WO2024027840A1 - 一种耐黑变性能优良的锌铝镁镀层钢板及其制造方法 - Google Patents

一种耐黑变性能优良的锌铝镁镀层钢板及其制造方法 Download PDF

Info

Publication number
WO2024027840A1
WO2024027840A1 PCT/CN2023/111323 CN2023111323W WO2024027840A1 WO 2024027840 A1 WO2024027840 A1 WO 2024027840A1 CN 2023111323 W CN2023111323 W CN 2023111323W WO 2024027840 A1 WO2024027840 A1 WO 2024027840A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
zinc
aluminum
coating
magnesium
Prior art date
Application number
PCT/CN2023/111323
Other languages
English (en)
French (fr)
Inventor
王凯
金鑫焱
任玉苓
强少明
程国平
林传华
史良权
谭宁
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Publication of WO2024027840A1 publication Critical patent/WO2024027840A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0281After-treatment with induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0426Cooling with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates

Definitions

  • the present invention relates to a steel material and a manufacturing method thereof, in particular to a zinc-aluminum-magnesium coated steel plate and a manufacturing method thereof.
  • zinc-aluminum-magnesium coating products with higher coating aluminum content have gradually appeared on the market. They are used as upgraded products of galvanized products and have achieved commercial production.
  • this zinc-aluminum-magnesium coating product is prone to the problem of "blackening" during production, storage, transportation or use, that is, the surface of the steel plate turns black, which not only affects the appearance of the product, but also restricts the performance of the zinc-aluminum-magnesium coating. product development.
  • the final prepared zinc-aluminum-magnesium coating product has Good resistance to blackening.
  • the post-treatment film adopts a one-step production process technology, that is, a one-time coating film process is used on the coating surface; this one-time coating film production process is very efficient, and it not only It reduces equipment investment and can also save costs. This process method has good economic benefits and is the trend of future development.
  • the present invention hopes to obtain a zinc-aluminum-magnesium coated steel plate with excellent blackening resistance and a manufacturing method thereof.
  • the zinc-aluminum-magnesium coated steel plate still has very excellent blackening resistance under hot and humid conditions. , which has good prospects for promotion and application.
  • One of the objects of the present invention is to provide a zinc-aluminum-magnesium coated steel plate with excellent blackening resistance.
  • the zinc-aluminum-magnesium coated steel plate has excellent blackening resistance, and its blackening resistance under hot and humid conditions is more significant, and It can overcome the blackening problem of zinc-aluminum-magnesium coating products to ensure a good appearance during long-term use, thereby further improving the user experience.
  • the present invention proposes a zinc-aluminum-magnesium coated steel plate with excellent blackening resistance, which includes a substrate and a coating coated on the substrate.
  • the surface of the coating is also coated with a fingerprint-resistant film; the coating
  • the mass percentage of each component is: Al: 45%-65%, Mg: 0.2%-5%, Si: 0.1%-3%, Zr: 0.001%-0.15%, the balance is Zn and other unavoidable Impurities.
  • the quality of the coating coated on the surface of the base plate of the zinc-aluminum-magnesium coated steel plate designed in the present invention will directly affect the blackening resistance of the steel plate. Therefore, the inventor further optimized the chemical element composition of the coating.
  • the Al element In the coating of the zinc-aluminum-magnesium coated steel plate of the present invention, the Al element is very easy to oxidize, and the oxide film is very dense. The aluminum-rich phase with the oxide film formed by it can give the coating a very good protective ability. As a result, the coating obtains excellent corrosion resistance. Therefore, in order to exert the beneficial effects of Al element, in the present invention, the mass percentage content of Al element is controlled between 45% and 65%.
  • the mass percentage of the Al element can be further preferably controlled between 50% and 60%.
  • the Mg element can corrode simultaneously with Zn to form corrosion products, and the corrosion products of Mg are denser and have a better protective effect than the corrosion products of pure Zn. Improve the corrosion resistance of the coating. Therefore, in order to ensure the corrosion resistance of the coating, in the present invention, the mass percentage content of the Mg element is controlled between 0.2% and 5%.
  • the mass percentage of the Mg element can be further preferably controlled between 1% and 3%.
  • Si In the coating of the zinc-aluminum-magnesium coated steel plate of the present invention, adding an appropriate amount of Si element can reduce the reaction between the substrate and the Al in the liquid molten plating solution during the coating formation process, thereby ensuring the flatness of the substrate and the uniformity of the coating. . Based on this, in the present invention, the mass percentage content of Si element is controlled between 0.1% and 3%.
  • the mass percentage of Si element can be further preferably controlled between 1% and 2%.
  • Zr In the coating of the zinc-aluminum-magnesium coated steel plate of the present invention, an appropriate amount of Zr element needs to be added. During the formation process of the coating, when the molten coating alloy is cooled, the Zr element can cooperate with the Al element to form A13Zr particles, so as to Participating in the peritectic reaction refines the crystallization of the aluminum-rich phase in the surface layer, thereby increasing the aluminum-rich phase in the surface layer, thereby increasing the Al/Zn ratio of the coating surface layer and improving the corrosion resistance of the coating. Therefore, in order to exert the beneficial effects of Zr element, in the present invention, the mass percentage content of Zr is controlled between 0.001% and 0.15%.
  • the mass percentage content of the Zr element can be further preferably controlled between 0.01% and 0.05%.
  • the mass percentage of each component of the coating further meets at least one of the following items:
  • the thickness of the coating is 8-38 ⁇ m.
  • the present invention controls the thickness of the coating to 8-38 ⁇ m because: when the thickness of the coating is less than 8 ⁇ m, the corrosion resistance of the coating is poor, and the protection of the substrate is poor, and the coating The uniform coverage of the substrate is reduced.
  • the requirements for the substrate and the coating thickness control equipment of the hot-dip plating unit will be very high, which will lead to production difficulties; and when the coating thickness is higher than 38 ⁇ m, the requirements for the hot-dip plating unit will be very high.
  • the requirements for coating thickness control equipment will be very high, and it is difficult to ensure the uniformity of the coating, making it difficult to produce zinc-aluminum-magnesium coated steel plates with satisfactory quality.
  • the thickness of the coating is 10-30 ⁇ m.
  • the thickness of the fingerprint-resistant film is 0.5-2.5 ⁇ m.
  • the present invention controls the thickness of the anti-fingerprint film coated on the surface of the coating to between 0.5-2.5 ⁇ m, because when the thickness of the anti-fingerprint film is less than 0.5 ⁇ m, the anti-fingerprint film has a negative impact on the coating.
  • the coverage of the steel plate is reduced, which will cause local coating leakage and affect the corrosion resistance and blackening resistance of the coated steel plate.
  • the thickness of the fingerprint-resistant film is higher than 2.5 ⁇ m, the requirements for the post-processing film thickness control equipment of the hot plating unit will be very high, and the uniformity of the fingerprint-resistant film will also be difficult to guarantee.
  • the requirements for heating, baking and curing during the coating process will also be very high, and the conductivity and other properties of the fingerprint-resistant film will also deteriorate.
  • the thickness of the fingerprint-resistant film is 1.0-2.0 ⁇ m.
  • the substrate can be any steel material well known in the art for preparing zinc-aluminum-magnesium coated steel plate, including but not limited to: low carbon, deep drawing, ultra-deep Punching, high-strength, ultra-high-strength hot-rolled or cold-rolled steel plates; the steel types of the base plates can be IF steel, BH steel, HSLA steel, DP steel and TRIP steel, etc.
  • the surface color difference ⁇ E ⁇ 3 of the zinc-aluminum-magnesium coated steel plate before and after 24 hours under lamination wet heat (50°C, 95% humidity) conditions where ⁇ E is zinc-aluminum-magnesium The difference between the surface brightness value of the coated steel plate laminate before wet heat and the surface brightness value after 24 hours of wet heat.
  • the lamination moist heat condition is to stack steel plates together, and the steel plates are in conditions of higher temperature and higher humidity. Under such conditions, a tiny gap will be formed between the stacked steel plates. Under the combined action of water vapor and oxygen, the steel plates will undergo electrochemical corrosion. If the blackening resistance of the steel plates is poor, the surface layer of the steel plates will be Due to corrosion, part or the entire steel plate will turn black, causing blackening problems.
  • the inventor of this case found that if the blackening resistance of the steel plate is poor, blackening will also occur in the presence of water vapor, rain, and condensation during the placement or use of the steel plate. However, this is a long-term and slow process. It takes a long time to discover the blackening problem of the steel plate; in addition, the inventor of this case also found that the hot and humid conditions of the lamination are relatively harsh conditions, including higher temperature, higher humidity and water vapor, and the creation of lamination The tiny gaps are conducive to the formation of electrochemical corrosion conditions and aggravate the corrosion of the surface layer of the steel plate; if the blackening resistance of the steel plate is poor, the blackening problem of the steel plate can be found in 24 hours under the hot and humid conditions of the lamination, and the steel plate is monitored risk of melanosis.
  • the inventor also found that when the steel plate becomes black, the brightness value of the steel plate surface will decrease.
  • the difference between the original brightness value of the steel plate surface and the brightness value of the surface after a period of time is called the color difference ⁇ E , when ⁇ E ⁇ 3, black discoloration is visible to the naked eye, especially when black discoloration occurs locally on the steel plate.
  • the zinc-aluminum-magnesium coated steel plate designed by the present invention has very excellent resistance to blackening under hot and humid conditions.
  • the surface color difference of the zinc-aluminum-magnesium coated steel plate under laminated wet and hot conditions for 24 hours is ⁇ E ⁇ 3. That is, the blackening phenomenon cannot be observed with the naked eye.
  • another object of the present invention is to provide a method for manufacturing a zinc-aluminum-magnesium coated steel sheet.
  • the manufacturing method has a simple process and can effectively prepare the above-mentioned zinc-aluminum-magnesium coated steel sheet of the present invention.
  • the present invention proposes the above-mentioned manufacturing method of zinc-aluminum-magnesium coated steel plate, including the steps:
  • Cool the steel plate Control the cooling rate of the steel plate to 5-20°C/s;
  • the substrate pretreatment process in step (1) may specifically include: cleaning and degreasing the surface of the steel plate to remove dirt and grease on the surface, and then using a reduction annealing process to remove the surface of the substrate after cleaning and degreasing the steel plate. Oxide.
  • the reduction annealing process can be a process well known in the art, and appropriate reduction annealing process conditions can be selected according to different substrate materials and surface conditions of the substrate, as long as the oxides on the surface of the substrate can be removed.
  • An exemplary reduction annealing process includes: an annealing temperature of 700-850°C; an atmosphere of a mixed gas containing nitrogen and hydrogen, and the volume of hydrogen can be 1-15%; and the annealing time can be 30 seconds to 10 minutes.
  • a plating solution needs to be utilized to transport the substrate into the plating solution pool for hot dip plating.
  • the chemical composition of the plating bath is close to the composition of the steel plate coating.
  • step (3) of the manufacturing method of the present invention after the steel plate leaves the plating solution, it can first be blown with nitrogen through an air knife to control the coating thickness of the steel plate within the range of production requirements, and at the same time, the coating is cooled to a certain extent (such as cooling to 500 ⁇ 600°C). After that, the coated steel plate needs to be cooled in sections. It can first be air-cooled through the wind box cooling area (for example, cooled to 50-200°C), and then enter the water quenching tank for water cooling to further water-cool to room temperature.
  • the wind box cooling area for example, cooled to 50-200°C
  • the steel plate needs to be roller coated Fingerprint-resistant film
  • the thickness of the fingerprint-resistant film can be specifically controlled according to production requirements.
  • the thickness of the fingerprint-resistant film can be controlled by controlling the rotation speed and roller spacing of the roller coater; the steel plate coated with the fingerprint-resistant film by roller coating can be controlled by using
  • the electromagnetic induction heating method uses an induction heater to heat and bake the steel plate, and the temperature of the heated and baked steel plate is specifically controlled between 100-160°C.
  • the heating and baking temperature is controlled between 100-160°C because: when the heating and baking temperature is lower than 100°C, the fingerprint-resistant film may not be fully baked and cured, and the fingerprint-resistant film will be internally cross-linked and cured. If the degree of corrosion is not complete, the water-proof performance and other properties will be deteriorated. External water vapor will more easily pass through the fingerprint-resistant film and react with the coating under the film, causing the surface of the coating to be corroded, causing the coated steel plate to turn black, especially when water or condensation enters the steel coil. Blackening problems are more likely to occur under conditions such as water intrusion into the profiled plate stack and humidity and heat in the lamination.
  • the heating and baking temperature of the steel plate is specifically controlled at 100-160°C.
  • the temperature of the heated and baked steel plate can be further preferably controlled between 110°C and 140°C.
  • the fingerprint-resistant film can be various fingerprint-resistant films commonly used in the art, such as various chromium-free fingerprint-resistant films well known in the art, which can usually contain water-based organic resins, conductive additives, silane coupling agents, corrosion resists, etc. agents and lubricants.
  • the heated, baked and solidified steel plate also needs to be cooled.
  • the cooling method can be air cooling, and the cooling rate of the steel plate is specifically controlled to be 5-20°C/s. , to cool the steel plate temperature to close to room temperature.
  • the cooling rate of the steel plate is controlled at 5-20°C/s because: when the cooling rate is higher than 20°C/s, the requirements for cooling equipment are very high and production is difficult to achieve; in addition, air cooling If the speed is too high, the fan flow will be very large, and the strip will vibrate obviously, making it impossible to accurately measure the thickness of the fingerprint-resistant film, which is not conducive to stable control of the film thickness.
  • the cooling rate is lower than 5°C/s, the fingerprint-resistant film cannot be cooled sufficiently, which is not conducive to the aging of the film and causes the performance of the fingerprint-resistant film to deteriorate.
  • step (2) the temperature of the plating bath is 570-610°C.
  • step (2) the substrate is immersed in a plating bath, and after 1 to 10 seconds of immersion plating, the steel plate leaves the plating bath.
  • the reaction between Fe in the substrate and Al in the plating bath will intensify, resulting in the formation of an alloy of the main components Al and Fe at the interface between the plating layer and the substrate.
  • the thickening of the layer causes the processing formability of the coated steel plate to deteriorate; moreover, when the temperature of the plating solution is too high, the dissolution of Fe in the substrate in the plating solution intensifies, and the evaporation of Zn in the furnace nose also intensifies, resulting in the bottom of the plating solution pool.
  • the temperature of the plating bath When the temperature of the plating bath is lower than 570°C, the fluidity of the plating bath will decrease, making it difficult to control the thickness of the coating, making it difficult to ensure the uniformity and surface quality of the plating layer. Moreover, if the temperature of the plating bath is too low, the substrate will enter the plating bath. , the alloy layer at the interface of the coating substrate generated by the reaction between Fe on the substrate and Al in the plating solution is incomplete or thin, thus affecting the adhesion of the coating or the formability of the coated steel plate. Therefore, considering the influence of the temperature of the plating solution, in the manufacturing method of the present invention, it is preferable to control the temperature of the plating solution pool between 570-610°C.
  • step (4) the temperature of the heated and baked steel plate is 110-140°C.
  • the heating and baking method is electromagnetic induction heating.
  • the cooling method is air cooling.
  • the zinc-aluminum-magnesium coated steel plate with excellent blackening resistance and its manufacturing method according to the present invention have the following advantages and beneficial effects:
  • the inventor designed and obtained a new zinc-aluminum-magnesium coated steel plate with excellent blackening resistance.
  • the surface of the steel substrate of the zinc-aluminum-magnesium coated steel plate is coated with a coating that is optimized for chemical composition, and the coating The surface is also coated with a fingerprint-resistant film.
  • the surface color difference ⁇ E ⁇ 3 before and after 24 hours under laminate hot and humid conditions has excellent blackening resistance and can overcome the blackening problem of zinc-aluminum-magnesium coating products. During long-term use It has a good appearance, which can further enhance the user experience and promote the healthy development of zinc, aluminum and magnesium products.
  • the present invention also optimizes the design of the manufacturing method of the zinc-aluminum-magnesium coated steel plate.
  • the process is simple. Through the control of post-processing coating process, heating baking process and cooling process, it can Effectively improve the blackening resistance of the steel plate to ensure that the prepared zinc-aluminum-magnesium coated steel plate can obtain excellent blackening resistance.
  • the zinc-aluminum-magnesium coated steel plates of Examples 1-9 and the comparative steel materials of Comparative Examples 1-3 can be prepared by adopting the following steps (1)-(6):
  • Substrate pretreatment Use a 0.6mm cold-rolled hard steel plate as the substrate. After cleaning and degreasing, it is annealed for 2 minutes under the protection of N2-5% H2 atmosphere at 770°C.
  • the substrate enters the plating bath for hot dip plating: the substrate enters the plating bath for hot dip plating, and the temperature of the plating bath is controlled to 570-610°C. After immersion plating for 3 seconds, the steel plate leaves the plating bath; where, The chemical ratio of the plating bath used in each embodiment and comparative example is detailed in Table 1.
  • the steel plate leaves the plating solution, passes through the air knife, and controls the thickness of the coating by controlling the air knife purge intensity; then performs segmented cooling such as air cooling and water cooling, and the steel plate enters the water quenching tank and is cooled to room temperature.
  • the steel plate is coated with a fingerprint-resistant film through a roller coater, and the thickness of the fingerprint-resistant film is controlled by controlling the rotation speed and roller spacing of the roller coater; after the steel plate is coated with the fingerprint-resistant film, the steel plate is controlled to pass through an induction heater and is heated by electromagnetic induction. Heating and baking curing is carried out in a method where the temperature of the heated and baked steel plate is controlled to be 100-160°C, preferably between 110-140°C.
  • Cooling of the steel plate The steel plate is air-cooled by the fan, and the cooling speed of the steel plate is controlled to 5-20°C/s.
  • the steel plate After cooling, the steel plate is rolled into finished steel coils when it is close to room temperature.
  • the relevant manufacturing processes and parameters of the zinc-aluminum-magnesium coated steel plates of Examples 1-9 all meet the design specifications of the present invention, and the plating bath components (that is, coating components) used also meet the design requirements of the present invention.
  • the manufacturing process of the plating solution (plating layer) contained parameters that did not meet the requirements of the design specifications of the present invention, resulting in poor surface properties of the final comparative steel.
  • the present invention does not place special restrictions on the substrate used for steel. In practical applications, those skilled in the art can select it according to needs. It has no direct bearing on the excellent blackening resistance of the coating obtained by the present invention.
  • Table 1 lists the chemical element mass percentages of the corresponding plating solutions and the formed coatings for the zinc-aluminum-magnesium coated steel plates of Examples 1-9 and the comparative steel materials of Comparative Examples 1-3.
  • Table 2 lists the specific process parameters of the zinc-aluminum-magnesium coated steel plates of Examples 1-9 and the comparative steel materials of Comparative Examples 1-3 in the above process steps (1)-(6).
  • the relevant laminated wet heat test specifically includes: before the test, measure the brightness value of the surface of the corresponding steel plate, then stack the steel plates together, apply a pre-tightening force of 30 Nm to clamp and fix the stacked steel plates, and place the fixed steel plates on Put it into the hot and humid box with a condition temperature of 50°C and 95% humidity. Place it in the hot and humid box for 24 hours. Take out the stacked steel plates and measure the brightness value of the steel plate surface again. Using this test, the surface brightness values of the steel plates of Examples 1-9 and Comparative Examples 1-3 after the 24-hour laminated wet heat test can be effectively detected.
  • Table 3 lists the laminated wet heat test results of the finished steel coils of Examples 1-9 and Comparative Examples 1-3.
  • ⁇ E is the difference between the surface brightness value of the steel plate laminate before moist heat and the surface brightness value of the laminate after 24 hours of moist heat.
  • the zinc-aluminum-magnesium coated steel plates of Examples 1-9 prepared by the inventive design scheme have higher brightness values than the comparative steel plates of Comparative Examples 1-3.
  • the surface brightness value of the steel plates after the 24-hour laminated wet heat test is 68.49 -72.08.
  • the surface color difference ⁇ E of the zinc-aluminum-magnesium coated steel plates in Examples 1-9 was between 0.16 and 2.35 after 24 hours of lamination under wet and hot conditions. The ⁇ E was ⁇ 3, and no blackening occurred on the surface.
  • the surface color difference ⁇ E before and after 24 hours under laminated hot and humid conditions is between 7.62-9.37, and ⁇ E>3.
  • the surface of the steel plates turned black, causing blackening problems.
  • the zinc-aluminum-magnesium coated steel plates prepared using the technical solution designed by the present invention have very excellent resistance to blackening, especially under hot and humid conditions of lamination, and are suitable for It has a wide range, can effectively meet the needs of the current market and users, and has good promotion prospects and application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Coating With Molten Metal (AREA)

Abstract

一种耐黑变性能优良的锌铝镁镀层钢板,其包括基板以及镀覆于基板上的镀层,所述镀层表面还涂覆有耐指纹膜;所述镀层各成分的质量百分含量为:Al:45%-65%,Mg:0.2%-5%,Si:0.1%-3%,Zr:0.001%-0.15%,余量为Zn和其他不可避免的杂质。相应地,还公开了上述锌铝镁镀层钢板的制造方法,其包括步骤:(1)基板预处理;(2)基板进入镀液池进行热浸镀;(3)钢板离开镀液,进行分段冷却;(4)涂覆耐指纹膜以及加热烘烤固化,其中加热烘烤钢板温度为100-160℃;(5)钢板进行冷却:控制钢板的冷却速度为5-20℃/s;(6)钢板卷曲成成品卷。

Description

一种耐黑变性能优良的锌铝镁镀层钢板及其制造方法 技术领域
本发明涉及一种钢材及其制造方法,尤其涉及一种锌铝镁镀层钢板及其制造方法。
背景技术
自二十一世纪以来,为了制备出使用寿命更长的产品,市场和用户对于钢材的耐蚀性要求也逐渐变得越来越高,而锌铝镁镀层钢板则因其自身所具有的优异的耐蚀性得到了快速地发展。
近年来,市场上逐渐出现了镀层铝含量较高的锌铝镁镀层产品,其被用作为镀铝锌产品的升级产品,实现了商业化生产。但是,这种锌铝镁镀层产品在生产、储存、运输或使用过程中易出现“黑变”的问题,即钢板的表面发黑,其不仅影响了产品的外观,还制约了锌铝镁镀层产品的发展。
研究发现,目前国内外生产制备锌铝镁镀层产品的技术路径存在差异。国外锌铝镁镀层产品表面的后处理膜主要采用两步法生产工艺技术,即镀层表面先进行钝化工艺处理,而后再进行涂覆膜工艺处理,其最终所制备的锌铝镁镀层产品的耐黑变性能较好。而国内在生产制备锌铝镁镀层产品时,其后处理膜采用了一步法生产工艺技术,即采用的是镀层表面一次涂覆膜工艺处理;这种一次涂覆膜生产工艺十分高效,其不仅减少了设备投入,还可节省成本,这种工艺手段具有良好的经济效益,是未来发展的趋势。
但是,在现有技术中,所采用的这种后处理膜的开发和后处理膜的涂覆工艺控制是一大难点,该工艺所生产的锌铝镁镀层产品易发黑,尤其是在湿热、堆垛、雨水冲刷等条件下更容易发生黑变。
鉴于此,为了解决上述技术问题,本发明期望获得一种耐黑变性能优良的锌铝镁镀层钢板及其制造方法,该锌铝镁镀层钢板在湿热条件下仍然具有十分优异的耐黑变性能,其具有良好的推广应用前景。
发明内容
本发明的目的之一在于提供一种耐黑变性能优良的锌铝镁镀层钢板,该锌铝镁镀层钢板具有优良的耐黑变性能,其在湿热条件下的耐黑变性能更加显著,且能够克服锌铝镁镀层产品的黑变问题,以确保在长期使用过程中具有良好的外观,从而进一步提升用户使用体验。
为了实现上述目的,本发明提出了一种耐黑变性能优良的锌铝镁镀层钢板,其包括基板以及镀覆于基板上的镀层,所述镀层表面还涂覆有耐指纹膜;所述镀层各成分的质量百分含量为:Al:45%-65%,Mg:0.2%-5%,Si:0.1%-3%,Zr:0.001%-0.15%,余量为Zn和其他不可避免的杂质。
在本发明中,本发明所设计的这种锌铝镁镀层钢板的基板表面所镀覆的镀层的质量会直接影响钢板的耐黑变性能。因此,发明人对该镀层的化学元素成分做了进一步地优化设计。
在本发明所述的锌铝镁镀层钢板的镀层中,各化学元素的设计原理如下所述:
Al:在本发明所述的锌铝镁镀层钢板的镀层中,Al元素因极易氧化,且氧化膜非常致密,其所形成的带氧化膜的富铝相可以赋予镀层非常好的保护能力,从而使得镀层获得优异的耐腐蚀性能。因此,为发挥Al元素的有益效果,在本发明中,将Al元素的质量百分含量控制在45%-65%之间。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以进一步优选地将Al元素的质量百分含量控制在50%-60%之间。
Mg:在本发明所述的锌铝镁镀层钢板的镀层中,Mg元素能够与Zn同时腐蚀形成腐蚀产物,且Mg的腐蚀产物更致密,较纯Zn的腐蚀产物有更好的保护作用,可提升镀层的耐腐蚀性能。为此,为确保镀层的耐腐蚀性能,在本发明中,将Mg元素的质量百分含量控制在0.2%-5%之间。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以进一步优选地将Mg元素的质量百分含量控制在1%-3%之间。
Si:在本发明所述的锌铝镁镀层钢板的镀层中,添加适量的Si元素可以在镀层形成过程中减轻基板与液态熔融镀液中Al的反应,从而保证基板的平整和镀层的均匀性。基于此,在本发明中,将Si元素的质量百分含量控制在0.1%-3%之间。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以进一步优选地将Si元素的质量百分含量控制在1%-2%之间。
Zr:在本发明所述的锌铝镁镀层钢板的镀层中,还需添加适量的Zr元素,在镀层的形成过程中,熔融镀层合金冷却时,Zr元素能够与Al元素配合形成A13Zr粒子,以参与包晶反应使得表层富铝相结晶细化,从而使表层中的富铝相增多,进而提升镀层表层的Al/Zn比,提高镀层的耐腐蚀性能。因此,为了发挥Zr元素的有益效果,在本发明中,将Zr的质量百分含量控制在0.001%-0.15%之间。
当然,在一些优选的实施方式中,为了获得更优的实施效果,可以进一步优选地将Zr元素的质量百分含量控制在0.01%-0.05%之间。
进一步地,在本发明所述的锌铝镁镀层钢板中,所述镀层各成分的质量百分含量进一步满足下述各项的至少其中之一:
Al:50%-60%,
Mg:1%-3%,
Si:1%-2%,
Zr:0.01%-0.05%。
进一步地,在本发明所述的锌铝镁镀层钢板中,所述镀层的厚度为8-38μm。
在本发明上述技术方案中,本发明将镀层的厚度控制在8-38μm,是因为:当镀层厚度低于8μm时,镀层的耐腐蚀性性能不良,其对于基板的保护性不佳,且镀层均匀覆盖基板性降低,要获得表面质量满意的镀层钢板对基板和热镀机组镀层厚度控制设备的要求会很高,会导致生产困难;而当镀层厚度高于38μm时,则对热镀机组的镀层厚度控制设备要求会非常高,其镀层的均匀性难以保证,难以生产出表明质量满意的锌铝镁镀层钢板。在一些实施方案中,镀层的厚度为10-30μm。
进一步地,在本发明所述的锌铝镁镀层钢板中,所述耐指纹膜的厚度为0.5-2.5μm。
在本发明上述技术方案中,本发明将镀层表面涂覆的耐指纹膜的厚度控制在0.5-2.5μm之间,是因为:当耐指纹膜的厚度低于0.5μm时,耐指纹膜对镀层钢板的覆盖性降低,会造成局部漏涂,影响镀层钢板的耐腐蚀性、耐黑变 性、成型性等性能;而当耐指纹膜的厚度高于2.5μm时,则对热镀机组后处理膜厚控制设备要求会非常高,耐指纹膜的均匀性也难以保证,对后处理涂覆过程的加热烘烤固化的要求也会非常高,而且耐指纹皮膜的导电性等性能也会劣化。
更进一步地,在本发明所述的锌铝镁镀层钢板中,所述耐指纹膜的厚度为1.0-2.0μm。
进一步地,在本发明所述的锌铝镁镀层钢板中,所述基板可以是本领域周知的任何用来制备锌铝镁镀层钢板的钢材,包括但不限于:低碳、深冲、超深冲、高强度、超高强度的热轧或冷轧钢板;基板的钢种可以为IF钢、BH钢、HSLA钢、DP钢和TRIP钢等。
进一步地,在本发明所述的锌铝镁镀层钢板中,锌铝镁镀层钢板在叠片湿热(50℃、95%湿度)条件下24小时前后表面色差ΔE<3,其中ΔE为锌铝镁镀层钢板叠片湿热前表面明度值与湿热24小时后表面明度值的差值。
本发明所述的技术方案中,叠片湿热条件是将钢板堆叠在一起,钢板处于较高温度、较高湿度的条件。在该种条件下,堆叠的钢板与钢板之间会形成微小的间隙,在水汽、氧气的共同作用下,钢板会发生电化学腐蚀,若钢板的耐黑变性能较差,钢板的表层会被腐蚀,钢板局部或整体会发黑,出现黑变问题。
本案发明人发现,若钢板的耐黑变性能较差,则钢板在放置或使用过程中,在有水汽、雨水、结露的条件下也会发生黑变,但这是一个长期缓慢的过程,需要较长时间才能发现钢板的黑变问题;此外,本案发明人还发现,叠片湿热条件是比较严苛的条件,既有较高的温度、较高的湿度和水汽,又有叠片创造的微小的间隙,利于形成电化学腐蚀的条件,加剧钢板表层的腐蚀;若钢板的耐黑变性能较差,则在叠片湿热条件下24小时即可发现钢板的黑变问题,监测到钢板的黑变风险。
另外,在本发明中,发明人还发现,当钢板发生黑变,则钢板表面的明度值会降低,钢板表面原来的明度值与一段时间后表面的明度值的差值我们称之为色差ΔE,当ΔE≥3时,肉眼可见黑变现象,尤其钢板局部发生黑变时现象更为明显。
而本发明所设计的这种锌铝镁镀层钢板在湿热条件下具有十分优异的耐黑变性能,该锌铝镁镀层钢板在叠片湿热条件下24小时前后表面色差ΔE<3, 即肉眼无法观察到黑变现象。
相应地,本发明的另一目的在于提供一种锌铝镁镀层钢板的制造方法,该制造方法工艺简单,采用该制造方法可以有效制备本发明上述的锌铝镁镀层钢板。
为了实现上述目的,本发明提出了上述的锌铝镁镀层钢板的制造方法,包括步骤:
(1)基板预处理;
(2)基板进入镀液池进行热浸镀;
(3)钢板离开镀液,进行分段冷却;
(4)涂覆耐指纹膜以及加热烘烤固化,其中加热烘烤钢板温度为100-160℃;
(5)钢板进行冷却:控制钢板的冷却速度为5-20℃/s;
(6)钢板卷曲成成品卷。
在本发明所述的制造方法中,步骤(1)的基板预处理工艺可以具体包括:对钢板表面清洗脱脂去除表面的脏污和油脂,然后对清洗脱脂后的钢板采用还原退火工艺去除基板表面氧化物。
所述还原退火工艺可以是本领域熟知的工艺,可根据不同的基板材质以及基板的表面状况选择合适的还原退火工艺条件,只要能达到去除基板表面的氧化物即可。示例性的还原退火工艺包括:退火温度700~850℃;气氛为含有氮气和氢气的混合气体,氢气的体积百分百可为1~15%;退火时间可为30秒~10分钟。
相应地,在上述制造方法的步骤(2)中,需要利用到镀液,以将基板输送进镀液池进行热浸镀。其中,镀液池的化学成分与钢板镀层成分接近,通过对镀液池的化学元素控制能够实现对钢板镀层的化学元素的控制。
在本发明所述制造方法的步骤(3)中,钢板离开镀液后,可以首先经过气刀通过吹氮气,以控制钢板的镀层厚度在生产要求的范围内,同时镀层得到一定程度的冷却(如冷却到500~600℃)。之后,需要对镀层钢板进行分段冷却,其可以先经过风箱冷却区域进行风冷(如冷却到50~200℃),而后再输入水淬槽进行水冷,以进一步水冷至室温。
此外,在本发明所述制造方法的步骤(4)中,需要对钢板进行辊涂涂覆 耐指纹膜,其耐指纹膜厚度可以根据生产要求进行具体控制,例如可通过控制辊涂机的转速和辊间距来控制耐指纹膜厚度;辊涂涂覆耐指纹膜后的钢板,可以通过采用电磁感应加热的方式,利用感应加热器加热烘烤钢板,其加热烘烤钢板温度具体控制在100-160℃之间。
需要说明的是,将加热烘烤温度控制在100-160℃之间,是因为:当加热烘烤温度低于100℃时,耐指纹膜烘烤固化可能不充分,耐指纹膜内部交联固化程度不彻底,隔水性能和其他性能劣化,外界水汽更容易穿过耐指纹膜与膜下的镀层接触发生反应致使镀层表面被腐蚀,造成镀层钢板发黑,尤其钢卷进水或结露、压型板堆垛进水、叠片湿热等条件下更容易发生黑变问题。而当加热烘烤温度高于160℃时,耐指纹膜可能发生过烘烤老化的问题,造成耐指纹膜性能的劣化;而且,加热烘烤温度过高会对加热烘烤后的冷却段设备要求很高,也会导致能耗较高,提高生产成本。因此,本发明中,具体将钢板的加热烘烤温度控制在100-160℃。当然,在一些优选的实施方式中,为了获得更优的实施效果,可以进一步优选地将加热烘烤钢板温度控制在110-140℃之间。
本文中,耐指纹膜可以是本领域常用的各种耐指纹膜,如本领域熟知的各种无铬耐指纹膜,其通常可含有水性有机树脂、导电助剂、硅烷偶联剂、抗蚀剂和润滑助剂等组分。
另外,本发明所述制造方法的步骤(5)中,加热烘烤固化后的钢板还需要进行冷却,其冷却方式可以选用为风冷,并具体控制钢板的冷却速度为5-20℃/s,以将钢板温度冷却至接近室温。
在该冷却过程中,将钢板的冷却速度控制在5-20℃/s,是因为:当冷却速度高于20℃/s,对冷却设备的要求很高,生产难以实现;另外,风冷冷却速度过高,风机流量很大,带钢抖动明显,无法实现耐指纹膜膜厚的准确测量,不利于膜厚的稳定控制。而当冷却速度低于5℃/s,则耐指纹皮膜不能够充分冷却,不利于皮膜的老化,使耐指纹膜性能劣化。
进一步地,在本发明所述的制造方法中,在步骤(2)中,镀液池的温度为570-610℃。在一些实施方案中,步骤(2)中,将基板浸入镀液池,浸镀1~10秒钟后,钢板离开镀液。
在本发明上述技术方案中,还进一步优选地将镀液池温度控制在570-610℃之间,这是因为:
当镀液池的镀液温度高于610℃时,基板进入镀液池中,基板中的Fe与镀液中Al反应会加剧,其导致镀层与基板界面位置生成的主要成分Al、Fe的合金层厚度加厚,造成镀层钢板的加工成型性劣化;而且,当镀液温度过高时,基板中的Fe在镀液池中溶解加剧,炉鼻子内Zn蒸发也加剧,导致镀液池中底渣、面渣增多,炉鼻子内锌灰增加,造成镀层钢板的表面质量降低、生产锌耗的增加和生产成本的升高;此外,镀液温度过高,镀液对锌锅中辊系设备的腐蚀也会加剧,减少了辊系设备的寿命,也增加了生产的风险。
当镀液池温度低于570℃时,镀液的流动性会降低,镀层厚度控制变得困难,进而使得镀层均匀性和表面质量难以保证;而且,镀液温度过低,基板进入镀液池,基板Fe与镀液中Al反应生成的镀层基板界面合金层不完整或较薄,从而影响镀层附着性或镀层钢板的成型性。因此,考虑到镀液温度的影响,本发明所述的制造方法中,优选地将镀液池的温度控制在570-610℃之间。
进一步地,在本发明所述的制造方法中,在步骤(4)中,加热烘烤钢板温度为110-140℃。
进一步地,在本发明所述的制造方法中,在步骤(4)中,加热烘烤方式为电磁感应加热。
进一步地,在本发明所述的制造方法中,在步骤(5)中,冷却方式为风冷。
相较于现有技术,本发明所述的耐黑变性能优良的锌铝镁镀层钢板及其制造方法具有如下所述的优点以及有益效果:
在本发明中,发明人设计并获得了一种新的耐黑变性能优良的锌铝镁镀层钢板,该锌铝镁镀层钢板的钢基板表面镀覆有对化学成分优化设计的镀层,且镀层表面还涂覆有耐指纹膜,其在叠片湿热条件下24小时前后表面色差ΔE<3,具有优异的耐黑变性能,且能够克服锌铝镁镀层产品的黑变问题,在长期使用过程中具有良好的外观,能够进一步提升用户使用体验和促进锌铝镁产品的良性发展。
此外,除了具有上述优点外,本发明还对所述的锌铝镁镀层钢板制造方法进行了优化设计,其工艺简单,通过后处理涂覆膜工艺、加热烘烤工艺和冷却工艺的控制,可以有效提升钢板的耐黑变性能,以确保所制备锌铝镁镀层钢板能够获得优异的耐黑变性能。
具体实施方式
下面将结合具体的实施例对本发明所述的耐黑变性能优良的锌铝镁镀层钢板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。耐指纹膜来自市售产品。
实施例1-9和对比例1-3
实施例1-9的锌铝镁镀层钢板和对比例1-3的对比钢材均可以采用以下步骤(1)-(6)制得:
(1)基板预处理:采用0.6mm的冷轧硬钢板作为基板,经清洗脱脂处理后,在770℃的N2-5%H2气氛保护下退火2min。
(2)基板进入镀液池进行热浸镀:将基板进入镀液池热浸镀,并控制镀液池的温度为570-610℃,浸镀3秒钟后,钢板离开镀液;其中,各实施例和对比例所采用镀液池的化学配比详见表1。
(3)钢板离开镀液,经过气刀,并通过控制气刀吹扫强度从而控制镀层厚度;随后进行风冷和水冷等分段冷却,钢板进入水淬槽中冷却至室温。
(4)钢板通过辊涂机涂覆耐指纹膜,通过控制辊涂机的转速和辊间距从而控制耐指纹膜厚度;在钢板涂覆耐指纹膜后,控制钢板经过感应加热器利用电磁感应加热的方式进行加热烘烤固化,其中控制加热烘烤钢板温度为100-160℃,优选地可以控制在110-140℃之间。
(5)钢板进行冷却:钢板经过风机进行风冷冷却,控制钢板的冷却速度为5-20℃/s。
(6)钢板冷却后接近室温时卷曲成成品钢卷。
在本发明中,实施例1-9的锌铝镁镀层钢板的相关制造工艺及参数均满足本发明设计规范要求,其所采用的镀液成分(也即镀层成分)也满足本发明设计要求。而对比例1-3虽然也是采用上述步骤流程制备的,但其镀液(镀层)的制造工艺存在不满足本发明设计规范要求的参数,进而致使其最终制备的对比钢材的表面性能不佳。
需要说明的是,本发明对钢材所采用的基板并不做特殊限定,在实际应用时,本领域技术人员可以根据需求选取,其对本发明所获得的镀层的优良耐黑变性能无直接关联。
表1列出了实施例1-9的锌铝镁镀层钢板和对比例1-3的对比钢材所对应镀液及所形成的镀层的化学元素质量百分配比。
表1.(wt.%,余量为Zn和其他不可避免的杂质)
相应地,表2列出了实施例1-9的锌铝镁镀层钢板和对比例1-3的对比钢材在上述工艺步骤(1)-(6)中的具体工艺参数。
表2.
将得到的实施例1-9和对比例1-3的成品钢卷分别取样,并控制各实施例和对比例钢卷样品在相同条件下同时进行叠片湿热24小时试验,并将试验前后各实施例和对比例的镀层钢板表面的明度值和色差ΔE列于表3之中。
相关叠片湿热试验具体包括:试验前测量对应测试的钢板表面的明度值,然后将钢板叠放在一起,施加30牛米的预紧力夹紧固定叠放的钢板,将固定后的钢板放入湿热箱中,湿热箱条件温度50℃、95%的湿度,在湿热箱中放置24h,取出叠放的钢板,再次测量钢板表面的明度值。采用该试验,可以有效检测获得实施例1-9和对比例1-3在叠片湿热24小时试验后的钢板表面明度值。
相应地,在完成叠片湿热24小时试验后,发明人还进一步地对各实施例和对比例的钢板表面质量进行观察,以观察钢板的表面是否发黑,即是否发生“黑变”:若发生了“黑变”,则判断为“是”;若没有发生“黑变”,则判断为“否”,相关判断结果列于下述表3之中。
表3列出了实施例1-9和对比例1-3的成品钢卷的叠片湿热试验结果。
表3.
注:在上述表3之中,ΔE为钢板叠片湿热前表面明度值与叠片湿热条件24小时后表面明度值的差值。
从表3可以看出,在相同条件下,完成叠片湿热24小时试验后,采用本 发明设计方案所制备的实施例1-9的锌铝镁镀层钢板相较于对比例1-3的对比钢板具有更高的明度值,其叠片湿热24小时试验后的钢板表面明度值在68.49-72.08之间。并且,实施例1-9的锌铝镁镀层钢板在叠片湿热条件下24小时前后表面色差ΔE在0.16-2.35之间,其ΔE<3,表面均未出现发黑现象。
而对比例1-3由于在制造工艺中存在不满足本发明设计要求的设计参数,其在叠片湿热条件下24小时前后表面色差ΔE在7.62-9.37之间,ΔE>3。并且,对比例1-3的对比钢板在完成叠片湿热24小时试验后,其钢板的表面发黑,出现黑变问题。
综上所述,采用本发明设计的这种技术方案所制备的锌铝镁镀层钢板均具有十分优异的耐黑变性能,尤其是在叠片湿热条件下具有优良的耐黑变性能,其适用范围广泛,可以有效满足当前市场和用户的需求,并具有良好的推广前景和应用价值。
需要说明的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (14)

  1. 一种耐黑变性能优良的锌铝镁镀层钢板,其包括基板以及镀覆于基板上的镀层,其特征在于,所述镀层表面还涂覆有耐指纹膜;所述镀层各成分的质量百分含量为:Al:45%-65%,Mg:0.2%-5%,Si:0.1%-3%,Zr:0.001%-0.15%,余量为Zn和其他不可避免的杂质。
  2. 如权利要求1所述的锌铝镁镀层钢板,其特征在于,所述镀层各成分的质量百分含量进一步满足下述各项的至少其中之一:
    Al:50%-60%,
    Mg:1%-3%,
    Si:1%-2%,
    Zr:0.01%-0.05%。
  3. 如权利要求1所述的锌铝镁镀层钢板,其特征在于,所述镀层的厚度为8-38μm。
  4. 如权利要求1所述的锌铝镁镀层钢板,其特征在于,所述耐指纹膜的厚度为0.5-2.5μm。
  5. 如权利要求4所述的锌铝镁镀层钢板,其特征在于,所述耐指纹膜的厚度为1.0-2.0μm。
  6. 如权利要求1-5中任意一项所述的锌铝镁镀层钢板,其特征在于,锌铝镁镀层钢板在叠片湿热条件下24小时前后表面色差ΔE<3,其中ΔE为锌铝镁镀层钢板叠片湿热前表面明度值与湿热24小时后表面明度值的差值。
  7. 如权利要求1-5中任意一项所述的锌铝镁镀层钢板,其特征在于,所述基板选自低碳、深冲、超深冲、高强度、超高强度的热轧或冷轧钢板。
  8. 如权利要求1-5中任意一项所述的锌铝镁镀层钢板,其特征在于,所述基板的钢种选自IF钢、BH钢、HSLA钢、DP钢和TRIP钢。
  9. 如权利要求1-8中任意一项所述的锌铝镁镀层钢板的制造方法,其特征在于,包括步骤:
    (1)基板预处理;
    (2)基板进入镀液池进行热浸镀;
    (3)钢板离开镀液,进行分段冷却;
    (4)涂覆耐指纹膜以及加热烘烤固化,其中加热烘烤钢板温度为100-160℃:
    (5)钢板进行冷却:控制钢板的冷却速度为5-20℃/s;
    (6)钢板卷曲成成品卷。
  10. 如权利要求9所述的制造方法,其特征在于,在步骤(2)中,镀液池的温度为570-610℃。
  11. 如权利要求9所述的制造方法,其特征在于,在步骤(3)中,钢板离开镀液后,首先经过气刀通过吹氮气,将钢板的镀层厚度控制在所需的厚度范围内,同时使镀层冷却;然后使钢板经过风箱冷却区域进行风冷,而后再输入水淬槽进行水冷,使钢板冷却至室温。
  12. 如权利要求9所述的制造方法,其特征在于,在步骤(4)中,加热烘烤钢板温度为110-140℃。
  13. 如权利要求9所述的制造方法,其特征在于,在步骤(4)中,加热烘烤方式为电磁感应加热。
  14. 如权利要求9所述的制造方法,其特征在于,在步骤(5)中,冷却方式为风冷。
PCT/CN2023/111323 2022-08-04 2023-08-04 一种耐黑变性能优良的锌铝镁镀层钢板及其制造方法 WO2024027840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210931896.X 2022-08-04
CN202210931896.XA CN117551956A (zh) 2022-08-04 2022-08-04 一种耐黑变性能优良的锌铝镁镀层钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2024027840A1 true WO2024027840A1 (zh) 2024-02-08

Family

ID=89822074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111323 WO2024027840A1 (zh) 2022-08-04 2023-08-04 一种耐黑变性能优良的锌铝镁镀层钢板及其制造方法

Country Status (2)

Country Link
CN (1) CN117551956A (zh)
WO (1) WO2024027840A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027202A (ja) * 2001-07-11 2003-01-29 Kawasaki Steel Corp 耐端面錆性に優れる表面処理鋼板
CN108118218A (zh) * 2016-11-30 2018-06-05 宝山钢铁股份有限公司 一种抗切口腐蚀性能优良的热浸镀层钢板及其制造方法
CN109402547A (zh) * 2018-11-29 2019-03-01 宝山钢铁股份有限公司 一种抗腐蚀性能优良的热浸镀层钢板及其制造方法
CN111519117A (zh) * 2020-04-14 2020-08-11 马鞍山钢铁股份有限公司 一种耐黑变性能优异的高表面质量锌铝镁钢板及生产方法
CN112538306A (zh) * 2020-12-04 2021-03-23 攀钢集团攀枝花钢铁研究院有限公司 锌铝镁镀层表面处理剂及其制备方法和使用方法
CN115478239A (zh) * 2022-08-23 2022-12-16 马鞍山钢铁股份有限公司 一种成形性能优良的铝锌镁镀层钢板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027202A (ja) * 2001-07-11 2003-01-29 Kawasaki Steel Corp 耐端面錆性に優れる表面処理鋼板
CN108118218A (zh) * 2016-11-30 2018-06-05 宝山钢铁股份有限公司 一种抗切口腐蚀性能优良的热浸镀层钢板及其制造方法
CN109402547A (zh) * 2018-11-29 2019-03-01 宝山钢铁股份有限公司 一种抗腐蚀性能优良的热浸镀层钢板及其制造方法
CN111519117A (zh) * 2020-04-14 2020-08-11 马鞍山钢铁股份有限公司 一种耐黑变性能优异的高表面质量锌铝镁钢板及生产方法
CN112538306A (zh) * 2020-12-04 2021-03-23 攀钢集团攀枝花钢铁研究院有限公司 锌铝镁镀层表面处理剂及其制备方法和使用方法
CN115478239A (zh) * 2022-08-23 2022-12-16 马鞍山钢铁股份有限公司 一种成形性能优良的铝锌镁镀层钢板及其制造方法

Also Published As

Publication number Publication date
CN117551956A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2021248765A1 (zh) 一种热浸镀锌铝镁镀层钢板及其制造方法
CN110983224B (zh) 一种热镀锌铝镁镀层钢及其制备方法
CN109402547B (zh) 一种抗腐蚀性能优良的热浸镀层钢板及其制造方法
EP2957657A1 (en) Single-sided electro-galvanized non-chrome surface treatment steel plate for fuel tank, and surface treatment agent
CN101948991B (zh) 一种耐腐蚀热镀锌钢板及其制备方法
CN105525087B (zh) 一种提高取向硅钢底层质量的方法
CN111270109B (zh) 铸轧法生产锂电池用8021铝合金软包箔的方法
CN102011082A (zh) Al-Zn-Si-Mg合金镀层的热浸镀工艺方法
CN113481455A (zh) 利用空气气刀生产高表面质量锌铝镁镀层钢带/板的方法
CN115679065A (zh) 一种叠片焊接性能优良的无取向硅钢生产方法
CN101255540A (zh) 一种合金化热浸镀锌钢板的生产方法
CN104988446A (zh) 一种能提高热镀锌板表面质量的镀锌方法
CN114107866A (zh) 一种消除厚规格厚镀层涂覆钢板表面黑点缺陷的生产方法、一种厚规格厚镀层涂覆钢板
KR101568474B1 (ko) 내흑변성 및 표면외관이 우수한 용융아연합금 도금강판 및 그 제조방법
CN105506529A (zh) 一种带多孔铁层的热镀锌钢板及其镀锌方法
WO2024027840A1 (zh) 一种耐黑变性能优良的锌铝镁镀层钢板及其制造方法
JP2007131889A (ja) Al−Mg−Si系アルミニウム合金板
CN111549307A (zh) 一种热浸镀铝硅钢板的生产工艺
CN108441796B (zh) 一种热镀锌铝镁合金钢板及其生产工艺
CN112553522B (zh) 一种折弯性能优良的冷轧热镀铝锌钢板及其制造方法
CN113502444A (zh) 一种热镀锌高效防漏镀耐高铝助镀液添加剂及其制备方法
KR100342308B1 (ko) 표면형상및내식성이우수한용융아연도금강판제조방법
CN111304661A (zh) 铝硅镁镀层及其制备方法
CN112609128B (zh) 一种耐腐蚀性优良的高效电机用无取向硅钢板及生产方法
CN109913782B (zh) 一种用于镀锡钢板的软熔助剂及镀锡钢板表面处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849544

Country of ref document: EP

Kind code of ref document: A1