WO2021160164A1 - 信息控制方法及通信设备 - Google Patents

信息控制方法及通信设备 Download PDF

Info

Publication number
WO2021160164A1
WO2021160164A1 PCT/CN2021/076520 CN2021076520W WO2021160164A1 WO 2021160164 A1 WO2021160164 A1 WO 2021160164A1 CN 2021076520 W CN2021076520 W CN 2021076520W WO 2021160164 A1 WO2021160164 A1 WO 2021160164A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time
clock
delay
communication device
Prior art date
Application number
PCT/CN2021/076520
Other languages
English (en)
French (fr)
Inventor
柯小婉
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021160164A1 publication Critical patent/WO2021160164A1/zh
Priority to US17/880,599 priority Critical patent/US20220376885A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0673Clock or time synchronisation among packet nodes using intermediate nodes, e.g. modification of a received timestamp before further transmission to the next packet node, e.g. including internal delay time or residence time into the packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0037Delay of clock signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • H04L7/0012Synchronisation information channels, e.g. clock distribution lines by comparing receiver clock with transmitter clock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, in particular to an information control method and communication equipment.
  • time-sensitive communications needs For example, in the Industrial Internet, there are time-related data, such as robot instructions, which need to be executed in order within a specified time, which requires high time accuracy.
  • a time-sensitive network was proposed to support the transmission of time-sensitive data.
  • a time-sensitive network Time Sensing Network
  • the sender and receiver of a time-related data stream can forward data through one or more bridges.
  • different control nodes have different control requirements for time-related information.
  • Different control nodes may have different requirements for the reference clock. Therefore, how to determine and transmit time-related information of different nodes is a technical problem that needs to be solved urgently at present to support the realization of time-related services.
  • the embodiments of the present invention provide an information control method and communication equipment to solve the problem of how to determine and transmit time-related information of different nodes, so as to support the realization of time-related services.
  • an embodiment of the present invention provides an information control method applied to a first communication device, including:
  • the first time information is adjusted to the second time information; wherein, the first time information is time-related information based on the first clock, and the second time information The time information is time-related information based on the second clock;
  • the first information includes at least one of the following: the first time information, the second time information, the clock information of the first clock, and the clock information of the second clock.
  • an embodiment of the present invention provides an information control method applied to a second communication device, including:
  • the first information includes at least one of the following: first time information, second time information, clock information of the first clock, clock information of the second clock;
  • the first time information is time-related information based on the first clock
  • the second time information is time-related information based on the second clock
  • the first condition includes: the first clock is a communication network clock;
  • the second condition includes: the second clock is an external clock of the communication network.
  • an embodiment of the present invention provides an information control method applied to a third communication device, including:
  • the first information includes at least one of the following: first time information, second time information, clock information of the first clock, clock information of the second clock; the first time information is based on the first clock The time-related information; the second time information is based on the time-related information of the second clock.
  • an embodiment of the present invention provides an information control method applied to a fourth communication device, including:
  • At least one of the following is performed: determining the PDB-related delay, and mapping the quality of service QoS of the communication network.
  • an embodiment of the present invention provides a communication device, where the communication device is a first communication device and includes:
  • the processing module is configured to adjust the first time information to the second time information according to the clock difference information between the first clock and the second clock; wherein, the first time information is time-related information based on the first clock , The second time information is time-related information based on the second clock;
  • the first sending module is used to send the first information
  • the first information includes at least one of the following: the first time information, the second time information, the clock information of the first clock, and the clock information of the second clock.
  • an embodiment of the present invention provides a communication device, where the communication device is a second communication device, and includes:
  • the first obtaining module is used to obtain first information
  • the first execution module is used to perform at least one of the following operations:
  • the first information includes at least one of the following: first time information, second time information, clock information of the first clock, clock information of the second clock;
  • the first time information is time-related information based on the first clock
  • the second time information is time-related information based on the second clock
  • the first condition includes: the first clock is a communication network clock;
  • the second condition includes: the second clock is an external clock of the communication network.
  • an embodiment of the present invention provides a communication device, where the communication device is a third communication device and includes:
  • the second obtaining module is used to obtain the first information
  • the second sending module is configured to send the first information
  • the first information includes at least one of the following: first time information, second time information, clock information of the first clock, clock information of the second clock; the first time information is based on the first clock The time-related information; the second time information is based on the time-related information of the second clock.
  • an embodiment of the present invention provides a communication device, where the communication device is a third communication device and includes:
  • the third acquisition module is used to acquire the delay requirement information and the residence time between the terminal and the DS-TT;
  • the second execution module is configured to execute at least one of the following according to the delay requirement information and the residence time between the terminal and the DS-TT: determining the PDB-related delay and mapping the communication network QoS.
  • an embodiment of the present invention provides a communication device, including a processor, a memory, and a computer program stored on the memory and running on the processor, the computer program being executed by the processor
  • a communication device including a processor, a memory, and a computer program stored on the memory and running on the processor, the computer program being executed by the processor
  • an embodiment of the present invention provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the information control method provided in the first aspect is implemented. Steps, or, implement the steps of the information control method provided by the second aspect, or implement the steps of the information control method provided by the third aspect, or implement the steps of the information control method provided by the fourth aspect.
  • time-related information can be determined based on the needs of different communication network nodes, and on the other hand, time-related information based on different clocks can be sent based on the needs of different network nodes, thereby supporting time-related services.
  • FIG. 1 is a schematic diagram of the architecture of an applicable wireless communication system provided by an embodiment of the present invention
  • FIG. 2 is a flowchart of an information control method provided by an embodiment of the present invention.
  • FIG. 3 is a flowchart of another information control method provided by an embodiment of the present invention.
  • FIG. 5 is a flowchart of another information control method provided by an embodiment of the present invention.
  • Fig. 6A is a schematic diagram of an application scenario provided in an embodiment of the present invention.
  • FIG. 6B is a schematic diagram of another application scenario provided in an embodiment of the present invention.
  • Fig. 7 is a structural diagram of a communication device provided by the present invention.
  • Fig. 8 is a structural diagram of another communication device provided by the present invention.
  • Fig. 9 is a structural diagram of another communication device provided by the present invention.
  • Figure 10 is a structural diagram of another communication device provided by the present invention.
  • Fig. 11 is a structural diagram of another communication device provided by the present invention.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present invention should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the information control method and communication device provided by the embodiments of the present invention can be applied to a wireless communication system.
  • the wireless communication system may be a 5G system, or an evolved Long Term Evolution (eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • Time Sensing may also be referred to as Periodic Deterministic.
  • Time-sensitive communication can also be called periodic deterministic communication (Periodic deterministic communication).
  • Time-sensitive data streams can also be referred to as periodic deterministic data streams.
  • a time-sensitive network technology such as IEEE TSN (Time Sensing Network). Cycle deterministic communication is to transmit data in cycles of transmission intervals.
  • FIG. 1 it is a schematic diagram of the architecture of an applicable wireless communication system according to an embodiment of the present invention.
  • the sending end of the time-sensitive data stream may be called a talker
  • the receiving end of the time-sensitive data stream may be called a listener.
  • One or more bridges that can pass between talker and listener are used to forward data.
  • the end station node (End Station) can be a talker or a listener. Bridge is responsible for data transmission between talker and listener.
  • a terminal User Equipment, UE
  • a time-sensitive adapter and a communication network form a network bridge (following a 5G bridge as an example).
  • the device-side time-sensitive network adapter (Device-side TSN translator, DS-TT) port can be the outgoing port of the data
  • the network-side time-sensitive network adapter (Network-side TSN translator, NW-TT) port is The data entry port.
  • the NW-TT port can be the data ingress port
  • the DS-TT port can be the data egress port.
  • the terminal can be co-located with DS-TT.
  • User Plane Function UPF
  • UPF User Plane Function
  • a terminal can be connected to one or more DS-TTs, and a DS-TT can have one or more ports.
  • One 5G bridge may have one UPF, and one or more ports may be enabled on the NW-TT of the UPF.
  • the terminal can act as a proxy for the DS-TT port and establish a protocol data unit (Protocol Data Unit, PDU) session with the UPF.
  • PDU Protocol Data Unit
  • the port on the DS-TT is associated with the port of the NW-TT co-located by the UPF.
  • the port of DS-TT becomes a port of the 5G bridge.
  • Both DS-TT ports and NW-TT ports can be connected separately, TSN Bridge (TSN Bridge) and/or End Station (End Station). Through the 5G bridge, the TSN bridge and/or terminal station connected to the TT port can communicate.
  • TSN Bridge TSN Bridge
  • End Station End Station
  • FIG. 1 is only a schematic diagram of an example.
  • the structure of the 5G bridge and the connection relationship between the ports in the 5G bridge are not limited.
  • Question 1 There is a 5G clock in the 5G bridge, and a TSN clock in the TSN network.
  • a time difference (such as a time difference) and a difference in time and frequency between the 5G clock and the TSN clock.
  • the current time is 1 o'clock under the 5G clock, and 2 o'clock under the TSN clock. Therefore, the corresponding time positions of the same time information (such as the data arrival time) under different clocks may be different.
  • the clock frequency of different clocks is different, which will cause the time accuracy to be different, such as the difference between 3.14 seconds and 3.14159 seconds.
  • the time length corresponding to the same time information (such as time delay) under different clocks may also be different.
  • Time-sensitive data streams are highly time-sensitive, and time differences may cause errors in task execution. For example, a production machine in a factory needs to operate at 0:00:00. If there is a one-hour time difference between the reference clock of the command and the clock of the machine, it will miss work. If there is a 0.1 second time accuracy deviation between the reference clock of the command and the clock of the machine, it will also cause subsequent work connection errors. Therefore, time-related information, such as data arrival time, delay, etc., needs to be adjusted according to the difference between the 5G clock and the TSN clock.
  • Some time-related information is configured to the 5G bridge by the controller (such as CNC) of the time-sensitive network (such as TSN) or time-sensitive applications. It needs to be adjusted from the time-related information based on the TSN clock to the time-related information based on the 5G clock. Some time-related information is sent by the 5G bridge to the time-sensitive network, and needs to be adjusted from the time-related information based on the 5G clock to the clock-related information based on the TSN clock.
  • the TT TSC Translator Time Sensitive Network Adapter
  • the 5G bridge the TT (TSC Translator Time Sensitive Network Adapter) is synchronized with the 5G clock and the TSN clock at the same time, and the difference between the two clocks can be monitored.
  • UPF can provide SMF with the difference between the two clocks.
  • SMF can adjust the time-related information based on the 5G clock to the time-related information based on the TSN clock, or the time-related information based on the TSN clock. Adjusted to time-related information based on the 5G clock.
  • the bridge delay is the bridge delay based on the TSN clock.
  • time-sensitive data flow control information such as PSFP (per-stream filtering and policing) information, Traffic forwarding information
  • the bridge delay corresponding to the time-sensitive data flow needs to be mapped to the data Flow QoS information (including packet delay) to ensure the transmission of time-sensitive data.
  • the bridge delay is based on the bridge delay of the 5G clock.
  • AF is based on the residence time of the UE and DS-TT (also called The bridge delay generated for the port delay between the UE and DS-TT) and the packet delay budget (PDB). If only one type of clock-related bridge delay is provided or used to generate the network The time information of the bridge delay (such as the residence time of the terminal and the DS-TT, PDB) requires frequent synchronization of the difference information between the two clocks to the AF. This is undoubtedly inefficient.
  • One solution is to provide the AF with the bridge delay based on two clocks or the time information used to generate the bridge delay based on the two clocks.
  • AF can send network time-related information based on different clocks according to the needs of different nodes.
  • AF needs to report bridge delay to time-sensitive network controllers (such as CNC), and communication network elements such as PCF need to map TSN data streams to corresponding communication network QoS (such as 5G QoS) for TSN QoS requirements.
  • the delay in the QoS of the communication network is the PDB, not the overall bridge delay. If what AF provides to PCF is the bridge delay corresponding to the data flow. The PCF also needs to subtract the stay time of the terminal and the DS-TT from the bridge delay to map the communication network QoS. This will undoubtedly put forward new requirements for the functions of PCF.
  • a solution AF obtains the bridge delay, and the AF sends the bridge delay to the PCF. After the PCF subtracts the residence time between the terminal and the DS-TT to calculate the delay (such as the PDB-related delay), it then maps the communication network QoS according to the calculated delay.
  • AF obtains the bridge delay, AF calculates the delay information by subtracting the stay time between the terminal and DS-TT from the bridge delay, and then sends the delay information to the PCF , PCF can directly map the QoS of the communication network according to the time delay.
  • the bridge delay obtained by AF in the solution (1) and (2) can be the two bridge delays corresponding to the 5G clock and the TSN clock respectively, or the bridge delay corresponding to the TSN clock, or Corresponding to the bridge delay of the 5G clock.
  • the AF can receive the bridge delay or receive time-related information used to calculate the bridge delay and calculate the bridge delay.
  • the bridge delay sent by the AF to the PCF may be the bridge delay based on the 5G clock.
  • AF obtains the bridge delay and PDB, and the AF can save the PDB.
  • the AF may send the PDB mapped by the data stream (such as the TSC data stream) as the delay requirement of the data stream to the PCF, and the PCF maps the communication network QoS according to the delay.
  • the bridge delay described in the solution (3) can be based on the TSN clock.
  • the PDB may be based on a 5G clock.
  • AF obtains the residence time and PDB between the terminal and the DS-TT, and the AF can save the PDB.
  • the AF may send the PDB mapped by the data stream (such as the TSC data stream) as the delay requirement of the data stream to the PCF, and the PCF maps the communication network QoS according to the delay.
  • the PDB acquired by the AF may be two kinds of PDBs corresponding to the 5G clock and the TSN clock respectively, or the PDB corresponding to the TSN clock, or the PDB corresponding to the 5G clock.
  • the PDB sent by the AF to the PCF may be a PDB based on the 5G clock.
  • the 5G bridge delay distinguishes the maximum delay and the minimum delay.
  • the PDB used to generate the bridge delay and the residence time of the terminal and the DS-TT can also distinguish the maximum and the minimum.
  • the minimum value can further distinguish the minimum value related to the traffic class and the minimum value that is not related to the traffic class.
  • the maximum value can further distinguish the maximum value related to traffic class and the maximum value not related to traffic class.
  • obtaining can be understood as generating, obtaining from configuration, receiving, receiving after request, obtaining through self-learning, obtaining based on unreceived information, or obtaining after processing based on received information.
  • the details can be determined according to actual needs, which is not limited in the embodiment of the present invention. For example, when a certain capability indication information sent by the device is not received, it can be deduced that the device does not support the capability.
  • sending may include broadcasting, which is broadcast in system messages and returns after responding to the request.
  • the pre-configured one can be referred to as the default.
  • the port management container may also be referred to as a port management information container.
  • the port management container is a container that carries port control information (also referred to as port management information).
  • the port-related information includes: a port management container.
  • the port-related information can be understood as any one or more items of port-related information in bridge management (for example, port-related configuration information in the bridge management in 802.1Q).
  • the port may be one of the following Ethernet port and IP port.
  • the data channel may include but is not limited to one of the following: PDU session, PDN connection, QoS flow, bearer, Internet Protocol Security (IPsec) channel, where the bearer may be Evolved Radio Access Bearer (E-RAB), Evolved Radio Access Bearer (RAB), Data Radio Bearer (DRB), Signaling Radio Bearers, SRB) and so on.
  • E-RAB Evolved Radio Access Bearer
  • RAB Evolved Radio Access Bearer
  • DRB Data Radio Bearer
  • SRB Signaling Radio Bearers
  • the port pair is composed of two ports, for example: composed of two ports of the same DS-TT, or composed of two ports of different DS-TTs, or composed of the same NW-TT. It is composed of two ports of TT, or two ports of different NW-TT.
  • the bridge delay is the time taken for data packets to be forwarded from the ingress port of the bridge (such as a 5G bridge) to the egress port of the bridge. Therefore, the port DS-TT, UE, communication network and NW-TT can form a 5G bridge.
  • the bridge delay may further include: minimum bridge delay and maximum bridge delay.
  • the minimum bridge delay may further include: the minimum bridge delay related to traffic, and the minimum bridge delay not related to traffic.
  • the maximum bridge delay may further include: the maximum bridge delay related to traffic, and the maximum bridge delay unrelated to traffic.
  • the bridge delay is related to the port pair, and may also be referred to as the port pair delay.
  • the delay of a port pair (also referred to as the bridge delay of a port pair) may refer to the time for a data packet to pass from one port to another port.
  • the two ports may be two ports of the same bridge (such as a 5G bridge). It is not difficult to understand that the bridge delay can be the time overhead for a data packet to pass through the bridge.
  • the first port pair is composed of the first port and the second port
  • the delay of the port pair may refer to the time it takes for a data packet to pass through the second port from the first port.
  • the delay of the port pair may be a per-traffic-class bridge delay.
  • Each port can support one or more business classes.
  • the transmission performance of each service class is different, so it is not difficult to understand the delay of the port pair that each service class of the outgoing port has.
  • the delay of the port pair of each service class can be different.
  • the port delay can also refer to the bridge delay of a certain service class.
  • the bridge delays of different service classes can be the same or different.
  • the TT port, the TT port, the TT port, the TT side port, and the TT side port represent the same meaning and can be mixed.
  • the DS-TT port and the DS-TT port all represent ports on the DS-TT and can be mixed; in an optional embodiment of the present invention, the NW-TT port, NW- TT ports all represent ports on NW-TT and can be mixed.
  • the DS-TT port can also be equivalent to the device side port; and the NW-TT port can also be equivalent to the network side port.
  • the TT type of the port is DS-TT, it can be equivalent to the device side port; when the TT type of the port is NW-TT, it can be equivalent to the network side port.
  • the information related to the TT where the first port is located may be simply referred to as the TT related information of the first port or the TT related information of the first port.
  • the residence time between the terminal and the DS-TT (UE-DS-TT residence time) is the time used for forwarding data packets between the terminal and the DS-TT port.
  • the residence time between the terminal and the DS-TT may also be referred to as one of the following: the residence time between the terminal and the DS-TT, the delay between the terminal and the DS-TT, and the delay between the terminal and the DS-TT port.
  • the stay time between the terminal and the DS-TT may further include: the minimum stay time between the terminal and the DS-TT, and the maximum stay time between the terminal and the DS-TT.
  • the first stay time between the terminal and the DS-TT belongs to the stay time between the terminal and the DS-TT.
  • the second stay time between the terminal and the DS-TT belongs to the stay time between the terminal and the DS-TT.
  • the time delay may further include: minimum time delay and maximum time delay.
  • the minimum delay may further include: the minimum delay related to traffic and the minimum delay not related to traffic.
  • the maximum delay may further include: the maximum delay related to traffic and the maximum delay not related to traffic.
  • the PDB is the time taken for the data packet to be sent through the UE and the communication network.
  • the PDB may include the residence time of UPF and NW-TT.
  • the PDB may further include: a minimum PDB and a maximum PDB.
  • the minimum PDB may further include: a minimum PDB related to traffic and a minimum PDB not related to traffic.
  • the maximum PDB may further include: a maximum PDB related to traffic and a maximum PDB not related to traffic.
  • the clock may also be referred to as a master clock, such as a Grand Master.
  • the communication network clock may be referred to as a local clock of the communication network or an internal clock of the communication network.
  • time-related services include time-sensitive services.
  • the data channel corresponding to the port is generally associated with a DS-TT port.
  • the wireless communication network may be referred to as a network or a communication network for short.
  • the wireless communication network may be at least one of the following: a public network and a non-public network.
  • the non-public network is an abbreviation of the non-public network.
  • Non-public network can be called one of the following: non-public communication network.
  • the non-public network may include at least one of the following deployment methods: a non-public network with an independent network (such as SNPN), and a non-public network with a non-independent network (such as a closed access group (CAG)).
  • the non-public network may include or be referred to as a private network.
  • the private network may be referred to as one of the following: a private communication network, a private network, a local area network (LAN), a private virtual network (PVN), an isolated communication network, a dedicated communication network, or other names. It should be noted that the naming method is not specifically limited in the embodiment of the present invention.
  • the public network (such as PLMN) is short for public network.
  • the public network can be referred to as one of the following: public communication network or other nomenclature. It should be noted that the naming method is not specifically limited in the embodiment of the present invention.
  • the communication device may include at least one of the following: a communication network element and a terminal.
  • the communication network element may include at least one of the following: a core network network element and a radio access network network element.
  • the core network element may include, but is not limited to, at least one of the following: core network equipment, core network nodes, core network functions, core network elements, and mobility management entities (Mobility Management Entity, MME), Access Management Function (AMF), Session Management Function (SMF), User Plane Function (UPF), Serving GW (SGW), PDN Gateway ( PDN Gate Way, PDN Gateway), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), GPRS Service Support Node (Serving GPRS Support Node, SGSN), Gateway GPRS Support Node (Gateway GPRS Support Node, GGSN), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), Application Function (Application Function) , AF), Centralized network configuration (CNC).
  • MME Mobility Management Entity
  • AMF Access Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • SGW Serving GW
  • PDN Gateway PDN Gate Way, PDN
  • a radio access network (Radio Access Network, RAN) network element may include but is not limited to at least one of the following: radio access network equipment, radio access network node, radio access network function, radio access Network unit, Third Generation Partnership Project (3GPP) radio access network, non-3GPP radio access network, Centralized Unit (CU), Distributed Unit (DU), base station, Evolved base station (evolved Node B, eNB), 5G base station (gNB), radio network controller (Radio Network Controller, RNC), base station (NodeB), non-3GPP Inter Working Function (N3IWF), Access control (Access Controller, AC) node, access point (Access Point, AP) device or wireless local area network (Wireless Local Area Networks, WLAN) node, N3IWF.
  • 3GPP Third Generation Partnership Project
  • the base station can be a base station (BTS, Base Transceiver Station) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (CDMA), or it can be a broadband code division multiple access (BTS).
  • BTS Base Transceiver Station
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • BTS broadband code division multiple access
  • the base station (NodeB) in Wideband Code Division Multiple Access (WCDMA) may also be an evolved base station (evolutional Node B, eNB or e-NodeB) and 5G base station (gNB) in LTE, which is not limited in the embodiment of the present invention.
  • eNB evolved Node B
  • gNB 5G base station
  • the UE is the terminal.
  • the terminal may include a relay supporting terminal function and/or a terminal supporting relay function.
  • the terminal can also be called a terminal device or a user terminal (User Equipment, UE).
  • the terminal can be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), a personal digital assistant (Personal Digital Assistant, PDA), Terminal-side devices such as Mobile Internet Device (MID), Wearable Device (Wearable Device), or in-vehicle device, it should be noted that the specific type of terminal is not limited in the embodiment of the present invention.
  • the method and communication device provided by the embodiment of the present invention can be applied to a wireless communication system.
  • the wireless communication system may be a fifth-generation mobile communication (Fifth-generation, 5G) system, or an evolved packet system (Evolved Packet System, EPS), or a subsequent evolved communication system.
  • the wireless communication network in the embodiment of the present invention may be a fifth-generation mobile communication network (Fifth-generation system, 5GS) or an LTE network.
  • an embodiment of the present invention provides an information control method applied to a first communication device.
  • the first communication device includes but is not limited to one of the following: SMF, UE, TT (such as DS-TT or NW-TT) ).
  • the method includes:
  • Step 21 Adjust the first time information to the second time information according to the clock difference information between the first clock and the second clock.
  • the first time information is time-related information based on the first clock.
  • the second time information is time-related information based on the second clock.
  • the first clock is a communication network clock (such as a 5G clock); the second clock is an external clock of the communication network (such as a TSN clock).
  • the communication network may constitute a communication network of a bridge (such as a 5G bridge).
  • the first clock is an external clock of the communication network (such as a TSN clock); the second clock is a clock of the communication network (such as a 5G clock).
  • the communication network may constitute a communication network of a bridge (such as a 5G bridge).
  • the clock difference information includes at least one of the following: a time difference between the first clock and the second clock, and a clock frequency ratio (such as RateRatio).
  • the clock frequency ratio is the ratio of the first clock frequency to the second clock frequency.
  • the first clock may be a master clock, such as an external clock of the communication network (such as a TSN clock); the second clock may be a local clock, such as a communication network clock (such as a 5G clock).
  • step 21 obtain at least one of the following information: first information, clock information of the first clock, clock information of the second clock, and clock difference information between the first clock and the second clock.
  • Step 22 Send the first message.
  • the first information may include at least one of the following: first time information, second time information, clock information of the first clock (that is, clock information of the first clock corresponding to the first time information), and second time information.
  • the clock information of the clock that is, the clock information of the second clock corresponding to the second time information.
  • the first information may include: first time information and second time information.
  • first time information when there are only two types of clocks (such as a communication network clock (such as a 5G clock) and a communication network external clock (such as a TSN clock)), the first time information can be determined by distinguishing the cells of the first time information and the second time information.
  • the clock type corresponding to the time information and the second time information.
  • the first information may include: first time information and/or first clock information, second time information and/or clock information of the second clock.
  • the first information may include: first time information and/or first clock information
  • the second time information and the second time information may include: the second time information and/or the clock information of the second clock.
  • the first time information may include at least one of the following: the first residence time between the terminal and the DS-TT, the first PDB, and the first delay (such as the first bridge delay).
  • the first stay time between the terminal and the DS-TT may be the stay time between the terminal and the DS-TT based on the first clock.
  • the first PDB may be a PDB based on the first clock.
  • the first PDB may be configuration acquisition, measurement acquisition, or reception acquisition.
  • the first delay (for example, the first bridge delay) may be a delay based on the first clock.
  • the first bridge delay may be a bridge delay based on the first clock.
  • the first delay is the sum of the first residence time between the terminal and the DS-TT and the value of the first PDB. In another implementation manner, the first delay is the sum of the first residence time between the terminal and the DS-TT and the configured PDB value.
  • the first time information includes at least one of the following: the first residence time between the terminal and the DS-TT, and the first PDB.
  • the first communication device may send the first residence time between the terminal and the DS-TT and the first PDB to the second communication device.
  • the second communication device may determine the first delay according to the acquired first residence time between the terminal and the DS-TT and the first PDB.
  • the first time information includes at least one of the following: the first residence time between the terminal and the DS-TT.
  • the first communication device sends the first residence time between the terminal and the DS-TT to the second communication device, and the second communication device may determine the first residence time based on the acquired first residence time between the terminal and the DS-TT and the locally configured PDB. Time delay.
  • the locally configured PDB may be a PDB based on the clock of the communication network.
  • the first time information includes the first time delay.
  • the first communication device may determine the first time delay, and send the determined first time delay to the second communication device.
  • the first communication device may determine the first delay according to the first residence time between the terminal and the DS-TT and the first PDB.
  • the second time information may include at least one of the following: a second residence time between the terminal and the DS-TT, a second PDB, and a second delay (such as a second bridge delay).
  • the second stay time between the terminal and the DS-TT may be the stay time between the terminal and the DS-TT based on the second clock.
  • the second PDB may be a PDB based on the second clock.
  • the second PDB may be configuration acquisition, measurement acquisition, or reception acquisition.
  • the second delay (such as the second bridge delay) may be a delay based on the second clock.
  • the second bridge delay may be a bridge delay based on the second clock.
  • the second delay is the sum of the second residence time between the terminal and the DS-TT and the value of the second PDB. In another implementation manner, the second delay is the sum of the second residence time between the terminal and the DS-TT and the configured PDB value.
  • the second time information includes at least one of the following: the second residence time between the terminal and the DS-TT, and the second PDB; for example, the first communication device sets the second residence time between the terminal and the DS-TT And the second PDB are sent to the second communication device.
  • the second communication device may determine the second delay according to the acquired second residence time between the terminal and the DS-TT and the second PDB.
  • the second time information includes at least one of the following: a second residence time between the terminal and the DS-TT.
  • the first communication device sends the second stay time between the terminal and DS-TT to the second communication device, and the second communication device may determine the second stay time based on the acquired second stay time between the terminal and DS-TT and the locally configured PDB. Time delay.
  • the locally configured PDB may be a PDB based on the clock of the communication network.
  • the second time information includes the second time delay.
  • the first communication device determines the second time delay, and sends the determined second time delay to the second communication device.
  • the first communication device may determine the second time delay according to the second residence time between the terminal and the DS-TT and the second PDB.
  • the adjusting of the first time information to the second time information in the foregoing step 21 may include at least one of the following:
  • the clock information may include at least one of the following: clock type information, time domain identification information corresponding to the clock, and clock frequency information.
  • the clock type information includes values of at least one of the following: the type of the communication network clock, and the type of the external clock of the communication network.
  • the type of the communication network clock may include at least one of the following: a 5G clock, a clock of a 3GPP network, and a clock adopted by a communication network in a subsequent evolution version (for example, after 5G).
  • the type of the external clock of the communication network may include at least one of the following: a clock used by a third-party network (such as a time-sensitive network TSN clock, and a time-sensitive service of the communication network (such as a 5G bridge) used by an external network) Clock) or third-party applications (such as third-party applications that use time-sensitive services of communication networks (such as 5G bridges)).
  • a third-party network such as a time-sensitive network TSN clock, and a time-sensitive service of the communication network (such as a 5G bridge) used by an external network) Clock
  • third-party applications such as third-party applications that use time-sensitive services of communication networks (such as 5G bridges)).
  • the type of the communication network clock is a 5G clock
  • the type of the communication network external clock is a TSN clock.
  • sending the first information in the foregoing step 22 may include:
  • the first information is sent to the AF.
  • the first communication device (such as SMF) sends the first information to the AF through the PCF.
  • the first information is sent to the SMF.
  • the first communication device (such as the UE) sends the first information to the SMF through the AMF.
  • the first information may include at least one of the following: the first stay time between the terminal and DS-TT, the second stay time between the terminal and DS-TT, the clock information corresponding to the first stay time between the terminal and DS-TT, The clock information of the terminal corresponding to the second stay time of the DS-TT.
  • the first communication device (such as UPF or NW-TT) sends the first information to the SMF.
  • the first information may include at least one of the following: a first PDB, a second PDB, clock information corresponding to the first PDB, and clock information corresponding to the second PDB.
  • the first information is sent to the UE.
  • the first communication device (such as DS-TT) sends the first information to the UE.
  • the first information may include at least one of the following: the first stay time between the terminal and DS-TT, the second stay time between the terminal and DS-TT, the clock information corresponding to the first stay time between the terminal and DS-TT, The clock information of the terminal corresponding to the second stay time of the DS-TT.
  • time-related information based on different clocks can be determined and sent based on the needs of different network nodes, thereby supporting the realization of time-related services.
  • an embodiment of the present invention provides an information control method, which is applied to a second communication device.
  • the second communication device includes but is not limited to: AF, SMF, terminal, and TT.
  • the method includes:
  • Step 31 Obtain the first information
  • Step 32 Perform at least one of the following actions:
  • determine the delay requirement information for example, bridge delay, or PDB related delay
  • Send delay request information (such as bridge delay or PDB related delay) to network elements in the communication network;
  • the second operation is performed.
  • the first information may include at least one of the following: first time information, second time information, clock information of the first clock, and clock information of the second clock.
  • the first time information is time-related information based on the first clock; the second time information is time-related information based on the second clock.
  • the second time information is adjusted through the first time information according to the clock difference information between the first clock and the second clock.
  • the first information may include at least one of the following: first time information, second time information, clock information of the first clock, and clock information of the second clock.
  • first time information second time information
  • clock information of the first clock and clock information of the second clock. The details are as described in the embodiment of FIG. 2.
  • the first time information may include at least one of the following: the first residence time between the terminal and the DS-TT, the first PDB, and the first delay (such as the first bridge delay).
  • the first residence time between the terminal and the DS-TT may include at least one of the following: the first residence time between the terminal and the DS-TT, the first PDB, and the first delay (such as the first bridge delay).
  • the first delay such as the first bridge delay.
  • the second time information may include at least one of the following: a second residence time between the terminal and the DS-TT, a second PDB, and a second delay (such as a second bridge delay).
  • a second residence time between the terminal and the DS-TT may be included in the second residence time between the terminal and the DS-TT.
  • a second PDB may be included in the second time information.
  • a second delay such as a second bridge delay.
  • the first PDB may be local configuration acquisition, measurement acquisition, or reception acquisition of the second communication device.
  • the second PDB may be local configuration acquisition, measurement acquisition, or reception acquisition of the second communication device.
  • the determining the first time delay according to the first information may include: the first information includes first time information, and the first time delay is determined according to the first time information.
  • the first time information includes at least one of the following: a first residence time between the terminal and the DS-TT, a first PDB, and a first delay.
  • the first PDB may be local configuration acquisition, measurement acquisition, or reception acquisition of the second communication device.
  • the second PDB may be local configuration acquisition, measurement acquisition, or reception acquisition of the second communication device.
  • the first time information includes at least one of the following: the first residence time between the terminal and the DS-TT, and the first PDB.
  • the second communication device may determine the first delay according to the acquired first residence time between the terminal and the DS-TT and the first PDB.
  • the first time information includes at least one of the following: the first residence time between the terminal and the DS-TT.
  • the second communication device may determine the first delay according to the acquired first residence time of the terminal and the DS-TT and the locally configured PDB related delay.
  • the locally configured PDB-related delay may be a PDB-related delay based on the clock of the communication network.
  • the first time information includes the first delay (such as the first bridge delay).
  • the second communication device directly determines the first time delay.
  • the determining the first time delay according to the first information may include: the first information includes second time information, and the second time delay is determined according to the second time information.
  • the second time information includes at least one of the following: the second residence time between the terminal and the DS-TT, and the second PDB; for example, the first communication device sets the second residence time between the terminal and the DS-TT And the second PDB are sent to the second communication device.
  • the second communication device may determine the second delay according to the acquired second residence time between the terminal and the DS-TT and the second PDB.
  • the second time information includes at least one of the following: a second residence time between the terminal and the DS-TT.
  • the first communication device sends the second stay time between the terminal and the DS-TT to the second communication device, and the second communication device may obtain the second stay time between the terminal and the DS-TT and the locally configured PDB related delay. Determine the second delay.
  • the locally configured PDB-related delay may be a PDB-related delay based on the clock of the communication network.
  • the second time information includes a second delay (such as a second bridge delay).
  • the second communication device directly determines the second time delay.
  • the delay requirement information may be one of the following: bridge delay, PDB related delay.
  • the delay requirement information is the delay requirement information of a data stream (such as a TSN data stream) or a service (such as a TSN service).
  • the delay requirement information can be used to map the QoS information of the communication network (such as 5G QoS).
  • the bridge delay is the bridge delay of the data flow or the service mapping.
  • the PDB-related delay is the PDB-related delay of the data stream or the service mapping.
  • the first information includes at least one of the following: a first residence time between the terminal and the DS-TT, a second residence time between the terminal and the DS-TT, a first PDB, and a second PDB.
  • the first PDB may be local configuration acquisition, measurement acquisition, or reception acquisition of the second communication device.
  • the second PDB may be local configuration acquisition, measurement acquisition, or reception acquisition of the second communication device.
  • the second communication device may determine the bridge delay according to the acquired [first stay time between the terminal and the DS-TT or the second stay time between the terminal and the DS-TT] and [the first PDB or the second PDB]. For example, when the time accuracy is not high.
  • the second communication device may determine the bridge delay according to the acquired first residence time between the terminal and the DS-TT and the first PDB. For example, when the time accuracy is high.
  • the bridge delay at this time may be referred to as the first bridge delay.
  • the first bridge delay may be a bridge delay based on the first clock.
  • the second communication device may determine the bridge delay according to the acquired second residence time between the terminal and the DS-TT and the second PDB. For example, when the time accuracy is high.
  • the bridge delay at this time can be referred to as the second bridge delay.
  • the second bridge delay may be a bridge delay based on the second clock.
  • the first information includes at least one of the following: a first delay and a second delay.
  • the second communication device may directly determine the bridge delay according to the first delay or the second delay.
  • the bridge delay determined according to the first delay may be referred to as the first bridge delay.
  • the first bridge delay may be a bridge delay based on the first clock.
  • the bridge delay determined according to the second delay may be referred to as the second bridge delay.
  • the second bridge delay may be a bridge delay based on the second clock.
  • the first information includes at least one of the following: a first PDB and a second PDB.
  • the first PDB may be acquired by the local configuration of the second communication device or acquired by receiving.
  • the second PDB may be acquired by the local configuration of the second communication device or acquired by receiving.
  • the second communication device may determine the PDB related time delay according to the acquired first PDB or second PDB.
  • the PDB-related delay determined according to the first PDB may be referred to as the first PDB-related delay.
  • the first PDB-related delay may be based on the PDB-related delay of the first clock.
  • the PDB-related delay determined according to the second PDB may be referred to as the second PDB-related delay.
  • the second PDB-related delay may be based on the PDB-related delay of the second clock.
  • the first information includes at least one of the following: a first delay, a first residence time between the terminal and the DS-TT, a second delay, and a second residence time between the terminal and the DS-TT .
  • the second communication device may determine the PDB-related delay according to obtaining [first delay or second delay] and [first residence time between the terminal and DS-TT or second residence time between the terminal and DS-TT]. For example, when the time accuracy is not high.
  • the second communication device may determine the PDB-related delay according to the first residence time between the terminal acquiring the first delay sum and the DS-TT.
  • the PDB-related delay at this time is called the first PDB-related delay.
  • the second PDB-related delay may be a PDB-related delay based on the first clock.
  • the second communication device may determine the PDB-related delay according to the second residence time between the terminal acquiring the second delay sum and the DS-TT.
  • the PDB-related delay at this time is called the second PDB-related delay.
  • the second PDB-related delay may be based on the PDB-related delay of the second clock.
  • the network element in the communication network includes a network element responsible for QoS mapping or control of the communication network (such as PCF).
  • the step of sending the time delay requirement information to the network element in the communication network can be executed when the first condition is not met; in another embodiment, the step of sending the delay requirement information to the network element in the communication network The step of sending the delay requirement information is executed when the first condition is met.
  • the third-party network includes: a TSN network (such as a controller CNC of the TSN network).
  • the bridge delay information is the second delay, for example, when the time accuracy is sensitive.
  • the bridge delay information may be a first delay (for example, a delay based on a clock of a communication network), for example, when it is not sensitive to time accuracy.
  • the step of sending bridge delay information to a third-party network or third-party application can be performed if the second condition is not met; in another embodiment, the step of sending bridge delay information to a third-party network or third-party application The step of sending the bridge delay information by the application is executed when the first condition is met.
  • the first condition when it is determined that the first condition is satisfied, the first operation is performed.
  • the first condition may include at least one of the following:
  • the first clock is a communication network clock (such as a 5G clock);
  • the bridge configuration information of the communication network (such as the configuration information of the 5G bridge);
  • the delay requirement information such as the delay information in the TSN QoS information
  • the data stream such as the TSN data stream
  • the service such as the TSN service
  • the bridge configuration information may include but is not limited to at least one of the following: TSN QoS requirements, TSN scheduling parameters, routing and forwarding information, PSFP (per-stream filtering and policing) information.
  • the second condition when it is determined that the second condition is satisfied, the second operation is performed.
  • the second condition may include at least one of the following:
  • the second clock is the external clock of the communication network
  • Send bridge delay information (such as the second delay) to a third-party network (such as a controller in a TSN network) or a third-party application based on a preset situation.
  • a third-party network such as a controller in a TSN network
  • a third-party application based on a preset situation.
  • the type of the communication network clock may include at least one of the following: a 5G clock, a clock of a 3GPP network, and a clock adopted by the communication network in a subsequent evolution version (for example, after 5G).
  • the type of the external clock of the communication network may include at least one of the following: a clock adopted by a third-party network (such as a time-sensitive network TSN clock, an external network that applies a time-sensitive service of the communication network (such as a 5G bridge) Clock used) or third-party applications (such as third-party applications that use time-sensitive services of communication networks (such as 5G bridges)).
  • a third-party network such as a time-sensitive network TSN clock, an external network that applies a time-sensitive service of the communication network (such as a 5G bridge) Clock used
  • third-party applications such as third-party applications that use time-sensitive services of communication networks (such as 5G bridges)).
  • the type of the communication network clock is a 5G clock
  • the type of the communication network external clock is a TSN clock.
  • the foregoing first operation may include at least one of the following:
  • the delay requirement information based on the first time information (such as bridge delay or PDB related delay)
  • determining the delay requirement information according to the first time information is specifically as described in the foregoing, and will not be repeated here.
  • the step of determining the time delay requirement information based on the first time information can be executed when the first condition is not met; in another embodiment, the step of determining the time delay requirement information based on the first time information The steps are executed when the first condition is met.
  • the delay requirement information includes the delay requirement information based on the first clock, for example, the bridge delay in the delay requirement information is the first bridge delay; the PDB related time in the delay requirement information The delay is the first PDB related delay.
  • the second communication device may send the determined delay requirement information or the first time information to the PCF.
  • the delay requirement information can be used for PCF to map communication network QoS (5GS QoS) information, such as 5QI and PDB, for a data stream (such as a TSN data stream) or a service (such as a TSN service).
  • 5GS QoS 5QI and PDB
  • the delay requirement information may be included in the TSN QoS information and sent to the PCF.
  • the foregoing second operation may include at least one of the following:
  • -Send the second delay or second time information to a third-party network such as the controller CNC of a time-sensitive network
  • a third-party application such as a third-party application that uses a time-sensitive service of a communication network (such as a 5G bridge)) (Used for CNC to determine end-to-end delay).
  • the determination of the second delay according to the second time information is specifically as described above, and details are not described herein again.
  • the step of determining the second time delay based on the second time information can be executed when the second condition is not met; in another implementation manner, the second time delay is determined based on the second time information. The steps are executed when the second condition is met.
  • the second communication device may send the second delay or second time information to the CNC for the CNC to determine the end-to-end delay.
  • time-related information can be determined based on the needs of different communication network nodes, and on the other hand, time-related information based on different clocks can be sent based on the needs of different network nodes, so as to support time Realization of related businesses.
  • an embodiment of the present invention also provides an information control method, applied to a third communication device
  • the third communication device includes but not limited to: UE, CN network element (such as one of the following: SMF, UPF, PCF) .
  • the method includes:
  • Step 41 Obtain the first information
  • Step 42 Send the first information.
  • the first information may include at least one of the following: first time information, second time information, clock information of the first clock, and clock information of the second clock.
  • the first time information is time-related information based on the first clock; the second time information is time-related information based on the second clock.
  • the second time information is adjusted through the first time information according to the clock difference information between the first clock and the second clock.
  • the first time information, the second time information, the clock information of the first clock, and the clock information of the second clock are as described in the embodiment of FIG. 2 and will not be repeated here.
  • the first information can be divided into the first information on the DS-TT side and the first information on the NW-TT side.
  • the first information on the DS-TT side can be obtained from one of the following: terminal, DS-TT, AMF.
  • the first information on the NW-TT side may be obtained from one of the following: NW-TT, UPF.
  • the first information on the DS-TT side may include at least one of the following: first time information on the DS-TT side, clock information of the first clock, and clock information of the second clock.
  • the first time information on the DS-TT side may include: the first stay time between the terminal and the DS-TT.
  • the first information on the NW-TT side may include at least one of the following: first time information on the NW-TT side, clock information of the first clock, and clock information of the second clock.
  • the first time information on the NW-TT side may include: the first PDB.
  • the first information may be obtained from DS-TT; optionally, the first information may be sent to the AMF.
  • the first information may be obtained from the UE; optionally, the first information may be sent to the SMF.
  • all or part of the first information can be obtained from one of the following: UE, AMF, NW-TT, UPF; optionally, it can be sent to PCF Or AF sends the first message.
  • the acquired first information may be summarized and sent.
  • the first information sent includes the acquired first information on the DS-TT side (such as PDB) and the first information on the NW-TT side (such as the residence time between the terminal and the DS-TT).
  • the PDB when the third communication device (such as SMF), optionally, the PDB may be included in the first information and sent according to the PDB obtained by local configuration or measurement.
  • the PDB may be the first PDB and/or the second PDB.
  • the third communication device may determine the first PDB according to the acquired first PDB and the first residence time between the terminal and the DS-TT. Time delay; and the first time delay is included in the first information sent.
  • the third communication device may determine the second PDB according to the acquired second PDB and the second residence time between the terminal and the DS-TT. Time delay; and the second time delay is included in the first message sent.
  • the first information may be selected from one of the following: UE, AMF, NW-TT, UPF; optionally, the first information may be sent to the AF.
  • the determined time-related information can be transmitted based on the needs of the communication network node, and on the other hand, time-related information based on different clocks can be sent based on the needs of different network nodes, thereby supporting time-related information.
  • an embodiment of the present invention also provides an information control method, which is applied to a fourth communication device, and the fourth communication device includes but is not limited to: CN network element (for example, one of the following: PCF). As shown in Figure 5, the method includes:
  • Step 51 Obtain the delay requirement information and the residence time between the terminal and the DS-TT;
  • Step 52 According to the delay requirement information and the stay time between the terminal and the DS-TT, perform at least one of the following: determine the PDB-related delay, and map the communication network QoS.
  • the QoS of the communication network is mapped according to the determined PDB-related delay. In another implementation manner, the QoS of the communication network is mapped according to the delay requirement information.
  • the time delay requirement information may be obtained from the AF.
  • the residence time between the terminal and the DS-TT can be obtained from one of the following: PCF, SMF.
  • the delay requirement information may be one of the following: bridge delay, PDB related delay.
  • the delay requirement information is the delay requirement information of a data stream (such as a TSN data stream) or a service (such as a TSN service).
  • the bridge delay is the bridge delay of the data flow or the service mapping.
  • the PDB-related delay is the PDB-related delay of the data stream or the service mapping.
  • the PDB related delay can be determined according to the delay request information and the residence time between the terminal and the DS-TT. At this time, the delay between the terminal and the DS-TT The stay time may be the first stay time between the terminal and the DS-TT. The first stay time between the terminal and the DS-TT is based on the first clock. The first clock is the communication network clock.
  • the QoS of the communication network can be mapped according to the PDB-related delay.
  • the time delay requirement information is a PDB-related time delay
  • the communication network QoS is mapped according to the time delay requirement information.
  • the delay requirement information and/or the residence time between the terminal and the DS-TT may be based on a communication network clock (such as a 5G clock).
  • a communication network clock such as a 5G clock
  • the time delay requires sensitive information time accuracy.
  • the stay time between the terminal and the DS-TT may be the first stay time between the terminal and the DS-TT.
  • the first stay time between the terminal and the DS-TT is based on the stay time between the first clock terminal and the DS-TT.
  • the first clock is the communication network clock.
  • the delay requirement information may be delay requirement information based on any clock.
  • the residence time between the terminal and the DS-TT may be the residence time between the terminal and the DS-TT based on any clock.
  • the time delay requires that the time accuracy of the information is not sensitive.
  • the stay time between the terminal and the DS-TT may be the first stay time between the terminal and the DS-TT or the second stay time between the terminal and the DS-TT.
  • the delay requirement information may be based on a communication network clock (such as a 5G clock) or based on an external clock of the communication network (such as a TSN clock).
  • the residence time between the terminal and the DS-TT may be based on a communication network clock (such as the first residence time between the terminal and the DS-TT) or based on an external clock of the communication network (such as the second residence time between the terminal and the DS-TT).
  • the time delay requires that the time accuracy of the information is not sensitive.
  • the residence time between the terminal and the DS-TT may be obtained by obtaining the first information.
  • the first information can be obtained from at least one of the following: AF, SMF.
  • the first information is as described in the embodiment of FIG. 2.
  • the stay time between the terminal and the DS-TT may be the first stay time between the terminal and the DS-TT or the second stay time between the terminal and the DS-TT in the first information.
  • the first clock may be a communication network clock (such as a 5G clock).
  • the PCF obtains the first information, and the PCF may perform at least one of the following: save the first residence time between the terminal and the DS-TT in the first information and/or the terminal and the DS-TT The second stay time of the TT sends the first information to the AF.
  • determining the PDB-related delay according to the delay requirement information and the residence time between the terminal and the DS-TT includes: the PDB-related delay is the delay requirement information minus the difference between the terminal and the DS-TT Residence time.
  • the residence time between the terminal and the DS-TT is the residence time between the terminal and the DS-TT related to the DS-TT port corresponding to the data stream.
  • the QoS mapping of the communication network corresponding to the delay element of the data stream or service can be supported, thereby supporting the realization of time-related services.
  • Step 1 the UE sends the first information on the DS-TT side to the SMF.
  • the first information on the DS-TT side may include at least one of the following: a first stay time between the UE and the DS-TT, and a second stay time between the UE and the DS-TT.
  • the UE requests the establishment of a PDU session on the DS-TT port.
  • the first information of the DS-TT side is indicated.
  • the first information on the DS-TT side may include at least one of the following: the first stay time between the UE and the DS-TT, the second stay time between the UE and the DS-TT, and the first stay time between the UE and the DS-TT Clock information of the first clock corresponding to a dwell time, and clock information of the second clock corresponding to the second dwell time of the UE and DS-TT.
  • the first information on the DS-TT side may include at least one of the following: first time information on the DS-TT side, clock information of the first clock, and clock information of the second clock.
  • the first time information on the DS-TT side may include: the first stay time between the terminal and the DS-TT.
  • the first information may include outside the port management information container or in the port management information container.
  • Step 2 The AMF sends a PDU session modification request message or a PDU session establishment request message to the SMF.
  • the request message includes the first information.
  • Step 3 The SMF sends an N4 session modification request message or an N4 session establishment request message to the UPF.
  • Step 4 Optionally, the UPF sends the first information on the NW-TT side to the SMF.
  • the UPF sends an N4 session modification response message or an N4 session establishment response message to the SMF.
  • the response message includes first information on the NW-TT side.
  • the first information on the NW-TT side may include at least one of the following: the first PDB, the second PDB, the clock information of the first clock corresponding to the first PDB, and the information of the second clock corresponding to the second PDB. Clock information.
  • the first information on the NW-TT side may include at least one of the following: first time information on the NW-TT side, clock information of the first clock, and clock information of the second clock.
  • the first time information on the NW-TT side may include: the first PDB.
  • Step 5 In an optional implementation manner, the SMF performs the operations described in the embodiment in FIG. 2.
  • the SMF adjusts the first time information to the second time information according to the clock difference information between the first clock and the second clock; wherein, the first time information is time-related information based on the first clock , The second time information is time-related information based on the second clock; the first information is sent.
  • the first information may include at least one of the following: first time information, second time information, clock information of the first clock corresponding to the first time information, clock information of the second clock corresponding to the second time information information.
  • the SMF performs the operations described in the embodiment in FIG. 4.
  • obtain the first information ; send the first information.
  • the first information may be a summary of the first information on the DS-TT side and the first information on the NW-TT side.
  • the SMF sends the SMF-triggered session management policy association modification request message or the SMF-triggered session management policy association establishment request message to the PCF.
  • the request message includes the first information (as described in the embodiment of FIG. 2).
  • the first information sent by the SMF to the PCF may include at least one of the following: first time information, second time information, clock information of the first clock corresponding to the first time information, clock information of the second clock corresponding to the second time information ; Specifically as shown in Figure 2.
  • Step 6 The PCF sends the first information to the AF, and the first information is specifically described in the embodiment of FIG. 2.
  • the AF performs the operations described in the embodiment in FIG. 3,
  • the AF acquires the first information; the AF performs at least one of the following operations:
  • the second operation is performed.
  • the second operation may include at least one of the following:
  • Step 7 AF sends an event notification response to PCF.
  • Step 8 The PCF sends an SMF triggered session management policy association modification response/SMF triggered session management policy association establishment response to the SMF.
  • Step 9 SMF sends PDU Session_Update Session Management Context Response/PDU Session_Establish Session Management Context Response to AMF.
  • Step 10 The AMF sends a NAS message to the UE, where the NAS message includes the PDU session modification acceptance/PDU session establishment acceptance.
  • Step 1 AF obtains information about time-sensitive data streams.
  • the AF performs the operations described in the embodiment in FIG. 3.
  • the AF acquires the first information; the AF performs at least one of the following operations:
  • the delay requirement information (such as bridge delay, or PDB related delay).
  • the AF performs the first operation.
  • the first operation may include at least one of the following:
  • the network element in the communication network such as QoS control network element (such as PCF)); for example, send the first delay or first time information to the PCF for PCF mapping 5GS QoS information, such as 5QI and delay.
  • the first delay is included in the TSN QoS information and sent to the PCF.
  • Step 2 The AF sends the first time delay to the PCF.
  • the PCF can perform the operations described in Figure 5.
  • the PCF After the PCF determines the QoS information mapped to the time-sensitive data flow, it sends the updated PCC Rule to the SMF.
  • Step 3 The SMF triggers the PDU session modification process according to the updated PCC rules.
  • Step 4 SMF returns a response to PCF.
  • Step 1 Optionally, the UE sends the first information on the DS-TT side to the SMF.
  • the UE requests the establishment of a PDU session on the DS-TT port.
  • the first information of the DS-TT side is indicated.
  • the first information on the DS-TT side may include at least one of the following: the first residence time between the UE and the DS-TT, the second residence time between the UE and the DS-TT, the clock information of the first clock, Clock information of the second clock.
  • the first information on the DS-TT side may include at least one of the following: first time information on the DS-TT side, clock information of the first clock, and clock information of the second clock.
  • the first time information on the DS-TT side may include: the first stay time between the terminal and the DS-TT.
  • the first information may include outside the port management information container or in the port management information container.
  • Step 2 The AMF sends a PDU session modification request message or a PDU session establishment request message to the SMF.
  • the request message includes the first information.
  • Step 3 The SMF sends an N4 session modification request message or an N4 session establishment request message to the UPF.
  • Step 4 UPF sends an N4 session modification response message or an N4 session establishment response message to the SMF.
  • the SMF may perform the operations described in the embodiment in FIG. 2.
  • the SMF may perform the operations described in the embodiment in FIG. 4.
  • the SMF sends the SMF-triggered session management policy association modification request message or the SMF-triggered session management policy association establishment request message to the PCF.
  • the request message includes the first information (as described in the embodiment of FIG. 2).
  • the first information sent by the SMF to the PCF may include at least one of the following: first time information, second time information, clock information of the first clock corresponding to the first time information, clock information of the second clock corresponding to the second time information ; Specifically as shown in Figure 2.
  • Step 6 The PCF sends the first information to the AF, and the first information is specifically described in the embodiment of FIG. 2.
  • the AF performs the operations described in the embodiment in FIG. 3,
  • the AF acquires the first information; the AF performs at least one of the following operations:
  • the second operation is performed.
  • the second operation may include at least one of the following:
  • Step 7 AF sends an event notification response to PCF.
  • Step 8 The PCF sends an SMF triggered session management policy association modification response/SMF triggered session management policy association establishment response to the SMF.
  • Step 9 SMF sends PDU Session_Update Session Management Context Response/PDU Session_Establish Session Management Context Response to AMF.
  • Step 10 The AMF sends a NAS message to the UE, where the NAS message includes the PDU session modification acceptance/PDU session establishment acceptance.
  • the communication device is a first communication device.
  • the first communication device includes but is not limited to: SMF, UE, and TT (such as DS-TT).
  • the communication device 70 includes:
  • the processing module 71 is configured to adjust the first time information to the second time information according to the clock difference information between the first clock and the second clock; wherein, the first time information is based on the time correlation of the first clock Information, the second time information is time-related information based on the second clock;
  • the first sending module 72 is configured to send first information
  • the first information includes at least one of the following: the first time information, the second time information, the clock information of the first clock, and the clock information of the second clock.
  • the first time information includes at least one of the following: a first residence time between the terminal and the DS-TT, a first PDB, and a first delay;
  • the second time information includes at least one of the following: a second residence time between the terminal and the DS-TT, a second PDB, and a second time delay.
  • the adjusting the first time information to the second time information includes at least one of the following:
  • the first time delay is adjusted to the second time delay.
  • the clock information includes at least one of the following: clock type information, time domain identification information corresponding to the clock, and clock frequency information.
  • the clock type information includes at least one of the following values:
  • the type of the communication network clock and the type of the external clock of the communication network are identical to the type of the communication network clock and the type of the external clock of the communication network.
  • the type of the communication network clock is a 5G clock
  • the type of the communication network external clock is a time-sensitive network TSN clock.
  • the first sending module 72 is specifically:
  • the communication device 70 can implement each process implemented by the first communication device in the method embodiment of the present invention and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • an embodiment of the present invention provides a communication device.
  • the communication device is a second communication device.
  • the second communication device includes, but is not limited to, an AF.
  • the communication device 80 includes:
  • the first obtaining module 81 is configured to obtain first information
  • the first execution module 82 is configured to execute at least one of the following operations:
  • the first information includes at least one of the following: first time information, second time information, clock information of the first clock, clock information of the second clock;
  • the first time information is time-related information based on the first clock
  • the second time information is time-related information based on the second clock
  • the first condition includes: the first clock is a communication network clock;
  • the second condition includes: the second clock is an external clock of the communication network.
  • the first operation includes at least one of the following:
  • the second operation includes at least one of the following:
  • the communication device 80 can implement each process implemented by the first communication device in the method embodiment of the present invention and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • an embodiment of the present invention provides a communication device.
  • the communication device is a third communication device.
  • the third communication device includes but is not limited to: UE, CN network element (such as one of the following: SMF, UPF, PCF) ).
  • the communication device 90 includes:
  • the second obtaining module 91 is used to obtain the first information
  • the second sending module 92 is configured to send the first information
  • the first information includes at least one of the following: first time information, second time information, clock information of the first clock, clock information of the second clock; the first time information is based on the first clock The time-related information; the second time information is based on the time-related information of the second clock.
  • the third communication device is a terminal; the second obtaining module 91 is specifically configured to: obtain the first information from DS-TT;
  • the second sending module 92 is specifically configured to send the first information to the access mobility management function AMF;
  • the third communication device is AMF; the second obtaining module 91 is specifically configured to: obtain the first information from the terminal;
  • the second sending module 92 is specifically configured to: send the first information to the SMF;
  • the third communication device is an SMF; the second obtaining module 91 is specifically configured to obtain the first information from one of the following: terminal, AMF, NW-TT, UPF;
  • the second sending module 92 is specifically configured to: send the first information to the PCF or AF;
  • the third communication device is a PCF; the second obtaining module 91 is specifically configured to obtain the first information from one of the following: terminal, AMF, NW-TT, UPF;
  • the second sending module 92 is specifically configured to send the first information to the AF.
  • the communication device 90 can implement each process implemented by the third communication device in the method embodiment of the present invention and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • an embodiment of the present invention provides a communication device.
  • the communication device is a fourth communication device.
  • the fourth communication device includes, but is not limited to, a CN network element (for example, one of the following: PCF).
  • the communication device 100 includes:
  • the third obtaining module 101 is used to obtain the delay requirement information and the residence time between the terminal and the DS-TT;
  • the second execution module 102 is configured to perform at least one of the following according to the delay requirement information and the residence time between the terminal and the DS-TT: determining the PDB-related delay and mapping the communication network QoS.
  • the delay requirement information is one of the following: bridge delay and PDB related delay.
  • the communication device 100 can implement each process implemented by the fourth communication device in the method embodiment of the present invention and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present invention.
  • the communication device 110 includes: a processor 111, a memory 112, and the The computer program running on the processor, the various components in the communication device 110 are coupled together through the bus interface 113, and the computer program can be executed by the processor 111 to implement what is implemented in the method embodiment shown in FIG. 2
  • Each process can achieve the same technical effect. To avoid repetition, I won’t repeat it here.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, each process of the method embodiment of any of the foregoing information control methods is implemented, and To achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信息控制方法及通信设备,该方法包括:获取第一信息;执行以下至少一项操作:根据第一信息,确定第一时延;根据第一信息,确定第二时延;根据第一信息,确定时延要求信息;向通信网络中的网元发送时延要求信息;向第三方网络或第三方应用发送网桥时延信息;在确定满足第一条件下,执行第一操作;在确定满足第二条件下,执行第二操作;所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息。

Description

信息控制方法及通信设备
相关申请的交叉引用
本申请主张在2020年2月13日在中国提交的中国专利申请号No.202010091590.9的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种信息控制方法及通信设备。
背景技术
许多垂直行业都有时间敏感通信的需求。比如在工业互联网中,存在时间相关数据,比如机器人指令,需要在指定时间内按序执行,对时间精度要求高。一种时间敏感的网络被提出,以支持时间敏感数据的传送。
在时间敏感网络(Time Sensing Network,TSN)中,时间相关数据流的发送端和接收端之间可以通过一个或多个网桥进行数据的转发。在移动通信网络构成的网桥和时间敏感网络中,不同的控制节点存在不同的时间相关信息的控制需求。另外,网桥中存在一个本地时钟,TSN网络中存在TSN时钟,不同控制节点对参考时钟要求可能不同。因此,如何确定和传送不同节点的时间相关信息,是目前支持时间相关业务的实现亟待解决的技术问题。
发明内容
本发明实施例提供一种信息控制方法及通信设备,以解决如何确定和传送不同节点的时间相关信息的问题,以支持时间相关业务的实现。
第一方面,本发明实施例提供一种信息控制方法,应用于第一通信设备,包括:
根据第一时钟与第二时钟间的时钟差异信息,将第一时间信息调整为第二时间信息;其中,所述第一时间信息是基于所述第一时钟的时间相关信息,所述第二时间信息是基于所述第二时钟的时间相关信息;
发送第一信息;
其中,所述第一信息包括以下至少一项:所述第一时间信息、所述第二时间信息、所述第一时钟的时钟信息、所述第二时钟的时钟信息。
第二方面,本发明实施例提供一种信息控制方法,应用于第二通信设备,包括:
获取第一信息;
执行以下至少一项操作:
根据所述第一信息,确定第一时延;
根据所述第一信息,确定第二时延;
根据所述第一信息,确定时延要求信息;
向通信网络中的网元发送时延要求信息;
向第三方网络或第三方应用发送网桥时延信息;
在确定满足第一条件情况下,执行第一操作;
在确定满足第二条件情况下,执行第二操作;
其中,所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息;
所述第一时间信息是基于所述第一时钟的时间相关信息;
所述第二时间信息是基于所述第二时钟的时间相关信息;
所述第一条件包括:所述第一时钟是通信网络时钟;
所述第二条件包括:所述第二时钟是通信网络外部时钟。
第三方面,本发明实施例提供一种信息控制方法,应用于第三通信设备,包括:
获取第一信息;
发送所述第一信息;
其中,所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息;所述第一时间信息是基于所述第一时钟的时间相关信息;所述第二时间信息是基于所述第二时钟的时间相关信息。
第四方面,本发明实施例提供一种信息控制方法,应用于第四通信设备,包括:
获取时延要求信息和终端与DS-TT的停留时间;
根据所述时延要求信息和所述终端与DS-TT的停留时间,执行以下至少一项:确定PDB相关时延、映射通信网络服务质量QoS。
第五方面,本发明实施例提供一种通信设备,所述通信设备为第一通信设备,包括:
处理模块,用于根据第一时钟与第二时钟间的时钟差异信息,将第一时间信息调整为第二时间信息;其中,所述第一时间信息是基于所述第一时钟的时间相关信息,所述第二时间信息是基于所述第二时钟的时间相关信息;
第一发送模块,用于发送第一信息;
其中,所述第一信息包括以下至少一项:所述第一时间信息、所述第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息。
第六方面,本发明实施例提供一种通信设备,所述通信设备为第二通信设备,包括:
第一获取模块,用于获取第一信息;
第一执行模块,用于执行以下至少一项操作:
根据所述第一信息,确定第一时延;
根据所述第一信息,确定第二时延;
根据所述第一信息,确定时延要求信息;
向通信网络中的网元发送时延要求信息;
向第三方网络或第三方应用发送网桥时延信息;
在确定满足第一条件情况下,执行第一操作;
在确定满足第二条件情况下,执行第二操作;
其中,所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息;
所述第一时间信息是基于所述第一时钟的时间相关信息;
所述第二时间信息是基于所述第二时钟的时间相关信息;
所述第一条件包括:所述第一时钟是通信网络时钟;
所述第二条件包括:所述第二时钟是通信网络外部时钟。
第七方面,本发明实施例提供一种通信设备,所述通信设备为第三通信 设备,包括:
第二获取模块,用于获取第一信息;
第二发送模块,用于发送所述第一信息;
其中,所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息;所述第一时间信息是基于所述第一时钟的时间相关信息;所述第二时间信息是基于所述第二时钟的时间相关信息。
第八方面,本发明实施例提供一种通信设备,所述通信设备为第三通信设备,包括:
第三获取模块,用于获取时延要求信息和终端与DS-TT的停留时间;
第二执行模块,用于根据所述时延要求信息和所述终端与DS-TT的停留时间,执行以下至少一项:确定PDB相关时延、映射通信网络QoS。
第九方面,本发明实施例提供了一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现第一方面提供的信息控制方法的步骤,或者,实现第二方面提供的信息控制方法的步骤,或者,实现第三方面提供的信息控制方法的步骤,或者,实现第四方面提供的信息控制方法的步骤。
第十方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面提供的信息控制方法的步骤,或者,实现第二方面提供的信息控制方法的步骤,或者,实现第三方面提供的信息控制方法的步骤,或者,实现第四方面提供的信息控制方法的步骤。
在本发明实施例中,一方面可以实现基于不同通信网络节点的需求确定不同的时间相关信息,另一方面可以基于不同网络节点的需求发送基于不同时钟的时间相关信息,从而支持与时间相关业务的实现。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的, 而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的一种可应用无线通信系统的架构示意图;
图2为本发明实施例提供的一种信息控制方法的流程图;
图3为本发明实施例提供的另一种信息控制方法的流程图;
图4为本发明实施例提供的另一种信息控制方法的流程图;
图5为本发明实施例提供的另一种信息控制方法的流程图;
图6A是本发明实施例中提供的一种应用场景的示意图;
图6B是本发明实施例中提供的另一种应用场景的示意图;
图7为本发明提供的一种通信设备的结构图;
图8为本发明提供的另一种通信设备的结构图;
图9为本发明提供的另一种通信设备的结构图;
图10为本发明提供的另一种通信设备的结构图;
图11为本发明提供的另一种通信设备的结构图。
具体实施方式
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本发明的实施例。本发明实施例提供的信息控制方法及通信设备可以应用于无线通信系统中。该无线通信系统可以为5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续 演进通信系统。
在本发明实施例中,时间敏感(Time Sensing)也可以称为周期确定性(Periodic deterministic)。时间敏感通信也可以称为周期确定性通信(Periodic deterministic communication)。时间敏感数据流也可以也可以称为周期确定性数据流。一种时间敏感的网络技术比如IEEE TSN(Time Sensing Network)。周期确定性通信是以传送间隔为周期进行数据传送。
参考图1,为本发明实施例提供的一种可应用无线通信系统的架构示意图。在本发明实施例中,时间敏感数据流发送端可以称为talker,时间敏感数据流的接收端可以称为listener。talker和listener之间可以通过的一个或多个网桥进行数据的转发。终端站节点(End Station)可以是talker或listener。网桥(Bridge)负责talker和listener之间的数据传送。
终端(User Equipment,UE)、时间敏感适配器和通信网络构成一个网桥(后续以5G网桥为例说明)。对下行数据,设备侧时间敏感网络适配器(Device-side TSN translator,DS-TT)的端口可以是数据的出端口,网络侧时间敏感网络适配器(Network-side TSN translator,NW-TT)的端口是数据的入端口。对上行数据,NW-TT的端口可以是数据的入端口,DS-TT的端口是数据的出端口。终端可以和DS-TT合设。用户面功能(User Plane Function,UPF)可以和NW-TT合设。
如图1所示,一个终端可以连接一个或多个DS-TT,一个DS-TT上可以有一个或多个端口。一个5G网桥可以有一个UPF,所述UPF的NW-TT上可以启用一个或多个端口。终端可以作为DS-TT的端口的代理,与UPF建立协议数据单元(Protocol Data Unit,PDU)会话。通过所述PDU会话,DS-TT上的端口与UPF合设的NW-TT的端口建立关联。DS-TT的所述端口成为5G网桥的一个端口。
DS-TT的端口和NW-TT的端口都可以分别连接,TSN网桥(TSN Bridge)和/或终端站(End Station)。通过所述5G网桥,TT的端口连接的TSN网桥和/或终端站就可以进行通信。
需要说明的是,图1仅是一个举例示意图,本发明实施例中,并不限定第5G网桥的结构,以及5G网桥中端口之间的连接关系。
为了支持终端、时间敏感适配器和无线通信网络构成的网桥的实现,还需要解决以下问题:
问题1:5G网桥中存在5G时钟,TSN网络中存在TSN时钟。5G时钟与TSN时钟之间存在时间差(比如时差)和时间频率的不同。1)对于时间差,比如当前时间在5G时钟下是1点,而在TSN时钟下是2点。因此,同一时间信息(比如数据到达时间)在不同时钟下的对应的时间位置可能不同。2)不同时钟的时钟频率存在不同,就会造成时间精度的不同,比如:3.14秒与3.14159秒的区别。同一时间信息(比如时延)在不同时钟下对应的时间长度也可能不同。时间敏感数据流对时间敏感程度要求很高,时间差异可能导致任务执行出错。比如工厂中的生产机器需要在0点0分0秒进行操作,如果下指令的参考时钟与机器的时钟有一个小时的时差就会误工。如果下指令的参考时钟与机器的时钟间存在0.1秒的时间精度偏差,也会导致后续的工作衔接错误。因此,对时间相关信息,如数据到达时间,时延等,需要根据5G时钟与TSN时钟间差异进行调整。
有些时间相关信息是时间敏感网络(如TSN)的控制器(如CNC)或时间敏感应用配置给5G网桥的,需要从基于TSN时钟的时间相关信息调整为基于5G时钟的时间相关信息,而有些时间相关信息是5G网桥发送给时间敏感网络,需要从基于5G时钟的时间相关信息调整为基于TSN时钟的时钟相关信息。在5G网桥中,TT(TSC Translator时间敏感网络适配器)同时与5G时钟和TSN时钟同步,可以监测到两个时钟的差异。由于NW-TT与UPF合设,UPF可以向SMF提供两个时钟的差异,SMF可以将基于5G时钟的时间相关信息调整为基于TSN时钟的时间相关信息,也可以将基于TSN时钟的时间相关信息调整为基于5G时钟的时间相关信息。
AF作为5G网桥的控制面出口,一方面要将网桥时延上报给CNC,此时,网桥时延是基于TSN时钟的网桥时延。另一方面,当时间敏感数据流的控制信息(如PSFP((per-stream filtering and policing)信息、Traffic forwarding information)到达时,需要将时间敏感数据流对应的网桥时延对应映射所述数据流的QoS信息(包含数据包时延),以保障时间敏感数据的传送。此时的网桥时延是基于5G时钟的网桥时延。AF是根据UE与DS-TT停留时间(也 称为UE与DS-TT的端口间时延)和数据包时延预算(Packet Delay Budget,PDB)生成的网桥时延。如果只提供基于一种时钟相关的网桥时延或用于生成网桥时延的时间信息(如终端与DS-TT的停留时间、PDB),则需要向AF频繁同步两个时钟的差异信息。这无疑是效率欠佳的。
一种解决的方法是向AF提供基于两个时钟的网桥时延或基于两个时钟的用于生成网桥时延的时间信息。AF可以根据不同节点的需求发送基于不同时钟的网时间相关信息。
问题2:AF需要向时间敏感网络的控制器(如CNC)上报网桥时延,而通信网络网元如PCF,需要为TSN数据流映射TSN QoS需求对应的通信网络QoS(如5G QoS)。通信网络的QoS中的时延是PDB,而不是整体的网桥时延。如果AF向PCF提供的是数据流对应的网桥时延。PCF还需要将所述网桥时延减去终端与DS-TT的停留时间才能映射通信网络QoS。这无疑会对PCF的功能提出新的要求。
对问题2,可以存在多种解决方法,包括但不限于如下:
(1)一种解决的方法:AF获取网桥时延,AF将网桥时延发送给PCF。PCF将其减去终端与DS-TT的停留时间计算获取时延(如PDB相关时延)后,再根据所述计算的时延映射通信网络QoS。
(2)另一种解决的方法:AF获取网桥时延,AF将网桥时延减去终端与DS-TT的停留时间计算获取时延信息后,再将所述时延信息发送给PCF,PCF根据所述时延可以直接映射通信网络QoS。
结合问题1,解决方法(1)(2)中AF获取的网桥时延可以是分别对应5G时钟和TSN时钟的两种网桥时延,或者是对应TSN时钟的网桥时延,或者是对应5G时钟的网桥时延。AF可以接收获取网桥时延或者接收用于计算网桥时延的时间相关信息计算获得网桥时延。AF发送给PCF的网桥时延可以是基于5G时钟的网桥时延。
(3)另一种解决的方法:AF获取的是网桥时延和PDB,AF可以保存所述PDB。AF可以将数据流(如TSC数据流)映射的PDB作为数据流的时延要求发送给PCF,PCF根据所述时延映射通信网络QoS。
结合问题1,解决方法(3)中所述网桥时延可以是基于TSN时钟。所述 PDB可以是基于5G时钟。
(4)另一种解决的方法:AF获取终端与DS-TT的停留时间和PDB,AF可以保存所述PDB。AF可以将数据流(如TSC数据流)映射的PDB作为数据流的时延要求发送给PCF,PCF根据所述时延映射通信网络QoS。
结合问题1,解决方法(4)AF获取的PDB可以是分别对应5G时钟和TSN时钟的两种PDB,或者是对应TSN时钟的PDB,或者是对应5G时钟的PDB。AF发送给PCF的PDB可以是基于5G时钟的PDB。
问题3.5G网桥时延只有一个取值,缺乏弹性。5G网桥时延区分最大时延和最小时延时,对应地,用于生成网桥时延的PDB和终端与DS-TT的停留时间也可以区分最大值,最小值。最小值还可以进一步区分与traffic class相关的最小值,与traffic class不相关的最小值。最大值还可以进一步区分与traffic class相关的最大值,与traffic class不相关的最大值。
本发明实施例中,可选的,获取可以理解为生成、从配置获得、接收、通过请求后接收、通过自学习获取、根据未收到的信息推导获取或者是根据接收的信息处理后获得,具体可根据实际需要确定,本发明实施例对此不作限定。比如当未收到设备发送的某个能力指示信息时可推导出该设备不支持该能力。
可选的,发送可以包含广播,系统消息中广播,响应请求后返回。
可选的,预配置的可以称为默认的。
在本发明一种可选实施例中,所述端口管理容器也可以称为端口管理信息容器。所述端口管理容器为承载端口控制信息(也称为端口管理信息)的容器。
在本发明一种可选实施例中,所述端口相关信息包括:端口管理容器。在本发明一种可选实施例中,所述端口相关信息可以理解为网桥管理任一项或多项关于端口的信息(如802.1Q中网桥管理中端口相关配置信息)。
在本发明一种实施例中,所述端口可以为以下之一以太网端口、IP端口。
在本发明一种可选实施例中,数据通道可以包括但不限于以下之一:PDU会话,PDN连接,QoS流,承载,互联网安全协议(Internet Protocol Security,IPsec)通道,其中,承载可以是演进的无线接入承载(Evolved Radio Access  Bearer,E-RAB)、无线接入承载(Evolved Radio Access Bearer,RAB)、数据无线承载(Data Radio Bearer,DRB)、信令无线承载(signalling radio bearers,SRB)等。
本发明一种可选实施例中,端口对是由两个端口组成,例如:由同一DS-TT的两个端口组成,或者由不同的DS-TT的两个端口组成,或者由同一NW-TT的两个端口组成,或者由不同的NW-TT的两个端口组成。
本发明一种可选实施例中,网桥时延为数据包从网桥(如5G网桥)的入端口到网桥的出端口转发所用的时间。因此端口DS-TT,UE,通信网络与NW-TT可以构成一个5G网桥。
本发明一种可选实施例中,网桥时延可以进一步包括:最小网桥时延、最大网桥时延。最小网桥时延。最小网桥时延可以进一步包括:与traffic相关最小网桥时延、与traffic无关最小网桥时延。最大网桥时延可以进一步包括:与traffic相关最大网桥时延、与traffic无关最大网桥时延。
本发明一种可选实施例中,网桥时延跟端口对相关,也可以称为端口对时延。端口对的时延(也可以称为端口对的网桥时延)可以是指,数据包从一个端口通过另一个端口的时间。所述两个端口可以是同一网桥(如5G网桥)的两个端口。不难理解,网桥时延可以是数据包通过网桥的时间开销。
例如:第一端口对由第一端口和第二端口组成,而端口对的时延可以是指,数据包从第一端口通过第二端口所用的时间。
本发明一种可选实施例中,端口对的时延可以是区分业务类(per traffic class)的网桥时延。每个端口可以支持一个或多个业务类。每个业务类的传输性能不同,所以不难理解,出端口的每种业务类都具有的端口对的时延。每个业务类的端口对的时延可以不同。
也就是说,端口时延也可以是指某一种业务类的网桥时延,当然,不同的业务类的网桥时延可以相同或者不同。
本发明一种可选实施例中,TT端口,TT的端口,TT上的端口,TT侧的端口,TT侧端口代表同一个意思,可以混用。
本发明一种可选实施例中,DS-TT端口,DS-TT的端口都代表位于DS-TT上的端口,可以混用;本发明一种可选实施例中,NW-TT端口,NW-TT的 端口都代表位于NW-TT上的端口,可以混用。
本发明一种可选实施例中,DS-TT端口也可以等效为设备侧端口;而NW-TT端口也可以等效为网络侧端口。端口的TT类型为DS-TT时可以等效为端口为设备侧端口;端口的TT类型为NW-TT时可以等效为端口为网络侧端口。本发明一种可选实施例中,第一端口所在的TT的相关信息可以简称为第一端口的TT的相关信息或第一端口的TT相关信息。
本发明一种可选实施例中,终端与DS-TT的停留时间(UE-DS-TT residence time)为在终端和DS-TT端口之间转发数据包所用的时间。终端与DS-TT的停留时间也可以称为以下之一:终端与DS-TT停留时间,终端与DS-TT间时延,终端与DS-TT端口间时延。
本发明一种可选实施例中,终端与DS-TT的停留时间可以进一步包括:终端与DS-TT的最小停留时间、终端与DS-TT的最大停留时间。
终端与DS-TT的第一停留时间属于终端与DS-TT的停留时间。终端与DS-TT的第二停留时间属于终端与DS-TT的停留时间。
本发明一种可选实施例中,时延可以进一步包括:最小时延、最大时延。最小时延可以进一步包括:与traffic相关最小时延、与traffic无关最小时延。最大时延可以进一步包括:与traffic相关最大时延、与traffic无关最大时延。
本发明一种可选实施例中,PDB为数据包通过UE和通信网络发送所用的时间。PDB可以包括UPF和NW-TT的停留时间。
本发明一种可选实施例中,PDB可以进一步包括:最小PDB、最大PDB。最小PDB可以进一步包括:与traffic相关最小PDB、与traffic无关最小PDB。最大PDB可以进一步包括:与traffic相关最大PDB、与traffic无关最大PDB。
本发明一种可选实施例中,时钟也可以称为主时钟,如Grand Master。
本发明一种可选实施例中,通信网络时钟可以称为通信网络本地时钟、或通信网络内部时钟。
本发明一种可选实施例中,时间相关业务包括时间敏感业务。
本发明一种可选实施例中,端口对应的数据通道一般关联了一个DS-TT的端口。
在本发明一种可选实施例中,所述无线通信网络可以简称为网络或通信 网络。
本发明一种实施例中,无线通信网络可以是以下至少一项:公网,非公网。
本发明一种实施例中,非公网是非公众网络的简称。非公众网络可以称为以下之一:非公众通信网络。非公网可以包括以下至少一种部署方式:独立组网的非公网(如SNPN),非独立组网的非公网(如封闭的访问组(Closed Access Group,CAG))。在本发明一种实施例中,非公众网络可以包含或称为私有网络。私有网络可以称为以下之一:私有通信网络、私网、本地区域网络(LAN)、私有虚拟网络(PVN)、隔离的通信网络、专用的通信网络或其他命名。需要说明的是,在本发明实施例中对于命名方式不做具体限定。
在本发明一种实施例中,公网(如PLMN)是公众网络的简称。公众网络可以称为以下之一:公众通信网络或其他命名。需要说明的是,在本发明实施例中对于命名方式不做具体限定。
本发明一种可选实施例中,通信设备可以包括以下至少一项:通信网元和终端。
本发明一种实施例中,通信网元可以包括以下至少一项:核心网网元和无线接入网网元。
本发明实施例中,核心网网元(CN网元)可以包含但不限于如下至少一项:核心网设备、核心网节点、核心网功能、核心网网元、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、服务网关(serving GW,SGW)、PDN网关(PDN Gate Way,PDN网关)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、GPRS服务支持节点(Serving GPRS Support Node,SGSN)、网关GPRS支持节点(Gateway GPRS Support Node,GGSN)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、应用功能(Application Function,AF),集中式网络配置(Centralized network configuration,CNC)。
本发明实施例中,无线接入网(Radio Access Network,RAN)网元可以包含但不限于至少以下之一:无线接入网设备、无线接入网节点、无线接入网功能、无线接入网单元、第三代合作伙伴计划(Third Generation Partnership Project,3GPP)无线接入网、非3GPP无线接入网、集中单元(Centralized Unit,CU)、分布式单元(Distributed Unit,DU)、基站、演进型基站(evolved Node B,eNB)、5G基站(gNB)、无线网络控制器(Radio Network Controller,RNC)、基站(NodeB)、非3GPP互操作功能(Non-3GPP Inter Working Function,N3IWF)、接入控制(Access Controller,AC)节点、接入点(Access Point,AP)设备或无线局域网(Wireless Local Area Networks,WLAN)节点、N3IWF。
基站,可以是全球移动通信系统(Global System for Mobile Communications,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(BTS,Base Transceiver Station),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),本发明实施例并不限定。
本发明实施例中,UE即终端。终端可以包括支持终端功能的中继和/或支持中继功能的终端。终端也可以称作终端设备或者用户终端(User Equipment,UE),终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本发明实施例中并不限定终端的具体类型。
本发明实施例提供的方法及通信设备可以应用于无线通信系统中。该无线通信系统可以为第五代移动通信(Fifth-generation,5G)系统,或者演进的分组系统(Evolved Packet System,EPS),或者后续演进通信系统。本发明实施例无线通信网络可以为第五代移动通信网络(Fifth-generation system,5GS)或LTE网络。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下对本发明实施例的信息控制方法进行说明。
请参考图2,本发明实施例提供了一种信息控制方法,应用于第一通信设备,第一通信设备包括但不限以下之一:SMF,UE,TT(如DS-TT或NW-TT)。如图2所示,所述方法包括:
步骤21:根据第一时钟与第二时钟间的时钟差异信息,将第一时间信息调整为第二时间信息。
可选的,所述第一时间信息是基于第一时钟的时间相关信息。所述第二时间信息是基于第二时钟的时间相关信息。
一种实施方式中,第一时钟为通信网络时钟(如5G时钟);第二时钟为通信网络外部时钟(比如TSN时钟)。所述通信网络可以构成网桥(如5G网桥)的通信网络。
另一种实施方式中,第一时钟为通信网络外部时钟(比如TSN时钟);第二时钟为通信网络的时钟(如5G时钟)。所述通信网络可以构成网桥(如5G网桥)的通信网络。
可选地,时钟差异信息包括以下至少一项:第一时钟与第二时钟的时间差,时钟频率比率(如RateRatio)。
比如,时钟频率比率是第一时钟频率与第二时钟频率的比值。一种实施方式中,第一时钟可以是主时钟,比如通信网络外部时钟(如TSN时钟);第二时钟可以是本地时钟,比如通信网络时钟(如5G时钟)。
可选地,在步骤21之前,获取至少以下一项信息:第一信息、第一时钟的时钟信息、第二时钟的时钟信息、第一时钟与第二时钟间的时钟差异信息。
步骤22:发送第一信息。
可选的,所述第一信息可以包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息(即第一时间信息对应的第一时钟的时钟信息)、第二时钟的时钟信息(即第二时间信息对应的第二时钟的时钟信息)。
(1)一种实施方式中,第一信息可以包括:第一时间信息和第二时间信息。比如,当只有两种类型时钟(如通信网络时钟(如5G时钟)和通信网 络外部时钟(如TSN时钟))时,可以通过区分第一时间信息和第二时间信息的信元来确定第一时间信息和第二时间信息各自对应的时钟类型。
(2)另一种实施方式中,第一信息可以包括:第一时间信息和/或第一时钟信息、第二时间信息和/或第二时钟的时钟信息。
(3)另一种实施方式中,第一信息可以包括:第一时间信息和/或第一时钟信息
(4)第二时间信息和第二时间信息可以包括:第二时间信息和/或第二时钟的时钟信息。
可选地,第一时间信息可以包括以下至少一项:终端与DS-TT的第一停留时间、第一PDB、第一时延(如第一网桥时延)。
其中,终端与DS-TT的第一停留时间可以是基于第一时钟的终端与DS-TT的停留时间。
其中,第一PDB可以是基于第一时钟的PDB。第一PDB可以是配置获取、测量获取、或接收获取。
其中,第一时延(如第一网桥时延)可以是基于第一时钟的时延。第一网桥时延可以是基于第一时钟的网桥时延。
一种实施方式中,第一时延是终端与DS-TT的第一停留时间与第一PDB取值的和。另一种实施方式中,第一时延是终端与DS-TT的第一停留时间与配置的PDB取值的和。
(1)一种实施方式中,第一时间信息包括以下至少一项:终端与DS-TT的第一停留时间、第一PDB。比如第一通信设备可以将终端与DS-TT的第一停留时间和第一PDB发送给第二通信设备。第二通信设备可以根据获取的终端与DS-TT的第一停留时间和第一PDB,确定第一时延。
(2)另一种实施方式中,第一时间信息包括以下至少一项:终端与DS-TT的第一停留时间。比如第一通信设备将终端与DS-TT的第一停留时间发送给第二通信设备,第二通信设备可以根据获取的终端与DS-TT的第一停留时间和本地配置的PDB,确定第一时延。所述本地配置的PDB可以是基于通信网络的时钟的PDB。
(3)另一种实施方式中,第一时间信息包括第一时延。比如第一通信设 备可以确定第一时延,将确定的第一时延发送给第二通信设备。第一通信设备可以根据终端与DS-TT的第一停留时间和第一PDB确定第一时延。
可选地,第二时间信息可以包括以下至少一项:终端与DS-TT的第二停留时间、第二PDB、第二时延(如第二网桥时延)。
其中,终端与DS-TT的第二停留时间可以是基于第二时钟的终端与DS-TT的停留时间。
其中,第二PDB可以是基于第二时钟的PDB。第二PDB可以是配置获取、测量获取、或接收获取。
其中,第二时延(如第二网桥时延)可以是基于第二时钟的时延。第二网桥时延可以是基于第二时钟的网桥时延。
一种实施方式中,第二时延是终端与DS-TT的第二停留时间与第二PDB取值的和。另一种实施方式中,第二时延是终端与DS-TT的第二停留时间与配置的PDB取值的和。
(1)一种实施方式中,第二时间信息包括以下至少一项:终端与DS-TT的第二停留时间、第二PDB;比如第一通信设备将终端与DS-TT的第二停留时间和第二PDB发送给第二通信设备。第二通信设备可以根据获取的终端与DS-TT的第二停留时间和第二PDB,确定第二时延。
(2)另一种实施方式中,第二时间信息包括以下至少一项:终端与DS-TT的第二停留时间。比如第一通信设备将终端与DS-TT的第二停留时间发送给第二通信设备,第二通信设备可以根据获取的终端与DS-TT的第二停留时间和本地配置的PDB,确定第二时延。所述本地配置的PDB可以是基于通信网络的时钟的PDB。
(3)另一种实施方式中,第二时间信息包括第二时延。比如第一通信设备确定第二时延,将确定的第二时延发送给第二通信设备。第一通信设备可以根据终端与DS-TT的第二停留时间和第二PDB确定第二时延。
可选地,上述步骤21中的将第一时间信息调整为第二时间信息可以包括以下至少一项:
将终端与DS-TT的第一停留时间调整为终端与DS-TT的第二停留时间;
将第一PDB调整为第二PDB;
将第一时延调整为第二时延。
可选地,所述时钟信息可以包括以下至少一项:时钟类型信息、时钟对应的时间域标识信息、时钟频率信息。
可选地,所述时钟类型信息包括以下至少一项取值:通信网络时钟的类型、通信网络外部时钟的类型。
进一步地,所述通信网络时钟的类型可以包括以下至少一项:5G时钟、3GPP网络的时钟、后续演进版本(如5G之后)通信网络采用的时钟。
进一步地,所述通信网络外部时钟的类型可以包括以下至少一项:第三方网络采用的时钟(如时间敏感网络TSN时钟,应用了通信网络的时间敏感业务(如5G网桥)的外部网络采用的时钟)或第三方应用(如应用了通信网络的时间敏感业务(如5G网桥)的第三方应用)采用的时钟。
一种实施方式中,所述通信网络时钟的类型为5G时钟,所述通信网络外部时钟的类型为TSN时钟。
可选的,上述步骤22中的发送第一信息可以包括:
向以下至少一项发送所述第一信息:
AF、PCF、SMF、AMF、终端。
一种实施方式中,向AF发送第一信息。一种实施方式中,第一通信设备(如SMF)通过PCF将第一信息发送给AF。
一种实施方式中,向SMF发送第一信息。一种实施方式中,第一通信设备(如UE)通过AMF将第一信息发送给SMF。此时,第一信息可以包括以下至少一项:终端与DS-TT的第一停留时间、终端与DS-TT的第二停留时间、终端与DS-TT的第一停留时间对应的时钟信息、终端与DS-TT的第二停留时间对应的时钟信息。
一种实施方式中,第一通信设备(如UPF或NW-TT)将第一信息发送给SMF。此时,第一信息可以包括以下至少一项:第一PDB、第二PDB、第一PDB对应的时钟信息、第二PDB对应的时钟信息。
一种实施方式中,向UE发送第一信息。一种实施方式中,第一通信设备(如DS-TT)将第一信息发送给UE。此时,第一信息可以包括以下至少一项:终端与DS-TT的第一停留时间、终端与DS-TT的第二停留时间、终端与 DS-TT的第一停留时间对应的时钟信息、终端与DS-TT的第二停留时间对应的时钟信息。
不难理解,采用本实施例,可以可以基于不同网络节点的需求确定并发送基于不同时钟的时间相关信息,从而支持与时间相关业务的实现。
请参考图3,本发明实施例提供了一种信息控制方法,应用于第二通信设备。第二通信设备包括但不限:AF,SMF,终端,TT。如图3所示,所述方法包括:
步骤31:获取第一信息;
步骤32:执行以下至少一项操作:
根据所述第一信息,确定第一时延;
根据所述第一信息,确定第二时延;
根据所述第一信息,确定时延要求信息(比如网桥时延,或PDB相关时延);
向通信网络中的网元发送时延要求信息(比如网桥时延,或PDB相关时延);
向第三方网络或第三方应用发送网桥时延信息;
在确定满足第一条件情况下,执行第一操作;
在确定满足第二条件情况下,执行第二操作。
可选地,所述第一信息可以包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息。
可选地,所述第一时间信息是基于所述第一时钟的时间相关信息;所述第二时间信息是基于所述第二时钟的时间相关信息。
一种实施方式中,第二时间信息是根据第一时钟与第二时钟间的时钟差异信息,通过第一时间信息调整而来。
可选的,所述第一信息可以包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息。具体如图2实施例所述。
可选地,第一时间信息可以包括以下至少一项:终端与DS-TT的第一停留时间、第一PDB、第一时延(如第一网桥时延)。具体如图2实施例所述。
可选地,第二时间信息可以包括以下至少一项:终端与DS-TT的第二停留时间、第二PDB、第二时延(如第二网桥时延)。具体如图2实施例所述。
第一PDB可以是第二通信设备本地配置获取、测量获取或者是接收获取。
第二PDB可以是第二通信设备本地配置获取、测量获取或者是接收获取。
1.可选地,所述根据所述第一信息确定第一时延可以包括:第一信息包括第一时间信息,根据所述第一时间信息确定第一时延。
可选的,第一时间信息包括以下至少一项:终端与DS-TT的第一停留时间、第一PDB、第一时延。
第一PDB可以是第二通信设备本地配置获取、测量获取或者是接收获取。
第二PDB可以是第二通信设备本地配置获取、测量获取或者是接收获取。
(1)一种实施方式中,第一时间信息包括以下至少一项:终端与DS-TT的第一停留时间、第一PDB。第二通信设备可以根据获取的终端与DS-TT的第一停留时间和第一PDB,确定第一时延。
(2)另一种实施方式中,第一时间信息包括以下至少一项:终端与DS-TT的第一停留时间。第二通信设备可以根据获取的终端与DS-TT的第一停留时间和本地配置的PDB相关时延,确定第一时延。所述本地配置的PDB相关时延可以是基于通信网络时钟的PDB相关时延。
(3)另一种实施方式中,第一时间信息包括第一时延(如第一网桥时延)。第二通信设备直接确定第一时延。
2.可选地,所述根据所述第一信息确定第一时延可以包括:第一信息包括第二时间信息,根据所述第二时间信息确定第二时延。
(1)一种实施方式中,第二时间信息包括以下至少一项:终端与DS-TT的第二停留时间、第二PDB;比如第一通信设备将终端与DS-TT的第二停留时间和第二PDB发送给第二通信设备。第二通信设备可以根据获取的终端与DS-TT的第二停留时间和第二PDB,确定第二时延。
(2)另一种实施方式中,第二时间信息包括以下至少一项:终端与DS-TT的第二停留时间。比如第一通信设备将终端与DS-TT的第二停留时间发送给第二通信设备,第二通信设备可以根据获取的终端与DS-TT的第二停留时间和本地配置的PDB相关时延,确定第二时延。所述本地配置的PDB相关时 延可以是基于通信网络的时钟的PDB相关时延。
(3)另一种实施方式中,第二时间信息包括第二时延(如第二网桥时延)。第二通信设备直接确定第二时延。
3.可选地,根据第一信息和/或配置PDB相关时延,确定时延要求信息。
可选的,所述时延要求信息可以为以下之一:网桥时延,PDB相关时延。一种实施方式中,所述时延要求信息为数据流(如TSN数据流)或业务(如TSN业务)的时延要求信息。所述时延要求信息可以用于映射通信网络的QoS信息(如5G QoS)。此时,所述网桥时延为所述数据流或所述业务映射的网桥时延。所述PDB相关时延为所述数据流或所述业务映射的PDB相关时延。
(1)一种实施方式中,第一信息包括以下至少一项:终端与DS-TT的第一停留时间、终端与DS-TT的第二停留时间、第一PDB、第二PDB。
第一PDB可以是第二通信设备本地配置获取、测量获取或者是接收获取。
第二PDB可以是第二通信设备本地配置获取、测量获取或者是接收获取。
第二通信设备可以根据获取的[终端与DS-TT的第一停留时间或终端与DS-TT的第二停留时间]和[第一PDB或第二PDB],确定所述网桥时延。比如时间精度要求不高情况下。
第二通信设备可以根据获取的终端与DS-TT的第一停留时间和第一PDB,确定所述网桥时延。比如时间精度要求高情况下。此时的网桥时延可以称为第一网桥时延。第一网桥时延可以是基于第一时钟的网桥时延。
第二通信设备可以根据获取的终端与DS-TT的第二停留时间和第二PDB,确定所述网桥时延。比如时间精度要求高的情况下。此时的网桥时延可以称为第二网桥时延。第二网桥时延可以是基于第二时钟的网桥时延。
(2)另一种实施方式中,第一信息包括以下至少一项:第一时延、第二时延。第二通信设备可以根据第一时延或第二时延直接确定所述网桥时延。
根据第一时延确定的所述网桥时延可以称为第一网桥时延。第一网桥时延可以是基于第一时钟的网桥时延。
根据第二时延确定的所述网桥时延可以称为第二网桥时延。第二网桥时延可以是基于第二时钟的网桥时延。
(3)另一种实施方式中,第一信息包括以下至少一项:第一PDB、第二 PDB。
第一PDB可以是第二通信设备本地配置获取或者是接收获取。
第二PDB可以是第二通信设备本地配置获取或者是接收获取。
第二通信设备可以根据获取的第一PDB或第二PDB,确定所述PDB相关时延。
根据第一PDB确定的PDB相关时延可以称为第一PDB相关时延。第一PDB相关时延是可以基于第一时钟的PDB相关时延。
根据第二PDB确定的PDB相关时延可以称为第二PDB相关时延。第二PDB相关时延是可以基于第二时钟的PDB相关时延。
(4)另一种实施方式中,第一信息包括以下至少一项:第一时延、终端与DS-TT的第一停留时间、第二时延、终端与DS-TT的第二停留时间。
第二通信设备可以根据获取[第一时延或第二时延]和[终端与DS-TT的第一停留时间或终端与DS-TT的第二停留时间]确定所述PDB相关时延。比如时间精度要求不高的情况下。
第二通信设备可以根据获取第一时延和的终端与DS-TT的第一停留时间确定所述PDB相关时延。此时的PDB相关时延称为第一PDB相关时延。第二PDB相关时延可以是基于第一时钟的PDB相关时延。
第二通信设备可以根据获取第二时延和的终端与DS-TT的第二停留时间确定所述PDB相关时延。此时的PDB相关时延称为第二PDB相关时延。第二PDB相关时延是可以基于第二时钟的PDB相关时延。
4.可选地,向通信网络中的网元发送时延要求信息的步骤中,可选地,所述通信网络中的网元包括负责通信网络QoS映射或控制网元(如PCF)。一种实施方式中,所述向通信网络中的网元发送时延要求信息的步骤在不满足第一条件的情况下即可执行;在另一种实施方式中,向通信网络中的网元发送时延要求信息的步骤是在满足第一条件的情况下执行。
5.向第三方网络或第三方应用发送网桥时延信息的步骤中,可选地,所述第三方网络包括:TSN网络(比如TSN网络的控制器CNC)。一种实施可选地,所述网桥时延信息为第二时延,比如对时间精度敏感的情况下。另一种实施可选地,所述网桥时延信息可以为第一时延(比如基于通信网络时钟 的时延),比如对时间精度不敏感的情况下。
一种实施方式中,向第三方网络或第三方应用发送网桥时延信息的步骤在不满足第二条件的情况下即可执行;在另一种实施方式中,向第三方网络或第三方应用发送网桥时延信息的步骤是在满足第一条件的情况下执行。
6.一种实施方式中,在确定满足第一条件情况下,执行第一操作。可选地,第一条件可以包括以下至少一项:
第一时钟是通信网络时钟(如5G时钟);
获取通信网络的网桥配置信息(如5G网桥的配置信息);
基于预设情况为数据流(如TSN数据流)或业务(如TSN业务)确定时延要求信息(如TSN QoS信息中的时延信息)。
可选的,所述网桥配置信息(如5G网桥的配置信息)可以包括但不限于以下至少一项:TSN QoS需求、TSN调度参数,路由转发信息,PSFP(per-stream filtering and policing)信息。
另一种实施方式中,在确定满足第二条件情况下,执行第二操作。可选地,第二条件可以包括以下至少一项:
第二时钟是通信网络外部时钟;
基于预设情况向第三方网络(如TSN网络中的控制器)或第三方应用发送网桥时延信息(如第二时延)。
可选地,所述通信网络时钟的类型可以包括以下至少一项:5G时钟、3GPP网络的时钟、后续演进版本(如5G之后)通信网络采用的时钟。
可选地,所述通信网络外部时钟的类型可以包括以下至少一项:第三方网络采用的时钟(如时间敏感网络TSN时钟,应用了通信网络的时间敏感业务(如5G网桥)的外部网络采用的时钟)或第三方应用(如应用了通信网络的时间敏感业务(如5G网桥)的第三方应用)采用的时钟。
一种实施方式中,所述通信网络时钟的类型为5G时钟,所述通信网络外部时钟的类型为TSN时钟。
可选地,上述的第一操作可以包括以下至少一项:
-根据第一时间信息确定时延要求信息(比如网桥时延或PDB相关时延)
-向通信网络中的网元(如QoS控制网元(如PCF))发送时延要求信息或第一时间信息。
可选地,根据第一时间信息确定时延要求信息具体如前文所述,此处不再赘述。一种实施方式中,根据第一时间信息确定时延要求信息的步骤在不满足第一条件的情况下即可执行;在另一种实施方式中,根据第一时间信息确定时延要求信息的步骤是在满足第一条件的情况下执行。
一种实施方式中,所述时延要求信息包含基于第一时钟的时延要求信息,比如时延要求信息中的网桥时延为第一网桥时延;时延要求信息中PDB相关时延为第一PDB相关时延。
一种实施方式中,第二通信设备可以向PCF发送确定的时延要求信息或第一时间信息。所述时延要求信息可以用于PCF为数据流(如TSN数据流)或业务(如TSN业务)映射通信网络QoS(5GS QoS)信息,比如5QI和PDB。
一种实施方式中,时延要求信息可包含在TSN QoS信息中发送给PCF。
可选地,上述的第二操作可以包括以下至少一项:
-根据第二时间信息确定第二时延(比如第二网桥时延);
-向第三方网络(如时间敏感网络的控制器CNC)或第三方应用(如应用了通信网络的时间敏感业务(如5G网桥)的第三方应用)发送第二时延或第二时间信息(用于CNC确定端到端时延)。
可选地,根据第二时间信息确定第二时延具体如前文所述,此处不再赘述。一种实施方式中,根据第二时间信息确定第二时延的步骤在不满足第二条件的情况下即可执行;在另一种实施方式中,根据第二时间信息确定第二时延的步骤是在满足第二条件的情况下执行。
一种实施方式中,第二通信设备可以向CNC发送第二时延或第二时间信息,用于CNC确定端到端时延。
不难理解,通过本实施例,一方面可以实现基于不同通信网络节点的需求确定不同的时间相关信息,另一方面可以基于不同网络节点的需求发送基于不同时钟的时间相关信息,从而支持与时间相关业务的实现。
请参考图4,本发明实施例还提供一种信息控制方法,应用于第三通信设备,第三通信设备包括但不限于:UE、CN网元(如以下之一:SMF、UPF、 PCF)。如图4所示,所述方法包括:
步骤41、获取第一信息;
步骤42、发送所述第一信息。
可选地,所述第一信息可以包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息。
可选地,所述第一时间信息是基于所述第一时钟的时间相关信息;所述第二时间信息是基于所述第二时钟的时间相关信息。
一种实施方式中,第二时间信息是根据第一时钟与第二时钟间的时钟差异信息,通过第一时间信息调整而来。
具体地,第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息如图2实施例所述,此处不再赘述。
可选地,第一信息的不同内容可以从不同的设备中获取。比如第一信息可以区分为DS-TT侧的第一信息和NW-TT侧的第一信息。DS-TT侧的第一信息可以从以下之一获取:终端、DS-TT、AMF。NW-TT侧的第一信息可以从以下之一获取:NW-TT、UPF。
一种实施方式中,DS-TT侧的第一信息可以包括以下至少一项:DS-TT侧的第一时间信息、第一时钟的时钟信息,第二时钟的时钟信息。DS-TT侧的第一时间信息可以包括:终端与DS-TT的第一停留时间。
另一种实施方式中,NW-TT侧的第一信息可以包括以下至少一项:NW-TT侧的第一时间信息、第一时钟的时钟信息,第二时钟的时钟信息。NW-TT侧的第一时间信息可以包括:第一PDB。
一种实施方式中,第三通信设备为UE时,可选地,可以从DS-TT获取第一信息;可选地,可以向AMF发送第一信息。
另一种实施方式中,第三通信设备为AMF时,可选地,可以从UE获取第一信息;可选地,可以向SMF发送第一信息。
另一种实施方式中,第三通信设备为SMF时,可选地,可以从以下之一获取所有或部分的第一信息:UE,AMF、NW-TT、UPF;可选地,可以向PCF或AF发送第一信息。
另一种实施方式中,第三通信设备(如SMF)时,可选地,在发送第一 信息的步骤之前,可以汇总所述获取的第一信息并发送。比如,在发送的第一信息中包含获取的DS-TT侧的第一信息(如PDB)和NW-TT侧的第一信息(如终端与DS-TT的停留时间)。
另一种实施方式中,第三通信设备(如SMF)时,可选地,可以根据本地配置或测量获得的PDB,将所述PDB包含在第一信息中发送。所述PDB可以是第一PDB和/或第二PDB。
另一种实施方式中,第三通信设备(如SMF),可选地,在发送第一信息的步骤之前,可以根据获取的第一PDB和终端与DS-TT的第一停留时间确定第一时延;并在发送的第一信息中包含第一时延。
另一种实施方式中,第三通信设备(如SMF),可选地,在发送第一信息的步骤之前,可以根据获取的第二PDB和终端与DS-TT的第二停留时间确定第二时延;并在发送的第一信息中包含第二时延。
另一种实施方式中,第三通信设备为PCF时,可选地,可以从以下之一第一信息:UE,AMF、NW-TT、UPF;可选地,可以向AF发送第一信息。
不难理解,通过本实施例,一方面可以实现基于通信网络节点的需求传送确定的时间相关信息,另一方面可以基于不同网络节点的需求发送基于不同时钟的时间相关信息,从而支持与时间相关业务的实现。
请参考图5,本发明实施例还提供一种信息控制方法,应用于第四通信设备,第四通信设备包括但不限于:CN网元(比如以下之一:PCF)。如图5所示,所述方法包括:
步骤51、获取时延要求信息和终端与DS-TT的停留时间;
步骤52、根据所述时延要求信息和所述终端与DS-TT的停留时间,执行以下至少一项:确定PDB相关时延、映射通信网络QoS。
一种实施方式中,根据所述确定PDB相关时延,映射通信网络QoS。另一种实施方式中,根据所述时延要求信息,映射通信网络QoS。
一种实施方式中,可以从AF获取所述时延要求信息。
一种实施方式中,可以从以下之一获取所述终端与DS-TT的停留时间:PCF,SMF。
可选的,所述时延要求信息可以为以下之一:网桥时延,PDB相关时延。 一种实施方式中,所述时延要求信息为数据流(如TSN数据流)或业务(如TSN业务)的时延要求信息。所述网桥时延为所述数据流或所述业务映射的网桥时延。所述PDB相关时延为所述数据流或所述业务映射的PDB相关时延。
一种实施方式中,当时延要求信息为网桥时延的情况下,根据时延要求信息和终端与DS-TT的停留时间可以确定PDB相关时延此时,所述终端与DS-TT的停留时间可以为终端与DS-TT的第一停留时间。所述终端与DS-TT的第一停留时间是基于第一时钟。第一时钟为通信网络时钟。并可以根据所述PDB相关时延可以映射通信网络QoS。另一种实施方式中,当时延要求信息为PDB相关时延的情况下,根据时延要求信息映射通信网络QoS。
一种实施方式中,所述时延要求信息和/或所述终端与DS-TT的停留时间可以是基于通信网络时钟(如5G时钟)。比如时延要求信息时间精度敏感的情况。此时,所述终端与DS-TT的停留时间可以为终端与DS-TT的第一停留时间。所述终端与DS-TT的第一停留时间是基于第一时钟终端与DS-TT的停留时间。第一时钟为通信网络时钟。
另一种实施方式中,所述时延要求信息可以是基于任一时钟的时延要求信息。所述终端与DS-TT的停留时间可以是基于任一时钟的终端与DS-TT的停留时间。比如时延要求信息时间精度不敏感的情况。此时所述终端与DS-TT的停留时间可以是终端与DS-TT的第一停留时间或终端与DS-TT的第二停留时间。
另一种实施方式中,所述时延要求信息可以是基于通信网络时钟(如5G时钟)或基于通信网络外部时钟(如TSN时钟)。所述终端与DS-TT的停留时间可以是基于通信网络时钟(如终端与DS-TT的第一停留时间)或基于通信网络外部时钟(如终端与DS-TT的第二停留时间)。比如时延要求信息时间精度不敏感的情况。
一种实施方式中,可以通过获取第一信息获得所述终端与DS-TT的停留时间。可选地,可以从至少以下之一获取第一信息:AF,SMF。所述第一信息如图2实施例所述。所述终端与DS-TT的停留时间可以是所述第一信息中的终端与DS-TT的第一停留时间或所述终端与DS-TT的第二停留时间。所述 第一时钟可以是通信网络时钟(如5G时钟)。
可选地,在步骤51之前,PCF获取第一信息,PCF可以执行至少以下一项:保存第一信息中的所述终端与DS-TT的第一停留时间和/或所述终端与DS-TT的第二停留时间,向AF发送所述第一信息。
一种实施方式中,根据时延要求信息和终端与DS-TT的停留时间确定PDB相关时延包括:所述PDB相关时延为所述时延要求信息减去所述终端与DS-TT的停留时间。
一种实施方式中,所述终端与DS-TT的停留时间为所述数据流对应的DS-TT端口相关的终端与DS-TT的停留时间。
不难理解,通过本实施例,可以支持对数据流或业务的时延要素对应的通信网络QoS映射,从而支持与时间相关业务的实现。
下面结合具体实施例对本发明实施例提供的方法进行描述。
实施例一
该实施例如图6A所示,包括以下步骤:
步骤1:可选地,UE向SMF发送DS-TT侧的第一信息。所述DS-TT侧的第一信息可以包括以下至少一项:UE与DS-TT的第一停留时间、UE与DS-TT的第二停留时间。
UE请求建立关于DS-TT端口的PDU会话。可选地,在所述PDU会话建立请求或PDU会话修改请求中,指示所述DS-TT侧的第一信息。
一种实施方式中,DS-TT侧的第一信息可以包括以下至少一项:UE与DS-TT的第一停留时间、UE与DS-TT的第二停留时间、UE与DS-TT的第一停留时间对应的第一时钟的时钟信息、UE与DS-TT的第二停留时间对应的第二时钟的时钟信息。
另一种实施方式中,DS-TT侧的第一信息可以包括以下至少一项:DS-TT侧的第一时间信息、第一时钟的时钟信息、第二时钟的时钟信息。DS-TT侧的第一时间信息可以包括:终端与DS-TT的第一停留时间。
所述第一信息可以包含端口管理信息容器之外或端口管理信息容器内。
步骤2:AMF向SMF发送PDU会话修改请求消息或PDU会话建立请求消息。可选地,所述请求消息中包含所述第一信息。
步骤3:SMF向UPF发送N4会话修改请求消息或N4会话建立请求消息。
步骤4:可选地,UPF向SMF发送NW-TT侧的第一信息。
UPF向SMF发送N4会话修改响应消息或N4会话建立响应消息。可选的,所述响应消息中包含NW-TT侧的第一信息。
一种实施方式中,NW-TT侧的第一信息可以包括以下至少一项:第一PDB、第二PDB、第一PDB对应的第一时钟的时钟信息、第二PDB对应的第二时钟的时钟信息。
另一种实施方式中,NW-TT侧的第一信息可以包括以下至少一项:NW-TT侧的第一时间信息、第一时钟的时钟信息,第二时钟的时钟信息。NW-TT侧的第一时间信息可以包括:第一PDB。
步骤5:一种可选实施方式中,SMF执行如图2实施例所述操作。
示例性地,SMF根据第一时钟与第二时钟间的时钟差异信息,将第一时间信息调整为第二时间信息;其中,所述第一时间信息是基于所述第一时钟的时间相关信息,所述第二时间信息是基于所述第二时钟的时间相关信息;发送第一信息。可选的,所述第一信息可以包括以下至少一项:第一时间信息、第二时间信息、第一时间信息对应的第一时钟的时钟信息、第二时间信息对应的第二时钟的时钟信息。
另一种可选的实施方式中,SMF执行如图4实施例所述操作。实例性的,获取第一信息;发送所述第一信息。其中,所述第一信息可以是DS-TT侧的第一信息和NW-TT侧的第一信息的汇总。
SMF向PCF发送SMF触发的会话管理策略关联修改请求消息或SMF触发的会话管理策略关联建立请求消息。可选地,所述请求消息中包含第一信息(如图2实施例所述)。
SMF向PCF发送的第一信息可以包括以下至少一项:第一时间信息、第二时间信息、第一时间信息对应的第一时钟的时钟信息、第二时间信息对应的第二时钟的时钟信息;具体如图2中所述。
步骤6:PCF向AF发送第一信息,第一信息具体如图2实施例所述。
可选地,AF执行如图3实施例所述操作,
示例性的,AF获取第一信息;AF执行以下至少一项操作:
根据所述第一信息,确定第一时延;
根据所述第一信息,确定第二时延;
在确定满足第一条件情况下,执行第一操作;
在确定满足第二条件情况下,执行第二操作。
可选地,确定满足第二条件,AF执行第二操作。第二操作可以包括以下至少一项:
-根据第二时间信息确定第二时延(比如第二网桥时延);
-向时间敏感网络的控制器如CNC发送第二时延或第二时间信息,用于CNC确定端到端时延。
步骤7:AF向PCF发送事件通知响应。
步骤8:PCF向SMF发送SMF触发会话管理策略关联修改响应/SMF触发会话管理策略关联建立响应。
步骤9:SMF向AMF发送PDU会话_更新会话管理上下文响应/PDU会话_建立会话管理上下文响应。
步骤10:AMF向UE发送NAS消息,所述NAS消息包含所述PDU会话修改接受/PDU会话建立接受。
实施例二
该实施例如图6B所示,包括以下步骤:
步骤1:AF获取时间敏感数据流的信息。
可选地,AF执行如图3实施例所述操作。
示例性的,AF获取第一信息;AF执行以下至少一项操作:
根据所述第一信息,确定第一时延;
根据所述第一信息,确定第二时延;
根据第一信息,确定时延要求信息(比如网桥时延,或PDB相关时延)。
可选地,确定满足第一条件,AF执行第一操作。
示例性地,第一操作可以包括以下至少一项:
-根据第一时间信息确定第一时延(比如第一网桥时延)
-向通信网络中的网元(如QoS控制网元(如PCF))发送第一时延或第 一时间信息;比如,向PCF发送第一时延或第一时间信息,用于PCF映射5GS QoS信息,比如5QI和时延。
一种实施方式中,第一时延包含在TSN QoS信息中发送给PCF。
步骤2:AF向PCF发送第一时延。PCF可以执行如图5所述操作。
PCF确定时间敏感数据流映射的QoS信息后,向SMF发送更新的PCC Rule。
步骤3:SMF根据更新的PCC规则触发PDU会话修改过程。
步骤4:SMF向PCF返回响应。
实施例三
该实施例如图6A所示,包括以下步骤:
步骤1:可选地,UE向SMF发送DS-TT侧的第一信息。
UE请求建立关于DS-TT端口的PDU会话。可选地,在所述PDU会话建立请求或PDU会话修改请求中,指示所述DS-TT侧的第一信息。
一种实施方式中,DS-TT侧的第一信息可以包括以下至少一项:UE与DS-TT的第一停留时间、UE与DS-TT的第二停留时间、第一时钟的时钟信息、第二时钟的时钟信息。
另一种实施方式中,DS-TT侧的第一信息可以包括以下至少一项:DS-TT侧的第一时间信息、第一时钟的时钟信息、第二时钟的时钟信息。DS-TT侧的第一时间信息可以包括:终端与DS-TT的第一停留时间。
所述第一信息可以包含端口管理信息容器之外或端口管理信息容器内。
步骤2:AMF向SMF发送PDU会话修改请求消息或PDU会话建立请求消息。可选地,所述请求消息中包含所述第一信息。
步骤3:SMF向UPF发送N4会话修改请求消息或N4会话建立请求消息。
步骤4:UPF向SMF发送N4会话修改响应消息或N4会话建立响应消息。
步骤5:
一种可选实施方式中,SMF可以执行如图2实施例所述操作。
另一种可选实施方式中,SMF可以执行如图4实施例所述操作。
SMF向PCF发送SMF触发的会话管理策略关联修改请求消息或SMF触发的会话管理策略关联建立请求消息。可选地,所述请求消息中包含第一信息(如图2实施例所述)。
SMF向PCF发送的第一信息可以包括以下至少一项:第一时间信息、第二时间信息、第一时间信息对应的第一时钟的时钟信息、第二时间信息对应的第二时钟的时钟信息;具体如图2中所述。
步骤6:PCF向AF发送第一信息,第一信息具体如图2实施例所述。
可选地,AF执行如图3实施例所述操作,
示例性的,AF获取第一信息;AF执行以下至少一项操作:
根据所述第一信息确定第一时延;
根据所述第一信息确定第二时延;
在确定满足第一条件情况下,执行第一操作;
在确定满足第二条件情况下,执行第二操作。
可选地,确定满足第二条件,AF执行第二操作。第二操作可以包括以下至少一项:
-根据第二时间信息确定第二时延(比如第二网桥时延);
-向时间敏感网络的控制器如CNC发送第二时延或第二时间信息,用于CNC确定端到端时延。
步骤7:AF向PCF发送事件通知响应。
步骤8:PCF向SMF发送SMF触发会话管理策略关联修改响应/SMF触发会话管理策略关联建立响应。
步骤9:SMF向AMF发送PDU会话_更新会话管理上下文响应/PDU会话_建立会话管理上下文响应。
步骤10:AMF向UE发送NAS消息,所述NAS消息包含所述PDU会话修改接受/PDU会话建立接受。
请参见图7,本发明实施例提供了一种通信设备,该通信设备为第一通信设备,第一通信设备包括但不限于:SMF,UE,TT(如DS-TT)。如图7所示,通信设备70包括:
处理模块71,用于根据第一时钟与第二时钟间的时钟差异信息,将第一 时间信息调整为第二时间信息;其中,所述第一时间信息是基于所述第一时钟的时间相关信息,所述第二时间信息是基于所述第二时钟的时间相关信息;
第一发送模块72,用于发送第一信息;
其中,所述第一信息包括以下至少一项:所述第一时间信息、所述第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息。
可选的,所述第一时间信息包括以下至少一项:终端与DS-TT的第一停留时间、第一PDB、第一时延;
和/或,
所述第二时间信息包括以下至少一项:终端与DS-TT的第二停留时间、第二PDB、第二时延。
可选的,所述将第一时间信息调整为第二时间信息包括以下至少一项:
将所述终端与DS-TT的第一停留时间调整为所述终端与DS-TT的第二停留时间;
将所述第一PDB调整为所述第二PDB;
将所述第一时延调整为所述第二时延。
可选的,所述时钟信息包括以下至少一项:时钟类型信息、时钟对应的时间域标识信息、时钟频率信息。
可选的,所述时钟类型信息包括以下至少一项取值:
通信网络时钟的类型、通信网络外部时钟的类型。
可选的,所述通信网络时钟的类型为5G时钟,所述通信网络外部时钟的类型为时间敏感网络TSN时钟。
可选的,所述第一发送模块72具体于:
向以下至少一项发送所述第一信息:
AF、PCF、SMF、AMF、终端。
本实施例中,通信设备70能够实现本发明方法实施例中第一通信设备实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
请参见图8,本发明实施例提供了一种通信设备,该通信设备为第二通信设备,第二通信设备包括但不限于:AF。如图8所示,通信设备80包括:
第一获取模块81,用于获取第一信息;
第一执行模块82,用于执行以下至少一项操作:
根据所述第一信息,确定第一时延;
根据所述第一信息,确定第二时延;
根据所述第一信息,确定时延要求信息;
向通信网络中的网元发送时延要求信息;
向第三方网络或第三方应用发送网桥时延信息;
在确定满足第一条件情况下,执行第一操作;
在确定满足第二条件情况下,执行第二操作;
其中,所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息;
所述第一时间信息是基于所述第一时钟的时间相关信息;
所述第二时间信息是基于所述第二时钟的时间相关信息;
所述第一条件包括:所述第一时钟是通信网络时钟;
所述第二条件包括:所述第二时钟是通信网络外部时钟。
可选的,所述第一操作包括以下至少一项:
根据所述第一时间信息确定时延要求信息;
向通信网络中的网元发送所述时延要求信息和/或所述第一时间信息。
可选的,所述第二操作包括以下至少一项:
根据所述第二时间信息确定第二时延;
向第三方网络或第三方应用发送第二时延和/或所述第二时间信息。
本实施例中,通信设备80能够实现本发明方法实施例中第一通信设备实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
请参见图9,本发明实施例提供了一种通信设备,该通信设备为第三通信设备,第三通信设备包括但不限于:UE、CN网元(如以下之一:SMF、UPF、PCF)。如图9所示,通信设备90包括:
第二获取模块91,用于获取第一信息;
第二发送模块92,用于发送所述第一信息;
其中,所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息;所述第一时间信息是基于所述 第一时钟的时间相关信息;所述第二时间信息是基于所述第二时钟的时间相关信息。
可选的,所述第三通信设备为终端;所述第二获取模块91具体用于:从DS-TT获取所述第一信息;
所述第二发送模块92具体用于:向接入移动管理功能AMF发送所述第一信息;
或者,
所述第三通信设备为AMF;所述第二获取模块91具体用于:从终端获取所述第一信息;
所述第二发送模块92具体用于:向SMF发送所述第一信息;
或者,
所述第三通信设备为SMF;所述第二获取模块91具体用于:从以下之一获取所述第一信息:终端、AMF、NW-TT、UPF;
所述第二发送模块92具体用于:向PCF或AF发送所述第一信息;
或者,
所述第三通信设备为PCF;所述第二获取模块91具体用于:从以下之一获取所述第一信息:终端、AMF、NW-TT、UPF;
所述第二发送模块92具体用于:向AF发送所述第一信息。
本实施例中,通信设备90能够实现本发明方法实施例中第三通信设备实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
请参见图10,本发明实施例提供了一种通信设备,该通信设备为第四通信设备,第四通信设备包括但不限于:CN网元(比如以下之一:PCF)。如图10所示,通信设备100包括:
第三获取模块101,用于获取时延要求信息和终端与DS-TT的停留时间;
第二执行模块102,用于根据所述时延要求信息和所述终端与DS-TT的停留时间,执行以下至少一项:确定PDB相关时延、映射通信网络QoS。
可选的,所述时延要求信息为以下之一:网桥时延、PDB相关时延。
本实施例中,通信设备100能够实现本发明方法实施例中第四通信设备实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
参见图11,图11是本发明实施例提供的另一种通信设备的结构示意图,如图11所示,通信设备110包括:处理器111、存储器112及存储在所述存储器112上并可在所述处理器上运行的计算机程序,通信设备110中的各个组件通过总线接口113耦合在一起,所述计算机程序被所述处理器111执行时可实现上述图2所示方法实施例中实现的各个过程,或者,实现上述图3所示方法实施例中实现的各个过程,或者,实现上述图4所示方法实施例中实现的各个过程,或者,实现上述图5所示方法实施例中实现的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述任一的信息控制方法的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的, 本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (27)

  1. 一种信息控制方法,应用于第一通信设备,包括:
    根据第一时钟与第二时钟间的时钟差异信息,将第一时间信息调整为第二时间信息;其中,所述第一时间信息是基于所述第一时钟的时间相关信息,所述第二时间信息是基于所述第二时钟的时间相关信息;
    发送第一信息;
    其中,所述第一信息包括以下至少一项:所述第一时间信息、所述第二时间信息、所述第一时钟的时钟信息、所述第二时钟的时钟信息。
  2. 根据权利要求1所述的方法,其中,所述第一时间信息包括以下至少一项:终端与设备侧时间敏感网络适配器DS-TT的第一停留时间、第一数据包时延预算PDB、第一时延;
    和/或,
    所述第二时间信息包括以下至少一项:终端与DS-TT的第二停留时间、第二PDB、第二时延。
  3. 根据权利要求2所述的方法,其中,所述将第一时间信息调整为第二时间信息包括以下至少一项:
    将所述终端与DS-TT的第一停留时间调整为所述终端与DS-TT的第二停留时间;
    将所述第一PDB调整为所述第二PDB;
    将所述第一时延调整为所述第二时延。
  4. 根据权利要求1所述的方法,其中,所述时钟信息包括以下至少一项:时钟类型信息、时钟对应的时间域标识信息、时钟频率信息。
  5. 根据权利要求4所述的方法,其中,所述时钟类型信息包括以下至少一项取值:
    通信网络时钟的类型、通信网络外部时钟的类型。
  6. 根据权利要求5所述的方法,其中,所述通信网络时钟的类型为5G时钟,所述通信网络外部时钟的类型为时间敏感网络TSN时钟。
  7. 根据权利要求1所述的方法,其中,所述发送第一信息,包括:
    向以下至少一项发送所述第一信息:
    接入功能AF、策略控制功能PCF、会话管理功能SMF、接入移动管理AMF、终端。
  8. 一种信息控制方法,应用于第二通信设备,包括:
    获取第一信息;
    执行以下至少一项操作:
    根据所述第一信息,确定第一时延;
    根据所述第一信息,确定第二时延;
    根据所述第一信息,确定时延要求信息;
    向通信网络中的网元发送时延要求信息;
    向第三方网络或第三方应用发送网桥时延信息;
    在确定满足第一条件情况下,执行第一操作;
    在确定满足第二条件情况下,执行第二操作;
    其中,所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息;
    所述第一时间信息是基于所述第一时钟的时间相关信息;
    所述第二时间信息是基于所述第二时钟的时间相关信息;
    所述第一条件包括:所述第一时钟是通信网络时钟;
    所述第二条件包括:所述第二时钟是通信网络外部时钟。
  9. 根据权利要求8所述的方法,其中,所述第一操作包括以下至少一项:
    根据所述第一时间信息确定时延要求信息;
    向通信网络中的网元发送所述时延要求信息和/或所述第一时间信息。
  10. 根据权利要求8所述的方法,其中,所述第二操作包括以下至少一项:
    根据所述第二时间信息确定第二时延;
    向第三方网络或第三方应用发送第二时延和/或所述第二时间信息。
  11. 一种信息控制方法,应用于第三通信设备,包括:
    获取第一信息;
    发送所述第一信息;
    其中,所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息;所述第一时间信息是基于所述第一时钟的时间相关信息;所述第二时间信息是基于所述第二时钟的时间相关信息。
  12. 根据权利要求11所述的方法,其中,
    所述第三通信设备为终端;所述获取第一信息,包括:从DS-TT获取所述第一信息;
    所述发送所述第一信息,包括:向接入移动管理功能AMF发送所述第一信息;
    或者,
    所述第三通信设备为AMF;所述获取第一信息,包括:从终端获取所述第一信息;
    所述发送所述第一信息,包括:向SMF发送所述第一信息;
    或者,
    所述第三通信设备为SMF;所述获取第一信息,包括:从以下之一获取所述第一信息:终端、AMF、网络侧时间敏感网络适配器NW-TT、用户面功能UPF;
    所述发送所述第一信息,包括:向PCF或AF发送所述第一信息;
    或者,
    所述第三通信设备为PCF;所述获取第一信息,包括:从以下之一获取所述第一信息:终端、AMF、NW-TT、UPF;
    所述发送所述第一信息,包括:向AF发送所述第一信息。
  13. 一种信息控制方法,应用于第四通信设备,包括:
    获取时延要求信息和终端与DS-TT的停留时间;
    根据所述时延要求信息和所述终端与DS-TT的停留时间,执行以下至少一项:确定PDB相关时延、映射通信网络服务质量QoS。
  14. 根据权利要求13所述的方法,其中,所述时延要求信息为以下之一:网桥时延、PDB相关时延。
  15. 一种通信设备,所述通信设备为第一通信设备,包括:
    处理模块,用于根据第一时钟与第二时钟间的时钟差异信息,将第一时间信息调整为第二时间信息;其中,所述第一时间信息是基于所述第一时钟的时间相关信息,所述第二时间信息是基于所述第二时钟的时间相关信息;
    第一发送模块,用于发送第一信息;
    其中,所述第一信息包括以下至少一项:所述第一时间信息、所述第二时间信息、所述第一时钟的时钟信息、所述第二时钟的时钟信息。
  16. 根据权利要求15所述的通信设备,其中,所述第一时间信息包括以下至少一项:终端与设备侧时间敏感网络适配器DS-TT的第一停留时间、第一数据包时延预算PDB、第一时延;
    和/或,
    所述第二时间信息包括以下至少一项:终端与DS-TT的第二停留时间、第二PDB、第二时延。
  17. 根据权利要求16所述的通信设备,其中,所述将第一时间信息调整为第二时间信息包括以下至少一项:
    将所述终端与DS-TT的第一停留时间调整为所述终端与DS-TT的第二停留时间;
    将所述第一PDB调整为所述第二PDB;
    将所述第一时延调整为所述第二时延。
  18. 根据权利要求15所述的通信设备,其中,所述时钟信息包括以下至少一项:时钟类型信息、时钟对应的时间域标识信息、时钟频率信息。
  19. 一种通信设备,所述通信设备为第二通信设备,包括:
    第一获取模块,用于获取第一信息;
    第一执行模块,用于执行以下至少一项操作:
    根据所述第一信息,确定第一时延;
    根据所述第一信息,确定第二时延;
    根据所述第一信息,确定时延要求信息;
    向通信网络中的网元发送时延要求信息;
    向第三方网络或第三方应用发送网桥时延信息;
    在确定满足第一条件情况下,执行第一操作;
    在确定满足第二条件情况下,执行第二操作;
    其中,所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息;
    所述第一时间信息是基于所述第一时钟的时间相关信息;
    所述第二时间信息是基于所述第二时钟的时间相关信息;
    所述第一条件包括:所述第一时钟是通信网络时钟;
    所述第二条件包括:所述第二时钟是通信网络外部时钟。
  20. 根据权利要求19所述的通信设备,其中,所述第一操作包括以下至少一项:
    根据所述第一时间信息确定时延要求信息;
    向通信网络中的网元发送所述时延要求信息和/或所述第一时间信息。
  21. 根据权利要求19所述的通信设备,其中,所述第二操作包括以下至少一项:
    根据所述第二时间信息确定第二时延;
    向第三方网络或第三方应用发送第二时延和/或所述第二时间信息。
  22. 一种通信设备,所述通信设备为第三通信设备,包括:
    第二获取模块,用于获取第一信息;
    第二发送模块,用于发送所述第一信息;
    其中,所述第一信息包括以下至少一项:第一时间信息、第二时间信息、第一时钟的时钟信息、第二时钟的时钟信息;所述第一时间信息是基于所述第一时钟的时间相关信息;所述第二时间信息是基于所述第二时钟的时间相关信息。
  23. 根据权利要求22所述的通信设备,其中,所述第三通信设备为终端;所述第二获取模块用于:从DS-TT获取所述第一信息;
    所述第二发送模块用于:向接入移动管理功能AMF发送所述第一信息;
    或者,
    所述第三通信设备为AMF;所述第二获取模块用于:从终端获取所述第一信息;
    所述第二发送模块用于:向SMF发送所述第一信息;
    或者,
    所述第三通信设备为SMF;所述第二获取模块用于:从以下之一获取所述第一信息:终端、AMF、NW-TT、UPF;
    所述第二发送模块用于:向PCF或AF发送所述第一信息;
    或者,
    所述第三通信设备为PCF;所述第二获取模块用于:从以下之一获取所述第一信息:终端、AMF、NW-TT、UPF;
    所述第二发送模块用于:向AF发送所述第一信息。
  24. 一种通信设备,所述通信设备为第四通信设备,包括:
    第三获取模块,用于获取时延要求信息和终端与DS-TT的停留时间;
    第二执行模块,用于根据所述时延要求信息和所述终端与DS-TT的停留时间,执行以下至少一项:确定PDB相关时延、映射通信网络QoS。
  25. 根据权利要求24所述的通信设备,其中,所述时延要求信息为以下之一:网桥时延、PDB相关时延。
  26. 一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的信息控制方法的步骤,或者,实现如权利要求8至10中任一项所述的信息控制方法的步骤,或者,实现如权利要求11或12所述的信息控制方法的步骤,或者,实现如权利要求13或14所述的信息控制方法的步骤。
  27. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的信息控制方法的步骤,或者,实现如权利要求8至10中任一项所述的信息控制方法的步骤,或者,实现如权利要求11或12所述的信息控制方法的步骤,或者,实现如权利要求13或14所述的信息控制方法的步骤。
PCT/CN2021/076520 2020-02-13 2021-02-10 信息控制方法及通信设备 WO2021160164A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/880,599 US20220376885A1 (en) 2020-02-13 2022-08-03 Information control method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010091590.9 2020-02-13
CN202010091590.9A CN113260039B (zh) 2020-02-13 2020-02-13 信息控制方法及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/880,599 Continuation US20220376885A1 (en) 2020-02-13 2022-08-03 Information control method and communications device

Publications (1)

Publication Number Publication Date
WO2021160164A1 true WO2021160164A1 (zh) 2021-08-19

Family

ID=77219922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076520 WO2021160164A1 (zh) 2020-02-13 2021-02-10 信息控制方法及通信设备

Country Status (3)

Country Link
US (1) US20220376885A1 (zh)
CN (1) CN113260039B (zh)
WO (1) WO2021160164A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116264705A (zh) * 2021-12-14 2023-06-16 华为技术有限公司 通信方法与装置
CN117278444A (zh) * 2022-06-13 2023-12-22 维沃移动通信有限公司 数据包集合时延的处理方法、装置及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190239172A1 (en) * 2018-01-31 2019-08-01 Qualcomm Incorporated Scheduling for a time-synchronized wireless network
CN110213007A (zh) * 2019-06-24 2019-09-06 腾讯科技(深圳)有限公司 一种时钟漂移处理的方法、网络功能网元及存储介质
CN110535552A (zh) * 2019-09-27 2019-12-03 腾讯科技(深圳)有限公司 网络节点执行的方法以及相应的网络节点

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575635A (ja) * 1991-09-12 1993-03-26 Hitachi Ltd ネツトワーク網同期管理システムおよび管理方式
JPH11234318A (ja) * 1998-02-10 1999-08-27 Fujitsu Ltd クロック再生装置
US20050058149A1 (en) * 1998-08-19 2005-03-17 Howe Wayne Richard Time-scheduled and time-reservation packet switching
US8234395B2 (en) * 2003-07-28 2012-07-31 Sonos, Inc. System and method for synchronizing operations among a plurality of independently clocked digital data processing devices
WO2005088888A1 (ja) * 2004-03-10 2005-09-22 Mitsubishi Denki Kabushiki Kaisha データ受信装置及びデータ受信方法
US8725525B2 (en) * 2004-04-13 2014-05-13 Olympus Corporation Endoscope system
US8351437B2 (en) * 2009-11-12 2013-01-08 Sony Mobile Communications Ab Stereo bit clock tuning
KR101298806B1 (ko) * 2009-12-21 2013-08-22 한국전자통신연구원 다수의 이더넷 물리층 인터페이스를 지원하는 클럭 운용 방법 및 그 장치
US9310832B2 (en) * 2012-10-30 2016-04-12 National Instruments Corporation Backplane clock synchronization
US10257798B1 (en) * 2018-05-18 2019-04-09 OPNT Holding B.V. Synchronizing clocks in a wireless system
US20200259896A1 (en) * 2019-02-13 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Industrial Automation with 5G and Beyond
CN113556763B (zh) * 2019-09-27 2023-05-16 腾讯科技(深圳)有限公司 实现时间敏感网络的数据传输的方法、相关设备及介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190239172A1 (en) * 2018-01-31 2019-08-01 Qualcomm Incorporated Scheduling for a time-synchronized wireless network
CN110213007A (zh) * 2019-06-24 2019-09-06 腾讯科技(深圳)有限公司 一种时钟漂移处理的方法、网络功能网元及存储介质
CN110535552A (zh) * 2019-09-27 2019-12-03 腾讯科技(深圳)有限公司 网络节点执行的方法以及相应的网络节点

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL, ERICSSON, NTT DOCOMO: "Clarification for TSC QoS Mapping clause", 3GPP DRAFT; S2-1912362, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Reno, NV, USA; 20191118 - 20191122, 21 November 2019 (2019-11-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051827396 *
SAMSUNG: "[#13] Bridge Delay Time Conversion", 3GPP DRAFT; S2-2000800, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Incheon, Korea; 20200113 - 20200117, 7 January 2020 (2020-01-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051842854 *

Also Published As

Publication number Publication date
US20220376885A1 (en) 2022-11-24
CN113260039B (zh) 2023-04-07
CN113260039A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2020177764A1 (zh) 数据传送的保障方法及通信设备
JP7198933B2 (ja) タイムセンシティブ通信のサービス品質をサポートする方法及び通信機器
WO2020156570A1 (zh) 支持时间敏感通信的方法及通信设备
KR102528186B1 (ko) 시간 민감 통신을 지원하기 위한 방법 및 통신 장치
US20220376885A1 (en) Information control method and communications device
CN113038590B (zh) 时间同步方法、电子设备及存储介质
US20220210850A1 (en) Information transmission method and communications device
US20230345308A1 (en) Quality of service guarantee method and apparatus, and communications device
WO2021110021A1 (zh) 信息传输方法及通信设备
US20220131720A1 (en) Method for supporting port association, gateway selection method, and communications device
CN112532503B (zh) 信息传输方法及通信设备
CN117957797A (zh) 用于提供时间敏感网络以太网桥的移动无线电通信系统和方法
WO2023143549A1 (zh) QoS的控制方法及通信设备
US20230164713A1 (en) Information control method and apparatus, and communications device
WO2023155798A1 (zh) 信息公开的方法及通信设备
CN117560323A (zh) 一种业务流属性配置方法、装置和系统
CN116567734A (zh) QoS的控制方法及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753271

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21753271

Country of ref document: EP

Kind code of ref document: A1