WO2024028217A1 - Verfahren und gassensor zum ermitteln der konzentration einer gaskomponente in einem gasgemisch - Google Patents

Verfahren und gassensor zum ermitteln der konzentration einer gaskomponente in einem gasgemisch Download PDF

Info

Publication number
WO2024028217A1
WO2024028217A1 PCT/EP2023/070987 EP2023070987W WO2024028217A1 WO 2024028217 A1 WO2024028217 A1 WO 2024028217A1 EP 2023070987 W EP2023070987 W EP 2023070987W WO 2024028217 A1 WO2024028217 A1 WO 2024028217A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gas mixture
gas
heating device
constant
Prior art date
Application number
PCT/EP2023/070987
Other languages
English (en)
French (fr)
Inventor
Wolfgang Lauerer
Andreas Meyer
Stephan Schürer
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of WO2024028217A1 publication Critical patent/WO2024028217A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested

Definitions

  • the present invention relates to a method and a gas sensor for determining the concentration of a gas component in a gas mixture, in particular a gas sensor based on the thermal conductivity measurement principle, such as a hydrogen concentration sensor.
  • Gas sensors that are based on the thermal conductivity measurement principle are known from the prior art.
  • the thermal conductivity of the entire gas mixture is determined, from which the concentration of a gas component of the gas mixture can be derived.
  • the hydrogen concentration in the gas mixture can be derived, since the thermal conductivity of hydrogen is significantly greater than the thermal conductivity of many other gas components.
  • the measuring operation of gas sensors known from the prior art is essentially based on a constant operation of a heating device of the gas sensor, by means of which a predetermined power is supplied to the gas mixture by supplying a predetermined electrical power to the heating device. Based on the heat dissipated by the gas mixture, the concentration of the gas component can then be determined.
  • measurement inaccuracies can occur because the heating power supplied in practice no longer corresponds to the theoretical heating power.
  • EP 3 502 687 A1 relates to a method for determining gas parameters.
  • the thermal conductivity can be determined by operating a heater in wave form (e.g. sine wave). Consequently, the thermal diffusivity can be determined by a time-dependent operation of the heater.
  • wave form e.g. sine wave
  • US 7 134 317 B2 JP 6 985 191 B2, CN 107 017 421 A and US 9 027 386 B2.
  • the present invention is essentially based on the object of providing a method and a gas sensor with which the concentration of a gas component in a gas mixture can be determined as accurately as possible.
  • the present invention is essentially based on the idea of dynamically operating a gas sensor based on the thermal conductivity measurement principle and having a heating device.
  • the dynamic operation of the heating device is characterized in that the heating device of the gas sensor based on the thermal conductivity measurement principle is switched on or off and then the temperature change of the gas mixture surrounding the heating device and / or the heating device itself is evaluated over time.
  • the concentration of a gas component, such as hydrogen, in the gas mixture can be determined from the temporal temperature behavior of the gas mixture surrounding the heating device and/or the heating device.
  • the advantage of the dynamic operation of the gas sensor is that the determined concentration of the gas component in the gas mixture can occur independently of the electrical power supplied to the heating device. For this purpose, the time course of the signal is considered and converted into a concentration value instead of the absolute value.
  • a method for determining the concentration of a gas component in a gas mixture by means of a gas sensor having a heater configured to heat the gas mixture and a temperature detection device configured to To detect the temperature of the gas mixture surrounding the heating device and / or the heating device.
  • the method according to the invention includes determining a constant temperature of the gas mixture and/or the heating device by means of the temperature detection device, changing the temperature of the gas mixture and/or the heating device from the first constant temperature to a second constant temperature by means of the heating device, and determining a time constant based on the time of changing the temperature of the gas mixture and / or the heating device from the first constant temperature to the second constant temperature and determining the concentration of the gas component in the gas mixture at least partially based on the determined time constant. Reaching the second constant temperature of the gas mixture and/or the heating device is detected by means of the temperature detection device, which continuously detects or monitors the temperature of the gas mixture and/or the heating device while the temperature changes.
  • the temperature of the gas mixture can be changed by means of the heating device by increasing or decreasing the temperature by switching the heating device on or off.
  • the present invention makes use of the fact that, starting from the first constant temperature of the gas mixture and/or the heating device, the gas mixture and/or the heating device can be changed to a second constant temperature by means of the heating device and based on the time-dependent temperature change behavior of the gas mixture and / or the heating device, the concentration of the gas component in the gas mixture can be determined independently of the electrical power supplied to the heating device.
  • the time constant can describe the time that the temperature of the gas mixture and/or the heating device requires to change from the first constant temperature to a predetermined temperature value between the first constant temperature and the second constant temperature.
  • the time constant describes a time during which the temperature of the gas mixture changes from the first constant temperature to a predetermined one Temperature value has changed between the first constant temperature and the second constant temperature.
  • the predetermined temperature value describes a change in the first constant temperature of approximately 75%.
  • the time constant describes the so-called T75 value (Tau75 value), which describes the time that the gas mixture needs to change to a temperature value of 75% smaller or larger than the first constant temperature.
  • the gas mixture is formed from a reference gas mixture and the gas component to be measured.
  • the reference gas mixture can be air, which is a mixture of several gases, such as. B. oxygen, nitrogen and other gases. Determining the concentration of the gas component in the gas mixture also takes into account the temperature behavior of the reference gas mixture without the gas component.
  • the reference gas mixture thus forms the base gas mixture in which the gas components to be measured are mixed. If the temperature behavior of the reference gas mixture without the gas component is known, the concentration of the gas component in the gas mixture can then be determined.
  • the temperature behavior of the reference gas mixture is determined by determining a first constant reference temperature of the reference gas mixture and/or the heating device by means of the temperature detection device, changing the temperature of the reference gas mixture and/or the heating device from the first constant reference temperature to a second constant reference temperature by means of the heating device and determining a reference time constant based on the time of changing the temperature of the reference gas mixture and / or the heating device from the first constant reference temperature to the second constant reference temperature. Reaching the second constant reference temperature is in turn detected with the temperature detection device.
  • the temperature behavior of the reference gas mixture can be determined by means of the gas sensor, which is operated according to the dynamic operation according to the invention, whereupon the gas sensor can then be used to determine the concentration of the gas component in the gas mixture based on the temperature behavior of the reference gas mixture.
  • the method according to the invention further comprises determining the relative humidity in the gas mixture.
  • the determination of the concentration of the gas component in the gas mixture is also based at least partially on the determined relative humidity of the gas mixture.
  • the moisture present in the gas mixture can falsify the determination of the concentration of the gas component in the gas mixture.
  • the moisture in the gas mixture has a significant influence on the thermal conductivity of the gas mixture, which would be incorrectly assigned to the gas component to be measured if it were not taken into account. Determining the relative humidity in the gas mixture can consequently improve the accuracy of determining the concentration of the gas component in the gas mixture and at least partially compensate for the disruptive influence of the moisture on the determination of the concentration of the gas component.
  • the heating device is a resistance heating device.
  • the method further comprises determining the first constant temperature or second constant temperature based at least in part on the electrical resistance of the resistance heating device.
  • the gas component to be measured is preferably hydrogen. Furthermore, it is advantageous that this is the concentration of hydrogen in the exhaust gas of a fuel cell.
  • a gas sensor for determining the concentration of a gas component in a gas mixture has a heating device which is designed to change the temperature of the gas mixture, at least one temperature detection device which is designed to detect the temperature of the gas mixture and/or the heating device, and a control device which is designed to to carry out a method for determining the concentration of the gas component in the gas mixture according to one of the preceding claims.
  • the gas sensor is preferably designed to determine the concentration of hydrogen in the gas mixture, preferably in the exhaust gas of a fuel cell.
  • the presence of leaks in gas tanks can be determined using the gas sensor according to the invention.
  • FIG. 1 shows a schematic representation of a gas sensor according to the invention for determining the concentration of a gas component in a gas mixture
  • Fig. 2 shows a diagram with exemplary temperature curves over time
  • FIG. 3 shows an exemplary flow chart of a method according to the invention for determining the concentration of a gas component in a gas mixture.
  • gas mixture describes a
  • the reference gas mixture can be a one-component gas, such as an inert gas, e.g. B. Argon, or even a mixture of several gases, such as air.
  • an inert gas e.g. B. Argon
  • a mixture of several gases such as air.
  • the temperature of the heating device essentially corresponds to the temperature of the gas mixture directly and immediately surrounding the heating device.
  • this refers to the proportion of the gas mixture that is in the direct and immediate surroundings of the heating device, i.e. H. is only a few micrometers away from the heater.
  • FIG. 1 shows a schematic representation of a gas sensor 100 according to the invention for determining the gas concentration of a gas component in a gas mixture.
  • the gas sensor 100 is in particular arranged at least partially within a gas chamber 10 in which the gas mixture containing the gas component is stored.
  • the gas chamber 10 is an exhaust pipe of a fuel cell.
  • the gas sensor 100 includes a sensor housing 102 in which a measuring space 104 is formed.
  • the sensor housing 102 has an opening 106 through which gas exchange between the gas chamber 10 and the measuring space 104 is possible.
  • the gas exchange between the gas chamber 10 and the measuring space 104 is indicated by the arrow 108.
  • the opening 106 of the sensor housing 102 is preferably covered by a gas-permeable membrane (not explicitly shown in FIG. 1), through which only gaseous media can penetrate.
  • the gas sensor 100 has a heating device 110, which is arranged within the sensor housing 102 and is designed to change, in particular to heat, the temperature of the gas mixture located in the measuring chamber 104.
  • the heater 110 can be, for example, a resistance heater that is operated with electrical current.
  • the gas sensor 100 also has a temperature detection device 120, which is designed to detect the temperature of the gas mixture within the measuring space 104.
  • the temperature sensor detection device 120 is, for example, a temperature sensor with a temperature-dependent resistor, such as a PTC resistor or NTC resistor, or a thermocouple. However, the temperature detection device 120 is preferably a temperature detection device 120 integrated into the heating device 110.
  • the electrical resistance of the heating device 110 designed as a resistance heating device can be determined, from which in turn the temperature of the gas mixture immediately surrounding the heating device 110 can be determined.
  • the temperature detection device 120 preferably detects the temperature of the gas mixture in the immediate vicinity of the heating device 110.
  • the immediate surroundings can, for example, describe an area of a few micrometers around the heating device 110.
  • the gas sensor 100 according to the invention shown as an example in FIG. 1 further comprises an optional humidity sensor 140, which is designed to detect the relative humidity of the gas mixture.
  • the humidity sensor 140 can be arranged within the sensor housing 102, as shown in FIG. 1. Alternatively, the humidity sensor 140 can also be arranged outside the sensor housing 102, but within the gas chamber 10.
  • the gas sensor 100 further has a control device 130, which is connected to the heating device 110, the temperature detection device 120 and the humidity sensor 140 and is designed to control the operation of the gas sensor 100 and to carry out a method according to the invention for determining the concentration of the gas component in the gas mixture.
  • a diagram is shown with exemplary curves 210, 220 of the temperature T of two gas mixtures over time t.
  • the course 210 marked with a solid line in FIG. 2 shows the time Course of the temperature T over time t of a first gas mixture that has a first concentration of the gas component.
  • the course 220 marked with a dashed line in FIG. 2 shows the time course of the temperature T over time t of a second gas mixture which has a second concentration of the gas component which is greater than the first concentration of the gas component in the first gas mixture.
  • the gas component whose concentration in the gas mixture is to be determined using the gas sensor 100 according to the invention of FIG. 1 is, in the example of FIG. 2, hydrogen, which has a higher thermal conductivity than the reference gas mixture, such as air.
  • the second shows that at time tO the first gas mixture 210 has been heated to a first constant temperature TC1 by means of the heating device 110.
  • the first gas mixture 210 was heated by means of the heating device 110 until the first constant temperature TC1 was set between tO and t1, for example by supplying a predetermined constant electrical power to the heating device 110.
  • the absolute temperature value TC1 is irrelevant here and can for example, in a range between 200 °C and 300 °C.
  • the heating device 110 is deactivated, whereupon the temperature of the first gas mixture 210 changes, in particular reduced, from the first constant temperature TC1, since the gas component, here hydrogen, continuously dissipates the heat of the now deactivated heating device 110.
  • the temperature of the first gas mixture 210 reaches a second constant temperature TC2, which essentially corresponds to the temperature of the gas mixture in the gas chamber 10. From this point in time T2, it can be said that the first gas mixture 210 has the same second constant temperature TC2 both in the gas chamber 10 and within the sensor housing 102 and no longer changes due to the deactivated heating device 110.
  • the second gas mixture 220 see dashed line in FIG.
  • the second gas mixture 220 has a higher concentration of the gas component, here hydrogen, than the first gas mixture 210, which is why the temperature of the gas mixture changes more quickly in the immediate vicinity of the heating device 110, since the higher concentration of the gas component in the second gas mixture produces heat the heater 110 can dissipate more quickly.
  • the gas component in the example in FIG. 2 is hydrogen mixed in air as a reference gas mixture
  • the above-mentioned effect applies that at higher hydrogen concentrations the temperature change of the gas mixture from the first constant temperature TC1 to the second constant temperature TC2 occurs more quickly .
  • the thermal conductivity of hydrogen as a gas component is essentially greater than the thermal conductivity of air as a reference gas mixture. Consequently, the thermal conductivity of the gas mixture increases with increasing hydrogen concentration.
  • the thermal conductivity of the gas mixture decreases with increasing gas component concentration in the case when the thermal conductivity of the gas component is substantially smaller than the thermal conductivity of the reference gas mixture.
  • the concentration of the gas component, here hydrogen, in the gas mixture can be determined or estimated according to the invention.
  • the times T1 (Tau1) and T2 (Tau2) can preferably be used, which each describe the times at which the temperature of the respective gas mixture 210, 220 has changed from the first constant temperature TC1 to the temperature T_75, which is between the first constant temperature TC1 and the second constant temperature TC2.
  • the temperature value T75 can describe the temperature value that is 75% below the first constant temperature TC1 or 25% above the second constant temperature TC2.
  • FIG. 3 shows an exemplary flow chart of a method according to the invention for determining the concentration of a gas component in a gas mixture.
  • reference will also be made again to the gas sensor 100 and the time course of the gas mixture 210 in FIG. 2.
  • step 3 starts at step 300 and then goes to step 310, at which the heating device 110 is activated in order to heat the gas mixture 210 within the measuring space 104 to the first constant temperature TC1.
  • the temperature of the gas mixture 210 is monitored by means of the temperature detection device 120. If the gas mixture 210 is heated to the first constant temperature TC1, the method reaches step 320, at which the heating device 110 is deactivated. This happens at time t1 in FIG. 2.
  • the temperature of the gas mixture 202 decreases from the first constant temperature TC1 to the second temperature TC2, which is reached at time t2 in the example of FIG. 2.
  • the time constant T1 is determined based on the temporal temperature profile of the first mixture 210, which describes the point in time at which the temperature of the first gas mixture 210 drops to 75% below the first constant temperature TC1 to the temperature value T_75 (see Fig. 2) has decreased.
  • the time constant T1 can indicate the time at which the temperature of the first gas mixture 210 changes to a different temperature value between the first constant temperature TC1 has decreased to the second constant temperature TC2
  • the concentration of the gas component, here hydrogen, in the first gas mixture 210 can then be determined on the basis of the determined time constant T1 before the method is ended in step 350.
  • Detecting that the temperature of the first gas mixture 210 has reached the first constant temperature TC1 or the second constant temperature TC2 can be done by monitoring the temperature using the temperature detection device 120. If this indicates a substantially constant temperature of the first gas mixture 210 over a predetermined period of time, the times t1 or t2 can be determined.
  • the signal from the moisture sensor 140 can also be taken into account. It turned out that any moisture in the gas mixture can falsify the measurement accuracy of the concentration of the gas component in the gas mixture.
  • the moisture in the gas mixture like the concentration of the gas component to be measured, essentially leads to a change in the thermal conductivity of the entire gas mixture. Consequently, the moisture in the gas mixture can represent a disturbance when determining the concentration of the gas component to be measured.
  • the method according to the invention can also run the other way around.
  • the gas mixture can be heated at time t1 by activating or switching on the heating device 110 during times t1 and t2 or t1 and t3 (see FIG. 2).
  • a higher second constant temperature TC2 is heated. Consequently, the temperature behavior of the gas mixture during heating is examined. So here again the Time constant T1 is determined and the concentration of the gas component in the gas mixture is derived from this.
  • the method according to the invention can also take into account the pressure of the gas mixture when determining the concentration of the gas component in the gas mixture in order to compensate for its cross-influence on the measurement.
  • the gas sensor 100 can also have a pressure detection device.
  • the advantage of the present invention in particular the dynamic operation of the heating device 110 of the gas sensor 100, is primarily that the
  • Concentration of the gas mixture can take place independently of the electrical power supplied to the heating device 110.
  • a temperature of the gas mixture to be set over the lifetime of the gas sensor 100 can no longer be guaranteed due to the aging-related drift of the heating device 110.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren und einen Gassensor zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch. Der Gassensor (100) umfasst eine Heizvorrichtung (110), die dazu ausgebildet ist, das Gasgemisch zu erwärmen, und eine Temperaturerfassungsvorrichtung (120), die dazu ausgebildet ist, die Temperatur des die Heizvorrichtung (110) umgebenden Gasgemischs und/oder der Heizvorrichtung (110) zu erfassen. Das Verfahren umfasst ein Ermitteln einer ersten konstanten Temperatur des Gasgemischs und/oder der Heizvorrichtung (110) mittels der Temperaturerfassungsvorrichtung (120), ein Ändern der Temperatur des Gasgemischs und/oder der Heizvorrichtung (110) von der ersten konstanten Temperatur auf eine zweite konstante Temperatur mittels der Heizvorrichtung (110), ein Ermitteln einer Zeitkonstante basierend auf der Zeit des Änderns der Temperatur des Gasgemischs und/oder der Heizvorrichtung (110) von der ersten konstanten Temperatur auf die zweite konstante Temperatur und ein Ermitteln der Konzentration der Gaskomponente im Gasgemisch zumindest teilweise basierend auf der ermittelten Zeitkonstante.

Description

Beschreibung
Verfahren und Gassensor zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch
Die vorliegende Erfindung betrifft ein Verfahren und einen Gassensor zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch, insbesondere einen auf dem Wärmeleitfähigkeitsmessprinzip basierenden Gassensor, wie beispielsweise einen Wasserstoffkonzentrationssensor.
Aus dem Stand der Technik sind Gassensoren bekannt, die auf dem Wärmeleitfähigkeitsmessprinzip basieren. Dabei wird die Wärmeleitfähigkeit des gesamten Gasgemischs ermittelt, woraus sich die Konzentration einer Gaskomponente des Gasgemischs ableiten lässt. Insbesondere kann dabei beispielsweise die Wasserstoffkonzentration im Gasgemisch abgeleitet werden, da die Wärmeleitfähigkeit von Wasserstoff signifikant größer ist als die Wärmeleitfähigkeit von vielen anderen Gaskomponenten.
Das Messbetrieb von aus dem Stand der Technik bekannten Gassensoren basiert im Wesentlichen auf einem konstanten Betrieb einer Heizvorrichtung des Gassensors, mittels der dem Gasgemisch durch Zuführen einer vorbestimmten elektrischen Leistung an die Heizvorrichtung eine vorbestimmte Leistung zugeführt wird. Aufgrund der vom Gasgemisch abgeführten Wärme kann dann auf die Konzentration der Gaskomponente geschlossen werden. Dabei kann es aber aufgrund von Alterungseffekten der Heizvorrichtung zu Messungenauigkeiten kommen, da die praktisch zugeführte Heizleistung nicht mehr der theoretischen Heizleistung entspricht.
Die EP 3 502 687 A1 betrifft ein Verfahren zum Bestimmen von Gasparametern. Dabei kann die Temperaturleitfähigkeit durch Betreiben eines Heizers in Wellenform (z. B. Sinus-Form) bestimmt werden. Folglich kann die Temperaturleitfähigkeit von einem zeitabhängigen Betrieb des Heizers bestimmt werden. Ferner bekannt sind US 7 134 317 B2, JP 6 985 191 B2, CN 107 017 421 A und US 9 027 386 B2.
Der vorliegenden Erfindung liegt im Wesentlichen die Aufgabe zugrunde, ein Verfahren und einen Gassensor bereitzustellen, mit denen die Konzentration einer Gaskomponente in einem Gasgemisch möglichst genau bestimmt werden kann.
Diese Aufgabe wird mit einem Verfahren gemäß unabhängigen Anspruch 1 und einem Gassensor gemäß unabhängigen Anspruch 9 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
Der vorliegenden Erfindung liegt im Wesentlichen der Gedanke zu Grunde, einen auf den Wärmeleitfähigkeitsmessprinzip basierenden Gassensor, der eine Heizvorrichtung aufweist, dynamisch zu betreiben. Der dynamische Betrieb der Heizvorrichtung ist dadurch gekennzeichnet, dass die Heizvorrichtung des auf dem Wärmeleitfähigkeitsmessprinzip basierenden Gassensors ein- oder ausgeschaltet wird und daraufhin die Temperaturänderung des die Heizvorrichtung umgebenden Gasgemischs und/oder der Heizvorrichtung selber über die Zeit auszuwerten. Aus dem zeitlichen Temperaturverhalten des die Heizvorrichtung umgebenden Gasgemischs und/oder der Heizvorrichtung kann die Konzentration einer Gaskomponente, wie beispielsweise Wasserstoff, im Gasgemisch ermittelt werden. Der Vorteil des dynamischen Betriebs des Gassensors besteht darin, dass die ermittelte Konzentration der Gaskomponente im Gasgemisch unabhängig von der der Heizvorrichtung zugeführten elektrischen Leistung erfolgen kann. Hierzu wird der zeitliche Verlauf des Signals betrachtet und in einen Konzentrationswert umgerechnet, anstelle des Absolutwerts.
Folglich ist gemäß einem ersten Aspekt der vorliegenden Erfindung ein Verfahren zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch mittels eines Gassensors offenbart, der eine Heizvorrichtung, die dazu ausgebildet ist, das Gasgemisch zu erwärmen, und eine Temperaturerfassungsvorrichtung aufweist, die dazu ausgebildet ist, die Temperatur des die Heizvorrichtung umgebenden Gasgemischs und/oder der Heizvorrichtung zu erfassen. Das erfindungsgemäße Verfahren umfasst dabei ein Ermitteln einer konstanten Temperatur des Gasgemischs und/oder der Heizvorrichtung mittels der Temperaturerfassungsvorrichtung, ein Ändern der Temperatur des Gasgemischs und/oder der Heizvorrichtung von der ersten konstanten Temperatur auf eine zweite konstante Temperatur mittels der Heizvorrichtung, ein Ermitteln einer Zeitkonstante basierend auf der Zeit des Änderns der Temperatur des Gasgemischs und/oder der Heizvorrichtung von der ersten konstanten Temperatur auf die zweite konstante Temperatur und ein Ermitteln der Konzentration der Gaskomponente im Gasgemisch zumindest teilweise basierend auf der ermittelten Zeitkonstante. Das Erreichen der zweiten konstanten Temperatur des Gasgemischs und/oder der Heizvorrichtung wird mittels der Temperaturerfassungsvorrichtung erfasst, die während dem Ändern der Temperatur die Temperatur des Gasgemischs und/oder der Heizvorrichtung kontinuierlich erfasst bzw. überwacht.
Erfindungswesentlich dabei ist, dass mittels der Heizvorrichtung die Temperatur des Gasgemischs durch Erhöhen oder Verringern der Temperatur mittels Einschaltens oder Ausschaltens der Heizvorrichtung geändert werden kann. Dabei macht sich die vorliegende Erfindung zu Nutze, dass zunächst ausgehend von der ersten konstanten Temperatur des Gasgemischs und/oder der Heizvorrichtung das Gasgemisch und/oder die Heizvorrichtung auf eine zweite konstante Temperatur mittels der Heizvorrichtung geändert werden kann und anhand des zeitabhängigen Temperaturänderungsverhaltens des Gasgemischs und/oder der Heizvorrichtung die Konzentration der Gaskomponente im Gasgemisch unabhängig von der der Heizvorrichtung zugeführten elektrischen Leistung ermittelt werden kann. Die Zeitkonstante kann dabei diejenige Zeit beschreiben, die die Temperatur des Gasgemischs und/oder der Heizvorrichtung benötigt, sich ausgehend von der ersten konstanten Temperatur auf einen vorbestimmten Temperaturwert zwischen der ersten konstanten Temperatur und der zweiten konstanten Temperatur zu ändern.
In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens beschreibt die Zeitkonstante dabei eine Zeit, während der sich die Temperatur des Gasgemischs von der ersten konstanten Temperatur auf einen vorbestimmten Temperaturwert zwischen der ersten konstanten Temperatur und der zweiten konstanten Temperatur geändert hat. Vorzugsweise beschreibt der vorbestimmte Temperaturwert eine Änderung der ersten konstanten Temperatur um ungefähr 75 %. Beispielsweise beschreibt die Zeitkonstante den sogenannten T75-Wert (,,Tau75-Wert), der diejenige Zeit beschreibt, die das Gasgemisch benötigt, sich auf einen Temperaturwert von 75 % kleiner oder größer als der ersten konstanten Temperatur zu ändern.
Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird das Gasgemisch aus einem Referenzgasgemisch und der zu vermessenden Gaskomponente gebildet. Beispielsweise kann es sich bei dem Referenzgasgemisch um Luft handeln, die ein Gemisch aus mehreren Gasen ist, wie z. B. Sauerstoff, Stickstoff und weiteren Gasen. Dabei berücksichtigt das Ermitteln der Konzentration der Gaskomponente im Gasgemisch ferner das Temperaturverhalten des Referenzgasgemischs ohne der Gaskomponente. Das Referenzgasgemisch bildet somit das Basis-Gasgemisch, in dem sich die zu vermessende Gaskomponenten beigemischt befindet. Ist das Temperaturverhalten des Referenzgasgemischs ohne der Gaskomponente bekannt, kann daraufhin die Konzentration der Gaskomponente im Gasgemisch ermittelt werden.
Dabei ist es ferner bevorzugt, dass das Temperaturverhalten des Referenzgasgemischs ermittelt wird durch ein Ermitteln einer ersten konstanten Referenztemperatur des Referenzgasgemischs und/oder der Heizvorrichtung mittels der Temperaturerfassungsvorrichtung, ein Ändern der Temperatur des Referenzgasgemischs und/oder der Heizvorrichtung von der ersten konstanten Referenztemperatur auf eine zweite konstante Referenztemperatur mittels der Heizvorrichtung und ein Ermitteln einer Referenzzeitkonstante basierend auf der Zeit des Änderns der Temperatur des Referenzgasgemischs und/oder der Heizvorrichtung von der ersten konstanten Referenztemperatur auf die zweite konstante Referenztemperatur. Das Erreichen der zweiten konstanten Referenztemperatur wird wiederum mit der Temperaturerfassungsvorrichtung erfasst. Insbesondere kann dabei mittels dem Gassensor, der gemäß dem erfindungsgemäßen dynamischen Betrieb betrieben wird, das Temperaturverhalten des Referenzgasgemischs ermittelt werden, woraufhin der Gassensor dann dazu verwendet werden kann, die Konzentration der Gaskomponente im Gasgemisch anhand des Temperaturverhaltens des Referenzgasgemischs zu bestimmen.
In einer weiteren vorteilhaften Ausgestaltung umfasst das erfindungsgemäße Verfahren ferner ein Ermitteln der relativen Feuchte im Gasgemisch. Dabei basiert das Ermitteln der Konzentration der Gaskomponente im Gasgemisch ferner zumindest teilweise auf der ermittelten relativen Feuchte des Gasgemischs.
Insbesondere kann sich dabei die Erkenntnis zu Nutze gemacht werden, dass die im Gasgemisch vorhandene Feuchte die Bestimmung der Konzentration der Gaskomponente im Gasgemisch verfälschen kann. Insbesondere hat die Feuchte im Gasgemisch einen erheblichen Einfluss auf die Wärmeleitfähigkeit des Gasgemischs, die fälschlicherweise bei nicht Berücksichtigung derselben der zu vermessenden Gaskomponente zugeordnet werden würde. Das Ermitteln der relativen Feuchte im Gasgemisch kann folglich die Genauigkeit des Ermittelns der Konzentration der Gaskomponente im Gasgemisch verbessern und den Störeinfluss der Feuchte auf die Bestimmung der Konzentration der Gaskomponente zumindest teilweise kompensieren.
Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens ist die Heizvorrichtung eine Widerstandsheizvorrichtung. In einer solchen bevorzugten Ausgestaltung umfasst das Verfahren ferner ein Ermitteln der ersten konstanten Temperatur oder zweiten konstanten Temperatur zumindest teilweise basierend auf dem elektrischen Widerstand der Widerstandsheizvorrichtung.
Vorzugsweise handelt es sich bei der zu vermessenden Gaskomponente um Wasserstoff. Ferner ist es vorteilhaft, dass es sich dabei um die Konzentration von Wasserstoff im Abgas einer Brennstoffzelle handelt. Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist ein Gassensor zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch offenbart. Der erfindungsgemäße Gassensor weist eine Heizvorrichtung, die dazu ausgebildet ist, die Temperatur des Gasgemischs zu ändern, zumindest eine Temperaturerfassungsvorrichtung, die dazu ausgebildet ist, die Temperatur des Gasgemischs und/oder der Heizvorrichtung zu erfassen, und eine Steuerungsvorrichtung auf, die dazu ausgebildet ist, ein Verfahren zum Ermitteln der Konzentration der Gaskomponente im Gasgemisch nach einem der vorhergehenden Ansprüche auszuführen.
Vorzugsweise ist der Gassensor dazu ausgebildet, die Konzentration von Wasserstoff im Gasgemisch, vorzugsweise im Abgas einer Brennstoffzelle, zu ermitteln. Zudem kann mittels dem erfindungsgemäßen Gassensor das Vorhandensein von Leckagen in Gastanks ermittelt werden.
Weitere Vorteile und Merkmale der vorliegenden Erfindung werden dem Fachmann durch Ausüben der hierin beschriebenen Lehre und Betrachten der beiliegenden einzigen Zeichnung ersichtlich, in denen:
Fig. 1 eine schematische Darstellung eines erfindungsgemäßen Gassensors zum Ermitteln der Konzentration einer Gaskomponenten in einem Gasgemisch zeigt,
Fig. 2 ein Diagramm mit beispielhaften Verläufen der Temperatur über die Zeit zeigt, und
Fig. 3 ein beispielhaftes Ablaufdiagramm eines erfindungsgemäßen Verfahrens zum Ermitteln der Konzentration einer Gaskomponenten in einem Gasgemisch zeigt.
Im Rahmen der vorliegenden Offenbarung beschreibt der Begriff „Gasgemisch“ ein
Gemisch aus einem Referenzgasgemisch und der zu vermessenden
Gaskomponente. Das Referenzgasgemisch kann dabei ein einkomponentiges Gas, wie beispielsweise ein Inertgas, z. B. Argon, oder selbst ein Gemisch aus mehreren Gasen, wie beispielsweise Luft, sein.
Im Rahmen der vorliegenden Offenbarung kann näherungsweise davon ausgegangen werden, dass die Temperatur der Heizvorrichtung im Wesentlichen der Temperatur des die Heizvorrichtung direkt und unmittelbar umgebenden Gasgemischs entspricht. Insbesondere ist damit der Anteil des Gasgemischs gemeint, der sich in direkter und unmittelbarer Umgebung der Heizvorrichtung befindet, d. h. nur wenige Mikrometer von der Heizvorrichtung entfernt ist.
Die Fig. 1 zeigt eine schematische Darstellung eines erfindungsgemäßen Gassensors 100 zum Ermitteln der Gaskonzentration einer Gaskomponente in einem Gasgemisch. Der Gassensor 100 ist insbesondere zumindest teilweise innerhalb einer Gaskammer 10 angeordnet, in der das die Gaskomponente aufweisende Gasgemisch bevorratet ist. Beispielsweise handelt es sich bei der Gaskammer 10 um eine Abgasleitung einer Brennstoffzelle.
Der Gassensor 100 umfasst ein Sensorgehäuse 102, in dem ein Messraum 104 gebildet ist. Das Sensorgehäuse 102 weist eine Öffnung 106 auf, durch die ein Gasaustausch zwischen der Gaskammer 10 und dem Messraum 104 ermöglicht ist. In der Fig. 1 ist der Gasaustausch zwischen der Gaskammer 10 und dem Messraum 104 durch den Pfeil 108 angezeigt. Vorzugsweise ist die Öffnung 106 des Sensorgehäuses 102 mittels einer gasdurchlässigen Membran (in der Fig. 1 nicht explizit dargestellt) bedeckt, durch die ausschließlich gasförmige Medien dringen können.
Der Gassensor 100 weist eine Heizvorrichtung 110 auf, die innerhalb des Sensorgehäuses 102 angeordnet und dazu ausgebildet ist, die Temperatur des sich im Messraum 104 befindlichen Gasgemischs zu ändern, insbesondere zu erwärmen. Die Heizvorrichtung 110 kann beispielsweise eine Widerstandsheizvorrichtung sein, die mit elektrischem Strom betrieben wird. Der Gassensor 100 weist ferner eine Temperaturerfassungsvorrichtung 120 auf, die dazu ausgebildet ist, die Temperatur des Gasgemischs innerhalb des Messraums 104 zu erfassen. Die Temperatursensorerfassungsvorrichtung 120 ist beispielsweise ein Temperatursensor mit einem temperaturabhängigen Widerstand, wie beispielsweise ein PTC-Widerstand oder NTC-Widerstand, oder ein Thermoelement. Bevorzugt handelt es sich bei der Temperaturerfassungsvorrichtung 120 jedoch um eine in die Heizvorrichtung 110 integrierte Temperaturerfassungsvorrichtung 120. Beispielsweise kann dabei der elektrische Widerstand der als Widerstandsheizvorrichtung ausgebildeten Heizvorrichtung 110 ermittelt werden, woraus wiederum die Temperatur des die Heizvorrichtung 110 unmittelbar umgebenden Gasgemischs ermittelt werden kann.
Vorzugsweise erfasst die Temperaturerfassungsvorrichtung 120 die Temperatur des Gasgemischs in unmittelbarer Umgebung der Heizvorrichtung 110. Die unmittelbare Umgebung kann beispielsweise einen Bereich von wenigen Mikrometern um die Heizvorrichtung 110 herum beschreiben.
Der in der Fig. 1 exemplarisch dargestellte erfindungsgemäße Gassensor 100 umfasst ferner einen optionalen Feuchtesensor 140, der dazu ausgebildet ist, die relative Feuchte des Gasgemischs zu erfassen. Der Feuchtesensor 140 kann, wie in der Fig. 1 gezeigt, innerhalb des Sensorgehäuses 102 angeordnet sein. Alternativ kann der Feuchtesensor 140 auch außerhalb des Sensorgehäuses 102, jedoch innerhalb der Gaskammer 10 angeordnet sein.
Der Gassensor 100 weist ferner eine Steuerungsvorrichtung 130 auf, die mit der Heizvorrichtung 110, der Temperaturerfassungsvorrichtung 120 und dem Feuchtesensor 140 verbunden und dazu ausgebildet ist, den Betrieb des Gassensors 100 zu steuern und ein erfindungsgemäßes Verfahren zum Ermitteln der Konzentration der Gaskomponente im Gasgemisch auszuführen.
Unter Verweis auf die Fig. 2 ist ein Diagramm mit beispielhaften Verläufen 210, 220 der Temperatur T von zwei Gasgemischen über die Zeit t gezeigt. Der in der Fig. 2 mit einer durchgezogenen Linie gekennzeichnete Verlauf 210 zeigt den zeitlichen Verlauf der Temperatur T über die Zeit t eines ersten Gasgemischs, das eine erste Konzentration der Gaskomponente aufweist. Der in der Fig. 2 mit einer gestrichelten Linie gekennzeichnete Verlauf 220 zeigt den zeitlichen Verlauf der Temperatur T über die Zeit t eines zweiten Gasgemischs, das eine zweite Konzentration der Gaskomponente aufweist, die größer ist als die erste Konzentration der Gaskomponente im ersten Gasgemisch. Bei der Gaskomponente, dessen Konzentration im Gasgemisch mittels des erfindungsgemäßen Gassensors 100 der Fig. 1 ermittelt werden soll, handelt es sich im Beispiel der Fig. 2 um Wasserstoff, das eine höhere Wärmeleitfähigkeit aufweist als das Referenzgasgemisch, wie beispielsweise Luft.
Die Fig. 2 zeigt, dass zum Zeitpunkt tO das erste Gasgemisch 210 auf eine erste konstante Temperatur TC1 mittels der Heizvorrichtung 110 erwärmt worden ist. Das Erwärmen des ersten Gasgemischs 210 mittels der Heizvorrichtung 110 erfolgte so lange, bis sich die erste konstante Temperatur TC1 zwischen tO und t1 eingestellt hat, beispielsweise durch Zuführen einer vorbestimmten konstanten elektrischen Leistung an die Heizvorrichtung 110. Der absolute Temperaturwert TC1 ist hierbei irrelevant und kann beispielsweise in einem Bereich zwischen 200 °C und 300 °C liegen.
Zum Zeitpunkt t1 wird die Heizvorrichtung 110 deaktiviert, woraufhin sich die Temperatur des ersten Gasgemischs 210 ausgehend von der ersten konstanten Temperatur TC1 ändert, insbesondere verringert, da die Gaskomponente, hier Wasserstoff, die Wärme des nunmehr deaktivierten Heizvorrichtung 110 stetig abführt. Zum Zeitpunkt t2 erreicht die Temperatur des ersten Gasgemischs 210 eine zweite konstante Temperatur TC2, die im Wesentlichen der Temperatur des Gasgemischs in der Gaskammer 10 entspricht. Ab diesem Zeitpunkt T2 kann gesagt werden, dass das erste Gasgemisch 210 sowohl in der Gaskammer 10 als auch innerhalb des Sensorgehäuses 102 die gleiche zweite konstante Temperatur TC2 aufweisen und sich aufgrund der deaktivierten Heizvorrichtung 110 nicht mehr ändert. Im Vergleich dazu erreicht das zweite Gasgemisch 220 (siehe gestrichelte Linie in der Fig. 2) mit der zweiten Konzentration der Gaskomponente, die größer ist als die erste Konzentration, ebenfalls ausgehend von der ersten konstanten Temperatur TC1 die zweite konstante Temperatur TC2 bereits zum Zeitpunkt t3, der zeitlich vor dem Zeitpunkt t2 liegt. Wie bereits erwähnt weist das zweite Gasgemisch 220 eine höhere Konzentration der Gaskomponente, hier Wasserstoff, als das erste Gasgemisch 210 auf, weshalb sich die Temperatur des Gasgemischs in unmittelbarer Umgebung der Heizvorrichtung 110 schneller ändert, da die höhere Konzentration der Gaskomponente im zweiten Gasgemisch die Wärme der Heizvorrichtung 110 schneller ableiten kann.
Da es sich in dem Beispiel der Fig. 2 um in Luft als Referenzgasgemisch gemischten Wasserstoff als Gaskomponente handelt, trifft der oben genannte Effekt zu, dass bei höherer Wasserstoffkonzentration die Temperaturänderung des Gasgemischs von der ersten konstanten Temperatur TC1 auf die zweite konstante Temperatur TC2 schneller verläuft. Dies begründet sich darauf, dass die Wärmeleitfähigkeit von Wasserstoff als Gaskomponente im Wesentlichen größer ist als die Wärmeleitfähigkeit von Luft als Referenzgasgemisch. Folglich erhöht sich die Wärmeleitfähigkeit des Gasgemischs mit steigender Wasserstoffkonzentration.
Im Gegensatz dazu verringert sich die Wärmeleitfähigkeit des Gasgemischs mit steigender Gaskomponentenkonzentration in dem Fall, wenn die Wärmeleitfähigkeit der Gaskomponente im Wesentlichen kleiner ist als die Wärmeleitfähigkeit des Referenzgasgemischs.
Aufgrund des zeitabhängigen Temperaturverhaltens des Gasgemischs kann erfindungsgemäß die Konzentration der Gaskomponente, hier Wasserstoff, im Gasgemisch ermittelt bzw. abgeschätzt werden.
Bevorzugt können man dabei die Zeitpunkte T1 (Tau1 ) und T2 (Tau2) herangezogen werden, die jeweils diejenige Zeitpunkte beschreiben, an denen sich die Temperatur des jeweiligen Gasgemischs 210, 220 von der ersten konstanten Temperatur TC1 auf die Temperatur T_75 geändert haben, die zwischen der ersten konstanten Temperatur TC1 und der zweiten konstanten Temperatur TC2 liegt. Insbesondere kann der Temperaturwert T75 denjenigen Temperaturwert beschreiben, der 75 % unterhalb der ersten konstanten Temperatur TC1 bzw. 25 % oberhalb der zweiten konstanten Temperatur TC2 liegt.
Die Fig. 3 zeigt ein beispielhaftes Ablaufdiagramm eines erfindungsgemäßen Verfahrens zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch. Im Folgenden wird dabei ebenfalls nochmals Bezug auf den Gassensor 100 und den zeitlichen Verlauf des Gasgemischs 210 der Fig. 2 genommen.
Das Verfahren der Fig. 3 startet beim Schritt 300 und gelangt dann zum Schritt 310, an dem die Heizvorrichtung 110 aktiviert wird, um das Gasgemisch 210 innerhalb des Messraums 104 auf die erste konstante Temperatur TC1 zu erwärmen. Die Überwachung der Temperatur des Gasgemischs 210 erfolgt mittels der Temperaturerfassungsvorrichtung 120. Ist das Gasgemisch 210 auf die erste konstante Temperatur TC1 erwärmt, gelangt das Verfahren zum Schritt 320, an dem die Heizvorrichtung 110 deaktiviert wird. Dies geschieht zum Zeitpunkt t1 der Fig. 2.
Nach dem Deaktivieren bzw. Ausschalten der Heizvorrichtung 110 verringert sich die Temperatur des Gasgemischs 202 von der ersten konstanten Temperatur TC1 auf die zweite Temperatur TC2, die bei dem Beispiel der Fig. 2 zum Zeitpunkt t2 erreicht wird.
In einem darauffolgenden Schritt 330 wird anhand des zeitlichen Temperaturverlaufs des ersten Gemischs 210 die Zeitkonstante T1 ermittelt, die denjenigen Zeitpunkt beschreibt, zu dem sich die Temperatur des ersten Gasgemischs 210 auf 75 % unterhalb der ersten konstanten Temperatur TC1 auf den Temperaturwert T_75 (siehe Fig. 2) verringert hat. Alternativ kann die Zeitkonstante T1 denjenigen Zeitpunkt anzeigen, zu dem sich die Temperatur des ersten Gasgemischs 210 auf einen anderen Temperaturwert zwischen der ersten konstanten Temperatur TC1 auf der zweiten konstanten Temperatur TC2 verringert hat
In einem darauffolgenden Schritt 340 kann dann auf der Grundlage der ermittelten Zeitkonstante T1 die Konzentration der Gaskomponente, hier Wasserstoff, im ersten Gasgemisch 210 ermittelt werden, bevor das Verfahren beim Schritt 350 beendet wird.
Das Erkennen, dass die Temperatur des ersten Gasgemischs 210 die erste konstante Temperatur TC1 oder die zweite konstante Temperatur TC2 erreicht hat, kann durch Überwachen der Temperatur mittels der Temperaturerfassungsvorrichtung 120 erfolgen. Wenn diese über einen vorbestimmten Zeitraum eine im Wesentlichen konstante Temperatur des ersten Gasgemischs 210 anzeigt, können die Zeitpunkte t1 oder t2 ermittelt werden.
Um die Genauigkeit der Bestimmung der Konzentration der Gaskomponente im Gasgemisch beim Schritt 340 zu verbessern, kann zusätzlich das Signal des Feuchtesensors 140 berücksichtigt werden. Dabei hat sich herausgestellt, dass etwaige Feuchte im Gasgemisch die Messgenauigkeit der Konzentration der Gaskomponente im Gasgemisch verfälschen kann. Die Feuchte im Gasgemisch führt im Wesentlichen, so wie auch die Konzentration der zu vermessenden Gaskomponente, zu einer Veränderung der Wärmeleitfähigkeit des gesamten Gasgemischs. Folglich kann die Feuchte im Gasgemisch eine Störgröße beim Ermitteln der Konzentration der zu vermessenden Gaskomponente darstellen.
Es ist für den Fachmann selbstredend, dass das erfindungsgemäße Verfahren auch umgekehrt ablaufen kann. Anstelle eines vorherigen Aufheizens des Gasgemischs mittels der Heizvorrichtung 110 kann ausgehend von einer niedrigeren vorbestimmten konstanten Temperatur TC1 das Gasgemisch zum Zeitpunkt t1 durch Aktivierung bzw. Einschalten der Heizvorrichtung 110 während den Zeitpunkten t1 und t2 bzw. t1 und t3 (siehe Fig. 2) auf eine höhere zweite konstante Temperatur TC2 erwärmt werden. Folglich wird dabei das Temperaturverhalten des Gasgemischs während des Aufheizens untersucht. Somit kann auch hier wieder die Zeitkonstante T1 ermittelt und davon die Konzentration der Gaskomponente im Gasgemisch abgeleitet werden.
Ferner kann das erfindungsgemäße Verfahren auch den Druck des Gasgemischs bei der Ermittlung der Konzentration der Gaskomponente im Gasgemisch zu berücksichtigen, um dessen Quereinfluss auf die Messung zu kompensieren. Hierzu kann der Gassensor 100 ferner eine Druckerfassungsvorrichtung aufweisen.
Der Vorteil der vorliegenden Erfindung, insbesondere des dynamischen Betriebs der Heizvorrichtung 110 des Gassensors 100, besteht vor allem darin, dass die
Konzentration des Gasgemischs unabhängig von der der Heizvorrichtung 110 zugeführten elektrischen Leistung erfolgen kann. Insbesondere hat sich herausgestellt, dass bei einem konstanten Betrieb der Heizvorrichtung mit einer konstanten elektrischen Leistung eine über Lebenszeit des Gassensors 100 einzustellende Temperatur des Gasgemischs aufgrund des alterungsbedingten Drifts der Heizvorrichtung 110 nicht weiter gewährleistet werden kann.

Claims

Patentansprüche
1 . Verfahren zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch mittels eines Gassensors (100), der eine Heizvorrichtung (110), die dazu ausgebildet ist, das Gasgemisch zu erwärmen, und eine Temperaturerfassungsvorrichtung (120) aufweist, die dazu ausgebildet ist, die Temperatur des die Heizvorrichtung (110) umgebenden Gasgemischs und/oder der Heizvorrichtung (110) zu erfassen, wobei das Verfahren aufweist:
Ermitteln einer ersten konstanten Temperatur des Gasgemischs und/oder der Heizvorrichtung (110) mittels der Temperaturerfassungsvorrichtung (120),
Ändern der Temperatur des Gasgemischs und/oder der Heizvorrichtung (110) von der ersten konstanten Temperatur auf eine zweite konstante Temperatur mittels der Heizvorrichtung (110), wobei das Erreichen der zweiten konstanten Temperatur mittels der Temperaturerfassungsvorrichtung (120) erfasst wird,
Ermitteln einer Zeitkonstante basierend auf der Zeit des Änderns der Temperatur des Gasgemischs und/oder der Heizvorrichtung (110) von der ersten konstanten Temperatur auf die zweite konstante Temperatur, und
Ermitteln der Konzentration der Gaskomponente im Gasgemisch zumindest teilweise basierend auf der ermittelten Zeitkonstante.
2. Verfahren nach Anspruch 1 , wobei die Zeitkonstante eine Zeit beschreibt, während der sich die Temperatur des Gasgemischs und/oder der Heizvorrichtung (110) von der ersten konstanten Temperatur auf einen vorbestimmten Temperaturwert zwischen der ersten konstanten Temperatur und der zweiten konstanten Temperatur geändert hat.
3. Verfahren nach Anspruch 2, wobei der vorbestimmte Temperaturwert eine Änderung der ersten konstanten Temperatur um ungefähr 75 % beschreibt.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Gasgemisch aus einem Referenzgasgemisch und der Gaskomponente besteht, wobei das Ermitteln der Konzentration der Gaskomponente im Gasgemisch ferner das Temperaturverhalten des Referenzgasgemischs ohne der Gaskomponente berücksichtigt.
5. Verfahren nach Anspruch 4, wobei das Temperaturverhalten des Referenzgasgemischs ermittelt wird durch:
Ermitteln einer ersten konstanten Referenztemperatur des Referenzgasgemischs und/oder der Heizvorrichtung (110),
Ändern der Temperatur des Referenzgasgemischs und/oder der Heizvorrichtung (110) von der ersten konstanten Referenztemperatur auf eine zweite konstante Referenztemperatur mittels der Heizvorrichtung, und Ermitteln einer Referenzzeitkonstante basierend auf der Zeit des Änderns der Temperatur des Referenzgasgemischs und/oder der Heizvorrichtung (100) von der ersten konstanten Referenztemperatur auf die zweite konstante Referenztemperatur, wobei das Temperaturverhalten des Referenzgasgemischs auf der ermittelten Referenzzeitkonstante basiert.
6. Verfahren nach einem der vorhergehenden Ansprüche, ferner mit: Ermitteln der relativen Feuchte im Gasgemisch, wobei das Ermitteln der Konzentration der Gaskomponente im Gasgemisch ferner zumindest teilweise auf der ermittelten relativen Feuchte des Gasgemischs basiert.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Heizvorrichtung eine Widerstandsheizvorrichtung (110) ist, wobei das Verfahren ferner aufweist:
Ermitteln der ersten konstanten Temperatur oder zweiten konstanten Temperatur zumindest teilweise basierend auf dem elektrischen Widerstand der Widerstandsheizvorrichtung (110).
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Gaskomponente Wasserstoff ist.
9. Gassensor (100) zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch, wobei der Gassensor (100) aufweist: eine Heizvorrichtung (110), die dazu ausgebildet ist, die Temperatur des Gasgemischs zu ändern, zumindest eine Temperaturerfassungsvorrichtung (120), die dazu ausgebildet ist, die Temperatur des Gasgemischs und/oder der Heizvorrichtung (110) zu erfassen, und eine Steuerungsvorrichtung (130), die dazu ausgebildet ist, ein Verfahren zum Ermitteln der Konzentration der Gaskomponente im Gasgemisch nach einem der vorhergehenden Ansprüche auszuführen.
10. Gassensor (100) nach Anspruch 9, wobei der Gassensor (100) dazu ausgebildet ist, die Konzentration von Wasserstoff im Gasgemisch zu ermitteln.
PCT/EP2023/070987 2022-08-03 2023-07-28 Verfahren und gassensor zum ermitteln der konzentration einer gaskomponente in einem gasgemisch WO2024028217A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022208018.1 2022-08-03
DE102022208018.1A DE102022208018B3 (de) 2022-08-03 2022-08-03 Verfahren und Gassensor zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch

Publications (1)

Publication Number Publication Date
WO2024028217A1 true WO2024028217A1 (de) 2024-02-08

Family

ID=87551051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/070987 WO2024028217A1 (de) 2022-08-03 2023-07-28 Verfahren und gassensor zum ermitteln der konzentration einer gaskomponente in einem gasgemisch

Country Status (2)

Country Link
DE (1) DE102022208018B3 (de)
WO (1) WO2024028217A1 (de)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039956A2 (de) * 1980-05-13 1981-11-18 Fuji Electric Co. Ltd. Messeinrichtung zur Gasanalyse nach dem Wärmeleitfähigkeitsverfahren
US7134317B2 (en) 2003-09-30 2006-11-14 Honda Motor Co., Ltd. Method of detecting a hydrogen concentration and apparatus for detecting hydrogen
US20130081445A1 (en) * 2011-09-29 2013-04-04 Belenos Clean Power Holding Ag Gas sensor and method for determining a concentration of gas in a two-component mixture
US9027386B2 (en) 2009-12-01 2015-05-12 Continental Automotive Gmbh Hydrogen sensor and a detection method for hydrogen concentration
DE102015222064A1 (de) * 2015-11-10 2017-05-11 Robert Bosch Gmbh Vorrichtung und Verfahren zum Detektieren einer Gaskomponente
CN107017421A (zh) 2017-03-09 2017-08-04 北京交通大学 一种燃料电池汽车的燃料实时监测与再循环装置
DE102017215527A1 (de) * 2017-09-05 2019-03-07 Robert Bosch Gmbh Gassensor zum Messen einer Konzentration eines Analysegases
EP3502687A1 (de) 2017-12-20 2019-06-26 Sensirion AG Bestimmung von gasparametern
JP6985191B2 (ja) 2018-03-19 2021-12-22 株式会社Soken 水素濃度検出装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003676B4 (de) 2000-01-28 2013-06-06 Axel-Ulrich Grunewald Verfahren und Vorrichtung zur Bestimmung der Konzentrationen eines H2/He-Gasgemisches
DE10218834A1 (de) 2002-04-26 2003-12-04 Siemens Ag Wärmeleitfähigkeits-Gasanalysator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039956A2 (de) * 1980-05-13 1981-11-18 Fuji Electric Co. Ltd. Messeinrichtung zur Gasanalyse nach dem Wärmeleitfähigkeitsverfahren
US7134317B2 (en) 2003-09-30 2006-11-14 Honda Motor Co., Ltd. Method of detecting a hydrogen concentration and apparatus for detecting hydrogen
US9027386B2 (en) 2009-12-01 2015-05-12 Continental Automotive Gmbh Hydrogen sensor and a detection method for hydrogen concentration
US20130081445A1 (en) * 2011-09-29 2013-04-04 Belenos Clean Power Holding Ag Gas sensor and method for determining a concentration of gas in a two-component mixture
DE102015222064A1 (de) * 2015-11-10 2017-05-11 Robert Bosch Gmbh Vorrichtung und Verfahren zum Detektieren einer Gaskomponente
CN107017421A (zh) 2017-03-09 2017-08-04 北京交通大学 一种燃料电池汽车的燃料实时监测与再循环装置
DE102017215527A1 (de) * 2017-09-05 2019-03-07 Robert Bosch Gmbh Gassensor zum Messen einer Konzentration eines Analysegases
EP3502687A1 (de) 2017-12-20 2019-06-26 Sensirion AG Bestimmung von gasparametern
JP6985191B2 (ja) 2018-03-19 2021-12-22 株式会社Soken 水素濃度検出装置

Also Published As

Publication number Publication date
DE102022208018B3 (de) 2023-10-05

Similar Documents

Publication Publication Date Title
EP2951573B1 (de) Restöl-messgerät
DE102020214708B4 (de) Verfahren zum Ermitteln eines Fehlers eines Abgassensors und Abgassensor
DE102022208018B3 (de) Verfahren und Gassensor zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch
EP4127691A1 (de) Verfahren zum ermitteln eines zustandsparameters eines abgassensors
DE4130099C2 (de) Verfahren und eine Vorrichtung zum Feststellen des Vorliegens eines durch eine Meßkammer eines Gasmeßgerätes geförderten Meßgasstromes
DE102016202537B4 (de) Verfahren und Vorrichtung zur Bestimmung der Konzentration von Gaskomponenten in einem Gasgemisch
EP3064937B1 (de) Betriebsverfahren für eine Breitbandlambdasonde
WO2020025380A1 (de) Flammenionisationsdetektor und verfahren zur analyse eines sauerstoffhaltigen messgases
DE102019203749A1 (de) Verfahren zum Ermitteln eines Fehlers eines Abgassensors einer Brennkraftmaschine
WO2018192711A1 (de) Kompaktes messgerät und verfahren zum erfassen von kohlenwasserstoffen
CH715709B1 (de) Verfahren zum Betreiben einer Gassensorvorrichtung und Gassensorvorrichtung.
DE10255698B4 (de) Verfahren zum Betrieb einer Durchflussmesseinrichtung
DE102012224374A1 (de) Verfahren zur Diagnose einer elektrischen Leitung zu einer Elektrode eines Sensorelements zur Erfassung mindestens einer Eigenschaft eines Messgases in einem Messgasraum
EP1962067A2 (de) Verfahren zur Kalibrierung eines Strömungssensors mit einem oder zwei temperatursensitiven Widerständen
DE102019220455A1 (de) Verfahren und Vorrichtung zum Betreiben eines Gassensors
DE102022208287A1 (de) Verfahren zum Ermitteln eines Fehlers einer Gassensorvorrichtung und Gassensorvorrichtung
EP4321859A1 (de) Gasmessvorrichtung und gasmessvorrichtung zur messung einer zielgas-konzentration und einer umgebungsfeuchte
EP2871473B1 (de) Ionisationssensor
EP4058792A1 (de) Verfahren und vorrichtung zum bestimmen einer degradation eines halbleitergassensors
WO2017102445A1 (de) Verfahren zur diagnose einer leckage sowie brennstoffzellensystem
WO2022106239A1 (de) Sensor zur erfassung mindestens einer eigenschaft eines fluiden mediums in einem messraum
DE102012208145A1 (de) Verfahren und Vorrichtung zur Beurteilung des Zustands eines Abgassensors
EP4303577A1 (de) Sensor-anordnung mit einem elektrochemischen sensor und einem temperatur-sensor und verfahren unter verwendung einer solchen sensor-anordnung
DE102020213786A1 (de) Verfahren zum Bewerten eines Sensors, sowie entsprechendes Sensorsystem und Verfahren zum Betreiben des Sensorsystems
DE102023205862A1 (de) Verfahren und Gassensor zum Ermitteln der Konzentration einer Gaskomponente in einem Gasgemisch und/oder der Temperatur des Gasgemischs und Batterieanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23748777

Country of ref document: EP

Kind code of ref document: A1