936073B2 (ja) 硫化物固体電解質
WO2019135317A1 (ja) 固体電解質材料、および、電池
JPWO2019135316A1 (ja) 固体電解質材料、および、電池
KR20190007028A (ko) 리튬 이차전지용 황화물계 고체 전해질
US10938064B2 (en) Sulfide-type compound particles, solid electrolyte, and lithium secondary battery
JP2018045997A (ja) 硫化物固体電解質
CN111316379B (zh) 固体电解质材料及电池
WO2020045634A1 (ja) 硫化物固体電解質の製造方法、硫化物固体電解質、全固体電池、及び硫化物固体電解質の製造に用いる原料化合物の選択方法
US20160028106A1 (en) Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
US20230231183A1 (en) Solid electrolyte, electrode mixture and battery
EP3736832B1 (en) Solid electrolyte material, and battery
JPWO2018216730A1 (ja) 硫化物固体電解質
CN112203975B (zh) 硫化物固体电解质和电池
EP4129901A1 (en) Sulfide solid electrolyte, and electrode mixture, solid electrolyte layer and battery using same
US20240154155A1 (en) Solid electrolyte and method for producing same
EP4307318A1 (en) Solid electrolyte and method for producing same
WO2024029480A1 (ja) ガラスセラミックス固体電解質及びリチウムイオン電池
EP4317059A1 (en) Solid electrolyte
WO2024029479A1 (ja) ガラス固体電解質及びリチウムイオン電池
WO2024105730A1 (ja) 固体電解質およびリチウムイオン電池
EP4299538A1 (en) Solid electrolyte material and battery using same
WO2023127830A1 (ja) 複合活物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850035

Country of ref document: EP

Kind code of ref document: A1