WO2020156570A1 - 支持时间敏感通信的方法及通信设备 - Google Patents

支持时间敏感通信的方法及通信设备 Download PDF

Info

Publication number
WO2020156570A1
WO2020156570A1 PCT/CN2020/074211 CN2020074211W WO2020156570A1 WO 2020156570 A1 WO2020156570 A1 WO 2020156570A1 CN 2020074211 W CN2020074211 W CN 2020074211W WO 2020156570 A1 WO2020156570 A1 WO 2020156570A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
adapter
port
interface
delay
Prior art date
Application number
PCT/CN2020/074211
Other languages
English (en)
French (fr)
Inventor
柯小婉
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20747611.0A priority Critical patent/EP3920568A4/en
Priority to JP2021545430A priority patent/JP7198937B2/ja
Priority to SG11202108486PA priority patent/SG11202108486PA/en
Priority to KR1020217027318A priority patent/KR102526026B1/ko
Priority to BR112021015226-1A priority patent/BR112021015226A2/pt
Publication of WO2020156570A1 publication Critical patent/WO2020156570A1/zh
Priority to US17/392,324 priority patent/US11889587B2/en
Priority to US18/530,978 priority patent/US20240114333A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the embodiments of the present disclosure relate to the field of wireless communication technologies, and in particular, to a method and communication device supporting time-sensitive communication.
  • time-sensitive communications needs In the Industrial Internet, there are time-sensitive data, such as robot instructions, which need to be executed sequentially within a specified time.
  • time-sensitive data such as robot instructions
  • network transmission resources are shared, and data transmission has delay and jitter, which cannot support time-sensitive data. Therefore, a time-sensitive network is proposed to support the transmission of time-sensitive data.
  • Time-sensitive networks divide time into intervals (Interval), which is a sliding window. Define traffic specifications for time-sensitive data flows in each sliding window, and reserve transmission resources in advance. In this way, when the sliding window for transmitting data arrives, even if there is no time-sensitive data stream, network resources cannot be occupied by other data streams. When the time-sensitive data stream arrives, it takes up dedicated resources for transmission.
  • the sending end of time-sensitive data stream is called talker, and the receiving end of time-sensitive data stream is called listener.
  • One or more bridges between the talker and the listener are used to forward data.
  • the transmission medium of Talker, listener or bridge may be wireless connection. Therefore, the wireless communication network can be a transmission medium in a time-sensitive network. How to support time-sensitive communication in wireless communication networks is an urgent technical problem to be solved in related technologies.
  • the embodiments of the present disclosure provide a method and communication device for supporting time-sensitive communication, which are used to solve the problem of how to support time-sensitive communication in a wireless communication network.
  • embodiments of the present disclosure provide a method for supporting time-sensitive communication, which is applied to a first communication device, and includes:
  • the first capability information includes at least one of the following:
  • embodiments of the present disclosure provide a method for supporting time-sensitive communication, which is applied to a second communication device, and includes:
  • first information includes at least one of the following: first capability information, second capability information, UE delay related information, and/or anchor gateway delay related information;
  • the first capability information includes at least one of the following: the bridge identification information of the first adapter, the bandwidth information supported by the first adapter, the transmission and propagation delay related information of the first adapter, the combination of the UE and the first adapter The overall bridge identification information, the overall supported bandwidth information formed by the UE and the first adapter, and the overall transmission and propagation delay related information formed by the UE and the first adapter;
  • the second capability information includes at least one of the following: the bridge identification information of the second adapter, the bandwidth information supported by the second adapter, the information related to the transmission propagation delay of the second adapter, the anchor gateway and the second adapter.
  • the embodiments of the present disclosure provide a method for supporting time-sensitive communication, which is applied to a time-sensitive network adapter, including:
  • the second operation of time-sensitive communication is performed.
  • embodiments of the present disclosure provide a method for supporting time-sensitive communication, which is applied to a third communication device, and includes:
  • the second capability information includes at least one of the following:
  • the anchor gateway and the second adapter constitute the whole sending and propagation delay related information.
  • embodiments of the present disclosure provide a communication device, where the communication device is a first communication device and includes:
  • a sending module used to send the first capability information and/or UE delay related information
  • the first capability information includes at least one of the following:
  • embodiments of the present disclosure provide a communication device, where the communication device is a second communication device and includes:
  • the acquiring module is configured to acquire first information, where the first information includes at least one of the following: first capability information, second capability information, UE delay related information, and/or anchor gateway delay related information;
  • the execution module is configured to execute a first operation according to the first information
  • the first capability information includes at least one of the following: the bridge identification information of the first adapter, the bandwidth information supported by the first adapter, the transmission and propagation delay related information of the first adapter, the combination of the UE and the first adapter The overall bridge identification information, the overall supported bandwidth information formed by the UE and the first adapter, and the overall transmission and propagation delay related information formed by the UE and the first adapter;
  • the second capability information includes at least one of the following: the bridge identification information of the second adapter, the bandwidth information supported by the second adapter, the information related to the transmission propagation delay of the second adapter, the anchor gateway and the second adapter.
  • embodiments of the present disclosure provide a communication device, where the communication device is a time-sensitive network adapter and includes:
  • the acquisition module is used to acquire bridge configuration information and/or time-sensitive data flow configuration information
  • the execution module is configured to execute the second operation of time-sensitive communication according to the bridge configuration information and/or the configuration information of the time-sensitive data stream.
  • embodiments of the present disclosure provide a communication device, where the communication device is a time-sensitive network adapter and includes:
  • the sending module is used to send the second capability information and/or the delay related information of the anchor gateway;
  • the second capability information includes at least one of the following:
  • the anchor gateway and the second adapter constitute the whole sending and propagation delay related information.
  • the embodiments of the present disclosure provide a communication device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor, the computer program being executed by the processor
  • a communication device including a processor, a memory, and a computer program stored on the memory and capable of running on the processor, the computer program being executed by the processor
  • an embodiment of the present disclosure provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, it supports the time-sensitive communication provided in the first aspect.
  • the steps of the method, or the steps of the method for supporting time-sensitive communication provided by the second aspect, or the steps of the method for supporting time-sensitive communication provided by the third aspect, or the time-sensitive support provided by the fourth aspect The steps of the method of communication.
  • the first capability information, UE delay related information, second capability information and/or anchor gateway delay related information may be provided to the network.
  • the supporting network determines the capabilities of the UE, time-sensitive network adapter and/or network bridge formed by the network, and discloses it to the outside (such as CNC).
  • the outside can determine the user and/or network configuration information of the bridge formed by the UE and the network according to the bridge capability, so as to support the realization of the time-sensitive network.
  • FIG. 1 is a schematic diagram of the architecture of a wireless communication system provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of the architecture of another wireless communication system provided by an embodiment of the disclosure.
  • Figure 3 is a schematic diagram of a time-sensitive data stream transmitted in a bridge
  • FIG. 4 is a flowchart of a method for supporting time-sensitive communication according to an embodiment of the disclosure
  • FIG. 5 is a flowchart of another method for supporting time-sensitive communication provided by an embodiment of the disclosure.
  • FIG. 6 is a flowchart of another method for supporting time-sensitive communication according to an embodiment of the disclosure.
  • FIG. 7 is a flowchart of another method for supporting time-sensitive communication according to an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of another method for supporting time-sensitive communication according to an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of another method for supporting time-sensitive communication according to an embodiment of the disclosure.
  • FIG. 10 is a structural diagram of a communication device provided by the present disclosure.
  • FIG. 11 is a structural diagram of another communication device provided by the present disclosure.
  • FIG. 12 is a structural diagram of another communication device provided by the present disclosure.
  • FIG. 13 is a structural diagram of another communication device provided by the present disclosure.
  • FIG. 14 is a structural diagram of another communication device provided by the present disclosure.
  • FIG. 15 is a structural diagram of another communication device provided by the present disclosure.
  • FIG. 16 is a structural diagram of another communication device provided by the present disclosure.
  • FIG. 17 is a structural diagram of another communication device provided by the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more optional or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the wireless communication system may be a fifth-generation (5 th generation, 5G) systems, Long Term Evolution or Evolved (Evolved Long Term Evolution, eLTE) system, or subsequent evolution of communication systems.
  • 5G fifth-generation
  • eLTE Evolved Long Term Evolution
  • time sensing may also be referred to as periodic deterministic (Periodic deterministic).
  • Time-sensitive communication can also be called periodic deterministic communication (Periodic deterministic communication).
  • Time-sensitive data streams can also be called periodic deterministic data streams.
  • a time-sensitive network technology such as the Institute of Electrical and Electronic Engineers (IEEE) TSN (Time Sensing Network).
  • Periodic deterministic communication is to transmit data in cycles of transmission intervals.
  • the transmission configuration information of the time-sensitive data stream may include user and/or network configuration information.
  • User and/or network configuration information (User/Network Configuration Information) is used to configure the sending of time-sensitive data streams.
  • the user and/or network configuration information may be user and/or network configuration information in IEEE 802.1Qcc.
  • the user and/or network configuration information may include at least one of the following: a receiver group (listener group), a sender group (talker group), and a traffic specification (traffic specification).
  • FIG. 1 it is a schematic diagram of the architecture of a wireless communication system provided by an embodiment of the present disclosure.
  • the sending end of time-sensitive data stream is called talker, and the receiving end of time-sensitive data stream is called listener.
  • One or more bridges between the talker and the listener are used to forward data.
  • the end station node can be a talker or a listener. Bridge is responsible for data transmission between talker and listener.
  • the UE, the time-sensitive adapter, and the wireless communication network constitute a bridge.
  • the first adapter and the UE are the bridge outlets, and the UPF and the second adapter are the bridge inlets.
  • the first adapter and the UE are bridge entrances, and the User Plane Function (UPF) and the second adapter are bridge exits.
  • UPF User Plane Function
  • the first adapter is an adapter of a time-sensitive network, and is used to terminate the port on the UE side of the 5G bridge or to connect to the bridge or End Station.
  • the second adapter is a time-sensitive network adapter, used to terminate the port on the network side of the 5G bridge or to connect to the bridge or End Station.
  • the first adapter, and/or the second adapter may be an adapter of a time-sensitive network.
  • Time-sensitive network adapters can also be called time-sensitive network translators (TSN (Time Sensing Network) TRANSLATOR)
  • the UE can be co-located with the first adapter. At this time, it can be considered that the UE is connected to a bridge or an end station.
  • the anchor gateway can be co-located with the second adapter. At this time, it can be considered that the anchor gateway is connected to the bridge or End Station.
  • the UE can be co-located with End Station.
  • the UE can also be co-located with the bridge.
  • the UE can be connected to a bridge or the UE can be connected to an End Station.
  • the UE can be co-located with the first adapter.
  • UPF can be combined with the second adapter.
  • User and/or network configuration information is used to configure the sending of time-sensitive data streams.
  • the wireless communication network can obtain user and/or network configuration information through an external control unit that provides configuration information and an application function (AF).
  • the above-mentioned external control unit that provides configuration information can be a centralized Network configuration (Centralized Network configuration, CNC), but not limited.
  • the wireless communication network can receive the user and/or network configuration information of the previous hop from the bridge entrance, and regenerate the user and/or network configuration information of the bridge.
  • FIG. 2 is a schematic diagram of the architecture of another wireless communication system provided by an embodiment of the present disclosure.
  • the UPF may be one or more UPFs.
  • FIG 3 is a schematic diagram of a time-sensitive data stream transmitted in a bridge.
  • the time-sensitive network divides time into intervals (Interval), which is a sliding window, and the bridge 2 delay (Bridge Delay) between the above two circles can be represented.
  • Interval intervals
  • Bridge Delay Bridge Delay
  • the bridge formed by the second adapter and the wireless communication network may be referred to simply as the bridge formed by the terminal, the time-sensitive adapter and the network.
  • the transmission interval may be referred to as a transmission period.
  • the bridge delay includes the delay between the UE and the first adapter, the delay between the UE and the RAN network element, the delay between the RAN and the UPF, and the UPF.
  • the delay between the UE and the first adapter is related to the UE. Different UEs can have different capabilities. The first adapters connected to different UEs may also be different, and one UE or the first adapter may support multiple ports. The delay between the UE and the first adapter may also be referred to as the bridge delay in which the UE and the first adapter form a bridge. It can be the time of data transmission between a port and the UU interface. Therefore, the delay between the UE and the first adapter can be different for different ports. Time-sensitive networks require nanosecond delays, so the delay between the UE and the first adapter cannot be ignored. Therefore, how does the network know the time delay between the UE and the first adapter to determine the bridge time delay of the bridge formed by the UE, the time-sensitive network adapter, and/or the wireless communication network?
  • the delay between the anchor gateway and the second adapter is a part of the delay in the bridge.
  • Different anchor gateways have different capabilities.
  • the second adapter to which it is connected can also be different, and one anchor gateway or second adapter can support multiple ports.
  • the delay between the anchor gateway and the second adapter can also be referred to as the bridge delay where the anchor gateway and the second adapter form a bridge. Therefore, how does the network know the delay between the anchor gateway and the second adapter to determine the bridge delay of the bridge formed by the UE, the time-sensitive network adapter, and/or the wireless communication network?
  • the time period between the latest start transmission time and the data transmission end time should be sufficient to transmit the last data packet in the transmission interval. Since the end time of the data transmission interval is the same, the latest start transmission time is different for different bandwidths.
  • CNC needs to obtain bridge capabilities (such as available bandwidth) to configure users and/or network configuration information.
  • bridge capabilities such as available bandwidth
  • the bridge formed by the UE and the network after receiving the SRP message, the bridge formed by the UE and the network obtains the previous hop user and/or network configuration information, and also needs to configure the next hop user and/or network according to the capabilities of the bridge Configuration information.
  • the wireless communication network still lacks information on the overall export capability formed by the UE and/or the first adapter. In the same way, the wireless communication network also lacks information on the overall egress capability formed by the anchor gateway or the second adapter.
  • acquisition can be understood as acquiring from configuration, receiving, receiving after request, acquiring through self-learning, deriving acquisition based on unreceived information, or acquiring after processing based on received information, which can be determined according to actual needs.
  • the disclosed embodiment does not limit this. For example, when a certain capability indication information sent by the device is not received, it can be deduced that the device does not support the capability.
  • sending may include broadcasting, which is broadcast in system messages and returns after responding to the request.
  • the channel may include at least one of the following: Protocol Data Unit (PDU) session, Quality of Service (QoS) flow, Evolved Packet System (Evolved) Packet System (EPS) bearer, Packet Data Protocol (PDP) context, Data Radio Bearer (DRB), Signaling Radio Bearer (SRB), Network Security Protocol (Internet Protocol Security, IPsec) association.
  • PDU Protocol Data Unit
  • QoS Quality of Service
  • EPS Packet System
  • PDP Packet Data Protocol
  • DRB Data Radio Bearer
  • SRB Signaling Radio Bearer
  • IPsec Internet Protocol Security
  • the port may be a bridge port.
  • the bandwidth may be an available bandwidth.
  • the NG interface may also be referred to as the S1 interface or the N2 interface, and the naming is not limited.
  • the N3N9 interface is an N3 or N9 interface.
  • the wireless communication network may be referred to as a network for short.
  • the wireless communication network may be at least one of the following: a public network, a non-public network; or the first network may be a non-public network.
  • the non-public network is the abbreviation of the non-public network.
  • the non-public network can be called one of the following: non-public communication network.
  • the non-public network may include at least one of the following deployment modes: a physical non-public network, a virtual non-public network, and a non-public network implemented on the public network.
  • the non-public network is a closed access group (CAG).
  • a CAG can consist of a group of terminals.
  • the non-public network may include or be referred to as a private network.
  • Private network can be referred to as one of the following: private communication network, private network, local area network (Local Area Network, LAN), private virtual network (Private Virtual Network, PVN), isolated communication network, dedicated communication network or other names . It should be noted that the naming method is not specifically limited in the embodiments of the present disclosure.
  • the public network is short for public network.
  • the public network can be called one of the following: public communication network or other naming. It should be noted that the naming method is not specifically limited in the embodiments of the present disclosure.
  • the data packet size may be referred to as the data packet length.
  • the data packet may be referred to as a data frame.
  • the configuration information of the time-sensitive data stream may be user and/or network configuration information.
  • the user and/or network configuration information may be user and/or network configuration information in the IEEE802.1Q standard.
  • the user and/or network configuration information may include at least one of the following: a listener group (group), a talker group (group), and a traffic specification (traffic specification).
  • the communication device may include at least one of the following: a communication network element and a terminal.
  • the communication network element may include at least one of the following: a core network network element and a radio access network network element.
  • the core network element may include, but is not limited to, at least one of the following: core network equipment, core network nodes, core network functions, core network elements, and mobility management entities (Mobility Management Entity, MME), access mobility management function (Access Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), serving gateway (serving GW, SGW), packet data network Gateway (Packet Data Network Gate Way, PDN-GW), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function Unit (Policy and Charging Rules Function, PCRF), General Packet Radio Service (General Packet Radio Service) , GPRS) Service Support Node (Serving GPRS Support Node, SGSN), Gateway GPRS Support Node (Gateway GPRS Support Node, GGSN), Unified Data Management (Unified Data Management, UDM), Unified Data Storage (Unified Data Repository, UDR), Home
  • MME Mobility Management Entity
  • MME Mobility
  • the RAN network element may include but is not limited to at least one of the following: radio access network equipment, radio access network node, radio access network function, radio access network unit, 3GPP radio access network, non- 3GPP radio access network, Centralized Unit (CU), Distributed Unit (DU), base station, evolved Node B (eNB), 5G base station (gNB), radio network controller (Radio) Network Controller, RNC), base station (NodeB), non-3GPP Inter Working Function (N3IWF), access control (Access Controller, AC) node, access point (Access Point, AP) equipment or wireless Local area network (Wireless Local Area Network, WLAN) node, N3IWF.
  • radio access network equipment radio access network node, radio access network function, radio access network unit, 3GPP radio access network, non- 3GPP radio access network, Centralized Unit (CU), Distributed Unit (DU), base station, evolved Node B (eNB), 5G base station (gNB), radio network controller (Radio) Network Controller, RNC), base station (NodeB), non
  • the base station can be a base station (BTS) in the Global System For Mobile Communications (GSM) or Code Division Multiple Access (CDMA), or it can be a wideband CDMA (Wideband Code Division)
  • BTS base station
  • GSM Global System For Mobile Communications
  • CDMA Code Division Multiple Access
  • NodeB in Multiple Access
  • WCDMA may also be an evolved Node B (eNB or e-NodeB) and 5G base station (gNB) in LTE, which is not limited in the embodiment of the present disclosure.
  • eNB evolved Node B
  • gNB 5G base station
  • the UE is the terminal.
  • the terminal may include a relay supporting terminal function and/or a terminal supporting relay function.
  • the terminal can also be called a terminal device or a user terminal (UE).
  • the terminal can be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), a personal digital assistant (Personal Digital Assistant, PDA), Terminal-side devices such as Mobile Internet Device (MID), Wearable Device (Wearable Device), or in-vehicle device, it should be noted that the specific types of terminals are not limited in the embodiments of the present disclosure.
  • an embodiment of the present disclosure provides a method for supporting time-sensitive communication, which is applied to a first communication device.
  • the first communication device includes but is not limited to at least one of the following: a UE and a first adapter, and the method includes:
  • Step 41 Send first capability information and/or UE delay related information.
  • the first capability information may include at least one of the following:
  • the UE and the first adaptor form the whole sending propagation delay related information.
  • the UE and the first adapter can be combined as one device or connected through an interface (such as an N60 interface).
  • the first capability information when the first communication device is a UE, the first capability information may be sent to the network. In another implementation manner, when the first communication device is the first adapter, the first capability information may be sent to the UE.
  • the first capability may be understood as the capability of the whole formed by the UE and the first adapter as a network bridge.
  • the first adapter may be a time-sensitive network adapter to which the UE is connected.
  • the UE obtains the first capability information from the first adapter.
  • the related information about the bandwidth supported by the first adapter may be related information about the available bandwidth supported by the first adapter.
  • the bandwidth information supported by the first adapter may be the bandwidth information supported by the port on the first adapter.
  • the port is a port connected to a bridge or End Station.
  • the overall bandwidth information supported by the UE and the first adapter may be related information about the available bandwidth supported overall by the UE and the first adapter.
  • the overall bandwidth information supported by the UE and the first adapter may be bandwidth information supported by the overall port formed by the UE and the first adapter.
  • the port is a port connected to a bridge or End Station.
  • the bandwidth information supported by the port includes at least one of the following: related information of the port, bandwidth of the port, bandwidth availability parameters of the port, and transmission rate of the port.
  • the bandwidth availability parameters of the port may be as defined in the IEEE 802.1Q series, such as bandwidth availability parameters (Bandwidth Availability Parameters).
  • the bandwidth of the port may be the available bandwidth of the port
  • the transmission rate of the port may be the available transmission rate of the port
  • the transmission and propagation delay related information of the first adapter may be the transmission and propagation delay related information of the port on the first adapter.
  • the overall transmission propagation delay related information formed by the UE and the first adapter may be the overall transmission propagation delay related information formed by the UE and the first adapter.
  • the transmission and propagation delay-related information of the port includes at least one of the following: port-related information, the transmission and propagation delay of the port, and traffic class.
  • the transmission propagation delay of the port may be the time required for the data frame to be transmitted from the port of the first adapter or the port of the whole formed by the UE and the first adapter to the port of the connected station (bridge or end station).
  • port-related information may include at least one of the following: port identification information, port direction is egress or entry-related information, port number, port MAC address, port’s Internet Protocol (IP) ) Address, VLAN tag information associated with the port, and data filter information of the port.
  • IP Internet Protocol
  • the data filter information or data filter information of the port may include at least one of the following: virtual local area network (Virtual Local Area Network, VLAN) label information, Medium Access Control (MAC) address, IPv4 Address, port number, IPv6 address, and port indication information, where the port indication information includes indication information of a sending port or indication information of a receiving port.
  • VLAN Virtual Local Area Network
  • MAC Medium Access Control
  • IPv4 Address IPv4 Address
  • port number IPv6 address
  • port indication information includes indication information of a sending port or indication information of a receiving port.
  • VLAN tag information is also called VLAN identification information (such as VID).
  • VLAN tag information may include: a service VLAN tag (Service VLAN Tag, S-TAG) and/or a user VLAN tag (Customer VLAN Tag, C-TAG).
  • the service category is the number of transmission queues or service type of the port.
  • Service types can include at least one of the following: Background, best effort, excellent effort, critical application, video, voice, and Internetwork control ), Network control.
  • the delay-related information between the UE and the first adapter includes at least one of the following: related information about the first interface, related information about the second interface, delay between the UE and the first adapter, data packets The associated business category.
  • the business categories are as described above, so I won’t repeat them here.
  • the first interface may be a first port, where the first port is a port connected to a network bridge or End Station.
  • the second interface may include one of the following: a UU interface of the UE, and a port connected to the UU interface of the UE.
  • the UU interface is an interface between the UE and the RAN.
  • the first port may be a port of the first adapter or a port of the UE.
  • the port of the first adapter may be a port connected to a network bridge or End Station on the first adapter.
  • the port of the UE may be a port connected to a bridge or End Station on the UE.
  • the UU interface of the UE includes a channel in the UU interface of the UE.
  • the channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the first interface is a data entry, and the second interface is a data exit. In another embodiment, the second interface is a data entry, and the first interface is a data exit.
  • the related information of the first interface may be related information of the port of the first port (the related information of the port is as described above, and will not be repeated here).
  • the related information of the second interface may be the information of the first channel in the UU interface.
  • the first channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the port may be a first port (may be a port of the first adapter or a port of the UE).
  • the data filter information may be data filter information of the first port.
  • the VLAN may be a VLAN associated with the first port.
  • -Port-related channel information includes at least one of the following: port-related information of the port, channel identification information (such as PDU session identification and/or QoS flow identification).
  • the information of the channel related to the VLAN includes at least one of the following: VLAN tag information of the VLAN (the VLAN tag information is as described above, and will not be repeated here), the identification information of the channel (such as PDU session identifier and/or QoS flow) logo).
  • the channel information related to the data filter information includes at least one of the following: data filter information (data filter information is as described above and will not be repeated here), channel identification information (such as PDU session identifier and/or QoS Stream ID).
  • the identification information of the channel may be a QoS flow identification and/or a PDU session identification to which the QoS flow belongs.
  • the identification information of the channel may be a PDU session identifier.
  • the delay between the UE and the first adapter may be the bridge delay that the UE and the first adapter form an integral bridge.
  • the delay between the UE and the first adapter may be the time required for the data packet to pass from the data entry (such as the first interface or the second interface) to the data exit (such as the second interface or the first interface) .
  • the data exit can be the first port; or when the data entry is the first port At this time, the data outlet can be the UU interface of the UE.
  • the delay between the UE and the first adapter may be at least one of the following:
  • the time required for the data packet to be transferred from the first interface to the second interface is the same as the time required for the data packet to be transferred from the second interface to the first interface. In another implementation manner, the time required for the data packet to be transferred from the first interface to the second interface is different from the time required for the data packet to be transferred from the second interface to the first interface.
  • time required for the data packet to be transferred from the first interface to the second interface may be at least one of the following:
  • the time required for the data packet to be transferred from the first port to the UU interface of the UE includes: the time required for the data packet to be transferred from the first port to the first channel of the UU interface of the UE.
  • the first channel is as described above and will not be repeated here.
  • the time required for a data packet to be received from the first port to being sent from the UU interface of the UE includes: the time required for the data packet to be received from the first port to ready to be sent from the UU interface of the UE to the first channel time.
  • the first channel is as described above and will not be repeated here.
  • the time required for the data packet to be transferred from the second interface to the first interface may be at least one of the following:
  • the time required for a data packet to be received by the UE from the UU interface to being delivered to the first port includes at least one of the following: the data packet is received by the UE from the first channel of the UU interface to being delivered to the first port The time required; the time required for the UE to parse out the packet from the Packet Data Convergence Protocol (PDCP) layer of the first channel of the UU interface to be delivered to the first port.
  • PDCP Packet Data Convergence Protocol
  • the first channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the port may be a first port, such as a port connected to a bridge or End Station (may be a port of the first adapter or a port of the UE).
  • the data filter information may be the data filter information of the first port.
  • the VLAN may be a VLAN associated with the first port.
  • the time delay between the UE and the first adapter may include at least one of the following: the maximum time delay between the UE and the first adapter and the minimum time delay between the UE and the first adapter.
  • the minimum delay between the UE and the first adapter can also be referred to as the minimum bridge delay between the UE and the first adapter, and the maximum delay between the UE and the first adapter is also referred to as the overall between the UE and the first adapter.
  • the maximum bridge delay The minimum delay between the UE and the first adapter can be further divided into the minimum delay between the UE and the first adapter related to the size of the data packet and the minimum delay between the UE and the first adapter that has nothing to do with the size of the data packet.
  • the maximum time delay between the UE and the first adapter can be further divided into the maximum time delay between the UE and the first adapter related to the data packet size and the maximum time delay between the UE and the first adapter that is not related to the data packet size.
  • the delay between the UE and the first adapter may include at least one of the following: downlink delay and uplink delay.
  • the downlink delay can include one of the following:
  • the downlink delay may be referred to as the delay from the UE to the first adapter.
  • the uplink delay can include at least one of the following:
  • uplink data transmission requires the UE to request RAN scheduling.
  • the time delay waiting for the scheduling of the RAN network element does not belong to the time delay between the UE and the first adapter.
  • the uplink delay can be referred to as the delay from the first adapter to the UE.
  • the uplink delay and the downlink delay are consistent. In another implementation manner, the uplink delay and the downlink delay are inconsistent.
  • the delay related information of the UE includes at least one of the following: related information of the first interface, related information of the second interface, delay of the UE, and service category associated with the data packet.
  • the related information of the first interface, the related information of the second interface, and the service category are as described above, and will not be repeated here.
  • the delay of the UE is the time required for the data packet to pass from the data entry on the UE (such as the first interface or the second interface) to the data exit on the UE (such as the second interface or the first interface).
  • the delay of the UE may be at least one of the following:
  • the first interface is a first port
  • the first port is a port of the UE.
  • the port of the UE may be a port connected to a bridge or End Station on the UE.
  • the time required for the data packet to be transferred from the first interface to the second interface may include at least one of the following: the data packet is transferred from the UU interface of the UE to the first port; the data packet is received by the UE from the UU interface to the first port The time required to be delivered to the first port.
  • the time required for the data packet to pass from the second interface to the first interface may include at least one of the following: the time required for the data packet to pass from the first port to the UU interface of the UE; The time required for a port to be received until it is ready to transmit from the UU interface of the UE.
  • the sending first capability information and/or UE delay related information includes:
  • the first capability information and/or the UE delay related information are sent.
  • the preset condition may be at least one of the following:
  • the type of UE is bridge
  • the UE supports time-sensitive communication.
  • the first capability information and/or UE delay related information can be sent only when the preset conditions are met, so as to avoid frequent sending of the first capability information and/or UE delay related information, and achieve the effect of saving power consumption. .
  • the first capability information and/or delay related information of the UE are sent.
  • the sending first capability information and/or UE delay related information includes:
  • the target end includes: UE, RAN network element, and CN network element.
  • the target end may be a UE.
  • the target end may be a RAN network element and/or a CN network element.
  • the target end may be a communication network element of a network that forms a bridge with the UE and/or the first adapter.
  • the CN network element may include but is not limited to at least one of the following: PCF, AMF, SMF, AF.
  • the method further includes:
  • Obtain port configuration information which includes at least one of the following: port-related information, port bandwidth, and port transmission rate;
  • the aforementioned port configuration information may be sent by the network.
  • the foregoing port configuration information may be port configuration information of the first port.
  • the UE sends the port configuration information to the first adapter.
  • the bandwidth and/or transmission rate of the port are configured according to the obtained port configuration information, so that the configured port bandwidth is more suitable for the transmission of time-sensitive data.
  • the first communication device can provide the network with relevant capabilities of the UE and/or the first adapter as a whole. On the one hand, it supports the network to determine the UE, time-sensitive network adapter and/or network bridge.
  • the bridge capability supports the configuration of time-sensitive data streams, thereby supporting time-sensitive communications.
  • an embodiment of the present disclosure also provides a method for supporting time-sensitive communication, which is applied to a second communication device.
  • the second communication device includes but not limited to CN network elements (such as AMF, SMF, PCF, or AF).
  • the methods include:
  • Step 51 Acquire first information, where the first information includes at least one of the following: first capability information, second capability information, UE delay related information, and/or anchor gateway delay related information;
  • Step 52 Perform a first operation according to the first information.
  • the first capability information is the first capability information in the embodiment shown in FIG. 4, and will not be repeated here.
  • the delay-related information of the UE is shown in FIG. 4 as the first capability information in the embodiment, which is not repeated here.
  • the delay related information of the anchor gateway is shown in FIG. 7 as the second capability information in the embodiment, which is not described here.
  • the second capability information is the second capability information in the embodiment shown in FIG. 7, and will not be repeated here.
  • the first capability information and/or delay related information of the UE may be obtained from at least one of the following: UE, the first communication device, and the RAN network element currently accessed by the UE.
  • the second capability information and/or the delay related information of the anchor gateway may be obtained from at least one of the following: UE, anchor gateway, and third communication device.
  • the anchor gateway is a gateway that terminates the N6 interface. Further, the anchor gateway may be an anchor gateway that establishes a bridge-related channel or a port-related channel.
  • the RAN network element may be a RAN network element serving the UE.
  • the above-mentioned first operation may be a time-sensitive related operation.
  • the first operation may include at least one of the following:
  • the configuration information of the time-sensitive data stream is the first transmission configuration information of the time-sensitive data stream or the second transmission configuration information of the time-sensitive data stream;
  • determining the bridge capability of the bridge formed by the UE, the time-sensitive network adapter, and/or the network includes at least one of the following:
  • the first interface may be the first port.
  • the first port is the port connected to the bridge or End Station on the UE or the first adapter.
  • the fourth interface may be the second port.
  • the second port is the port connected to the bridge or End Station on the anchor gateway or the second adapter.
  • the delay in the bridge formed by the UE and the network may be determined as: the delay of the UE, the delay between the UE and the RAN network element, the delay between the RAN network element and the anchor gateway, and the time delay of the anchor gateway.
  • the sum of the five delays ie the delay of the UE + the delay between the UE and the RAN network element + the delay between the RAN network element and the anchor gateway + the delay of the anchor gateway;
  • determining the delay in the bridge formed by the UE, the time-sensitive network adapter, and the network may be: the delay between the UE and the first adapter, the transmission delay between the UE and the RAN network element, and the processing of the RAN network element The sum of five of the delay, the delay between the RAN network element and the anchor gateway, and the delay between the anchor gateway and the second adapter (i.e. the delay between the UE and the first adapter + the transmission delay between the UE and the RAN network element + Processing delay of RAN network element + Delay between RAN network element and anchor gateway + Delay between anchor gateway and second adapter).
  • the intra-bridge delay is the delay between the first interface and the fourth interface.
  • the first capability information includes related information of the first interface and related information of the second interface.
  • the second capability information includes related information of the third interface and related information of the fourth interface.
  • the related information of the second interface may be the information of the first channel in the UU interface.
  • the related information of the third interface may be the information of the first channel in the N3N9 interface.
  • the first interface and the fourth interface are associated.
  • the first channel is as described in the embodiment of Figure 4 and/or Figure 7.
  • the delay between the first interface and the fourth interface may be: the time required for the data packet to pass from the first interface to the second interface, the delay between the UE and the RAN network element, and the delay between the RAN network element and the RAN network element.
  • the sum of the delay between anchor gateways and the time required for the data packet to pass from the third interface to the fourth interface (that is, the time required for the data packet to pass from the first interface to the second interface + between the UE and the RAN network element) Delay + delay between the RAN network element and the anchor gateway + the time required for the data packet to pass from the third interface to the fourth interface);
  • the delay between the first interface and the fourth interface may be: the time required for the data packet to pass from the second interface to the first interface, the delay between the UE and the RAN network element, and the RAN network element The sum of the delay between the anchor gateway and the time required for the data packet to pass from the fourth interface to the third interface (that is, the time required for the data packet to pass from the second interface to the first interface + UE and RAN network element Time delay + time delay between RAN network element and anchor gateway + the sum of the time required for the data packet to pass from the fourth interface to the third interface).
  • the determined transmission configuration information of the time-sensitive data stream is determined.
  • sending configuration information of a time-sensitive data stream may include at least one of the following:
  • the configuration information of the time-sensitive data stream is sent to the anchor gateway and/or the second adapter.
  • the foregoing first condition includes at least one of the following:
  • the time-sensitive data stream is downlink data (for example, when the UE is the egress of the bridge formed by the UE and the network);
  • the type of UE is bridge
  • the architecture type of the time-sensitive network is fully distributed
  • the UE is an end station and the time-sensitive network architecture type is centralized, distributed and hybrid;
  • the indication information of the time-sensitive data stream configuration information indicates that time-sensitive data stream configuration information is required.
  • the above second condition includes at least one of the following:
  • Time-sensitive data flow is upstream data (for example, as the exit of the bridge formed by the anchor gateway and the network);
  • the architecture type of time-sensitive network is fully distributed or centralized distributed hybrid.
  • the method further includes:
  • UE anchor gateway, first adapter, second adapter.
  • the bridge configuration information is sent to the first adapter through the UE; in another embodiment, the bridge configuration information is sent to the second adapter through the anchor gateway.
  • the bridge configuration information is the configuration information of the bridge exit.
  • the bridge configuration information includes at least one of the following: port-related information and port configuration bandwidth.
  • the bridge configuration information is sent to the UE.
  • the UE may forward the bridge configuration information to the first adapter.
  • the bridge configuration information is sent to the anchor gateway and/or the second adapter.
  • the anchor gateway may forward the bridge configuration information to the second adapter.
  • the time-sensitive network adapter determines the bridge capabilities of the UE, the time-sensitive network adapter and/or the network bridge formed by the network according to the first system, performs the bridge egress configuration, and performs the time-sensitive data flow Configuration, etc. to support time-sensitive communication.
  • the present disclosure also provides a method for supporting time-sensitive communication, which is applied to a time-sensitive network adapter.
  • the time-sensitive network adapter includes but is not limited to at least one of the following: a first adapter and a second adapter.
  • the method includes:
  • Step 61 Obtain network bridge configuration information and/or time-sensitive data flow configuration information
  • Step 62 Perform a second operation of time-sensitive communication according to the bridge configuration information and/or the configuration information of the time-sensitive data stream.
  • the above-mentioned network bridge configuration information may be network egress configuration information.
  • the bridge configuration information includes at least one of the following: port-related information, port bandwidth, and port transmission rate.
  • the bandwidth of the port may be the available bandwidth of the port
  • the transmission rate of the port may be the available transmission rate of the port
  • the related information of the port is as described in Embodiment 4, and will not be repeated here.
  • performing the second related operation of time-sensitive communication according to the bridge configuration information and/or the configuration information of the time-sensitive data stream includes: configuring the bandwidth and/or transmission rate of the port according to the obtained port configuration information .
  • time-sensitive communication is supported through the configuration of the bridge exit.
  • an embodiment of the present disclosure provides a method for supporting time-sensitive communication, which is applied to a time-sensitive network adapter.
  • the time-sensitive network adapter includes but is not limited to at least one of the following: an anchor gateway and a second adapter, and the method includes:
  • Step 71 Send the second capability information and/or the delay related information of the anchor gateway.
  • the second capability information may include at least one of the following:
  • the anchor gateway and the second adapter constitute the whole sending and propagation delay related information.
  • the anchor gateway and the second adapter can be combined as one device or connected through an interface.
  • the second capability information can be sent to the network.
  • the second capability information may be sent to the anchor gateway.
  • the anchor gateway may be a gateway (such as UPF) that terminates the N6 interface.
  • the second capability may be understood as the capability of the whole formed by the anchor gateway and the second adapter as a network bridge.
  • the second adapter may be a time-sensitive network adapter connected to the anchor gateway.
  • the anchor gateway obtains the second capability information from the second adapter.
  • the related information about the bandwidth supported by the second adapter may be related information about the available bandwidth supported by the second adapter.
  • the bandwidth information supported by the second adapter may be bandwidth information supported by the port on the second adapter.
  • the port is a port connected to a bridge or End Station.
  • the overall bandwidth information supported by the anchor gateway and the second adapter may be related information about the available bandwidth supported overall by the anchor gateway and the second adapter.
  • the overall bandwidth information formed by the anchor gateway and the second adapter may be bandwidth information supported by the overall port formed by the anchor gateway and the second adapter.
  • the port is a port connected to a bridge or End Station.
  • the bandwidth information supported by the port includes at least one of the following: related information of the port, bandwidth of the port, bandwidth availability parameters of the port, and transmission rate of the port.
  • the bandwidth availability parameters of the port may be as defined in the IEEE 802.1Q series, such as bandwidth availability parameters (Bandwidth Availability Parameters).
  • the bandwidth of the port may be the available bandwidth of the port
  • the transmission rate of the port may be the available transmission rate of the port
  • the transmission propagation delay related information of the second adapter may be the transmission propagation delay related information of the port on the second adapter.
  • the overall transmission and propagation delay related information formed by the anchor gateway and the second adapter may be the overall transmission and propagation delay related information of the port formed by the anchor gateway and the second adapter.
  • the transmission and propagation delay-related information of the port includes at least one of the following: port-related information, the transmission and propagation delay of the port, and traffic class.
  • the transmission propagation delay of the port may be the time required for the data frame to pass from the port of the second adapter or the integral port formed by the anchor gateway and the second adapter to the port of the connected station (bridge or end station).
  • the port-related information may include at least one of the following: port identification information, port direction is egress or entry-related information, port number, port MAC address, port IP address, and VLAN associated with the port Label information, data filter information of the port.
  • the data filter information or data filter information of the port may include at least one of the following: virtual local area network (Virtual Local Area Network, VLAN) label information, media access control (MAC) address, IPv4 address, port number , IPv6 address and port indication information, where the port indication information includes the indication information of the sending port or the indication information of the receiving port.
  • VLAN Virtual Local Area Network
  • MAC media access control
  • IPv4 address IPv4 address
  • port number IPv6 address
  • port indication information includes the indication information of the sending port or the indication information of the receiving port.
  • VLAN tag information is also called VLAN identification information (such as VID).
  • VLAN tag information may include: a service VLAN tag (Service VLAN Tag, S-TAG) and/or a user VLAN tag (Customer VLAN Tag, C-TAG).
  • the service category is the number of transmission queues or service type of the port.
  • Service types can include at least one of the following: Background, best effort, excellent effort, critical application, video, voice, and Internetwork control ), Network control.
  • the delay-related information between the anchor gateway and the second adapter includes at least one of the following: information about the fourth interface, information about the third interface, and time between the anchor gateway and the second adapter.
  • the business category associated with the extension and data packet The business categories are as described above, so I won’t repeat them here.
  • the fourth interface may be a second port, where the second port is a port connected to a network bridge or End Station.
  • the third interface may include one of the following: an N3N9 interface of the anchor gateway, a port connected to the N3N9 interface of the anchor gateway, an N6 interface, and a port connected to the N6 interface.
  • the N3N9 interface is an N3 interface or an N9 interface.
  • the N9 interface is the interface between the gateway and the gateway.
  • the N6 interface is the interface between the anchor gateway and the external network.
  • the second port may be the port of the second adapter or the port of the anchor gateway.
  • the port of the second adapter may be a port connected to the network bridge or End Station on the second adapter.
  • the port of the anchor gateway can be the port of the anchor gateway connected to the bridge or End Station.
  • the N3N9 interface of the anchor gateway includes a channel in the N3N9 interface of the anchor gateway.
  • the channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the fourth interface is a data entry, and the third interface is a data exit. In another embodiment, the third interface is a data entry, and the fourth interface is a data exit.
  • the related information of the fourth interface may be related information of the port of the second port (the related information of the port is as described above, and will not be repeated here).
  • the related information of the third interface may be the information of the first channel of the N3N9 interface.
  • the first channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the port may be a second port (may be a port of a second adapter or a port of an anchor gateway).
  • the data filter information may be data filter information of the second port.
  • the VLAN may be a VLAN associated with the second port.
  • -Port-related channel information includes at least one of the following: port-related information of the port, channel identification information (such as PDU session identification and/or QoS flow identification).
  • the information of the channel related to the VLAN includes at least one of the following: VLAN tag information of the VLAN (the VLAN tag information is as described above, and will not be repeated here), the identification information of the channel (such as PDU session identifier and/or QoS flow) logo).
  • the channel information related to the data filter information includes at least one of the following: data filter information (data filter information is as described above and will not be repeated here), channel identification information (such as PDU session identifier and/or QoS Stream ID).
  • the identification information of the channel may be a QoS flow identification and/or a PDU session identification to which the QoS flow belongs.
  • the identification information of the channel may be a PDU session identifier.
  • the delay between the anchor gateway and the second adapter may be a bridge delay formed by the anchor gateway and the second adapter as a whole.
  • the delay between the anchor gateway and the second adapter may be required for the data packet to pass from the data entry (such as the fourth interface or the third interface) to the data exit (such as the third interface or the fourth interface) time.
  • the data exit when the data entry (such as the fourth interface or the third interface) is the N3N9 interface of the anchor gateway, the data exit (such as the third interface or the fourth interface) can be the second port; or when the data entry is the first port In the case of two ports, the data outlet can be the N3N9 interface of the anchor gateway.
  • the delay between the anchor gateway and the second adapter may be at least one of the following:
  • the time required for the data packet to be transferred from the fourth interface to the third interface is the same as the time required for the data packet to be transferred from the third interface to the fourth interface. In another implementation manner, the time required for the data packet to pass from the fourth interface to the third interface is different from the time required for the data packet to pass from the third interface to the fourth interface.
  • time required for the data packet to be transferred from the fourth interface to the third interface may be at least one of the following:
  • the time required for the data packet to pass from the second port to the N3N9 interface of the anchor gateway includes: the time required for the data packet to pass from the port of the second adapter to the first channel of the N3N9 interface of the anchor gateway .
  • the first channel is as described above and will not be repeated here.
  • the time required for the data packet to be sent from the second port to the N3N9 interface of the anchor gateway includes: the data packet is received from the second port to the time it takes for the data packet to be sent from the N3N9 interface of the anchor gateway to the first The time required for a channel.
  • the first channel is as described above and will not be repeated here.
  • the time required for the data packet to pass from the third interface to the fourth interface may be at least one of the following:
  • the time required for the data packet to be delivered to the second port from the N3N9 interface by the anchor gateway includes at least one of the following: the data packet is received by the anchor gateway from the first channel of the N3N9 interface to be delivered The time required to reach the second port; the time required for the data packet to be parsed by the anchor gateway from the GTP-U layer of the first channel of the N3N9 interface to be delivered to the second port.
  • the first channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the port may be a second port, such as a port connected to a bridge or End Station (may be a port of a second adapter or a port of an anchor gateway).
  • the data filter information may be the data filter information of the second port.
  • the VLAN may be a VLAN associated with the second port.
  • the delay between the anchor gateway and the second adapter may include at least one of the following: the maximum delay between the anchor gateway and the second adapter and the delay between the anchor gateway and the second adapter
  • the smallest extension can also be referred to as the minimum bridge delay formed by the anchor gateway and the second adapter, and the maximum delay between the anchor gateway and the second adapter is also called the anchor The maximum bridge delay of the whole formed by the gateway and the second adapter.
  • the minimum delay between the anchor gateway and the second adapter can be further divided into the minimum delay between the anchor gateway and the second adapter, which is related to the data packet size, and the minimum delay between the anchor gateway and the second adapter, which is not related to the data packet size. The smallest extension.
  • the maximum delay between the anchor gateway and the second adapter can be further divided into the maximum delay between the anchor gateway and the second adapter, which is related to the packet size, and the maximum delay between the anchor gateway and the second adapter, which is not related to the packet size. Maximum delay.
  • the delay between the anchor gateway and the second adapter may include at least one of the following: downlink delay and uplink delay.
  • the downlink delay can include one of the following:
  • the downlink delay can be referred to as the delay from the anchor gateway to the second adapter.
  • the uplink delay can include at least one of the following:
  • uplink data transmission requires the anchor gateway to request RAN scheduling.
  • the delay waiting for the scheduling of the RAN network element does not belong to the delay between the anchor gateway and the second adapter.
  • the uplink delay can be referred to as the delay from the second adapter to the anchor gateway.
  • the uplink delay and the downlink delay are consistent. In another implementation manner, the uplink delay and the downlink delay are inconsistent.
  • the delay related information of the anchor gateway includes at least one of the following: related information of the fourth interface, related information of the third interface, delay of the anchor gateway, and service category associated with the data packet.
  • the related information of the fourth interface, the related information of the third interface, and the service category are as described above, and will not be repeated here.
  • the delay of the anchor gateway is the time required for the data packet to pass from the data entry on the anchor gateway (such as the fourth interface or the third interface) to the data exit on the anchor gateway (such as the third interface or the fourth interface) .
  • the delay of the anchor gateway may be at least one of the following:
  • the fourth interface is the second port, and the second port is the port of the anchor gateway.
  • the port of the anchor gateway may be a port connected to a bridge or an end station on the anchor gateway.
  • the time required for the data packet to be transferred from the fourth interface to the third interface may include at least one of the following: the data packet is transferred from the N3N9 interface of the anchor gateway to the second port; the data packet is transferred from the anchor gateway to the second port; The N3N9 interface receives the time required to be delivered to the second port.
  • the time required for the data packet to be transferred from the third interface to the fourth interface may include at least one of the following: the time required for the data packet to be transferred from the second port to the N3N9 interface of the anchor gateway; The time required from the second port to be sent from the N3N9 interface of the anchor gateway.
  • the sending the second capability information and/or the delay related information of the anchor gateway includes: sending the second capability information and/or the delay related information of the anchor gateway when a preset condition is met.
  • the preset condition may be at least one of the following:
  • anchor gateway The type of anchor gateway is bridge
  • the anchor gateway supports time-sensitive communication.
  • the second capability information and/or anchor gateway delay related information can be sent only when the preset conditions are met, so as to avoid frequent sending of the second capability information and/or anchor gateway delay related information, and save The effect of power consumption.
  • the anchor gateway when the anchor gateway supports time-sensitive communication, the second capability information and/or the delay related information of the anchor gateway are sent.
  • the sending the second capability information and/or the delay related information of the anchor gateway includes:
  • the target end includes: the anchor gateway, the RAN network element, and the CN network element.
  • the target end may be an anchor gateway.
  • the target end may be a RAN network element and/or a CN network element.
  • the target end may be a communication network element that forms a network bridge with the anchor gateway and/or the second adapter.
  • the CN network element may include but is not limited to at least one of the following: PCF, AMF, SMF, AF.
  • the method further includes:
  • Obtain port configuration information which includes at least one of the following: port-related information, port bandwidth, and port transmission rate;
  • the aforementioned port configuration information may be sent by the network.
  • the foregoing port configuration information may be port configuration information of the second port.
  • the anchor gateway sends the port configuration information to the second adapter.
  • the bandwidth and/or transmission rate of the port are configured according to the obtained port configuration information, so that the configured port bandwidth is more suitable for the transmission of time-sensitive data.
  • the time-sensitive network adapter can provide the network with related capabilities of the anchor gateway and/or the second adapter. On the one hand, it supports the network to determine the anchor gateway, time-sensitive network adapter and/or network configuration.
  • the bridge capability of the network bridge supports the configuration of time-sensitive data streams, thereby supporting time-sensitive communication.
  • the application scenario 1 of the embodiment of the present disclosure mainly describes the process in which the UE requests to establish a PDU (Protocol Data Unit) session. Please refer to Figure 8, including the following steps:
  • Step 1 The UE sends the first capability information and/or the delay related information of the UE to the AMF (as described in the embodiment of Fig. 4).
  • the UE sends an uplink non-access stratum (NAS) message to the AMF, and the NAS message contains a PDU session establishment request.
  • the PDU session establishment request includes first capability information and/or UE delay related information (as described in the embodiment of FIG. 4).
  • Step 2 AMF sends PDU Session_Create Session Management (Session Mangement, SM) context message to SMF.
  • PDU Session_Create Session Management Session Mangement, SM
  • Step 3 SMF selects UPF.
  • the SMF sends an N4 session establishment to the selected UPF.
  • the SMF obtains the second capability information and/or the delay related information of the anchor gateway from the UPF (as described in the embodiment of FIG. 7).
  • Step 4 The SMF registers the terminal to the unified data management (Unified Data Management, UDM). SMF can also obtain and order the contract data of the terminal.
  • UDM Unified Data Management
  • Step 5 SMF obtains the terminal's strategy from PCF.
  • the SMF sends the acquired first information to the PCF (as described in the embodiment of FIG. 5). For example, determine the bridge capability (such as the bridge delay) of the bridge formed by the UE, the time-sensitive network adapter, and/or the network.
  • the PCF sends the bridge capability to the AF.
  • the AF sends the bridge capability to the CNC.
  • Step 6 SMF sends N1N2 message to AMF.
  • the N1N2 message contains the NAS message accepted for PDU session establishment.
  • Step 7 The AMF sends a PDU session resource establishment request message to the RAN network element.
  • the N1N2 message contains the NAS message for PDU session establishment.
  • Step 8 The RAN network element sends an RRC reconfiguration request to the UE.
  • the request is a NAS message and includes a PDU session establishment command.
  • Step 9 The UE returns an RRC reconfiguration response to the RAN network element.
  • Step 10 The RAN network element returns a PDU session resource establishment response to the AMF.
  • Step 11 AMF sends SM context update request to MF.
  • Step 12 The SMF sends the N4 session update to the UPF, which is also called N4 session modification.
  • Step 13 The UE sends an uplink NAS message to the AMF, which indicates that the PDU session is established.
  • Step 14 SMF sends SM context update response to AMF.
  • Step 15 The SMF sends the N4 session update to the UPF, which is also called N4 session modification.
  • the UE provides the network with the first capability information and/or the UE's delay-related information
  • the anchor gateway provides the network with the second capability information and/or the anchor gateway's delay-related information information.
  • the network can determine the capabilities of the UE, the time-sensitive network adapter, and/or the network bridge formed by the above information, and disclose it to the outside (such as CNC).
  • the CNC can determine the user and/or network configuration information of the bridge formed by the UE and the network according to the bridge capability, so as to support the realization of time-sensitive networks.
  • the application scenario 2 of the embodiment of the present disclosure mainly describes the process of the UE requesting registration. Please refer to Figure 9, including the following steps:
  • Step 1 The UE sends a registration request message to the AMF, and the registration request message includes and/or delay-related information of the UE (as described in the embodiment of FIG. 4).
  • Step 2 AMF registers the terminal to Unified Data Management (UDM). SMF can also obtain and order the contract data of the terminal.
  • UDM Unified Data Management
  • Step 3 AMF and PCF are associated with the UE's strategy.
  • AMF can obtain terminal policies from PCF.
  • Step 4 AMF returns a registration response to the terminal.
  • Step 5 The terminal returns the registration completion to the AMF.
  • the AMF sends the obtained and/or UE delay related information to the PCF.
  • the PCF performs a time-sensitive first operation (as described in the embodiment of FIG. 5) according to the first capability information and/or the delay-related information of the UE. For example, determining the bridge capability (such as the bridge delay) of the bridge formed by the UE, the time-sensitive network adapter, and/or the network.
  • the PCF sends the bridge capability to the AF.
  • the AF sends the bridge capability to the CNC.
  • the UE provides the first capability information to the network.
  • the network may determine the bridge capability of the bridge formed by the UE, the time-sensitive network adapter and/or the network according to the first capability information, and disclose it to the outside (such as CNC).
  • the CNC can determine the user and/or network configuration information of the bridge formed by the UE and the network according to the bridge capability.
  • the network can trigger the UE to establish a PDU session related to the bridge when receiving the configuration information of the user and/or the network. This supports the realization of time-sensitive networks.
  • the UE provides the first capability information to the network.
  • the network may determine the bridge capability of the bridge formed by the UE, the time-sensitive network adapter and/or the network according to the first capability and/or the delay related information of the UE, and disclose it to the outside (such as CNC).
  • the CNC can determine the user and/or network configuration information of the bridge formed by the UE and the network according to the bridge capability.
  • the network can trigger the UE to establish a bridge or port-related PDU session when receiving the configuration information of the user and/or the network.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device is a first communication device.
  • the first communication device includes but is not limited to a UE.
  • the communication device 1000 includes:
  • the sending module 1001 is configured to send first capability information and/or UE delay related information
  • the first capability information may include at least one of the following:
  • the UE and the first adaptor form the whole sending propagation delay related information.
  • the delay-related information between the UE and the first adapter is described in the embodiment of FIG. 4, and will not be repeated here.
  • the bridge identification information of the first adapter is described in the embodiment of FIG. 4, and will not be repeated here.
  • the bandwidth information supported by the first adapter is as described in the embodiment of Fig. 4, and will not be repeated here.
  • the transmission and propagation delay related information of the first adapter is described in the embodiment of FIG. 4, and will not be repeated here.
  • the overall bridge identification information formed by the UE and the first adapter is as described in the embodiment of Fig. 4, and will not be repeated here.
  • the delay related information of the UE is described in the embodiment in FIG.
  • the sending first capability information and/or UE delay related information includes:
  • the preset condition is at least one of the following:
  • the type of the UE is bridge
  • the UE supports time-sensitive communication.
  • the sending first capability information and/or UE delay related information includes:
  • the target end includes: UE, RAN network element, and CN network element.
  • the target end may be a UE.
  • the target end may be a RAN network element and/or a CN network element.
  • the target end may be a communication network element of a network that forms a bridge with the UE and/or the first adapter.
  • the CN network element may include but is not limited to at least one of the following: PCF, AMF, SMF, AF.
  • the communication device 1000 further includes:
  • the obtaining module 1002 is configured to obtain port configuration information, where the port configuration information includes at least one of the following: port-related information, port bandwidth, and port transmission rate;
  • the configuration module 1003 is configured to configure the bandwidth and/or transmission rate of the port according to the obtained port configuration information.
  • the aforementioned port configuration information may be sent by the network.
  • the foregoing port configuration information may be port configuration information of the first port.
  • the UE sends the port configuration information to the first adapter.
  • the sending first capability information and/or UE delay related information includes:
  • the target terminal includes: UE, RAN network element, and CN network element.
  • the communication device 1000 can implement the various processes implemented by the first communication device in the method embodiment of the present disclosure and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • an embodiment of the present disclosure provides another communication device, which is a second communication device, and the second communication device includes but is not limited to CN network elements (such as AMF, SMF, PCF, or AF), as shown in FIG.
  • the communication device 1200 includes:
  • the obtaining module 1201 obtains first information, where the first information includes at least one of the following: first capability information, second capability information, UE delay related information, and/or anchor gateway delay related information;
  • the execution module 1202 executes the first operation according to the first information.
  • the first capability information is the first capability information in the embodiment shown in FIG. 4, and will not be repeated here.
  • the delay-related information of the UE is shown in FIG. 4 as the first capability information in the embodiment, which is not repeated here.
  • the delay related information of the anchor gateway is shown in FIG. 7 as the second capability information in the embodiment, which is not described here.
  • the second capability information is the second capability information in the embodiment shown in FIG. 7, and will not be repeated here.
  • the first operation includes at least one of the following:
  • the configuration information of the time-sensitive data stream is the first transmission configuration information of the time-sensitive data stream or the second transmission configuration information of the time-sensitive data stream;
  • determining the bridge capability of the bridge formed by the UE, the time-sensitive network adapter, and/or the network includes at least one of the following:
  • the first interface may be the first port.
  • the first port is the port connected to the bridge or End Station on the UE or the first adapter.
  • the fourth interface may be the second port.
  • the second port is the port connected to the bridge or End Station on the anchor gateway or the second adapter.
  • the delay in the bridge formed by the UE and the network may be determined as: the delay of the UE, the delay between the UE and the RAN network element, the delay between the RAN network element and the anchor gateway, and the time delay of the anchor gateway.
  • the sum of the five delays ie the delay of the UE + the delay between the UE and the RAN network element + the delay between the RAN network element and the anchor gateway + the delay of the anchor gateway;
  • determining the delay in the bridge formed by the UE, the time-sensitive network adapter, and the network may be: the delay between the UE and the first adapter, the transmission delay between the UE and the RAN network element, and the processing of the RAN network element The sum of five of the delay, the delay between the RAN network element and the anchor gateway, and the delay between the anchor gateway and the second adapter (i.e. the delay between the UE and the first adapter + the transmission delay between the UE and the RAN network element + Processing delay of RAN network element + Delay between RAN network element and anchor gateway + Delay between anchor gateway and second adapter).
  • the intra-bridge delay is the delay between the first interface and the fourth interface.
  • the first capability information includes related information of the first interface and related information of the second interface.
  • the second capability information includes related information of the third interface and related information of the fourth interface.
  • the related information of the second interface may be the information of the first channel in the UU interface.
  • the related information of the third interface may be the information of the first channel in the N3N9 interface.
  • the first interface and the fourth interface are associated.
  • the first channel is as described in the embodiment of Figure 4 and/or Figure 7.
  • the delay between the first interface and the fourth interface may be: the time required for the data packet to pass from the first interface to the second interface, the delay between the UE and the RAN network element, and the delay between the RAN network element and the RAN network element.
  • the sum of the delay between anchor gateways and the time required for the data packet to pass from the third interface to the fourth interface (that is, the time required for the data packet to pass from the first interface to the second interface + between the UE and the RAN network element) Delay + delay between the RAN network element and the anchor gateway + the time required for the data packet to pass from the third interface to the fourth interface);
  • the delay between the first interface and the fourth interface may be: the time required for the data packet to pass from the second interface to the first interface, the delay between the UE and the RAN network element, and the RAN network element The sum of the delay between the anchor gateway and the time required for the data packet to pass from the fourth interface to the third interface (that is, the time required for the data packet to pass from the second interface to the first interface + UE and RAN network element Time delay + time delay between RAN network element and anchor gateway + the sum of the time required for the data packet to pass from the fourth interface to the third interface).
  • the determined transmission configuration information of the time-sensitive data stream is determined.
  • sending configuration information of a time-sensitive data stream may include at least one of the following:
  • the configuration information of the time-sensitive data stream is sent to the anchor gateway and/or the second adapter.
  • the foregoing first condition includes at least one of the following:
  • the time-sensitive data stream is downlink data (for example, when the UE is the egress of the bridge formed by the UE and the network);
  • the type of UE is bridge
  • the architecture type of the time-sensitive network is fully distributed
  • the UE is an end station and the time-sensitive network architecture type is centralized, distributed and hybrid;
  • the indication information of the time-sensitive data stream configuration information indicates that time-sensitive data stream configuration information is required.
  • the above second condition includes at least one of the following:
  • Time-sensitive data flow is upstream data (for example, as the exit of the bridge formed by the anchor gateway and the network);
  • the architecture type of time-sensitive network is fully distributed or centralized distributed hybrid.
  • the communication device 1200 further includes:
  • the sending module 1203 is configured to send the determined network bridge configuration information to at least one of the following:
  • UE anchor gateway, first adapter, second adapter.
  • the bridge configuration information includes at least one of the following: port-related information and port configuration bandwidth.
  • the bridge configuration information is sent to the first adapter through the UE; in another embodiment, the bridge configuration information is sent to the second adapter through the anchor gateway.
  • the bridge configuration information is the configuration information of the bridge exit.
  • the bridge configuration information includes at least one of the following: port-related information and port configuration bandwidth.
  • the bridge configuration information is sent to the UE.
  • the UE may forward the bridge configuration information to the first adapter.
  • the bridge configuration information is sent to the anchor gateway and/or the second adapter.
  • the anchor gateway may forward the bridge configuration information to the second adapter.
  • the communication device 1200 can implement the various processes implemented by the second communication device in the method embodiment of the present disclosure and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • an embodiment of the present disclosure provides another communication device.
  • the communication device is a time-sensitive network adapter.
  • the time-sensitive network adapter includes but is not limited to at least one of the following: a first adapter and a second adapter, as shown in FIG.
  • the communication device 1400 includes:
  • the obtaining module 1401 is used to obtain network bridge configuration information and/or configuration information of time-sensitive data streams;
  • the execution module 1402 is configured to execute the second operation of time-sensitive communication according to the bridge configuration information and/or the configuration information of the time-sensitive data stream.
  • the network bridge configuration information includes at least one of the following:
  • Port-related information Port bandwidth, port transmission rate.
  • the second operation includes:
  • the obtained port configuration information configure the bandwidth and/or transmission rate of the port.
  • the communication device 1400 can implement various processes implemented by the time-sensitive network adapter in the method embodiment of the present disclosure, and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • an embodiment of the present disclosure provides another communication device.
  • the communication device is a third communication device.
  • the third communication device includes but is not limited to at least one of the following: an anchor gateway and a second adapter, as shown in FIG.
  • the communication device 1500 includes:
  • the sending module 1501 is used to send the second capability information and/or the delay related information of the anchor gateway;
  • the second capability information may include at least one of the following:
  • the anchor gateway and the second adapter constitute the whole sending and propagation delay related information.
  • the delay related information between the anchor gateway and the second adapter is described in the embodiment of FIG. 7, and will not be repeated here.
  • the bridge identification information of the second adapter is described in the embodiment of FIG. 7, and will not be repeated here.
  • the bandwidth information supported by the second adapter is described in the embodiment in FIG. 7, and will not be repeated here.
  • the transmission and propagation delay related information of the second adapter is described in the embodiment of FIG. 7, and will not be repeated here.
  • the overall bridge identification information formed by the anchor gateway and the second adapter is described in the embodiment of FIG. 7, and will not be repeated here.
  • the overall transmission and propagation delay related information formed by the anchor gateway and the second adapter is described in the embodiment of FIG. 7, and will not be repeated here.
  • the delay related information of the anchor gateway is described in the embodiment of FIG. 7, and will not be repeated here.
  • the sending the second capability information and/or the delay related information of the anchor gateway includes: sending the second capability information and/or the delay related information of the anchor gateway when a preset condition is met.
  • the preset condition may be at least one of the following:
  • anchor gateway The type of anchor gateway is bridge
  • the anchor gateway supports time-sensitive communication.
  • the method further includes:
  • Obtain port configuration information which includes at least one of the following: port-related information, port bandwidth, and port transmission rate;
  • the sending the second capability information and/or the delay related information of the anchor gateway includes:
  • the target end includes: the anchor gateway, the RAN network element, and the CN network element.
  • the target end may be an anchor gateway.
  • the target end may be a RAN network element and/or a CN network element.
  • the target end may be a communication network element that forms a network bridge with the anchor gateway and/or the second adapter.
  • the CN network element may include but is not limited to at least one of the following: PCF, AMF, SMF, AF.
  • the communication device 1500 can implement each process implemented by the third communication device in the method embodiment of the present disclosure and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • the communication device 1500 further includes:
  • the obtaining module 1502 is configured to obtain port configuration information, where the port configuration information includes at least one of the following: port-related information, port bandwidth, and port transmission rate;
  • the configuration module 1503 is configured to configure the bandwidth and/or transmission rate of the port according to the obtained port configuration information.
  • the aforementioned port configuration information may be sent by the network.
  • the foregoing port configuration information may be port configuration information of the second port.
  • the anchor gateway sends the port configuration information to the second adapter.
  • the bandwidth and/or transmission rate of the port are configured according to the obtained port configuration information, so that the configured port bandwidth is more suitable for the transmission of time-sensitive data.
  • the communication device 1600 can implement each process implemented by the first communication device in the method embodiment of the present disclosure and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • the communication device 1700 includes a memory 1701, a processor 1702, and a computer program 17011 stored on the memory 1701 and running on the processor 1702.
  • the computer program 17011 is executed by the processor 1702 to implement the following steps:
  • the first capability information may include at least one of the following:
  • the UE and the first adaptor form the whole sending propagation delay related information.
  • the UE and the first adapter can be combined as one device or connected through an interface (such as an N60 interface).
  • the first capability information when the first communication device is a UE, the first capability information may be sent to the network. In another implementation manner, when the first communication device is the first adapter, the first capability information may be sent to the UE.
  • the first capability may be understood as the capability of the whole formed by the UE and the first adapter as a network bridge.
  • the first adapter may be a time-sensitive network adapter to which the UE is connected.
  • the UE obtains the first capability information from the first adapter.
  • the related information about the bandwidth supported by the first adapter may be the related information about the available bandwidth supported by the first adapter.
  • the bandwidth information supported by the first adapter may be the bandwidth information supported by the port on the first adapter.
  • the port is a port connected to a bridge or End Station.
  • the overall bandwidth information supported by the UE and the first adapter may be related information about the available bandwidth supported overall by the UE and the first adapter.
  • the overall bandwidth information supported by the UE and the first adapter may be bandwidth information supported by the overall port formed by the UE and the first adapter.
  • the port is a port connected to a bridge or End Station.
  • the bandwidth information supported by the port includes at least one of the following: related information of the port, bandwidth of the port, bandwidth availability parameters of the port, and transmission rate of the port.
  • the bandwidth availability parameters of the port may be as defined in the IEEE 802.1Q series, such as bandwidth availability parameters (Bandwidth Availability Parameters).
  • the bandwidth of the port may be the available bandwidth of the port
  • the transmission rate of the port may be the available transmission rate of the port
  • the transmission and propagation delay related information of the first adapter may be the transmission and propagation delay related information of the port on the first adapter.
  • the overall transmission propagation delay related information formed by the UE and the first adapter may be the overall transmission propagation delay related information formed by the UE and the first adapter.
  • the transmission and propagation delay-related information of the port includes at least one of the following: port-related information, the transmission and propagation delay of the port, and traffic class.
  • the transmission propagation delay of the port may be the time required for the data frame to be transmitted from the port of the first adapter or the port of the whole formed by the UE and the first adapter to the port of the connected station (bridge or end station).
  • the port-related information may include at least one of the following: port identification information, port direction is egress or entry-related information, port number, port MAC address, port IP address, and VLAN associated with the port Label information, data filter information of the port.
  • the data filter information or data filter information of the port may include at least one of the following: virtual local area network (Virtual Local Area Network, VLAN) label information, media access control (MAC) address, IPv4 address, port number , IPv6 address and port indication information, where the port indication information includes the indication information of the sending port or the indication information of the receiving port.
  • VLAN Virtual Local Area Network
  • MAC media access control
  • IPv4 address IPv4 address
  • port number IPv6 address
  • port indication information includes the indication information of the sending port or the indication information of the receiving port.
  • VLAN tag information is also called VLAN identification information (such as VID).
  • VLAN tag information may include: a service VLAN tag (Service VLAN Tag, S-TAG) and/or a user VLAN tag (Customer VLAN Tag, C-TAG).
  • the service category is the number of transmission queues or service type of the port.
  • Service types can include at least one of the following: Background, best effort, excellent effort, critical application, video, voice, and Internetwork control ), Network control.
  • the delay-related information between the UE and the first adapter includes at least one of the following: related information about the first interface, related information about the second interface, delay between the UE and the first adapter, data packets The associated business category.
  • the business categories are as described above, so I won’t repeat them here.
  • the first interface may be a first port, where the first port is a port connected to a network bridge or End Station.
  • the second interface may include one of the following: a UU interface of the UE, and a port connected to the UU interface of the UE.
  • the UU interface is an interface between the UE and the RAN.
  • the first port may be a port of the first adapter or a port of the UE.
  • the port of the first adapter may be a port connected to a network bridge or End Station on the first adapter.
  • the port of the UE may be a port connected to a bridge or End Station on the UE.
  • the UU interface of the UE includes a channel in the UU interface of the UE.
  • the channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the first interface is a data entry, and the second interface is a data exit. In another embodiment, the second interface is a data entry, and the first interface is a data exit.
  • the related information of the first interface may be related information of the port of the first port (the related information of the port is as described above, and will not be repeated here).
  • the related information of the second interface may be the information of the first channel in the UU interface.
  • the first channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the port may be a first port (may be a port of the first adapter or a port of the UE).
  • the data filter information may be data filter information of the first port.
  • the VLAN may be a VLAN associated with the first port.
  • -Port-related channel information includes at least one of the following: port-related information of the port, channel identification information (such as PDU session identification and/or QoS flow identification).
  • the information of the channel related to the VLAN includes at least one of the following: VLAN tag information of the VLAN (the VLAN tag information is as described above, and will not be repeated here), the identification information of the channel (such as PDU session identifier and/or QoS flow) logo).
  • the channel information related to the data filter information includes at least one of the following: data filter information (data filter information is as described above and will not be repeated here), channel identification information (such as PDU session identifier and/or QoS Stream ID).
  • the identification information of the channel may be a QoS flow identification and/or a PDU session identification to which the QoS flow belongs.
  • the identification information of the channel may be a PDU session identifier.
  • the delay between the UE and the first adapter may be the overall bridge delay between the UE and the first adapter.
  • the delay between the UE and the first adapter may be the time required for the data packet to pass from the data entry (such as the first interface or the second interface) to the data exit (such as the second interface or the first interface) .
  • the data exit can be the first port; or when the data entry is the first port At this time, the data outlet can be the UU interface of the UE.
  • the delay between the UE and the first adapter may be at least one of the following:
  • the time required for the data packet to be transferred from the first interface to the second interface is the same as the time required for the data packet to be transferred from the second interface to the first interface. In another implementation manner, the time required for the data packet to be transferred from the first interface to the second interface is different from the time required for the data packet to be transferred from the second interface to the first interface.
  • time required for the data packet to be transferred from the first interface to the second interface may be at least one of the following:
  • the time required for the data packet to be transferred from the first port to the UU interface of the UE includes: the time required for the data packet to be transferred from the first port to the first channel of the UU interface of the UE.
  • the first channel is as described above and will not be repeated here.
  • the time required for a data packet to be received from the first port to being sent from the UU interface of the UE includes: the time required for the data packet to be received from the first port to ready to be sent from the UU interface of the UE to the first channel time.
  • the first channel is as described above and will not be repeated here.
  • the time required for the data packet to be transferred from the second interface to the first interface may be at least one of the following:
  • the time required for a data packet to be received by the UE from the UU interface to being delivered to the first port includes at least one of the following: the data packet is received by the UE from the first channel of the UU interface to being delivered to the first port The time required; the time required for the UE to parse the data packet from the PDCP layer of the first channel of the UU interface to be delivered to the first port.
  • the first channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the port may be a first port, such as a port connected to a bridge or End Station (may be a port of the first adapter or a port of the UE).
  • the data filter information may be the data filter information of the first port.
  • the VLAN may be a VLAN associated with the first port.
  • the time delay between the UE and the first adapter may include at least one of the following: the maximum time delay between the UE and the first adapter and the minimum time delay between the UE and the first adapter.
  • the minimum delay between the UE and the first adapter can also be referred to as the minimum bridge delay between the UE and the first adapter, and the maximum delay between the UE and the first adapter is also referred to as the overall between the UE and the first adapter.
  • the maximum bridge delay The minimum delay between the UE and the first adapter can be further divided into the minimum delay between the UE and the first adapter related to the size of the data packet and the minimum delay between the UE and the first adapter that has nothing to do with the size of the data packet.
  • the maximum time delay between the UE and the first adapter can be further divided into the maximum time delay between the UE and the first adapter related to the data packet size and the maximum time delay between the UE and the first adapter that is not related to the data packet size.
  • the time delay between the UE and the first adapter may include at least one of the following: downlink time delay and uplink time delay.
  • the downlink delay can include one of the following:
  • the downlink delay may be referred to as the delay from the UE to the first adapter.
  • the uplink delay can include at least one of the following:
  • uplink data transmission requires the UE to request RAN scheduling.
  • the time delay waiting for the scheduling of the RAN network element does not belong to the time delay between the UE and the first adapter.
  • the uplink delay can be referred to as the delay from the first adapter to the UE.
  • the uplink delay and the downlink delay are consistent. In another implementation manner, the uplink delay and the downlink delay are inconsistent.
  • the delay related information of the UE includes at least one of the following: related information of the first interface, related information of the second interface, delay of the UE, and service category associated with the data packet.
  • the related information of the first interface, the related information of the second interface, and the service category are as described above, and will not be repeated here.
  • the delay of the UE is the time required for the data packet to pass from the data entry on the UE (such as the first interface or the second interface) to the data exit on the UE (such as the second interface or the first interface).
  • the delay of the UE may be at least one of the following:
  • the first interface is a first port
  • the first port is a port of the UE.
  • the port of the UE may be a port connected to a bridge or End Station on the UE.
  • the time required for the data packet to be transferred from the first interface to the second interface may include at least one of the following: the data packet is transferred from the UU interface of the UE to the first port; the data packet is received by the UE from the UU interface to the first port The time required to be delivered to the first port.
  • the time required for the data packet to pass from the second interface to the first interface may include at least one of the following: the time required for the data packet to pass from the first port to the UU interface of the UE; The time required for a port to be received until it is ready to transmit from the UU interface of the UE.
  • the sending first capability information and/or UE delay related information includes:
  • the first capability information and/or the UE delay related information are sent.
  • the preset condition may be at least one of the following:
  • the type of UE is bridge
  • the UE supports time-sensitive communication.
  • the first capability information and/or UE delay related information can be sent only when the preset conditions are met, so as to avoid frequent sending of the first capability information and/or UE delay related information, and achieve the effect of saving power consumption. .
  • the first capability information and/or delay related information of the UE are sent.
  • the sending first capability information and/or UE delay related information includes:
  • the target end includes: UE, RAN network element, and CN network element.
  • the target end may be a UE.
  • the target end may be a RAN network element and/or a CN network element.
  • the target end may be a communication network element of a network that forms a bridge with the UE and/or the first adapter.
  • the CN network element may include but is not limited to at least one of the following: PCF, AMF, SMF, AF.
  • the method further includes:
  • Obtain port configuration information which includes at least one of the following: port-related information, port bandwidth, and port transmission rate;
  • the aforementioned port configuration information may be sent by the network.
  • the foregoing port configuration information may be port configuration information of the first port.
  • the UE sends the port configuration information to the first adapter.
  • the bandwidth and/or transmission rate of the port are configured according to the obtained port configuration information, so that the configured port bandwidth is more suitable for the transmission of time-sensitive data.
  • the computer program 17011 is executed by the processor 1702 to implement the following steps:
  • first information includes at least one of the following: first capability information, second capability information, UE delay related information, and/or anchor gateway delay related information;
  • Step 52 Perform a first operation according to the first information.
  • the first capability information is the first capability information in the embodiment shown in FIG. 4, and will not be repeated here.
  • the delay-related information of the UE is shown in FIG. 4 as the first capability information in the embodiment, which is not repeated here.
  • the delay related information of the anchor gateway is shown in FIG. 7 as the second capability information in the embodiment, which is not described here.
  • the second capability information is the second capability information in the embodiment shown in FIG. 7, and will not be repeated here.
  • the first capability information and/or delay related information of the UE may be obtained from at least one of the following: UE, the first communication device, and the RAN network element currently accessed by the UE.
  • the second capability information and/or the delay related information of the anchor gateway may be obtained from at least one of the following: UE, anchor gateway, and third communication device.
  • the anchor gateway is a gateway that terminates the N6 interface. Further, the anchor gateway may be an anchor gateway that establishes a bridge-related channel or a port-related channel.
  • the RAN network element may be a RAN network element serving the UE.
  • the above-mentioned first operation may be a time-sensitive related operation.
  • the first operation may include at least one of the following:
  • the configuration information of the time-sensitive data stream is the first transmission configuration information of the time-sensitive data stream or the second transmission configuration information of the time-sensitive data stream;
  • determining the bridge capability of the bridge formed by the UE, the time-sensitive network adapter, and/or the network includes at least one of the following:
  • the first interface may be the first port.
  • the first port is the port connected to the bridge or End Station on the UE or the first adapter.
  • the fourth interface may be the second port.
  • the second port is the port connected to the bridge or End Station on the anchor gateway or the second adapter.
  • the delay in the bridge formed by the UE and the network may be determined as: the delay of the UE, the delay between the UE and the RAN network element, the delay between the RAN network element and the anchor gateway, and the time delay of the anchor gateway.
  • the sum of the five delays ie the delay of the UE + the delay between the UE and the RAN network element + the delay between the RAN network element and the anchor gateway + the delay of the anchor gateway;
  • determining the delay in the bridge formed by the UE, the time-sensitive network adapter, and the network may be: the delay between the UE and the first adapter, the transmission delay between the UE and the RAN network element, and the processing of the RAN network element The sum of five of the delay, the delay between the RAN network element and the anchor gateway, and the delay between the anchor gateway and the second adapter (i.e. the delay between the UE and the first adapter + the transmission delay between the UE and the RAN network element + Processing delay of RAN network element + Delay between RAN network element and anchor gateway + Delay between anchor gateway and second adapter).
  • the intra-bridge delay is the delay between the first interface and the fourth interface.
  • the first capability information includes related information of the first interface and related information of the second interface.
  • the second capability information includes related information of the third interface and related information of the fourth interface.
  • the related information of the second interface may be the information of the first channel in the UU interface.
  • the related information of the third interface may be the information of the first channel in the N3N9 interface.
  • the first interface and the fourth interface are associated.
  • the first channel is as described in the embodiment of Figure 4 and/or Figure 7.
  • the delay between the first interface and the fourth interface may be: the time required for the data packet to pass from the first interface to the second interface, the delay between the UE and the RAN network element, and the delay between the RAN network element and the RAN network element.
  • the sum of the delay between anchor gateways and the time required for data packets to pass from the third interface to the fourth interface (that is, the time required for data packets to pass from the first interface to the second interface + between the UE and the RAN network element) Time delay + time delay between the RAN network element and the anchor gateway + the time required for the data packet to pass from the third interface to the fourth interface).
  • the delay between the first interface and the fourth interface may be: the time required for the data packet to pass from the second interface to the first interface, the delay between the UE and the RAN network element, and the RAN network element The sum of the delay between the anchor gateway and the time required for the data packet to pass from the fourth interface to the third interface (that is, the time required for the data packet to pass from the second interface to the first interface + UE and RAN network element Time delay + time delay between RAN network element and anchor gateway + the sum of the time required for the data packet to pass from the fourth interface to the third interface).
  • the determined transmission configuration information of the time-sensitive data stream is determined.
  • sending configuration information of a time-sensitive data stream may include at least one of the following:
  • the configuration information of the time-sensitive data stream is sent to the anchor gateway and/or the second adapter.
  • the foregoing first condition includes at least one of the following:
  • the time-sensitive data stream is downlink data (for example, when the UE is the egress of the bridge formed by the UE and the network);
  • the type of UE is bridge
  • the architecture type of the time-sensitive network is fully distributed
  • the UE is an end station and the time-sensitive network architecture type is centralized, distributed and hybrid;
  • the indication information of the time-sensitive data stream configuration information indicates that time-sensitive data stream configuration information is required.
  • the above second condition includes at least one of the following:
  • Time-sensitive data flow is upstream data (for example, as the exit of the bridge formed by the anchor gateway and the network);
  • the architecture type of time-sensitive network is fully distributed or centralized distributed hybrid.
  • the method further includes:
  • UE anchor gateway, first adapter, second adapter.
  • the bridge configuration information is sent to the first adapter through the UE; in another embodiment, the bridge configuration information is sent to the second adapter through the anchor gateway.
  • the bridge configuration information is the configuration information of the bridge exit.
  • the bridge configuration information includes at least one of the following: port-related information and port configuration bandwidth.
  • the bridge configuration information is sent to the UE.
  • the UE may forward the bridge configuration information to the first adapter.
  • the bridge configuration information is sent to the anchor gateway and/or the second adapter.
  • the anchor gateway may forward the bridge configuration information to the second adapter.
  • the computer program 17011 is executed by the processor 1702 to implement the following steps:
  • the second operation of time-sensitive communication is performed.
  • the above-mentioned network bridge configuration information may be network egress configuration information.
  • the bridge configuration information includes at least one of the following: port-related information, port bandwidth, and port transmission rate.
  • the bandwidth of the port may be the available bandwidth of the port
  • the transmission rate of the port may be the available transmission rate of the port
  • the related information of the port is as described in Embodiment 4, and will not be repeated here.
  • performing the second related operation of time-sensitive communication according to the bridge configuration information and/or the configuration information of the time-sensitive data stream includes: configuring the bandwidth and/or transmission rate of the port according to the obtained port configuration information .
  • time-sensitive communication is supported through the configuration of the bridge exit.
  • the computer program 17011 is executed by the processor 1702 to implement the following steps:
  • the second capability information may include at least one of the following:
  • the anchor gateway and the second adapter constitute the whole sending and propagation delay related information.
  • the anchor gateway and the second adapter can be combined as one device or connected through an interface.
  • the second capability information may be sent to the network.
  • the second capability information may be sent to the anchor gateway.
  • the anchor gateway may be a gateway (such as UPF) that terminates the N6 interface.
  • the second capability may be understood as the capability of the whole formed by the anchor gateway and the second adapter as a network bridge.
  • the second adapter may be a time-sensitive network adapter connected to the anchor gateway.
  • the anchor gateway obtains the second capability information from the second adapter.
  • the related information about the bandwidth supported by the second adapter may be the related information about the available bandwidth supported by the second adapter.
  • the bandwidth information supported by the second adapter may be bandwidth information supported by the port on the second adapter.
  • the port is a port connected to a bridge or End Station.
  • the overall bandwidth information supported by the anchor gateway and the second adapter may be related information about the available bandwidth supported overall by the anchor gateway and the second adapter.
  • the overall bandwidth information formed by the anchor gateway and the second adapter may be bandwidth information supported by the overall port formed by the anchor gateway and the second adapter.
  • the port is a port connected to a bridge or End Station.
  • the bandwidth information supported by the port includes at least one of the following: related information of the port, bandwidth of the port, bandwidth availability parameters of the port, and transmission rate of the port.
  • the bandwidth availability parameters of the port may be as defined in the IEEE 802.1Q series, such as bandwidth availability parameters (Bandwidth Availability Parameters).
  • the bandwidth of the port may be the available bandwidth of the port
  • the transmission rate of the port may be the available transmission rate of the port
  • the transmission propagation delay related information of the second adapter may be the transmission propagation delay related information of the port on the second adapter.
  • the overall transmission and propagation delay related information formed by the anchor gateway and the second adapter may be the overall transmission and propagation delay related information of the port formed by the anchor gateway and the second adapter.
  • the transmission and propagation delay-related information of the port includes at least one of the following: port-related information, the transmission and propagation delay of the port, and traffic class.
  • the transmission propagation delay of the port may be the time required for the data frame to pass from the port of the second adapter or the integral port formed by the anchor gateway and the second adapter to the port of the connected station (bridge or end station).
  • the port-related information may include at least one of the following: port identification information, port direction is egress or entry-related information, port number, port MAC address, port IP address, and VLAN associated with the port Label information, data filter information of the port.
  • the data filter information or data filter information of the port may include at least one of the following: virtual local area network (Virtual Local Area Network, VLAN) label information, media access control (MAC) address, IPv4 address, port number , IPv6 address and port indication information, where the port indication information includes the indication information of the sending port or the indication information of the receiving port.
  • VLAN Virtual Local Area Network
  • MAC media access control
  • IPv4 address IPv4 address
  • port number IPv6 address
  • port indication information includes the indication information of the sending port or the indication information of the receiving port.
  • VLAN tag information is also called VLAN identification information (such as VID).
  • VLAN tag information may include: a service VLAN tag (Service VLAN Tag, S-TAG) and/or a user VLAN tag (Customer VLAN Tag, C-TAG).
  • the service category is the number of transmission queues or service type of the port.
  • Service types can include at least one of the following: Background, best effort, excellent effort, critical application, video, voice, and Internetwork control ), Network control.
  • the delay-related information between the anchor gateway and the second adapter includes at least one of the following: information about the fourth interface, information about the third interface, and time between the anchor gateway and the second adapter.
  • the business category associated with the extension and data packet The business categories are as described above, so I won’t repeat them here.
  • the fourth interface may be a second port, where the second port is a port connected to a network bridge or End Station.
  • the third interface may include one of the following: an N3N9 interface of the anchor gateway, a port connected to the N3N9 interface of the anchor gateway, an N6 interface, and a port connected to the N6 interface.
  • the N3N9 interface is an N3 interface or an N9 interface.
  • the N9 interface is the interface between the gateway and the gateway.
  • the N6 interface is the interface between the anchor gateway and the external network.
  • the second port may be the port of the second adapter or the port of the anchor gateway.
  • the port of the second adapter can be the port connected to the bridge or End Station on the second adapter.
  • the port of the anchor gateway can be the port of the anchor gateway connected to the bridge or End Station.
  • the N3N9 interface of the anchor gateway includes a channel in the N3N9 interface of the anchor gateway.
  • the channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the fourth interface is a data entry, and the third interface is a data exit. In another embodiment, the third interface is a data entry, and the fourth interface is a data exit.
  • the related information of the fourth interface may be related information of the port of the second port (the related information of the port is as described above, and will not be repeated here).
  • the related information of the third interface may be the information of the first channel of the N3N9 interface.
  • the first channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the port may be a second port (may be a port of a second adapter or a port of an anchor gateway).
  • the data filter information may be data filter information of the second port.
  • the VLAN may be a VLAN associated with the second port.
  • -Port-related channel information includes at least one of the following: port-related information of the port, channel identification information (such as PDU session identification and/or QoS flow identification).
  • the information of the channel related to the VLAN includes at least one of the following: VLAN tag information of the VLAN (the VLAN tag information is as described above, and will not be repeated here), the identification information of the channel (such as PDU session identifier and/or QoS flow) logo).
  • the channel information related to the data filter information includes at least one of the following: data filter information (data filter information is as described above and will not be repeated here), channel identification information (such as PDU session identifier and/or QoS Stream ID).
  • the identification information of the channel may be a QoS flow identification and/or a PDU session identification to which the QoS flow belongs.
  • the identification information of the channel may be a PDU session identifier.
  • the delay between the anchor gateway and the second adapter may be a bridge delay formed by the anchor gateway and the second adapter as a whole.
  • the delay between the anchor gateway and the second adapter may be required for the data packet to pass from the data entry (such as the fourth interface or the third interface) to the data exit (such as the third interface or the fourth interface) time.
  • the data exit when the data entry (such as the fourth interface or the third interface) is the N3N9 interface of the anchor gateway, the data exit (such as the third interface or the fourth interface) can be the second port; or when the data entry is the first port In the case of two ports, the data outlet can be the N3N9 interface of the anchor gateway.
  • the delay between the anchor gateway and the second adapter may be at least one of the following:
  • the time required for the data packet to be transferred from the fourth interface to the third interface is the same as the time required for the data packet to be transferred from the third interface to the fourth interface. In another implementation manner, the time required for the data packet to pass from the fourth interface to the third interface is different from the time required for the data packet to pass from the third interface to the fourth interface.
  • time required for the data packet to be transferred from the fourth interface to the third interface may be at least one of the following:
  • the time required for the data packet to pass from the second port to the N3N9 interface of the anchor gateway includes: the time required for the data packet to pass from the port of the second adapter to the first channel of the N3N9 interface of the anchor gateway .
  • the first channel is as described above and will not be repeated here.
  • the time required for the data packet to be sent from the second port to the N3N9 interface of the anchor gateway includes: the data packet is received from the second port to the time it takes for the data packet to be sent from the N3N9 interface of the anchor gateway to the first The time required for a channel.
  • the first channel is as described above and will not be repeated here.
  • the time required for the data packet to pass from the third interface to the fourth interface may be at least one of the following:
  • the time required for the data packet to be delivered to the second port from the N3N9 interface by the anchor gateway includes at least one of the following: the data packet is received by the anchor gateway from the first channel of the N3N9 interface to be delivered The time required to reach the second port; the time required for the data packet to be parsed by the anchor gateway from the GTP-U layer of the first channel of the N3N9 interface to be delivered to the second port.
  • the first channel may include at least one of the following: a channel related to a port, a channel related to a VLAN, and a channel related to data filter information.
  • the port may be a second port, such as a port connected to a bridge or End Station (may be a port of a second adapter or a port of an anchor gateway).
  • the data filter information may be the data filter information of the second port.
  • the VLAN may be a VLAN associated with the second port.
  • the delay between the anchor gateway and the second adapter may include at least one of the following: the maximum delay between the anchor gateway and the second adapter and the delay between the anchor gateway and the second adapter
  • the smallest extension can also be referred to as the minimum bridge delay formed by the anchor gateway and the second adapter, and the maximum delay between the anchor gateway and the second adapter is also called the anchor The maximum bridge delay of the whole formed by the gateway and the second adapter.
  • the minimum delay between the anchor gateway and the second adapter can be further divided into the minimum delay between the anchor gateway and the second adapter, which is related to the data packet size, and the minimum delay between the anchor gateway and the second adapter, which is not related to the data packet size. The smallest extension.
  • the maximum delay between the anchor gateway and the second adapter can be further divided into the maximum delay between the anchor gateway and the second adapter, which is related to the packet size, and the maximum delay between the anchor gateway and the second adapter, which is not related to the packet size. Maximum delay.
  • the delay between the anchor gateway and the second adapter may include at least one of the following: downlink delay and uplink delay.
  • the downlink delay can include one of the following:
  • the downlink delay can be referred to as the delay from the anchor gateway to the second adapter.
  • the uplink delay can include at least one of the following:
  • uplink data transmission requires the anchor gateway to request RAN scheduling.
  • the delay waiting for the scheduling of the RAN network element does not belong to the delay between the anchor gateway and the second adapter.
  • the uplink delay can be referred to as the delay from the second adapter to the anchor gateway.
  • the uplink delay and the downlink delay are consistent. In another implementation manner, the uplink delay and the downlink delay are inconsistent.
  • the delay related information of the anchor gateway includes at least one of the following: related information of the fourth interface, related information of the third interface, delay of the anchor gateway, and service category associated with the data packet.
  • the related information of the fourth interface, the related information of the third interface, and the service category are as described above, and will not be repeated here.
  • the delay of the anchor gateway is the time required for the data packet to pass from the data entry on the anchor gateway (such as the fourth interface or the third interface) to the data exit on the anchor gateway (such as the third interface or the fourth interface) .
  • the delay of the anchor gateway may be at least one of the following:
  • the fourth interface is the second port, and the second port is the port of the anchor gateway.
  • the port of the anchor gateway may be a port connected to a bridge or an end station on the anchor gateway.
  • the time required for the data packet to be transferred from the fourth interface to the third interface may include at least one of the following: the data packet is transferred from the N3N9 interface of the anchor gateway to the second port; the data packet is transferred from the anchor gateway to the second port; The N3N9 interface receives the time required to be delivered to the second port.
  • the time required for the data packet to be transferred from the third interface to the fourth interface may include at least one of the following: the time required for the data packet to be transferred from the second port to the N3N9 interface of the anchor gateway; The time required from the second port to be sent from the N3N9 interface of the anchor gateway.
  • the sending the second capability information and/or the delay related information of the anchor gateway includes: sending the second capability information and/or the delay related information of the anchor gateway when a preset condition is met.
  • the preset condition may be at least one of the following:
  • anchor gateway The type of anchor gateway is bridge
  • the anchor gateway supports time-sensitive communication.
  • the second capability information and/or anchor gateway delay related information can be sent only when the preset conditions are met, so as to avoid frequent sending of the second capability information and/or anchor gateway delay related information, and save The effect of power consumption.
  • the anchor gateway when the anchor gateway supports time-sensitive communication, the second capability information and/or the delay related information of the anchor gateway are sent.
  • the sending the second capability information and/or the delay related information of the anchor gateway includes:
  • the target end includes: the anchor gateway, the RAN network element, and the CN network element.
  • the target end may be an anchor gateway.
  • the target end may be a RAN network element and/or a CN network element.
  • the target end may be a communication network element that forms a network bridge with the anchor gateway and/or the second adapter.
  • the CN network element may include but is not limited to at least one of the following: PCF, AMF, SMF, AF.
  • the method further includes:
  • Obtain port configuration information which includes at least one of the following: port-related information, port bandwidth, and port transmission rate;
  • the aforementioned port configuration information may be sent by the network.
  • the foregoing port configuration information may be port configuration information of the second port.
  • the anchor gateway sends the port configuration information to the second adapter.
  • the bandwidth and/or transmission rate of the port are configured according to the obtained port configuration information, so that the configured port bandwidth is more suitable for the transmission of time-sensitive data.
  • the communication device 1700 can implement each process implemented by the communication device in the foregoing method embodiment, and to avoid repetition, details are not described herein again.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, each process of any of the foregoing method embodiments for supporting time-sensitive communication is realized, and To achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or the part that contributes to the related technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or a part that contributes to the related technology.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer readable storage medium. When executed, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, sub-units, sub-modules, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processors, DSP), digital signal processing equipment ( DSP Device (DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this disclosure.
  • ASICs application specific integrated circuits
  • DSP digital signal processors
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例提供一种支持时间敏感通信的方法及通信设备,应用于第一通信设备的支持时间敏感通信的方法包括:发送第一能力信息和/或UE的时延相关信息;其中,所述第一能力信息包括以下至少一项:UE和第一适配器间的时延相关信息、第一适配器的网桥标识信息、第一适配器的支持的带宽信息、第一适配器的发送传播时延相关信息、UE和第一适配器构成的整体的网桥标识信息、UE和第一适配器构成的整体支持的带宽信息、UE和第一适配器构成的整体的发送传播时延相关信息。

Description

支持时间敏感通信的方法及通信设备
相关申请的交叉引用
本申请主张在2019年2月3日在中国提交的中国专利申请号No.201910108730.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及无线通信技术领域,尤其涉及一种支持时间敏感通信的方法及通信设备。
背景技术
许多垂直行业都有时间敏感通信的需求。在工业互联网中,存在时间敏感数据,比如机器人指令,需要在指定时间内按序执行。但网络传送资源是共享的,数据传送存在时延和抖动,不能支持时间敏感的数据。所以,一种时间敏感的网络被提出,以支持时间敏感数据的传送。
时间敏感网络将时间划分为间隔(Interval),为滑动窗口。在每个滑动窗口定义时间敏感数据流的流量标准(traffic specification),提前预留传送资源。这样,当传送数据的滑动窗口到达时,即使没有时间敏感数据流,网络资源也不能被其他数据流占用。当时间敏感数据流到达时,占用专用资源进行传送。
时间敏感数据流发送端称为talker,时间敏感数据流的接收端称为listener。talker和listener之间通过的一个或多个网桥进行数据的转发。
Talker、listener或网桥的传输媒介都有可能是无线连接。所以,无线通信网络可以是时间敏感网络中的传输媒介。在无线通信网络如何支持时间敏感通信,是相关技术中亟待解决的技术问题。
发明内容
本公开实施例提供一种支持时间敏感通信的方法及通信设备,用于解决在无线通信网络如何支持时间敏感通信的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种支持时间敏感通信的方法,应用于第一通信设备,包括:
发送第一能力信息和/或UE的时延相关信息;
其中,所述第一能力信息包括以下至少一项:
UE和第一适配器间的时延相关信息、第一适配器的网桥标识信息、第一适配器的支持的带宽信息、第一适配器的发送传播时延相关信息、UE和第一适配器构成的整体的网桥标识信息、UE和第一适配器构成的整体支持的带宽信息、UE和第一适配器构成的整体的发送传播时延相关信息。
第二方面,本公开实施例提供了一种支持时间敏感通信的方法,应用于第二通信设备,包括:
获取第一信息,所述第一信息包括以下至少一项,第一能力信息、第二能力信息、UE的时延相关信息、和/或锚点网关的时延相关信息;
根据所述第一信息,执行第一操作;
其中,所述第一能力信息包括以下至少一项:第一适配器的网桥标识信息、第一适配器的支持的带宽信息、第一适配器的发送传播时延相关信息、UE和第一适配器构成的整体的网桥标识信息、UE和第一适配器构成的整体支持的带宽信息、UE和第一适配器构成的整体的发送传播时延相关信息;
所述第二能力信息包括以下至少一项:第二适配器的网桥标识信息、第二适配器的支持的带宽信息、第二适配器的发送传播时延相关信息、锚点网关和第二适配器构成的整体的网桥标识信息、锚点网关和第二适配器构成的整体支持的带宽信息、锚点网关和第二适配器构成的整体的发送传播时延相关信息。
第三方面,本公开实施例提供了一种支持时间敏感通信的方法,应用于时间敏感网络适配器,包括:
获取网桥配置信息和/或时间敏感数据流的配置信息;
根据所述网桥配置信息和/或时间敏感数据流的配置信息,执行时间敏感通信的第二操作。
第四方面,本公开实施例提供了一种支持时间敏感通信的方法,应用于 第三通信设备,包括:
发送第二能力信息;
其中,所述第二能力信息包括以下至少一项:
锚点网关与第二适配器间的时延相关信息、
第二适配器的网桥标识信息、
第二适配器的支持的带宽信息、
第二适配器的发送传播时延相关信息、
锚点网关和第二适配器构成的整体的网桥标识信息、
锚点网关和第二适配器构成的整体支持的带宽信息、
锚点网关和第二适配器构成的整体的发送传播时延相关信息。
第五方面,本公开实施例提供了一种通信设备,所述通信设备为第一通信设备,包括:
发送模块,用于发送第一能力信息和/或UE的时延相关信息;
其中,所述第一能力信息包括以下至少一项:
UE和第一适配器间的时延相关信息、第一适配器的网桥标识信息、第一适配器的支持的带宽信息、第一适配器的发送传播时延相关信息、UE和第一适配器构成的整体的网桥标识信息、UE和第一适配器构成的整体支持的带宽信息、UE和第一适配器构成的整体的发送传播时延相关信息。
第六方面,本公开实施例提供了一种通信设备,所述通信设备为第二通信设备,包括:
获取模块,用于获取第一信息,所述第一信息包括以下至少一项,第一能力信息、第二能力信息、UE的时延相关信息、和/或锚点网关的时延相关信息;
执行模块,用于根据所述第一信息,执行第一操作;
其中,所述第一能力信息包括以下至少一项:第一适配器的网桥标识信息、第一适配器的支持的带宽信息、第一适配器的发送传播时延相关信息、UE和第一适配器构成的整体的网桥标识信息、UE和第一适配器构成的整体支持的带宽信息、UE和第一适配器构成的整体的发送传播时延相关信息;
所述第二能力信息包括以下至少一项:第二适配器的网桥标识信息、第 二适配器的支持的带宽信息、第二适配器的发送传播时延相关信息、锚点网关和第二适配器构成的整体的网桥标识信息、锚点网关和第二适配器构成的整体支持的带宽信息、锚点网关和第二适配器构成的整体的发送传播时延相关信息。
第七方面,本公开实施例提供了一种通信设备,所述通信设备为时间敏感网络适配器,包括:
获取模块,用于获取网桥配置信息和/或时间敏感数据流的配置信息;
执行模块,用于根据所述网桥配置信息和/或时间敏感数据流的配置信息,执行时间敏感通信的第二操作。
第八方面,本公开实施例提供了一种通信设备,所述通信设备为时间敏感网络适配器,包括:
发送模块,用于发送第二能力信息和/或锚点网关的时延相关信息;
其中,所述第二能力信息包括以下至少一项:
锚点网关与第二适配器间的时延相关信息、
第二适配器的网桥标识信息、
第二适配器的支持的带宽信息、
第二适配器的发送传播时延相关信息、
锚点网关和第二适配器构成的整体的网桥标识信息、
锚点网关和第二适配器构成的整体支持的带宽信息、
锚点网关和第二适配器构成的整体的发送传播时延相关信息。
第九方面,本公开实施例提供了一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现第一方面提供的支持时间敏感通信的方法的步骤,或者,实现第二方面提供的支持时间敏感通信的方法的步骤,或者,实现第三方面提供的支持时间敏感通信的方法的步骤,或者,实现第四方面提供的支持时间敏感通信的方法的步骤。
第十方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面提供的支持时间敏感通信的方法的步骤,或者,实现第二方面提供的 支持时间敏感通信的方法的步骤,或者,实现第三方面提供的支持时间敏感通信的方法的步骤,或者,实现第四方面提供的支持时间敏感通信的方法的步骤。
在本公开实施例中,可以向网络提供第一能力信息,UE的时延相关信息,第二能力信息和/或锚点网关的时延相关信息。支持网络基于以上信息确定出UE、时间敏感网络适配器和/或网络构成的网桥的能力,并向外部(如CNC)公开。外部根据网桥能力可以确定UE与网络构成的网桥的用户和/或网络的配置信息,从而支持时间敏感网络的实现。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开实施例提供的一种无线通信系统的架构示意图;
图2为本公开实施例提供的另一种无线通信系统的架构示意图;
图3为一种时间敏感数据流在网桥中传送示意图;
图4为本公开实施例提供的一种支持时间敏感通信的方法的流程图;
图5为本公开实施例提供的另一种支持时间敏感通信的方法的流程图;
图6为本公开实施例提供的另一种支持时间敏感通信的方法的流程图;
图7为本公开实施例提供的另一种支持时间敏感通信的方法的流程图;
图8为本公开实施例提供的另一种支持时间敏感通信的方法的示意图;
图9为本公开实施例提供的另一种支持时间敏感通信的方法的示意图;
图10为本公开提供的一种通信设备的结构图;
图11为本公开提供的另一种通信设备的结构图;
图12为本公开提供的另一种通信设备的结构图;
图13为本公开提供的另一种通信设备的结构图;
图14为本公开提供的另一种通信设备的结构图;
图15为本公开提供的另一种通信设备的结构图;
图16为本公开提供的另一种通信设备的结构图;
图17为本公开提供的另一种通信设备的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更可选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的支持时间敏感通信的方法及通信设备可以应用于无线通信系统中。该无线通信系统可以为第五代(5 th generation,5G)系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
在本公开实施例中,时间敏感(Time Sensing)也可以称为周期确定性(Periodic deterministic)。时间敏感通信也可以称为周期确定性通信(Periodic deterministic communication)。时间敏感数据流也可以也可以称为周期确定性数据流。一种时间敏感的网络技术比如美国电气和电子工程师协会(Institute of Electrical and Electronic Engineers,IEEE)TSN(Time Sensing Network)。周期确定性通信是以传送间隔为周期进行数据传送。
本公开实施例中,时间敏感数据流的传送配置信息可以包括用户和/或网 络配置信息。用户和/或网络配置信息(User/Network Configuration Information)用于配置时间敏感数据流的发送。用户和/或网络配置信息可以为IEEE 802.1Qcc中用户和/或网络配置信息。用户和/或网络配置信息可以包括以下至少一项:接收端组(listener group),发送端组(talker group),流量标准(traffic specification)。
参考图1,为本公开实施例提供的一种无线通信系统的架构示意图。
时间敏感数据流发送端称为talker,时间敏感数据流的接收端称为listener。talker和listener之间通过的一个或多个网桥进行数据的转发。结束站节点(End Station)可以是talker或listener。网桥(Bridge)负责talker和listener之间的数据传送。
UE、时间敏感适配器和无线通信网络构成一个网桥,对下行数据,第一适配器和UE是网桥(Bridge)出口,UPF和第二适配器是网桥入口。对上行数据,第一适配器和UE是网桥入口,用户平面功能(User Plane Function,UPF)和第二适配器是网桥出口。
第一适配器是时间敏感网络的适配器,用于终结5G网桥UE侧的端口或用于连接网桥或End Station。第二适配器是时间敏感网络的适配器,用于终结5G网桥网络侧的端口或用于连接网桥或End Station。
第一适配器,和/或第二适配器可以是时间敏感网络的适配器。时间敏感网络的适配器也可以称为时间敏感网络的翻译器(TSN(Time Sensing Network)TRANSLATOR)
UE可以和第一适配器合设,此时可以认为,UE连接网桥或End Station。锚点网关可以和第二适配器合设,此时可以认为,锚点网关连接网桥或End Station。
UE可以和End Station合设。UE可以也可以与网桥合设。UE可以连接网桥或UE可以连接End Station。
UE可以和第一适配器合设。UPF可以和第二适配器合设。
用户和/或网络配置信息(User/Network Configuration Information)用于配置时间敏感数据流的发送。对于集中式的架构,无线通信网络可以通过提供配置信息的外部控制单元和应用功能(Application function,AF)获得用户和 /或网络配置信息,其中,上述提供配置信息的外部控制单元可以是集中式网络配置(Centralized Network configuration,CNC),但不作限定。
对于分布式的架构,无线通信网络可以从网桥入口接收上一跳的用户和/或网络配置信息,再生成本网桥的用户和/或网络配置信息。
参考图2,为本公开实施例提供的另一种无线通信系统的架构示意图。
如图2所示,包括UE、无线接入网(Radio Access Network,RAN)网元和网关UPF,其中,UPF可是一个或多个UPF。RAN与锚点UPF之间可以存在零个或多个中间(Intermediate)UPF。
参考图3,为一种时间敏感数据流在网桥中传送示意图。时间敏感网络将时间划分为间隔(Interval),为滑动窗口,而上述两个圆圈之间可以表示网桥2时延(Bridge delay)。在本公开一种实施例中,终端、第一适配器
第二适配器与无线通信网络构成的网桥可以简称为终端、时间敏感适配器与网络构成的网桥。
在本公开一种实施例中,传送间隔可以称为传送周期。
为了支持时间敏感通信服务,还要解决如下问题:
问题1:当CNC确定用户和/或网络配置信息时,需要考虑网桥时延。如图2所示,网桥时延包括UE与第一适配器间的时延、UE与RAN网元间时延和RAN与UPF间时延、UPF。
(1)UE与第一适配器间的时延与UE的有关。不同的UE,能力可以不同。不同UE连接的第一适配器也可以不同,一个UE或第一适配器可以支持多个端口。UE与第一适配器间的时延也可以称为UE和第一适配器构成网桥的网桥时延。可以是一个端口与UU接口间数据传输的时间。所以端口不同,UE与第一适配器间的时延也可以不同。时间敏感网络对时延要求为纳秒级别,所以UE与第一适配器间的时延不可忽略。所以网络如何获知UE与第一适配器间的时延来确定UE、时间敏感网络适配器和/或无线通信网络构成的网桥的网桥时延时需要解决的问题。
(2)锚点网关与第二适配器间的时延是网桥内时延的一部分。不同的锚点网关,能力不同。其连接的第二适配器也可以不同,一个锚点网关或第二适配器可以支持多个端口。锚点网关与第二适配器间的时延也可以称为锚点 网关和第二适配器构成网桥的网桥时延。所以网络如何获知锚点网关与第二适配器间的时延来确定UE、时间敏感网络适配器和/或无线通信网络构成的网桥的网桥时延时需要解决的问题。
问题2:当UE或第一适配器作为网桥出口时,由于UE或第一适配器的能力不同,UE或第一适配器连接的传输媒介能力不同。所以第一适配器支持的可用带宽(或称为传输速率)不同。即第一适配器UE和/或第一适配器构成的整体的传播时延不同。
对同一个大小的数据包,不同的带宽下需要的传输时间不同。对时间敏感的网络,最晚开始传送时间与数据传送结束时间之间的时间段要足够传送完传送间隔内最后一个数据包。由于数据传送间隔结束时间是一样的,则对不同的带宽,最晚开始传送时间不同。
相关技术中,对集中式网桥架构,CNC需要获得网桥的能力(比如可用带宽)才能配置用户和/或网络配置信息。对分布式的网桥架构,UE与网络构成的网桥收到SRP消息后,获得上一跳用户和/或网络配置信息,也需要根据网桥的能力配置下一跳的用户和/或网络配置信息。但,无线通信网络还缺乏UE和/或第一适配器构成的整体出口能力的信息。同理,无线通信网络也缺乏锚点网关或第二适配器构成的整体出口能力的信息。
可选的,获取可以理解为从配置获得、接收、通过请求后接收、通过自学习获取、根据未收到的信息推导获取或者是根据接收的信息处理后获得,具体可根据实际需要确定,本公开实施例对此不作限定。比如当未收到设备发送的某个能力指示信息时可推导出该设备不支持该能力。
可选的,发送可以包含广播,系统消息中广播,响应请求后返回。
在本公开一种可选实施例中,所述通道可以包括以下至少一项:协议数据单元(Protocol Data Unit,PDU)会话、服务质量(Quality of Service,QoS)流、演进的分组系统(Evolved Packet System,EPS)承载、分组数据协议(Packet Data Protocol,PDP)上下文、数据无线承载(Data Radio Bearer,DRB)、信令无线承载(Signalling Radio Bearer,SRB)、网络安全协议(Internet Protocol Security,IPsec)关联。
在本公开一种可选实施例中,所述端口可以为网桥端口。
在本公开一种可选实施例中,所述带宽可以为可用带宽。
本公开一种实施例中,NG接口也可以称为S1接口或N2接口,命名不受限制。
本公开一种可选实施例中,所述N3N9接口为N3或N9接口。
在本公开一种可选实施例中,所述无线通信网络可以简称为网络。
本公开一种实施例中,无线通信网络可以是以下至少一项:公网,非公网;或者第一网络可以是非公网。
在本公开一种实施例中,非公网是非公众网络的简称。非公众网络可以称为以下之一:非公众通信网络。非公网可以包括以下至少一种部署方式:物理的非公网,虚拟的非公网、实现在公网上的非公网。一种实施方式中,非公网为封闭的访问组(Closed Access Group,CAG)。一个CAG可以由一组终端组成。
在本公开一种实施例中,非公众网络可以包含或称为私有网络。私有网络可以称为以下之一:私有通信网络、私网、本地区域网络(Local Area Network,LAN)、私有虚拟网络(Private Virtual Network,PVN)、隔离的通信网络、专用的通信网络或其他命名。需要说明的是,在本公开实施例中对于命名方式不做具体限定。
在本公开一种实施例中,公网是公众网络的简称。公众网络可以称为以下之一:公众通信网络或其他命名。需要说明的是,在本公开实施例中对于命名方式不做具体限定。
在本公开一种实施例中,数据包大小可以称为数据包长度。
在本公开一种实施例中,数据包可以称为数据帧。
在本公开一种实施例中,时间敏感数据流的配置信息可以是用户和/或网络配置信息。所述用户和/或网络配置信息可以是IEEE802.1Q标准中的用户和/或网络配置信息。用户和/或网络配置信息可以包括以下至少一项:listener组(group),talker组(group),流量标准(traffic specification)。本公开一种可选实施例中,通信设备可以包括以下至少一项:通信网元和终端。
本公开一种实施例中,通信网元可以包括以下至少一项:核心网网元和无线接入网网元。
本公开实施例中,核心网网元(CN网元)可以包含但不限于如下至少一项:核心网设备、核心网节点、核心网功能、核心网网元、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、服务网关(serving GW,SGW)、分组数据网络网关(Packet Data Network Gate Way,PDN-GW)、策略控制功能(Policy Control Function、PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、通用分组无线业务(General Packet Radio Service,GPRS)服务支持节点(Serving GPRS Support Node,SGSN)、网关GPRS支持节点(Gateway GPRS Support Node,GGSN)、统一数据管理(Unified Data Management,UDM),统一数据存储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)和AF。
本公开实施例中,RAN网元可以包含但不限于至少以下之一:无线接入网设备、无线接入网节点、无线接入网功能、无线接入网单元、3GPP无线接入网、非3GPP无线接入网、集中单元(Centralized Unit,CU)、分布式单元(Distributed Unit,DU)、基站、演进型基站(evolved Node B,eNB)、5G基站(gNB)、无线网络控制器(Radio Network Controller,RNC)、基站(NodeB)、非3GPP互操作功能(Non-3GPP Inter Working Function,N3IWF)、接入控制(Access Controller,AC)节点、接入点(Access Point,AP)设备或无线局域网(Wireless Local Area Network,WLAN)节点、N3IWF。
基站,可以是全球移动通信系统(Global System For Mobile Communications,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带CDMA(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),本公开实施例并不限定。
本公开实施例中,UE即终端。终端可以包括支持终端功能的中继和/或支持中继功能的终端。终端也可以称作终端设备或者用户终端(User Equipment,UE),终端可以是手机、平板电脑(Tablet Personal Computer)、 膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端的具体类型。
以下对本公开实施例的支持时间敏感通信的方法进行说明。
请参考图4,本公开实施例提供了一种支持时间敏感通信的方法,应用于第一通信设备。第一通信设备包括但不限于以下至少一项:UE、第一适配器,所述方法包括:
步骤41:发送第一能力信息和/或UE的时延相关信息。
可选的,第一能力信息可以包括以下至少一项:
UE和第一适配器间的时延相关信息、
第一适配器的网桥标识信息、
第一适配器的支持的带宽信息、
第一适配器的发送传播时延相关信息、
UE和第一适配器构成的整体的网桥标识信息、
UE和第一适配器构成的整体支持的带宽信息、
UE和第一适配器构成的整体的发送传播时延相关信息。
UE与第一适配器可以合设为一个设备或者通过接口(如N60接口)连接。
一种实施方式中,当第一通信设备是UE时,可以向网络发送第一能力信息。另一种实施方式中,当第一通信设备是第一适配器时,可以向UE发送第一能力信息。
一种实施方式中,第一能力可以理解为UE和第一适配器构成的整体作为网桥的能力。第一适配器可以为UE连接的时间敏感网络适配器。
一种实施方式中,UE从第一适配器获取第一能力信息。
(1.1)
第一适配器支持的带宽的相关信息可以是第一适配器支持的可用带宽的相关信息。第一适配器支持的带宽信息可以是第一适配器上的端口支持的带宽信息。所述端口为连接网桥或End Station的端口。
UE和第一适配器构成的整体支持的带宽信息可以是UE和第一适配器构成的整体支持的可用带宽的相关信息。UE和第一适配器构成的整体支持的带宽信息可以是UE和第一适配器构成的整体上的端口支持的带宽信息。所述端口为连接网桥或End Station的端口。
可选的,端口支持的带宽信息包括以下至少一项:端口的相关信息、端口的带宽、端口的带宽可用性参数、端口的传输速率。
一种实施方式中,端口的带宽可用性参数可以如IEEE 802.1Q系列的定义,如带宽可用性参数(Bandwidth Availability Parameters)。
一种实施方式中,端口的带宽可以为端口的可用带宽,端口的传输速率可以为端口的可用传输速率。
(1.2)第一适配器的发送传播时延相关信息可以为第一适配器上的端口的发送传播时延相关信息。
UE和第一适配器构成的整体的发送传播时延相关信息可以为UE和第一适配器构成的整体上的端口的发送传播时延相关信息。
可选的,端口的发送传播时延相关信息包括以下至少一项:端口的相关信息、端口的发送传播时延、业务类别(traffic class)。
其中,端口的发送传播时延可以为数据帧从第一适配器的端口或UE与第一适配器构成的整体的端口传递到连接的站点(网桥或End station)的端口所需要的时间。
(1.3)可选的,端口的相关信息可以包括以下至少一项:端口的标识信息、端口的方向为出口或入口相关信息、端口号、端口的MAC地址、端口的互联网协议(Internet Protocol,IP)地址、端口关联的VLAN标签信息、端口的数据过滤器信息。
可选的,端口的数据过滤器信息或数据过滤器信息可以包括以下至少一项:虚拟局域网(Virtual Local Area Network,VLAN)的标签信息、媒体接入控制(Medium Access Control,MAC)地址、IPv4地址、端口号、IPv6地址、端口的指示信息,其中,所述端口的指示信息包括发送端口的指示信息或接收端口的指示信息。
其中,VLAN的标签信息也称为VLAN标识信息(如VID)。上述VLAN 的标签信息可以包括:服务VLAN标签(Service VLAN Tag,S-TAG)和/或用户VLAN标签(Customer VLAN Tag,C-TAG)。
(1.4)可选的,业务类别为端口的传送队列个数或业务类型。业务类型可以包括至少以下一项:背景业务(Background)、最大努力(best effort)、极大努力(excellent effort)关键应用(critical application)、视频(video)语音(voice),互联网控制(Internetwork control)、网络控制(Network control)。
(1.5)可选的,UE与第一适配器间的时延相关信息包括以下至少一项:第一接口的相关信息、第二接口的相关信息、UE与第一适配器间的时延、数据包关联的业务类别。业务类别如上文所述,此处不再赘述。
可选的,第一接口可以为第一端口,其中,第一端口为连接网桥或End Station的端口。第二接口可以包括以下之一:UE的UU接口,连接UE的UU接口的端口。其中,所述UU接口为所述UE与RAN之间的接口。
第一端口可以为第一适配器的端口或UE的端口。第一适配器的端口可以为第一适配器上连接网桥或End Station的端口。UE的端口可以为UE上连接网桥或End Station的端口。
进一步地,UE的UU接口包括UE的UU接口中的通道。
进一步地,所述通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。
一种实施方式中,第一接口为数据入口,第二接口为数据出口。另一种实施方式中,第二接口为数据入口,第一接口为数据出口。
第一接口为第一端口时,第一接口的相关信息可以为所述第一端口的端口的相关信息(端口的相关信息如上文所述,此处不再赘述)。
第二接口为UE的UU接口时,第二接口的相关信息可以为UU接口中第一通道的信息。
进一步地,所述第一通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。所述端口可以为第一端口(可以是第一适配器的端口或UE的端口)。所述数据过滤器信息可以为第一端口的数据过滤器信息。所述VLAN可以为第一端口关联的VLAN。
-端口相关的通道的信息包括以下至少一项:所述端口的端口相关的信息、 通道的标识信息(如PDU会话标识和/或QoS流标识)。
-与VLAN相关的通道的信息包括以下至少一项:所述VLAN的VLAN标签信息(VLAN标签信息如上所述,此处不再赘述),通道的标识信息(如PDU会话标识和/或QoS流标识)。
-与数据过滤器信息相关的通道的信息包括以下至少一项:数据过滤器信息(数据过滤器信息如上所述,此处不再赘述),通道的标识信息(如PDU会话标识和/或QoS流标识)。
当所述通道为QoS流时,所述通道的标识信息可以为QoS流标识和/或所述QoS流所属的PDU会话标识。当所述通道为PDU会话时,所述通道的标识信息可以为PDU会话标识。
可选的,UE与第一适配器间的时延可以为UE和第一适配器构成整体的网桥时延。一种实施方式中,UE与第一适配器间的时延可以为数据包从数据入口(如第一接口或第二接口)传递到数据出口(如第二接口或第一接口)所需要的时间。
示例性的:当数据入口(如第一接口或第二接口)为UE的UU接口时,数据出口(如第二接口或第一接口)可以为第一端口;或当数据入口为第一端口时,数据出口可以为UE的UU接口。
(2.1)进一步地,UE与第一适配器间的时延可以是以下至少一项:
数据包从第一接口传递到第二接口所需要的时间;
数据包从第二接口传递到第一接口所需要的时间。
一种实施方式中,数据包从第一接口传递到第二接口所需要的时间,与数据包从第二接口传递到第一接口所需要的时间是一样的。另一种实施方式中,数据包从第一接口传递到第二接口所需要的时间,与数据包从第二接口传递到第一接口所需要的时间是不一样的。
进一步地,数据包从第一接口传递到第二接口所需要的时间可以是以下至少一项:
数据包从第一端口传递到UE的UU接口所需要的时间;
数据包从第一端口被接收至准备从UE的UU接口发送所需要的时间。
一种实施方式中,数据包从第一端口传递到UE的UU接口所需要的时 间包括:数据包从第一端口传递到UE的UU接口的第一通道所需要的时间。第一通道如上文所述,此处不再赘述。
一种实施方式中,数据包从第一端口被接收至准备从UE的UU接口发送所需要的时间包括:数据包从第一端口被接收至准备从UE的UU接口发送到第一通道所需要的时间。第一通道如上文所述,此处不再赘述。
(2.2)进一步地,数据包从第二接口传递到第一接口所需要的时间可以是以下至少一项:
数据包从UE的UU接口传递到第一端口所需要的时间;
数据包被UE从UU接口接收至被传递到第一端口所需要的时间;
一种实施方式中,数据包被UE从UU接口接收至被传递到第一端口所需要的时间包括以下至少一项:数据包被UE从UU接口的第一通道接收至被传递到第一端口所需要的时间;数据包被UE从UU接口的第一通道的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层被解析出来至被传递到第一端口所需要的时间。
一种实施方式中,所述第一通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。所述端口可以为第一端口,比如连接网桥或End Station的端口(可以是第一适配器的端口或UE的端口)。所述数据过滤器信息可以为第一端口的与数据过滤器信息。所述VLAN可以为第一端口关联的VLAN。
(2.3)进一步地,UE与第一适配器间的时延可以包括以下至少一项:所述UE与第一适配器间的最大时延和所述UE与第一适配器间的最小时延。UE与第一适配器间的最小时延也可以称为UE与第一适配器构成的整体的最小网桥时延,UE与第一适配器间的最大时延也称为UE与第一适配器构成的整体的最大网桥时延。UE与第一适配器间的最小时延可以进一步区分为与数据包大小相关的UE与第一适配器间的最小时延和与数据包大小无关的UE与第一适配器间的最小时延。UE与第一适配器间的最大时延可以进一步区分为与数据包大小相关的UE与第一适配器间的最大时延和与数据包大小无关的UE与第一适配器间的最大时延。
(2.4)进一步地,UE与第一适配器间的时延可以包括以下至少一项:下 行时延和上行时延。
下行时延可以为包括以下之一:
数据包从UE传递到第一适配器所需要的时间;
数据包从第二接口到第一接口通过所需要的时间;
数据包从UE的UU接口到第一端口通过所需要的时间;
数据包从UE的UU接口中的第一通道到第一端口通过所需要的时间。
下行时延可以称为从UE到第一适配器的时延。
上行时延可以包括以下至少一项:
数据包从第一接口传递到第二接口所需要的时间;
数据包从第一适配器传递到UE所需要的时间;
数据包从第一端口传递到UE的UU接口所需要的时间;
数据包从第一端口被接收至准备从UE的UU接口发送的时间;
数据包从第一端口传递到UE的UU接口中的第一通道所需要的时间;
数据包从第一端口被接收至准备从UE的UU接口中的第一的通道发送的时间。
不难理解,上行数据传送需要UE请求RAN的调度。等待RAN网元的调度的时延不属于UE与第一适配器间的时延。
上行时延可以称为从第一适配器到UE的时延。
一种实施方式中,上行时延与下行时延是一致的。另一种实施方式中,上行时延与下行时延是不一致的。
(2.5)可选的,UE的时延相关信息包括以下至少一项:第一接口的相关信息、第二接口的相关信息、UE的时延、数据包关联的业务类别。
第一接口的相关信息、第二接口的相关信息、业务类别如上文所述,此处不再赘述。
UE的时延为数据包从UE上的数据入口(如第一接口或第二接口)传递到UE上的数据出口(如第二接口或第一接口)所需要的时间。
进一步地,UE的时延可以是以下至少一项:
数据包从第一接口传递到第二接口所需要的时间;
数据包从第二接口传递到第一接口所需要的时间。
一种实施方式中,第一接口为第一端口,第一端口为UE的端口。所述UE的端口可以为UE上连接网桥或End Station的端口。
一种实施方式中,数据包从第一接口传递到第二接口所需要的时间可以包括以下至少一项:数据包从UE的UU接口传递到第一端口;数据包被UE从UU接口接收至被传递到第一端口所需要的时间。
另一种实施方式中,数据包从第二接口传递到第一接口所需要的时间可以包括以下至少一项:数据包从第一端口传递到UE的UU接口所需要的时间;数据包从第一端口被接收至准备从UE的UU接口发送所需要的时间。
可选的,所述发送第一能力信息和/或UE的时延相关信息,包括:
在满足预设条件时,发送第一能力信息和/或UE的时延相关信息。
所述预设条件可以为以下至少一项:
接收网络请求所述第一能力信息的请求;
接收网络请求所述UE的时延相关信息的请求;
UE的类型为bridge;
UE支持时间敏感通信。
这样可以实现在满足预设条件时,才发送第一能力信息和/或UE的时延相关信息,以避免第一能力信息和/或UE的时延相关信息频繁发送,达到节约功耗的效果。
一种实施方式中,当UE支持时间敏感通信时,发送第一能力信息和/或UE的时延相关信息。
可选的,所述发送第一能力信息和/或UE的时延相关信息,包括:
向目标端发送第一能力信息和/或UE的时延相关信息;所述目标端包括:UE、RAN网元,CN网元。当第一通信网元是第一适配器时,所述目标端可以是UE。当第一通信网元是UE时,所述目标端可以是RAN网元和/或CN网元。所述目标端可以为与UE和/或第一适配器构成网桥的网络的通信网元。
其中,CN网元可以包括但不限于以下至少一项:PCF,AMF,SMF,AF。
可选的,在所述发送第一能力信息和/或UE的时延相关信息的步骤之后,所述方法还包括:
获取端口配置信息,端口配置信息包括以下至少一项:端口的相关信息、 端口的带宽、端口的传输速率;
根据获取的所述端口配置信息,配置端口的带宽和/或传输速率。
其中,上述端口配置信息可以是网络发送的。
其中,上述端口配置信息可以是第一端口的端口配置信息。当第一通信设备是UE时且第一端口是第一适配器的端口时,UE向第一适配器发送所述端口配置信息。
该实施方式中,由于根据获取的所述端口配置信息,配置端口的带宽和/或传输速率,从而使得配置的端口的带宽更加适合时间敏感数据的传输。
通过本公开实施例中,第一通信设备可以向网络提供UE和/或第一适配器构成的整体的相关能力,一方面支持网络确定UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力,另一方面支持进行时间敏感数据流的配置,从而支持时间敏感通信。
请参考图5,本公开实施例还提供一种支持时间敏感通信的方法,应用于第二通信设备,第二通信设备包括不限于CN网元(如AMF、SMF、PCF、或AF),所述方法包括:
步骤51:获取第一信息,所述第一信息包括以下至少一项,第一能力信息、第二能力信息、UE的时延相关信息、和/或锚点网关的时延相关信息;
步骤52:根据所述第一信息,执行第一操作。
第一能力信息如图4所示的实施例中的第一能力信息,此处不作赘述。
UE的时延相关信息如图4所示的实施例中的第一能力信息,此处不作赘述。
锚点网关的时延相关信息如图7所示的实施例中的第二能力信息,此处不作赘述。
第二能力信息如图7所示的实施例中的第二能力信息,此处不作赘述。
可选的,可以从以下至少一项获取第一能力信息和/或UE的时延相关信息:UE,第一通信设备、UE当前接入的RAN网元。
可选地,可以从以下至少一项获取第二能力信息和/或锚点网关的时延相关信息:UE,锚点网关,第三通信设备。
所述锚点网关为终结N6接口的网关。进一步地,所述锚点网关可以为建 立与网桥相关通道或与端口相关通道的锚点网关。
所述RAN网元可以为服务UE的RAN网元。
可选的,上述第一操作可以为时间敏感的相关操作。例如:第一操作可以包括以下至少一项:
(1)确定UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力;
(2)确定时间敏感数据流的第二传送配置信息(如出口的用户和/或网络配置信息;
(3)发送时间敏感数据流的配置信息;所述时间敏感数据流的配置信息为时间敏感数据流的第一传送配置信息或时间敏感数据流的第二传送配置信息;
(4)确定网桥配置信息;
(5)公开或发送UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力。
其中,根据所述第一信息,确定UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力包括以下至少一项:
确定UE与网络构成的网桥内时延;
确定UE与网络构成的网桥的带宽可用性参数;
确定UE、时间敏感网络适配器与网络构成的网桥内时延;
确定UE、时间敏感网络适配器与网络构成的网桥的带宽可用性参数;
确定第一接口和第四接口间时延。
第一接口可以是第一端口。第一端口为UE或第一适配器上的连接网桥或End Station的端口。
第四接口可以是第二端口。第二端口为锚点网关或第二适配器上的连接网桥或End Station的端口。
一种实施方式中,确定UE与网络构成的网桥内时延可以为:UE的时延,UE与RAN网元间时延、RAN网元与锚点网关间时延、锚点网关的时延五者之和(即UE的时延+UE与RAN网元间时延+RAN网元与锚点网关间时延+锚点网关的时延);
一种实施方式中,确定UE、时间敏感网络适配器与网络构成的网桥内时 延可以为:UE与第一适配器间的时延、UE与RAN网元间传输时延、RAN网元的处理时延、RAN网元与锚点网关间时延、锚点网关与第二适配器间的时延五者之和(即UE与第一适配器间的时延+UE与RAN网元间传输时延+RAN网元的处理时延+RAN网元与锚点网关间时延+锚点网关与第二适配器间的时延)。
一种实施方式中,所述网桥内时延为第一接口和第四接口间时延。所述第一能力信息中包含第一接口的相关信息和第二接口的相关信息。第二能力信息中包含第三接口的相关信息和第四接口的相关信息。
第二接口的相关信息可以为UU接口中第一通道的信息。第三接口的相关信息可以为N3N9接口中第一通道的信息。通过第一通道信息,第一接口和第四接口建立关联。第一通道如图4和/或图7实施例所述。
一种实施方式中,所述第一接口和第四接口间时延可以为:数据包从第一接口传递到第二接口所需要的时间,UE与RAN网元间时延、RAN网元与锚点网关间时延、数据包从第三接口传递到第四接口所需要的时间五者之和(即数据包从第一接口传递到第二接口所需要的时间+UE与RAN网元间时延+RAN网元与锚点网关间时延+数据包从第三接口传递到第四接口所需要的时间);
另一种实施方式中,所述第一接口和第四接口间时延可以为:数据包从第二接口传递到第一接口所需要的时间,UE与RAN网元间时延、RAN网元与锚点网关间时延、数据包从第四接口传递到第三接口所需要的时间五者之和(即数据包从第二接口传递到第一接口所需要的时间+UE与RAN网元间时延+RAN网元与锚点网关间时延+据包从第四接口传递到第三接口所需要的时间之和)。
其中,根据所述第一信息,确定的时间敏感数据流的传送配置信息。
其中,根据所述第一信息,发送时间敏感数据流的配置信息,可以包括以下至少一项:
当满足第一条件时,向UE和/或第一适配器发送时间敏感数据流的配置信息;
当满足第二条件时,向锚点网关和/或第二适配器发送时间敏感数据流的 配置信息。
可选的,上述第一条件包括以下至少一项:
时间敏感数据流为下行数据(如当UE为UE与网络构成的网桥的出口);
UE的类型为bridge;
时间敏感网络的架构类型为全分布式;
UE为End station且时间敏感网络的架构类型为集中分布混合式;
时间敏感数据流配置信息的指示信息指示需要时间敏感数据流配置信息。
可选的,上述第二条件包括以下至少一项:
时间敏感数据流为上行数据(如当锚点网关与网络构成的网桥的出口);
时间敏感网络的架构类型为全分布式或集中分布混合式。
可选的,所述执行第一操作的步骤之后,所述方法还包括:
向以下至少一项发送上述确定的网桥配置信息:
UE,锚点网关,第一适配器,第二适配器。
一种实施方式中,通过UE向第一适配器发送所述网桥配置信息;另种实施方式中,通过锚点网关向第二适配器发送所述网桥配置信息。
所述网桥配置信息为网桥出口的配置信息。
可选的,网桥配置信息包括以下至少一项:端口的相关信息、端口的配置带宽。
一种实施方式中,当时间敏感数据流为下行数据、当UE为网桥出口或第一适配器为网桥出口时,向UE发送网桥配置信息。当第一适配器为网桥出口时,UE可以向第一适配器转发所述网桥配置信息。
另一种实施方式中,当时间敏感数据流为上行数据,当锚点网关为网桥出口或第二适配器为网桥出口时,向锚点网关和/或第二适配器发送网桥配置信息。当第二适配器为网桥出口时,锚点网关可以向第二适配器转发所述网桥配置信息。
通过本公开实施例中,时间敏感网络适配器根据第一系你想,确定UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力、进行网桥出口配置,进行时间敏感数据流的配置等,从而支持时间敏感通信。
请参考图6,本公开还提供一种支持时间敏感通信的方法,应用于时间敏 感网络适配器,时间敏感网络适配器包括但不限于以下至少一项:第一适配器、第二适配器。所述方法包括:
步骤61:获取网桥配置信息和/或时间敏感数据流的配置信息;
步骤62:根据所述网桥配置信息和/或时间敏感数据流的配置信息,执行时间敏感通信的第二操作。
其中,上述网桥配置信息可以是网络出口配置信息。
可选的,网桥配置信息包括以下至少一项:端口的相关信息、端口的带宽、端口的传输速率。
其中,端口的带宽可以为端口的可用带宽,端口的传输速率可以为端口的可用传输速率。
端口的相关信息如实施例4所述,此处不再赘述。
一种实施方式中,根据所述网桥配置信息和/或时间敏感数据流的配置信息,执行时间敏感通信第二相关操作包括:根据获取的端口配置信息,配置端口的带宽和/或传输速率。
通过本公开实施例中,对通过对网桥出口的配置,支持时间敏感通信。
请参考图7,本公开实施例提供了一种支持时间敏感通信的方法,应用于时间敏感网络适配器。时间敏感网络适配器包括但不限于以下至少一项:锚点网关、第二适配器,所述方法包括:
步骤71:发送第二能力信息和/或锚点网关的时延相关信息。
可选的,第二能力信息可以包括以下至少一项:
锚点网关与第二适配器间的时延相关信息、
第二适配器的网桥标识信息、
第二适配器的支持的带宽信息、
第二适配器的发送传播时延相关信息、
锚点网关和第二适配器构成的整体的网桥标识信息、
锚点网关和第二适配器构成的整体支持的带宽信息、
锚点网关和第二适配器构成的整体的发送传播时延相关信息。
锚点网关与第二适配器可以合设为一个设备或者通过接口连接。
一种实施方式中,当时间敏感网络适配器是锚点网关时,可以向网络发 送第二能力信息。另一种实施方式中,当时间敏感网络适配器是第二适配器时,可以向锚点网关发送第二能力信息。
所述锚点网关可以为终结N6接口的网关(如UPF)。
一种实施方式中,第二能力可以理解为锚点网关和第二适配器构成的整体作为网桥的能力。第二适配器可以为锚点网关连接的时间敏感网络适配器。
一种实施方式中,锚点网关从第二适配器获取第二能力信息。
(1.1)
第二适配器支持的带宽的相关信息可以是第二适配器支持的可用带宽的相关信息。第二适配器支持的带宽信息可以是第二适配器上的端口支持的带宽信息。所述端口为连接网桥或End Station的端口。
锚点网关和第二适配器构成的整体支持的带宽信息可以是锚点网关和第二适配器构成的整体支持的可用带宽的相关信息。锚点网关和第二适配器构成的整体支持的带宽信息可以是锚点网关和第二适配器构成的整体上的端口支持的带宽信息。所述端口为连接网桥或End Station的端口。
可选的,端口支持的带宽信息包括以下至少一项:端口的相关信息、端口的带宽、端口的带宽可用性参数、端口的传输速率。
一种实施方式中,端口的带宽可用性参数可以如IEEE 802.1Q系列的定义,如带宽可用性参数(Bandwidth Availability Parameters)。
一种实施方式中,端口的带宽可以为端口的可用带宽,端口的传输速率可以为端口的可用传输速率。
(1.2)第二适配器的发送传播时延相关信息可以为第二适配器上的端口的发送传播时延相关信息。
锚点网关和第二适配器构成的整体的发送传播时延相关信息可以为锚点网关和第二适配器构成的整体上的端口的发送传播时延相关信息。
可选的,端口的发送传播时延相关信息包括以下至少一项:端口的相关信息、端口的发送传播时延、业务类别(traffic class)。
其中,端口的发送传播时延可以为数据帧从第二适配器的端口或锚点网关与第二适配器构成的整体的端口传递到连接的站点(网桥或End station)的端口所需要的时间。
(1.3)可选的,端口的相关信息可以包括以下至少一项:端口的标识信息、端口的方向为出口或入口相关信息、端口号、端口的MAC地址、端口的IP地址、端口关联的VLAN标签信息、端口的数据过滤器信息。
可选的,端口的数据过滤器信息或数据过滤器信息可以包括以下至少一项:虚拟局域网(Virtual Local Area Network,VLAN)的标签信息、媒体接入控制(MAC)地址、IPv4地址、端口号、IPv6地址、端口的指示信息,其中,所述端口的指示信息包括发送端口的指示信息或接收端口的指示信息。
其中,VLAN的标签信息也称为VLAN标识信息(如VID)。上述VLAN的标签信息可以包括:服务VLAN标签(Service VLAN Tag,S-TAG)和/或用户VLAN标签(Customer VLAN Tag,C-TAG)。
(1.4)可选的,业务类别为端口的传送队列个数或业务类型。业务类型可以包括至少以下一项:背景业务(Background)、最大努力(best effort)、极大努力(excellent effort)关键应用(critical application)、视频(video)语音(voice),互联网控制(Internetwork control)、网络控制(Network control)。
(1.5)可选的,锚点网关与第二适配器间的时延相关信息包括以下至少一项:第四接口的相关信息、第三接口的相关信息、锚点网关与第二适配器间的时延、数据包关联的业务类别。业务类别如上文所述,此处不再赘述。
可选的,第四接口可以为第二端口,其中,第二端口为连接网桥或End Station的端口。第三接口可以包括以下之一:锚点网关的N3N9接口,连接锚点网关的N3N9接口的端口,N6接口,连接N6接口的端口。其中,所述N3N9接口为N3接口或N9接口。所述N3口网关与RAN之间的接口。所述N9接口为网关与网关的接口。所述N6接口为锚点网关与外部网络的接口。
第二端口可以为第二适配器的端口或锚点网关的端口。第二适配器的端口可以为第二适配器上连接网桥或End Station的端口。锚点网关的端口可以为锚点网关上连接网桥或End Station的端口。
进一步地,锚点网关的N3N9接口包括锚点网关的N3N9接口中的通道。
进一步地,所述通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。
一种实施方式中,第四接口为数据入口,第三接口为数据出口。另一种 实施方式中,第三接口为数据入口,第四接口为数据出口。
第四接口为第二端口时,第四接口的相关信息可以为所述第二端口的端口的相关信息(端口的相关信息如上文所述,此处不再赘述)。
第三接口为锚点网关的N3N9接口时,第三接口的相关信息可以为N3N9接口的第一通道的信息。
进一步地,所述第一通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。所述端口可以为第二端口(可以是第二适配器的端口或锚点网关的端口)。所述数据过滤器信息可以为第二端口的数据过滤器信息。所述VLAN可以为第二端口关联的VLAN。
-端口相关的通道的信息包括以下至少一项:所述端口的端口相关的信息、通道的标识信息(如PDU会话标识和/或QoS流标识)。
-与VLAN相关的通道的信息包括以下至少一项:所述VLAN的VLAN标签信息(VLAN标签信息如上所述,此处不再赘述),通道的标识信息(如PDU会话标识和/或QoS流标识)。
-与数据过滤器信息相关的通道的信息包括以下至少一项:数据过滤器信息(数据过滤器信息如上所述,此处不再赘述),通道的标识信息(如PDU会话标识和/或QoS流标识)。
当所述通道为QoS流时,所述通道的标识信息可以为QoS流标识和/或所述QoS流所属的PDU会话标识。当所述通道为PDU会话时,所述通道的标识信息可以为PDU会话标识。
可选的,锚点网关与第二适配器间的时延可以为锚点网关和第二适配器构成整体的网桥时延。一种实施方式中,锚点网关与第二适配器间的时延可以为数据包从数据入口(如第四接口或第三接口)传递到数据出口(如第三接口或第四接口)所需要的时间。
示例性的:当数据入口(如第四接口或第三接口)为锚点网关的N3N9接口时,数据出口(如第三接口或第四接口)可以为第二端口;或当数据入口为第二端口时,数据出口可以为锚点网关的N3N9接口。
(2.1)进一步地,锚点网关与第二适配器间的时延可以是以下至少一项:
数据包从第四接口传递到第三接口所需要的时间;
数据包从第三接口传递到第四接口所需要的时间。
一种实施方式中,数据包从第四接口传递到第三接口所需要的时间,与数据包从第三接口传递到第四接口所需要的时间是一样的。另一种实施方式中,数据包从第四接口传递到第三接口所需要的时间,与数据包从第三接口传递到第四接口所需要的时间是不一样的。
进一步地,数据包从第四接口传递到第三接口所需要的时间可以是以下至少一项:
数据包从第二端口传递到锚点网关的N3N9接口所需要的时间;
数据包从第二端口被接收至准备从锚点网关的N3N9接口发送所需要的时间。
一种实施方式中,数据包从第二端口传递到锚点网关的N3N9接口所需要的时间包括:数据包从第二适配器的端口传递到锚点网关的N3N9接口的第一通道所需要的时间。第一通道如上文所述,此处不再赘述。
一种实施方式中,数据包从第二端口被接收至准备从锚点网关的N3N9接口发送所需要的时间包括:数据包从第二端口被接收至准备从锚点网关的N3N9接口发送到第一通道所需要的时间。第一通道如上文所述,此处不再赘述。
(2.2)进一步地,数据包从第三接口传递到第四接口所需要的时间可以是以下至少一项:
数据包从锚点网关的N3N9接口传递到第二端口所需要的时间;
数据包被锚点网关从N3N9接口接收至被传递到第二端口所需要的时间;
一种实施方式中,数据包被锚点网关从N3N9接口接收至被传递到第二端口所需要的时间包括以下至少一项:数据包被锚点网关从N3N9接口的第一通道接收至被传递到第二端口所需要的时间;数据包被锚点网关从N3N9接口的第一通道的GTP-U层被解析出来至被传递到第二端口所需要的时间。
一种实施方式中,所述第一通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。所述端口可以为第二端口,比如连接网桥或End Station的端口(可以是第二适配器的端口或锚点网关的端口)。所述数据过滤器信息可以为第二端口的与数据过滤器信 息。所述VLAN可以为第二端口关联的VLAN。
(2.3)进一步地,锚点网关与第二适配器间的时延可以包括以下至少一项:所述锚点网关与第二适配器间的最大时延和所述锚点网关与第二适配器间的最小时延。锚点网关与第二适配器间的最小时延也可以称为锚点网关与第二适配器构成的整体的最小网桥时延,锚点网关与第二适配器间的最大时延也称为锚点网关与第二适配器构成的整体的最大网桥时延。锚点网关与第二适配器间的最小时延可以进一步区分为与数据包大小相关的锚点网关与第二适配器间的最小时延和与数据包大小无关的锚点网关与第二适配器间的最小时延。锚点网关与第二适配器间的最大时延可以进一步区分为与数据包大小相关的锚点网关与第二适配器间的最大时延和与数据包大小无关的锚点网关与第二适配器间的最大时延。
(2.4)进一步地,锚点网关与第二适配器间的时延可以包括以下至少一项:下行时延和上行时延。
下行时延可以为包括以下之一:
数据包从锚点网关传递到第二适配器所需要的时间;
数据包从第三接口到第四接口通过所需要的时间;
数据包从锚点网关的N3N9接口到第二端口通过所需要的时间;
数据包从锚点网关的N3N9接口中的第一通道到第二端口通过所需要的时间。
下行时延可以称为从锚点网关到第二适配器的时延。
上行时延可以包括以下至少一项:
数据包从第四接口传递到第三接口所需要的时间;
数据包从第二适配器传递到锚点网关所需要的时间;
数据包从第二端口传递到锚点网关的N3N9接口所需要的时间;
数据包从第二端口被接收至准备从锚点网关的N3N9接口发送的时间;
数据包从第二端口传递到锚点网关的N3N9接口中的第一通道所需要的时间;
数据包从第二端口被接收至准备从锚点网关的N3N9接口中的第一的通道发送的时间。
不难理解,上行数据传送需要锚点网关请求RAN的调度。等待RAN网元的调度的时延不属于锚点网关与第二适配器间的时延。
上行时延可以称为从第二适配器到锚点网关的时延。
一种实施方式中,上行时延与下行时延是一致的。另一种实施方式中,上行时延与下行时延是不一致的。
(2.5)可选的,锚点网关的时延相关信息包括以下至少一项:第四接口的相关信息、第三接口的相关信息、锚点网关的时延、数据包关联的业务类别。
第四接口的相关信息、第三接口的相关信息、业务类别如上文所述,此处不再赘述。
锚点网关的时延为数据包从锚点网关上的数据入口(如第四接口或第三接口)传递到锚点网关上的数据出口(如第三接口或第四接口)所需要的时间。
进一步地,锚点网关的时延可以是以下至少一项:
数据包从第四接口传递到第三接口所需要的时间;
数据包从第三接口传递到第四接口所需要的时间。
一种实施方式中,第四接口为第二端口,第二端口为锚点网关的端口。所述锚点网关的端口可以为锚点网关上连接网桥或End Station的端口。
一种实施方式中,数据包从第四接口传递到第三接口所需要的时间可以包括以下至少一项:数据包从锚点网关的N3N9接口传递到第二端口;数据包被锚点网关从N3N9接口接收至被传递到第二端口所需要的时间。
另一种实施方式中,数据包从第三接口传递到第四接口所需要的时间可以包括以下至少一项:数据包从第二端口传递到锚点网关的N3N9接口所需要的时间;数据包从第二端口被接收至准备从锚点网关的N3N9接口发送所需要的时间。
可选的,所述发送第二能力信息和/或锚点网关的时延相关信息,包括:在满足预设条件时,发送第二能力信息和/或锚点网关的时延相关信息。
所述预设条件可以为以下至少一项:
接收网络请求所述第二能力信息的请求;
接收网络请求所述锚点网关的时延相关信息的请求;
锚点网关的类型为bridge;
锚点网关支持时间敏感通信。
这样可以实现在满足预设条件时,才发送第二能力信息和/或锚点网关的时延相关信息,以避免第二能力信息和/或锚点网关的时延相关信息频繁发送,达到节约功耗的效果。
一种实施方式中,当锚点网关支持时间敏感通信时,发送第二能力信息和/或锚点网关的时延相关信息。
可选的,所述发送第二能力信息和/或锚点网关的时延相关信息,包括:
向目标端发送第二能力信息和/或锚点网关的时延相关信息;所述目标端包括:锚点网关、RAN网元,CN网元。当第一通信网元是第二适配器时,所述目标端可以是锚点网关。当第一通信网元是锚点网关时,所述目标端可以是RAN网元和/或CN网元。所述目标端可以为与锚点网关和/或第二适配器构成网桥的网络的通信网元。
其中,CN网元可以包括但不限于以下至少一项:PCF,AMF,SMF,AF。
可选的,在所述发送第二能力信息和/或锚点网关的时延相关信息的步骤之后,所述方法还包括:
获取端口配置信息,端口配置信息包括以下至少一项:端口的相关信息、端口的带宽、端口的传输速率;
根据获取的所述端口配置信息,配置端口的带宽和/或传输速率。
其中,上述端口配置信息可以是网络发送的。
其中,上述端口配置信息可以是第二端口的端口配置信息。当第三通信设备是锚点网关时且第二端口是第二适配器的端口时,锚点网关向第二适配器发送所述端口配置信息。
该实施方式中,由于根据获取的所述端口配置信息,配置端口的带宽和/或传输速率,从而使得配置的端口的带宽更加适合时间敏感数据的传输。
通过本公开实施例中,时间敏感网络适配器可以向网络提供锚点网关和/或第二适配器构成的整体的相关能力,一方面支持网络确定锚点网关、时间敏感网路适配器和/或网络构成的网桥的网桥能力,另一方面支持进行时间敏 感数据流的配置,从而支持时间敏感通信。
下面结合具体应用场景对本公开实施例的支持时间敏感通信的方法进行说明。
下面结合具体应用场景对本公开实施例的数据传送方法进行说明。
本公开实施例的应用场景1:
本公开实施例的应用场景1主要描述UE请求建立PDU(协议数据单元)会话的过程。请参阅图8所示,包括以下步骤:
步骤1:UE向AMF发送第一能力信息和/或UE的时延相关信息(如图4实施例所述)。
UE向AMF发送上行非接入层(Non-Access Stratum,NAS)消息,所述NAS消息中包含PDU会话建立请求。所述PDU会话建立请求中包括第一能力信息和/或UE的时延相关信息(如图4实施例所述)。
步骤2:AMF向SMF发送PDU会话_创建会话管理(Session Mangement,SM)上下文消息。
步骤3:SMF选择UPF。SMF向选择的UPF发送N4会话建立。SMF从UPF获取第二能力信息和/或锚点网关的时延相关信息(如图7实施例所述)。
步骤4:SMF注册终端到统一数据管理(Unified Data Management,UDM)。SMF还可以获取、订购终端的签约数据。
步骤5:SMF从PCF获取终端的策略。
SMF向PCF发送获取的第一信息(如图5实施例所述)。比如确定UE、时间敏感网络适配器和/或网络构成的网桥的网桥能力(如网桥时延)。PCF向AF发送所述网桥能力。AF向CNC发送所述网桥能力。
步骤6:SMF向AMF发送N1N2消息。N1N2消息中包含PDU会话建立接受的NAS消息。
步骤7:AMF向RAN网元发送PDU会话资源建立请求消息。N1N2消息中包含PDU会话建立的NAS消息。
步骤8:RAN网元向UE发送RRC重配置请求,该请求为NAS消息,包括PDU会话建立命令。
步骤9:UE向RAN网元返回RRC重配置响应。
步骤10:RAN网元向AMF返回PDU会话资源建立响应。
步骤11:AMF向MF发送SM上下文更新请求。
步骤12:SMF向UPF发送N4会话更新,也称作N4会话修改。
步骤13:UE向AMF发送上行NAS消息,该消息表示PDU会话建立完成。
步骤14:SMF向AMF发送SM上下文更新响应。
步骤15:SMF向UPF发送N4会话更新,也称作N4会话修改。
通过应用场景1,在PDU会话建立过程中,UE向网络提供第一能力信息和/或UE的时延相关信息,锚点网关向网络提供第二能力信息和/或锚点网关的时延相关信息。网络可以以上信息确定出UE、时间敏感网络适配器和/或网络构成的网桥的能力,并向外部(如CNC)公开。CNC根据网桥能力可以确定UE与网络构成的网桥的用户和/或网络的配置信息,从而支持时间敏感网络的实现。
本公开实施例的应用场景2:
本公开实施例的应用场景2主要描述UE请求注册的过程。请参阅图9所示,包括以下步骤:
步骤1:UE向AMF发送注册请求消息,所述注册请求消息包括和/或UE的时延相关信息(如图4实施例所述)。
步骤2:AMF注册终端到统一数据管理(Unified Data Management,UDM)。SMF还可以获取、订购终端的签约数据。
步骤3:AMF与PCF关于UE的策略关联建立。AMF可以从PCF获取终端的策略。
步骤4:AMF向终端返回注册响应。
步骤5:终端向AMF返回注册完成。
AMF向PCF发送获取的和/或UE的时延相关信息。PCF根据第一能力信息和/或UE的时延相关信息,执行时间敏感第一操作(如图5实施例所述)。比如确定UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力(如网桥时延)。PCF向AF发送所述网桥能力。AF向CNC发送所述网桥能力。
通过本公开实施例,在UE注册过程中,UE向网络提供第一能力信息。 网络可以根据第一能力信息确定出UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力,并向外部(如CNC)公开。CNC根据网桥能力可以确定UE与网络构成的网桥的用户和/或网络的配置信息。网络可以在收到用户和/或网络的配置信息时,再触发UE建立网桥相关的PDU会话。从而支持时间敏感网络的实现。
通过应用场景2,UE注册过程中,UE向网络提供第一能力信息。网络可以根据第一能力和/或UE的时延相关信息确定出UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力,并向外部(如CNC)公开。CNC根据网桥能力可以确定UE与网络构成的网桥的用户和/或网络的配置信息。网络可以在收到用户和/或网络的配置信息时,再触发UE建立网桥或端口相关的PDU会话。
参见图10,本公开实施例提供了一种通信设备,该通信设备为第一通信设备,第一通信设备包括但不限于UE,如图10通信设备1000包括:
发送模块1001,用于发送第一能力信息和/或UE的时延相关信息;
其中,所述第一能力信息可以包括以下至少一项:
UE和第一适配器间的时延相关信息、
第一适配器的网桥标识信息、
第一适配器的支持的带宽信息、
第一适配器的发送传播时延相关信息、
UE和第一适配器构成的整体的网桥标识信息、
UE和第一适配器构成的整体支持的带宽信息、
UE和第一适配器构成的整体的发送传播时延相关信息。
UE和第一适配器间的时延相关信息如图4实施例所述,此处不再赘述。
第一适配器的网桥标识信息如图4实施例所述,此处不再赘述。
第一适配器的支持的带宽信息如图4实施例所述,此处不再赘述。
第一适配器的发送传播时延相关信息如图4实施例所述,此处不再赘述。
UE和第一适配器构成的整体的网桥标识信息如图4实施例所述,此处不再赘述。
UE和第一适配器构成的整体支持的带宽信息如图4实施例所述,此处不 再赘述。
UE和第一适配器构成的整体的发送传播时延相关信息如图4实施例所述,此处不再赘述。
UE的时延相关信息如图4实施例所述,此处不再赘述。
可选的,所述发送第一能力信息和/或UE的时延相关信息,包括:
在满足预设条件时,发送第一能力信息和/或UE的时延相关信息;
其中,所述预设条件为以下至少一项:
接收网络请求所述第一能力信息的请求;
接收网络请求所述UE的时延相关信息的请求;
所述UE的类型为bridge;
所述UE支持时间敏感通信。
可选的,所述发送第一能力信息和/或UE的时延相关信息,包括:
向目标端发送第一能力信息和/或UE的时延相关信息;所述目标端包括:UE、RAN网元,CN网元。当第一通信网元是第一适配器时,所述目标端可以是UE。当第一通信网元是UE时,所述目标端可以是RAN网元和/或CN网元。所述目标端可以为与UE和/或第一适配器构成网桥的网络的通信网元。
其中,CN网元可以包括但不限于以下至少一项:PCF,AMF,SMF,AF。
可选的,如图11所示,通信设备1000还包括:
获取模块1002,用于获取端口配置信息,其中,所述端口配置信息包括以下至少一项:端口的相关信息、端口的带宽、端口的传输速率;
配置模块1003,用于根据获取的所述端口配置信息,配置端口的带宽和/或传输速率。
其中,上述端口配置信息可以是网络发送的。
其中,上述端口配置信息可以是第一端口的端口配置信息。当第一通信设备是UE时且第一端口是第一适配器的端口时,UE向第一适配器发送所述端口配置信息。
可选的,所述发送第一能力信息和/或UE的时延相关信息,包括:
向目标端发送第一能力信息和/或UE的时延相关信息;
其中,所述目标端包括:UE、RAN网元、CN网元。
通信设备1000能够实现本公开方法实施例中第一通信设备实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
参见图12,本公开实施例提供了另一种通信设备,该通信设备为第二通信设备,第二通信设备包括不限于CN网元(如AMF、SMF、PCF、或AF),如图12所示,通信设备1200包括:
获取模块1201,获取第一信息,所述第一信息包括以下至少一项,第一能力信息、第二能力信息、UE的时延相关信息、和/或锚点网关的时延相关信息;
执行模块1202,根据所述第一信息,执行第一操作。
第一能力信息如图4所示的实施例中的第一能力信息,此处不作赘述。
UE的时延相关信息如图4所示的实施例中的第一能力信息,此处不作赘述。
锚点网关的时延相关信息如图7所示的实施例中的第二能力信息,此处不作赘述。
第二能力信息如图7所示的实施例中的第二能力信息,此处不作赘述。
可选的,所述第一操作包括以下至少一项:
(1)确定UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力;
(2)确定时间敏感数据流的第二传送配置信息(如出口的用户和/或网络配置信息;
(3)发送时间敏感数据流的配置信息;所述时间敏感数据流的配置信息为时间敏感数据流的第一传送配置信息或时间敏感数据流的第二传送配置信息;
(4)确定网桥配置信息;
(5)公开或发送UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力。
其中,根据所述第一信息,确定UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力包括以下至少一项:
确定UE与网络构成的网桥内时延;
确定UE与网络构成的网桥的带宽可用性参数;
确定UE、时间敏感网络适配器与网络构成的网桥内时延;
确定UE、时间敏感网络适配器与网络构成的网桥的带宽可用性参数;
确定第一接口和第四接口间时延。
第一接口可以是第一端口。第一端口为UE或第一适配器上的连接网桥或End Station的端口。
第四接口可以是第二端口。第二端口为锚点网关或第二适配器上的连接网桥或End Station的端口。
一种实施方式中,确定UE与网络构成的网桥内时延可以为:UE的时延,UE与RAN网元间时延、RAN网元与锚点网关间时延、锚点网关的时延五者之和(即UE的时延+UE与RAN网元间时延+RAN网元与锚点网关间时延+锚点网关的时延);
一种实施方式中,确定UE、时间敏感网络适配器与网络构成的网桥内时延可以为:UE与第一适配器间的时延、UE与RAN网元间传输时延、RAN网元的处理时延、RAN网元与锚点网关间时延、锚点网关与第二适配器间的时延五者之和(即UE与第一适配器间的时延+UE与RAN网元间传输时延+RAN网元的处理时延+RAN网元与锚点网关间时延+锚点网关与第二适配器间的时延)。
一种实施方式中,所述网桥内时延为第一接口和第四接口间时延。所述第一能力信息中包含第一接口的相关信息和第二接口的相关信息。第二能力信息中包含第三接口的相关信息和第四接口的相关信息。
第二接口的相关信息可以为UU接口中第一通道的信息。第三接口的相关信息可以为N3N9接口中第一通道的信息。通过第一通道信息,第一接口和第四接口建立关联。第一通道如图4和/或图7实施例所述。
一种实施方式中,所述第一接口和第四接口间时延可以为:数据包从第一接口传递到第二接口所需要的时间,UE与RAN网元间时延、RAN网元与锚点网关间时延、数据包从第三接口传递到第四接口所需要的时间五者之和(即数据包从第一接口传递到第二接口所需要的时间+UE与RAN网元间时延+RAN网元与锚点网关间时延+数据包从第三接口传递到第四接口所需要的时间);
另一种实施方式中,所述第一接口和第四接口间时延可以为:数据包从第二接口传递到第一接口所需要的时间,UE与RAN网元间时延、RAN网元与锚点网关间时延、数据包从第四接口传递到第三接口所需要的时间五者之和(即数据包从第二接口传递到第一接口所需要的时间+UE与RAN网元间时延+RAN网元与锚点网关间时延+据包从第四接口传递到第三接口所需要的时间之和)。
其中,根据所述第一信息,确定的时间敏感数据流的传送配置信息。
其中,根据所述第一信息,发送时间敏感数据流的配置信息,可以包括以下至少一项:
当满足第一条件时,向UE和/或第一适配器发送时间敏感数据流的配置信息;
当满足第二条件时,向锚点网关和/或第二适配器发送时间敏感数据流的配置信息。
可选的,上述第一条件包括以下至少一项:
时间敏感数据流为下行数据(如当UE为UE与网络构成的网桥的出口);
UE的类型为bridge;
时间敏感网络的架构类型为全分布式;
UE为End station且时间敏感网络的架构类型为集中分布混合式;
时间敏感数据流配置信息的指示信息指示需要时间敏感数据流配置信息。
可选的,上述第二条件包括以下至少一项:
时间敏感数据流为上行数据(如当锚点网关与网络构成的网桥的出口);
时间敏感网络的架构类型为全分布式或集中分布混合式。
可选的,如图13所示,通信设备1200还包括:
发送模块1203,用于向以下至少一项发送所述确定的网桥配置信息:
UE,锚点网关,第一适配器,第二适配器。
可选的,所述网桥配置信息包括以下至少一项:端口的相关信息、端口的配置带宽。
一种实施方式中,通过UE向第一适配器发送所述网桥配置信息;另种实施方式中,通过锚点网关向第二适配器发送所述网桥配置信息。
所述网桥配置信息为网桥出口的配置信息。
可选的,网桥配置信息包括以下至少一项:端口的相关信息、端口的配置带宽。
一种实施方式中,当时间敏感数据流为下行数据、当UE为网桥出口或第一适配器为网桥出口时,向UE发送网桥配置信息。当第一适配器为网桥出口时,UE可以向第一适配器转发所述网桥配置信息。
另一种实施方式中,当时间敏感数据流为上行数据,当锚点网关为网桥出口或第二适配器为网桥出口时,向锚点网关和/或第二适配器发送网桥配置信息。当第二适配器为网桥出口时,锚点网关可以向第二适配器转发所述网桥配置信息。
通信设备1200能够实现本公开方法实施例中第二通信设备实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
请参见图14,本公开实施例提供了另一种通信设备,该通信设备为时间敏感网络适配器,时间敏感网络适配器包括但不限于以下至少一项:第一适配器、第二适配器,如图14所示,通信设备1400包括:
获取模块1401,用于获取网桥配置信息和/或时间敏感数据流的配置信息;
执行模块1402,用于根据所述网桥配置信息和/或时间敏感数据流的配置信息,执行时间敏感通信的第二操作。
可选的,所述网桥配置信息包括以下至少一项:
端口的相关信息、端口的带宽、端口的传输速率。
可选的,所述第二操作包括:
根据获取的端口配置信息,配置端口的带宽和/或传输速率。
通信设备1400能够实现本公开方法实施例中时间敏感网络适配器实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
请参见图15,本公开实施例提供了另一种通信设备,该通信设备为第三通信设备,第三通信设备包括不限于以下至少一项:锚点网关、第二适配器,如图15所示,通信设备1500包括:
发送模块1501,用于发送第二能力信息和/或锚点网关的时延相关信息;
其中,第二能力信息可以包括以下至少一项:
锚点网关与第二适配器间的时延相关信息、
第二适配器的网桥标识信息、
第二适配器的支持的带宽信息、
第二适配器的发送传播时延相关信息、
锚点网关和第二适配器构成的整体的网桥标识信息、
锚点网关和第二适配器构成的整体支持的带宽信息、
锚点网关和第二适配器构成的整体的发送传播时延相关信息。
锚点网关与第二适配器间的时延相关信息如图7实施例所述,此处不再赘述。
第二适配器的网桥标识信息如图7实施例所述,此处不再赘述。
第二适配器的支持的带宽信息如图7实施例所述,此处不再赘述。
第二适配器的发送传播时延相关信息如图7实施例所述,此处不再赘述。
锚点网关和第二适配器构成的整体的网桥标识信息如图7实施例所述,此处不再赘述。
锚点网关和第二适配器构成的整体支持的带宽信息如图7实施例所述,此处不再赘述。
锚点网关和第二适配器构成的整体的发送传播时延相关信息如图7实施例所述,此处不再赘述。
锚点网关的时延相关信息如图7实施例所述,此处不再赘述。
可选的,所述发送第二能力信息和/或锚点网关的时延相关信息,包括:在满足预设条件时,发送第二能力信息和/或锚点网关的时延相关信息。
所述预设条件可以为以下至少一项:
接收网络请求所述第二能力信息的请求;
接收网络请求所述锚点网关的时延相关信息的请求;
锚点网关的类型为bridge;
锚点网关支持时间敏感通信。
可选的,在所述发送第二能力信息和/或锚点网关的时延相关信息的步骤之后,所述方法还包括:
获取端口配置信息,端口配置信息包括以下至少一项:端口的相关信息、 端口的带宽、端口的传输速率;
根据获取的所述端口配置信息,配置端口的带宽和/或传输速率。
可选的,所述发送第二能力信息和/或锚点网关的时延相关信息,包括:
向目标端发送第二能力信息和/或锚点网关的时延相关信息;所述目标端包括:锚点网关、RAN网元,CN网元。当第一通信网元是第二适配器时,所述目标端可以是锚点网关。当第一通信网元是锚点网关时,所述目标端可以是RAN网元和/或CN网元。所述目标端可以为与锚点网关和/或第二适配器构成网桥的网络的通信网元。
其中,CN网元可以包括但不限于以下至少一项:PCF,AMF,SMF,AF。
通信设备1500能够实现本公开方法实施例中第三通信设备实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
可选的,如图16所示,通信设备1500还包括:
获取模块1502,用于获取端口配置信息,其中,所述端口配置信息包括以下至少一项:端口的相关信息、端口的带宽、端口的传输速率;
配置模块1503,用于根据获取的所述端口配置信息,配置端口的带宽和/或传输速率。
其中,上述端口配置信息可以是网络发送的。
其中,上述端口配置信息可以是第二端口的端口配置信息。当第三通信设备是锚点网关时且第二端口是第二适配器的端口时,锚点网关向第二适配器发送所述端口配置信息。
该实施方式中,由于根据获取的所述端口配置信息,配置端口的带宽和/或传输速率,从而使得配置的端口的带宽更加适合时间敏感数据的传输。
通信设备1600能够实现本公开方法实施例中第一通信设备实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
参见图17,图17是本公开实施例提供的通信设备的结构图之七。如图17所示,通信设备1700包括:存储器1701、处理器1702及存储在存储器1701上并可在处理器1702上运行的计算机程序17011。
其中,在通信设备1700表现为上述方法实施例中的第一通信设备时,计算机程序17011被处理器1702执行时实现如下步骤:
发送第一能力信息和/或UE的时延相关信息。
可选的,第一能力信息可以包括以下至少一项:
UE和第一适配器间的时延相关信息、
第一适配器的网桥标识信息、
第一适配器的支持的带宽信息、
第一适配器的发送传播时延相关信息、
UE和第一适配器构成的整体的网桥标识信息、
UE和第一适配器构成的整体支持的带宽信息、
UE和第一适配器构成的整体的发送传播时延相关信息。
UE与第一适配器可以合设为一个设备或者通过接口(如N60接口)连接。
一种实施方式中,当第一通信设备是UE时,可以向网络发送第一能力信息。另一种实施方式中,当第一通信设备是第一适配器时,可以向UE发送第一能力信息。
一种实施方式中,第一能力可以理解为UE和第一适配器构成的整体作为网桥的能力。第一适配器可以为UE连接的时间敏感网络适配器。
一种实施方式中,UE从第一适配器获取第一能力信息。
(1.1)第一适配器支持的带宽的相关信息可以是第一适配器支持的可用带宽的相关信息。第一适配器支持的带宽信息可以是第一适配器上的端口支持的带宽信息。所述端口为连接网桥或End Station的端口。
UE和第一适配器构成的整体支持的带宽信息可以是UE和第一适配器构成的整体支持的可用带宽的相关信息。UE和第一适配器构成的整体支持的带宽信息可以是UE和第一适配器构成的整体上的端口支持的带宽信息。所述端口为连接网桥或End Station的端口。
可选的,端口支持的带宽信息包括以下至少一项:端口的相关信息、端口的带宽、端口的带宽可用性参数、端口的传输速率。
一种实施方式中,端口的带宽可用性参数可以如IEEE 802.1Q系列的定义,如带宽可用性参数(Bandwidth Availability Parameters)。
一种实施方式中,端口的带宽可以为端口的可用带宽,端口的传输速率 可以为端口的可用传输速率。
(1.2)第一适配器的发送传播时延相关信息可以为第一适配器上的端口的发送传播时延相关信息。
UE和第一适配器构成的整体的发送传播时延相关信息可以为UE和第一适配器构成的整体上的端口的发送传播时延相关信息。
可选的,端口的发送传播时延相关信息包括以下至少一项:端口的相关信息、端口的发送传播时延、业务类别(traffic class)。
其中,端口的发送传播时延可以为数据帧从第一适配器的端口或UE与第一适配器构成的整体的端口传递到连接的站点(网桥或End station)的端口所需要的时间。
(1.3)可选的,端口的相关信息可以包括以下至少一项:端口的标识信息、端口的方向为出口或入口相关信息、端口号、端口的MAC地址、端口的IP地址、端口关联的VLAN标签信息、端口的数据过滤器信息。
可选的,端口的数据过滤器信息或数据过滤器信息可以包括以下至少一项:虚拟局域网(Virtual Local Area Network,VLAN)的标签信息、媒体接入控制(MAC)地址、IPv4地址、端口号、IPv6地址、端口的指示信息,其中,所述端口的指示信息包括发送端口的指示信息或接收端口的指示信息。
其中,VLAN的标签信息也称为VLAN标识信息(如VID)。上述VLAN的标签信息可以包括:服务VLAN标签(Service VLAN Tag,S-TAG)和/或用户VLAN标签(Customer VLAN Tag,C-TAG)。
(1.4)可选的,业务类别为端口的传送队列个数或业务类型。业务类型可以包括至少以下一项:背景业务(Background)、最大努力(best effort)、极大努力(excellent effort)关键应用(critical application)、视频(video)语音(voice),互联网控制(Internetwork control)、网络控制(Network control)。
(1.5)可选的,UE与第一适配器间的时延相关信息包括以下至少一项:第一接口的相关信息、第二接口的相关信息、UE与第一适配器间的时延、数据包关联的业务类别。业务类别如上文所述,此处不再赘述。
可选的,第一接口可以为第一端口,其中,第一端口为连接网桥或End Station的端口。第二接口可以包括以下之一:UE的UU接口,连接UE的UU 接口的端口。其中,所述UU接口为所述UE与RAN之间的接口。
第一端口可以为第一适配器的端口或UE的端口。第一适配器的端口可以为第一适配器上连接网桥或End Station的端口。UE的端口可以为UE上连接网桥或End Station的端口。
进一步地,UE的UU接口包括UE的UU接口中的通道。
进一步地,所述通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。
一种实施方式中,第一接口为数据入口,第二接口为数据出口。另一种实施方式中,第二接口为数据入口,第一接口为数据出口。
第一接口为第一端口时,第一接口的相关信息可以为所述第一端口的端口的相关信息(端口的相关信息如上文所述,此处不再赘述)。
第二接口为UE的UU接口时,第二接口的相关信息可以为UU接口中第一通道的信息。
进一步地,所述第一通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。所述端口可以为第一端口(可以是第一适配器的端口或UE的端口)。所述数据过滤器信息可以为第一端口的数据过滤器信息。所述VLAN可以为第一端口关联的VLAN。
-端口相关的通道的信息包括以下至少一项:所述端口的端口相关的信息、通道的标识信息(如PDU会话标识和/或QoS流标识)。
-与VLAN相关的通道的信息包括以下至少一项:所述VLAN的VLAN标签信息(VLAN标签信息如上所述,此处不再赘述),通道的标识信息(如PDU会话标识和/或QoS流标识)。
-与数据过滤器信息相关的通道的信息包括以下至少一项:数据过滤器信息(数据过滤器信息如上所述,此处不再赘述),通道的标识信息(如PDU会话标识和/或QoS流标识)。
当所述通道为QoS流时,所述通道的标识信息可以为QoS流标识和/或所述QoS流所属的PDU会话标识。当所述通道为PDU会话时,所述通道的标识信息可以为PDU会话标识。
可选的,UE与第一适配器间的时延可以为UE和第一适配器构成整体的 网桥时延。一种实施方式中,UE与第一适配器间的时延可以为数据包从数据入口(如第一接口或第二接口)传递到数据出口(如第二接口或第一接口)所需要的时间。
示例性的:当数据入口(如第一接口或第二接口)为UE的UU接口时,数据出口(如第二接口或第一接口)可以为第一端口;或当数据入口为第一端口时,数据出口可以为UE的UU接口。
(2.1)进一步地,UE与第一适配器间的时延可以是以下至少一项:
数据包从第一接口传递到第二接口所需要的时间;
数据包从第二接口传递到第一接口所需要的时间。
一种实施方式中,数据包从第一接口传递到第二接口所需要的时间,与数据包从第二接口传递到第一接口所需要的时间是一样的。另一种实施方式中,数据包从第一接口传递到第二接口所需要的时间,与数据包从第二接口传递到第一接口所需要的时间是不一样的。
进一步地,数据包从第一接口传递到第二接口所需要的时间可以是以下至少一项:
数据包从第一端口传递到UE的UU接口所需要的时间;
数据包从第一端口被接收至准备从UE的UU接口发送所需要的时间。
一种实施方式中,数据包从第一端口传递到UE的UU接口所需要的时间包括:数据包从第一端口传递到UE的UU接口的第一通道所需要的时间。第一通道如上文所述,此处不再赘述。
一种实施方式中,数据包从第一端口被接收至准备从UE的UU接口发送所需要的时间包括:数据包从第一端口被接收至准备从UE的UU接口发送到第一通道所需要的时间。第一通道如上文所述,此处不再赘述。
(2.2)进一步地,数据包从第二接口传递到第一接口所需要的时间可以是以下至少一项:
数据包从UE的UU接口传递到第一端口所需要的时间;
数据包被UE从UU接口接收至被传递到第一端口所需要的时间;
一种实施方式中,数据包被UE从UU接口接收至被传递到第一端口所需要的时间包括以下至少一项:数据包被UE从UU接口的第一通道接收至 被传递到第一端口所需要的时间;数据包被UE从UU接口的第一通道的PDCP层被解析出来至被传递到第一端口所需要的时间。
一种实施方式中,所述第一通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。所述端口可以为第一端口,比如连接网桥或End Station的端口(可以是第一适配器的端口或UE的端口)。所述数据过滤器信息可以为第一端口的与数据过滤器信息。所述VLAN可以为第一端口关联的VLAN。
(2.3)进一步地,UE与第一适配器间的时延可以包括以下至少一项:所述UE与第一适配器间的最大时延和所述UE与第一适配器间的最小时延。UE与第一适配器间的最小时延也可以称为UE与第一适配器构成的整体的最小网桥时延,UE与第一适配器间的最大时延也称为UE与第一适配器构成的整体的最大网桥时延。UE与第一适配器间的最小时延可以进一步区分为与数据包大小相关的UE与第一适配器间的最小时延和与数据包大小无关的UE与第一适配器间的最小时延。UE与第一适配器间的最大时延可以进一步区分为与数据包大小相关的UE与第一适配器间的最大时延和与数据包大小无关的UE与第一适配器间的最大时延。
(2.4)进一步地,UE与第一适配器间的时延可以包括以下至少一项:下行时延和上行时延。
下行时延可以为包括以下之一:
数据包从UE传递到第一适配器所需要的时间;
数据包从第二接口到第一接口通过所需要的时间;
数据包从UE的UU接口到第一端口通过所需要的时间;
数据包从UE的UU接口中的第一通道到第一端口通过所需要的时间。
下行时延可以称为从UE到第一适配器的时延。
上行时延可以包括以下至少一项:
数据包从第一接口传递到第二接口所需要的时间;
数据包从第一适配器传递到UE所需要的时间;
数据包从第一端口传递到UE的UU接口所需要的时间;
数据包从第一端口被接收至准备从UE的UU接口发送的时间;
数据包从第一端口传递到UE的UU接口中的第一通道所需要的时间;
数据包从第一端口被接收至准备从UE的UU接口中的第一的通道发送的时间。
不难理解,上行数据传送需要UE请求RAN的调度。等待RAN网元的调度的时延不属于UE与第一适配器间的时延。
上行时延可以称为从第一适配器到UE的时延。
一种实施方式中,上行时延与下行时延是一致的。另一种实施方式中,上行时延与下行时延是不一致的。
(2.5)可选的,UE的时延相关信息包括以下至少一项:第一接口的相关信息、第二接口的相关信息、UE的时延、数据包关联的业务类别。
第一接口的相关信息、第二接口的相关信息、业务类别如上文所述,此处不再赘述。
UE的时延为数据包从UE上的数据入口(如第一接口或第二接口)传递到UE上的数据出口(如第二接口或第一接口)所需要的时间。
进一步地,UE的时延可以是以下至少一项:
数据包从第一接口传递到第二接口所需要的时间;
数据包从第二接口传递到第一接口所需要的时间。
一种实施方式中,第一接口为第一端口,第一端口为UE的端口。所述UE的端口可以为UE上连接网桥或End Station的端口。
一种实施方式中,数据包从第一接口传递到第二接口所需要的时间可以包括以下至少一项:数据包从UE的UU接口传递到第一端口;数据包被UE从UU接口接收至被传递到第一端口所需要的时间。
另一种实施方式中,数据包从第二接口传递到第一接口所需要的时间可以包括以下至少一项:数据包从第一端口传递到UE的UU接口所需要的时间;数据包从第一端口被接收至准备从UE的UU接口发送所需要的时间。
可选的,所述发送第一能力信息和/或UE的时延相关信息,包括:
在满足预设条件时,发送第一能力信息和/或UE的时延相关信息。
所述预设条件可以为以下至少一项:
接收网络请求所述第一能力信息的请求;
接收网络请求所述UE的时延相关信息的请求;
UE的类型为bridge;
UE支持时间敏感通信。
这样可以实现在满足预设条件时,才发送第一能力信息和/或UE的时延相关信息,以避免第一能力信息和/或UE的时延相关信息频繁发送,达到节约功耗的效果。
一种实施方式中,当UE支持时间敏感通信时,发送第一能力信息和/或UE的时延相关信息。
可选的,所述发送第一能力信息和/或UE的时延相关信息,包括:
向目标端发送第一能力信息和/或UE的时延相关信息;所述目标端包括:UE、RAN网元,CN网元。当第一通信网元是第一适配器时,所述目标端可以是UE。当第一通信网元是UE时,所述目标端可以是RAN网元和/或CN网元。所述目标端可以为与UE和/或第一适配器构成网桥的网络的通信网元。
其中,CN网元可以包括但不限于以下至少一项:PCF,AMF,SMF,AF。
可选的,在所述发送第一能力信息和/或UE的时延相关信息的步骤之后,所述方法还包括:
获取端口配置信息,端口配置信息包括以下至少一项:端口的相关信息、端口的带宽、端口的传输速率;
根据获取的所述端口配置信息,配置端口的带宽和/或传输速率。
其中,上述端口配置信息可以是网络发送的。
其中,上述端口配置信息可以是第一端口的端口配置信息。当第一通信设备是UE时且第一端口是第一适配器的端口时,UE向第一适配器发送所述端口配置信息。
该实施方式中,由于根据获取的所述端口配置信息,配置端口的带宽和/或传输速率,从而使得配置的端口的带宽更加适合时间敏感数据的传输。
在通信设备1700表现为上述方法实施例中的第二通信设备时,计算机程序17011被处理器1702执行时实现如下步骤:
获取第一信息,所述第一信息包括以下至少一项,第一能力信息、第二能力信息、UE的时延相关信息、和/或锚点网关的时延相关信息;
步骤52:根据所述第一信息,执行第一操作。
第一能力信息如图4所示的实施例中的第一能力信息,此处不作赘述。
UE的时延相关信息如图4所示的实施例中的第一能力信息,此处不作赘述。
锚点网关的时延相关信息如图7所示的实施例中的第二能力信息,此处不作赘述。
第二能力信息如图7所示的实施例中的第二能力信息,此处不作赘述。
可选的,可以从以下至少一项获取第一能力信息和/或UE的时延相关信息:UE,第一通信设备、UE当前接入的RAN网元。
可选地,可以从以下至少一项获取第二能力信息和/或锚点网关的时延相关信息:UE,锚点网关,第三通信设备。
所述锚点网关为终结N6接口的网关。进一步地,所述锚点网关可以为建立与网桥相关通道或与端口相关通道的锚点网关。
所述RAN网元可以为服务UE的RAN网元。
可选的,上述第一操作可以为时间敏感的相关操作。例如:第一操作可以包括以下至少一项:
(1)确定UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力;
(2)确定时间敏感数据流的第二传送配置信息(如出口的用户和/或网络配置信息;
(3)发送时间敏感数据流的配置信息;所述时间敏感数据流的配置信息为时间敏感数据流的第一传送配置信息或时间敏感数据流的第二传送配置信息;
(4)确定网桥配置信息;
(5)公开或发送UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力。
其中,根据所述第一信息,确定UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力包括以下至少一项:
确定UE与网络构成的网桥内时延;
确定UE与网络构成的网桥的带宽可用性参数;
确定UE、时间敏感网络适配器与网络构成的网桥内时延;
确定UE、时间敏感网络适配器与网络构成的网桥的带宽可用性参数;
确定第一接口和第四接口间时延。
第一接口可以是第一端口。第一端口为UE或第一适配器上的连接网桥或End Station的端口。
第四接口可以是第二端口。第二端口为锚点网关或第二适配器上的连接网桥或End Station的端口。
一种实施方式中,确定UE与网络构成的网桥内时延可以为:UE的时延,UE与RAN网元间时延、RAN网元与锚点网关间时延、锚点网关的时延五者之和(即UE的时延+UE与RAN网元间时延+RAN网元与锚点网关间时延+锚点网关的时延);
一种实施方式中,确定UE、时间敏感网络适配器与网络构成的网桥内时延可以为:UE与第一适配器间的时延、UE与RAN网元间传输时延、RAN网元的处理时延、RAN网元与锚点网关间时延、锚点网关与第二适配器间的时延五者之和(即UE与第一适配器间的时延+UE与RAN网元间传输时延+RAN网元的处理时延+RAN网元与锚点网关间时延+锚点网关与第二适配器间的时延)。
一种实施方式中,所述网桥内时延为第一接口和第四接口间时延。所述第一能力信息中包含第一接口的相关信息和第二接口的相关信息。第二能力信息中包含第三接口的相关信息和第四接口的相关信息。
第二接口的相关信息可以为UU接口中第一通道的信息。第三接口的相关信息可以为N3N9接口中第一通道的信息。通过第一通道信息,第一接口和第四接口建立关联。第一通道如图4和/或图7实施例所述。
一种实施方式中,所述第一接口和第四接口间时延可以为:数据包从第一接口传递到第二接口所需要的时间,UE与RAN网元间时延、RAN网元与锚点网关间时延、数据包从第三接口传递到第四接口所需要的时间五者之和(即数据包从第一接口传递到第二接口所需要的时间+UE与RAN网元间时延+RAN网元与锚点网关间时延+数据包从第三接口传递到第四接口所需要的时间)。
另一种实施方式中,所述第一接口和第四接口间时延可以为:数据包从第二接口传递到第一接口所需要的时间,UE与RAN网元间时延、RAN网元与锚点网关间时延、数据包从第四接口传递到第三接口所需要的时间五者之和(即数据包从第二接口传递到第一接口所需要的时间+UE与RAN网元间时延+RAN网元与锚点网关间时延+据包从第四接口传递到第三接口所需要的时间之和)。
其中,根据所述第一信息,确定的时间敏感数据流的传送配置信息。
其中,根据所述第一信息,发送时间敏感数据流的配置信息,可以包括以下至少一项:
当满足第一条件时,向UE和/或第一适配器发送时间敏感数据流的配置信息;
当满足第二条件时,向锚点网关和/或第二适配器发送时间敏感数据流的配置信息。
可选的,上述第一条件包括以下至少一项:
时间敏感数据流为下行数据(如当UE为UE与网络构成的网桥的出口);
UE的类型为bridge;
时间敏感网络的架构类型为全分布式;
UE为End station且时间敏感网络的架构类型为集中分布混合式;
时间敏感数据流配置信息的指示信息指示需要时间敏感数据流配置信息。
可选的,上述第二条件包括以下至少一项:
时间敏感数据流为上行数据(如当锚点网关与网络构成的网桥的出口);
时间敏感网络的架构类型为全分布式或集中分布混合式。
可选的,所述执行第一操作的步骤之后,所述方法还包括:
向以下至少一项发送上述确定的网桥配置信息:
UE,锚点网关,第一适配器,第二适配器。
一种实施方式中,通过UE向第一适配器发送所述网桥配置信息;另种实施方式中,通过锚点网关向第二适配器发送所述网桥配置信息。
所述网桥配置信息为网桥出口的配置信息。
可选的,网桥配置信息包括以下至少一项:端口的相关信息、端口的配 置带宽。
一种实施方式中,当时间敏感数据流为下行数据、当UE为网桥出口或第一适配器为网桥出口时,向UE发送网桥配置信息。当第一适配器为网桥出口时,UE可以向第一适配器转发所述网桥配置信息。
另一种实施方式中,当时间敏感数据流为上行数据,当锚点网关为网桥出口或第二适配器为网桥出口时,向锚点网关和/或第二适配器发送网桥配置信息。当第二适配器为网桥出口时,锚点网关可以向第二适配器转发所述网桥配置信息。
在通信设备1700表现为上述方法实施例中的时间敏感网络适配器时,计算机程序17011被处理器1702执行时实现如下步骤:
获取网桥配置信息和/或时间敏感数据流的配置信息;
根据所述网桥配置信息和/或时间敏感数据流的配置信息,执行时间敏感通信的第二操作。
其中,上述网桥配置信息可以是网络出口配置信息。
可选的,网桥配置信息包括以下至少一项:端口的相关信息、端口的带宽、端口的传输速率。
其中,端口的带宽可以为端口的可用带宽,端口的传输速率可以为端口的可用传输速率。
端口的相关信息如实施例4所述,此处不再赘述。
一种实施方式中,根据所述网桥配置信息和/或时间敏感数据流的配置信息,执行时间敏感通信第二相关操作包括:根据获取的端口配置信息,配置端口的带宽和/或传输速率。
通过本公开实施例中,对通过对网桥出口的配置,支持时间敏感通信。
在通信设备1700表现为上述方法实施例中的时间敏感网络适配器时,计算机程序17011被处理器1702执行时实现如下步骤:
发送第二能力信息和/或锚点网关的时延相关信息。
可选的,第二能力信息可以包括以下至少一项:
锚点网关与第二适配器间的时延相关信息、
第二适配器的网桥标识信息、
第二适配器的支持的带宽信息、
第二适配器的发送传播时延相关信息、
锚点网关和第二适配器构成的整体的网桥标识信息、
锚点网关和第二适配器构成的整体支持的带宽信息、
锚点网关和第二适配器构成的整体的发送传播时延相关信息。
锚点网关与第二适配器可以合设为一个设备或者通过接口连接。
一种实施方式中,当时间敏感网络适配器是锚点网关时,可以向网络发送第二能力信息。另一种实施方式中,当时间敏感网络适配器是第二适配器时,可以向锚点网关发送第二能力信息。
所述锚点网关可以为终结N6接口的网关(如UPF)。
一种实施方式中,第二能力可以理解为锚点网关和第二适配器构成的整体作为网桥的能力。第二适配器可以为锚点网关连接的时间敏感网络适配器。
一种实施方式中,锚点网关从第二适配器获取第二能力信息。
(1.1)第二适配器支持的带宽的相关信息可以是第二适配器支持的可用带宽的相关信息。第二适配器支持的带宽信息可以是第二适配器上的端口支持的带宽信息。所述端口为连接网桥或End Station的端口。
锚点网关和第二适配器构成的整体支持的带宽信息可以是锚点网关和第二适配器构成的整体支持的可用带宽的相关信息。锚点网关和第二适配器构成的整体支持的带宽信息可以是锚点网关和第二适配器构成的整体上的端口支持的带宽信息。所述端口为连接网桥或End Station的端口。
可选的,端口支持的带宽信息包括以下至少一项:端口的相关信息、端口的带宽、端口的带宽可用性参数、端口的传输速率。
一种实施方式中,端口的带宽可用性参数可以如IEEE 802.1Q系列的定义,如带宽可用性参数(Bandwidth Availability Parameters)。
一种实施方式中,端口的带宽可以为端口的可用带宽,端口的传输速率可以为端口的可用传输速率。
(1.2)第二适配器的发送传播时延相关信息可以为第二适配器上的端口的发送传播时延相关信息。
锚点网关和第二适配器构成的整体的发送传播时延相关信息可以为锚点 网关和第二适配器构成的整体上的端口的发送传播时延相关信息。
可选的,端口的发送传播时延相关信息包括以下至少一项:端口的相关信息、端口的发送传播时延、业务类别(traffic class)。
其中,端口的发送传播时延可以为数据帧从第二适配器的端口或锚点网关与第二适配器构成的整体的端口传递到连接的站点(网桥或End station)的端口所需要的时间。
(1.3)可选的,端口的相关信息可以包括以下至少一项:端口的标识信息、端口的方向为出口或入口相关信息、端口号、端口的MAC地址、端口的IP地址、端口关联的VLAN标签信息、端口的数据过滤器信息。
可选的,端口的数据过滤器信息或数据过滤器信息可以包括以下至少一项:虚拟局域网(Virtual Local Area Network,VLAN)的标签信息、媒体接入控制(MAC)地址、IPv4地址、端口号、IPv6地址、端口的指示信息,其中,所述端口的指示信息包括发送端口的指示信息或接收端口的指示信息。
其中,VLAN的标签信息也称为VLAN标识信息(如VID)。上述VLAN的标签信息可以包括:服务VLAN标签(Service VLAN Tag,S-TAG)和/或用户VLAN标签(Customer VLAN Tag,C-TAG)。
(1.4)可选的,业务类别为端口的传送队列个数或业务类型。业务类型可以包括至少以下一项:背景业务(Background)、最大努力(best effort)、极大努力(excellent effort)关键应用(critical application)、视频(video)语音(voice),互联网控制(Internetwork control)、网络控制(Network control)。
(1.5)可选的,锚点网关与第二适配器间的时延相关信息包括以下至少一项:第四接口的相关信息、第三接口的相关信息、锚点网关与第二适配器间的时延、数据包关联的业务类别。业务类别如上文所述,此处不再赘述。
可选的,第四接口可以为第二端口,其中,第二端口为连接网桥或End Station的端口。第三接口可以包括以下之一:锚点网关的N3N9接口,连接锚点网关的N3N9接口的端口,N6接口,连接N6接口的端口。其中,所述N3N9接口为N3接口或N9接口。所述N3口网关与RAN之间的接口。所述N9接口为网关与网关的接口。所述N6接口为锚点网关与外部网络的接口。
第二端口可以为第二适配器的端口或锚点网关的端口。第二适配器的端 口可以为第二适配器上连接网桥或End Station的端口。锚点网关的端口可以为锚点网关上连接网桥或End Station的端口。
进一步地,锚点网关的N3N9接口包括锚点网关的N3N9接口中的通道。
进一步地,所述通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。
一种实施方式中,第四接口为数据入口,第三接口为数据出口。另一种实施方式中,第三接口为数据入口,第四接口为数据出口。
第四接口为第二端口时,第四接口的相关信息可以为所述第二端口的端口的相关信息(端口的相关信息如上文所述,此处不再赘述)。
第三接口为锚点网关的N3N9接口时,第三接口的相关信息可以为N3N9接口的第一通道的信息。
进一步地,所述第一通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。所述端口可以为第二端口(可以是第二适配器的端口或锚点网关的端口)。所述数据过滤器信息可以为第二端口的数据过滤器信息。所述VLAN可以为第二端口关联的VLAN。
-端口相关的通道的信息包括以下至少一项:所述端口的端口相关的信息、通道的标识信息(如PDU会话标识和/或QoS流标识)。
-与VLAN相关的通道的信息包括以下至少一项:所述VLAN的VLAN标签信息(VLAN标签信息如上所述,此处不再赘述),通道的标识信息(如PDU会话标识和/或QoS流标识)。
-与数据过滤器信息相关的通道的信息包括以下至少一项:数据过滤器信息(数据过滤器信息如上所述,此处不再赘述),通道的标识信息(如PDU会话标识和/或QoS流标识)。
当所述通道为QoS流时,所述通道的标识信息可以为QoS流标识和/或所述QoS流所属的PDU会话标识。当所述通道为PDU会话时,所述通道的标识信息可以为PDU会话标识。
可选的,锚点网关与第二适配器间的时延可以为锚点网关和第二适配器构成整体的网桥时延。一种实施方式中,锚点网关与第二适配器间的时延可以为数据包从数据入口(如第四接口或第三接口)传递到数据出口(如第三 接口或第四接口)所需要的时间。
示例性的:当数据入口(如第四接口或第三接口)为锚点网关的N3N9接口时,数据出口(如第三接口或第四接口)可以为第二端口;或当数据入口为第二端口时,数据出口可以为锚点网关的N3N9接口。
(2.1)进一步地,锚点网关与第二适配器间的时延可以是以下至少一项:
数据包从第四接口传递到第三接口所需要的时间;
数据包从第三接口传递到第四接口所需要的时间。
一种实施方式中,数据包从第四接口传递到第三接口所需要的时间,与数据包从第三接口传递到第四接口所需要的时间是一样的。另一种实施方式中,数据包从第四接口传递到第三接口所需要的时间,与数据包从第三接口传递到第四接口所需要的时间是不一样的。
进一步地,数据包从第四接口传递到第三接口所需要的时间可以是以下至少一项:
数据包从第二端口传递到锚点网关的N3N9接口所需要的时间;
数据包从第二端口被接收至准备从锚点网关的N3N9接口发送所需要的时间。
一种实施方式中,数据包从第二端口传递到锚点网关的N3N9接口所需要的时间包括:数据包从第二适配器的端口传递到锚点网关的N3N9接口的第一通道所需要的时间。第一通道如上文所述,此处不再赘述。
一种实施方式中,数据包从第二端口被接收至准备从锚点网关的N3N9接口发送所需要的时间包括:数据包从第二端口被接收至准备从锚点网关的N3N9接口发送到第一通道所需要的时间。第一通道如上文所述,此处不再赘述。
(2.2)进一步地,数据包从第三接口传递到第四接口所需要的时间可以是以下至少一项:
数据包从锚点网关的N3N9接口传递到第二端口所需要的时间;
数据包被锚点网关从N3N9接口接收至被传递到第二端口所需要的时间;
一种实施方式中,数据包被锚点网关从N3N9接口接收至被传递到第二端口所需要的时间包括以下至少一项:数据包被锚点网关从N3N9接口的第 一通道接收至被传递到第二端口所需要的时间;数据包被锚点网关从N3N9接口的第一通道的GTP-U层被解析出来至被传递到第二端口所需要的时间。
一种实施方式中,所述第一通道可以包括以下至少一项:与端口相关的通道,与VLAN相关的通道,与数据过滤器信息相关的通道。所述端口可以为第二端口,比如连接网桥或End Station的端口(可以是第二适配器的端口或锚点网关的端口)。所述数据过滤器信息可以为第二端口的与数据过滤器信息。所述VLAN可以为第二端口关联的VLAN。
(2.3)进一步地,锚点网关与第二适配器间的时延可以包括以下至少一项:所述锚点网关与第二适配器间的最大时延和所述锚点网关与第二适配器间的最小时延。锚点网关与第二适配器间的最小时延也可以称为锚点网关与第二适配器构成的整体的最小网桥时延,锚点网关与第二适配器间的最大时延也称为锚点网关与第二适配器构成的整体的最大网桥时延。锚点网关与第二适配器间的最小时延可以进一步区分为与数据包大小相关的锚点网关与第二适配器间的最小时延和与数据包大小无关的锚点网关与第二适配器间的最小时延。锚点网关与第二适配器间的最大时延可以进一步区分为与数据包大小相关的锚点网关与第二适配器间的最大时延和与数据包大小无关的锚点网关与第二适配器间的最大时延。
(2.4)进一步地,锚点网关与第二适配器间的时延可以包括以下至少一项:下行时延和上行时延。
下行时延可以为包括以下之一:
数据包从锚点网关传递到第二适配器所需要的时间;
数据包从第三接口到第四接口通过所需要的时间;
数据包从锚点网关的N3N9接口到第二端口通过所需要的时间;
数据包从锚点网关的N3N9接口中的第一通道到第二端口通过所需要的时间。
下行时延可以称为从锚点网关到第二适配器的时延。
上行时延可以包括以下至少一项:
数据包从第四接口传递到第三接口所需要的时间;
数据包从第二适配器传递到锚点网关所需要的时间;
数据包从第二端口传递到锚点网关的N3N9接口所需要的时间;
数据包从第二端口被接收至准备从锚点网关的N3N9接口发送的时间;
数据包从第二端口传递到锚点网关的N3N9接口中的第一通道所需要的时间;
数据包从第二端口被接收至准备从锚点网关的N3N9接口中的第一的通道发送的时间。
不难理解,上行数据传送需要锚点网关请求RAN的调度。等待RAN网元的调度的时延不属于锚点网关与第二适配器间的时延。
上行时延可以称为从第二适配器到锚点网关的时延。
一种实施方式中,上行时延与下行时延是一致的。另一种实施方式中,上行时延与下行时延是不一致的。
(2.5)可选的,锚点网关的时延相关信息包括以下至少一项:第四接口的相关信息、第三接口的相关信息、锚点网关的时延、数据包关联的业务类别。
第四接口的相关信息、第三接口的相关信息、业务类别如上文所述,此处不再赘述。
锚点网关的时延为数据包从锚点网关上的数据入口(如第四接口或第三接口)传递到锚点网关上的数据出口(如第三接口或第四接口)所需要的时间。
进一步地,锚点网关的时延可以是以下至少一项:
数据包从第四接口传递到第三接口所需要的时间;
数据包从第三接口传递到第四接口所需要的时间。
一种实施方式中,第四接口为第二端口,第二端口为锚点网关的端口。所述锚点网关的端口可以为锚点网关上连接网桥或End Station的端口。
一种实施方式中,数据包从第四接口传递到第三接口所需要的时间可以包括以下至少一项:数据包从锚点网关的N3N9接口传递到第二端口;数据包被锚点网关从N3N9接口接收至被传递到第二端口所需要的时间。
另一种实施方式中,数据包从第三接口传递到第四接口所需要的时间可以包括以下至少一项:数据包从第二端口传递到锚点网关的N3N9接口所需 要的时间;数据包从第二端口被接收至准备从锚点网关的N3N9接口发送所需要的时间。
可选的,所述发送第二能力信息和/或锚点网关的时延相关信息,包括:在满足预设条件时,发送第二能力信息和/或锚点网关的时延相关信息。
所述预设条件可以为以下至少一项:
接收网络请求所述第二能力信息的请求;
接收网络请求所述锚点网关的时延相关信息的请求;
锚点网关的类型为bridge;
锚点网关支持时间敏感通信。
这样可以实现在满足预设条件时,才发送第二能力信息和/或锚点网关的时延相关信息,以避免第二能力信息和/或锚点网关的时延相关信息频繁发送,达到节约功耗的效果。
一种实施方式中,当锚点网关支持时间敏感通信时,发送第二能力信息和/或锚点网关的时延相关信息。
可选的,所述发送第二能力信息和/或锚点网关的时延相关信息,包括:
向目标端发送第二能力信息和/或锚点网关的时延相关信息;所述目标端包括:锚点网关、RAN网元,CN网元。当第一通信网元是第二适配器时,所述目标端可以是锚点网关。当第一通信网元是锚点网关时,所述目标端可以是RAN网元和/或CN网元。所述目标端可以为与锚点网关和/或第二适配器构成网桥的网络的通信网元。
其中,CN网元可以包括但不限于以下至少一项:PCF,AMF,SMF,AF。
可选的,在所述发送第二能力信息和/或锚点网关的时延相关信息的步骤之后,所述方法还包括:
获取端口配置信息,端口配置信息包括以下至少一项:端口的相关信息、端口的带宽、端口的传输速率;
根据获取的所述端口配置信息,配置端口的带宽和/或传输速率。
其中,上述端口配置信息可以是网络发送的。
其中,上述端口配置信息可以是第二端口的端口配置信息。当第三通信设备是锚点网关时且第二端口是第二适配器的端口时,锚点网关向第二适配 器发送所述端口配置信息。
该实施方式中,由于根据获取的所述端口配置信息,配置端口的带宽和/或传输速率,从而使得配置的端口的带宽更加适合时间敏感数据的传输。
通信设备1700能够实现上述方法实施例中通信设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述任一支持时间敏感通信的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元、子模块等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (31)

  1. 一种支持时间敏感通信的方法,应用于第一通信设备,包括:
    发送第一能力信息和/或终端UE的时延相关信息;
    其中,所述第一能力信息包括以下至少一项:
    UE和第一适配器间的时延相关信息、第一适配器的网桥标识信息、第一适配器的支持的带宽信息、第一适配器的发送传播时延相关信息、UE和第一适配器构成的整体的网桥标识信息、UE和第一适配器构成的整体支持的带宽信息、UE和第一适配器构成的整体的发送传播时延相关信息。
  2. 如权利要求1所述的方法,其中,所述第一适配器支持的带宽信息是第一适配器上的端口支持的带宽信息;
    UE和第一适配器构成的整体支持的带宽信息是UE和第一适配器构成的整体上的端口支持的带宽信息。
  3. 如权利要求2所述的方法,其中,所述端口支持的带宽信息包括以下至少一项:
    端口的相关信息、端口的带宽、端口的带宽可用性参数、端口的传输速率。
  4. 如权利要求1所述的方法,其中,所述第一适配器的发送传播时延相关信息为第一适配器上的端口的发送传播时延相关信息;
    所述UE和第一适配器构成的整体的发送传播时延相关信息为UE和第一适配器构成的整体上的端口的发送传播时延相关信息。
  5. 如权利要求4所述的方法,其中,所述端口的发送传播时延相关信息包括以下至少一项:
    端口的相关信息、端口的发送传播时延、业务类别。
  6. 如权利要求1所述的方法,其中,所述UE与第一适配器间的时延相关信息包括以下至少一项:
    第一接口的相关信息、第二接口的相关信息、UE与第一适配器间的时延、数据包关联的业务类别。
  7. 如权利要求6所述的方法,其中,所述UE与第一适配器间的时延包 括以下至少一项:
    数据包从第一接口传递到第二接口所需要的时间;
    数据包从第二接口传递到第一接口所需要的时间。
  8. 如权利要求7所述的方法,其中,
    所述第一接口为第一端口时,第一接口的相关信息为所述第一端口的端口的相关信息;
    所述第二接口为UE的UU接口时,第二接口的相关信息为UU口的第一通道的信息;
    其中,所述第一端口为连接网桥或终点站点End Station的端口。
  9. 如权利要求8所述的方法,其中,
    所述第一通道包括以下至少一项:与端口相关的通道,与虚拟局域网VLAN相关的通道,与数据过滤器信息相关的通道。
  10. 如权利要求3所述的方法,其中,所述端口的相关信息包括以下至少一项:
    端口的标识信息、端口的方向为出口或入口相关信息、端口号、端口的媒体接入控制MAC地址、端口的互联网协议IP地址、端口关联的VLAN标签信息、端口的数据过滤器信息。
  11. 一种支持时间敏感通信的方法,应用于第二通信设备,包括:
    获取第一信息,所述第一信息包括以下至少一项,第一能力信息、第二能力信息、终端UE的时延相关信息、和/或锚点网关的时延相关信息;
    根据所述第一信息,执行第一操作;
    其中,所述第一能力信息包括以下至少一项:第一适配器的网桥标识信息、第一适配器的支持的带宽信息、第一适配器的发送传播时延相关信息、UE和第一适配器构成的整体的网桥标识信息、UE和第一适配器构成的整体支持的带宽信息、UE和第一适配器构成的整体的发送传播时延相关信息;
    所述第二能力信息包括以下至少一项:第二适配器的网桥标识信息、第二适配器的支持的带宽信息、第二适配器的发送传播时延相关信息、锚点网关和第二适配器构成的整体的网桥标识信息、锚点网关和第二适配器构成的整体支持的带宽信息、锚点网关和第二适配器构成的整体的发送传播时延相 关信息。
  12. 如权利要求11所述的方法,其中,所述第一操作包括以下至少一项:
    确定所述UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力;
    确定时间敏感数据流的第二传送配置信息;
    发送时间敏感数据流的配置信息,其中,所述时间敏感数据流的配置信息为时间敏感数据流的第一传送配置信息或时间敏感数据流的第二传送配置信息;
    确定网桥配置信息;
    公开或发送UE、时间敏感网路适配器和/或网络构成的网桥的网桥能力。
  13. 一种支持时间敏感通信的方法,应用于时间敏感网络的适配器,包括:
    获取网桥配置信息和/或时间敏感数据流的配置信息;
    根据所述网桥配置信息和/或时间敏感数据流的配置信息,执行时间敏感通信的第二操作。
  14. 如权利要求13所述的方法,其中,所述网桥配置信息包括以下至少一项:
    端口的相关信息、端口的带宽、端口的传输速率。
  15. 如权利要求14所述的方法,其中,所述第二操作包括:
    根据获取的端口配置信息,配置端口的带宽和/或传输速率。
  16. 一种支持时间敏感通信的方法,应用于第三通信设备,包括:
    发送第二能力信息;
    其中,所述第二能力信息包括以下至少一项:
    锚点网关与第二适配器间的时延相关信息、
    第二适配器的网桥标识信息、
    第二适配器的支持的带宽信息、
    第二适配器的发送传播时延相关信息、
    锚点网关和第二适配器构成的整体的网桥标识信息、
    锚点网关和第二适配器构成的整体支持的带宽信息、
    锚点网关和第二适配器构成的整体的发送传播时延相关信息。
  17. 如权利要求16所述的方法,其中,所述第二适配器支持的带宽信息是第二适配器上的端口支持的带宽信息;
    锚点网关和第二适配器构成的整体支持的带宽信息是锚点网关和第二适配器构成的整体上的端口支持的带宽信息。
  18. 如权利要求17所述的方法,其中,所述端口支持的带宽信息包括以下至少一项:
    端口的相关信息、端口的带宽、端口的带宽可用性参数、端口的传输速率。
  19. 如权利要求16所述的方法,其中,所述第二适配器的发送传播时延相关信息为第二适配器上的端口的发送传播时延相关信息;
    所述锚点网关和第二适配器构成的整体的发送传播时延相关信息为锚点网关和第二适配器构成的整体上的端口的发送传播时延相关信息。
  20. 如权利要求19所述的方法,其中,所述端口的发送传播时延相关信息包括以下至少一项:
    端口的相关信息、端口的发送传播时延、业务类别。
  21. 如权利要求16所述的方法,其中,所述锚点网关与第二适配器间的时延相关信息包括以下至少一项:
    第四接口的相关信息、第三接口的相关信息、锚点网关与第二适配器间的时延、数据包关联的业务类别。
  22. 如权利要求21所述的方法,其中,所述锚点网关与第二适配器间的时延包括以下至少一项:
    数据包从第四接口传递到第三接口所需要的时间;
    数据包从第三接口传递到第四接口所需要的时间。
  23. 如权利要求22所述的方法,其中,
    第四接口为第二端口时,第一接口的相关信息为所述第二端口的端口的相关信息。
    所述第三接口为锚点网关的N3N9接口时,第三接口的相关信息为N3N9接口的第一通道的信息;
    其中,所述第二端口为连接网桥或End Station的端口;
    所述N3N9接口为N3或N9接口。
  24. 如权利要求23所述的方法,其中,
    所述第一通道包括以下至少一项:与端口相关的通道,与虚拟局域网VLAN相关的通道,与数据过滤器信息相关的通道。
  25. 如权利要求18所述的方法,其中,所述端口的相关信息包括以下至少一项:
    端口的标识信息、端口的方向为出口或入口相关信息、端口号、端口的媒体接入控制MAC地址、端口的互联网协议IP地址、端口关联的虚拟局域网VLAN标签信息、端口的数据过滤器信息。
  26. 一种通信设备,所述通信设备为第一通信设备,包括:
    发送模块,用于发送第一能力信息和/或终端UE的时延相关信息;
    其中,所述第一能力信息包括以下至少一项:
    UE和第一适配器间的时延相关信息、第一适配器的网桥标识信息、第一适配器的支持的带宽信息、第一适配器的发送传播时延相关信息、UE和第一适配器构成的整体的网桥标识信息、UE和第一适配器构成的整体支持的带宽信息、UE和第一适配器构成的整体的发送传播时延相关信息。
  27. 一种通信设备,所述通信设备为第二通信设备,包括:
    获取模块,用于获取第一信息,所述第一信息包括以下至少一项,第一能力信息、第二能力信息、终端UE的时延相关信息、和/或锚点网关的时延相关信息;
    执行模块,用于根据所述第一信息,执行第一操作;
    其中,所述第一能力信息包括以下至少一项:第一适配器的网桥标识信息、第一适配器的支持的带宽信息、第一适配器的发送传播时延相关信息、UE和第一适配器构成的整体的网桥标识信息、UE和第一适配器构成的整体支持的带宽信息、UE和第一适配器构成的整体的发送传播时延相关信息;
    所述第二能力信息包括以下至少一项:第二适配器的网桥标识信息、第二适配器的支持的带宽信息、第二适配器的发送传播时延相关信息、锚点网关和第二适配器构成的整体的网桥标识信息、锚点网关和第二适配器构成的整体支持的带宽信息、锚点网关和第二适配器构成的整体的发送传播时延相 关信息。
  28. 一种通信设备,所述通信设备为时间敏感网络适配器,包括:
    获取模块,用于获取网桥配置信息和/或时间敏感数据流的配置信息;
    执行模块,用于根据所述网桥配置信息和/或时间敏感数据流的配置信息,执行时间敏感通信的第二操作。
  29. 一种通信设备,所述通信设备为第三通信设备,包括:
    发送模块,用于发送第二能力信息和/或锚点网关的时延相关信息;
    其中,所述第二能力信息包括以下至少一项:
    锚点网关与第二适配器间的时延相关信息、
    第二适配器的网桥标识信息、
    第二适配器的支持的带宽信息、
    第二适配器的发送传播时延相关信息、
    锚点网关和第二适配器构成的整体的网桥标识信息、
    锚点网关和第二适配器构成的整体支持的带宽信息、
    锚点网关和第二适配器构成的整体的发送传播时延相关信息。
  30. 一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的支持时间敏感通信的方法的步骤,或者,实现如权利要求11至12中任一项所述的支持时间敏感通信的方法的步骤,或者,实现如权利要求13至15中任一项所述的支持时间敏感通信的方法的步骤,或者,实现如权利要求16至25中任一项所述的支持时间敏感通信的方法的步骤。
  31. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的支持时间敏感通信的方法的步骤,或者,实现如权利要求11至12中任一项所述的支持时间敏感通信的方法的步骤,或者,实现如权利要求13至15中任一项所述的支持时间敏感通信的方法的步骤,或者,实现如权利要求16至25中任一项所述的支持时间敏感通信的方法的步骤。
PCT/CN2020/074211 2019-02-03 2020-02-03 支持时间敏感通信的方法及通信设备 WO2020156570A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20747611.0A EP3920568A4 (en) 2019-02-03 2020-02-03 METHOD FOR SUPPORTING TIME-SENSITIVE COMMUNICATION AND COMMUNICATION DEVICE
JP2021545430A JP7198937B2 (ja) 2019-02-03 2020-02-03 タイムセンシティブ通信のサポート方法及び通信機器
SG11202108486PA SG11202108486PA (en) 2019-02-03 2020-02-03 Method for supporting time-sensitive communication and communications device
KR1020217027318A KR102526026B1 (ko) 2019-02-03 2020-02-03 시간 민감 통신을 지원하기 위한 방법 및 통신 장치
BR112021015226-1A BR112021015226A2 (pt) 2019-02-03 2020-02-03 Método para suportar comunicação sensível ao tempo e dispositivo de comunicações.
US17/392,324 US11889587B2 (en) 2019-02-03 2021-08-03 Method for supporting time-sensitive communication and communications device
US18/530,978 US20240114333A1 (en) 2019-02-03 2023-12-06 Method for supporting time-sensitive communication and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910108730.6 2019-02-03
CN201910108730.6A CN111436048B (zh) 2019-02-03 2019-02-03 支持时间敏感通信的方法及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/392,324 Continuation US11889587B2 (en) 2019-02-03 2021-08-03 Method for supporting time-sensitive communication and communications device

Publications (1)

Publication Number Publication Date
WO2020156570A1 true WO2020156570A1 (zh) 2020-08-06

Family

ID=71580831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074211 WO2020156570A1 (zh) 2019-02-03 2020-02-03 支持时间敏感通信的方法及通信设备

Country Status (8)

Country Link
US (2) US11889587B2 (zh)
EP (1) EP3920568A4 (zh)
JP (1) JP7198937B2 (zh)
KR (1) KR102526026B1 (zh)
CN (1) CN111436048B (zh)
BR (1) BR112021015226A2 (zh)
SG (1) SG11202108486PA (zh)
WO (1) WO2020156570A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114021234A (zh) * 2021-11-03 2022-02-08 西南交通大学 隧道初期支护时机动态确定方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436048B (zh) * 2019-02-03 2022-03-01 维沃移动通信有限公司 支持时间敏感通信的方法及通信设备
US11178592B2 (en) * 2019-02-15 2021-11-16 Ofinno, Llc Device configuration for time sensitive network bridge
CN111818671B (zh) * 2019-07-05 2022-02-01 维沃移动通信有限公司 支持端口控制的方法及设备
KR102606909B1 (ko) * 2021-10-21 2023-11-24 한국철도기술연구원 데이터 전송 장치 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517347A (zh) * 2013-10-21 2014-01-15 西安电子科技大学 无线网络下D2D和蜂窝通信的统计QoS保障的功率分配方案
US20180006955A1 (en) * 2016-06-30 2018-01-04 General Electric Company Communication system and method for integrating a data distribution service into a time sensitive network

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769752B2 (ja) * 2002-12-24 2006-04-26 ソニー株式会社 情報処理装置および情報処理方法、データ通信システム、並びに、プログラム
CN101904152B (zh) * 2007-10-19 2014-08-06 沃可斯Ip有限责任公司 通信方法、设备和装置
FR2927747B1 (fr) * 2008-02-19 2010-03-19 Tdf Procede de diffusion d'un flux de donnees dans un reseau comprenant une pluralite d'emetteurs, produit programme d'ordinateur, tete de reseau et systeme correspondants.
WO2012169805A2 (en) * 2011-06-08 2012-12-13 Samsung Electronics Co., Ltd. Enhanced stream reservation protocol for audio video networks
WO2014120978A1 (en) * 2013-01-31 2014-08-07 Alexander Greystoke Virtual purchasing assistant
US9736056B2 (en) * 2014-05-02 2017-08-15 Cisco Technology, Inc. Centralized predictive routing using delay predictability measurements
US9979668B2 (en) * 2014-12-22 2018-05-22 Intel Corporation Combined guaranteed throughput and best effort network-on-chip
US20180248797A1 (en) * 2017-02-28 2018-08-30 ACTUSNETWORKS Co., LTD. Method and system of protection in time sensitive networks of a ring topology of ring topology
CN108152810A (zh) * 2017-03-24 2018-06-12 郑州微纳科技有限公司 基于dtmb辐射波的无源雷达信号发射和接收系统
CN108737003B (zh) * 2017-04-25 2021-10-26 是德科技新加坡(销售)私人有限公司 用于测试时间敏感网络(tsn)元件的方法、系统和计算机可读介质
CN111436048B (zh) * 2019-02-03 2022-03-01 维沃移动通信有限公司 支持时间敏感通信的方法及通信设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517347A (zh) * 2013-10-21 2014-01-15 西安电子科技大学 无线网络下D2D和蜂窝通信的统计QoS保障的功率分配方案
US20180006955A1 (en) * 2016-06-30 2018-01-04 General Electric Company Communication system and method for integrating a data distribution service into a time sensitive network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Time Sensitive Networking", 3GPP TSG-RAN WG3 MEETING #101BIS, R3-185958, 12 December 2018 (2018-12-12), XP051529226, DOI: 20200420195125X *
NOKIA ET AL.: "TSN-QoS", SA WG2 MEETING #130, S2-1900559, 25 January 2019 (2019-01-25), XP051590226, DOI: 20200420194949X *
See also references of EP3920568A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114021234A (zh) * 2021-11-03 2022-02-08 西南交通大学 隧道初期支护时机动态确定方法及系统

Also Published As

Publication number Publication date
JP7198937B2 (ja) 2023-01-04
EP3920568A1 (en) 2021-12-08
EP3920568A4 (en) 2022-04-06
KR102526026B1 (ko) 2023-04-25
JP2022519604A (ja) 2022-03-24
KR20210120065A (ko) 2021-10-06
CN111436048A (zh) 2020-07-21
US11889587B2 (en) 2024-01-30
US20240114333A1 (en) 2024-04-04
US20210368331A1 (en) 2021-11-25
BR112021015226A2 (pt) 2021-09-28
SG11202108486PA (en) 2021-09-29
CN111436048B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2020177764A1 (zh) 数据传送的保障方法及通信设备
WO2020156570A1 (zh) 支持时间敏感通信的方法及通信设备
JP7198933B2 (ja) タイムセンシティブ通信のサービス品質をサポートする方法及び通信機器
WO2020143659A1 (zh) 支持时间敏感通信的方法及通信设备
US20220210850A1 (en) Information transmission method and communications device
WO2021160164A1 (zh) 信息控制方法及通信设备
US20220286913A1 (en) Information transmission method and communications device
US20220131720A1 (en) Method for supporting port association, gateway selection method, and communications device
CN112532503B (zh) 信息传输方法及通信设备
US20230164713A1 (en) Information control method and apparatus, and communications device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021015226

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217027318

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020747611

Country of ref document: EP

Effective date: 20210903

ENP Entry into the national phase

Ref document number: 112021015226

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210802