WO2024027633A1 - 一种业务流属性配置方法、装置和系统 - Google Patents

一种业务流属性配置方法、装置和系统 Download PDF

Info

Publication number
WO2024027633A1
WO2024027633A1 PCT/CN2023/110184 CN2023110184W WO2024027633A1 WO 2024027633 A1 WO2024027633 A1 WO 2024027633A1 CN 2023110184 W CN2023110184 W CN 2023110184W WO 2024027633 A1 WO2024027633 A1 WO 2024027633A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
information
time
arrival time
burst arrival
Prior art date
Application number
PCT/CN2023/110184
Other languages
English (en)
French (fr)
Inventor
孙海洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027633A1 publication Critical patent/WO2024027633A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling

Definitions

  • the present application relates to the field of communication technology, and in particular, to a service flow attribute configuration method, device and system.
  • TSN time-sensitive network
  • Embodiments of the present application provide a service flow attribute configuration method, device and system to avoid the problem of frequent changes in service flow attributes due to sudden arrival time changes.
  • a method for configuring service flow attributes including: a first network element obtains transmission time information of a first service flow, where the transmission time information includes burst arrival time or burst arrival time adjustment information, and the The adjustment information of the burst arrival time is used to determine the adjusted burst arrival time; when the first network element receives the first indication information, it determines the attribute information of the first service flow according to the transmission time information, and sending the attribute information of the first service flow to the second network element.
  • the first network element after the first network element obtains the transmission time information of the first service flow, such as burst arrival time (BAT) or BAT adjustment information, it does not immediately determine the attribute information of the first service flow, but after receiving After receiving the first indication information, the attribute information of the first service flow is determined based on the transmission time information. Therefore, the problem of frequent changes in attributes of the service flow due to sudden changes in arrival time can be avoided.
  • BAT burst arrival time
  • the first indication information comes from an application function (AF) network element, a policy control function (PCF) network element, or a time-sensitive communications time synchronization function (TSCTSF) network element.
  • AF application function
  • PCF policy control function
  • TSCTSF time-sensitive communications time synchronization function
  • the first indication information is a confirmation indication; or, the first indication information is used to confirm the transmission time information or perform data transmission based on the transmission time information; or, the The first indication information is used to indicate that the burst arrival time will not be adjusted due to cross-layer scheduling optimization.
  • the first network element can confirm, according to the first indication information, that data transmission is performed based on the transmission time information, or that the burst arrival time of the first service will no longer be adjusted due to cross-layer scheduling optimization.
  • the attribute information of the first service flow is determined according to the adjusted burst arrival time, thereby avoiding frequent changes in the attributes of the service flow due to changes in the burst arrival time.
  • the method before the first network element obtains the transmission time information of the first service flow, the method further includes: the first network element receives second indication information, and the second indication information It is used to indicate that the application function or application supports adjusting the packet sending time or supports adjusting the burst arrival time, or is used to indicate that the first network element does not immediately determine the attribute information of the first service flow based on the burst arrival time.
  • the first network element does not immediately determine based on the transmission time information based on the second indication information. Determine the attribute information of the first service flow.
  • the first network element may not immediately determine the attribute information of the first service flow based on the transmission time information according to the second indication information, thereby avoiding frequent changes in the attributes of the service flow due to sudden arrival time changes.
  • the second indication information comes from an AF network element, a PCF network element, or a TSCTSF network element.
  • the first network element obtains the adjustment information of the burst arrival time of the first service flow, and receives the first information, including:
  • the first network element sends delay-sensitive communication auxiliary information to the wireless access network.
  • the delay-sensitive communication auxiliary information includes a burst arrival time.
  • the burst arrival time includes a burst arrival in the downlink direction at the wireless access network. The time of entry into the network, and/or the time of uplink burst arrival at the terminal;
  • the first network element receives burst arrival time adjustment information from the wireless access network
  • the first network element sends the burst arrival time adjustment information to the application function
  • the first network element receives the first indication information from the application function.
  • the transmission time information comes from a radio access network element, or an AF network element, or a PCF network element, or a TSCTSF network element.
  • the burst arrival time includes at least one of the following: uplink delay-sensitive communication assistance information (TSCAI) burst arrival time, downlink TSCAI burst arrival time, uplink delay-sensitive Communication auxiliary container (TSCAC) burst arrival time, downlink TSCAC burst arrival time.
  • TSCAI uplink delay-sensitive communication assistance information
  • TSCAI downlink TSCAI burst arrival time
  • TSCAC uplink delay-sensitive Communication auxiliary container
  • the adjustment information of the burst arrival time is the adjusted burst arrival time, or is the offset before and after adjustment of the burst arrival time.
  • the attribute information of the first service flow includes at least one of the following:
  • the earliest transmission offset is the earliest offset of the first data frame of the sending end in the sending cycle relative to the start time point of the sending cycle;
  • the latest transmission offset which is the latest offset of the first data frame of the sending end in the sending cycle relative to the start time point of the sending cycle;
  • Maximum delay which is the maximum delay of a data frame from the sending end to the receiving end
  • the sending time is the time offset used by the sending end when transmitting data packets, and the time offset is between the earliest transmission offset and the latest transmission offset.
  • the first network element is a session management function network element, and the session management function network element is configured as a centralized user configuration network element; and the second network element is a centralized network configuration network element. network element.
  • a method for configuring service flow attributes including: a first network element receiving first information, where the first information includes second indication information and/or an alternative burst arrival time of the first service flow; The first network element obtains the transmission time information of the first service flow according to the first information.
  • the transmission time information includes the burst arrival time or the adjustment information of the burst arrival time.
  • the burst arrival time is The adjustment information is used to determine the adjusted burst arrival time; the first network element determines the attribute information of the first service flow based on the transmission time information, and sends the attribute information of the first service flow to the third network element.
  • the first network element obtains the transmission time information of the first service flow according to the first information, such as including burst arrival time (BAT) or BAT adjustment information (such as obtaining BAT adjustment information through a negotiation process)
  • the attribute information of the first service flow is determined based on the adjusted transmission time information. Therefore, the attribute information of the first service flow can be determined based on the adjusted BAT only after the adjustment information of the BAT is obtained. Therefore, the attribute information of the first service flow due to sudden arrival time changes can be avoided. Problems that lead to frequent changes in business flow attributes.
  • the first information comes from an AF network element, a PCF network element, or a TSCTSF network element.
  • the second indication information is used to indicate that the application function supports adjusting the burst arrival time or packet sending time.
  • the transmission time information comes from a radio access network element.
  • the adjustment information of the burst arrival time is determined by the radio access network element based on the alternative burst arrival time.
  • the burst arrival time includes at least one of the following: uplink TSCAI burst arrival time, downlink TSCAI burst arrival time, uplink TSCAC burst arrival time, downlink TSCAC burst arrival time time.
  • the adjustment information of the burst arrival time is the adjusted burst arrival time, or is the offset before and after adjustment of the burst arrival time.
  • the attribute information of the first service flow includes at least one of the following:
  • the earliest transmission offset is the earliest offset of the first data frame of the sending end in the sending cycle relative to the start time point of the sending cycle;
  • the latest transmission offset which is the latest offset of the first data frame of the sending end in the sending cycle relative to the start time point of the sending cycle;
  • Maximum delay which is the maximum delay of a data frame from the sending end to the receiving end
  • the sending time is the time offset used by the sending end when transmitting data packets, and the time offset is between the earliest transmission offset and the latest transmission offset.
  • the first network element is a session management function network element, and the session management function network element is configured as a centralized user configuration network element; and the second network element is a centralized network configuration network element. network element.
  • a method for configuring service flow attributes including: determining that data transmission is performed based on confirmed transmission time information of the first service flow, or that the burst arrival time of the first service flow will not be due to cross-layer scheduling optimization. and make adjustments; wherein the transmission time information includes burst arrival time or burst arrival time adjustment information, and the burst arrival time adjustment information is used to determine the adjusted burst arrival time; to the first The network element sends the first instruction information.
  • the first indication information is a confirmation indication, or the first indication information is used to confirm the transmission time information or perform data transmission based on the transmission time information, or the first The indication information is used to indicate that the burst arrival time will not be adjusted due to cross-layer scheduling optimization.
  • the method before sending the first indication information to the first network element, the method further includes: sending second indication information to the first network element, where the second indication information is used to Indicates that the application function supports adjusting the burst arrival time or packet sending time.
  • a fourth aspect provides a communication system, including: a first network element, a second network element and a third network element; the first network element is used to perform the method described in any one of the above first aspects, The third network element is configured to perform the method described in any one of the above third aspects.
  • a fifth aspect provides a communication system, including: a first network element and a second network element, where the first network element is configured to perform the method described in any one of the above second aspects.
  • a communication device including: a processing unit and a transceiver unit; the processing unit is configured to obtain transmission time information of the first service flow, where the transmission time information includes burst arrival time or burst arrival time The adjustment information of the burst arrival time is used to determine the adjusted burst arrival time; when the transceiver unit receives the first indication information, it determines the first service flow according to the transmission time information. attribute information; and, sending the attribute information of the first service flow to the second network element through the transceiver unit.
  • a communication device including: a processing unit and a transceiver unit; the transceiver unit is configured to receive first information, where the first information includes second indication information and/or alternatives to the first service flow Burst arrival time; the processing unit is configured to obtain the transmission time information of the first service flow according to the first information, where the transmission time information includes the burst arrival time or the adjustment information of the burst arrival time, The adjustment information of the burst arrival time is used to determine the adjusted burst arrival time; determine the attribute information of the first service flow according to the transmission time information; and transmit the first service flow through the transceiver unit.
  • the flow attribute information is sent to the second network element.
  • a communication device including: a processing unit and a transceiver unit; the processing unit is used to determine data transmission based on confirmed transmission time information of the first service flow, or a sudden change of the first service flow.
  • the transmission arrival time will not be adjusted due to cross-layer scheduling optimization, where the transmission time information includes burst arrival time or burst arrival time adjustment information, and the burst arrival time adjustment information is used to determine the adjusted Burst arrival time; and, sending first indication information to the first network element through the transceiver unit.
  • a ninth aspect provides a communication device, including: one or more processors; one or more memories; wherein the one or more memories store one or more computer programs, and the one or more computers
  • the program includes instructions that, when executed by the one or more processors, cause the communication device to perform a method as described in any one of the above first aspects, or to perform a method as described in any one of the above second aspects.
  • a computer-readable storage medium includes a computer program.
  • the computing device causes the computing device to execute as described in any one of the above-mentioned first aspects.
  • An eleventh aspect provides a chip, which is coupled to a memory and used to read and execute program instructions stored in the memory to implement the method as described in any one of the above first aspects, or to execute as The method described in any one of the above second aspects, or the method described in any one of the above third aspects.
  • a computer program product When called by a computer, the computer program product causes the computer to execute the method as described in any one of the above-mentioned first aspects, or to execute the method as in the above-mentioned second aspect. The method described in any one of the above, or performing the method described in any one of the above third aspects.
  • Figure 1 is a schematic diagram of the TSN fully centralized configuration model
  • Figure 2 is a schematic diagram of the interoperability system architecture between the 3GPP network and the TSN network;
  • Figure 3 is a schematic diagram of deterministic transmission of cache forwarding delay in the downlink direction
  • Figure 4 is a schematic diagram of the downlink TSN flow arriving at the NW-TT entrance and arriving at the RAN entrance;
  • Figure 5 is a schematic diagram of the uplink TSN flow arriving at the DS-TT entrance and being sent from the UE;
  • Figure 6 is a schematic diagram of 5G QoS architecture
  • Figure 7 is a schematic diagram of the timing of sending messages in the downlink direction
  • Figure 8 is a schematic diagram of the scheduling coordinator adjusting the sending timing of downlink messages on the UPF or application side;
  • FIG. 9 is a schematic diagram of the network architecture in which SMF acts as CUC;
  • FIG. 10 is a schematic diagram of a TSN configuration process provided by the prior art
  • Figures 11 and 12 are respectively schematic diagrams of a 5G non-roaming reference point-based architecture provided by embodiments of the present application;
  • Figure 13 is a schematic diagram of a service flow attribute configuration process provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of a service flow attribute configuration process provided by another embodiment of the present application.
  • Figure 15 is a schematic diagram of the business flow attribute configuration process in scenario 1 in the embodiment of the present application.
  • Figure 16 is a schematic diagram of the business flow attribute configuration process in scenario two in the embodiment of this application.
  • Figure 17 is a schematic diagram of the business flow attribute configuration process in scenario three in the embodiment of this application.
  • Figure 18 is a schematic diagram of the business flow attribute configuration process in scenario four in the embodiment of this application.
  • Figure 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • At least one (item) refers to one (item) or multiple (items), and multiple (items) refers to two (items) or more than two (items).
  • PDU Packet data unit
  • a PDU session is a logical connection between user equipment (UE, also called terminal) and data network (DN), and is used to provide user plane connections between UE and DN.
  • UE user equipment
  • DN data network
  • Residence time refers to processing time or residence time, which is the processing time of the device for services.
  • CN is the English abbreviation of core network, that is, core network.
  • PDB is the English abbreviation of packet delay budget, that is, packet delay budget.
  • CN PDB represents a given PDB, between the anchor user plane function (UPF) network element and the fifth generation mobile communication technology (5th generation mobile communication technology, 5G)-access network (AN) Delay.
  • the CN PDB defines an upper limit on how long a packet may be delayed between the UE and the N6 endpoint at the UPF.
  • Dynamic CN PDB can be configured in the network in two ways:
  • Method 1 Configured in each NG-RAN node, based on various inputs such as different IP address(es) of the UPF terminating the N3 tunnel or tunnel end point identifier (TEID) range, and based on the PDU session anchor Different combinations of point UPF (UPF of PDU session anchor, PSA UPF) to NG-RAN (taking into account any potential relay UPF (Initial UPF, I-UPF)), etc.;
  • Method 2 Configured in the session management function (SMF) network element, based on different combinations of PSA UPF to NG-RAN (taking into account any potential I-UPF).
  • SMF session management function
  • IEEE 802.1cc defines three configuration models for TSN networks: fully centralized configuration model, fully distributed configuration model, and centralized network/distributed user configuration model.
  • the management plane in the fully centralized configuration model includes centralized user configuration (CUC) network elements and centralized network configuration (CNC) network elements.
  • the user plane includes TSN terminals and switching nodes (also called network bridges). ).
  • the TSN terminal includes the sending end (called Talker) and the receiving end (called Listener).
  • the CUC network element is used to manage TSN terminals (Talker and Listener) and services. It is responsible for discovering and managing TSN terminals, obtaining TSN terminal capabilities and user requirements, sending TSN stream requirements to CNC, and configuring TSN terminals according to CNC instructions.
  • the CNC network element is responsible for managing the topology of the user plane of the TSN system (including TSN terminals and each switching node) and the capability information of each switching node. It calculates and generates the end-to-end (E2E) forwarding path of the TSN flow according to the requirements of the TSN flow. And deliver scheduling parameters to each switching node. Each switching node reports switching node capability information and topology information to the CNC, and schedules and forwards data flows based on the rules issued by the CNC.
  • E2E end-to-end
  • the following describes the interaction information between user plane network elements and management plane network elements in the TSN network, as well as between management plane network elements.
  • the bridge information reported by the 5G system bridge to the CNC is used by the TSN network to perform appropriate management and configuration of the 5G system bridge.
  • the bridge information of the 5G system bridge at least includes the following:
  • the bridge ID is used to distinguish bridge instances.
  • the bridge ID can be derived from the unique bridge media access control (MAC) address described in IEEE Std 802.1Q [98], or can be set in a specific way to ensure Use unique values in 5G systems;
  • MAC media access control
  • the 5G system bridge delay depends on and is independent of the frame size, and its following maximum and minimum values: maximum length independent delay (independentDelayMax), minimum length independent delay (independentDelayMin), maximum length dependent delay (dependentDelayMax), minimum length Delay dependent (dependentDelayMin).
  • the length here refers to the length of the frame.
  • the maximum length-independent delay and the minimum length-independent delay are set based on the configuration; the 5G system is based on the time range for a single octet of the Ethernet frame to be transmitted from the ingress to the egress, and includes receiving and storing the frame. Time per octet Maximum length-dependent delay, Minimum length-dependent delay.
  • txPropagationDelay -Propagation delay of each port (txPropagationDelay), including transmission propagation delay and egress port number;
  • VLAN Virtual local area network
  • TSN user/network configuration information (user/network configuration, UNI) exchanged between CUC and CNC:
  • TSNUNI consists of three high-level groups:
  • Talker group sent to CUC by the sender (Talker), specifying the sender of a single stream;
  • Listener group sent to CUC by the receiving end (Listener), specifying the receiving end of a single stream;
  • Status group sent by CUC to Talker/Listener, specifying the flow network configuration status of the sender or receiver. This group notifies the user when the stream is ready for use (or fails).
  • Each TSN configuration is identified by a stream ID (StreamID).
  • the sender (Talker) supports the following 7 configurations:
  • StreamID 64bits: Stream ID, used to identify the stream (Stream) configuration, including 2 fields: MACAddress (48bits) and UniqueID (16bits). MACAddress is the source MAC address initiated by the Stream (optional), and UniqueID is used to distinguish different Streams from the same sender.
  • StreamRank (8bits): Stream rank, providing the rank of a stream relative to other streams in the network. This level is used to determine the priority of Stream resource configuration and has nothing to do with Stream data. The current values are 0 and 1. 0 has a higher priority than 1 and usually represents emergency services. The embodiment of this application does not limit the number of flow levels.
  • EndStationInterfaces 48bits or more: End station interface, also called end node interface, used to describe the interface corresponding to the Stream (one Stream can contain multiple interfaces), including 2 fields: MACAddress (48bits) and interface name (InterfaceName) (optional field).
  • DataFrameSpecification defines the data of the Stream. The network uses this definition to identify the data packets of the Stream and then applies the corresponding TSN configuration.
  • a data frame definition can contain 1 or more of the following fields:
  • IEEE802-VlanTag 24bits: C-Tag (inner VLAN tag, identifying user VLAN) information of the data frame, does not include S-Tag (outer VLAN tag, identifying operator VLAN), DEI field is not used (DEI field and The PCP field jointly identifies the priority of the S-Tag).
  • the PCP field and the VlanID field are optional. When there is only the PCP field, the VlanId is set to 0;
  • IPv4-tuple IPv4 information of the data frame, including IP 6-tuple.
  • the 6-tuple of IPv4 address can be as shown in Table 1:
  • the "reference" content in the table is the relevant content in the protocol IEEE Std 802.1Qcc.
  • IPv6-tuple IPv6 information of the data frame, including IP 6-tuple.
  • the 6-tuple of IPv6 address can be as shown in Table 2:
  • TrafficSpecification Traffic description, which defines how the sender sends data frames. The network side uses traffic descriptions to allocate resources to each bridge and adjust sequencing parameters.
  • Interval The maximum duration of the frame size (MaxFrameSize) and number of frames (MaxFramesPerInterval) defined by the sender.
  • the duration is a rational number of seconds, defined by an unsigned 32-bit integer numerator and an unsigned 32-bit integer denominator, that is, it can be less than seconds;
  • MaxFramesPerInterval The maximum number of frames sent in a cycle
  • MaxFrameSize The maximum frame length that the sender can send
  • TransmissionSelection Specifies the scheduling algorithm used in the forwarding process of this Stream. The default is 0, which means strict priority.
  • TrafficSpecification can also include a TSpecTimeAware group.
  • the information contained in the TSpecTimeAware group can be as shown in Table 4:
  • EarliestTransmitOffset The earliest transmission offset, that is, the earliest offset of the first data frame within the sending cycle relative to the start time of the cycle.
  • the value is a signed integer in ns.
  • LatestTransmitOffset The latest transmission offset, that is, the latest offset of the first data frame in the sending cycle relative to the start time point of the cycle.
  • the value is a signed integer in ns.
  • Jitter specifies the maximum time difference between the sending offset of the sender and the ideal synchronization network time, unsigned integer, unit is ns. Jitter is used to define the time error and non-time synchronization error introduced by the transmitter implementation.
  • User s network requirements define user requirements, such as delay and redundancy. Contains 2 fields: NumSeamlessTrees and MaxLatency.
  • NumSeamlessTrees The number of redundant paths required for seamless connection provided by the network, 0 means 1 path, no redundancy; when the number of required redundant paths is greater than the number of paths the network can provide, some redundant paths share the same path;
  • MaxLatency The maximum delay of the data frame from the sender to the receiver, signed integer, unit ns; when the Stream has multiple receivers, if the sender defines this value, the delay to all receivers must meet this value , if the sender is not defined and the receiver is defined, it must meet the value defined by the receiver.
  • InterfaceCapabilities Defines the interface capabilities of the end node, including 3 fields:
  • VlanTagCapable Whether to support adding or deleting VLAN tags (VLAN Tag);
  • CB-StreamIdenTypeList Supported stream identification types, the types are shown in Table 5:
  • CB-SequenceTypeList Supported frame copy and deduplication sequence encoding and decoding types, as shown in Table 6:
  • the receiver supports 4 configurations, the specific definitions are the same as the sender:
  • the status configuration is sent by the network to the sender and receiver to notify the TSN configuration of success or failure.
  • the CNC sends status to the sending end and receiving end.
  • the CNC sends it to the CUC, and further, the CUC sends it to the sending end and the receiving end.
  • the status contains the following 5 configurations:
  • StreamID Stream ID, its definition is the same as that of the sender
  • TNS stream (TSN Stream) configuration status including the following 3 fields:
  • TalkerStatus field The status of the sender's network configuration, which can include the information shown in Table 7:
  • ListenerStatus field The status of the receiving end network configuration, which can include the information shown in Table 8:
  • FailureCode field error code.
  • AccumulatedLatency refers to the maximum possible delay of the currently planned transmission path, signed integer, unit ns.
  • Interface configuration refers to the interface configuration of the sender and receiver. This configuration meets the requirements of Stream and also meets the interface capability requirements. Includes the following configurations:
  • IEEE802-MacAddresses Same as the sending end configuration
  • IEEE802-VlanTag Same as the sending end configuration
  • IPv4-tuple Same as sender configuration
  • IPv6-tuple Same as the sending end configuration
  • TimeAwareOffset Defines the offset (time offset) used by Talker to transmit data packets, which is between EarliestTransmitOffset and LatestTransmitOffset. In other words, it is Talker’s contract delivery time.
  • FailedInterfaces List of interfaces whose configuration failed, the definition is the same as EndStationInterfaces.
  • FIG 2 is a system architecture diagram of interworking between a 3GPP network and a TSN network in an embodiment of the present application.
  • the 3GPP 5G system and the TSN Translator (TSN Translator) as a whole serve as a logical TSN Bridge (TSN Bridge).
  • the 5G system communicates with the TSN network through the control plane TSN Translator (i.e., application function (AF) network element).
  • the nodes exchange information.
  • the information exchanged includes: 5G system Bridge capability information, TSN configuration information, time scheduling information of TSN input and output ports, time synchronization information, etc.
  • the TSN Translator on the UE side (device side TSC Translator, referred to as DS-TT, where TSC is the English abbreviation of time sensitive communication, that is, time-sensitive communication) may be located inside the UE or outside; the TSN Translator (network) on the UPF side side TSC Translator, referred to as NW-TT) is located in UPF.
  • the 5G system as a whole is a TSN Bridge.
  • CNC configures the transmission time window and flow cycle for each TSN Bridge based on the information reported by the 5GS Bridge and other Bridges to ensure end-to-end (from TSN Talker to TSN Listener) deterministic delay.
  • the NW-TT sends the message to the DS-TT.
  • the DS-TT is based on the sending time window configured by the CNC (i.e. Gating scheduling parameters) sends the message within the preconfigured time.
  • the message needs to arrive at the DS-TT before the preset sending time and be cached at the DS-TT until the sending time window.
  • the 5G system needs to determine the corresponding PDB based on the message requirements and ensure that the transmission time of the message between the UE and UPF is not greater than the PDB. In other words, the message will arrive at the DS-TT in advance so that it can catch up with the sending time window configured by the CNC.
  • 3GPP and TSN are connected using a black box model.
  • the CNC configures the time to arrive at the 5G core network and the time to leave the 5G core network according to the flow granularity.
  • the uncertainty caused by air interface transmission and wired transmission between the UE and UPF is passed through the endpoint TSC Translator. Cache elimination.
  • TSN AF Based on the scheduling information of the TSN flow obtained from the CNC, TSN AF will determine the time when the TSN flow arrives at the 5G system entrance, that is, the time when the TSN flow arrives at the NW-TT entrance in the downlink direction, as shown in Figure 4.
  • DL Burst Arrival Time Downlink Burst Arrival Time
  • UL Burst Arrival Time upstream burst arrival time
  • TSN AF provides information to the Session Management Function (SMF) network element through the policy control function (PCF) network element.
  • SMF Session Management Function
  • PCF policy control function
  • the SMF further calculates the time to reach the NG-RAN in the downlink direction based on this information (as shown in the figure) DL TSCAI Burst Arrival Time) in 4, and the time sent from the UE in the uplink direction (UL TSCAI Burst Arrival Time in Figure 5) are provided to the radio access network (Radio) as TSC assistance information (TSCAI).
  • Radio Radio access network
  • TSCAI TSC assistance information
  • TSCAI can also be replaced by a TSC auxiliary container (TSC assistance container, TSCAC), which can be sent to SMF by AF or TSCTSF (can be via PCF).
  • TSC assistance container TSCAC
  • TSCAI The information included in TSCAI is as follows:
  • -Flow direction indicates whether the TSC flow is in the upstream or downstream direction
  • -Period refers to the interval between the start times of two bursts
  • BAT -Burst arrival time
  • TSCAI may also contain other information, which is not limited in the embodiments of this application.
  • TSCAC The information included in TSCAC is as follows:
  • -Flow direction indicates whether the TSC flow is in the upstream or downstream direction
  • -Period refers to the interval between the start times of two bursts
  • BAT -Burst arrival time
  • TSCAC may also contain other information.
  • the method for SMF to determine the TSCAI Burst Arrival Time in the downstream direction is:
  • TSCAI Burst Arrival Time TSCAC DL Burst Arrival Time+DL CN PDB.
  • the method for SMF to determine the TSCAI Burst Arrival Time in the upstream direction is:
  • TSCAI Burst Arrival Time TSCAC UL Burst Arrival Time+UE-DS-TT Residence Time.
  • SMF binds the business (data flow) to a quality of service (QoS) flow, that is, there is a corresponding relationship between the QoS flow (QoS Flow) and the business flow.
  • QoS flow quality of service
  • QoS Flow Quality of service flow
  • the 5G QoS model supports QoS Flow with guaranteed bit rate (GBR QoS Flow, where GBR is the English abbreviation of guaranteed bit rate, that is, guaranteed bit rate) and QoS Flow with non-guaranteed bit rate (Non-GBR QoS Flow).
  • GBR guaranteed bit rate
  • Non-GBR QoS Flow QoS Flow with non-guaranteed bit rate
  • Data packets controlled by the same QoS Flow receive the same transmission processing (such as scheduling, admission threshold, etc.).
  • one or more PDU sessions can be established with the 5G network; one or more QoS Flows can be established in each PDU session.
  • Each QoS Flow is identified by a QFI (QoS Flow Identifier, QoS flow identifier).
  • QFI QoS Flow Identifier, QoS flow identifier
  • Each QoS Flow has its own characteristic information, and what SMF sends to RAN is the QoS file.
  • the QoS file contains the 5G QoS identifier 5QI (5QI is an index of QoS characteristics).
  • QoS features include PDB.
  • the PDB defines an upper limit on how long a packet may be delayed between the UE and the UPF's N6 termination.
  • the 5G access network (AN) packet delay budget (5G-AN PDB) is determined by subtracting the value of the core network packet delay budget (CN PDB).
  • CN PDB represents the delay between any N6 termination point at the UPF (for any UPF that may be selected for the PDU session) and the 5G-AN from the given PDB.
  • the black box model currently used for interworking between 3GPP and TSN assumes that the packets transmitted between RAN nodes and UPF will definitely not exceed the CN PDB. However, if the particularities of RAN scheduling (TTI scheduling protection, uplink and downlink ratio, etc.) are not considered, additional buffering/queuing delays will be introduced in the downlink direction in the RAN. It is similar in the upstream direction. Data packets will be cached/queued in the UE.
  • Figure 7 shows a schematic diagram of message sending timing in the downlink direction.
  • the scheduling coordinator (such as RAN or SMF) obtains air interface scheduling delay information, which may include: TTI start time, slot duration, uplink and downlink slot ratio information, RAN node TTI protection duration and CN PDB.
  • the scheduling coordinator obtains application delay requirements and TSC QoS-related information, including Burst Arrival Time and business cycle.
  • the scheduling coordinator adjusts the sending timing of downlink messages on the UPF or application side based on the obtained air interface scheduling delay information and service delay requirements, so that services with ultra-low delay or jitter requirements can be scheduled in time on the air interface. (See 3a, 3b, 3c in Figure 8). For example, in 3b in Figure 8, the scheduling coordinator sends information to the AF to instruct the AF to adjust the sending timing of application side messages.
  • 5G control plane network elements such as SMF
  • SMF/CUC provides the Talker/Listener group information described above to TN CNC through the user/network interface.
  • TN CNC uses this as input to configure the bridge in the transmission network and provide status to SMF/CUC.
  • SMF/CUC can also adjust the flow sending time in UPF and RAN.
  • TN CNC refers to CNC in the transmission network.
  • the transmission network is located between the RAN and the UPF, and the service flow it transmits is the service flow in the 5G network.
  • RAN and UPF serve as End Stations, namely Talker and Listener respectively.
  • RAN acts as Talker and UPF acts as Listener.
  • UPF acts as Talker and RAN acts as Listener.
  • Step 1001 The UE triggers the PDU session establishment process.
  • the PDU session establishment process can be found in Chapter 4.3.2 of the protocol TS 23.502.
  • RAN and UPF can report interface capability (InterfaceCapabilities) information to SMF. For example, it can be reported through a transparent container.
  • the transparent container can represent network elements such as RAN, UPF, and SMF. The content does not need to be understood by the Talker/Listener or CUC.
  • Step 1002 PCF sends policy and charging control (PCC) rules with TSC auxiliary container (TSCAC) to SMF.
  • the TSC auxiliary container can represent network elements such as RAN, UPF, SMF, etc. It is not necessary to understand the contents, and is processed by Talker/Listener or CUC.
  • the TSC auxiliary container includes a burst size of TSC traffic.
  • the SMF establishes a QoS flow according to the PCC rules and sends information corresponding to the QoS flow to the RAN and UPF (this process is not shown in the figure).
  • Step 1003 SMF performs parameter mapping and obtains Talker/Listener group information.
  • the parameter mapping refers to the parameter mapping based on the sending end
  • the information reported and the information reported by the receiving end are used to determine the Talker/Listener group information.
  • the Talker/Listener group information can also be called merged stream requirements (merged stream requirements).
  • Step 1004 SMF sends the Talker/Listener group information (or merged stream requirements) to TN CNC.
  • Step 1005 TN CNC returns status information (status) to SMF.
  • the status information (status) is also called merged end station communication-configuration.
  • Steps 1006 ⁇ 1007 SMF configures Talker and Listener based on the status information (status) returned by TN CNC.
  • the TSCAI of the service flow (specifically the burst arrival time BAT) will change. If negotiation occurs, the changes will be more frequent.
  • the relevant parameters of the transmission network service such as the transmission offset TransmitOffset
  • TSCAI or TSCAC
  • embodiments of the present application provide a service attribute configuration method, device and system to avoid the problem of frequent changes in service flow attributes due to changes in burst arrival time.
  • the embodiments of this application provide a business attribute configuration method, device and system.
  • the method, device and system described in this application are based on the same technical concept. Since the methods, devices and systems solve problems in similar principles, the implementation of the device, system and method is You can refer to each other, and the duplicates will not be repeated.
  • the 5G system architecture is divided into two parts: access network and core network.
  • the access network is used to implement wireless access-related functions.
  • the core network mainly includes the following key network elements: access and mobility management function (AMF), session management function (SMF), user plane function (UPF) ), policy control function (PCF), unified data management (UDM), etc.
  • Terminal equipment It can be user equipment (UE), handheld terminal, notebook computer, subscriber unit, cellular phone, smart phone, wireless data card, personal digital assistant (personal digital assistant) digital assistant (PDA) computer, tablet computer, wireless modem, handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone) or wireless local loop (WLL) station, machine type communication (MTC) terminal, or other device that can access the network.
  • Terminal equipment and access network equipment communicate with each other using some kind of air interface technology.
  • RAN equipment equipment that provides access to terminal equipment, including RAN equipment and AN equipment.
  • RAN equipment is mainly 3GPP network wireless network equipment, and AN can be access network equipment defined by non-3GPP.
  • Radio Access Network (RAN) equipment Mainly responsible for wireless resource management, quality of service (QoS) management, data compression and encryption on the air interface side.
  • the RAN equipment may include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, access points, etc. In systems using different wireless access technologies, the names of equipment with base station functions may be different.
  • RAN for example, in the fifth generation (5th generation, 5G) system, it is called RAN or gNB (5G NodeB); In the LTE system, it is called evolved NodeB (eNB or eNodeB); in the third generation (3rd generation, 3G) system, it is called Node B (Node B), etc.
  • RAN Fifth Generation
  • gNB Fifth Generation NodeB
  • eNB evolved NodeB
  • Node B Node B
  • This network element allows the interconnection and interoperability between terminal equipment and the 3GPP core network using non-3GPP technologies.
  • non-3GPP technologies such as: Wireless Fidelity (Wi-Fi), global microwave Internet access (Worldwide Interoperability for Microwave Access, WiMAX), code division multiple access (code division multiple access, CDMA) network, etc.
  • AMF network element Mainly responsible for mobility management in mobile networks, such as user location update, user registration network, user switching, etc.
  • SMF network element Mainly responsible for session management in mobile networks, such as session establishment, modification, and release. Specific functions include assigning IP addresses to users, selecting UPFs that provide packet forwarding functions, etc.
  • UPF network element responsible for forwarding and receiving user data in terminal equipment. It can receive user data from the data network and transmit it to the terminal device through the access network device; the UPF network element can also receive user data from the terminal device through the access network device and forward it to the data network.
  • the transmission resources and scheduling functions in the UPF network element that provide services for terminal equipment are managed and controlled by the SMF network element.
  • PCF network element mainly supports providing a unified policy framework to control network behavior, provides policy rules to the control layer network functions, and is responsible for obtaining user subscription information related to policy decisions.
  • Network exposure function (NEF) network element mainly used to support the opening of capabilities and events.
  • Application function (AF) network element mainly supports interaction with the 3GPP core network to provide services, such as affecting data routing decisions, policy control functions or providing some third-party services to the network side. If the AF and 5G systems are in different trust domains, input can be provided through the Network Open Function (NEF) application programming interface (API); if the AF and 5G systems are in the same trust domain, time synchronization can be directly through time-sensitive communication The function (Time Sensitive communication Time Synchronization function, TSCTSF) provides input.
  • the application function network element may be an AF network element, such as shown in Figure 11 or Figure 12.
  • future communications such as 6G, application function network elements can still be AF network elements, or have other names, which are not limited in this application.
  • UDM network element used to generate authentication credentials, user identity processing (such as storing and managing user permanent identities, etc.), access authorization control and contract data management, etc.
  • DN refers to the service network that provides data transmission services to users, such as IP multi-media service (IMS), Internet, etc.
  • IMS IP multi-media service
  • the UE accesses the DN through the PDU session established between the UE and the DN.
  • the 5G system can determine the TSCAI/TSCAC based on the information provided by the AF/NEF and may provide it to the PCF for IP type and Ethernet type PDU sessions.
  • the AF can provide traffic pattern parameters to the NEF, such as burst arrival time, periodicity, flow direction, survival time and time domain of the reference ingress port.
  • the NEF may forward the received traffic pattern parameters to the TSCTSF.
  • the AF trusted by the operator can be allowed to directly provide such traffic pattern parameters to the TSCTSF.
  • TSCTSF can be responsible for determining these business model parameters in TSCAI/TSCAC and forwarding them to SMF (possibly through PCF).
  • each network element in the core network can also be called a functional entity or device or network function. It can be a network element implemented on dedicated hardware, a software instance running on dedicated hardware, or a network element running on dedicated hardware.
  • a network element may also be called a network function or function or entity, and this application does not limit this.
  • the network element shown in Figure 1 will be used as an example in the subsequent description of this application, and the XX network element will be directly referred to as XX. It should be understood that the names of all network elements in this application are only examples, and they may also be called other names in future communications, or the network elements involved in this application may also be named by other entities or devices with the same functions in future communications. Instead, this application does not limit this. A unified explanation is given here and will not be repeated later.
  • the communication systems shown in Figures 11 and 12 do not limit the communication systems to which the embodiments of the present application can be applied.
  • the communication system architecture shown in Figures 11 and 12 is a 5G system architecture.
  • the method of the embodiment of the present application is also applicable to various future communication systems, such as 6G or other communication networks.
  • the service flow attribute configuration method provided by the embodiment of the present application can be applied to the communication system as shown in Figure 11 or Figure 12.
  • Figure 13 is a schematic flow chart of a business flow attribute configuration method provided by an embodiment of the present application.
  • This process can occur when collaborative scheduling optimization is required.
  • the first network element in this process is the CUC network element.
  • SMF can act as CUC (that is, TN CNC).
  • the second network element is CNC.
  • AF can act as CNC.
  • the first network element can adjust the burst arrival time (BAT) through the negotiation process, and after receiving the first indication information from the application function (AF) or the radio access network (RAN), end the negotiation process and use the adjusted
  • the burst arrival time determines the attribute information of the first service flow.
  • the first service flow may correspond to one QoS flow or may correspond to multiple QoS flows, which is not limited in the embodiment of this application.
  • the specific process of this method may include:
  • the first network element obtains the transmission time information of the first service flow.
  • the transmission time information includes burst arrival time or burst arrival time adjustment information, and the burst arrival time adjustment information is used to determine the adjusted burst arrival time.
  • the burst arrival time of the first service flow may include at least one of the following:
  • TSCAI burst arrival time in the downlink direction that is, the time when the burst arrives at the wireless access network entrance (such as the DL TSCAI Burst Arrival Time in Figure 4, which is the time when the burst of the first service flow arrives at the NG- RAN time);
  • Uplink TSCAI burst arrival time that is, the time when the burst arrives at the terminal (such as the UL TSCAI Burst Arrival Time in Figure 5, which is the time when the burst of the first service flow reaches the UE);
  • TSCAC burst arrival time in the downlink direction for example, the time when the burst arrives at the NW-TT on the UPF side;
  • Uplink TSCAC burst arrival time for example, the time when the burst arrives at the DS-TT on the UE side.
  • the first network element can calculate the DL TSCAI Burst Arrival Time based on the DL Burst Arrival Time and DL CN PDB provided by the AF, and calculate the UL TSCAI Burst based on the UL Burst Arrival Time and UE-DS-TT Residence Time provided by the AF. Arrival Time.
  • Arrival Time For specific calculation methods, please refer to the relevant content in the previous article.
  • the adjustment information of the burst arrival time is the adjusted burst arrival time, or is the offset before and after adjustment of the burst arrival time.
  • the burst arrival time adjustment information may come from the radio access network (RAN).
  • the first network element sends TSCAI/TSCAC (including BAT) to the radio access network. , receiving the BAT adjustment information sent by the wireless access network.
  • the burst arrival time or the adjustment information of the burst arrival time may come from a policy control function (PCF).
  • PCF policy control function
  • the first network element sends TSCAI/TSCAC (including BAT) to the wireless access network, it receives the adjustment information of the BAT sent by the wireless access network, and the first network element then sends the adjustment information of the BAT ( Or the adjusted BAT) is sent to the PCF, the PCF sends the adjustment information of the BAT to the AF, the AF adjusts again and sends the adjustment information of the BAT to the PCF, and the PCF sends the adjustment information to the first network element.
  • the above process can be called a round of negotiation process.
  • the above process can be performed multiple times. That is to say, the BAT adjustment information obtained by the first network element may be obtained after one or more rounds of negotiation.
  • the adjustment information of the burst arrival time may come from the Time Sensitive Communication Time Synchronization Function (TSCTSF), or directly from the AF, which is not limited in the embodiments of the present application.
  • TSCTSF Time Sensitive Communication Time Synchronization Function
  • the first network element receives the first indication information.
  • the first indication information may be a confirmation indication.
  • the meaning of the first indication information can be expressed as:
  • the first indication information is used to confirm the transmission time information, so that the first network element determines the attributes of the service flow based on the confirmed transmission time information.
  • the transmission time information may come from PCF, RAN, or other network elements.
  • the first indication information is used to indicate confirmation of the BAT, so that the first network element can confirm the BAT according to the BAT determines the attributes of the service flow; for another example, if the PCF sends the BAT offset and the first indication information to the first network element at the same time, the first indication information is used to indicate confirmation of the BAT offset, that is, the confirmation is based on
  • the BAT after the BAT offset is adjusted allows the first network element to determine the attributes of the service flow based on the BAT offset (or the BAT after adjustment based on the BAT offset); for another example, if the PCF only provides If the PCF has sent the first instruction information, the first instruction information is used to instruct and confirm the current BAT on the first network element (or the BAT previously sent by the first network element to the PCF), so that the first network element can confirm according to the confirmation.
  • the BAT determines the current BAT on the first network element (or the BAT previously sent by the first network element to the PCF), so that the first network element can confirm according to
  • the first indication information is This indicates that the RAN accepts the BAT, so that the first network element determines the attribute information of the service flow based on the BAT; for another example, if the RAN receives the BAT from the first network element, adjusts the BAT, and reports it to the first network element.
  • the BAT offset and the first indication information are sent.
  • the first indication information is used to indicate that the RAN accepts the BAT offset (that is, the BAT adjusted based on the offset), so that the first network element can adjust the BAT offset based on the BAT offset.
  • the shift amount (or the BAT adjusted based on the BAT offset) determines the attribute information of the service flow.
  • the first indication information is used to confirm data transmission based on the transmission time information obtained by the first network element.
  • the first indication information is used to confirm data transmission based on the burst arrival time received by the first network element, such as confirming data transmission based on the BAT received from the PCF.
  • the first indication information is used to confirm data transmission based on the adjusted burst arrival time or adjustment information based on the burst arrival time.
  • the first indication information is used to indicate that the burst arrival time will not be adjusted (or further) due to cross-layer scheduling optimization.
  • the first network element can confirm that the attribute information of the first service flow is determined based on the above-mentioned transmission time information.
  • the first indication information may come from the Policy Control Function (PCF), as shown in S1302a in the figure, and the first indication information may also come from the Radio Access Network (RAN), as shown in S1302b in the figure. .
  • PCF Policy Control Function
  • RAN Radio Access Network
  • the first network element sends TSCAI/TSCAC (including BAT) to the wireless access network, it receives the adjustment information of the BAT sent by the wireless access network, and the first network element then sends the adjustment information of the BAT (or adjusts The final BAT) is sent to the PCF, the PCF sends the adjustment information of the BAT to the AF, and the AF adjusts again and sends the adjustment information of the BAT and the first instruction information to the PCF (can via NEF and or TSCTSF), sent by the PCF to the first network element.
  • the above negotiation process can be carried out multiple times. Only in the last negotiation process, AF sends the first indication information to PCF, and PCF sends it to the first network element. In the previous negotiation process, AF/PCF sent The information sent to the first network element does not include the first indication information.
  • the RAN may also send the BAT adjustment information and the first indication information to the first network element after receiving the TSCAI/TSCAC (including BAT) sent by the first network element. .
  • the RAN may also send the first indication information to the first network element after receiving the TSCAI/TSCAC (including BAT) sent by the first network element to confirm the BAT, so that the first network element can determine the attribute information of the first service flow according to the BAT.
  • the above negotiation process may be terminated based on the first indication information. For example, after the AF obtains the adjustment information of one or more BATs from the first network element, if the AF determines that one of them can be used, in this case, the AF determines that there is no need to negotiate again, so it sends the first indication information to the third network element.
  • One network element One network element.
  • the last round of negotiation in the above N rounds of negotiation may include the following steps:
  • the first network element sends the TSCAI (including BAT) to the RAN;
  • RAN adjusts the BAT, obtains BAT adjustment information 1, and sends BAT adjustment information 1 to the first network element;
  • the first network element After receiving the BAT adjustment information 1, the first network element sends it to the AF;
  • the AF sends the first indication information to the first network element, so that the first network element uses the above-mentioned BAT adjustment information 1 or the adjusted BAT based on the BAT adjustment information 1 to determine the first service flow according to the first indication information. attribute information.
  • the AF may also send the first indication information and the BAT adjustment information 2 to the first network element, so that the first network element adjusts the information based on the BAT adjustment information 2 or based on the BAT adjustment information 2.
  • the BAT determines the attribute information of the first service flow.
  • the last round of negotiation in the above N rounds of negotiation may include the following steps:
  • the first network element sends the TSCAI (including BAT) to the RAN;
  • the RAN sends the first indication information to the first network element, so that the first network element determines the attribute information of the first service flow according to the BAT.
  • the RAN adjusts the BAT, obtains the BAT adjustment information 3, and sends the BAT adjustment time information 3 and the first instruction information to the first network element, so that the first network element adjusts the BAT according to the BAT Information 3 or the adjusted BAT based on the BAT adjustment information 3 determines the attribute information of the first service flow.
  • the first network element After receiving the first indication information, the first network element determines the attribute information of the first service flow based on the above transmission time information.
  • the first network element determines the attribute information of the first service flow based on the burst arrival time. If the transmission time information confirmed according to the first indication information is the adjustment information of the burst arrival time, the first network element determines the attribute information of the first service flow according to the adjustment information of the burst arrival time.
  • the attribute information of the first service flow may be part of the parameters in the aforementioned Talker/Listener group information.
  • the attribute information of the first service flow determined by the first network element based on the adjusted burst arrival time includes at least one of the following: earliest transmission offset (EarliestTransmitOffset), latest transmission offset (LatestTransmitOffset), Maximum delay (MaxLatency), sending time (TimeAwareOffset). Furthermore, it may also include intervals, jitter, etc. The definition of these parameters can be found in the previous description.
  • the following uses SMF as a CUC as an example to explain how SMF determines the Talker/Listener group information by referring to the 5G system Bridge and 5G QoS parameters.
  • SMF determines the Talker/Listener group information by referring to the 5G system Bridge and 5G QoS parameters.
  • the following is only an exemplary list of several parameters related to this application, and the parameters included in the Talker/Listener group information are not limited to these.
  • SMF can generate this parameter based on the traffic cycle indicated in TSCAI.
  • the earliest transmission offset should be set based on the UL BAT in TSCAI, plus the sum of UE-DS-TT residence time and 5G-AN PDB. And considering the interval information, the following formula can be used:
  • the earliest transmission offset can be set to: UL BAT+5G-AN PDB-M x interval.
  • M is an integer, taking the maximum value that can ensure that the formula "UL BAT+5G-AN PDB>M*interval length" is true.
  • DL BAT + UPF dwell time - M x interval M is an integer, taking the maximum value that can ensure that the formula "DL BAT+UPF residence time>M*interval length*interval length" is true.
  • SMF can generate this parameter based on local configuration.
  • MaxLatency SMF can generate this parameter based on CN PDB and UPF residence time, that is, this parameter should be CN PDB minus UPF residence time.
  • UPF residence time in the above formula is an optional parameter.
  • S1304 The first network element sends the attribute information of the first service flow to the second network element.
  • the first network element may send the attribute information of the first service flow to the second network element by sending Talker/Listener group information to the second network element.
  • the second network element After receiving the attribute information of the first service flow, the second network element can determine and generate the E2E forwarding path of the service flow based on the information, and send the scheduling parameters to the switching node. It can also generate an E2E forwarding path based on the attribute information of the first service flow. Status information (status), and sends the status information to the first network element, so that the first network element sends the status information to the sending end and receiving end of the first service flow (for example, under the fully centralized configuration model), so that Configure the sending end and receiving end of the first service flow.
  • the second network element can also directly send the status information to the sending end and receiving end of the first service flow (such as in a fully distributed configuration model, or in a centralized network/distributed network). (under the user configuration model).
  • the first network element may also receive second instruction information from the policy control function network element.
  • the second instruction information is sent by the application or application function network element to the policy control function network. element or TSCTSF, and then sent to the first network element by the policy control function network element or TSCTSF.
  • the second indication information may be used to indicate that the application function or the application supports adjusting the packet sending time or supporting adjusting the burst arrival time.
  • the first network element does not immediately determine the attribute information of the first service flow based on the burst arrival time based on the second indication information.
  • the first network element may also obtain the adjustment information of the arrival time of the first service flow (for example, through negotiation), and calculate the attribute information of the first service flow after receiving the first indication information.
  • the second indication information may also be called "instruction to support adjustment of packet sending time” or “instruction to support adjustment of burst arrival time", which is not limited in the embodiment of the present application.
  • Figure 15 and Figure 16 respectively show schematic diagrams of signaling interaction in two application scenarios. Please refer to Figure 15 and Figure 16 for details.
  • the first network element after the first network element obtains the adjustment information of the burst arrival time (BAT) of the first service flow, it does not immediately determine the attribute information of the first service flow, but after receiving the first service flow. After indicating the information, the attribute information of the first service flow is determined according to the adjusted burst arrival time. Therefore, the problem of frequent changes in the attributes of the service flow caused by changes in the burst arrival time can be avoided.
  • BAT burst arrival time
  • the service flow attribute configuration method provided by the embodiment of the present application can be applied to the communication system as shown in Figure 11 or Figure 12.
  • Figure 14 is a schematic flowchart of a business flow attribute configuration method provided by an embodiment of the present application.
  • This process can occur when collaborative scheduling optimization is required.
  • the first network element in this process is the CUC network element.
  • SMF can act as CUC (that is, TN CNC).
  • the second network element is CNC.
  • AF can act as CNC.
  • the first network element may adjust the burst arrival time (BAT) through a negotiation process based on an explicit or implicit indication method, and use the adjusted burst arrival time to determine the attribute information of the first service flow.
  • BAT burst arrival time
  • the first service flow may correspond to one QoS flow or may correspond to multiple QoS flows, which is not limited in the embodiment of this application.
  • the specific process of this method may include:
  • the first network element receives the first information.
  • the first information is sent by the application or application function network element to the policy control function network element or TSCTSF, and then is sent to the first network element by the policy control function network element or TSCTSF.
  • the first information includes second indication information
  • the second indication information may be used to indicate that the application function or application supports adjusting the packet sending time or supporting adjusting the burst arrival time.
  • the first network element does not immediately determine the attribute information of the first service flow based on the burst arrival time based on the second indication information.
  • the first network element may also obtain the burst arrival time adjustment information of the first service flow through negotiation based on the second indication information, and determine the attribute information of the first service flow based on the adjusted burst arrival time.
  • the second indication information may also be called "instruction to support adjustment of burst arrival time", and this embodiment of the present application does not limit this.
  • the first information includes an alternative burst arrival time of the first service flow.
  • the alternative burst arrival time can be a specific burst
  • the arrival time (or offset) can also be a burst arrival time window (or offset interval).
  • the alternative burst arrival time is used to indicate the acceptable adjustment time for the traffic.
  • by sending the alternative burst arrival time to the first network element it is also possible to implicitly instruct the first network element to determine the service flow attributes based on the adjusted burst arrival time.
  • the first information may include both the second indication information and the alternative burst arrival time of the first service flow.
  • the embodiments of this application are not limiting.
  • the first network element obtains the transmission time information of the first service flow according to the first information.
  • the transmission time information includes the burst arrival time or the adjustment information of the burst arrival time.
  • the adjustment of the burst arrival time The information is used to determine the adjusted burst arrival time.
  • the burst arrival time of the first service flow may include at least one of the following:
  • TSCAI burst arrival time in the downlink direction that is, the time when the burst arrives at the wireless access network entrance (such as the DL TSCAI Burst Arrival Time in Figure 4, which is the time when the burst of the first service flow arrives at the NG- RAN time);
  • Uplink TSCAI burst arrival time that is, the time when the burst arrives at the terminal (such as the UL TSCAI Burst Arrival Time in Figure 5, which is the time when the burst of the first service flow reaches the UE);
  • TSCAC burst arrival time in the downlink direction for example, the time when the burst arrives at the NW-TT on the UPF side;
  • Uplink TSCAC burst arrival time for example, the time when the burst arrives at the DS-TT on the UE side.
  • the first network element can calculate the DL TSCAI Burst Arrival Time based on the DL Burst Arrival Time and DL CN PDB provided by the AF, and calculate the UL TSCAI Burst based on the UL Burst Arrival Time and UE-DS-TT Residence Time provided by the AF. Arrival Time.
  • Arrival Time For specific calculation methods, please refer to the relevant content in the previous article.
  • the adjustment information of the burst arrival time is the adjusted burst arrival time, or is the offset before and after adjustment of the burst arrival time.
  • the transmission time information may come from the radio access network (RAN).
  • RAN radio access network
  • the first network element sends TSCAI/TSCAC (including BAT) to the radio access network
  • TSCAI/TSCAC including BAT
  • the first network element sends TSCAI/TSCAC (including BAT) to the wireless access network
  • receives the same BAT sent by the wireless access network indicating that the wireless access network confirms the use of the BAT.
  • the first network element sends the candidate BAT to the wireless access network it receives the same BAT sent by the wireless access network, indicating that the wireless access network confirms the use of the candidate BAT.
  • after the first network element sends the candidate BAT to the radio access network it receives the BAT adjustment information sent by the radio access network.
  • the first network element may also send the alternative burst arrival time to the wireless access network, and the burst arrival time adjustment information sent by the wireless access network may be determined based on the alternative burst arrival time. of.
  • the first network element determines the attribute information of the first service flow based on the above transmission time information.
  • the first network element determines the attribute information of the first service flow based on the burst arrival time. If the transmission time information is the adjustment information of the burst arrival time, the first network element determines the attribute information of the first service flow according to the adjustment information of the burst arrival time or according to the adjusted burst arrival time.
  • the attribute information of the first service flow may be part of the parameters in the aforementioned Talker/Listener group information.
  • the attribute information of the first service flow determined by the first network element based on the adjusted burst arrival time includes at least one of the following: earliest transmission offset (EarliestTransmitOffset), latest transmission offset (LatestTransmitOffset), Maximum delay (MaxLatency), sending time (TimeAwareOffset). The definition of these parameters can be found in the previous description.
  • S1404 The first network element sends the attribute information of the first service flow to the second network element.
  • the first network element may send the attribute information of the first service flow to the second network element by sending Talker/Listener group information to the second network element.
  • the second network element After receiving the attribute information of the first service flow, the second network element can determine and generate the E2E forwarding path of the service flow based on the information, and send the scheduling parameters to the switching node. It can also configure the configuration based on the attribute information of the first service flow.
  • the first service flow is at the sending end and receiving end in the transmission network.
  • the second network element can generate status information (status) according to the attribute information of the first service flow, and send the status information to the first network element, so that the first network element sends the status information to the first service flow.
  • Sender and receiver (such as under a fully centralized configuration model).
  • the second network element can also directly send the status information to the sending end and receiving end of the first service flow (such as in a fully distributed configuration model, or in a centralized network/distributed network). (under the user configuration model).
  • Figure 17 and Figure 18 respectively show schematic diagrams of signaling interaction in two application scenarios. Please refer to Figure 17 and Figure 18 for details.
  • the first network element obtains the adjustment information of the burst arrival time (BAT) of the first service flow based on the first information (for example, obtaining the BAT adjustment information through a negotiation process)
  • the first network element obtains the adjustment information based on the adjusted burst.
  • this scenario is an application scenario in the process shown in Figure 13, in which RAN is the receiving/transmitting end in the access network (AN-TL as shown in the figure), and UPF is the receiving end in the core network.
  • the SMF acts as the CUC.
  • the SMF acting as the CUC adjusts the burst arrival time (BAT) of the first service flow through negotiation, and after receiving the first indication information from the RAN, determines the attribute information of the first service flow based on the adjusted BAT so as to adjust the first service flow.
  • BAT burst arrival time
  • the process includes the following steps:
  • Step 1501 The UE triggers the PDU session establishment process.
  • step 1001 in Figure 10 please refer to the content of step 1001 in Figure 10 .
  • Step 1502 PCF sends the PCC rule with the TSC auxiliary container to SMF.
  • step 1002 in Figure 10 please refer to step 1002 in Figure 10 .
  • the PCF may also send second indication information to the SMF.
  • the second indication information comes from the AF or the application, and is used to indicate that the AF or the application supports adjusting the packet sending time or supporting adjusting the burst arrival time (BAT). ).
  • This second indication information may also be called "instruction to support adjusting BAT".
  • Step 1503 The SMF sends the TSCAI to the RAN, where the TSCAI includes the BAT of the first service flow.
  • the BAT in the TSCAI includes the time when the downlink burst arrives at the RAN entrance (for example, DL TSCAI Burst Arrival Time as shown in Figure 4), and/or the time when the uplink burst arrives at the UE (such as , UL TSCAI Burst Arrival Time) as shown in Figure 5.
  • the TSCAI may also include flow direction information and period.
  • the flow direction information is used to indicate whether the first service flow is in the upstream or downstream direction, and the period refers to the interval between two burst start times.
  • AF determines the time when the TSN flow arrives at the 5G system entrance based on the scheduling information of the TSN flow obtained from the CNC, that is, the time when the TSN flow arrives at the NW-TT entrance in the downlink direction (for example, DL Burst Arrival in Figure 4 Time), the time when the upstream TSN flow arrives at the DS-TT entrance (for example, UL Burst Arrival Time in Figure 5), and provides this information to SMF through PCF. Based on this information, SMF further calculates the time when the burst arrives at the RAN in the downlink direction (TSCAI Burst Arrival Time), and the time when the uplink burst is sent from the UE (UL TSCAI Burst Arrival Time).
  • TSCAI Burst Arrival Time time when the burst arrives at the RAN in the downlink direction
  • UL TSCAI Burst Arrival Time UL TSCAI Burst Arrival Time
  • Step 1504 After receiving the BAT, the RAN adjusts the BAT and feeds back the BAT adjustment information to the SMF.
  • the BAT adjustment information may be an offset (offset), which is the difference between before and after the BAT adjustment.
  • the adjusted BAT can be determined based on the offset.
  • the BAT adjustment information may also be adjusted BAT.
  • SMF can also be calculated directly based on the offset.
  • Step 1505 After receiving the BAT adjustment information, the SMF sends the BAT adjustment information to the PCF.
  • the SMF maps the 5G internal time to the external time before sending it to the PCF.
  • Step 1506 PCF sends the first indication information to SMF.
  • the above-mentioned steps 1503 to 1506 are a round of negotiation process, and the BAT adjustment information can be obtained through the above-mentioned negotiation process.
  • step 1506 for downlink transmission, after receiving the BAT adjustment information from the SMF, the PCF can send the BAT adjustment information to the AF or the application, so that the AF or the application adjusts the packet sending according to the BAT adjustment information. time.
  • the meaning of the first indication information may be referred to the above.
  • the first indication information may also be called a "confirmation indication" and is used to indicate data transmission based on the adjusted BAT (for example, for downlink transmission, the packet sending time is determined based on the modified BAT); or it may also be It can be expressed as: the first indication information is used to indicate that BAT will not be adjusted due to cross-layer scheduling optimization; or it can also be expressed as: the first indication information is used to instruct the SMF to use the confirmed after receiving the first indication information.
  • BAT that is, adjusted BAT determines the attributes of the transport network service flow.
  • the function of the first indication information is to enable the SMF to determine that the BAT parameter negotiation is completed based on the first indication information, and should immediately determine the attribute information of the corresponding business flow based on the adjusted BAT, so that the CNC can determine the attribute information of the corresponding business flow based on the attribute information of the business flow.
  • PCF can also send BAT adjustment information to SMF.
  • PCF can convert BAT The adjustment information and the first indication information are sent to the SMF through one signaling.
  • the first indication information may be transmitted through separate signaling. The embodiments of this application do not limit this.
  • Step 1507 After receiving the first indication information, the SMF performs parameter mapping.
  • the parameter mapping refers to determining the Talker/Listener group information based on the information reported by the sending end, the information reported by the receiving end, and further includes the above-mentioned adjusted BAT and other information.
  • This Talker/Listener group information can also be called merging. Merged stream requirements.
  • the attribute information of the first service flow can be determined based on the adjusted BAT.
  • SMF can perform parameter mapping based on the adjusted BAT, or directly perform parameter mapping based on the offset of the BAT.
  • SMF can use TSCAI BAT or TSCAC BAT when performing parameter mapping. Conversion between TSCAI BAT and TSCAC BAT is performed according to the method given above.
  • the attribute information of the first service flow determined according to the adjusted BAT may include one or more of the following parameters: earliest transmission offset (EarliestTransmitOffset), latest transmission offset (LatestTransmitOffset), maximum time Delay (MaxLatency), sending time (TimeAwareOffset).
  • earliest transmission offset (EarliestTransmitOffset)
  • latest transmission offset (LatestTransmitOffset)
  • Maximum time Delay (MaxLatency)
  • sending time TimeAwareOffset
  • Step 1508 SMF sends the Talker/Listener group information (or merged stream requirements) to the CNC.
  • the CNC After receiving the Talker/Listener group information, the CNC determines and generates the E2E forwarding path of the business flow based on the Talker/Listener group information, and sends the scheduling parameters to the switching node.
  • the CNC also determines the status information (Status) that needs to be configured for the sending end and the receiving end based on the Talker/Listener group information.
  • the status information can also be called merged end station communication configuration (merged end station communication-configuration).
  • Step 1509 The CNC sends the status information (or merged end station communication-configuration) to the SMF.
  • Step 1510 and step 1511 SMF configures the sender (Talker) and the receiver (Listener) respectively according to the status information sent by the CNC.
  • SMF can send the TimeAwareOffset (packet sending time of the sender) in the status information to CN-TL and AN-TL in the transparent container, so that CN-TL and AN-TL adjust the sending time of the traffic accordingly.
  • TimeAwareOffset packet sending time of the sender
  • the above negotiation process may be conducted in only one round or in multiple rounds. If the negotiation process proceeds for multiple rounds, in the other rounds of negotiation except the last round, the PCF will send the BAT adjustment information to the SMF after receiving the BAT adjustment information. Only in the last round of negotiation, the PCF will send the BAT adjustment information to the SMF after receiving the BAT adjustment information. After adjusting the information, the first indication information is sent to the SMF, so that the SMF determines that parameter mapping should be performed immediately, so that the SMF does not need to use unstable BAT to calculate the attributes of the service flow.
  • the PCF will not send the second indication information to the SMF under any circumstances. That is to say, the second indication information is not defined in the solution, and only the first indication information is defined. Then After receiving the PCC rule from PCF, SMF does not perform parameter mapping immediately by default, but performs parameter mapping after receiving the first indication information. In another possible implementation, the first indication information and the second indication information are defined in the solution. If the PCF carries the second indication information when sending the PCC rule to the SMF, the SMF does not perform parameter mapping immediately, but in Parameter mapping is performed after receiving the first indication information; if the PCF does not carry the second indication information when sending the PCC rule to the SMF, the SMF can immediately perform parameter mapping.
  • the SMF determines that the BAT may be adjusted due to cross-layer scheduling optimization through the second indication information of the AF (ie, the acceptance adjustment indication), thereby determining that it is not necessary to immediately send the attributes of the transmission network service flow.
  • the SMF determines that the BAT will no longer be adjusted due to cross-layer scheduling optimization through the first indication (ie, confirmation indication) of the AF (PCF), and then determines the attribute information of the service flow, thus avoiding unnecessary parameter adjustments.
  • this scenario is an application scenario in the process shown in Figure 13, where RAN is the receiving/transmitting end in the access network (AN-TL as shown in the figure), and UPF is the On the receiving/transmitting side (CN-TL as shown in the figure), the SMF acts as the CUC.
  • the SMF acting as the CUC adjusts the burst arrival time (BAT) of the first service flow through negotiation.
  • BAT burst arrival time
  • the process includes the following steps:
  • Step 1601 The UE triggers the PDU session establishment process.
  • Step 1602 PCF sends the PCC rule with the TSC auxiliary container to SMF.
  • Step 1603 The SMF sends the TSCAI to the RAN, where the TSCAI includes the BAT of the first service flow.
  • Step 1604 After receiving the BAT, the RAN adjusts the BAT and feeds back the BAT adjustment information and the first indication information to the SMF.
  • the BAT adjustment information may be an offset (offset), which is the difference between before and after the BAT adjustment.
  • the adjusted BAT can be determined based on the offset.
  • the BAT adjustment information may also be adjusted BAT.
  • the above-mentioned steps 1603 to 1604 are a round of negotiation process, and the BAT adjustment information can be obtained through the above-mentioned negotiation process.
  • the meaning of the first indication information may be referred to the above.
  • the first indication information may also be called a "confirmation indication" and is used to indicate data transmission based on the adjusted BAT (for example, for downlink transmission, the packet sending time is determined based on the modified BAT); or it may also be It can be expressed as: the first indication information is used to indicate that BAT will not be adjusted due to cross-layer scheduling optimization; or it can also be expressed as: the first indication information is used to instruct the SMF to use the confirmed after receiving the first indication information.
  • BAT that is, adjusted BAT
  • the function of the first indication information is to enable the SMF to determine that the BAT parameter negotiation is completed based on the first indication information, and to immediately determine the attribute information of the corresponding service flow based on the adjusted BAT.
  • the RAN may send the BAT adjustment information and the first indication information to the SMF through one signaling, or may transmit the first indication information through separate signaling. This embodiment of the present application does not limit this.
  • the RAN may only send the first indication information to the SMF without including the BAT adjustment information. For example, when receiving the BAT sent by the SMF, the RAN determines that the BAT can be used, and then only sends the first indication information.
  • the SMF performs parameter mapping based on the TSCAC received from the PCF or the stored TSCAI (step 1605).
  • Step 1605 After receiving the first indication information, the SMF performs parameter mapping.
  • Step 1606 SMF sends the Talker/Listener group information (or merged stream requirements) to the CNC.
  • Step 1607 The CNC sends the status information (or merged end station communication-configuration) to the SMF.
  • Step 1608 and step 1609 SMF configures the sender (Talker) and the receiver (Listener) respectively according to the status information sent by the CNC.
  • steps 1601 to 1603 and steps 1605 to 1609 in the above process please refer to the corresponding steps in Figure 15.
  • the above negotiation process may be conducted in only one round or in multiple rounds. If the negotiation process proceeds for multiple rounds, only in the last round of negotiation process, the RAN sends the first indication information to the SMF after receiving the BAT adjustment information, so that the SMF determines that parameter mapping should be performed immediately, so that the SMF does not have to take advantage of unstable BAT calculates the attributes of business flows.
  • the RAN may only send the first indication information to the SMF without sending the BAT adjustment information. For example, in a multi-round negotiation process, the RAN only sends the first indication information to the SMF in the last round of negotiation.
  • the PCF will not send the second indication information to the SMF under any circumstances. That is to say, the second indication information is not defined in the solution, and only the first indication information is defined. Then After receiving the PCC rule from PCF, SMF does not perform parameter mapping immediately by default, but performs parameter mapping after receiving the first indication information. In another possible implementation, the first indication information and the second indication information are defined in the solution. If the PCF carries the second indication information when sending the PCC rule to the SMF, the SMF does not perform parameter mapping immediately, but in Parameter mapping is performed after receiving the first indication information; if the PCF does not carry the second indication information when sending the PCC rule to the SMF, the SMF can immediately perform parameter mapping.
  • the SMF determines that the BAT may be adjusted due to cross-layer scheduling optimization through the second indication information of the AF (ie, the acceptance adjustment indication), and thus determines It is not necessary to send the properties of the transport network traffic flow immediately.
  • the SMF determines that the BAT will no longer be adjusted due to cross-layer scheduling optimization through the first indication (ie, confirmation indication) of the RAN, and then determines the attribute information of the service flow, thus avoiding unnecessary parameter adjustments.
  • this scenario is an application scenario in the process shown in Figure 14, where RAN is the receiving/transmitting end in the access network (AN-TL as shown in the figure), and UPF is the On the receiving/transmitting side (CN-TL as shown in the figure), the SMF acts as the CUC. act as The CUC's SMF performs a round of negotiation based on implicit instructions (such as implicit instructions through alternative BAT) to adjust the burst arrival time (BAT) of the first service flow, and determines the attribute information of the first service flow based on the adjusted BAT. , in order to adjust the sending time of the first service flow.
  • implicit instructions such as implicit instructions through alternative BAT
  • BAT burst arrival time
  • the process includes the following steps:
  • Step 1701 The UE triggers the PDU session establishment process.
  • Step 1702 The PCF sends the PCC rule with the TSC auxiliary container to the SMF, which includes the alternative BAT (AltenativeBAT) of the first service flow.
  • AF supports adjusting the BAT or packet sending time, so that after receiving the alternative BAT, SMF does not immediately perform parameter mapping and send the attribute information of the service flow, but performs parameter negotiation.
  • Step 1703 The SMF sends the TSCAI and the alternative BAT to the RAN, where the TSCAI includes the BAT of the first service flow.
  • Step 1704 After receiving the BAT, the RAN adjusts the BAT and feeds back the BAT adjustment information to the SMF.
  • the RAN when adjusting the BAT, can refer to the alternative BAT for adjustment.
  • a value in the candidate BAT (window) can be selected for adjustment, or the offset can be determined based on a value in the candidate BAT (window). This is not limited in the embodiment of the present application.
  • the above-mentioned steps 1703 to 1704 are a round of negotiation process, and the BAT adjustment information can be obtained through the above-mentioned negotiation process.
  • Step 1705 After receiving the BAT adjustment information, the SMF performs parameter mapping.
  • SMF receives the BAT adjustment information for adjustment with reference to the alternative BAT, it can default to AF accepting it, so there will be no multiple negotiations. Therefore, SMF can directly adjust the information according to the BAT and perform parameter mapping.
  • Step 1706 SMF sends the Talker/Listener group information (or merged stream requirements) to the CNC.
  • Step 1707 The CNC sends the status information (or merged end station communication-configuration) to the SMF.
  • Step 1708 and step 1709 SMF configures the sender (Talker) and the receiver (Listener) respectively according to the status information sent by the CNC.
  • the above process can be applied to the scenario of one round of negotiation.
  • the SMF receives the BAT adjustment information, it no longer performs the negotiation process, but performs parameter mapping and sends the attribute information of the first service flow to the CNC so that the switching node and sending Configure the terminal and receiver.
  • the SMF determines through the implicit indication of AF that the BAT may be adjusted due to cross-layer scheduling optimization, thereby determining that it is not necessary to send the attributes of the transport network service flow immediately.
  • the SMF determines through the implicit confirmation of the RAN that the BAT will no longer be adjusted due to cross-layer scheduling optimization, and then determines the attribute information of the service flow, thus avoiding unnecessary parameter adjustments.
  • this scenario is an application scenario in the process shown in Figure 14, where RAN is the receiving/transmitting end in the access network (AN-TL as shown in the figure), and UPF is the On the receiving/transmitting side (CN-TL as shown in the figure), the SMF acts as the CUC.
  • the SMF acting as the CUC conducts a round of negotiation to adjust the burst arrival time (BAT) of the first service flow according to the display indication (such as the second indication information), and determines the attribute information of the first service flow according to the adjusted BAT in order to adjust the first service flow.
  • the sending time of a business flow is an application scenario in the process shown in Figure 14, where RAN is the receiving/transmitting end in the access network (AN-TL as shown in the figure), and UPF is the On the receiving/transmitting side (CN-TL as shown in the figure), the SMF acts as the CUC.
  • the SMF acting as the CUC conducts a round of negotiation to adjust the burst arrival time (BAT) of the first service
  • the process includes the following steps:
  • Step 1801 The UE triggers the PDU session establishment process.
  • Step 1802 The PCF sends the PCC rule with the TSC auxiliary container to the SMF, which includes the second indication information.
  • the second indication information may also be called "instruction to support adjusting BAT".
  • the second indication information comes from the AF or the application and is used to indicate that the AF or the application supports adjusting the packet sending time or supporting adjusting the BAT.
  • the AF supports adjusting the BAT or packet sending time, so that after receiving the second indication information, the SMF does not immediately perform parameter mapping and send the attribute information of the service flow, but performs the parameter negotiation process.
  • Step 1803 The SMF sends TSCAI to the RAN, where the TSCAI includes the BAT of the first service flow.
  • Step 1804 After receiving the BAT, the RAN adjusts the BAT and feeds back the BAT adjustment information to the SMF.
  • the above-mentioned steps 1803 to 1804 are a round of negotiation process, and the BAT adjustment information can be obtained through the above-mentioned negotiation process.
  • Step 1805 After receiving the BAT adjustment information, the SMF performs parameter mapping.
  • Step 1806 SMF sends the Talker/Listener group information (or merged stream requirements) To CNC.
  • Step 1807 The CNC sends the status information (or merged end station communication-configuration) to the SMF.
  • Step 1808 and step 1809 SMF configures the sender (Talker) and the receiver (Listener) respectively according to the status information sent by the CNC.
  • the above process can be applied to the scenario of one round of negotiation.
  • the SMF receives the BAT adjustment information, it no longer performs the negotiation process, but performs parameter mapping and sends the attribute information of the first service flow to the CNC so that the switching node and sending Configure the terminal and receiver.
  • the SMF determines that the BAT may be adjusted due to cross-layer scheduling optimization through the explicit instruction of the AF, thereby determining that it is not necessary to send the attributes of the transport network service flow immediately.
  • the SMF determines through the implicit confirmation of the RAN that the BAT will no longer be adjusted due to cross-layer scheduling optimization, and then determines the attribute information of the service flow, thus avoiding unnecessary parameter adjustments.
  • embodiments of the present application also provide a communication device.
  • the communication device can execute the process executed by the first network element (such as SMF) in Figures 13, 15, and 16, or execute the process executed by the first network element (such as SMF) in Figures 14, 17, and 18. .
  • the communication device 1900 may include: a processing unit 1901 and a transceiver unit 1902.
  • the transceiver unit 1902 is coupled to the processing unit 1901.
  • the functions of each of the above functional modules may include:
  • the processing unit 1901 is configured to: obtain the transmission time information of the first service flow.
  • the transmission time information includes the burst arrival time or the adjustment information of the burst arrival time.
  • the adjustment information of the burst arrival time is used to determine the adjusted The burst arrival time; when the transceiver unit receives the first indication information, determine the attribute information of the first service flow according to the transmission time information; and, use the transceiver unit 1902 to transfer the attribute information of the first service flow to The attribute information is sent to the second network element.
  • the first indication information comes from an AF network element, a PCF network element, or a TSCTSF network element.
  • the first indication information is a confirmation indication; or the first indication information is used to confirm the transmission time information or perform data transmission based on the transmission time information; or the first indication information is The arrival time of the indicated burst will not be adjusted due to cross-layer scheduling optimization.
  • the transceiver unit 1902 is also configured to receive second indication information before the processing unit 1901 acquires the transmission time information of the first service flow; the processing unit 1901 is specifically configured to acquire the said transmission time information according to the second indication information. Adjustment information for the burst arrival time of the first service flow.
  • the second indication information comes from an AF network element, a PCF network element, or a TSCTSF network element.
  • the transmission time information comes from a radio access network element, an AF network element, a PCF network element, or a TSCTSF network element.
  • the processing unit 1901 is specifically configured to: send delay-sensitive communication auxiliary information to the wireless access network through the transceiver unit 1902, where the delay-sensitive communication auxiliary information includes a burst arrival time, and the burst arrival time includes The time when a downlink burst arrives at the wireless access network entrance, and/or the time when an uplink burst arrives at the terminal; the burst arrival time adjustment information from the wireless access network is received through the transceiver unit 1902; through the transceiver unit 1902 1902. Send the burst arrival time adjustment information to the application function; receive the first indication information from the application function through the transceiver unit 1902.
  • the burst arrival time includes at least one of the following: uplink TSCAI burst arrival time, downlink TSCAI burst arrival time, uplink TSCAC burst arrival time, and downlink TSCAC burst arrival time.
  • the adjustment information of the burst arrival time is the adjusted burst arrival time, or is the offset before and after adjustment of the burst arrival time.
  • the attribute information of the first service flow includes at least one of the following:
  • the earliest transmission offset which is the earliest offset of the first data frame of the sending end in the sending cycle relative to the start time point of the sending cycle;
  • the latest transmission offset which is the latest offset of the first data frame of the sending end in the sending cycle relative to the start time point of the sending cycle;
  • Maximum delay which is the maximum delay of a data frame from the sending end to the receiving end
  • the sending time is the time offset used by the sending end when transmitting data packets, and the time offset is between the earliest transmission offset and the latest transmission offset.
  • the first network element is a session management function network element, and the session management function network element is configured as a centralized user configuration network element; and the second network element is a centralized network configuration network element.
  • the functions of each of the above functional modules may include:
  • Transceiver unit 1902 configured to receive first information, where the first information includes second indication information and/or the alternative burst arrival time of the first service flow;
  • the processing unit 1901 is configured to obtain the transmission time information of the first service flow according to the first information.
  • the transmission time information includes the burst arrival time or the adjustment information of the burst arrival time.
  • the burst arrival time The adjustment information is used to determine the adjusted burst arrival time; determine the attribute information of the first service flow according to the transmission time information; and send the attribute information of the first service flow to the third service provider through the transceiver unit 1902. Two network elements.
  • the first information comes from an AF network element, a PCF network element, or a network element.
  • the second indication information is used to indicate that the application function supports adjusting the burst arrival time or packet sending time.
  • the transmission time information comes from a radio access network element.
  • the adjustment information of the burst arrival time is determined by the radio access network element based on the alternative burst arrival time.
  • the burst arrival time includes at least one of the following: uplink TSCAI burst arrival time, downlink TSCAI burst arrival time, uplink TSCAC burst arrival time, and downlink TSCAC burst arrival time.
  • the adjustment information of the burst arrival time is the adjusted burst arrival time, or is the offset before and after adjustment of the burst arrival time.
  • the attribute information of the first service flow includes at least one of the following:
  • the earliest transmission offset is the earliest offset of the first data frame of the sending end in the sending cycle relative to the start time point of the sending cycle;
  • the latest transmission offset which is the latest offset of the first data frame of the sending end in the sending cycle relative to the start time point of the sending cycle;
  • Maximum delay which is the maximum delay of a data frame from the sending end to the receiving end
  • the sending time is the time offset used by the sending end when transmitting data packets, and the time offset is between the earliest transmission offset and the latest transmission offset.
  • the first network element is a session management function network element, and the session management function network element is configured as a centralized user configuration network element; and the second network element is a centralized network configuration network element.
  • the above-mentioned communication device 1900 can implement the method steps in the above-mentioned method embodiments and can achieve the same technical effects.
  • the parts and beneficial effects in this embodiment that are the same as those in the method embodiments will not be described in detail here.
  • embodiments of the present application also provide a communication device.
  • the communication device may execute the process executed by the radio access network (RAN) or the policy control function (PCF) in FIG. 13, FIG. 15, and FIG. 16.
  • RAN radio access network
  • PCF policy control function
  • the communication device 2000 may include: a processing unit 2001 and a transceiver unit 2002.
  • the transceiver unit 2002 is coupled to the processing unit 2001.
  • the processing unit 2001 is configured to determine that data transmission is performed based on the confirmed transmission time information of the first service flow, or that the burst arrival time of the first service flow will not be adjusted due to cross-layer scheduling optimization, wherein the transmission
  • the time information includes the burst arrival time or the adjustment information of the burst arrival time.
  • the adjustment information of the burst arrival time is used to determine the adjusted burst arrival time; and is sent to the first network element through the transceiver unit 2002 First instruction message.
  • the first indication information is a confirmation indication, or the first indication information is used to confirm the transmission time information or perform data transmission based on the transmission time information, or the first indication information is used to indicate Burst arrival times are not adjusted due to cross-layer scheduling optimizations.
  • the processing unit 2001 before sending the first indication information to the first network element through the transceiver unit 2002, the processing unit 2001 also sends second indication information to the first network element through the transceiver unit 2002, and the second indication information is used for Indicates that the application function supports adjusting the burst arrival time or packet sending time.
  • the above-mentioned communication device 2000 can implement the method steps in the above-mentioned method embodiments and can achieve the same technical effects.
  • the parts and beneficial effects in this embodiment that are the same as those in the method embodiments will not be described in detail here.
  • FIG. 21 only shows the structure required for the communication device 2100 to perform the method shown in this application.
  • This application does not limit the communication device to be equipped with more components.
  • the communication device 2100 can be used to perform the steps performed by the relevant network element in the above method embodiment.
  • the relevant network element can be the first network element (such as SMF), PCF, RAN, etc.
  • the communication device 2100 may include a transceiver 2101, a memory 2103, and a processor 2102.
  • the transceiver 2101, the memory 2103, and the processor 2102 may be connected through a bus 2104.
  • the transceiver 2101 can be used for communication with a communication device, such as for sending or receiving signals.
  • the memory 2103 is coupled to the processor 2102 and can be used to store programs and data necessary for the communication device 2100 to implement various functions.
  • the above memory 2103 and processor 2102 can be integrated into one body or independent of each other.
  • the transceiver 2101 may be a communication port, such as a communication port (or interface) used for communication between network elements.
  • the transceiver 2101 may also be called a transceiver unit or a communication unit.
  • the processor 2102 can be implemented by a processing chip or a processing circuit.
  • the transceiver 2101 can receive or send information in a wireless or wired manner.
  • the communication device may include a processor, and the processor calls an external transceiver and/or memory to implement the above functions or steps or operations.
  • the communication device may also include a memory, and the processor calls and executes the program stored in the memory to implement the above functions or steps or operations.
  • the communication device may also include a processor and a transceiver (or communication interface), and the processor calls and executes a program stored in an external memory to implement the above functions or steps or operations.
  • the communication device may include a processor, memory, and a transceiver.
  • embodiments of the present application also provide a computer-readable storage medium on which program instructions (or computer programs, instructions) are stored.
  • program instructions or computer programs, instructions
  • the The computer executes the above method embodiments and any possible implementation manner of the method embodiments by the first network element. Operations performed by the radio access network or policy control functions.
  • this application also provides a computer program product, including program instructions.
  • the computer program product When the computer program product is called and executed by a computer, it can cause the computer to implement any of the above method embodiments and method embodiments.
  • the first network element is used. Operations performed by the radio access network or policy control functions.
  • this application also provides a chip or chip system, the chip is coupled with a transceiver, and is used to implement the above method embodiments and any possible implementation manner of the method embodiments by the first network element. Operations performed by the radio access network or policy control functions.
  • the chip system may include the chip, as well as components such as memory and communication interfaces.
  • the embodiment of the present application also provides a communication system.
  • the communication system includes a first network element (such as SMF configured as CUC), a second network element (such as CNC) and a third network element (such as PCF, RAN).
  • the communication system can be implemented as shown in Figure 13 , the process shown in Figure 15 or Figure 16.
  • the communication system includes a first network element (such as SMF configured as CUC), a second network element (such as CNC) and a third network element (such as PCF).
  • the communication system can be implemented as shown in Figure 14, Figure 17 or the process shown in Figure 18.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种业务流属性配置方法、装置和系统。该方法包括:第一网元获取第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;当所述第一网元接收到第一指示信息后,根据所述传输时间信息确定所述第一业务流的属性信息;所述第一网元将所述第一业务流的属性信息发送给第二网元。

Description

一种业务流属性配置方法、装置和系统
相关申请的交叉引用
本申请要求在2022年08月05日提交中国专利局、申请号为202210938909.6、申请名称为“一种业务流属性配置方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种业务流属性配置方法、装置和系统。
背景技术
在传统以太网络的数据转发过程中,当大量数据包在一瞬间抵达转发端口时,将造成转发时延大或者丢包的问题,因此无法满足对可靠性和传输时延要求高的业务,比如汽车控制、工业互联网等领域的业务。针对可靠时延传输的需求,目前定义了相关的时延敏感网络(time sensitive networking,TSN)网络标准,该标准基于二层交换来提供可靠时延传输服务,保障时延敏感业务数据传输的可靠性,以及可预测的端到端传输时延。
在第三代合作伙伴计划(3rd generation partnership project,3GPP)与TSN互通的场景下,需要在各网络节点以及应用服务器处进行协同调度,以避免数据包在节点处的排队时延。为了提高传输性能,可能需要进行协同调度优化。在协同调度优化发生时,业务流的属性信息需要根据传输时间相关参数(比如突发到达时间)的变化而变化,进一步的由于传输时间相关参数可能进行多轮协商,这将导致业务流属性的变化更为频繁,影响传输稳定性。
因此,如何避免因传输时间相关参数(比如突发到达时间)变化导致业务流属性信息频繁变化,是目前需要解决的技术问题。
发明内容
本申请实施例提供了一种业务流属性配置方法、装置和系统,用以避免因突发到达时间变化而导致业务流属性频繁变化的问题。
第一方面,提供一种业务流属性配置方法,包括:第一网元获取第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;当所述第一网元接收到第一指示信息后,根据所述传输时间信息确定所述第一业务流的属性信息,并将所述第一业务流的属性信息发送给第二网元。
上述实现方式中,第一网元获取第一业务流的传输时间信息,比如突发达到时间(BAT)或BAT的调整信息后,并不立即确定第一业务流的属性信息,而是在接收到第一指示信息后,根据所述传输时间信息确定第一业务流的属性信息,因此可以避免因突发到达时间变化而导致业务流属性频繁变化的问题。
在一种可能的实现方式中,所述第一指示信息来自于应用功能(AF)网元,或策略控制功能(PCF)网元,或时间敏感通信时间同步功能(TSCTSF)网元。
在一种可能的实现方式中,所述第一指示信息为确认指示;或者,所述第一指示信息用于确认所述传输时间信息或基于所述传输时间信息进行数据传输;或者,所述第一指示信息用于指示突发到达时间不会因为跨层调度优化而进行调整。
上述实现方式中,第一网元可以根据第一指示信息,确认基于所述传输时间信息进行数据传输,或者第一业务的突发到达时间不会再由于跨层调度优化被调整,此时再根据调整后的突发到达时间确定第一业务流的属性信息,从而可以避免因突发到达时间变化而导致业务流属性频繁变化。
在一种可能的实现方式中,所述第一网元获取第一业务流的传输时间信息之前,所述方法还包括:所述第一网元接收第二指示信息,所述第二指示信息用于指示应用功能或应用支持调整发包时间或支持调整突发到达时间,或者用于指示所述第一网元不立即根据突发到达时间确定所述第一业务流的属性信息。
在一种可能的实现方式中,所述第一网元根据所述第二指示信息,不立即根据所述传输时间信息确 定所述第一业务流的属性信息。
上述实现方式中,第一网元可以根据第二指示信息不立即根据所述传输时间信息确定所述第一业务流的属性信息,从而可以避免因突发到达时间变化而导致业务流属性频繁变化。
在一种可能的实现方式中,所述第二指示信息来自于AF网元,或PCF网元,或TSCTSF网元。
在一种可能的实现方式中,所述第一网元获取第一业务流的突发到达时间的调整信息,以及接收所述第一信息,包括:
所述第一网元将时延敏感通信辅助信息发送给无线接入网,所述时延敏感通信辅助信息包括突发到达时间,所述突发到达时间包括下行方向突发到达所述无线接入网入口的时间,和/或上行方向突发到达终端的时间;
所述第一网元接收来自所述无线接入网的突发到达时间调整信息;
所述第一网元将所述突发到达时间调整信息发送给所述应用功能;
所述第一网元接收来自于所述应用功能的所述第一指示信息。
在一种可能的实现方式中,所述传输时间信息来自于无线接入网网元,或AF网元,或PCF网元,或TSCTSF网元。
在一种可能的实现方式中,所述突发到达时间,包括以下中的至少一项:上行时延敏感通信辅助信息(TSCAI)突发到达时间,下行TSCAI突发到达时间,上行时延敏感通信辅助容器(TSCAC)突发到达时间,下行TSCAC突发到达时间。
在一种可能的实现方式中,所述突发到达时间的调整信息为调整后的突发到达时间,或者为所述突发到达时间调整前和调整后的偏移量。
在一种可能的实现方式中,所述第一业务流的属性信息,包括以下至少一项:
最早传输偏移,所述最早传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最早偏移;
最晚传输偏移,所述最晚传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最晚偏移;
最大时延,所述最大时延为数据帧从所述发送端到所述接收端的最大时延;
发送时间,所述发送时间为所述发送端传输数据包时使用的时间偏移,所述时间偏移在所述最早传输偏移和所述最晚传输偏移之间。
在一种可能的实现方式中,所述第一网元为会话管理功能网元,所述会话管理功能网元被配置为集中式用户配置网元;所述第二网元为集中式网络配置网元。
第二方面,提供一种业务流属性配置方法,包括:第一网元接收第一信息,所述第一信息包括第二指示信息和/或第一业务流的备选突发到达时间;所述第一网元根据所述第一信息,获取所述第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;所述第一网元根据所述传输时间信息确定所述第一业务流的属性信息,并将所述第一业务流的属性信息发送给第二网元。
上述实现方式中,第一网元根据第一信息获取第一业务流的传输时间信息,比如包括突发到达时间(BAT)或BAT的调整信息(比如通过协商过程获取BAT的调整信息)后,根据调该传输时间信息确定第一业务流的属性信息,从而可以在获取BAT的调整信息后,才根据调整后的BAT确定第一业务流的属性信息,因此可以避免因突发到达时间变化而导致业务流属性频繁变化的问题。
在一种可能的实现方式中,所述第一信息来自于AF网元,或PCF网元,或TSCTSF网元。
在一种可能的实现方式中,所述第二指示信息用于指示所述应用功能支持调整突发到达时间或发包时间。
在一种可能的实现方式中,所述传输时间信息来自于无线接入网网元。
在一种可能的实现方式中,所述突发到达时间的调整信息,是所述无线接入网网元根据所述备选突发到达时间确定的。
在一种可能的实现方式中,所述突发到达时间,包括以下中的至少一项:上行TSCAI突发到达时间,下行TSCAI突发到达时间,上行TSCAC突发到达时间,下行TSCAC突发到达时间。
在一种可能的实现方式中,所述突发到达时间的调整信息为调整后的突发到达时间,或者为所述突发到达时间调整前和调整后的偏移量。
在一种可能的实现方式中,所述第一业务流的属性信息,包括以下至少一项:
最早传输偏移,所述最早传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最早偏移;
最晚传输偏移,所述最晚传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最晚偏移;
最大时延,所述最大时延为数据帧从所述发送端到所述接收端的最大时延;
发送时间,所述发送时间为所述发送端传输数据包时使用的时间偏移,所述时间偏移在所述最早传输偏移和所述最晚传输偏移之间。
在一种可能的实现方式中,所述第一网元为会话管理功能网元,所述会话管理功能网元被配置为集中式用户配置网元;所述第二网元为集中式网络配置网元。
第三方面,提供一种业务流属性配置方法,包括:确定基于确认的第一业务流的传输时间信息进行数据传输,或者所述第一业务流的突发到达时间不会因为跨层调度优化而进行调整;其中,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;向所述第一网元发送第一指示信息。
在一种可能的实现方式中,所述第一指示信息为确认指示,或者所述第一指示信息用于确认所述传输时间信息或基于所述传输时间信息进行数据传输,或者所述第一指示信息用于指示突发到达时间不会因为跨层调度优化而进行调整。
在一种可能的实现方式中,向所述第一网元发送第一指示信息之前,所述方法还包括:向所述第一网元发送第二指示信息,所述第二指示信息用于指示所述应用功能支持调整突发到达时间或发包时间。
第四方面,提供一种通信系统,包括:第一网元,第二网元和第三网元;所述第一网元用于执行如上述第一方面中任一项所述的方法,所述第三网元用于执行如上述第三方面中任一项所述的方法。
第五方面,提供一种通信系统,包括:第一网元,第二网元,所述第一网元用于执行如上述第二方面中任一项所述的方法。
第六方面,提供一种通信装置,包括:处理单元和收发单元;所述处理单元,用于获取第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;当所述收发单元接收到第一指示信息后,根据所述传输时间信息确定所述第一业务流的属性信息;以及,通过所述收发单元将所述第一业务流的属性信息发送给第二网元。
第七方面,提供一种通信装置,包括:处理单元和收发单元;所述收发单元,用于接收第一信息,所述第一信息包括第二指示信息和/或第一业务流的备选突发到达时间;所述处理单元,用于根据所述第一信息,获取所述第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;根据所述传输时间信息确定所述第一业务流的属性信息;以及,通过所述收发单元将所述第一业务流的属性信息发送给第二网元。
第八方面,提供一种通信装置,包括:处理单元和收发单元;所述处理单元,用于确定基于确认的第一业务流的传输时间信息进行数据传输,或者所述第一业务流的突发到达时间不会因为跨层调度优化而进行调整,其中,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;以及,通过所述收发单元向所述第一网元发送第一指示信息。
第九方面,提供一种通信装置,包括:一个或多个处理器;一个或多个存储器;其中,所述一个或多个存储器存储有一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述指令被所述一个或多个处理器执行时,使得所述通信设备执行如上述第一方面中任一项所述的方法,或者执行如上述第二方面中任一项所述的方法,或者如上述第三方面中任一项所述的方法。
第十方面,提供一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在计算设备上运行时,使得所述计算设备执行如上述第一方面中任一项所述的方法,或者执行如上述第二方面中任一项所述的方法,或者如上述第三方面中任一项所述的方法。
第十一方面,提供一种芯片,述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如上述第一方面中任一项所述的方法,或者执行如上述第二方面中任一项所述的方法,或者如上述第三方面中任一项所述的方法。
第十二方面,提供一种计算机程序产品,所述计算机程序产品在被计算机调用时,使得所述计算机执行如上述第一方面中任一项所述的方法,或者执行如上述第二方面中任一项所述的方法,或者执行如上述第三方面中任一项所述的方法。
附图说明
图1为TSN全集中式配置模型的示意图;
图2为3GPP网络与TSN网络互通系统架构示意图;
图3为下行方向缓存转发时延确定性传输示意图;
图4为下行方向TSN流到达NW-TT入口以及到达RAN入口的示意图;
图5为上行方向TSN流到达DS-TT入口以及从UE发出的示意图;
图6为5G QoS架构示意图;
图7为下行方向报文发送时序示意图;
图8为调度协调器调整下行报文在UPF或应用侧的发送时机的示意图;
图9为一种SMF充当CUC的网络架构示意图;
图10为现有技术提供的一种TSN配置流程示意图;
图11、图12分别为本申请实施例提供的一种5G非漫游基于参考点的架构示意图;
图13为本申请实施例提供的一种业务流属性配置流程示意图;
图14为本申请另一实施例提供的一种业务流属性配置流程示意图;
图15为本申请实施例中场景一的业务流属性配置流程示意图;
图16为本申请实施例中场景二的业务流属性配置流程示意图;
图17为本申请实施例中场景三的业务流属性配置流程示意图;
图18为本申请实施例中场景四的业务流属性配置流程示意图;
图19为本申请实施例提供的一种通信装置的结构示意图;
图20为本申请实施例提供的另一种通信装置的结构示意图;
图21为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。需要说明的是,在本申请中不限定第一、第二等的出现顺序,例如可以先出现第五,再出现第三,本申请对此不作限定。
在本申请的描述中,“至少一个(项)”是指一个(项)或者多个(项),多个(项)是指两个(项)或者两个(项)以上。
下面首先对本申请实施例中的部分技术术语进行简要说明。
(1)数据分组单元(packet data unit,PDU)会话
PDU会话是用户设备(user equipment,UE,也称终端)和数据网络(data network,DN)之间的一个逻辑连接,用于提供UE和DN之间的用户面连接。
(2)Residence time
Residence time是指处理时间或驻留时间,是设备对业务的处理时间。
(3)CN PDB
CN是core network的英文简称,即核心网。PDB是packet delay budget的英文简称,即包延迟预算。CN PDB表示在给定PDB,锚点用户面功能(user plane function,UPF)网元与第五代移动通信技术(5th generation mobile communication technology,5G)-接入网(access network,AN)之间的延迟。CN PDB定义了数据包在UE和UPF处的N6端点之间可能延迟的时间的上限。网络中可以通过两种方式配置动态的CN PDB:
方式1:在每个NG-RAN节点中配置,基于各种输入,如终止N3隧道的UPF的不同IP地址(es)或隧道端点标识符(terminal end identifier,TEID)范围,以及基于PDU会话锚点UPF(UPF of PDU session anchor,PSA UPF)到NG-RAN的不同组合(要考虑到任何潜在的中继UPF(Initial UPF,I-UPF))等;
方式2:在会话管理功能(session management function,SMF)网元中配置,基于PSA UPF到NG-RAN的不同组合(要考虑到任何潜在的I-UPF)。
下面介绍与本申请实施例相关的技术。
(一)TSN网络架构
IEEE 802.1cc中为TSN网络定义了3种配置模型:全集中式配置模型、全分布式配置模型、集中式网络/分布式用户配置模型。
请参见图1,示出了一种全集中式配置模型。全集中式配置模型中的管理面包括集中式用户配置(centralized user configuration,CUC)网元和集中式网络配置(centralized network configuration,CNC)网元,用户面包括TSN终端和交换节点(也称网桥)。TSN终端包括发送端(称为Talker)和接收端(称为Listener)。
CUC网元用于管理TSN终端(Talker和Listener)和业务,负责发现和管理TSN终端,获取TSN终端的能力以及用户需求,向CNC发送TSN流的需求,并根据CNC的指示配置TSN终端。CNC网元负责管理TSN系统用户面的拓扑(包括TSN终端和各个交换节点)以及各个交换节点的能力信息,根据TSN流的需求计算生成TSN流的端到端(end to end,E2E)转发路径以及下发调度参数到各个交换节点上。各交换节点向CNC上报交换节点能力信息和拓扑信息,基于CNC下发的规则调度转发数据流。
下面介绍TSN网络中用户面网元和管理面网元之间,以及管理面网元之间交互的信息。
1、网桥(Bridge)向CNC上报的信息:
5G系统网桥向CNC上报的网桥信息,用于TSN网络对5G系统网桥进行适当的管理配置。5G系统网桥的网桥信息至少包括以下内容:
i)网桥信息:
-网桥ID:网桥ID用于区分网桥实例。当网桥为5G系统时,网桥ID可以从IEEE Std 802.1Q[98]中所述的唯一网桥介质访问控制(media access control,MAC)地址导出,也可以通过特定的方式设置,以确保在5G系统中使用唯一值;
-端口数;
-端口号列表;
ii)网桥能力:
-每个流量类别每个端口对的网桥延迟,包括5G系统网桥延迟、入口端口号、出端口和流量等级。其中,5G系统网桥延迟取决于和独立于帧大小,及其以下最大值和最小值:最大长度无关延迟(independentDelayMax)、最小长度无关延迟(independentDelayMin)、最大长度相关延迟(dependentDelayMax)、最小长度相关延迟(dependentDelayMin)。
其中,这里的长度指的是帧的长度。当5G系统作为网桥时,最大长度无关延迟、最小长度无关延迟基于配置进行设置;5G系统根据以太网帧的单个八位字节从入口传输到出口的时间范围,并包括接收和存储帧的每个八位字节的时间最大长度相关延迟、最小长度相关延迟。
-每个端口的传播延迟(txPropagationDelay),包括传输传播延迟、出端口号;
-虚拟局域网(virtual local area network,VLAN)配置信息。
iii)IEEE标准802.1AB中定义的网桥拓扑。
iv)IEEE Std 802.1Q中定义的每个端口的流量类别及其优先级。
v)IEEE标准802.1Q第12.31.1条定义的流参数。
2、CUC和CNC之间交互的TSN用户/网络配置信息(user/network configeration,UNI):
TSNUNI由三个高级组组成:
Talker组:由发送端(Talker)发送给CUC,指定单个流的发送端;
Listener组:由接收端(Listener)发送给CUC,指定单个流的接收端;
Status组:由CUC发送给Talker/Listener,指定发送端或接收端的流网络配置状态。该组在流准备好使用(或发生故障)时通知用户。
每个TSN配置通过流标识(StreamID)来标识。
2.1发送端(Talker)组
发送端(Talker)支持以下7个配置:
1)StreamID(64bits):流标识,用于标识流(Stream)配置,包括2个字段:MACAddress(48bits)和UniqueID(16bits)。MACAddress是Stream发起的源MAC地址(可选),UniqueID用于区分同一发送端不同的Stream。
2)StreamRank(8bits):流等级,提供一个流相对于网络中其他流的等级。此等级用于确定Stream资源配置的优先级,与Stream的数据无关。当前取值有0和1,0比1有更高的优先级,通常代表紧急业务。本申请实施例对流等级的数量不做限制。
3)EndStationInterfaces(48bits或48bits以上):端站接口,也称端节点接口,用于描述Stream对应的接口(1个Stream可以包含多个接口),包括2个字段:MACAddress(48bits)和接口名称(InterfaceName)(可选字段)。
4)DataFrameSpecification:数据帧定义,定义了Stream的数据,网络使用此定义去识别Stream的数据包,然后应用相应的TSN配置。数据帧定义可以包含以下1个或多个字段:
IEEE802-MacAddresses(96bits):源MAC地址和目的MAC地址;
IEEE802-VlanTag(24bits):数据帧的C-Tag(内层VLAN标签,标识用户VLAN)信息,不包含S-Tag(外层VLAN标签,标识运营商VLAN),DEI字段不使用(DEI字段和PCP字段共同标识S-Tag的优先级),PCP字段和VlanID字段可选使用,当只有PCP字段时,VlanId设置为0;
IPv4-tuple:数据帧的IPv4信息,包括IP 6元组,IPv4地址的6元组可以如表1所示:
表1:IPv4地址6元组
需要说明的是,本申请中,表格中的“参考”内容为协议IEEE Std 802.1Qcc中的相关内容。
IPv6-tuple:数据帧的IPv6信息,包括IP 6元组,IPv6地址的6元组可以如表2所示:
表2:IPv6地址6元组
5)TrafficSpecification:流量描述,定义了发送端如何发送数据帧。网络侧使用流量描述来分配每个网桥的资源,调整排序参数。
TrafficSpecification中的必选信息可如表3所示:
表3:TrafficSpecification的信息单元
Interval:发送端定义的帧大小(MaxFrameSize)及帧数(MaxFramesPerInterval)的最大时长。该时长是一个有理的秒数,由无符号32位整数分子和无符号32位整数分母定义,即可以小于秒;
MaxFramesPerInterval:在一个周期内发送的最大帧数;
MaxFrameSize:发送端能够发送的最大帧长度;
TransmissionSelection:指定该Stream转发过程中使用的调度算法。默认使用0,表示严格优先(strict priority)。
可选的,TrafficSpecification中还可以包括TSpecTimeAware组,所述TSpecTimeAware组包含的信息可如表4所示:
表4:TSpecTimeAware的信息单元
EarliestTransmitOffset:最早传输偏移,即发送端发送周期内第一个数据帧相对周期开始时间点的最早偏移。该值为有符号整数,单位为ns。
LatestTransmitOffset:最晚传输偏移,即发送端发送周期内第一个数据帧相对周期开始时间点的最晚偏移。该值为有符号整数,单位为ns。
Jitter:抖动,指定发送端的发送偏移量与理想同步网络时间之间的最大时间差,无符号整数,单位为ns。抖动用于定义因发送端实现引入的时间误差,非时间同步误差。
6)UserToNetworkRequirements(40bits):用户到网络的需求,定义了用户诉求,如时延、冗余。包含2个字段:NumSeamlessTrees和MaxLatency。
NumSeamlessTrees:要求网络提供的无缝连接的冗余路径数,0表示1条路径,无冗余;当要求的冗余路径数大于网络所能提供的路径数时,部分冗余路径共享同一路径;
MaxLatency:数据帧从发送端到接收端的最大时延,有符号整数,单位ns;当Stream有多个接收端时,如果发送端定义了该值,则到所有接收端的时延均需满足此值,如果发送端未定义,接收端定义了,则需满足接收端定义的值。
7)InterfaceCapabilities:定义了端节点的接口能力,包括3个字段:
VlanTagCapable:是否支持添加或删除VLAN标签(VLAN Tag);
CB-StreamIdenTypeList:支持的流标识类型,类型如表5所示:
表5:流标识类型
CB-SequenceTypeList:支持的帧复制和去重序列编码和解码类型,如表6所示:
表6:序列编码和解码类型
2.2接收端(Listener)组
接收端(Listener)支持4个配置,具体定义同发送端:
1)StreamID;
2)EndStationInterfaces;
3)UserToNetworkRequirements;
4)InterfaceCapabilities。
2.3状态(status)
状态配置由网络发送给发送端和接收端,通知TSN配置成功或失败。在全分布式配置模型和集中式网络/分布式用户配置模型中,由CNC将status发送给发送端和接收端。在全集中式配置模型中,由CNC发送给CUC,进一步的,再由CUC发送给发送端和接收端。
状态包含以下5个配置:
1)StreamID:流标识,其定义同发送端;
2)StatusInfo:TNS流(TSN Stream)配置状态,包含以下3个字段:
TalkerStatus字段:发送端网络配置的状态,可包括如表7所示的信息:
表7:TalkerStatus信息
ListenerStatus字段:接收端网络配置的状态,可包括如表8所示的信息:
表8:ListenerStatus信息
FailureCode字段:错误码。
3)AccumulatedLatency:累积延迟,指当前规划的传输路径可能的最大时延,有符号整数,单位ns。
4)InterfaceConfiguration:接口配置,指发送端和接收端的接口配置,该配置满足Stream的要求,也满足接口能力要求。包括以下配置:
IEEE802-MacAddresses:同发送端配置;
IEEE802-VlanTag:同发送端配置;
IPv4-tuple:同发送端配置;
IPv6-tuple:同发送端配置;
TimeAwareOffset:定义了Talker传输数据包使用的offset(时间偏移),其在EarliestTransmitOffset和LatestTransmitOffset之间。换一种说法就是Talker的发包时间。
5)FailedInterfaces:配置失败的接口列表,定义同EndStationInterfaces。
(二)3GPP网络和TSN网络互通
请参见图2,为本申请实施例中一种3GPP网络和TSN网络互通的系统架构图。3GPP 5G系统和TSN转换器(TSN Translator)整体作为一个逻辑上的TSN网桥(TSN Bridge),5G系统通过和控制面TSN Translator(即应用功能(application function,AF)网元)与TSN网络中的节点交换信息,所交换的信息包括:5G系统Bridge能力信息、TSN配置信息、TSN输入输出端口的时间调度信息、时间同步信息等。其中,UE侧的TSN Translator(device side TSC Translator,简称DS-TT,其中TSC是time sensitive communication的英文简称,即时间敏感通信)可能位于UE内,也可能位于外部;UPF侧的TSN Translator(network side TSC Translator,简称NW-TT)位于UPF内。
5G系统整体作为一个TSN Bridge,CNC根据5GS Bridge以及其它Bridge上报的信息给每个TSN Bridge配置发送时间窗口和流周期,以保证端到端(从TSN Talker到TSN Listener)的确定性时延。
以下行为例,用户面处理报文的过程中,报文从TSN系统中传输到NW-TT后,NW-TT将报文发送到DS-TT,DS-TT根据CNC配置的发送时间窗口(即门控调度参数)在预配置的时间内将报文发送出去。为了保证报文能及时发送,报文需要在预设值的发送时间之前到达DS-TT,在DS-TT处缓存至发送时间窗口。
参见图3,对于特定的有确定性时延需求的报文,5G系统需要根据报文需求确定对应的PDB,并保证报文在UE和UPF之间的传输时间不大于PDB。也就是说,报文会提前到达DS-TT处,以便能赶上CNC配置的发送时间窗口。
3GPP和TSN对接,采用黑盒模型,CNC按照流粒度配置到达5G核心网的时间和离开5G核心网的时间,UE和UPF之间由于空口传输和有线传输造成的不确定性通过在端点TSC Translator缓存消除。
TSN AF根据从CNC获取的TSN流的调度信息,会确定TSN流到达5G系统入口的时间,即在下行方向TSN流到达NW-TT入口的时间,如图4中的DL Burst Arrival Time(下行突发到达时间),以及上行方向TSN流到达DS-TT入口的时间,如图5中的UL Burst Arrival Time(上行突发到达时间)。TSN AF通过策略控制功能(policy control function,PCF)网元将信息提供给会话管理功能(Session Management Function,SMF)网元,SMF根据这些信息进一步计算在下行方向到达NG-RAN的时间(如图4中的DL TSCAI Burst Arrival Time),以及上行方向从UE发出的时间(如图5中的UL TSCAI Burst Arrival Time),作为TSC辅助信息(TSC assistance information,TSCAI)提供给无线接入网(Radio Access Network,RAN)参考,以便RAN节点提前预留资源。
上述TSCAI也可以替换为TSC辅助容器(TSC assistance container,TSCAC),TSCAC可以由AF或TSCTSF发送给SMF(可以经由PCF)。
TSCAI包括的信息如下:
-流的方向:指示TSC流是上行方向还是下行方向;
-周期:指两个突发(burst)开始时间之间的间隔;
-突发到达时间(burst arrival time,BAT):在下行方向,该BAT指突发到达RAN节点入口的时间,在上行方向,该BAT指突发到达UE出口的时间。
可选的,TSCAI也可能包含其他信息,本申请实施例对此不作限制。
TSCAC包括的信息如下:
-流的方向:指示TSC流是上行方向还是下行方向;
-周期:指两个突发(burst)开始时间之间的间隔;
-突发到达时间(burst arrival time,BAT):在给定的流向下,数据突发的第一个数据包到达5GS的入端口的时间(上行为DS-TT,下行为NW-TT)。
可选的,TSCAC也可能包含其他信息。
SMF确定下行方向TSCAI Burst Arrival Time的方法为:
TSCAI Burst Arrival Time=TSCAC DL Burst Arrival Time+DL CN PDB。
SMF确定上行方向TSCAI Burst Arrival Time的方法为:
TSCAI Burst Arrival Time=TSCAC UL Burst Arrival Time+UE-DS-TT Residence Time。
SMF将业务(数据流)绑定至一个服务质量(quality of service,QoS)流,即QoS流(QoS Flow)与业务流之间存在对应关系,对于时延敏感业务,一般认为QoS流与业务流之间一一对应。
(四)5G QoS架构
在5G系统中,为了保证业务端到端的服务质量,提出了基于QoS Flow的5G QoS模型,如图6所示。该5G QoS模型支持保证比特率的QoS Flow(GBR QoS Flow,其中GBR是guaranteed bit rate的英文缩写,即保证比特率)和不保证比特率的QoS Flow(Non-GBR QoS Flow)。使用同一个QoS Flow控制的数据包接收相同的传输处理(如调度、准入门限等)。
对于一个UE,可以与5G网络建立一个或者多个PDU会话;每个PDU会话中可以建立一个或者多个QoS Flow。每个QoS Flow由一个QFI(QoS Flow Identifier,QoS流标识)识别,QFI在会话中唯一标识一个QoS Flow。
每个QoS Flow都具有自己的特征信息,其中SMF发送给RAN的是QoS文件。QoS文件中包含5G QoS标识符5QI(5QI是QoS特征的一个索引)。QoS特征中包括PDB。
PDB定义了数据包在UE和UPF的N6终结点之间可能延迟的时间的上限。其中,5G接入网(AN)分组时延预算(5G-AN PDB)是通过减去核心网分组时延预算(CN PDB)的值来确定的。CN PDB表示UPF处的任何N6终止点(对于可能为PDU会话选择的任何UPF)与来自给定PDB的5G-AN之间的延迟。
(四)协同调度优化技术
目前3GPP和TSN互通(或非TSN的时延敏感网络)采用的黑盒模型方式,假设报文在RAN节点和UPF之间传输肯定不会超过CN PDB。但是,如果不考虑RAN调度的特殊性(TTI调度保护,上下行配比等)时,下行方向会在RAN引入额外的缓存/排队时延。上行方向类似,数据包会在UE缓存/排队,此处仅是以下行为例。图7示出了一种下行方向的报文发送时序示意图。
如图7所示,下行方向,UPF发送的报文到达RAN的时机不同,在RAN上缓存/排队等待调度的时长也不同,其中,最小是处理时延(TTI调度保护带时长),最大可以超过两个时隙(Slot)。RAN一个Slot的典型时长是125us,对于有超低时延需求的业务(如cycle time 1-2ms),需要避免在RAN节点排队时延过长。因此,需要将在RAN节点、UPF以及应用服务器(Application Server)处做协同,避免节点的排队时延。如图8所示,目前的一种解决方案是:
1、调度协调器(比如RAN或SMF)获取空口调度时延信息,具体可以包括:TTI起始时间、Slot时长、上下行时隙配比信息、RAN节点TTI保护时长以及CN PDB。
2、调度协调器获取应用时延需求,及TSC QoS相关的信息,包括Burst Arrival Time、业务周期。
3、调度协调器根据获取的空口调度时延信息以及业务的时延需求,调整下行报文在UPF或应用侧的发送时机,使得有超低时延或抖动需求的业务可以在空口得到及时调度(参见图8中的3a,3b,3c)。比如在图8中的3b,调度协调器向AF发送信息指示调整应用侧报文的发送时机等。
参见图9,5G的控制面网元,如SMF,可以充当CUC(充当CUC的SMF可以表示为SMF/CUC)。SMF/CUC通过用户/网络接口向TN CNC提供上文所述的Talker/Listener组信息。TN CNC使用其作为输入,配置传输网中的网桥(Bridge),并将状态(status)提供给SMF/CUC。SMF/CUC还可以在UPF和RAN中调整流的发送时间。TN CNC指传输网中的CNC。传输网位于RAN和UPF之间,其传递的业务流为5G网络中的业务流。RAN和UPF分别作为端站(End Station),即Talker和Listener,其中,在上行方向,RAN作为Talker,UPF作为Listener,在下行方向,UPF作为Talker,RAN作为Listener。
参见图10,以SMF充当CUC为例,示出了一种目前采用的TSN配置流程。如图所示,该流程包括如下步骤:
步骤1001:UE触发PDU会话建立流程。
PDU会话建立流程可以参见协议TS 23.502第4.3.2章节的内容。
如果RAN和UPF支持TL(Talker/Listener)功能,则RAN和UPF可以向SMF上报接口能力(InterfaceCapabilities)信息。比如可以通过透明容器上报,所述透明容器可以代表RAN、UPF、SMF等网元可以不必理解其中内容,由Talker/Listener或CUC进行处理。
步骤1002:PCF向SMF发送带有TSC辅助容器(TSCAC)的策略和计费控制(policy and charging control,PCC)规则。所述TSC辅助容器可以代表RAN、UPF、SMF等网元可以不必理解其中内容,由Talker/Listener或CUC进行处理。所述TSC辅助容器中包括TSC流量的突发(burst)大小。
SMF根据所述PCC规则建立QoS流,并向RAN和UPF发送QoS流对应的信息(此过程未在图中示出)。
步骤1003:SMF执行参数映射,得到Talker/Listener组信息。所述参数映射,是指根据发送端上 报的信息、接收端上报的信息,确定Talker/Listener组信息,该Talker/Listener组信息也可以称为合并后的流需求(merged stream requirements)。
步骤1004:SMF将Talker/Listener组信息(或称merged stream requirements)发送给TN CNC。
步骤1005:TN CNC将状态信息(status)返回给SMF。所述状态信息(status)也称为合并的端站通信配置(merged end station communication-configuration)。
步骤1006~1007:SMF根据TN CNC返回的状态信息(status)配置Talker和Listener。
在协同调度优化技术发生时,业务流的TSCAI(具体为突发到达时间BAT)会发生变化,若出现协商,则变化更为频繁。当按照TSCAI(或TSCAC)中的BAT计算传输网业务的相关参数(比如传输偏移TransmitOffset)时,就会发生频繁更新,导致TN CNC频繁重新配置,进而导致系统不稳定。
为此,本申请实施例提供了一种业务属性配置方法、装置和系统,用以避免因突发到达时间(burst arrival time)变化而导致业务流属性频繁变化的问题。
本申请实施例提供一种业务属性配置方法、装置和系统,本申请所述方法、装置和系统基于同一技术构思,由于方法、装置和系统解决问题的原理相似,因此装置和系统与方法的实施可以相互参见,重复之处不再赘述。
下面结合附图对本申请实施例进行说明。
参见图11和图12,为本申请实施例提供的一种5G非漫游基于参考点的架构。5G系统架构分为接入网和核心网两部分。接入网用于实现无线接入有关的功能。核心网主要包括以下几个关键网元:接入和移动管理网元(access and mobility management function,AMF)、会话管理网元(session management function,SMF)、用户面网元(user plane function,UPF)、策略控制网元(policy control function,PCF)、统一数据管理网元(unified data management,UDM)等。
基于上述服务化的5G系统架构和基于参考点的非漫游架构,与本申请相关的网元的功能如下:
终端设备:可以为用户设备(user equipment,UE)、手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端或是其他可以接入网络的设备。终端设备与接入网设备之间采用某种空口技术相互通信。
(R)AN设备:为终端设备提供接入的设备,包含RAN设备和AN设备。RAN设备主要是3GPP网络无线网络设备,AN可以是non-3GPP定义的接入网设备。无线接入网(Radio Access Network,RAN)设备:主要负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。所述RAN设备可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在第五代(5th generation,5G)系统中,称为RAN或者gNB(5G NodeB);在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB);在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。
接入网(access network)设备:该网元允许终端设备和3GPP核心网之间采用非3GPP技术互连互通,其中,非3GPP技术例如:无线保真(Wireless Fidelity,Wi-Fi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)、码分多址(code division multiple access,CDMA)网络等。
AMF网元:主要负责移动网络中的移动性管理,如用户位置更新、用户注册网络、用户切换等。
SMF网元:主要负责移动网络中的会话管理,如会话建立、修改、释放。具体功能如为用户分配IP地址、选择提供报文转发功能的UPF等。
UPF网元:负责终端设备中用户数据的转发和接收。可以从数据网络接收用户数据,通过接入网设备传输给终端设备;UPF网元还可以通过接入网设备从终端设备接收用户数据,转发到数据网络。UPF网元中为终端设备提供服务的传输资源和调度功能由SMF网元管理控制的。
PCF网元:主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。
网络开放功能(network exposure function,NEF)网元:主要用于支持能力和事件的开放。
应用功能(application function,AF)网元:主要支持与3GPP核心网交互来提供服务,例如影响数据路由决策,策略控制功能或者向网络侧提供第三方的一些服务。如果AF与5G系统位于不同信任域中,则可以通过网络开放功能(NEF)应用程序编程接口(API)提供输入;如果AF与5G系统在同一信任域中,则可以直接通过时间敏感通信时间同步功能(Time Sensitive communication Time Synchronization function,TSCTSF)提供输入。在5G中,应用功能网元可以是AF网元,例如图11或图12所示。在未来通信,如6G中,应用功能网元仍可以是AF网元,或有其它的名称,本申请不做限定。
UDM网元:用于生成认证信任状,用户标识处理(如存储和管理用户永久身份等),接入授权控制和签约数据管理等。
数据网络(data network,DN):指的是为用户提供数据传输服务的服务网络,如IP多媒体业务(IP multi-media service,IMS)、互联网(Internet)等。
UE通过UE到DN之间建立的PDU会话来访问DN。
基于上述架构,5G系统可以根据AF/NEF提供的信息确定TSCAI/TSCAC,并可能将其提供给PCF用于IP类型和以太网类型PDU会话。AF可以向NEF提供流量模式参数,例如参考入口端口的突发到达时间、周期性、流向、生存时间和时域。NEF可以将接收到的流量模式参数转发给TSCTSF。可以允许运营商信任的AF直接向TSCTSF提供这样的流量模式参数。TSCTSF可以负责确定TSCAI/TSCAC中的这些业务模式参数并将其转发到SMF(可以通过PCF)。
上述架构中,核心网中的各个网元也可以称为功能实体或者设备或者网络功能,既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。
在本申请中,网元也可以称之为网络功能或功能或实体等,本申请对此不作限定。
需要说明的是,图11或图12所示的通信系统的架构中不限于仅包含图中所示的网元,还可以包含其它未在图中表示的设备,具体本申请在此处不再一一列举。
需要说明的是,本申请实施例并不限定各个网元的分布形式,图1所示的分布形式只是示例性的,本申请不作限定。
为方便说明,本申请后续均以图1所示的网元为例进行说明,并将XX网元直接简称为XX。应理解,本申请中所有网元的名称仅仅作为示例,在未来通信中还可以称为其它名称,或者在未来通信中本申请涉及的网元还可以通过其它具有相同功能的实体或者设备等来替代,本申请对此均不作限定。这里做统一说明,后续不再赘述。
需要说明的是,图11和图12所示的通信系统并不构成本申请实施例能够适用的通信系统的限定。图11和图12所示的通信系统架构为5G系统架构,可选的,本申请实施例的方法还适用于未来的各种通信系统,例如6G或者其他通信网络等。
本申请实施例提供的一种业务流属性配置方法,可以适用于如图11或图12所示的通信系统。参阅图13所示,为本申请实施例提供的一种业务流属性配置方法的流程示意图,该流程可以发生在需要进行协同调度优化时。该流程中的第一网元为CUC网元,可选的,可以由SMF充当CUC(即TN CNC),第二网元为CNC,可选的,可以由AF充当CNC。第一网元可以通过协商过程调整突发到达时间(BAT),并当接收到来自应用功能(AF)或无线接入网(RAN)的第一指示信息后,结束协商过程,使用调整后的突发到达时间确定第一业务流的属性信息。
所述第一业务流可能与一个QoS流对应,也可能与多个QoS流对应,本申请实施例不做限制。
如图13所示,该方法的具体流程可以包括:
S1301:第一网元获取第一业务流的传输时间信息。所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间。
本申请实施例中,第一业务流的突发到达时间可以包括以下中的至少一项:
下行方向TSCAI突发到达时间,即,突发(burst)到达无线接入网入口的时间(比如图4中的DL TSCAI Burst Arrival Time,也就是第一业务流的突发(burst)到达NG-RAN的时间);
上行方向TSCAI突发到达时间,即,突发(burst)到达终端的时间(比如图5中的UL TSCAI Burst Arrival Time,也就是第一业务流的突发(burst)到达UE的时间);
下行方向TSCAC突发到达时间,比如,突发(burst)到达UPF侧的NW-TT的时间;
上行方向TSCAC突发到达时间,比如,突发(burst)到达UE侧的DS-TT的时间。
可选的,第一网元可以根据AF提供的DL Burst Arrival Time和DL CN PDB计算得到DL TSCAI Burst Arrival Time,根据AF提供的UL Burst Arrival Time和UE-DS-TT Residence Time计算得到UL TSCAI Burst Arrival Time,具体计算方法可以参见前文的相关内容。
可选的,所述突发到达时间的调整信息为调整后的突发到达时间,或者为所述突发到达时间调整前和调整后的偏移量。
在一些实施例中,所述突发到达时间的调整信息可能来自于无线接入网(RAN),示例性的,第一网元将TSCAI/TSCAC(其中包括BAT)发送给无线接入网后,接收无线接入网发送的该BAT的调整信息。
在另一些实施例中,所述突发到达时间或突发到达时间的调整信息可能来自于策略控制功能(PCF)。示例性的,第一网元将TSCAI/TSCAC(其中包括BAT)发送给无线接入网后,接收无线接入网发送的该BAT的调整信息,第一网元再将该BAT的调整信息(或者调整后的BAT)发送给PCF,PCF将该BAT的调整信息发送给AF,AF再次进行调整后将该BAT的调整信息发送给PCF,由PCF发送给第一网元。上述过程可以称为一轮协商过程。上述过程可以进行多次,也就是说,第一网元获取到的BAT的调整信息,可能是经过一轮或多轮协商获得的。
在另一些实施例中,所述突发到达时间的调整信息可能来自于时间敏感通信时间同步功能(TSCTSF),或者直接来自AF,本申请实施例对此不做限制。
S1302a和S1302b:第一网元接收第一指示信息。
可选的,所述第一指示信息可以是确认指示。可选的,所述第一指示信息的含义可以表述为:
(1)第一指示信息用于确认传输时间信息,以便使得第一网元根据该确认的传输时间信息确定业务流的属性。
所述传输时间信息可能来自于PCF,也可以来自RAN,或者其他网元。
以所述传输时间信息来自PCF为例,比如,如果PCF向第一网元同时发送了BAT和第一指示信息,则该第一指示信息用于指示确认该BAT,使得第一网元根据该BAT确定业务流的属性;再比如,如果PCF同时向第一网元发送了BAT偏移量和第一指示信息,则该第一指示信息用于指示确认该BAT偏移量,也即确认基于该BAT偏移量调整后的BAT,使得第一网元根据该BAT偏移量(或者基于该BAT偏移量调整后的BAT)确定业务流的属性;再比如,如果PCF仅向第一网元发送了第一指示信息,则该第一指示信息用于指示确认第一网元上当前的BAT(或者说第一网元之前发给该PCF的BAT),使得第一网元根据该确认的BAT确定业务流的属性。
再以所述传输时间信息来自RAN为例,比如,如果RAN从第一网元接收到BAT后,接受该BAT,则可以仅向第一网元发送第一指示信息,该第一指示信息用于表明RAN接受该BAT,使得第一网元根据该BAT确定业务流的属性信息;再比如,如果RAN从第一网元接收到BAT后,对该BAT进行了调整,并向第一网元发送了BAT偏移量以及第一指示信息,该第一指示信息用于表明RAN接受该BAT偏移量(也即基于该偏移量调整后的BAT),使得第一网元根据该BAT偏移量(或基于该BAT偏移量调整后的BAT)确定业务流的属性信息。
(2)第一指示信息用于确认基于第一网元获取到的传输时间信息进行数据传输。
示例性的,第一指示信息用于确认基于第一网元接收到的突发到达时间进行数据传输,比如确认基于从PCF接收到的BAT进行数据传输。
示例性的,第一指示信息用于确认基于调整后的突发到达时间或者基于突发达到时间的调整信息,进行数据传输。
(3)第一指示信息用于指示突发到达时间不会因为跨层调度优化而进行(或者称进一步)调整。
可以理解,基于第一指示信息,第一网元可以确认基于上述传输时间信息来确定第一业务流的属性信息。
在一种可能的实现方式中,第一指示信息可能来自于策略控制功能(PCF),如图中的S1302a,第一指示信息也可能来自于无线接入网(RAN),如图中的S1302b。
例如,第一网元将TSCAI/TSCAC(其中包括BAT)发送给无线接入网后,接收无线接入网发送的该BAT的调整信息,第一网元再将该BAT的调整信息(或者调整后的BAT)发送给PCF,PCF将该BAT的调整信息发送给AF,AF再次进行调整后将该BAT的调整信息以及第一指示信息发送给PCF(可 以经由NEF和或TSCTSF),由PCF发送给第一网元。需要说明的是,上述协商过程可以进行多次,只有在最后一次协商过程中,AF将第一指示信息发送给PCF,由PCF发送给第一网元,之前的协商过程中,AF/PCF发送给第一网元的信息中不包含第一指示信息。
在另一种情况下,在上述交互过程,RAN也可以在接收到第一网元发送的TSCAI/TSCAC(其中包括BAT)后,将BAT的调整信息以及第一指示信息发送给第一网元。在另一种情况下,在上述交互过程,RAN也可以在接收到第一网元发送的TSCAI/TSCAC(其中包括BAT)后,将第一指示信息发送给第一网元,用以确认该BAT,使得第一网元可以根据该BAT确定第一业务流的属性信息。
可选的,上述协商过程可以基于第一指示信息来终结。举例来说,AF从第一网元获取到一个或多个BAT的调整信息后,若AF确定可以使用其中一个,此种情况下,AF确定无需再次进行协商,因此发送第一指示信息给第一网元。
示例性的,以第一指示信息是在最后一轮协商过程中发送的为例,可选的,上述N轮协商过程中的最后一轮协商,可以包括如下步骤:
i)第一网元将TSCAI(其中包括BAT)发送给RAN;
ii)RAN对该BAT进行调整,得到BAT调整信息1,并将BAT调整信息1发送给第一网元;
iii)第一网元接收到BAT调整信息1后,将其发送给AF;
iv)AF向第一网元发送第一指示信息,以使得第一网元根据该第一指示信息,使用上述BAT调整信息1或基于该BAT调整信息1调整后的BAT,确定第一业务流的属性信息。
在另一种可能的场景中,AF也可以将第一指示信息和BAT调整信息2发送给第一网元,以使得第一网元根据该BAT调整信息2或基于该BAT调整信息2调整后的BAT,确定第一业务流的属性信息。
再以第一指示信息是在最后一轮协商过程中发送的为例,上述N轮协商过程中的最后一轮协商,可以包括如下步骤:
i)第一网元将TSCAI(其中包括BAT)发送给RAN;
ii)RAN向第一网元发送第一指示信息,以使得第一网元根据该BAT确定第一业务流的属性信息。
在另一种可能的场景中,RAN对该BAT进行调整,得到BAT调整信息3,并将BAT调整时间信息3和第一指示信息发送给第一网元,使得第一网元根据该BAT调整信息3或基于该BAT调整信息3调整后的BAT,确定第一业务流的属性信息。
S1303:当第一网元接收到第一指示信息后,根据上述传输时间信息确定第一业务流的属性信息。
可选的,若根据第一指示信息确认的传输时间信息为第一网元接收到的突发到达时间,则第一网元根据该突发到达时间确定第一业务流的属性信息。若根据第一指示信息确认的传输时间信息为突发到达时间的调整信息,则第一网元根据该突发到达时间的调整信息确定第一业务流的属性信息。
可选的,第一业务流的属性信息可以是前述Talker/Listener组信息中的部分参数。可选的,第一网元根据调整后的突发到达时间确定出的第一业务流的属性信息,包括以下至少一项:最早传输偏移(EarliestTransmitOffset),最晚传输偏移(LatestTransmitOffset),最大时延(MaxLatency),发送时间(TimeAwareOffset)。进一步的,还可能包括间隔(interval)、抖动(Jitter)等。这些参数的定义可参见前文描述。
下面以SMF充当CUC为例,说明SMF如何参考5G系统Bridge以及5G QoS参数确定Talker/Listener组信息。以下仅示例性地列出了几个与本申请相关的参数,Talker/Listener组信息中包含的参数并不仅限于此。
-间隔(interval):SMF可以根据TSCAI中指示的流量周期生成该参数。
-TSpecTimeAware组:
EarliestTransmitOffset:间隔内的最早偏移量。
对于上行,最早传输偏移应基于TSCAI中的UL BAT,加上UE-DS-TT驻留时间和5G-AN PDB之和设置。并且考虑间隔信息,可以使用以下公式:最早的传输偏移可以设置为:UL BAT+5G-AN PDB-M x间隔。其中,M是一个整数,取可以保证公式“UL BAT+5G-AN PDB>M*间隔时长”成立的最大值。
对于下行,应根据TSCAC中DL中的BAT和UPF驻留时间和间隔的总和设置,使用以下公式:DL BAT+UPF驻留时间-M x间隔。其中,M是一个整数,取可以保证公式“DL BAT+UPF驻留时间>M*间隔时长*间隔时长”成立的最大值。
LatestTransmitOffset:间隔内的最后一次机会应留出足够的时间来传输MaxFrameSize的数据包。 因此,SMF可以使用EarliestTransmitOffset加上间隔减去(抖动和传输MaxFrameSize数据包的时间之和)来生成它。
抖动:SMF可以根据本地配置生成该参数。
-UserToNetworkRequirements:
MaxLatency:SMF可以根据CN PDB和UPF驻留时间生成该参数,即该参数应该是CN PDB减去UPF驻留时间。
需要说明的是,以上公式中的UPF驻留时间为可选参数。
S1304:第一网元将第一业务流的属性信息发送给第二网元。
可选的,第一网元可以通过向第二网元发送Talker/Listener组信息,将所述第一业务流的属性信息发送给第二网元。
第二网元接收到第一业务流的属性信息后,可以根据该信息确定并生成该业务流的E2E转发路径,并将调度参数发送给交换节点,还可以根据第一业务流的属性信息生成状态信息(status),并将该状态信息发送给第一网元,以使得第一网元将状态信息发送给第一业务流的发送端和接收端(比如在全集中式配置模型下),从而配置第一业务流的发送端和接收端。在另一种可能的实现方式中,第二网元也可以直接将该状态信息发送给第一业务流的发送端和接收端(比如在全分布式配置模型下,或者在集中式网络/分布式用户配置模型下)。
在一种可能的实现方式中,上述流程中,第一网元还可能接收来自策略控制功能网元的第二指示信息,该第二指示信息是应用或应用功能网元发送给策略控制功能网元或TSCTSF的,再由策略控制功能网元或TSCTSF发送给第一网元。所述第二指示信息可以用于指示应用功能或应用支持调整发包时间或支持调整突发到达时间。第一网元根据第二指示信息,不立即根据突发到达时间确定第一业务流的属性信息。根据第二指示信息,第一网元还可以获取第一业务流的到达时间的调整信息(比如通过协商),并在接收到所述第一指示信息后进行第一业务流的属性信息的计算。所述第二指示信息也可以称为“支持调整发包时间的指示”或者“支持调整突发到达时间的指示”,本申请实施例对此不做限制。
基于图13所示的流程,图15和图16分别示出了两种应用场景下的信令交互示意图,具体请参见图15和图16。
上述图13所示的流程中,第一网元获取第一业务流的突发到达时间(BAT)的调整信息后,并不立即确定第一业务流的属性信息,而是在接收到第一指示信息后,根据调整后的突发到达时间确定第一业务流的属性信息,因此可以避免因突发到达时间变化而导致业务流属性频繁变化的问题。
采用上述图13所示的流程,当协同调度优化发生时,可以避免因为业务流的TSCAI/TSCAC(具体为BAT)的变化,导致TSCAI/TSCAC中的BAT计算传输网业务的TransmitOffset频繁更新,以及TN CNC频繁重新配置。
本申请实施例提供的一种业务流属性配置方法,可以适用于如图11或图12所示的通信系统。参阅图14所示,为本申请实施例提供的一种业务流属性配置方法的流程示意图,该流程可以发生在需要进行协同调度优化时。该流程中的第一网元为CUC网元,可选的,可以由SMF充当CUC(即TN CNC),第二网元为CNC,可选的,可以由AF充当CNC。第一网元可以基于显示或隐式的指示方式,通过协商过程调整突发到达时间(BAT),并使用调整后的突发到达时间确定第一业务流的属性信息。
所述第一业务流可能与一个QoS流对应,也可能与多个QoS流对应,本申请实施例不做限制。
如图14所示,该方法的具体流程可以包括:
S1401:第一网元接收第一信息。
可选的,所述第一信息是应用或应用功能网元发送给策略控制功能网元或TSCTSF的,再由策略控制功能网元或TSCTSF发送给第一网元。
可选的,所述第一信息包括第二指示信息,所述第二指示信息可以用于指示应用功能或应用支持调整发包时间或支持调整突发到达时间。第一网元根据第二指示信息,不立即根据突发到达时间确定第一业务流的属性信息。第一网元还可以根据第二指示信息通过协商获得第一业务流的突发到达时间调整信息,确定根据调整后的突发到达时间确定第一业务流的属性信息。通过向第一网元发送第二指示信息,可以实现通过显式方式指示第一网元基于调整后的突发到达时间确定业务流属性。所述第二指示信息也可以称为“支持调整突发到达时间的指示”,本申请实施例对此不做限制。
可选的,所述第一信息包括第一业务流的备选突发到达时间。备选突发到达时间可以是具体的突发 到达时间(或偏移量),也可以是一个突发到达时间窗(或偏移量区间)。备选突发到达时间用于指示业务可接受的调整时间。另外,通过向第一网元发送备选突发到达时间,也可以实现通过隐式方式指示第一网元基于调整后的突发到达时间确定业务流属性。
当然,第一信息可以同时包含第二指示信息和第一业务流的备选突发到达时间。本申请实施例不做限制。
S1402:第一网元根据所述第一信息,获取第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间。
本申请实施例中,第一业务流的突发到达时间可以包括以下中的至少一项:
下行方向TSCAI突发到达时间,即,突发(burst)到达无线接入网入口的时间(比如图4中的DL TSCAI Burst Arrival Time,也就是第一业务流的突发(burst)到达NG-RAN的时间);
上行方向TSCAI突发到达时间,即,突发(burst)到达终端的时间(比如图5中的UL TSCAI Burst Arrival Time,也就是第一业务流的突发(burst)到达UE的时间);
下行方向TSCAC突发到达时间,比如,突发(burst)到达UPF侧的NW-TT的时间;
上行方向TSCAC突发到达时间,比如,突发(burst)到达UE侧的DS-TT的时间。
可选的,第一网元可以根据AF提供的DL Burst Arrival Time和DL CN PDB计算得到DL TSCAI Burst Arrival Time,根据AF提供的UL Burst Arrival Time和UE-DS-TT Residence Time计算得到UL TSCAI Burst Arrival Time,具体计算方法可以参见前文的相关内容。
可选的,所述突发到达时间的调整信息为调整后的突发到达时间,或者为所述突发到达时间调整前和调整后的偏移量。
可选的,所述传输时间信息可能来自于无线接入网(RAN),示例性的,第一网元将TSCAI/TSCAC(其中包括BAT)发送给无线接入网后,接收无线接入网发送的该BAT的调整信息。又示例性的,第一网元将TSCAI/TSCAC(其中包括BAT)发送给无线接入网后,接收无线接入网发送的相同的BAT,表示无线接入网确认使用该BAT。又示例性的,第一网元将备选BAT发送给无线接入网后,接收无线接入网发送的相同的BAT,表示无线接入网确认使用该备选BAT。又示例性的,第一网元将备选BAT发送给无线接入网后,接收无线接入网发送的BAT的调整信息。
可选的,第一网元还可以将备选突发到达时间发送给无线接入网,无线接入网发送的所述突发到达时间调整信息可以是根据所述备选突发到达时间确定的。
S1403:第一网元根据上述传输时间信息确定第一业务流的属性信息。
可选的,若所述传输时间信息为突发到达时间,则第一网元根据该突发到达时间确定第一业务流的属性信息。若所述传输时间信息为突发到达时间的调整信息,则第一网元根据该突发到达时间的调整信息或者根据调整后的突发到达时间,确定第一业务流的属性信息。
可选的,第一业务流的属性信息可以是前述Talker/Listener组信息中的部分参数。可选的,第一网元根据调整后的突发到达时间确定出的第一业务流的属性信息,包括以下至少一项:最早传输偏移(EarliestTransmitOffset),最晚传输偏移(LatestTransmitOffset),最大时延(MaxLatency),发送时间(TimeAwareOffset)。这些参数的定义可参见前文描述。
S1404:第一网元将第一业务流的属性信息发送给第二网元。
可选的,第一网元可以通过向第二网元发送Talker/Listener组信息,将所述第一业务流的属性信息发送给第二网元。
第二网元接收到第一业务流的属性信息后,可以根据该信息确定并生成该业务流的E2E转发路径,并将调度参数发送给交换节点,还可以根据第一业务流的属性信息配置该第一业务流在传输网中的发送端和接收端。例如,第二网元可以根据第一业务流的属性信息生成状态信息(status),并将该状态信息发送给第一网元,以使得第一网元将状态信息发送给第一业务流的发送端和接收端(比如在全集中式配置模型下)。在另一种可能的实现方式中,第二网元也可以直接将该状态信息发送给第一业务流的发送端和接收端(比如在全分布式配置模型下,或者在集中式网络/分布式用户配置模型下)。
基于图14所示的流程,图17和图18分别示出了两种应用场景下的信令交互示意图,具体请参见图17和图18。
上述图14所述的流程中,第一网元根据第一信息获取第一业务流的突发到达时间(BAT)的调整信息(比如通过协商过程获取BAT调整信息)后,根据调整后的突发到达时间确定第一业务流的属性 信息,从而在获取BAT调整信息后,才根据调整后的BAT确定第一业务流的属性信息,因此可以避免因突发到达时间变化而导致业务流属性频繁变化的问题。
采用上述图14所示的流程,当协同调度优化发生时,可以避免因为业务流的TSCAI/TSCAC(具体为BAT)的变化,导致TSCAI/TSCAC中的BAT计算传输网业务的TransmitOffset频繁更新,以及TN CNC频繁重新配置。
场景一
参见图15,该场景为图13所示流程中的一种应用场景,其中,RAN为接入网中的接收/发送端(如图中所示的AN-TL),UPF为核心网中的接收/发送端(如图中所示的CN-TL),SMF充当CUC。充当CUC的SMF通过协商调整第一业务流的突发到达时间(BAT),在接收到来自RAN的第一指示信息后,根据调整后的BAT确定第一业务流的属性信息,以便调整第一业务流的发送时间。
如图15所示,该流程包括以下步骤:
步骤1501:UE触发PDU会话建立流程。
可选的,该步骤的具体实现方式可以参见图10中步骤1001的内容。
步骤1502:PCF向SMF发送带有TSC辅助容器的PCC规则。
可选的,该步骤的具体实现方式可以参见图10中步骤1002的内容。
可选的,在步骤1502中,PCF还可以向SMF发送第二指示信息,该第二指示信息来自于AF或应用,用于指示AF或应用支持调整发包时间或支持调整突发到达时间(BAT)。该第二指示信息也可以称为“支持调整BAT的指示”。
步骤1503:SMF向RAN发送TSCAI,所述TSCAI中包括第一业务流的BAT。
可选的,所述TSCAI中的BAT包括下行方向突发到达RAN入口的时间(比如,如图4中所示的DL TSCAI Burst Arrival Time),和/或上行方向突发到达UE的时间(比如,如图5中所示的UL TSCAI Burst Arrival Time)。
可选的,所述TSCAI中还可以包括流方向信息和周期。流方向信息用于指示第一业务流的是上行方向还是下行方向,周期是指两个突发开始时间之间的间隔。
可选的,AF根据从CNC获取的TSN流的调度信息,确定TSN流到达5G系统入口的时间,即在下行方向TSN流到达NW-TT入口的时间(比如,如图4中的DL Burst Arrival Time),上行方向TSN流到达DS-TT入口的时间(比如,如图5中的UL Burst Arrival Time),并通过PCF将这些信息提供给SMF。SMF根据这些信息进一步计算在下行方向上突发到达RAN的时间(TSCAI Burst Arrival Time),以及上行方向突发从UE发出的时间(UL TSCAI Burst Arrival Time)。SMF计算TSCAI的BAT的方法可以参考前文的相关内容。
步骤1504:RAN接收到BAT后,调整该BAT,并向SMF反馈BAT调整信息。
可选的,所述BAT调整信息可以是一个偏移量(offset),该偏移量为BAT调整前后的差值,根据该偏移量可以确定出调整后的BAT。可选的,所述BAT调整信息也可以是调整后的BAT。当然实现时,SMF也可以直接根据偏移量进行计算。
步骤1505:SMF接收到BAT调整信息后,将该BAT调整信息发送给PCF。
可选的,若BAT为绝对时间,则SMF将5G内部时间映射为外部时间后再发送给PCF。
步骤1506:PCF向SMF发送第一指示信息。
上述步骤1503~步骤1506为一轮协商过程,通过上述协商过程可以得到BAT调整信息。
可选的,在步骤1506中,对于下行方向的传输,PCF接收到来自SMF的BAT调整信息后,可以将该BAT调整信息发送给AF或应用,以使AF或应用根据该BAT调整信息调整发包时间。
所述第一指示信息的含义可以参考前文。比如,所述第一指示信息也可以称为“确认指示”,用于指示根据调整后的BAT进行数据传输(比如对于下行方向的传输,根据该修改后的BAT确定发包时间);或者也可以表述为:所述第一指示信息用于指示BAT不会因为跨层调度优化调整;或者也可以表述为:所述第一指示信息用于指示SMF在收到该第一指示信息后利用确认的BAT(即调整后的BAT)确定传输网业务流的属性。换言之,所述第一指示信息的作用是使得SMF根据该第一指示信息,确定BAT参数协商完成,应立即根据调整后的BAT确定相应业务流的属性信息,以便CNC根据该业务流的属性信息配置该业务流在传输网中的发送端和接收端。
可选的,PCF还可以将BAT调整信息发送给SMF。在一种可能的实现方式中,PCF可以将BAT 调整信息以及所述第一指示信息通过一个信令发送给SMF。在另一种可能的实现方式中,第一指示信息可以通过单独的信令传输。本申请实施例对此不做限制。
步骤1507:SMF接收到第一指示信息后,执行参数映射。
所述参数映射,是指根据发送端上报的信息、接收端上报的信息,进一步的还包括上述调整后的BAT等信息,确定Talker/Listener组信息,该Talker/Listener组信息也可以称为合并后的流需求(merged stream requirements)。本申请实施例中,通过参数映射,可以根据调整后的BAT确定出第一业务流的属性信息。
可选的,SMF可以根据调整后的BAT执行参数映射,也可以直接根据BAT的偏移量执行参数映射。
可选的,SMF在执行参数映射时,可以使用TSCAI BAT也可以使用TSCAC BAT。TSCAI BAT和TSCAC BAT之间,根据前文给出的方法进行转换。
可选的,根据调整后的BAT确定出的第一业务流的属性信息,可以包括以下参数中的一个或多个:最早传输偏移(EarliestTransmitOffset),最晚传输偏移(LatestTransmitOffset),最大时延(MaxLatency),发送时间(TimeAwareOffset)。这些参数的定义可参见前文描述。
步骤1508:SMF将Talker/Listener组信息(或称合并后的流需求merged stream requirements)发送给CNC。
CNC接收到该Talker/Listener组信息后,根据该Talker/Listener组信息确定并生成该业务流的E2E转发路径,并将调度参数发送给交换节点。CNC还根据该Talker/Listener组信息确定需要配置给发送端和接收端的状态信息(Status),所述状态信息也可以称为合并的端站通信配置(merged end station communication-configuration)。
可选的,CNC根据Talker/Listener组信息确定状态信息的方法,以及状态信息的内容,可以参见前文的相关内容。
步骤1509:CNC将状态信息(或称合并的端站通信配置merged end station communication-configuration)发送给SMF。
步骤1510和步骤1511:SMF根据CNC发送的状态信息,分别配置发送端(Talker)和接收端(Listener)。
可选的,SMF可以将状态信息中的TimeAwareOffset(发送端的发包时间)发送到透明容器中的CN-TL和AN-TL,使得CN-TL和AN-TL相应调整流量的发送时间。
在一种可能的实现方式中,上述协商过程可以仅进行一轮,也可以进行多轮。如果协商过程进行多轮,则在除最后一轮的其他轮协商过程中,PCF在接收到BAT调整信息后,向SMF发送BAT调整信息,仅在最后一轮协商过程中,PCF在接收到BAT调整信息后向SMF发送第一指示信息,从而使得SMF确定应立即进行参数映射,这样SMF不必利用不稳定的BAT计算业务流的属性。
在一种可能的实现方式中,无论在何种情况下,PCF都不会向SMF发送第二指示信息,也就是说,方案中未定义第二指示信息,仅定义了第一指示信息,则SMF在接收到来自PCF的PCC规则后,默认不立即进行参数映射,而是在接收到第一指示信息后进行参数映射。在另一种可能的实现方式中,方案中定义了第一指示信息和第二指示信息,如果PCF向SMF发送PCC规则时携带有第二指示信息,则SMF不立即进行参数映射,而是在接收到第一指示信息后进行参数映射;如果PCF向SMF发送PCC规则时未携带第二指示信息,则SMF可以立即进行参数映射。
上述图15所示的流程中,SMF通过AF的第二指示信息(即可接受调整指示)判断BAT可能会由于跨层调度优化被调整,从而判断不必立即发送传输网业务流的属性。SMF通过AF(PCF)的第一指示(即确认指示)判断BAT不会再由于跨层调度优化被调整,此时再确定业务流的属性信息,因而可以避免不必要的参数调整。
需要说明的是,上述图15所示的流程仅为一种示例,其中的部分步骤可以是可选步骤,步骤的时序也可能根据业务需要而调整,本申请对此不作限制。
场景二
参见图16,该场景为图13所示流程中的一种应用场景,其中,RAN为接入网中的接收/发送端(如图中所示的AN-TL),UPF为核心网中的接收/发送端(如图中所示的CN-TL),SMF充当CUC。充当CUC的SMF通过协商调整第一业务流的突发到达时间(BAT),在接收到来自AF的第一指示信息后,根据调整后的BAT确定第一业务流的属性信息,以便调整第一业务流的发送时间。
如图16所示,该流程包括以下步骤:
步骤1601:UE触发PDU会话建立流程。
步骤1602:PCF向SMF发送带有TSC辅助容器的PCC规则。
步骤1603:SMF向RAN发送TSCAI,所述TSCAI中包括第一业务流的BAT。
步骤1604:RAN接收到BAT后,调整该BAT,并向SMF反馈BAT调整信息以及第一指示信息。
可选的,所述BAT调整信息可以是一个偏移量(offset),该偏移量为BAT调整前后的差值,根据该偏移量可以确定出调整后的BAT。可选的,所述BAT调整信息也可以是调整后的BAT。
上述步骤1603~步骤1604为一轮协商过程,通过上述协商过程可以得到BAT调整信息。
所述第一指示信息的含义可以参考前文。比如,所述第一指示信息也可以称为“确认指示”,用于指示根据调整后的BAT进行数据传输(比如对于下行方向的传输,根据该修改后的BAT确定发包时间);或者也可以表述为:所述第一指示信息用于指示BAT不会因为跨层调度优化调整;或者也可以表述为:所述第一指示信息用于指示SMF在收到该第一指示信息后利用确认的BAT(即调整后的BAT)确定传输网业务流的属性。换言之,所述第一指示信息的作用是使得SMF根据该第一指示信息,确定BAT参数协商完成,应立即根据调整后的BAT确定相应业务流的属性信息。
可选的,RAN可以将BAT调整信息以及所述第一指示信息通过一个信令发送给SMF,也可以通过单独的信令传输第一指示信息,本申请实施例对此不做限制。
作为另外一种实现,RAN可以只向SMF发送第一指示信息而不包含BAT调整信息。比如收到SMF发送的BAT时,RAN判断可以使用该BAT,就可以只发送第一指示信息。SMF根据从PCF收到的TSCAC或者存储的TSCAI执行参数映射(步骤1605)。
步骤1605:SMF接收到第一指示信息后,执行参数映射。
步骤1606:SMF将Talker/Listener组信息(或称合并后的流需求merged stream requirements)发送给CNC。
步骤1607:CNC将状态信息(或称合并的端站通信配置merged end station communication-configuration)发送给SMF。
步骤1608和步骤1609:SMF根据CNC发送的状态信息,分别配置发送端(Talker)和接收端(Listener)。
上述流程中的步骤1601~1603以及步骤1605~1609,可以参考图15中的相应步骤。
在一种可能的实现方式中,上述协商过程可以仅进行一轮,也可以进行多轮。如果协商过程进行多轮,则仅在最后一轮协商过程中,RAN在接收到BAT调整信息后向SMF发送第一指示信息,从而使得SMF确定应立即进行参数映射,这样SMF不必利用不稳定的BAT计算业务流的属性。
在一种可能的实现方式中,RAN接收到来自SMF的TSCAI后,可以仅将第一指示信息发送给SMF,而不发送BAT调整信息。比如,在多轮协商过程中,RAN在最后一轮协商过程中,仅将第一指示信息发送给SMF。
在一种可能的实现方式中,无论在何种情况下,PCF都不会向SMF发送第二指示信息,也就是说,方案中未定义第二指示信息,仅定义了第一指示信息,则SMF在接收到来自PCF的PCC规则后,默认不立即进行参数映射,而是在接收到第一指示信息后进行参数映射。在另一种可能的实现方式中,方案中定义了第一指示信息和第二指示信息,如果PCF向SMF发送PCC规则时携带有第二指示信息,则SMF不立即进行参数映射,而是在接收到第一指示信息后进行参数映射;如果PCF向SMF发送PCC规则时未携带第二指示信息,则SMF可以立即进行参数映射。
上述图16所示的流程中,在向SMF发送第二指示信息的方案中,SMF通过AF的第二指示信息(即可接受调整指示)判断BAT可能会由于跨层调度优化被调整,从而判断不必立即发送传输网业务流的属性。SMF通过RAN的第一指示(即确认指示)判断BAT不会再由于跨层调度优化被调整,此时再确定业务流的属性信息,因而可以避免不必要的参数调整。
需要说明的是,上述图16所示的流程仅为一种示例,其中的部分步骤可以是可选步骤,步骤的时序也可能根据业务需要而调整,本申请对此不作限制。
场景三
参见图17,该场景为图14所示流程中的一种应用场景,其中,RAN为接入网中的接收/发送端(如图中所示的AN-TL),UPF为核心网中的接收/发送端(如图中所示的CN-TL),SMF充当CUC。充当 CUC的SMF根据隐式指示(比如通过备选BAT进行隐式指示)进行一轮协商以调整第一业务流的突发到达时间(BAT),根据调整后的BAT确定第一业务流的属性信息,以便调整第一业务流的发送时间。
如图17所示,该流程包括以下步骤:
步骤1701:UE触发PDU会话建立流程。
步骤1702:PCF向SMF发送带有TSC辅助容器的PCC规则,其中包括第一业务流的备选BAT(AltenativeBAT)。
通过备选BAT,可以隐式说明AF支持调整BAT或发包时间,以使得SMF在收到该备选BAT后,不立即执行参数映射并发送业务流的属性信息,而是执行参数协商。
步骤1703:SMF向RAN发送TSCAI以及备选BAT,所述TSCAI中包括第一业务流的BAT。
步骤1704:RAN接收到BAT后,调整该BAT,并向SMF反馈BAT调整信息。
可选的,RAN在调整BAT时,可以参考备选BAT进行调整。比如,可以选择备选BAT(窗口)中的一个值进行调整,或者根据备选BAT(窗口)中的一个值进行确定偏移量,本申请实施例对此不作限制。
上述步骤1703~步骤1704为一轮协商过程,通过上述协商过程可以得到BAT调整信息。
步骤1705:SMF接收到BAT调整信息后,执行参数映射。这种情况下,SMF收到参考备选BAT进行调整的BAT调整信息,可以默认AF会接受,从而不会有多次协商。因此SMF可以直接根据该BAT调整信息后,执行参数映射。
步骤1706:SMF将Talker/Listener组信息(或称合并后的流需求merged stream requirements)发送给CNC。
步骤1707:CNC将状态信息(或称合并的端站通信配置merged end station communication-configuration)发送给SMF。
步骤1708和步骤1709:SMF根据CNC发送的状态信息,分别配置发送端(Talker)和接收端(Listener)。
上述流程中的一些步骤的具体实现方式,可以参考图15中的相关步骤。
上述流程可以适用于一轮协商的场景,当SMF接收到BAT调整信息后,不再执行协商过程,而是进行参数映射,将第一业务流的属性信息发送给CNC,以便对交换节点、发送端和接收端进行配置。
上述图17所示的流程中,SMF通过AF的隐式指示判断BAT可能会由于跨层调度优化被调整,从而判断不必立即发送传输网业务流的属性。SMF通过RAN的隐式确认判断BAT不会再由于跨层调度优化被调整,此时再确定业务流的属性信息,因而可以避免不必要的参数调整。
上述图17所示的流程仅为一种示例,其中的部分步骤可以是可选步骤,步骤的时序也可能根据业务需要而调整,本申请对此不作限制。
场景四
参见图18,该场景为图14所示流程中的一种应用场景,其中,RAN为接入网中的接收/发送端(如图中所示的AN-TL),UPF为核心网中的接收/发送端(如图中所示的CN-TL),SMF充当CUC。充当CUC的SMF根据显示指示(比如第二指示信息)进行一轮协商以调整第一业务流的突发到达时间(BAT),根据调整后的BAT确定第一业务流的属性信息,以便调整第一业务流的发送时间。
如图18所示,该流程包括以下步骤:
步骤1801:UE触发PDU会话建立流程。
步骤1802:PCF向SMF发送带有TSC辅助容器的PCC规则,其中包括第二指示信息。
所述第二指示信息也可以称为“支持调整BAT的指示”。该第二指示信息来自于AF或应用,用于指示AF或应用支持调整发包时间或支持调整BAT。
通过第二指示信息,可以显示说明AF支持调整BAT或发包时间,以使得SMF在收到该第二指示信息后,不立即执行参数映射并发送业务流的属性信息,而是执行参数协商过程。
步骤1803:SMF向RAN发送TSCAI,所述TSCAI中包括第一业务流的BAT。
步骤1804:RAN接收到BAT后,调整该BAT,并向SMF反馈BAT调整信息。
上述步骤1803~步骤1804为一轮协商过程,通过上述协商过程可以得到BAT调整信息。
步骤1805:SMF接收到BAT调整信息后,执行参数映射。
步骤1806:SMF将Talker/Listener组信息(或称合并后的流需求merged stream requirements)发送 给CNC。
步骤1807:CNC将状态信息(或称合并的端站通信配置merged end station communication-configuration)发送给SMF。
步骤1808和步骤1809:SMF根据CNC发送的状态信息,分别配置发送端(Talker)和接收端(Listener)。
上述流程中的一些步骤的具体实现方式,可以参考图15中的相关步骤。
上述流程可以适用于一轮协商的场景,当SMF接收到BAT调整信息后,不再执行协商过程,而是进行参数映射,将第一业务流的属性信息发送给CNC,以便对交换节点、发送端和接收端进行配置。
上述图18所示的流程中,SMF通过AF的显式指示判断BAT可能会由于跨层调度优化被调整,从而判断不必立即发送传输网业务流的属性。SMF通过RAN的隐式确认判断BAT不会再由于跨层调度优化被调整,此时再确定业务流的属性信息,因而可以避免不必要的参数调整。
上述图18所示的流程仅为一种示例,其中的部分步骤可以是可选步骤,步骤的时序也可能根据业务需要而调整,本申请对此不作限制。
基于相同的技术构思,本申请实施例还提供了一种通信装置。该通信装置可执行如图13、图15、图16中第一网元(比如SMF)执行的流程,或者执行如图14、图17、图18中第一网元(如SMF)执行的流程。
如图19所示,该通信装置1900可包括:处理单元1901、收发单元1902。收发单元1902与处理单元1901耦接。
当通信装置1900执行如图13、图15或图16中第一网元(比如SMF)执行的流程时,上述各功能模块的功能可以包括:
处理单元1901,用于:获取第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;当所述收发单元接收到第一指示信息后,根据所述传输时间信息确定所述第一业务流的属性信息;以及,通过收发单元1902将所述第一业务流的属性信息发送给第二网元。
可选的,所述第一指示信息来自于AF网元,或PCF网元,或TSCTSF网元。
可选的,所述第一指示信息为确认指示;或者,所述第一指示信息用于确认所述传输时间信息或基于所述传输时间信息进行数据传输;或者,所述第一指示信息用于指示突发到达时间不会因为跨层调度优化而进行调整。
可选的,收发单元1902还用于在处理单元1901获取第一业务流的所述传输时间信息之前,接收第二指示信息;处理单元1901具体用于根据所述第二指示信息,获取所述第一业务流的突发到达时间的调整信息。
可选的,所述第二指示信息来自于AF网元,或PCF网元,或TSCTSF网元。
可选的,所述传输时间信息来自于无线接入网网元,或AF网元,或PCF网元,或TSCTSF网元。
可选的,处理单元1901具体用于:通过收发单元1902将时延敏感通信辅助信息发送给无线接入网,所述时延敏感通信辅助信息包括突发到达时间,所述突发到达时间包括下行方向突发到达所述无线接入网入口的时间,和/或上行方向突发到达终端的时间;通过收发单元1902接收来自所述无线接入网的突发到达时间调整信息;通过收发单元1902将所述突发到达时间调整信息发送给所述应用功能;通过收发单元1902接收来自于所述应用功能的所述第一指示信息。
可选的,所述突发到达时间,包括以下中的至少一项:上行TSCAI突发到达时间,下行TSCAI突发到达时间,上行TSCAC突发到达时间,下行TSCAC突发到达时间。
可选的,所述突发到达时间的调整信息为调整后的突发到达时间,或者为所述突发到达时间调整前和调整后的偏移量。
可选的,所述第一业务流的属性信息,包括以下至少一项:
最早传输偏移,所述最早传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最早偏移;
最晚传输偏移,所述最晚传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最晚偏移;
最大时延,所述最大时延为数据帧从所述发送端到所述接收端的最大时延;
发送时间,所述发送时间为所述发送端传输数据包时使用的时间偏移,所述时间偏移在所述最早传输偏移和所述最晚传输偏移之间。
可选的,所述第一网元为会话管理功能网元,所述会话管理功能网元被配置为集中式用户配置网元;所述第二网元为集中式网络配置网元。
当通信装置1900执行如图14、图17或图18中第一网元(比如SMF)执行的流程时,上述各功能模块的功能可以包括:
收发单元1902,用于接收第一信息,所述第一信息包括第二指示信息和/或第一业务流的备选突发到达时间;
处理单元1901,用于根据所述第一信息,获取所述第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;根据所述传输时间信息确定所述第一业务流的属性信息;以及,通过收发单元1902将所述第一业务流的属性信息发送给第二网元。
可选的,所述第一信息来自于AF网元,或PCF网元,或网元。
可选的,所述第二指示信息用于指示所述应用功能支持调整突发到达时间或发包时间。
可选的,所述传输时间信息来自于无线接入网网元。
可选的,所述突发到达时间的调整信息,是所述无线接入网网元根据所述备选突发到达时间确定的。
可选的,所述突发到达时间,包括以下中的至少一项:上行TSCAI突发到达时间,下行TSCAI突发到达时间,上行TSCAC突发到达时间,下行TSCAC突发到达时间。
可选的,所述突发到达时间的调整信息为调整后的突发到达时间,或者为所述突发到达时间调整前和调整后的偏移量。
可选的,所述第一业务流的属性信息,包括以下至少一项:
最早传输偏移,所述最早传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最早偏移;
最晚传输偏移,所述最晚传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最晚偏移;
最大时延,所述最大时延为数据帧从所述发送端到所述接收端的最大时延;
发送时间,所述发送时间为所述发送端传输数据包时使用的时间偏移,所述时间偏移在所述最早传输偏移和所述最晚传输偏移之间。
可选的,所述第一网元为会话管理功能网元,所述会话管理功能网元被配置为集中式用户配置网元;所述第二网元为集中式网络配置网元。
上述通信装置1900能够实现上述方法实施例中的方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本申请实施例还提供了一种通信装置。该通信装置可执行如图13、图15、图16中无线接入网(RAN)或策略控制功能(PCF)执行的流程。
如图20所示,该通信装置2000可包括:处理单元2001、收发单元2002。收发单元2002与处理单元2001耦接。
处理单元2001,用于确定基于确认的第一业务流的传输时间信息进行数据传输,或者所述第一业务流的突发到达时间不会因为跨层调度优化而进行调整,其中,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;以及,通过收发单元2002向所述第一网元发送第一指示信息。
可选的,所述第一指示信息为确认指示,或者所述第一指示信息用于确认所述传输时间信息或基于所述传输时间信息进行数据传输,或者所述第一指示信息用于指示突发到达时间不会因为跨层调度优化而进行调整。
可选的,处理单元2001在通过收发单元2002向第一网元发送第一指示信息之前,还通过收发单元2002向所述第一网元发送第二指示信息,所述第二指示信息用于指示所述应用功能支持调整突发到达时间或发包时间。
上述通信装置2000能够实现上述方法实施例中的方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为便于理解,图21中仅示出了通信装置2100执行本申请所示方法所需的结构,本申请并不限制通信装置可具备更多组件。该通信装置2100可用于执行上述方法实施例中相关网元执行的步骤,比如所述相关网元可以是第一网元(如SMF),PCF,RAN等。
该通信装置2100可包括收发器2101、存储器2103以及处理器2102,收发器2101、存储器2103以及处理器2102可以通过总线2104连接。该收发器2101可以用于通信装置进行通信,如用于发送或接收信号。该存储器2103与所述处理器2102耦合,可用于保存通信装置2100实现各功能所必要的程序和数据。以上存储器2103以及处理器2102可集成于一体也可相互独立。
示例性的,该收发器2101可以是通信端口,如网元之间用于通信的通信端口(或称接口)。收发器2101也可被称为收发单元或通信单元。该处理器2102可通过处理芯片或处理电路实现。收发器2101可采用无线方式或有线方式进行信息接收或发送。
另外,根据实际使用的需要,本申请实施例提供的通信装置可包括处理器,由该处理器调用外接的收发器和/或存储器以实现上述功能或步骤或操作。通信装置也可包括存储器,由处理器调用并执行存储器中存储的程序实现上述功能或步骤或操作。或者,通信装置也可包括处理器及收发器(或通信接口),由处理器调用并执行外接的存储器中存储的程序实现上述功能或步骤或操作。或者,通信装置也可包括处理器、存储器以及收发器。
基于与上述方法实施例相同构思,本申请实施例中还提供一种计算机可读存储介质,其上存储有程序指令(或称计算机程序、指令),该程序指令被处理器执行时,使该计算机执行上述方法实施例、方法实施例的任意一种可能的实现方式中由第一网元。无线接入网或策略控制功能执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种计算机程序产品,包括程序指令,该计算机程序产品在被计算机调用执行时,可以使得计算机实现上述方法实施例、方法实施例的任意一种可能的实现方式中由第一网元。无线接入网或策略控制功能执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片与收发器耦合,用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由第一网元。无线接入网或策略控制功能执行的操作。该芯片系统可包括该芯片,以及包括存储器、通信接口等组件。
基于与上述方法实施例相同构思,本申请实施例还提供一种通信系统。可选的,所述通信系统包括第一网元(如配置为CUC的SMF),第二网元(如CNC)和第三网元(如PCF,RAN),该通信系统可实现如图13、图15或图16所示的流程。可选的,所述通信系统包括第一网元(如配置为CUC的SMF)、第二网元(如CNC)和第三网元(如PCF),该通信系统可实现如图14、图17或图18所示的流程。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (52)

  1. 一种业务流属性配置方法,其特征在于,包括:
    第一网元获取第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;
    当所述第一网元接收到第一指示信息后,根据所述传输时间信息确定所述第一业务流的属性信息;
    所述第一网元将所述第一业务流的属性信息发送给第二网元。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息来自于应用功能AF网元,或策略控制功能PCF网元,或时间敏感通信时间同步功能TSCTSF网元。
  3. 如权利要求1或2所述的方法,其特征在于:
    所述第一指示信息为确认指示;或者,
    所述第一指示信息用于确认所述传输时间信息或基于所述传输时间信息进行数据传输;或者,
    所述第一指示信息用于指示突发到达时间不会因为跨层调度优化而进行调整。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一网元获取第一业务流的传输时间信息之前,所述方法还包括:
    所述第一网元接收第二指示信息,所述第二指示信息用于指示应用功能或应用支持调整发包时间或支持调整突发到达时间,或者用于指示所述第一网元不立即根据突发到达时间确定所述第一业务流的属性信息。
  5. 如权利要求4所述的方法,其特征在于,所述第二指示信息来自于应用功能AF网元,或策略控制功能PCF网元,或时间敏感通信时间同步功能TSCTSF网元。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一网元获取第一业务流的突发到达时间的调整信息,以及接收所述第一信息,包括:
    所述第一网元将时延敏感通信辅助信息发送给无线接入网,所述时延敏感通信辅助信息包括突发到达时间,所述突发到达时间包括下行方向突发到达所述无线接入网入口的时间,和/或上行方向突发到达终端的时间;
    所述第一网元接收来自所述无线接入网的突发到达时间调整信息;
    所述第一网元将所述突发到达时间调整信息发送给所述应用功能;
    所述第一网元接收来自于所述应用功能的所述第一指示信息。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述传输时间信息来自于无线接入网网元,或应用功能AF网元,或策略控制功能PCF网元,或时间敏感通信时间同步功能TSCTSF网元。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述突发到达时间,包括以下中的至少一项:
    上行时延敏感通信辅助信息TSCAI突发到达时间;
    下行时延敏感通信辅助信息TSCAI突发到达时间;
    上行时延敏感通信辅助容器TSCAC突发到达时间;
    下行时延敏感通信辅助容器TSCAC突发到达时间。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述突发到达时间的调整信息为调整后的突发到达时间,或者为所述突发到达时间调整前和调整后的偏移量。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述第一业务流的属性信息,包括以下至少一项:
    最早传输偏移,所述最早传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最早偏移;
    最晚传输偏移,所述最晚传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最晚偏移;
    最大时延,所述最大时延为数据帧从所述发送端到所述接收端的最大时延;
    发送时间,所述发送时间为所述发送端传输数据包时使用的时间偏移,所述时间偏移在所述最早传输偏移和所述最晚传输偏移之间。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述第一网元为会话管理功能网元,所述会话管理功能网元被配置为集中式用户配置网元;所述第二网元为集中式网络配置网元。
  12. 一种业务流属性配置方法,其特征在于,包括:
    第一网元接收第一信息,所述第一信息包括第二指示信息和/或第一业务流的备选突发到达时间;
    所述第一网元根据所述第一信息,获取所述第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;
    所述第一网元根据所述传输时间信息确定所述第一业务流的属性信息;
    所述第一网元将所述第一业务流的属性信息发送给第二网元。
  13. 如权利要求12所述的方法,其特征在于,所述第一信息来自于应用功能AF网元,或策略控制功能PCF网元,或时间敏感通信时间同步功能TSCTSF网元。
  14. 如权利要求12或13所述的方法,其特征在于,所述第二指示信息用于指示所述应用功能支持调整突发到达时间或发包时间。
  15. 如权利要求12-14任一项所述的方法,其特征在于,所述传输时间信息来自于无线接入网网元。
  16. 如权利要求15所述的方法,其特征在于,所述突发到达时间的调整信息,是所述无线接入网网元根据所述备选突发到达时间确定的。
  17. 如权利要求12-16任一项所述的方法,其特征在于,所述突发到达时间,包括以下中的至少一项:
    上行时延敏感通信辅助信息TSCAI突发到达时间;
    下行时延敏感通信辅助信息TSCAI突发到达时间;
    上行时延敏感通信辅助容器TSCAC突发到达时间;
    下行时延敏感通信辅助容器TSCAC突发到达时间。
  18. 如权利要求12-17任一项所述的方法,其特征在于,所述突发到达时间的调整信息为调整后的突发到达时间,或者为所述突发到达时间调整前和调整后的偏移量。
  19. 如权利要求12-18任一项所述的方法,其特征在于,所述第一业务流的属性信息,包括以下至少一项:
    最早传输偏移,所述最早传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最早偏移;
    最晚传输偏移,所述最晚传输偏移为所述发送端在发送周期内第一个数据帧相对于所述发送周期开始时间点的最晚偏移;
    最大时延,所述最大时延为数据帧从所述发送端到所述接收端的最大时延;
    发送时间,所述发送时间为所述发送端传输数据包时使用的时间偏移,所述时间偏移在所述最早传输偏移和所述最晚传输偏移之间。
  20. 如权利要求12-19任一项所述的方法,其特征在于,所述第一网元为会话管理功能网元,所述会话管理功能网元被配置为集中式用户配置网元;所述第二网元为集中式网络配置网元。
  21. 一种业务流属性配置方法,其特征在于,应用于第一网元,所述方法包括:
    接收第一业务流的时延敏感通信辅助容器突发到达时间的时间窗;
    获取所述第一业务流的时延敏感通信辅助信息突发到达时间的偏移量,所述偏移量是基于所述时延敏感通信辅助容器突发到达时间的时间窗确定的;
    根据所述偏移量确定所述第一业务流的属性信息;
    向第二网元发送所述第一业务流的属性信息。
  22. 如权利要求21所述的方法,其特征在于,所述接收第一业务流的时延敏感通信辅助容器突发到达时间的时间窗,包括:
    从策略控制功能网元接收所述第一业务流的所述时延敏感通信辅助容器突发到达时间的时间窗。
  23. 如权利要求22所述的方法,其特征在于,所述时延敏感通信辅助容器突发到达时间的时间窗来自于应用功能网元,或时间敏感通信时间同步功能网元。
  24. 如权利要求21-23任一项所述的方法,其特征在于,所述时延敏感通信辅助容器突发到达时间的时间窗包含在时延敏感通信辅助容器中。
  25. 如权利要求24所述的方法,其特征在于,所述获取所述第一业务流的时延敏感通信辅助信息突发到达时间的偏移量,包括:
    根据所述时延敏感通信辅助容器确定时延敏感通信辅助信息,所述时延敏感通信辅助信息包含所述时延敏感通信辅助信息突发到达时间的时间窗;
    向无线接入网网元发送所述时延敏感通信辅助信息突发到达时间的时间窗;
    从所述无线接入网网元接收所述偏移量,所述偏移量对应的时延敏感通信辅助信息突发到达时间为所述时延敏感通信辅助信息突发到达时间的时间窗内的一个值。
  26. 如权利要求21-25任一项所述的方法,其特征在于,所述偏移量来自于无线接入网网元。
  27. 如权利要求26所述的方法,其特征在于,所述偏移量是所述无线接入网网元根据所述时延敏感通信辅助容器突发到达时间的时间窗确定的。
  28. 如权利要求21-27任一项所述的方法,其特征在于,所述第一业务流的属性信息,包括以下一项或多项:
    最早传输偏移,所述最早传输偏移为发送端发送周期内的第一个数据帧的时间点相对于所述周期开始时间点的最早偏移;
    最晚传输偏移,所述最晚传输偏移为发送端发送周期内的第一个数据帧的时间点相对于所述周期开始时间点的最晚偏移;
    最大时延,所述最大时延为数据帧从发送端到接收端的最大时延;
    发送时间,所述发送时间为发送端传输数据帧时使用的时间偏移,所述时间偏移在所述最早传输偏移和所述最晚传输偏移之间。
  29. 如权利要求21-28任一项所述的方法,其特征在于,所述第一网元为会话管理功能网元,所述会话管理功能网元被配置为集中式用户配置网元;所述第二网元为集中式网络配置网元。
  30. 一种业务流属性配置方法,其特征在于,包括:
    确定基于确认的第一业务流的传输时间信息进行数据传输,或者所述第一业务流的突发到达时间不会因为跨层调度优化而进行调整;其中,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;
    向所述第一网元发送第一指示信息。
  31. 如权利要求30所述的方法,其特征在于,所述第一指示信息为确认指示,或者所述第一指示信息用于确认所述传输时间信息或基于所述传输时间信息进行数据传输,或者所述第一指示信息用于指示突发到达时间不会因为跨层调度优化而进行调整。
  32. 如权利要求30或31所述的方法,其特征在于,向所述第一网元发送第一指示信息之前,所述方法还包括:
    向所述第一网元发送第二指示信息,所述第二指示信息用于指示所述应用功能支持调整突发到达时间或发包时间。
  33. 一种通信系统,其特征在于,包括:第一网元,第二网元和第三网元;
    所述第一网元用于执行如权利要求1-11任一项所述的方法,所述第三网元用于执行如权利要求30-32任一项所述的方法;
    所述第二网元用于接收来自所述第一网元的所述第一业务流的属性信息。
  34. 一种通信系统,其特征在于,包括:第一网元,第二网元,所述第一网元用于执行如权利要求12-20任一项所述的方法;
    所述第二网元用于接收来自所述第一网元的所述第一业务流的属性信息。
  35. 一种通信系统,其特征在于,包括:第一网元,第二网元,所述第一网元用于执行如权利要求21-29任一项所述的方法;
    所述第二网元用于接收来自所述第一网元的所述第一业务流的属性信息。
  36. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述处理单元,用于获取第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;
    当所述收发单元接收到第一指示信息后,根据所述传输时间信息确定所述第一业务流的属性信息;以及
    通过所述收发单元将所述第一业务流的属性信息发送给第二网元。
  37. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于接收第一信息,所述第一信息包括第二指示信息和/或第一业务流的备选突发到达时间;
    所述处理单元,用于根据所述第一信息,获取所述第一业务流的传输时间信息,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;根据所述传输时间信息确定所述第一业务流的属性信息;以及,通过所述收发单元将所述第一业务流的属性信息发送给第二网元。
  38. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述处理单元,用于确定基于确认的第一业务流的传输时间信息进行数据传输,或者所述第一业务流的突发到达时间不会因为跨层调度优化而进行调整,其中,所述传输时间信息包括突发到达时间或突发到达时间的调整信息,所述突发到达时间的调整信息用于确定调整后的突发到达时间;以及
    通过所述收发单元向所述第一网元发送第一指示信息。
  39. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于接收第一业务流的时延敏感通信辅助容器突发到达时间的时间窗;
    所述处理单元,用于获取所述第一业务流的时延敏感通信辅助信息突发到达时间的偏移量,所述偏移量是基于所述时延敏感通信辅助容器突发到达时间的时间窗确定的;
    所述处理单元,还用于根据所述偏移量确定所述第一业务流的属性信息;
    所述收发单元,还用于向第二网元发送所述第一业务流的属性信息。
  40. 一种通信装置,其特征在于,包括:一个或多个处理器;一个或多个存储器;其中,所述一个或多个存储器存储有一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述指令被所述一个或多个处理器执行时,使得所述通信设备执行如权利要求1-11中任一项所述的方法,或者执行如权利要求12-20中任一项所述的方法,或者执行如权利要求21-29中任一项所述的方法,或者执行如权利要求30-32中任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在计算设备上运行时,使得所述计算设备执行如权利要求1-11中任一项所述的方法,或者执行如权利要求12-20中任一项所述的方法,或者执行如权利要求21-29中任一项所述的方法,或者执行如权利要求30-32中任一项所述的方法。
  42. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-11中任一项所述的方法,或者执行如权利要求12-20中任一项所述的方法,或者执行如权利要求21-29中任一项所述的方法,或者执行如权利要求30-32中任一项所述的方法。
  43. 一种计算机程序产品,其特征在于,所述计算机程序产品在被计算机调用时,使得所述计算机执行如权利要求1-11中任一项所述的方法,或者执行如权利要求12-20中任一项所述的方法,或者执行如权利要求21-29中任一项所述的方法,或者执行如权利要求30-32中任一项所述的方法。
  44. 一种通信方法,其特征在于,包括:
    第一网元接收第一业务流的时延敏感通信辅助容器突发到达时间的时间窗;
    所述第一网元获取所述第一业务流的时延敏感通信辅助信息突发到达时间的偏移量,所述偏移量是基于所述时延敏感通信辅助容器突发到达时间的时间窗确定的;
    所述第一网元根据所述偏移量确定所述第一业务流的属性信息;
    所述第一网元向第二网元发送所述第一业务流的属性信息;
    所述第二网元接收来自所述第一网元的所述第一业务流的属性信息。
  45. 如权利要求44所述的方法,其特征在于,所述第一网元接收第一业务流的时延敏感通信辅助容器突发到达时间的时间窗,包括:
    所述第一网元从策略控制功能网元接收所述第一业务流的所述时延敏感通信辅助容器突发到达时间的时间窗;
    所述方法还包括:
    所述策略控制功能网元向所述第一网元发送所述第一业务流的所述时延敏感通信辅助容器突发到达时间的时间窗。
  46. 如权利要求45所述的方法,其特征在于,所述时延敏感通信辅助容器突发到达时间的时间窗来自于应用功能网元,或时间敏感通信时间同步功能网元。
  47. 如权利要求44-46任一项所述的方法,其特征在于,所述时延敏感通信辅助容器突发到达时间的时间窗包含在时延敏感通信辅助容器中。
  48. 如权利要求47所述的方法,其特征在于,所述第一网元获取所述第一业务流的时延敏感通信辅助信息突发到达时间的偏移量,包括:
    所述第一网元根据所述时延敏感通信辅助容器确定时延敏感通信辅助信息,所述时延敏感通信辅助信息包含所述时延敏感通信辅助信息突发到达时间的时间窗;
    所述第一网元向无线接入网网元发送所述时延敏感通信辅助信息突发到达时间的时间窗;
    所述无线接入网网元接收来自所述第一网元的所述时延敏感通信辅助信息突发到达时间的时间窗;
    所述无线接入网网元向所述第一网元发送所述偏移量,所述偏移量对应的时延敏感通信辅助信息突发到达时间为所述时延敏感通信辅助信息突发到达时间的时间窗内的一个值;
    所述第一网元接收来自所述无线接入网网元的所述偏移量。
  49. 如权利要求44-48任一项所述的方法,其特征在于,所述偏移量来自于无线接入网网元。
  50. 如权利要求49所述的方法,其特征在于,所述偏移量是所述无线接入网网元根据所述时延敏感通信辅助容器突发到达时间的时间窗确定的。
  51. 如权利要求44-50任一项所述的方法,其特征在于,所述第一业务流的属性信息,包括以下一项或多项:
    最早传输偏移,所述最早传输偏移为发送端发送周期内的第一个数据帧的时间点相对于所述周期开始时间点的最早偏移;
    最晚传输偏移,所述最晚传输偏移为发送端发送周期内的第一个数据帧的时间点相对于所述周期开始时间点的最晚偏移;
    最大时延,所述最大时延为数据帧从发送端到接收端的最大时延;
    发送时间,所述发送时间为发送端传输数据帧时使用的时间偏移,所述时间偏移在所述最早传输偏移和所述最晚传输偏移之间。
  52. 如权利要求44-51任一项所述的方法,其特征在于,所述第一网元为会话管理功能网元,所述会话管理功能网元被配置为集中式用户配置网元;所述第二网元为集中式网络配置网元。
PCT/CN2023/110184 2022-08-05 2023-07-31 一种业务流属性配置方法、装置和系统 WO2024027633A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210938909.6A CN117560323A (zh) 2022-08-05 2022-08-05 一种业务流属性配置方法、装置和系统
CN202210938909.6 2022-08-05

Publications (1)

Publication Number Publication Date
WO2024027633A1 true WO2024027633A1 (zh) 2024-02-08

Family

ID=89815369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110184 WO2024027633A1 (zh) 2022-08-05 2023-07-31 一种业务流属性配置方法、装置和系统

Country Status (2)

Country Link
CN (1) CN117560323A (zh)
WO (1) WO2024027633A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595668A (zh) * 2019-06-24 2021-11-02 腾讯科技(深圳)有限公司 一种时钟漂移处理的方法、网络功能网元及存储介质
CN113767680A (zh) * 2019-05-03 2021-12-07 三星电子株式会社 在无线通信网络中基于时间敏感通信辅助信息支持突发到达时间参考时钟的装置和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767680A (zh) * 2019-05-03 2021-12-07 三星电子株式会社 在无线通信网络中基于时间敏感通信辅助信息支持突发到达时间参考时钟的装置和方法
CN113595668A (zh) * 2019-06-24 2021-11-02 腾讯科技(深圳)有限公司 一种时钟漂移处理的方法、网络功能网元及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Burst Arrival Time Offset indication in QoS Notification Control", 3GPP TSG-SA2 MEETING #142E, S2-2008997, 9 November 2020 (2020-11-09), XP051953312 *

Also Published As

Publication number Publication date
CN117560323A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US11950127B2 (en) 5G system support for virtual TSN bridge management, QoS mapping and TSN Qbv scheduling
WO2020220747A1 (zh) 一种tsn业务的处理方法、装置及系统
US11956157B2 (en) Activation of PDU session and QOS flows in 3GPP-based ethernet bridges
WO2020019764A1 (zh) 信息传输方法、设备及计算机可读存储介质
US20230019215A1 (en) TSC-5G QoS MAPPING WITH CONSIDERATION OF ASSISTANCE TRAFFIC INFORMATION AND PCC RULES FOR TSC TRAFFIC MAPPING AND 5G QoS FLOWS BINDING
WO2021089018A1 (zh) 一种通信方法、装置及系统
WO2021238685A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022028087A1 (zh) 确定性传输方法、通信装置及存储介质
WO2021160164A1 (zh) 信息控制方法及通信设备
WO2022095048A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2021159724A1 (zh) 通信方法、装置及系统
US20230254859A1 (en) Downlink Transmission Method and Communication Apparatus
WO2020103540A1 (zh) 同步的方法和装置
WO2024027633A1 (zh) 一种业务流属性配置方法、装置和系统
WO2022267652A1 (zh) 一种通信方法、通信装置及通信系统
EP4152655A1 (en) Mobile radio communication system and method for providing a time-sensitive networking ethernet bridge
WO2021218321A1 (zh) 用于处理数据流的方法和通信装置
Liu et al. Software defined network based 5G and time-sensitive network fusion for power services with ultra-low latency requirements
WO2024104253A1 (zh) 通信方法、装置和系统
WO2024022158A1 (zh) 通信方法及装置
WO2022242201A1 (zh) 一种无线通信方法、通信装置及通信系统
WO2023005728A1 (zh) 一种通信方法、装置和系统
US11963022B2 (en) Method and apparatus for processing DETNET traffic
WO2023273745A1 (zh) 一种通信方法、通信装置及通信系统
WO2023143255A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849340

Country of ref document: EP

Kind code of ref document: A1