WO2023005728A1 - 一种通信方法、装置和系统 - Google Patents

一种通信方法、装置和系统 Download PDF

Info

Publication number
WO2023005728A1
WO2023005728A1 PCT/CN2022/106422 CN2022106422W WO2023005728A1 WO 2023005728 A1 WO2023005728 A1 WO 2023005728A1 CN 2022106422 W CN2022106422 W CN 2022106422W WO 2023005728 A1 WO2023005728 A1 WO 2023005728A1
Authority
WO
WIPO (PCT)
Prior art keywords
service flow
uplink service
sending time
terminal device
information
Prior art date
Application number
PCT/CN2022/106422
Other languages
English (en)
French (fr)
Inventor
蒋成堃
李汉成
周汉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22848333.5A priority Critical patent/EP4354999A1/en
Publication of WO2023005728A1 publication Critical patent/WO2023005728A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method, device and system.
  • the 3rd generation partnership project (3GPP) defines application function (AF) network elements to obtain the characteristics of deterministic service flows, and encapsulates the characteristics of deterministic service flows into time-sensitive Communication assistance information ((time sensitive communication, TSC) assistance information, TSCAI), sending the TSCAI to the access network device.
  • TSCAI may include the direction of the service flow (uplink service flow/downlink service flow), the transmission period of the service flow, and the arrival time of the service flow (that is, the time when the downlink service flow arrives at the access network device from the N3 interface, or the uplink service flow The time the stream was sent from the end device).
  • TSCAI time sensitive Communication assistance information
  • access network equipment can know the arrival time of each service flow and schedule each service flow according to its own capabilities (that is, allocate resources for each service flow) to ensure a certain quality of service (QoS).
  • QoS quality of service
  • the arrival times of the uplink service flows of multiple terminal devices are the same or the time interval is less than a certain threshold, that is, when the time interval between multiple terminal devices sending service flows is less than the preset threshold, it may cause the access network device to
  • the scheduling conflict of the air interface means that the access network equipment cannot allocate resources for the service flow of multiple terminal equipment at the same time, which will cause the delay of the uplink service flow of a certain terminal equipment in the air interface scheduling stage to increase, resulting in unsatisfactory delay. Determinism affects service performance, and may even cause air interface packet loss and service interruption.
  • the present application provides a communication method, device and system, which are used to resolve scheduling conflicts of air interfaces of access network equipment, ensure the deterministic delay of deterministic services, and improve service performance.
  • the present application provides a communication method, which may include: a first device receives first information from a session management network element, and the first information is used to indicate the sending of a first uplink service flow of the first terminal device The first time interval between the time and the sending time of the second uplink service flow of the second terminal device is less than a first threshold; the first device determines the first sending time of the first uplink service flow of the first terminal device, and the second A sending time is adjusted to a second sending time, and a second time interval between the second sending time and the sending time of the second uplink service flow of the second terminal device is greater than or equal to the first threshold; then the first device sends the The session management network element sends the second sending time.
  • the first access network device accessed by the first terminal device can allocate resources for the first uplink service flow of the first terminal device, so that the first uplink service flow can be sent successfully, and avoid the conflict between the first uplink service flow and other service flows.
  • the conflict can ensure the deterministic delay of the first uplink service flow, thereby improving service performance.
  • the first device determines the first sending time of the first uplink service flow of the first terminal device, and the specific method may be: the first device manages the network element from the unified data according to the first information Query the feature information of the first uplink service flow, where the feature information of the first uplink service flow includes the first sending time. In this way, the first device can accurately obtain the first sending time according to the characteristic information of the first uplink service flow queried from the unified data management network element.
  • the first information includes the identifier of the first terminal device, or includes the identifier of the first terminal device and the identifier of the first uplink service flow, or includes the identifier of the first terminal device and
  • the identifier of the first access network device may include the identifier of the first terminal device, the identifier of the first uplink service flow, and the identifier of the first access network device.
  • the first device adjusts the first sending time to the second sending time
  • the specific method may be: the first device determines the feature information of the second uplink service flow; the first device according to The characteristic information of the second uplink service flow adjusts the first sending time to the second sending time. In this way, the first device can determine that there is no conflict between the second sending time and the sending time of the second uplink service flow, so that the first terminal device can subsequently successfully send the first uplink service flow.
  • the characteristic information of the second uplink service flow includes at least one of the sending time of the second uplink service flow, the data size of the second uplink service flow, or the sending period of the second uplink service flow one item.
  • the first device can accurately calculate the second sending time in combination with the feature information of the second uplink service flow.
  • the first device determines the characteristic information of the second uplink service flow
  • the specific method may be: the first device obtains the characteristic information of the first uplink service flow, and the first uplink service flow
  • the characteristic information includes at least one of the first sending time, the data size of the first uplink service flow, or the sending cycle of the first uplink service flow; the first device determines according to the characteristic information of the first uplink service flow Feature information of the second uplink service flow. In this way, the first device can accurately determine the feature information of the second uplink service flow that has a scheduling conflict due to the first uplink service flow.
  • the first device determines the feature information of the second uplink service flow.
  • the specific method may be: the first information includes the identifier of the second terminal device, and the first device Determine feature information of the second uplink service flow. In this way, the first device can accurately determine the second uplink service flow according to the identifier of the second terminal device, and then determine the characteristic information of the second uplink service flow.
  • the first information further includes an identifier of the second uplink service flow.
  • the first device can accurately determine the feature information of the second uplink service flow according to the identifier of the second terminal device and the identifier of the second uplink service flow.
  • the first device adjusts the first sending time to the second sending time according to the characteristic information of the second uplink service flow.
  • the specific method may be: the first device adjusts the first sending time according to the first The characteristic information of the uplink service flow and the characteristic information of the second uplink service flow calculate the second sending time; the first device adjusts the first sending time to the second sending time. In this way, the first device can accurately calculate the second sending time.
  • the first device determines a third time interval between the first sending time and the second sending time, in other words, the third time interval is the first sending time and the second sending time difference; the first device determines the second packet sending delay budget PDB of the first uplink service flow according to the third time interval. In this way, the end-to-end delay can be guaranteed.
  • the first device determines the second PDB of the first uplink service flow according to the third time interval
  • the specific method may be: the first device determines the first PDB of the first uplink service flow
  • the second PDB is obtained by subtracting the third time interval. In this way, the end-to-end delay can be guaranteed.
  • the first device sends the second PDB to the session management network element.
  • the session management network element update the PDB, so as to guarantee the end-to-end time delay.
  • the first device sends the third time interval to the session management network element. so that the session management network element can send the third time interval to the first terminal device, so that the first terminal device sends the first uplink service flow according to the third time interval.
  • the first device is an application function network element, and the first device determines the second transmission time according to the second sending time and the time when the first uplink service flow resides in the first terminal device.
  • a data source sends the third sending time of the first uplink service flow to the first terminal device; the first device sends the third sending time to the first data source.
  • the time when the first data source sends the first uplink service flow can be adjusted by the application function network element, so that the time when the first terminal device sends the first uplink service flow is also adjusted accordingly to ensure the first uplink service flow.
  • the delay is deterministic, avoiding conflicts between the first uplink service flow and other service flows, and improving service performance.
  • the first data source and the first terminal device may be combined as one device, or may be two separate devices.
  • the first device is a network element with a policy control function or a network element with a network opening function, and the first device sends the second sending time to the network element with an application function.
  • the time when the first data source sends the first uplink service flow is adjusted by the application function network element, so that the time when the first terminal device sends the first uplink service flow is also adjusted accordingly, so as to ensure the time of the first uplink service flow Determinism is extended, avoiding conflicts between the first uplink service flow and other service flows, and improving service performance.
  • the present application provides a communication method, which may include: a session management network element receives second information from a second device; the session management network element sends first information to the first device, and the first information and The second information is used to indicate that the first time interval between the first sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device is less than the first threshold; the session management network The unit receives the second sending time of the first uplink service flow from the first device, and the second time interval between the second sending time and the sending time of the second uplink service flow of the second terminal device is greater than or equal to the first Threshold: the session management network element sends the second sending time to the first access network device.
  • the first sending time of the first uplink service flow of the first terminal device can be adjusted to increase the time interval between the sending time of the first uplink service flow and the sending time of the second uplink service flow , so that the first access network device accessed by the first terminal device can successfully allocate resources for the first uplink service flow of the first terminal device, avoiding conflicts between the first uplink service flow and other service flows, and ensuring that the first uplink service flow Deterministic stream latency improves service performance.
  • the second information includes the identifier of the first terminal device; the first information includes the identifier of the first terminal device.
  • the first device can subsequently query the feature information of the first uplink service flow according to the identifier of the first terminal device.
  • the second information includes at least one of the identifier of the first uplink service flow or the identifier of the first access network device; the first information includes the identifier of the first uplink service flow or At least one of the identifiers of the first access network device.
  • the first device can accurately query the feature information of the first uplink service flow according to the first information.
  • the second information includes an identifier of the second terminal device; the first information includes an identifier of the second terminal device.
  • the first device can subsequently determine the second uplink service flow that has a scheduling conflict with the first uplink service flow according to the identifier of the second terminal device.
  • the second information further includes the identifier of the second uplink service flow; the first information further includes the identifier of the second uplink service flow.
  • the subsequent first device can accurately determine the second uplink service flow that has a scheduling conflict with the first uplink service flow.
  • the session management network element determines the second terminal device, and the first information further includes an identifier of the second terminal device. In this way, the subsequent first device can accurately determine the second uplink service flow that has a scheduling conflict with the first uplink service flow.
  • the session management network element determines the second uplink service flow, and the first information further includes an identifier of the second uplink service flow. In this way, the subsequent first device can accurately determine the second uplink service flow that has a scheduling conflict with the first uplink service flow.
  • the session management network element receives the second packet sending delay budget PDB from the first device; the session management network element modifies the first PDB of the first uplink service flow to the second PDB.
  • the session management network element may modify the first PDB of the first uplink service flow to the second PDB through a protocol data unit (protocol data unit, PDU) session process, or may modify through other processes. In this way, the end-to-end delay can be guaranteed.
  • protocol data unit protocol data unit, PDU
  • the session management network element receives a third time interval from the first device, and the third time interval is a time interval between the first sending time and the second sending time; the session management network element Send the third time interval to the first terminal device.
  • the first terminal device can send the first uplink service flow according to the third time interval, so as to avoid air interface scheduling conflicts.
  • the session management network element sends the second sending time to the first terminal device.
  • the first terminal device can send the first uplink service flow according to the second sending time, so as to avoid air interface scheduling conflicts.
  • the present application provides a communication method, which may include: a first terminal device determines a first sending time of a first uplink service flow; the first terminal device receives a third time interval from a session management network element; The first terminal device adds the first sending time to the third time interval to obtain a second sending time; the first terminal device sends the first uplink service flow according to the second sending time.
  • the first terminal device can send the first uplink service flow according to the modified second sending time, which can ensure the deterministic delay of the first uplink service flow, thereby improving service performance.
  • the first terminal device after the first terminal device sends the first request to the first access network device, it does not receive resources for sending the first uplink service flow, or the first terminal device does not Receive feedback information that the first uplink service flow is successfully sent, or the first terminal device does not receive the feedback information within a preset time period; the first terminal device sends second information to the session management network element, the The second information is used to indicate that the first terminal device fails to send the first uplink service flow. In this way, the first terminal device may initiate subsequent core network control to re-determine the sending time of the first uplink service flow.
  • the second information includes the identifier of the first terminal device; or includes the identifier of the first terminal device and the identifier of the first uplink service flow; or includes the identifier of the first terminal device
  • the identifier and the identifier of the first access network device or, include the identifier of the first terminal device, the identifier of the first uplink service flow, and the identifier of the first access network device.
  • the present application provides a communication method, which may include: a first terminal device receives a second sending time from a session management network element, and sends a first uplink service flow according to the second sending time, wherein the first The second sending time is the adjusted sending time of the first sending time of the first uplink service flow, and the second time interval between the second sending time and the sending time of the second uplink service flow of the second terminal device is greater than or equal to the first threshold .
  • the first terminal device can send the first uplink service flow according to the modified second sending time, which can ensure the deterministic delay of the first uplink service flow, thereby improving service performance.
  • the present application provides a communication method, which may include: the second device determines the difference between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device
  • the first time interval is less than the first threshold
  • the second device sends second information to the session management network element, and the second information is used to indicate that the sending time of the first uplink service flow of the first terminal device is different from that of the second terminal device.
  • the first time interval of the sending time of the second uplink service flow is smaller than the first threshold.
  • the second device is a first access network device, and the second device determines the sending time of the first uplink service flow of the first terminal device and the second uplink service flow of the second terminal device
  • the first time interval of the sending time is less than the first threshold
  • the specific method may be: after receiving the first scheduling request from the first terminal device, the second device determines that resources cannot be allocated for the first uplink service flow, or, The second device determines that the first uplink service flow of the first terminal device has not been received in the currently allocated uplink time slot, and then determines the sending time of the first uplink service flow of the first terminal device and the first uplink service flow of the second terminal device.
  • the first time interval between the sending times of the two uplink service flows is smaller than the first threshold. In this way, the first access network device can accurately determine that there is an air interface scheduling conflict in the first uplink service flow, so as to initiate a subsequent core network control process for re-determining the sending time of the first uplink service flow.
  • the second information includes the identifier of the first terminal device; or, the second information includes the identifier of the first terminal device and the identifier of the first uplink service flow; or, the second The information includes the identifier of the first terminal device and the identifier of the first access network device; or, the second information includes the identifier of the first terminal device, the identifier of the first uplink service flow, and the identifier of the first access network device.
  • the identity of the device In this way, the first uplink service flow in which the air interface scheduling conflict occurs can be accurately reported.
  • the second information may further include the identifier of the second terminal device; or the second information may further include the identifier of the second terminal device and the identifier of the second uplink service flow. In this way, other uplink service flows that conflict with the first uplink service flow can be reported.
  • the second device is a user plane functional network element, and the second device determines the sending time of the first uplink service flow of the first terminal device and the time of sending the second uplink service flow of the second terminal device
  • the first time interval of the sending time is less than the first threshold
  • the specific method may be: the second device acquires the sending time of the first uplink service flow, and determines the difference between the sending time of the first uplink service flow and the current received first uplink service flow.
  • the time difference of the first data packet of the uplink service flow is greater than the second threshold, or the second device obtains the expected arrival time of the first uplink service flow, and determines the expected arrival time and the current received first uplink service flow If the time difference of the flow is greater than the third threshold, it is determined that the first time interval between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device is less than the first threshold. In this way, the user plane functional network element can accurately determine that there is an air interface scheduling conflict in the first uplink service flow, so as to initiate a subsequent core network control process for re-determining the sending time of the first uplink service flow.
  • the second information includes the identifier of the first terminal device; or, the second information includes the identifier of the first terminal device and the identifier of the first uplink service flow. In this way, the first uplink service flow in which the air interface scheduling conflict occurs can be accurately reported.
  • the present application also provides a communication device, which has the function of implementing the first device in the first aspect or each possible implementation example of the first aspect.
  • This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions of the first device in the first aspect or each possible implementation manner of the first aspect.
  • these units can perform the corresponding functions of the first device in the first aspect or each possible implementation manner of the first aspect.
  • the method The detailed description in the example is not repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used for sending and receiving information or data, and for communicating and interacting with other devices in the communication system
  • the processor is configured to support the communication device to execute the corresponding functions of the first device in the first aspect or each possible implementation manner of the first aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the present application further provides a communication device, where the communication device has a function of implementing the session management network element in the second aspect or each possible implementation manner of the second aspect.
  • This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions of the session management network element in the above second aspect or in each possible implementation manner of the second aspect.
  • these units can perform the corresponding functions of the session management network element in the above second aspect or in each possible implementation manner of the second aspect.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used for sending and receiving information or data, and for communicating and interacting with other devices in the communication system
  • the processor is configured to support the communication device to execute the corresponding functions of the session management network element in the second aspect or each possible implementation manner of the second aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the present application also provides a communication device, which has the above-mentioned third aspect or each possible implementation manner of the third aspect, or the fourth aspect or each possible implementation manner of the fourth aspect.
  • a function of terminal equipment. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can implement the third aspect or each possible implementation manner of the third aspect, or the fourth aspect or each possible implementation manner of the fourth aspect.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can implement the third aspect or each possible implementation manner of the third aspect, or the fourth aspect or each possible implementation manner of the fourth aspect.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used for sending and receiving information or data, and for communicating and interacting with other devices in the communication system , the processor is configured to support the communication device to execute the third aspect or each possible implementation manner of the third aspect, or the corresponding function of the first terminal device in the fourth aspect or each possible implementation manner of the fourth aspect .
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the present application further provides a communication device, where the communication device has the functions of the second device in each possible implementation manner of the fifth aspect or the fifth aspect.
  • This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions of the second device in the fifth aspect or each possible implementation manner of the fifth aspect.
  • these units can perform the corresponding functions of the second device in the fifth aspect or each possible implementation manner of the fifth aspect.
  • the method The detailed description in the example is not repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used for sending and receiving information or data, and for communicating and interacting with other devices in the communication system
  • the processor is configured to support the communication device to execute the corresponding functions of the second device in the fifth aspect or each possible implementation manner of the fifth aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the embodiment of the present application provides a communication system, which may include the aforementioned first device, a session management network element, a first terminal device, a second device, and the like.
  • the embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium stores program instructions, and when the program instructions are run on the computer, the computer executes the first aspect and the Any possible implementation thereof, or the second aspect and any possible implementation thereof, or the third aspect and any possible implementation thereof, or the fourth aspect and any possible implementation thereof, or the fifth aspect Aspects and methods described in any possible implementation thereof.
  • Exemplary, computer readable storage media may be any available media that can be accessed by a computer.
  • computer readable media may include non-transitory computer readable media, random-access memory (random-access memory, RAM), read-only memory (read-only memory, ROM), electrically erasable In addition to programmable read-only memory (electrically EPROM, EEPROM), CD-ROM or other optical disk storage, magnetic disk storage medium or other magnetic storage device, or can be used to carry or store the desired program code in the form of instructions or data structures and can Any other media accessed by a computer.
  • random-access memory random-access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • CD-ROM or other optical disk storage magnetic disk storage medium or other magnetic storage device, or can be used to carry or store the desired program code in the form of instructions or data structures and can Any other media accessed by a computer.
  • the embodiment of the present application provides a computer program product including computer program codes or instructions, which, when run on a computer, enables the computer to implement the above-mentioned first aspect or any possible implementation manner of the first aspect, Or the second aspect or any possible implementation of the second aspect, or the third aspect and any possible implementation thereof, or the fourth aspect and any possible implementation thereof, or the fifth aspect and any possible implementation thereof The methods described in the possible implementations.
  • the present application also provides a chip, the chip is coupled with a memory, and is used to read and execute program instructions stored in the memory, so as to realize any possibility of the above first aspect or the first aspect or the second aspect or any possible implementation manner of the second aspect, or the third aspect and any possible implementation manner thereof, or the fourth aspect and any possible implementation manner thereof, or the fifth aspect and the method described in any possible implementation thereof.
  • Figure 1 is a schematic diagram of the architecture of 5GS
  • FIG. 2 is a schematic diagram of an air interface scheduling conflict for an uplink service flow
  • FIG. 3 is a schematic diagram of an application scenario provided by the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided by the present application.
  • FIG. 5 is a schematic flowchart of another communication method provided by the present application.
  • FIG. 6 is a flowchart of an example of a communication method provided by the present application.
  • FIG. 7 is a flowchart of an example of another communication method provided by the present application.
  • FIG. 8 is a flowchart of an example of another communication method provided by the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 10 is a structural diagram of a communication device provided by the present application.
  • Embodiments of the present application provide a communication method and device, which are used to resolve scheduling conflicts of air interfaces of access network equipment, ensure the deterministic delay of deterministic services, and improve service performance.
  • the method and the device described in this application are based on the same technical concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • At least one (species) refers to one (species) or multiple (species), and multiple (species) refers to two (species) or more than two (species).
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • at least one of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or, a and b and c, wherein, a, b, c Can be single or multiple.
  • FIG. 1 shows a possible example of the architecture of the fifth generation mobile communication system (the 5th generation system, 5GS).
  • the architecture of the communication system may include: a radio access network, a terminal device, and a core network.
  • the wireless access network may include access network equipment.
  • the core network may include: network exposure function (network exposure function, NEF) network element, policy control function (policy control function, PCF) network element, unified data management function network element (unified data management, UDM), application function (application function, AF) network element, access and mobility management function (access and mobility management function, AMF) network element, session management function network element (session management function, SMF) network element, user plane function (user plane function, UPF) ) network element.
  • the AMF network element and the access network device can be connected through the N2 interface
  • the access network device and the UPF can be connected through the N3 interface
  • the SMF and the UPF can be connected through the N4 interface
  • the AMF network element and the UE can be connected through the N3 interface. It can be connected through the N1 interface.
  • the name of the interface is just an example, which is not specifically limited in this embodiment of the present application. It should be understood that the embodiment of the present application is not limited to the communication system shown in FIG. 1, and the names of the network elements shown in FIG. The limit of network elements. The functions of each network element or device in the communication system are described in detail below:
  • Terminal equipment also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may include a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal equipment can be: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile Internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), or wireless terminals in smart home (smart home), etc.
  • the terminal device in FIG. 1 is shown as a UE, which is only used as an example, and does not limit the terminal device.
  • RAN equipment equipment that provides access for terminal equipment, including radio access network (radio access network, AN) equipment and access network (access network, AN) equipment.
  • the RAN device is mainly a 3GPP network wireless network device, and the AN may be an access network device defined by non-3GPP.
  • RAN equipment mainly responsible for radio resource management, quality of service (QoS) management, data compression and encryption on the air interface side.
  • the access network equipment may include base stations in various forms, for example: macro base stations, micro base stations (also called small stations), relay stations, access points, and the like. In systems using different radio access technologies, the names of devices with base station functions may be different. For example, in a 5G system, it is called RAN or gNB (5G NodeB).
  • the access and mobility management function network element can be used to manage the access control and mobility of terminal equipment. In practical applications, it includes the mobility management entity (mobility management entity) in the network framework of long term evolution (LTE). management entity, MME) in the mobility management function, and added the access management function, which can be responsible for terminal device registration, mobility management, tracking area update process, reachability detection, session management function network element selection, Mobile state transition management, etc.
  • MME mobility management entity
  • the access and mobility management function network element can be an AMF network element, as shown in Figure 1; in future communications, such as 6G, the access and mobility management function network element can still be an AMF network element , or have other names, which are not limited in this application.
  • the access and mobility management functional network element is an AMF network element, the AMF can provide the Namf service.
  • the session management function network element can be used to be responsible for the session management of the terminal device (including session establishment, modification and release), the selection and reselection of the user plane function network element, the Internet protocol (internet protocol, IP) address allocation of the terminal device, Quality of service (QoS) control, etc.
  • the network element with the session management function can be an SMF network element, as shown in Figure 1; in future communication, such as in 6G, the network element with the session management function can still be an SMF network element, or have other names. Applications are not limited.
  • the SMF can provide the Nsmf service.
  • User plane functional network element responsible for forwarding and receiving user data in terminal equipment. It can receive user data from the data network and transmit it to the terminal device through the access network device; the UPF network element can also receive user data from the terminal device through the access network device and forward it to the data network.
  • the transmission resources and scheduling functions that provide services for terminal equipment in the UPF network element are managed and controlled by the SMF network element.
  • the user plane functional network element can be a UPF network element, such as shown in Figure 1; in future communications, such as 6G, the user plane functional network element can still be a UPF network element, or have other names. Applications are not limited.
  • Policy control function network element mainly supports the provision of a unified policy framework to control network behavior, provides policy rules to the network function of the control layer, and is responsible for obtaining user subscription information related to policy decisions.
  • the network element with the policy control function can be a PCF network element, as shown in Figure 1; in future communication, such as in 6G, the network element with the policy control function can still be a PCF network element, or have other names. Applications are not limited.
  • the policy control function network element is a PCF network element, the PCF network element can provide the Npcf service.
  • Network open function network element mainly supports the secure interaction between the 3GPP network and third-party applications.
  • the network element with the network opening function can be a NEF network element, as shown in Figure 1; in future communication, such as in 6G, the network element with the network opening function can still be a NEF network element, or have other names. Applications are not limited.
  • the network opening function network element is an NEF, the NEF can provide Nnef services to other network function network elements.
  • Application function network element It mainly supports interaction with the 3GPP core network to provide services, such as influencing data routing decisions, policy control functions, or providing some third-party services to the network side.
  • the application function network element can be an AF network element, such as shown in Figure 1; in future communications, such as 6G, the application function network element can still be an AF network element, or have other names, which are not covered by this application. Do limited.
  • the application function network element is an AF network element, the AF network element can provide the Naf service.
  • Unified data management function network element used to generate authentication credentials, user identification processing (such as storing and managing user permanent identities, etc.), access authorization control and contract data management, etc.
  • the unified data management function network element can be a UDM network element, such as shown in Figure 1; in future communications, such as 6G, the unified data management function network element can still be a UDM network element, or have other names , which is not limited in this application.
  • the network element with the unified data management function is a UDM network element
  • the UDM network element can provide the Nudm service.
  • Data network refers to a service network that provides data transmission services for users, such as IP multimedia service (IP multi-media service, IMS), Internet (Internet), etc.
  • IP multimedia service IP multi-media service, IMS
  • Internet Internet
  • the UE accesses the DN through a protocol data unit (protocol data unit, PDU) session established between the UE and the DN.
  • protocol data unit protocol data unit
  • each network element in the core network can also be called a functional entity or device, which can be a network element implemented on dedicated hardware, or a software instance running on dedicated hardware, or a virtualized network element on a suitable platform.
  • An example of the function, for example, the above-mentioned virtualization platform may be a cloud platform.
  • the communication system shown in FIG. 1 does not constitute a limitation to the applicable communication system of the embodiment of the present application.
  • the communication system architecture shown in FIG. 1 is a 5G system architecture.
  • the method in the embodiment of the present application is also applicable to various communication systems in the future, such as 6G or other communication networks.
  • 5GS air interface uplink transmission can be divided into two methods: grant-based and grant-free.
  • the terminal device first sends an uplink scheduling request according to the periodic transmission scheduling request (SR) set by the access network device. After receiving the SR, the access network device will generate an uplink grant ((uplink, UL) grant) according to the current scheduling resource and send it to the terminal device. After receiving the UL grant, the terminal device will report the buffer status reporting (buffer status reporting , BSR) to report its own data size information to be sent, the access network device sends the UL grant according to the BSR when the resource is suitable, and the terminal device uploads the data according to the UL grant.
  • SR periodic transmission scheduling request
  • BSR buffer status reporting
  • the terminal device does not need to send SR when there is data to upload, but directly sends its own data at a fixed time slot and frequency in each frame. This mode can save triggering SR
  • the scheduling process reduces business delays.
  • the characteristics of deterministic service flows can be obtained through AF network elements, and the characteristics of deterministic service flows are encapsulated into TSCAI and notified to access network devices.
  • the TSCAI may include the direction of the service flow (uplink service flow/downlink service flow), the transmission period of the service flow, and the arrival time of the service flow (that is, the time when the downlink service flow arrives at the access network device from the N3 interface, or the uplink service flow The time the stream was sent from the end device).
  • TSCAI access network equipment can know the arrival time of each service flow and schedule each service flow according to its own capabilities (that is, allocate resources for each service flow) to ensure a certain quality of service (QoS).
  • QoS quality of service
  • the resources allocated by the access network device to these service flows may be the same, which may cause scheduling conflicts on the air interface of the access network equipment.
  • terminal equipment 1 and terminal equipment 2 each have a periodic service flow with the same period.
  • the access network device first schedules the data packet of terminal device 1, and then schedules the data packet of terminal device 2 in the next cycle, then this phenomenon can be called the data packet of terminal device 1 and the data packet of terminal device 2.
  • terminal devices are generally typical industrial terminals, such as programmable logic controllers (programmable logic controller, PLC), industrial input and output (input output, IO) ports, and so on.
  • PLC programmable logic controller
  • IO input and output ports
  • FIG. 2 Another scenario is a common campus video surveillance scenario.
  • each camera is wirelessly connected to the 5G network through a terminal device.
  • the camera will also periodically generate I frames (I frames are also called intra-frame coded frames, which are built-in
  • I frames are also called intra-frame coded frames, which are built-in
  • the independent frame of all information can be independently decoded without referring to other images, that is, all are intra-frame coding)
  • the I frames of multiple cameras may need to be allocated the same resources when scheduling over the air interface, resulting in uncertain delays
  • the uncertain delay of the I frame has an impact on the application, which will cause performance degradation of background-related video algorithms, and may cause a decrease in user experience on the display.
  • the present application proposes a communication method to solve the problem in the prior art that the delay of the uplink service flow increases during the air interface scheduling stage, which causes delay uncertainty, causes air interface packet loss or even service interruption, and affects service performance. question.
  • FIG. 3 shows a schematic diagram of a possible application scenario provided by the embodiment of the present application. It should be understood that FIG. 3 only uses a video surveillance scene as an example for illustration, and is not intended to limit the application scene of the embodiment of the present application.
  • it may include cameras (camera 1 to camera 3 as shown in Figure 3), terminal devices (terminal device 1 to terminal device 3 as shown in Figure 3), RAN, and UPF network elements , AF network element and 5G core network control plane (5G core (control panel, CP), 5GC CP) network element.
  • the 5GC CP network elements may include AMF network elements, SMF network elements, PCF network elements, NEF network elements, etc.
  • the cameras 1 to 3 are respectively connected to the terminal device 1 to the terminal device 3, and the RAN schedules the uplink service flow (that is, the frames captured by the cameras) of the terminal device 1 to the terminal device 3 .
  • a communication method provided in the embodiment of the present application may include:
  • Step 401 The session management network element receives second information from the second device, and the second device sends the second information to the session management network element accordingly.
  • the second device may be a first terminal device, a first access network device, or a user plane functional network element, where the first access network device is an access network device accessed by the first terminal device.
  • the second device is the above three different devices, the situation that the second device sends the second information to the session management network element is different. specific:
  • the second device when the second device is the first terminal device, the second information is used to indicate that the first terminal device fails to send the first uplink service flow.
  • the second device may perform step 400a: the first terminal device determines that the first uplink service flow has not been sent successfully.
  • the first terminal device determines that the first uplink service flow has not been sent successfully, and the specific method may include: after the first terminal device sends the first request to the first access network device, it does not receive the request for sending the first uplink service flow. resources (such as air interface resources), or the first terminal device did not receive the feedback information (that is, the uplink feedback information) of the successful transmission of the first uplink service flow, or the first terminal device did not receive the feedback information within the preset time period feedback information, the first terminal device determines that the first uplink service flow has not been sent successfully.
  • resources such as air interface resources
  • the first terminal device did not receive the feedback information (that is, the uplink feedback information) of the successful transmission of the first uplink service flow, or the first terminal device did not receive the feedback information within the preset time period feedback information
  • the first terminal device may determine that the first uplink service flow has not been sent successfully by not receiving resources for sending the first uplink service flow.
  • the first terminal device may determine that the first uplink service flow has not been sent successfully by not receiving feedback information or not receiving feedback information within a preset time period.
  • the first terminal device may send the second information to the session management network element through a PDU session modification request.
  • the second information may include the identifier of the first terminal device; or, the second information may include the identifier of the first terminal device and the identifier of the first uplink service flow; or, the second information may Include the identifier of the first terminal device and the identifier of the first access network device; or, the second information may include the identifier of the first terminal device, the identifier of the first uplink service flow, and the identifier of the first access network device.
  • Case a2 when the second device is the first access network device, the second information is used to indicate the difference between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device
  • the first time interval is smaller than the first threshold (that is, the sending time of the first uplink service flow conflicts with the sending time of the second uplink service flow).
  • the second device may perform step 400b: the second device (that is, the first access network device) determines the sending time of the first uplink service flow of the first terminal device and the second uplink service flow of the second terminal device
  • the first time interval of sending times is less than a first threshold.
  • the first access network device determines that the first time interval between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device is less than the first threshold, and the specific method may be Including: after the first access network device receives the first scheduling request from the first terminal device, it determines that resources cannot be allocated for the first uplink service flow, or the first access network device determines that the currently allocated uplink time slot has not received For the first uplink service flow of the first terminal device, it is determined that the first time interval between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device is smaller than the first threshold.
  • the first access network device determines that the sending time of the first uplink service flow of the first terminal device and the second The first time interval of the sending time of the second uplink service flow of the terminal device is smaller than the first threshold.
  • the first access network device determines that the first uplink service flow of the first terminal device is not received in the currently allocated uplink time slot.
  • a first time interval between the sending time of the first uplink service flow of the device and the sending time of the second uplink service flow of the second terminal device is smaller than a first threshold.
  • the second information may include the identifier of the first terminal device; or, the second information may include the identifier of the first terminal device and the identifier of the first uplink service flow; or, the second information may Include the identifier of the first terminal device and the identifier of the first access network device; or, the second information may include the identifier of the first terminal device, the identifier of the first uplink service flow, and the identifier of the first access network device. Further, on the above basis, the second information may further include the identifier of the second terminal device; or the second information may further include the identifier of the second terminal device and the identifier of the second uplink service flow.
  • the second terminal device when the second information includes the identifier of the second terminal device but does not include the identifier of the second uplink service flow, the second terminal device includes an uplink service flow, that is, the second uplink service flow, at this time, by reporting the second terminal device
  • the device identifier can determine the second uplink service flow.
  • the second device when the second device is a user plane functional network element, the second information is used to indicate the first difference between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device.
  • a time interval is less than the first threshold.
  • the second device can also perform step 400b: the second device (that is, the user plane functional network element) determines the sending time of the first uplink service flow of the first terminal device and the time of sending the second uplink service flow of the second terminal device The first time interval of sending times is less than a first threshold.
  • the user plane functional network element determines that the first time interval between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device is less than the first threshold
  • the specific method may include : The user plane functional network element obtains the sending time of the first uplink service flow, and determines that the difference between the sending time of the first uplink service flow and the time when the first data packet of the first uplink service flow is currently received is greater than a second threshold, or , the user plane functional network element obtains the expected arrival time of the first uplink service flow, and determines that the difference between the expected arrival time and the current time of receiving the first uplink service flow is greater than the third threshold, then determines the first uplink service flow of the first terminal device A first time interval between the sending time of the service flow and the sending time of the second uplink service flow of the second terminal device is smaller than the first threshold.
  • the user plane functional network element may obtain the sending time of the first uplink service flow through a deep packet inspection (deep packet inspection, DPI) method.
  • DPI deep packet inspection
  • the second information may include the identifier of the first terminal device; or, the second information may include the identifier of the first terminal device and the identifier of the first uplink service flow.
  • the first terminal device when the second information does not include the identifier of the first uplink service flow, the first terminal device includes an uplink service flow, that is, the first uplink service flow, at this time by reporting the first uplink service flow An identifier of a terminal device can determine the first uplink service flow.
  • the second information can also be understood as being used to indicate that the first terminal device did not send the first uplink service flow according to the first sending time, or it can also be used to indicate the first uplink service flow of the first terminal device Air interface scheduling conflict.
  • Step 402 The session management network element sends first information to the first device, the first information is used to indicate the first sending time of the first uplink service flow of the first terminal device and the sending of the second uplink service flow of the second terminal device
  • the first interval of time is less than a first threshold.
  • the first device may be a network element with an application function, a network element with a policy control function, or a network element with a network opening function.
  • the first information when the second information includes the identifier of the first terminal device, the first information may include the identifier of the first terminal device. Further, when the second information also includes at least one of the identifier of the first uplink service flow or the identifier of the first access network device, the first information may also include the identifier of the first uplink service flow or the identifier of the first access network device. At least one of the device's identities.
  • the first information when the second information further includes the identifier of the second terminal device, the first information may further include the identifier of the second terminal device. Further, when the second information further includes the identifier of the second uplink service flow, the first information may further include the identifier of the second uplink service flow.
  • the first access device directly reports the identity of the second terminal device, or the identity of the second terminal device and the identity of the second uplink service flow through the second information, and the session management network element carries the above information in the in the first message.
  • the session management network element may further determine the second terminal device, and the first information may further include an identifier of the second terminal device. Further, the session management network element may also determine the second uplink service flow, and the first information may also include the identifier of the second uplink service flow. In this case, the session management network element determines that the sending time of the second uplink service flow of the second terminal device conflicts with the sending time of the first uplink service flow, and then sends the identifier of the second terminal device, or the identifier of the second terminal device and The identifier of the second uplink service flow is carried in the first information.
  • the first information is also used to request the first device to reschedule the first uplink service flow, that is, to request the first device to adjust the sending time of the first uplink service flow.
  • Step 403 the first device determines a first sending time of the first uplink service flow of the first terminal device.
  • the first device determines the first sending time of the first uplink service flow of the first terminal device.
  • Feature information of an uplink service flow where the feature information of a first uplink service flow includes a first sending time.
  • the first device queries the characteristic information of the first uplink service flow from the unified data management network element according to the first information, specifically: the first device may include the identifier of the first terminal device according to the first information, or include The identifier of the first terminal device and the identifier of the first uplink service flow, or the identifier of the first terminal device and the identifier of the first access network device included, or the identifier of the first terminal device and the first uplink service flow and the identifier of the first access network device, and query the feature information of the first uplink service flow from the unified data management network element.
  • the characteristic information of the first uplink service flow may include at least one of the first sending time of the first uplink service flow, the data size of the first uplink service flow, or the sending period of the first uplink service flow.
  • Step 404 The first device adjusts the first sending time to a second sending time, and a second time interval between the second sending time and the sending time of the second uplink service flow of the second terminal device is greater than or equal to the first threshold.
  • the first device adjusts the first sending time to the second sending time.
  • the specific method may be: the first device determines the characteristic information of the second uplink service flow, and then according to the second uplink service flow The characteristic information of the stream, and the first sending time is adjusted to the second sending time.
  • the feature information of the second uplink service flow may include at least one of the sending time of the second uplink service flow, the data size of the second uplink service flow, or the sending period of the second uplink service flow.
  • the first device determines the feature information of the second uplink service flow.
  • the specific method may be: the first device obtains the feature information of the first uplink service flow, and determines the second uplink service flow according to the feature information of the first uplink service flow. 2. Characteristic information of the uplink service flow.
  • the first device determines the characteristic information of the second uplink service flow according to the characteristic information of the first uplink service flow.
  • the specific method may be: the first device queries from the unified data management network element according to the characteristic information of the first uplink service flow For a second terminal device that accesses the same access network device (that is, the first access network device) as the first terminal device, and the first time interval between the sending time and the first sending time of the first uplink service flow is less than Feature information of the second uplink service flow with the first threshold.
  • the first device determines the characteristic information of the second uplink service flow
  • the specific method may be: the first information includes the identifier of the second terminal device, or includes the identifier of the second terminal device and the second uplink service flow , the first device determines characteristic information of the second uplink service flow according to the first information.
  • the first device may determine the feature information of the second uplink service flow according to the identifier of the second terminal device included in the first information, or the identifier of the second terminal device and the identifier of the second uplink service flow included in the first information.
  • the first device adjusts the first sending time to the second sending time according to the characteristic information of the second uplink service flow.
  • the specific method may be: the first device adjusts the The feature information and the feature information of the second uplink service flow calculate a second sending time; then, the first device adjusts the first sending time to the second sending time.
  • the first device calculates the second sending time according to the feature information of the first uplink service flow and the feature information of the second uplink service flow, according to the first uplink service flow in the feature information of the first uplink service flow - Sending time
  • data size and sending period determine the time required for the first uplink service flow in one cycle
  • the period determines the time required by the second uplink service flow in one period, and then the first device calculates the second sending time according to the respective required times of the first uplink service flow and the second uplink service flow in one period.
  • the first device when it calculates the second sending time according to the characteristic information of the first uplink service flow and the characteristic information of the second uplink service flow, it may only calculate the second sending time of the first uplink service flow, or may calculate the first The second sending time of the uplink service flow and the fourth sending time of the second uplink service flow (that is, uniform scheduling of the first uplink service flow and the second uplink service flow), between the fourth sending time and the second sending time
  • the time interval of is greater than or equal to the first threshold.
  • Step 405 the first device sends the second sending time to the session management network element.
  • Step 406 The session management network element sends the second sending time to the first access network device.
  • the session management network element when the session management network element sends the second sending time to the first access network device, it may specifically update the TSCAI of the first uplink service flow according to the second sending time, and send the updated TSCAI and sent to the first access network device, where the updated TSCAI includes the second sending time.
  • the session management network element updates the TSCAI of the first uplink service flow according to the second sending time
  • the first sending time in the TSCAI of the first uplink service flow is modified to the second sending time
  • other information in the TSCAI such as the service flow
  • the direction of the service flow (upstream service flow/downstream service flow), the transmission period of the service flow, etc. remain unchanged.
  • the first device determines the third time interval between the first sending time and the second sending time; then, the first device determines the third time interval between the first sending time and the second sending time; Three time intervals determine a second packet delay budget (packet delay budget, PDB) of the first uplink service flow.
  • PDB packet delay budget
  • the third time interval is the buffer time required by the first terminal device for the first uplink service flow, so that the first terminal device sends the first uplink service flow at the second sending time.
  • the first device determines the second PDB of the first uplink service flow according to the third time interval.
  • the specific method may be: the first device subtracts the first PDB (that is, the original PDB) of the first uplink service flow from the second PDB Three time intervals to get the second PDB.
  • the end-to-end delay is guaranteed at present, it is necessary to update the PDB after the sending time adjustment of the first uplink service flow, that is, subtract the third time interval from the first PDB to obtain the second PDB.
  • the first sending time is the 100th millisecond (ms)
  • the first PDB of the entire QoS flow is 50ms
  • the first terminal device needs to send the first uplink service in 120ms
  • it is necessary to modify the first PDB 50ms to the second PDB 30ms, that is, the second PDB (30ms) the first PDB (50ms) - (the first sending time 100ms - the first sending time 120ms), so as to ensure that the delay experienced by the first uplink service flow is still 50ms.
  • the first device may send the second PDB to the session management network element.
  • the session management network element may modify the first PDB of the first uplink service flow to the second PDB.
  • the session management network element may modify the first PDB in the first access network device to the second PDB through a PDU session modification process or other methods.
  • the first device may send the third time interval to the session management network element. Furthermore, the session management network element sends the third time interval to the first terminal device, so that the first terminal device sends the first uplink service flow according to the third time interval. Specifically, the first terminal device may add the first sending time to the third time interval to obtain the second sending time, and then send the first uplink service flow according to the second sending time.
  • the third time interval may be sent to the first terminal device through the access and mobility management function network element through the N1 interface, or may be sent through the first The access network device sends the third time interval to the first terminal device.
  • the session management network element sends the second sending time to the first terminal device. Furthermore, the first terminal device may directly send the first uplink service flow according to the second sending time.
  • the session management network element may send the second sending time to the first terminal device through the N1 interface through the access and mobility management function network element.
  • the first access network device may send the second sending time to the first terminal device after receiving the second sending time from the session management network element. Furthermore, the first terminal device may directly send the first uplink service flow according to the second sending time.
  • the first terminal device is made to send the first uplink service flow according to the second sending time by making adaptive adjustments to the QoS and notifying the first terminal device of the third time interval or the second sending time, so as to ensure Deterministic delay of the first uplink service flow avoids scheduling conflicts and improves service performance.
  • the first device when the first device is an application function network element, after the first device adjusts the first sending time to the second sending time, the first device according to the second sending time, and, the first uplink
  • the first device when the service flow resides in the first terminal device, determine a third sending time for the first data source to send the first uplink service flow to the first terminal device; and send the third sending time to the first data source.
  • the first data source may be a device co-located with the first terminal device; it may also be a device independently established with the first terminal device.
  • the first data source may be a camera, and the first data source may be a camera.
  • a terminal device may be a terminal device connected to a camera.
  • the third sending time may be carried by sending a first notification message to the first data source, and the first notification message is used to notify the first data source
  • the original sending time for sending the first uplink service flow is adjusted to the third sending time.
  • the first data source sends the first uplink service flow to the first terminal device according to the third sending time
  • the first terminal device sends the first uplink service flow according to the existing process after receiving the first uplink service flow.
  • the sending time at which the first terminal device sends the first uplink service flow according to the existing procedure is the second sending time.
  • the first device when the first device is a network element with a policy control function or a network element with a network opening function, after the first device adjusts the first sending time to the second sending time, the first device sends an application function network Meta send second send time. Afterwards, the application function network element determines a third sending time for the first data source to send the first uplink service flow to the first terminal device according to the second sending time and the time when the first uplink service flow resides in the first terminal device ; and send the third sending time to the first data source.
  • the first data source then sends the first uplink service flow to the first terminal device according to the third sending time, and the first terminal device sends the first uplink service flow according to the existing procedure after receiving the first uplink service flow.
  • the application function network element adjusts the time for the first data source to send the first uplink service flow, so that the time for the first terminal device to send the first uplink service flow is also adjusted accordingly. Adjust to ensure the deterministic delay of the first uplink service flow, avoid scheduling conflicts, and improve service performance.
  • the first device adjusts the first sending time of the first uplink service flow of the first terminal device, so that the first access network device can successfully provide the first uplink service flow of the first terminal device
  • the flow allocates resources, and finally the first uplink service flow is sent successfully, avoiding the conflict between the first uplink service flow and other service flows, so that the method can ensure the delay determinism of the first uplink service flow, thereby improving service performance.
  • the embodiment of the present application also provides a communication method, and the specific process of the method may include:
  • Step 501 The first terminal device determines a first sending time of a first uplink service flow.
  • the first terminal device determines the first sending time through the configuration of the first terminal device by the first access network device.
  • Step 502 The first terminal device receives a third time interval from the session management network element.
  • the first terminal device may receive the third time interval from the session management network element through the access and mobility management function network element through the N1 interface; or the first terminal device may receive the third time interval through the first access network element. time interval.
  • Step 503 The first terminal device adds the first sending time to the third time interval to obtain the second sending time.
  • Step 504 The first terminal device sends the first uplink service flow according to the second sending time.
  • step 501 after the first terminal device sends the first request to the first access network device, no resource for sending the first uplink service flow is received, or, the first The terminal device does not receive the feedback information that the first uplink service flow is successfully sent, or the first terminal device does not receive the feedback information within a preset time period; after that, the first terminal device sends the second information to the session management network element, The second information is used to indicate that the first terminal device fails to send the first uplink service flow.
  • the second information may include the identifier of the first terminal device; or, include the identifier of the first terminal device and the identifier of the first uplink service flow; or include the identifier of the first terminal device and the first access network device or, include the identifier of the first terminal device, the identifier of the first uplink service flow, and the identifier of the first access network device.
  • the first terminal device can send the first uplink service flow according to the modified second sending time, which can ensure the deterministic delay of the first uplink service flow, thereby improving service performance.
  • Figure 6 shows the flow of an example of a communication method, where the first terminal device is the first UE, the first access network device is the RAN, the session management network element is the SMF, the user plane function network element is the UPF, and the unified data
  • the management network element is UDM, the second device is RAN, and the first device is PCF, NEF or AF as an example for illustration.
  • the specific process of this example can include:
  • Step 601 The RAN detects that the first uplink service flow of the first UE cannot be scheduled.
  • This step can be understood as that the RAN detects an air interface scheduling conflict, that is, the RAN determines that the first time interval between the first sending time of the first uplink service flow of the first UE and the sending time of the second uplink service flow of the second UE is less than first threshold.
  • the RAN detects an air interface scheduling conflict, that is, the RAN determines that the first time interval between the first sending time of the first uplink service flow of the first UE and the sending time of the second uplink service flow of the second UE is less than first threshold.
  • step 601 reference may be made to the related description of step 400b in the embodiment shown in FIG. 4 above.
  • the RAN when the first UE is in the Grant-based scheduling mode, if the RAN finds that the corresponding resource cannot be allocated when receiving the uplink SR of the first UE, it will determine that the air interface scheduling conflicts and cannot meet the first UE's demand for uplink resources , at this time, the RAN can execute the subsequent step 602; when the first UE is in the Grant-free semi-persistent scheduling mode, if the RAN finds that the expected uplink traffic flow of the first UE has not been received in the currently allocated uplink time slot , the RAN can determine that there is an uplink service flow scheduling conflict. Subsequently, the RAN performs step 602 .
  • Step 602 the RAN sends the second information to the SMF.
  • the second information is used to indicate that the first time interval between the sending time of the first uplink service flow of the first UE and the sending time of the second uplink service flow of the second UE is less than the first threshold, that is, notify the SMF that there is an air interface scheduling conflict.
  • step 602 reference may be made to the related description of step 401 in the embodiment shown in FIG. 4 above.
  • the second information may include the identifier of the first UE, or include the identifier of the first UE and the identifier of the first uplink service flow, or include the identifier of the first UE and the identifier of the RAN, or include the identifier of the first UE, The identifier of the first uplink service flow and the identifier of the RAN.
  • the second information may further include the identifier of the second UE, or include the identifier of the second UE and the identifier of the second uplink service flow.
  • the second UE may be another UE that also requests or occupies the uplink resource when the first UE requests the uplink resource.
  • a core network element determines whether the uplink service flow that conflicts with the first uplink service flow is the second uplink service flow through the identity of the second UE, or the identity of the second UE and the identity of the second uplink service flow .
  • the second UE is not limited to one UE, and may be multiple other UEs. Therefore, the identifier of the second UE may be the identifier of multiple UEs, or the identifiers of multiple UEs and the corresponding uplink service flow logo.
  • the RAN may send the second information to the SMF through the AMF or the UPF.
  • Step 603 The SMF sends first information to the PCF/NEF/AF, and the first information is used to request the PCF/NEF/AF to reschedule the first uplink service flow.
  • step 603 reference may be made to the related description of step 402 in the embodiment shown in FIG. 4 above.
  • the first information may include the identifier of the first UE, or include the identifier of the first UE and the identifier of the first uplink service flow, or include the identifier of the first UE and the identifier of the RAN, or include the identifier of the first UE, The identifier of the first uplink service flow and the identifier of the RAN.
  • the first information may further include the identifier of the second UE, or include the identifier of the second UE and the identifier of the second uplink service flow.
  • the first information may directly include the identity of the second UE, or include the identity of the second UE ID and ID of the second uplink service flow.
  • the SMF may first determine the above information of the second UE, and then The SMF carries the above information of the determined second UE in the first information.
  • Step 604 The PCF/NEF/AF queries the characteristic information of the first uplink service flow from the UDM according to the first information, and determines the first sending time of the first uplink service flow.
  • step 604 reference may be made to the related description of step 403 in the embodiment shown in FIG. 4 above.
  • the characteristic information of the first uplink service flow may include the first sending time of the first uplink service flow, etc., and the PCF/NEF/AF may determine the first sending time of the first uplink service flow according to the characteristic information of the first uplink service flow time.
  • Step 605 The PCF/NEF/AF adjusts the first sending time to the second sending time.
  • step 605 reference may be made to the related description of step 404 in the embodiment shown in FIG. 4 above.
  • Step 606 The PCF/NEF/AF determines the third time interval between the first sending time and the second sending time, and determines the second PDB of the first uplink service flow according to the third time interval.
  • the PCF/NEF/AF subtracts the third time interval from the first PDB of the first uplink service flow to obtain the second PDB.
  • Step 607 The PCF/NEF/AF sends the second PDB and the second sending time to the SMF.
  • the PCF/NEF/AF may also send the third time interval to the SMF.
  • Step 608 The SMF modifies the first PDB of the first uplink service flow to the second PDB.
  • the SMF may modify the first PDB of the first uplink service flow to the second PDB through the modification process of the PDU session.
  • Modifying the first PDB to the second PDB through the SMF can guarantee the end-to-end delay, so that the delay of the first uplink service flow remains unchanged, that is, the delay determinism of the first uplink service flow is guaranteed.
  • steps 606 to 608 reference may be made to the relevant description of step 405 in the embodiment shown in FIG. 4 above.
  • Step 609 the SMF sends the second sending time to the RAN.
  • step 609 reference may be made to the related description of step 406 in the embodiment shown in FIG. 4 above.
  • the SMF may update the TSCAI of the first uplink service flow according to the second sending time, and send the updated TSCAI to the RAN, where the updated TSCAI includes the second sending time.
  • the RAN can know that the first sending time is adjusted to the second sending time, so that resources are allocated in advance according to the second sending time.
  • Step 610 The SMF sends the second sending time or the third time interval to the first UE.
  • the SMF may send the second sending time or the third time interval to the first UE through the N1 interface through the AMF.
  • the SMF may send the third time interval to the first UE only after the PCF/NEF/AF sends the third time interval to the SMF.
  • step 610 reference may be made to the related description of step 502 in the embodiment shown in FIG. 5 above.
  • Step 611 the first UE sends the first uplink service flow according to the second sending time or the third time interval.
  • the first UE when the first UE receives the third time interval, the first UE can calculate the second transmission time through the third time interval, for example, the first UE adds the first transmission time to the third time interval to obtain the second transmission time send time. Then the first UE sends the first uplink service flow according to the second sending time.
  • the first UE can calculate the second transmission time through the third time interval, for example, the first UE adds the first transmission time to the third time interval to obtain the second transmission time send time. Then the first UE sends the first uplink service flow according to the second sending time.
  • the first UE may directly send the first uplink service flow according to the second sending time.
  • the first UE buffers the first uplink service flow until the second sending time and then sends it.
  • the RAN performs conflict detection, and the RAN detects an air interface scheduling conflict (that is, the first time of determining the first transmission time of the first uplink service flow of the first UE and the transmission time of the second uplink service flow of the second UE After the interval is less than the first threshold), the conflicting service flow is fed back to the network element of the core network, and the network element of the core network performs rescheduling of the service flow and corresponding adjustment of QoS, that is, the network element of the core network re-determines the No.
  • the sending time of a service flow or the buffering time that is, the above-mentioned third time interval
  • the QoS requirement of the first service flow is adjusted accordingly.
  • the network element of the core network notifies the RAN of the adjusted QoS and the corresponding second sending time, and notifies the first UE of the second sending time or buffering time of the first UE, thereby notifying the first UE to send at the correct idle time
  • Uplink business flow avoid air interface scheduling conflicts, improve air interface capacity and resource utilization efficiency.
  • Figure 7 shows an example flow of another communication method.
  • the first terminal device is the first UE
  • the first access network device is the RAN
  • the session management network element is the SMF
  • the user plane function network element is the UPF.
  • the data management network element is a UDM
  • the second device is a first UE
  • the first device is a PCF, NEF or AF as an example for illustration.
  • the specific process of this example can include:
  • Step 701 the first UE determines that the first uplink service flow has not been sent successfully.
  • This step can also be understood as the first UE perceives that the uplink service flow conflicts with other service flows.
  • step 701 reference may be made to the related description of step 400a in the embodiment shown in FIG. 4 above.
  • the first UE may not receive the resource for sending the first uplink service flow after sending the uplink SR (that is, the first request involved in the above embodiment)
  • the first UE knows the current sending time through the inability to obtain the uplink Grant, which will cause the air interface resources to be unable to be allocated; when the first UE is under semi-persistent scheduling, the first UE can pass without It is determined that the first uplink service flow has not been successfully sent by receiving or not receiving the feedback information of the successful transmission of the first uplink service flow within the preset time period, that is, the first UE cannot obtain the uplink feedback (uplink feedback timeout), etc.
  • uplink feedback timeout uplink feedback
  • Step 702 The first UE sends second information to the SMF, where the second information is used to indicate that the first UE fails to send the first uplink service flow.
  • step 702 reference may be made to the related description of step 401 in the embodiment shown in FIG. 4 above.
  • the first UE sends the second information to the SMF through a PDU session modification request.
  • the PDU session request or the second information is used to request modification of the current QoS flow.
  • the second information may include the identity of the first UE; or, the second information may include the identity of the first UE and the identity of the first uplink service flow; or, the second information may include the identity of the first UE and the access the identity of the RAN; or, the second information may include the identity of the first UE, the identity of the first uplink service flow, and the identity of the RAN.
  • the network element of the core network can use the identifier of the RAN to determine that the uplink service flow of the terminal equipment accessing the RAN is different from the first uplink service flow. Traffic conflicting business flow.
  • Step 703 The SMF sends first information to the PCF/NEF/AF, and the first information is used to request the PCF/NEF/AF to reschedule the first uplink service flow.
  • step 703 reference may be made to the relevant description of step 402 in the embodiment shown in FIG. 4 above.
  • the first information may include the identifier of the first UE, or include the identifier of the first UE and the identifier of the first uplink service flow, or include the identifier of the first UE and the identifier of the RAN, or include the identifier of the first UE, The identifier of the first uplink service flow and the identifier of the RAN.
  • the first information may further include the identifier of the second UE, or include the identifier of the second UE and the identifier of the second uplink service flow.
  • the SMF may first determine the above information of the second UE (such as the identity of the second UE, or the identity of the second UE and the identity of the second uplink service flow), and then the SMF carries the above information of the determined second UE in the in the first message.
  • steps 704 to 709 reference may be made to the description of steps 604 to 609 in the embodiment shown in FIG. 6 , and details are not repeated here.
  • step 708 is in response to the PDU session modification request initiated by the first UE, and the PDU session modification process in step 608 is initiated by the SMF.
  • Step 710 The SMF sends the second sending time or the third time interval to the first UE.
  • the SMF responds to the PDU session modification request, and sends the second sending time or the third time interval to the first UE through a message responding to the PDU session modification request.
  • the SMF may send the third time interval to the first UE only after the PCF/NEF/AF sends the third time interval to the SMF.
  • step 710 reference may be made to the related description of step 502 in the embodiment shown in FIG. 5 above.
  • Step 711 The first UE sends the first uplink service flow according to the second sending time or the third time interval.
  • step 611 For the specific content of this step, reference may be made to the related description in step 611, which will not be repeated here.
  • the UE itself determines that the service flow conflicts (that is, determines that the first uplink service flow has not been successfully sent), reports the relevant information of the first uplink service flow, and the core network element performs rescheduling and plans the first uplink service flow. Send time and QoS.
  • the method can reduce air interface calculation overhead and signaling overhead while avoiding air interface scheduling conflicts.
  • Figure 8 shows an example flow of another communication method.
  • the first terminal device is the first UE
  • the first access network device is the RAN
  • the session management network element is the SMF
  • the user plane functional network element is the UPF.
  • the data management network element is a UDM
  • the second device is a UPF
  • the first device is a PCF, NEF or AF as an example for illustration.
  • the specific process of this example can include:
  • Step 801 The UPF determines that a first time interval between the sending time of the first uplink service flow of the first UE and the sending time of the second uplink service flow of the second UE is smaller than a first threshold.
  • This step can also be interpreted as the UPF detecting that the first uplink service flow collides.
  • the UPF may detect whether a conflict occurs in the first uplink service flow through a method such as DPI, resulting in delayed arrival. For example, when the first uplink service flow is a video stream, the UPF can obtain the sending time of the first uplink service flow carried by the packet payload through the DPI, and compare it with the time when the data packet of the first uplink service flow is currently received, Therefore, it is determined whether the air interface congestion of the packet causes the delayed arrival of the first uplink service flow. When the UPF determines that the difference between the sending time of the first uplink service flow and the current time of receiving the first data packet of the first uplink service flow is greater than the second threshold, it indicates that the first uplink service flow conflicts, that is, air interface congestion occurs.
  • a conflict occurs in the first uplink service flow through a method such as DPI, resulting in delayed arrival. For example, when the first uplink service flow is a video stream, the UPF can obtain the sending time of the first uplink service flow carried by the packet payload through the DPI, and
  • the UPF may also acquire the expected arrival time of the first uplink service flow in advance, and when the UPF determines that the difference between the actual reception time and the expected arrival time of the first uplink service flow is greater than a third threshold, the UPF determines that air interface congestion occurs.
  • step 801 reference may be made to the relevant description of step 400b in the embodiment shown in FIG. 4 above.
  • Step 802 The UPF sends second information to the SMF, and the second information is used to indicate that the first time interval between the sending time of the first uplink service flow of the first UE and the sending time of the second uplink service flow of the second UE is less than the first threshold.
  • This step can also be understood as the IPF notifying the SMF that there is an air interface scheduling conflict.
  • step 802 reference may be made to the related description of step 401 in the embodiment shown in FIG. 4 above.
  • the second information may include the identifier of the first UE; or, the second information may include the identifier of the first UE and the identifier of the first uplink service flow.
  • Step 803 The SMF sends first information to the PCF/NEF, and the first information is used to request the PCF/NEF to reschedule the first uplink service flow.
  • step 803 reference may be made to the relevant description of step 402 in the embodiment shown in FIG. 4 above.
  • the first information may include the identifier of the first UE, or include the identifier of the first UE and the identifier of the first uplink service flow.
  • the first information may further include the identifier of the second UE, or include the identifier of the second UE and the identifier of the second uplink service flow.
  • the SMF may first determine the identity of the second UE of the second UE, or determine the identity of the second UE and the identity of the second uplink service flow, and then the SMF sends the above information of the second UE (that is, the identity of the second UE, or The identifier of the second UE and the identifier of the second uplink service flow) are carried in the first information.
  • Step 804 The PCF/NEF queries the characteristic information of the first uplink service flow from the UDM according to the first information, and determines the first sending time of the first uplink service flow.
  • step 804 reference may be made to the relevant description of step 403 in the embodiment shown in FIG. 4 above.
  • the feature information of the first uplink service flow may include a first sending time of the first uplink service flow, a data size of the first uplink service flow, or a sending cycle of the first uplink service flow.
  • Step 805 The PCF/NEF adjusts the first sending time to the second sending time.
  • step 805 reference may be made to the related description of step 404 in the embodiment shown in FIG. 4 above.
  • Step 806 The PCF/NEF sends the second sending time to the AF.
  • Step 807 The AF determines a third sending time for the first data source to send the first uplink service flow to the first UE according to the second sending time and the residence time of the first uplink service flow in the first UE.
  • the AF calculates the time when the first data source needs to send the first uplink service flow according to the dwell time from when the first UE receives the first uplink service flow to when it is ready to send the first uplink service flow.
  • Step 808 The AF sends the third sending time to the first data source.
  • the first data source After receiving the third sending time, the first data source adjusts the sending time of sending the first uplink service flow to the first UE, that is, adjusts the sending time of sending the first uplink service flow to the first UE to the third sending time.
  • Step 809 The PCF/NEF sends the second sending time to the SMF.
  • Step 810 The SMF sends the second transmission time to the RAN.
  • step 810 reference may be made to the related description of step 406 in the embodiment shown in FIG. 4 above.
  • the SMF may update the TSCAI of the first uplink service flow according to the second sending time, and send the updated TSCAI to the RAN, where the updated TSCAI includes the second sending time.
  • the RAN can know that the first sending time is adjusted to the second sending time, so that resources are allocated in advance according to the second sending time.
  • Step 811 The RAN configures the sending time of the first uplink service flow of the first UE according to the TSCAI.
  • Step 812 The first UE receives the first uplink service flow sent according to the third sending time from the first data source, and sends the first uplink service flow.
  • the UPF performs conflict detection (that is, it is determined that the first time interval between the first transmission time of the first uplink service flow of the first UE and the transmission time of the second uplink service flow of the second UE is less than the first threshold), After the UPF detects the conflict, it feeds back conflicting service flow information to the PCF/NEF, and finally the PCF/NEF reschedules the first uplink service flow, and directly modifies the first uplink of the first source device connected to the first UE through the AF.
  • the sending time of the service flow For example, in a campus monitoring scenario, you can modify the I frame sending time of the camera through the external interface with the camera.
  • air interface uplink scheduling conflicts can be avoided at the data source, resource overhead on the UE side and RAN side can be reduced, and application adjustments can be made through the AF open interface, avoiding large adjustments to existing equipment, and air interface scheduling can be guaranteed on the basis of minimal changes , to increase the capacity of the air port.
  • a communication device 900 may include a transceiver unit 901 and a processing unit 902 .
  • the transceiver unit 901 is used for the communication device 900 to receive information or data, or send information or data, etc.
  • the processing unit 902 is used to control and manage the actions of the communication device 900 .
  • the processing unit 902 can also control the steps performed by the transceiver unit 901 .
  • the communications apparatus 900 may specifically be the first device (such as a policy control function network element, a network opening function network element, or an application function network element), a processor in the first device, or a chip in the foregoing embodiments, Or a chip system, or a functional module, etc.; or, the communication device 900 may specifically be the second device (such as the user plane functional network element, the first access network device, or the first terminal device) or the second device in the above-mentioned embodiments.
  • the first device such as a policy control function network element, a network opening function network element, or an application function network element
  • the communication device 900 may specifically be the second device (such as the user plane functional network element, the first access network device, or the first terminal device) or the second device in the above-mentioned embodiments.
  • the processor of the second device, or a chip, or a chip system, or a functional module; or, the communication device 900 may specifically be the session management network element in the above embodiment, the processor of the session management network element, or a chip, Or a chip system, or a functional module, etc.; or, the communication device 900 may specifically be the first terminal device in the above embodiment, the processor of the first terminal device, or a chip, or a chip system, or a functional module wait.
  • the communication device 900 when used to implement the functions of the first device in the above embodiments, it may specifically include:
  • the transceiver unit 901 is configured to receive first information from the session management network element, the first information is used to indicate the first time between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device A time interval is less than the first threshold; the processing unit 902 is used to determine the first sending time of the first uplink service flow of the first terminal device; adjust the first sending time to the second sending time, and the second sending time is the same as the second terminal The second time interval of the sending time of the second uplink service flow of the device is greater than or equal to the first threshold; the transceiving unit 901 is further configured to send the second sending time to the session management network element.
  • the processing unit 902 determines the first sending time of the first uplink service flow of the first terminal device, it is specifically used to: query the first uplink service from the unified data management network element according to the first information
  • the feature information of the flow, the feature information of the first uplink service flow includes the first sending time.
  • the first information includes the identifier of the first terminal device, or includes the identifier of the first terminal device and the identifier of the first uplink service flow, or includes the identifier of the first terminal device and the identifier of the first access network device, Or include the identifier of the first terminal device, the identifier of the first uplink service flow, and the identifier of the first access network device.
  • the processing unit 902 adjusts the first sending time to the second sending time, it is specifically used to: determine characteristic information of the second uplink service flow; adjust the first sending time to Second sending time.
  • the characteristic information of the second uplink service flow includes at least one of the sending time of the second uplink service flow, the data size of the second uplink service flow, or the sending period of the second uplink service flow.
  • the processing unit 902 determines the characteristic information of the second uplink service flow, it is specifically configured to: acquire the characteristic information of the first uplink service flow, and the characteristic information of the first uplink service flow includes the first sending time, the first uplink service at least one of the data size of the flow or the sending cycle of the first uplink service flow; and determine the characteristic information of the second uplink service flow according to the characteristic information of the first uplink service flow.
  • the processing unit 902 determines the characteristic information of the second uplink service flow, it is specifically configured to: the first information includes the identifier of the second terminal device, and determine the characteristic information of the second uplink service flow according to the first information.
  • the first information further includes an identifier of the second uplink service flow.
  • the processing unit 902 adjusts the first sending time to the second sending time according to the characteristic information of the second uplink service flow, it is specifically configured to: according to the characteristic information of the first uplink service flow and The characteristic information of the second uplink service flow calculates the second sending time; and adjusts the first sending time to the second sending time.
  • the processing unit 902 is further configured to determine a third time interval between the first sending time and the second sending time; and determine a second packet sending delay budget PDB of the first uplink service flow according to the third time interval.
  • the processing unit 902 determines the second PDB of the first uplink service flow according to the third time interval, it is specifically configured to: subtract the first PDB of the first uplink service flow from the third time interval to obtain the second PDB.
  • the transceiving unit 901 is further configured to send the second PDB to the session management network element.
  • the transceiving unit 901 is further configured to send the third time interval to the session management network element.
  • the first device is an application function network element
  • the processing unit 902 is further configured to: determine the direction of the first data source according to the second sending time and the time when the first uplink service flow resides in the first terminal device.
  • the first terminal device sends the third sending time of the first uplink service flow;
  • the transceiving unit 901 is further configured to send the third sending time to the first data source.
  • the first device is a network element with a policy control function or a network element with a network opening function
  • the transceiver unit 901 is further configured to send the second sending time to the network element with an application function.
  • the communication device 900 when used to implement the functions of the session management network element in the above embodiments, it may specifically include:
  • the transceiver unit 901 is configured to receive second information from the second device; send the first information to the first device, and the first information and the second information are used to indicate the first sending time and the second time of the first uplink service flow of the first terminal device.
  • the first time interval between the sending time of the second uplink service flow of the second terminal device is less than the first threshold; the second sending time of the first uplink service flow is received from the first device, and the second sending time is the same as the second sending time of the second terminal device
  • the second time interval of the sending time of the uplink service flow is greater than or equal to the first threshold; sending the second sending time to the first access network device;
  • the processing unit 902 is configured to control the transceiving unit 901 to perform the above transceiving operation.
  • the second information includes the identifier of the first terminal device; the first information includes the identifier of the first terminal device.
  • the second information includes at least one of the identifier of the first uplink service flow or the identifier of the first access network device; the first information includes at least one of the identifier of the first uplink service flow or the identifier of the first access network device at least one of the .
  • the second information includes the identifier of the second terminal device; the first information includes the identifier of the second terminal device.
  • the second information further includes the identifier of the second uplink service flow; the first information further includes the identifier of the second uplink service flow.
  • the processing unit 902 is further configured to determine the second terminal device, and the first information further includes an identifier of the second terminal device.
  • processing unit 902 is further configured to determine the second uplink service flow, and the first information further includes an identifier of the second uplink service flow.
  • the transceiving unit 901 is further configured to receive a second packet sending delay budget PDB from the first device; the processing unit 902 is further configured to modify the first PDB of the first uplink service flow into the second PDB.
  • the transceiver unit 901 is further configured to receive a third time interval from the first device, where the third time interval is a time interval between the first sending time and the second sending time; and send the third time interval to the first terminal device.
  • the transceiving unit 901 is further configured to send the second sending time to the first terminal device.
  • the communication device 900 when used to implement the functions of the first terminal device in the above embodiments, it may specifically include:
  • the processing unit 902 is used to determine the first sending time of the first uplink service flow; the transceiver unit 901 is used to receive the third time interval from the session management network element; the processing unit 902 is also used to add the first sending time to the third time interval to obtain Second sending time; the transceiver unit 901 is further configured to send the first uplink service flow according to the second sending time.
  • the transceiver unit 901 is further configured to fail to receive resources for sending the first uplink service flow after sending the first request to the first access network device, or to fail to receive the first request.
  • the second information includes the identifier of the first terminal device; or, includes the identifier of the first terminal device and the identifier of the first uplink service flow; or includes the identifier of the first terminal device and the ID of the first access network device An identifier; or, including the identifier of the first terminal device, the identifier of the first uplink service flow, and the identifier of the first access network device.
  • the communication device 900 when used to implement the functions of the second device in the above embodiments, it may specifically include:
  • the processing unit 902 is used to determine that the first time interval between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device is less than the first threshold;
  • the management network element sends second information, where the second information is used to indicate that the first time interval between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device is less than the first threshold .
  • the second device is the first access network device
  • the processing unit 902 determines the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device
  • the first time interval of time is less than the first threshold, it is specifically used to: after the transceiver unit 901 receives the first scheduling request from the first terminal device, determine that resources cannot be allocated for the first uplink service flow, or determine that the currently allocated If the uplink time slot does not receive the first uplink service flow of the first terminal device, then determine the first time between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device The interval is less than the first threshold.
  • the second information includes the identifier of the first terminal device; or, the second information includes the identifier of the first terminal device and the identifier of the first uplink service flow; or, the second information includes the identifier of the first terminal device and the identifier of the first uplink service flow.
  • the second information further includes the identifier of the second terminal device; or the second information further includes the identifier of the second terminal device and the identifier of the second uplink service flow.
  • the second device is a user plane functional network element
  • the processing unit 902 determines the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device
  • the first time interval of time is less than the first threshold
  • the time difference of a data packet is greater than the second threshold, or, obtain the expected arrival time of the first uplink service flow, and determine that the difference between the expected arrival time and the time when the transceiver unit 901 currently receives the first uplink service flow is greater than the third threshold , it is determined that the first time interval between the sending time of the first uplink service flow of the first terminal device and the sending time of the second uplink service flow of the second terminal device is smaller than the first threshold.
  • the second information includes the identifier of the first terminal device; or, the second information includes the identifier of the first terminal device and the identifier of the first uplink service flow.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the communication device 1000 may include a transceiver 1001 and a processor 1002 .
  • the communication device 1000 may further include a memory 1003 .
  • the memory 1003 can be set inside the communication device 1000 , and can also be set outside the communication device 1000 .
  • the processor 1002 may control the transceiver 1001 to receive and send information, signals or data, and the like.
  • the processor 1002 may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor 1002 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the aforementioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the transceiver 1001, the processor 1002 and the memory 1003 are connected to each other.
  • the transceiver 1001, the processor 1002 and the memory 1003 are connected to each other through a bus 1004;
  • the bus 1004 can be a Peripheral Component Interconnect (PCI) bus or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 10 , but it does not mean that there is only one bus or one type of bus.
  • the memory 1003 is used to store programs and the like.
  • the program may include program code including computer operation instructions.
  • the memory 1003 may include RAM, and may also include non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 1002 executes the application program stored in the memory 1003 to realize the above functions, thereby realizing the functions of the communication device 1000 .
  • the communication apparatus 1000 may be the first device (such as a network element with a policy control function, a network element with a network opening function, or a network element with an application function) in the above embodiments; it may also be the second device in the above embodiments (such as user plane function network element, first access network device or first terminal device); it may also be the session management network element in the above embodiment; it may also be the first terminal device in the above embodiment.
  • the first device such as a network element with a policy control function, a network element with a network opening function, or a network element with an application function
  • the transceiver 1001 can realize the transceiving operation performed by the first device in the above embodiment; the processor 1002 can realize the above implementation In this example, operations performed by the first device other than the transceiving operation.
  • the transceiver 1001 can realize the transceiving operation performed by the second device in the above-mentioned embodiment; the processor 1002 can realize the above-mentioned Other operations performed by the second device in the embodiment other than the transceiving operation.
  • the transceiver 1001 can implement the transceiving operation performed by the session management network element in the above embodiment; the processor 1002 can Other operations except the sending and receiving operations performed by the session management network element in the above embodiments are realized.
  • the processor 1002 can Other operations except the sending and receiving operations performed by the session management network element in the above embodiments are realized.
  • the transceiver 1001 can realize the transceiving operation performed by the first terminal device in the above embodiment; the processor 1002 can Other operations other than the transceiving operation performed by the first terminal device in the foregoing embodiments are implemented. For specific related specific descriptions, reference may be made to related descriptions in the foregoing embodiments, which will not be described in detail here.
  • embodiments of the present application provide a communication system, and the communication system may include the first device, the second device, the session management network element, the first terminal device, and the like involved in the above embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • the embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • the embodiment of the present application also provides a chip system, the chip system includes at least one processor and a communication interface, wherein: the communication interface is used to send and/or receive signals; the at least one processor is used to call at least one memory
  • the computer program stored in the chip system enables the chip system to implement the communication method provided by the above method embodiment.
  • the embodiment of the present application further provides a chip, including a processor, the processor is coupled to a memory, and is configured to call a program in the memory so that the chip implements the communication method provided by the above method embodiment.
  • the embodiment of the present application further provides a chip, the chip is coupled with a memory, and the chip is used to implement the communication method provided in the foregoing method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Abstract

本申请实施例提供一种通信方法、装置和系统。该方法包括:第一设备从会话管理网元接收第一信息,第一信息用于指示第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值;第一设备确定第一终端设备的第一上行业务流的第一发送时间后,将第一发送时间调整为第二发送时间,并向该会话管理网元发送该第二发送时间,第二发送时间与第二终端设备的第二上行业务流的发送时间的第二时间间隔大于或等于第一阈值。通过该方法,第一设备加大了第一上行业务流的发送时间与第二上行业务流的发送时间的时间间隔,解决了不同的业务流的冲突问题,也保证了确定性业务的时延确定性。

Description

一种通信方法、装置和系统
相关申请的交叉引用
本申请要求在2021年07月27日提交中国专利局、申请号为202110849170.7、申请名称为“一种通信方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置和系统。
背景技术
目前针对确定性业务流,第三代合作计划(3rd generation partnership project,3GPP)定义应用功能(application function,AF)网元获取确定性业务流的特征,将确定性业务流的特征封装成时间敏感通信辅助信息((time sensitive communication,TSC)assistance information,TSCAI),向接入网设备发送该TSCAI。其中,TSCAI可以包括业务流的方向(上行业务流/下行业务流),业务流的传输周期,以及业务流到达时间(即下行业务流从N3接口到达接入网设备的时间,或者,上行业务流从终端设备发出的时间)。通过TSCAI,接入网设备可以知道各个业务流到达时间从而根据自己能力对各个业务流进行调度(也即为各个业务流分配资源),保证确定的服务质量(quality of service,QoS)。
然而,当多个终端设备上行业务流的业务流到达时间相同或时间间隔小于特定阈值,也即多个终端设备发送业务流的时间的时间间隔小于预设阈值时,可能会造成接入网设备空口的调度冲突,也即造成接入网设备无法同时为多个终端设备的业务流分配资源,进而会造成某个终端设备的上行业务流在空口调度阶段的时延增加,造成时延的不确定性,影响业务性能,甚至会造成空口丢包导致业务中断。
发明内容
本申请提供一种通信方法、装置和系统,用以解决接入网设备空口的调度冲突,保证确定性业务的时延确定性,提升业务性能。
第一方面,本申请提供了一种通信方法,该方法可以包括:第一设备从会话管理网元接收第一信息,该第一信息用于指示第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值;该第一设备确定该第一终端设备的第一上行业务流的第一发送时间,将该第一发送时间调整为第二发送时间,该第二发送时间与该第二终端设备的第二上行业务流的发送时间的第二时间间隔大于或等于该第一阈值;然后该第一设备向该会话管理网元发送该第二发送时间。
通过上述方法,通过对第一终端设备的第一上行业务流的第一发送时间进行调整,以增大第一上行业务流的发送时间和第二上行业务流的发送时间之间的时间间隔,使得第一终端设备接入的第一接入网设备可以为第一终端设备的第一上行业务流分配资源,以使第一上行业务流发送成功,避免第一上行业务流与其他业务流的冲突,可以保证第一上行业 务流的时延确定性,从而提升业务性能。
在一个可能的实施方式中,该第一设备确定该第一终端设备的第一上行业务流的第一发送时间,具体方法可以为:该第一设备根据该第一信息从统一数据管理网元查询该第一上行业务流的特征信息,该第一上行业务流的特征信息包括该第一发送时间。这样该第一设备可以根据从该统一数据管理网元查询的第一上行业务流的特征信息准确得到该第一发送时间。
在一个可能的实施方式中,该第一信息包括该第一终端设备的标识,或者包括该第一终端设备的标识和该第一上行业务流的标识,或者包括该第一终端设备的标识和第一接入网设备的标识,或者包括该第一终端设备的标识、该第一上行业务流的标识和第一接入网设备的标识。这样可以使该第一设备根据该第一信息中的信息准确地查询到第一上行业务流的特征信息。
在一个可能的实施方式中,该第一设备将该第一发送时间调整为第二发送时间,具体方法可以为:该第一设备确定该第二上行业务流的特征信息;该第一设备根据该第二上行业务流的特征信息,将该第一发送时间调整为该第二发送时间。这样该第一设备可以确定该第二发送时间与第二上行业务流的发送时间不存在冲突,从而可以后续使第一终端设备成功发送第一上行业务流。
在一个可能的实施方式中,该第二上行业务流的特征信息包括该第二上行业务流的发送时间、该第二上行业务流的数据大小或该第二上行业务流的发送周期中的至少一项。这样可以使第一设备结合第二上行业务流的特征信息准确地计算出第二发送时间。
在一个可能的实施方式中,该第一设备确定该第二上行业务流的特征信息,具体方法可以为:该第一设备获取该第一上行业务流的特征信息,该第一上行业务流的特征信息包括该第一发送时间、该第一上行业务流的数据大小或该第一上行业务流的发送周期中的至少一项;该第一设备根据该第一上行业务流的特征信息,确定该第二上行业务流的特征信息。这样该第一设备可以准确地确定出于第一上行业务流存在调度冲突的第二上行业务流的特征信息。
在一个可能的实施方式中,该第一设备确定该第二上行业务流的特征信息,具体方法可以为:该第一信息包括该第二终端设备的标识,该第一设备根据该第一信息确定该第二上行业务流的特征信息。这样该第一设备可以根据该第二终端设备的标识准确地确定该第二上行业务流,进而确定该第二上行业务流的特征信息。
在一个可能的实施方式中,该第一信息还包括该第二上行业务流的标识。这样可以使该第一设备可以根据该第二终端设备的标识和该第二上行业务流的标识准确地确定该第二上行业务流的特征信息。
在一个可能的实施方式中,该第一设备根据该第二上行业务流的特征信息,将该第一发送时间调整为该第二发送时间,具体方法可以为:该第一设备根据该第一上行业务流的特征信息和该第二上行业务流的特征信息计算该第二发送时间;该第一设备将该第一发送时间调整为该第二发送时间。这样第一设备可以准确地计算出第二发送时间。
在一个可能的实施方式中,该第一设备确定该第一发送时间和该第二发送时间的第三时间间隔,换句话说,第三时间间隔为该第一发送时间和该第二发送时间的差;该第一设备根据该第三时间间隔确定该第一上行业务流的第二发包延迟预算PDB。这样可以保障端到端的时延。
在一个可能的实施方式中,该第一设备根据该第三时间间隔确定该第一上行业务流的第二PDB,具体方法可以为:该第一设备将该第一上行业务流的第一PDB减去该第三时间间隔,得到该第二PDB。这样可以保障端到端的时延。
在一个可能的实施方式中,该第一设备向该会话管理网元发送该第二PDB。以使该会话管理网元更新PDB,以保障端到端的时延。
在一个可能的实施方式中,该第一设备向该会话管理网元发送该第三时间间隔。以使该会话管理网元可以将该第三时间间隔发送给第一终端设备,以使第一终端设备根据该第三时间间隔发送该第一上行业务流。
在一个可能的实施方式中,该第一设备为应用功能网元,该第一设备根据该第二发送时间,与,该第一上行业务流在该第一终端设备驻留的时间,确定第一数据源向该第一终端设备发送该第一上行业务流的第三发送时间;该第一设备向该第一数据源发送该第三发送时间。这样可以通过应用功能网元调整第一数据源发送第一上行业务流的时间,从而使得第一终端设备发送第一上行业务流的时间也进行了相应调整,以保障该第一上行业务流的时延确定性,避免第一上行业务流与其他业务流的冲突,提升业务性能。示例性的,该第一数据源与该第一终端设备可以合设为一个设备,也可以为分设的两个设备。
在一个可能的实施方式中,该第一设备为策略控制功能网元或网络开放功能网元,该第一设备向应用功能网元发送该第二发送时间。以通过应用功能网元调整第一数据源发送第一上行业务流的时间,从而使得第一终端设备发送第一上行业务流的时间也进行了相应调整,以保障该第一上行业务流的时延确定性,避免第一上行业务流与其他业务流的冲突,提升业务性能。
第二方面,本申请提供了一种通信方法,该方法可以包括:会话管理网元从第二设备接收第二信息;该会话管理网元向第一设备发送第一信息,该第一信息和该第二信息用于指示第一终端设备的第一上行业务流的第一发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值;该会话管理网元从该第一设备接收该第一上行业务流的第二发送时间,该第二发送时间与该第二终端设备的第二上行业务流的发送时间的第二时间间隔大于或等于该第一阈值;该会话管理网元向第一接入网设备发送该第二发送时间。
通过上述方法,可以通过对第一终端设备的第一上行业务流的第一发送时间进行调整,以增大第一上行业务流的发送时间和第二上行业务流的发送时间之间的时间间隔,使得第一终端设备接入的第一接入网设备可以成功为第一终端设备的第一上行业务流分配资源,避免第一上行业务流与其他业务流的冲突,可以保证第一上行业务流的时延确定性,从而提升业务性能。
在一个可能的实施方式中,该第二信息包括该第一终端设备的标识;该第一信息包括该第一终端设备的标识。这样后续该第一设备可以根据该第一终端设备的标识查询第一上行业务流的特征信息。
在一个可能的实施方式中,该第二信息包括该第一上行业务流的标识或者该第一接入网设备的标识中的至少一个;该第一信息包括该第一上行业务流的标识或者该第一接入网设备的标识中的至少一个。这样后续该第一设备可以准确地根据该第一信息查询第一上行业务流的特征信息。
在一个可能的实施方式中,该第二信息包括该第二终端设备的标识;该第一信息包括 该第二终端设备的标识。这样后续第一设备可以根据第二终端设备的标识确定与第一上行业务流存在调度冲突的第二上行业务流。
在一个可能的实施方式中,该第二信息还包括该第二上行业务流的标识;该第一信息还包括该第二上行业务流的标识。这样后续第一设备可以准确地确定与第一上行业务流存在调度冲突的第二上行业务流。
在一个可能的实施方式中,该会话管理网元确定该第二终端设备,该第一信息还包括该第二终端设备的标识。这样后续第一设备可以准确地确定与第一上行业务流存在调度冲突的第二上行业务流。
在一个可能的实施方式中,该会话管理网元确定该第二上行业务流,该第一信息还包括该第二上行业务流的标识。这样后续第一设备可以准确地确定与第一上行业务流存在调度冲突的第二上行业务流。
在一个可能的实施方式中,该会话管理网元从该第一设备接收第二发包延迟预算PDB;该会话管理网元将该第一上行业务流的第一PDB修改成该第二PDB。示例性的,该会话管理网元可以通过协议数据单元(protocol data unit,PDU)会话流程将该第一上行业务流的第一PDB修改成该第二PDB,也可以通过其他流程修改。这样可以保障端到端的时延。
在一个可能的实施方式中,该会话管理网元从该第一设备接收第三时间间隔,该第三时间间隔为该第一发送时间与该第二发送时间的时间间隔;该会话管理网元向该第一终端设备发送该第三时间间隔。这样可以使第一终端设备根据该第三时间间隔发送该第一上行业务流,以避免空口调度冲突。
在一个可能的实施方式中,该会话管理网元向该第一终端设备发送该第二发送时间。这样可以使第一终端设备根据该第二发送时间发送该第一上行业务流,以避免空口调度冲突。
第三方面,本申请提供了一种通信方法,该方法可以包括:第一终端设备确定第一上行业务流的第一发送时间;该第一终端设备从会话管理网元接收第三时间间隔;该第一终端设备将该第一发送时间加该第三时间间隔得到第二发送时间;该第一终端设备按照该第二发送时间发送该第一上行业务流。
通过上述方法,第一终端设备可以按照修改后的第二发送时间发送第一上行业务流,可以保证第一上行业务流的时延确定性,从而提升业务性能。
在一个可能的实施方式中,该第一终端设备向该第一接入网设备发送第一请求后,没有接收到用于发送该第一上行业务流的资源,或者,该第一终端设备没有接收到该第一上行业务流的发送成功的反馈信息,或者,该第一终端设备在预设时长内没有接收到该反馈信息;该第一终端设备向会话管理网元发送第二信息,该第二信息用于指示该第一终端设备未成功发送该第一上行业务流。这样第一终端设备可以发起后续核心网控制面对第一上行业务流的发送时间的重新确定。
在一个可能的实施方式中,该第二信息包括该第一终端设备的标识;或者,包括该第一终端设备的标识和该第一上行业务流的标识;或者,包括该第一终端设备的标识和该第一接入网设备的标识;或者,包括该第一终端设备的标识、该第一上行业务流的标识和该第一接入网设备的标识。
第四方面,本申请提供了一种通信方法,该方法可以包括:第一终端设备从会话管理网元接收第二发送时间,按照该第二发送时间发送第一上行业务流,其中,该第二发送时 间是第一上行业务流的第一发送时间调整后的发送时间,该第二发送时间与第二终端设备的第二上行业务流的发送时间的第二时间间隔大于或等于第一阈值。这样第一终端设备可以按照修改后的第二发送时间发送第一上行业务流,可以保证第一上行业务流的时延确定性,从而提升业务性能。
第五方面,本申请提供了一种通信方法,该方法可以包括:第二设备确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值;该第二设备向会话管理网元发送第二信息,该第二信息用于指示该第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于该第一阈值。这样第二设备可以发起后续核心网控制面对第一上行业务流的发送时间的重新确定的流程,以使第一终端设备按照调整后的发送时间发送第一上行业务流,避免空口调度冲突。
在一个可能的实施方式中,该第二设备为第一接入网设备,该第二设备确定该第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值,具体方法可以为:该第二设备从该第一终端设备接收到第一调度请求后,确定不能为该第一上行业务流分配资源,或者,该第二设备确定当前分配的上行时隙没有接收到该第一终端设备的该第一上行业务流,则确定该第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于该第一阈值。这样第一接入网设备可以准确地确定第一上行业务流存在空口调度冲突,以发起后续核心网控制面对第一上行业务流的发送时间的重新确定的流程。
在一个可能的实施方式中,该第二信息包括该第一终端设备的标识;或者,该第二信息包括该第一终端设备的标识和该第一上行业务流的标识;或者,该第二信息包括该第一终端设备的标识和该第一接入网设备的标识;或者,该第二信息包括该第一终端设备的标识、该第一上行业务流的标识和该第一接入网设备的标识。这样可以准确地上报发生空口调度冲突的第一上行业务流。
在一个可能的实施方式中,该第二信息还可以包括该第二终端设备的标识;或者该第二信息还可以包括该第二终端设备的标识和该第二上行业务流的标识。这样可以上报与第一上行业务流存在冲突的其他上行业务流。
在一个可能的实施方式中,该第二设备为用户面功能网元,该第二设备确定该第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值,具体方法可以为:该第二设备获取该第一上行业务流的发送时间,并确定该第一上行业务流的发送时间与当前接收到该第一上行业务流的第一数据包的时间之差大于第二阈值,或者,该第二设备获取该第一上行业务流的预期到达时间,并确定该预期到达时间与当前接收到该第一上行业务流的时间之差大于第三阈值,则确定该第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。这样用户面功能网元可以准确地确定第一上行业务流存在空口调度冲突,以发起后续核心网控制面对第一上行业务流的发送时间的重新确定的流程。
在一个可能的实施方式中,该第二信息包括该第一终端设备的标识;或者,该第二信息包括该第一终端设备的标识和该第一上行业务流的标识。这样可以准确地上报发生空口调度冲突的第一上行业务流。
第六方面,本申请还提供了一种通信装置,该通信装置具有实现上述第一方面或第一 方面的各个可能的实施方式示例中第一设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的实施方式中,该通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的实施方式中第一设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的实施方式中,该通信装置的结构中包括收发器和处理器,可选的还包括存储器,该收发器用于收发信息或数据,以及用于与通信系统中的其他设备进行通信交互,该处理器被配置为支持该通信装置执行上述第一方面或第一方面的各个可能的实施方式中第一设备的相应的功能。该存储器与该处理器耦合,其保存该通信装置必要的程序指令和数据。
第七方面,本申请还提供了一种通信装置,该通信装置具有实现上述第二方面或第二方面的各个可能的实施方式中会话管理网元的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的实施方式中,该通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的实施方式中会话管理网元的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的实施方式中,该通信装置的结构中包括收发器和处理器,可选的还包括存储器,该收发器用于收发信息或数据,以及用于与通信系统中的其他设备进行通信交互,该处理器被配置为支持该通信装置执行上述第二方面或第二方面的各个可能的实施方式中会话管理网元的相应的功能。该存储器与该处理器耦合,其保存该通信装置必要的程序指令和数据。
第八方面,本申请还提供了一种通信装置,该通信装置具有实现上述第三方面或第三方面的各个可能的实施方式,或第四方面或第四方面的各个可能的实施方式中第一终端设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的实施方式中,该通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第三方面或第三方面的各个可能的实施方式,或第四方面或第四方面的各个可能的实施方式中第一终端设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的实施方式中,该通信装置的结构中包括收发器和处理器,可选的还包括存储器,该收发器用于收发信息或数据,以及用于与通信系统中的其他设备进行通信交互,该处理器被配置为支持该通信装置执行上述第三方面或第三方面的各个可能的实施方式,或第四方面或第四方面的各个可能的实施方式中第一终端设备的相应的功能。该存储器与该处理器耦合,其保存该通信装置必要的程序指令和数据。
第九方面,本申请还提供了一种通信装置,该通信装置具有实现上述第五方面或第五方面的各个可能的实施方式中第二设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的实施方式中,该通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第五方面或第五方面的各个可能的实施方式中第二设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的实施方式中,该通信装置的结构中包括收发器和处理器,可选的还包括存储器,该收发器用于收发信息或数据,以及用于与通信系统中的其他设备进行通信交互,该处理器被配置为支持该通信装置执行上述第五方面或第五方面的各个可能的实施方式中第二设备的相应的功能。该存储器与该处理器耦合,其保存该通信装置必要的程序指令和数据。
第十方面,本申请实施例提供了一种通信系统,可以包括上述提及的第一设备、会话管理网元、第一终端设备和第二设备等。
第十一方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的实施方式,或第二方面及其任一可能的实施方式,或第三方面及其任一可能的实施方式,或第四方面及其任一可能的实施方式,或第五方面及其任一可能的实施方式中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第十二方面,本申请实施例提供一种包括计算机程序代码或指令的计算机程序产品,当其在计算机上运行时,使得计算机实现上述第一方面或第一方面任一种可能的实施方式,或第二方面或第二方面任一种可能的实施方式,或第三方面及其任一可能的实施方式,或第四方面及其任一可能的实施方式,或第五方面及其任一可能的实施方式中所述的方法。
第十三方面,本申请还提供了一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现上述第一方面或第一方面任一种可能的实施方式,或第二方面或第二方面任一种可能的实施方式,或第三方面及其任一可能的实施方式,或第四方面及其任一可能的实施方式,或第五方面及其任一可能的实施方式中所述的方法。
上述第六方面至第十三方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案,或第二方面或第二方面中的各种可能方案,或第三方面或第三方面中的各种可能方案,或第四方面或第四方面中的各种可能方案,或第五方面或第五方面中的各种可能方案可以达到的技术效果说明,这里不再赘述。
附图说明
图1为5GS的架构示意图;
图2为一种上行业务流空口调度冲突的示意图;
图3为本申请提供的一种应用场景的示意图;
图4为本申请提供的一种通信方法的流程示意图;
图5为本申请提供的另一种通信方法的流程示意图;
图6为本申请提供的一种通信方法的示例的流程图;
图7为本申请提供的另一种通信方法的示例的流程图;
图8为本申请提供的另一种通信方法的示例的流程图;
图9为本申请提供的一种通信装置的结构示意图;
图10为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以解决接入网设备空口的调度冲突,保证确定性业务的时延确定性,提升业务性能。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。需要说明的是,在本申请中不限定第一、第二等的出现顺序,例如可以先出现第二,再出现第一,本申请对此不作限定。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。“以下至少一项”或其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b,或c中的至少一项,可以表示:a,b,c,a和b,a和c,b和c,或,a和b和c,其中,a,b,c可以是单个,也可以是多个。
本申请的描述中“/”表示“或”,例如a/b表示a或b。
图1示出了第五代移动通信系统(the 5th generation system,5GS)的架构的一种可能的示例,该通信系统的架构可以包括:无线接入网络、终端设备和核心网。示例性的,该通信系统的架构中,无线接入网络中可以包括接入网设备。核心网中可以包括:网络开放功能(network exposure function,NEF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理功能网元(unified data management,UDM)、应用功能(application function,AF)网元、接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能网元(session management function,SMF)网元、用户面功能(user plane function,UPF)网元。其中,AMF网元与接入网设备之间可以通过N2接口相连,接入网设备与UPF之间可以通过N3接口相连,SMF与UPF之间可以通过N4接口相连,AMF网元与UE之间可以通过N1接口相连。接口名称只是一个示例说明,本申请实施例对此不作具体限定。应理解,本申请实施例并不限于图1所示通信系统,图1中所示的网元的名称在这里仅作为一种示例说明,并不作为对本申请的方法适用的通信系统架构中包括的网元的限定。下面对通信系统中的各个网元或设备的功能进行详细描述:
终端设备,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备可以包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。其中,图1中终端设备以UE示出,仅作为示例,并不对终端设备进行限定。
(R)AN设备:为终端设备提供接入的设备,包含无线接入网(radio access network, AN)设备和接入网(access network,AN)设备。RAN设备主要是3GPP网络无线网络设备,AN可以是non-3GPP定义的接入网设备。RAN设备:主要负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。所述接入网设备可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在5G系统中,称为RAN或者gNB(5G NodeB)等。
接入和移动性管理功能网元,可用于对终端设备的接入控制和移动性进行管理,在实际应用中,其包括了长期演进(long term evolution,LTE)中网络框架中移动管理实体(mobility management entity,MME)里的移动性管理功能,并加入了接入管理功能,具体可以负责终端设备的注册、移动性管理、跟踪区更新流程、可达性检测、会话管理功能网元的选择、移动状态转换管理等。例如,在5G中,接入和移动性管理功能网元可以是AMF网元,例如图1所示;在未来通信,如6G中,接入和移动性管理功能网元仍可以是AMF网元,或有其它的名称,本申请不做限定。当接入和移动性管理功能网元是AMF网元时,AMF可以提供Namf服务。
会话管理功能网元,可用于负责终端设备的会话管理(包括会话的建立、修改和释放),用户面功能网元的选择和重选、终端设备的互联网协议(internet protocol,IP)地址分配、服务质量(quality of service,QoS)控制等。例如,在5G中,会话管理功能网元可以是SMF网元,例如图1所示;在未来通信,如6G中,会话管理功能网元仍可以是SMF网元,或有其它的名称,本申请不做限定。当会话管理功能网元是SMF网元时,SMF可以提供Nsmf服务。
用户面功能网元:负责终端设备中用户数据的转发和接收。可以从数据网络接收用户数据,通过接入网设备传输给终端设备;UPF网元还可以通过接入网设备从终端设备接收用户数据,转发到数据网络。UPF网元中为终端设备提供服务的传输资源和调度功能由SMF网元管理控制的。例如,在5G中,用户面功能网元可以是UPF网元,例如图1所示;在未来通信,如6G中,用户面功能网元仍可以是UPF网元,或有其它的名称,本申请不做限定。
策略控制功能网元:主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。例如,在5G中,策略控制功能网元可以是PCF网元,例如图1所示;在未来通信,如6G中,策略控制功能网元仍可以是PCF网元,或有其它的名称,本申请不做限定。当策略控制功能网元是PCF网元,PCF网元可以提供Npcf服务。
网络开放功能网元:主要支持3GPP网络和第三方应用安全的交互。例如,在5G中,网络开放功能网元可以是NEF网元,例如图1所示;在未来通信,如6G中,网络开放功能网元仍可以是NEF网元,或有其它的名称,本申请不做限定。当网络开放功能网元是NEF时,NEF可以向其他网络功能网元提供Nnef服务。
应用功能网元:主要支持与3GPP核心网交互来提供服务,例如影响数据路由决策,策略控制功能或者向网络侧提供第三方的一些服务。例如,在5G中,应用功能网元可以是AF网元,例如图1所示;在未来通信,如6G中,应用功能网元仍可以是AF网元,或有其它的名称,本申请不做限定。当应用功能网元是AF网元时,AF网元可以提供Naf服务。
统一数据管理功能网元:用于生成认证信任状,用户标识处理(如存储和管理用户永久身份等),接入授权控制和签约数据管理等。例如,在5G中,统一数据管理功能网元可以是UDM网元,例如图1所示;在未来通信,如6G中,统一数据管理功能网元仍可以是UDM网元,或有其它的名称,本申请不做限定。当统一数据管理功能网元是UDM网元时,UDM网元可以提供Nudm服务。
数据网络(data network,DN),指的是为用户提供数据传输服务的服务网络,如IP多媒体业务(IP multi-media service,IMS)、互联网(Internet)等。
UE通过UE到DN之间建立的协议数据单元(protocol data unit,PDU)会话,来访问DN。
其中,核心网中的各个网元也可以称为功能实体或者设备,既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。
需要说明的是,图1所示的通信系统的架构中不限于仅包含图中所示的网元,还可以包含其它未在图中表示的设备,具体本申请在此处不再一一列举。
需要说明的是,本申请实施例并不限定各个网元的分布形式,图1所示的分布形式只是示例性的,本申请不作限定。
为方便说明,本申请后续均以图1所示的网元为例进行说明,并将XX网元直接简称为XX,例如,SMF网元简称为SMF。应理解,本申请中所有网元的名称仅仅作为示例,在未来通信中还可以称为其它名称,或者在未来通信中本申请涉及的网元还可以通过其它具有相同功能的实体或者设备等来替代,本申请对此均不作限定。这里做统一说明,后续不再赘述。
需要说明的是,图1所示的通信系统并不构成本申请实施例能够适用的通信系统的限定。图1所示的通信系统架构为5G系统架构,可选的,本申请实施例的方法还适用于未来的各种通信系统,例如6G或者其他通信网络等。
当前,5GS空口上行传输可以分为两种方式:基于授权的(Grant-based)方式和免授权(Grant-free)方式。Grant-based模式下,终端设备首先按照接入网设备设置的周期传输调度请求(scheduling request,SR)进行上行调度请求。当接入网设备接收到SR之后,会根据当前调度资源生成上行链路授权((uplink,UL)grant)发送给终端设备,终端设备收到UL grant之后会上报缓存区状态报告(buffer status reporting,BSR)以上报自己的待发送数据大小信息,接入网设备根据BSR在资源合适的情况下再发送UL grant,终端设备根据UL grant上传数据。在Grant-free(也即半静态调度)情况下,终端设备在有数据上传的时候无需发送SR,而是直接在每帧固定的时隙以及频率发送自己的数据,该模式可以省去触发SR调度的流程,降低业务延迟。
目前针对确定性业务流,3GPP定义可以通过AF网元获取确定性业务流的特征,并将确定性业务流的特征封装成TSCAI通知到接入网设备。其中,TSCAI可以包括业务流的方向(上行业务流/下行业务流),业务流的传输周期,以及业务流到达时间(即下行业务流从N3接口到达接入网设备的时间,或者,上行业务流从终端设备发出的时间)。通过TSCAI,接入网设备可以知道各个业务流到达时间从而根据自己能力对各个业务流进行调度(也即为各个业务流分配资源),保证确定的服务质量(quality of service,QoS)。
在目前定义的TSCAI下,当多个终端设备上行业务流的业务流到达时间相同或时间间 隔小于特定阈值(应理解该特定阈值本申请不作限定),接入网设备为这些业务流分配的资源可能相同,从而可能造成接入网设备空口的调度冲突,举例来说终端设备1,终端设备2各自有一个周期性的业务流且周期相同,当他们到达时间相同或时间间隔小于特定阈值的话,就可能造成在当前周期,接入网设备先调度了终端设备1的数据包,在下一个周期先调度了终端设备2的数据包,那么该现象可以称为终端设备1的数据包和终端设备2的数据包的延迟发生了抖动。如图2所示,上述现象会造成RAN与UPF之间的两条流数据包的周期不稳定。这样会造成终端设备的上行业务流在空口调度阶段的时延增加,造成时延的不确定性,导致空口丢包甚至业务中断,影响业务性能。
目前对确定性业务流需求较高的一种场景是工业场景。在工业场景中终端设备一般是典型的工业终端,比如可编程逻辑控制器(programmable logic controller,PLC)、工业输入输出(input output,IO)端口等。当多个工业终端出现图2所示的情况后,数据包的延迟抖动会造成工业终端的报警。另一种场景是常见的园区视频监控场景。在园区视频监控场景下,每一个摄像头通过终端设备无线接入5G网络,除了一直存在的背景流量外,摄像头还会周期性生成I帧(I帧又称帧内编码帧,是一种自带全部信息的独立帧,无需参考其他图像便可独立进行解码,即全部为帧内编码),当多个摄像头的I帧有可能会在空口调度时需要被分配相同的资源,造成时延不确定,而且由于I帧的大小比摄像头生成的其他帧的大小大,I帧的时延不确定对于应用有影响,会造成后台相关视频算法的性能下降,可能在显示上造成用户体验下降。
基于此,本申请提出一种通信方法,用以解决现有技术中上行业务流在空口调度阶段的时延增加,造成时延的不确定性,导致空口丢包甚至业务中断,影响业务性能的问题。
本申请实施例提供的通信方法可以适用于确定性业务流、时延敏感业务流等业务流的传输场景。例如工业场景或者视频监控场景等。示例性的,图3示出了本申请实施例提供的一种可能的应用场景的示意图。应理解,图3仅以视频监控场景为例进行示意,并不作为对本申请实施例应用场景的限定。在图3所示的应用场景中,可以包括摄像头(如图3所示的摄像头1至摄像头3)、终端设备(如图3所示的终端设备1至终端设备3)、RAN、UPF网元、AF网元和5G核心网控制面(5G core(control panel,CP),5GC CP)网元。其中,5GC CP网元可以包括AMF网元、SMF网元、PCF网元、NEF网元等。
具体的,摄像头1至摄像头3分别连接终端设备1至终端设备3,RAN对终端设备1至终端设备3的上行业务流(即摄像头拍摄的帧)进行调度。
需要说明的是,除图3所示的场景示意图外,本申请实施例还可以适用其他场景,原理相同,此处不再一一列举。
基于以上描述,如图4所示,本申请实施例提供的一种通信方法,该方法的具体流程可以包括:
步骤401:会话管理网元从第二设备接收第二信息,相应地第二设备向会话管理网元发送第二信息。
可选的,第二设备可以是第一终端设备、第一接入网设备或者用户面功能网元,其中第一接入网设备为第一终端设备接入的接入网设备。当第二设备为上述三种不同的设备时,第二设备向会话管理网元发送第二信息的情况不同。具体的:
情况a1、当第二设备为第一终端设备时,第二信息用于指示第一终端设备未成功发送第一上行业务流。在第一设备向会话管理网元发送第二信息之前,第二设备可以执行步骤 400a:第一终端设备确定未成功发送第一上行业务流。
具体的,第一终端设备确定未成功发送第一上行业务流,具体方法可以包括:第一终端设备向第一接入网设备发送第一请求后,没有接收到用于发送第一上行业务流的资源(如空口资源),或者,第一终端设备没有接收到第一上行业务流的发送成功的反馈信息(也即上行反馈信息),或者,第一终端设备在预设时长内没有接收到反馈信息,则第一终端设备确定未成功发送第一上行业务流。
其中,当第一终端设备处于Grant-based模式下时,第一终端设备可以通过没有接收到用于发送第一上行业务流的资源来确定未成功发送第一上行业务流。当第一终端设备处于Grant-free的半静态调度模式下时,第一终端设备可以通过没有接收到或者在预设时长内没有接收到反馈信息,来确定未成功发送第一上行业务流。
示例性的,第一终端设备可以通过PDU会话修改请求来向会话管理网元发送第二信息。
示例性的,在该情况a1中,第二信息可以包括第一终端设备的标识;或者,第二信息可以包括第一终端设备的标识和第一上行业务流的标识;或者,第二信息可以包括第一终端设备的标识和第一接入网设备的标识;或者,第二信息可以包括第一终端设备的标识、第一上行业务流的标识和第一接入网设备的标识。
情况a2、当第二设备为第一接入网设备时,第二信息用于指示第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值(也即第一上行业务流的发送时间与第二上行业务流的发送时间冲突)。在此之前,第二设备可以执行步骤400b:第二设备(也即第一接入网设备)确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
具体的,第一接入网设备确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值,具体方法可以包括:第一接入网设备从第一终端设备接收到第一调度请求后,确定不能为第一上行业务流分配资源,或者,第一接入网设备确定当前分配的上行时隙没有接收到第一终端设备的第一上行业务流,则确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
其中,当第一终端设备处于Grant-based模式下时,第一接入网设备通过确定不能为第一上行业务流分配资源来确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。当第一终端设备处于Grant-free的半静态调度模式下时,第一接入网设备通过确定当前分配的上行时隙没有接收到第一终端设备的第一上行业务流,来确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
示例性的,在该情况a2中,第二信息可以包括第一终端设备的标识;或者,第二信息可以包括第一终端设备的标识和第一上行业务流的标识;或者,第二信息可以包括第一终端设备的标识和第一接入网设备的标识;或者,第二信息可以包括第一终端设备的标识、第一上行业务流的标识和第一接入网设备的标识。进一步地,在上述基础上,第二信息还可以包括第二终端设备的标识;或者第二信息还可以包括第二终端设备的标识和第二上行业务流的标识。
其中,当第二信息包括第二终端设备的标识但是不包括第二上行业务流的标识时,第二终端设备包括一个上行业务流,也即第二上行业务流,此时通过上报第二终端设备的标识即可以确定第二上行业务流。
情况a3、当第二设备为用户面功能网元时,第二信息用于指示第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。在此之前,第二设备同样可以执行步骤400b:第二设备(也即用户面功能网元)确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
具体的,用户面功能网元确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值,具体方法可以包括:用户面功能网元获取第一上行业务流的发送时间,并确定第一上行业务流的发送时间与当前接收到第一上行业务流的第一数据包的时间之差大于第二阈值,或者,用户面功能网元获取第一上行业务流的预期到达时间,并确定预期到达时间与当前接收到第一上行业务流的时间之差大于第三阈值,则确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
可选的,当第一上行业务流为视频类业务流时,用户面功能网元可以通过深度包检测(deep packet inspection,DPI)方法来获取第一上行业务流的发送时间。
示例性的,在该情况a3中,第二信息可以包括第一终端设备的标识;或者,第二信息可以包括第一终端设备的标识和第一上行业务流的标识。
需要说明的是,在上述三种情况中,当第二信息不包括第一上行业务流的标识时,第一终端设备包括一个上行业务流,也即第一上行业务流,此时通过上报第一终端设备的标识即可以确定第一上行业务流。
在上述三种情况中,第二信息还可以理解为用于指示第一终端设备未按照第一发送时间发送第一上行业务流,或者还可以用于指示第一终端设备的第一上行业务流空口调度冲突。
需要说明的是,上述涉及的第二终端设备可以是一个或多个,第二上行业务流也可以是一个或多个,其中一个第二终端设备对应一个第二上行业务流。其中,第一终端设备和第二终端设备均接入第一接入网设备。
步骤402:会话管理网元向第一设备发送第一信息,第一信息用于指示第一终端设备的第一上行业务流的第一发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
其中,第一设备可以为应用功能网元、策略控制功能网元或网络开放功能网元。
示例性的,当第二信息包括第一终端设备的标识时,第一信息可以包括第一终端设备的标识。进一步地,当第二信息还包括第一上行业务流的标识或者第一接入网设备的标识中的至少一个时,第一信息还可以包括第一上行业务流的标识或者第一接入网设备的标识中的至少一个。
在一种可选的实施方式中,当第二信息还包括第二终端设备的标识时,第一信息还可以包括第二终端设备的标识。进一步地,当第二信息还包括第二上行业务流的标识时,第一信息还可以包括第二上行业务流的标识。在这种情况下,第一接入设备直接通过第二信息上报第二终端设备的标识,或者,第二终端设备的标识和第二上行业务流的标识,会话 管理网元将上述信息携带在第一信息中。
在另一种可选的实施方式中,会话管理网元还可以确定第二终端设备,第一信息还可以包括第二终端设备的标识。进一步地,会话管理网元还可以确定第二上行业务流,第一信息还可以包括第二上行业务流的标识。在这种情况下,会话管理网元确定是第二终端设备的第二上行业务流与第一上行业务流的发送时间冲突,然后将第二终端设备的标识,或者第二终端设备的标识和第二上行业务流的标识携带在第一信息中。
示例性的,第一信息还用于请求第一设备对第一上行业务流进行重新调度,也即用于请求第一设备调整第一上行业务流的发送时间。
步骤403:第一设备确定第一终端设备的第一上行业务流的第一发送时间。
在一种可选的实施方式中,第一设备确定第一终端设备的第一上行业务流的第一发送时间,具体方法可以为:第一设备根据第一信息从统一数据管理网元查询第一上行业务流的特征信息,第一上行业务流的特征信息包括第一发送时间。
示例性的,第一设备根据第一信息从统一数据管理网元查询第一上行业务流的特征信息,具体可以为:第一设备可以根据第一信息包括的第一终端设备的标识,或者包括的第一终端设备的标识和第一上行业务流的标识,或者包括的第一终端设备的标识和第一接入网设备的标识,或者包括的第一终端设备的标识、第一上行业务流的标识和第一接入网设备的标识,从统一数据管理网元查询第一上行业务流的特征信息。
具体的,第一上行业务流的特征信息可以包括第一上行业务流的第一发送时间、第一上行业务流的数据大小或第一上行业务流的发送周期中的至少一项。
步骤404:第一设备将第一发送时间调整为第二发送时间,第二发送时间与第二终端设备的第二上行业务流的发送时间的第二时间间隔大于或等于第一阈值。
在一种可选的实施方式中,第一设备将第一发送时间调整为第二发送时间,具体方法可以为:第一设备确定第二上行业务流的特征信息,并然后根据第二上行业务流的特征信息,将第一发送时间调整为第二发送时间。
其中,第二上行业务流的特征信息可以包括第二上行业务流的发送时间、第二上行业务流的数据大小或第二上行业务流的发送周期中的至少一项。
在一种示例中,第一设备确定第二上行业务流的特征信息,具体方法可以为:第一设备获取第一上行业务流的特征信息,并根据第一上行业务流的特征信息,确定第二上行业务流的特征信息。
其中,第一设备获取第一上行业务流的特征信息的方法可以参见步骤403中涉及的第一设备根据第一信息从统一数据管理网元查询第一上行业务流的特征信息的相关描述,此处不再赘述。
可选的,第一设备根据第一上行业务流的特征信息确定第二上行业务流的特征信息,具体方法可以为:第一设备根据第一上行业务流的特征信息从统一数据管理网元查询与第一终端设备接入同一个接入网设备(也即第一接入网设备)的第二终端设备的,且发送时间与第一上行业务流的第一发送时间的第一时间间隔小于第一阈值的第二上行业务流的特征信息。
在另一种示例中,第一设备确定第二上行业务流的特征信息,具体方法可以为:第一信息包括第二终端设备的标识,或者包括第二终端设备的标识和第二上行业务流的标识,第一设备根据第一信息确定第二上行业务流的特征信息。具体的,第一设备可以根据第一 信息包括的第二终端设备的标识,或者包括的第二终端设备的标识和第二上行业务流的标识,确定第二上行业务流的特征信息。
在一种可选的实施方式中,第一设备根据第二上行业务流的特征信息,将第一发送时间调整为第二发送时间,具体方法可以为:第一设备根据第一上行业务流的特征信息和第二上行业务流的特征信息计算第二发送时间;然后,第一设备将第一发送时间调整为第二发送时间。
示例性的,第一设备根据第一上行业务流的特征信息和第二上行业务流的特征信息计算第二发送时间时,根据第一上行业务流的特征的信息中第一上行业务流的第一发送时间、数据大小和发送周期确定该第一上行业务流在一个周期中所需的时间,以及根据第二上行业务流的特征的信息中第二上行业务流的发送时间、数据大小和发送周期确定该第二上行业务流在一个周期中所需的时间,进而第一设备根据第一上行业务流和第二上行业务流在一个周期中各自所需的时间来计算第二发送时间。
具体的,第一设备根据第一上行业务流的特征信息和第二上行业务流的特征信息计算第二发送时间时,可以只计算第一上行业务流的第二发送时间,也可以计算第一上行业务流的第二发送时间和第二上行业务流的第四发送时间(也即对第一上行业务流和第二上行业务流进行统一调度),第四发送时间和第二发送时间之间的时间间隔大于或者等于第一阈值。
步骤405:第一设备向会话管理网元发送第二发送时间。
步骤406:会话管理网元向第一接入网设备发送第二发送时间。
在一种可选的实施方式中,会话管理网元向第一接入网设备发送第二发送时间时,具体可以根据第二发送时间更新第一上行业务流的TSCAI,并将更新后的TSCAI发送给第一接入网设备,其中更新后的TSCAI包括第二发送时间。
其中,会话管理网元根据第二发送时间更新第一上行业务流的TSCAI时,将第一上行业务流的TSCAI中的第一发送时间修改为第二发送时间,TSCAI中的其他信息如业务流的方向(上行业务流/下行业务流),业务流的传输周期等保持不变。
在第一种示例中,第一设备在将第一发送时间调整为第二发送时间后,第一设备确定第一发送时间和第二发送时间的第三时间间隔;然后,第一设备根据第三时间间隔确定第一上行业务流的第二发包延迟预算(packet delay budget,PDB)。
其中,第三时间间隔为第一终端设备需要对第一上行业务流的缓存时间,以使第一终端设备在第二发送时间发送第一上行业务流。
可选的,第一设备根据第三时间间隔确定第一上行业务流的第二PDB,具体方法可以为:第一设备将第一上行业务流的第一PDB(也即原PDB)减去第三时间间隔,得到第二PDB。
由于目前是对端到端的时延保障,因此需要更新第一上行业务流的发送时间调整后的PDB,也即第一PDB减去第三时间间隔,得到第二PDB。例如,发送时间调整之前第一发送时间是第100毫秒(ms),整个服务质量流(QoS flow)的第一PDB是50ms,但是发送时间调整之后第一终端设备需要在120ms发送第一上行业务流,从而避免空口调度冲突,因此需要相应修改第一PDB 50ms为第二PDB 30ms,也即第二PDB(30ms)=第一PDB(50ms)—(第一发送时间第100ms—第一发送时间第120ms),从而保证该第一上行业务流经历的延迟仍然是50ms。
可选的,第一设备可以向会话管理网元发送第二PDB。
进一步地,会话管理网元可以将第一上行业务流的第一PDB修改成第二PDB。
示例性的,会话管理网元可以通过PDU会话修改流程或者其他方法将第一接入网设备中的第一PDB修改成第二PDB。
一种可选的方式中,第一设备可以向会话管理网元发送第三时间间隔。进而会话管理网元向第一终端设备发送第三时间间隔,以使第一终端设备根据第三时间间隔发送第一上行业务流。具体的,第一终端设备可以将第一发送时间加第三时间间隔得到第二发送时间,然后按照第二发送时间发送第一上行业务流。
示例性的,会话管理网元向第一终端设备发送第三时间间隔时,可以通过接入和移动性管理功能网元经N1接口向第一终端设备发送第三时间间隔,也可以通过第一接入网设备向第一终端设备发送第三时间间隔。
另一种可选的方式中,会话管理网元向第一终端设备发送第二发送时间。进而,第一终端设备可以直接按照第二发送时间发送第一上行业务流。
示例性的,会话管理网元可以通过接入和移动性管理功能网元经N1接口向第一终端设备发送第二发送时间。
又一种可选的方式中,第一接入网设备可以在从会话管理网元接收到第二发送时间后,向第一终端设备发送第二发送时间。进而,第一终端设备可以直接按照第二发送时间发送第一上行业务流。
在上述第一种示例中,通过对QoS进行适应调整,以及通知第一终端设备第三时间间隔或第二发送时间来使第一终端设备按照第二发送时间发送第一上行业务流,以保障第一上行业务流的时延确定性,避免调度冲突,提升业务性能。
在第二种示例中,当第一设备为应用功能网元时,在第一设备在将第一发送时间调整为第二发送时间后,第一设备根据第二发送时间,与,第一上行业务流在第一终端设备驻留的时间,确定第一数据源向第一终端设备发送第一上行业务流的第三发送时间;并向第一数据源发送第三发送时间。
可选的,第一数据源可以是与第一终端设备合设的设备;也可以是与第一终端设备独立分设的设备,例如,在视频监控场景中,第一数据源可以是摄像头,第一终端设备可以是与摄像头连接的终端设备。
示例性的,应用功能网元向第一数据源发送第三发送时间时,可以通过向第一数据源发送第一通知消息来携带第三发送时间,第一通知消息用于通知第一数据源将发送第一上行业务流的原发送时间调整为第三发送时间。
之后第一数据源按照第三发送时间向第一终端设备发送第一上行业务流,第一终端设备接收到第一上行业务流后按照现有流程发送第一上行业务流,此时,在第一数据源按照第三发送时间发送第一上行业务流后,第一终端设备按照现有流程发送第一上行业务流的发送时间即为第二发送时间。
在第三种示例中,当第一设备为策略控制功能网元或网络开放功能网元时,在第一设备在将第一发送时间调整为第二发送时间后,第一设备向应用功能网元发送第二发送时间。之后,应用功能网元根据第二发送时间,与,第一上行业务流在第一终端设备驻留的时间,确定第一数据源向第一终端设备发送第一上行业务流的第三发送时间;并向第一数据源发送第三发送时间。
同样的,之后第一数据源按照第三发送时间向第一终端设备发送第一上行业务流,第一终端设备接收到第一上行业务流后按照现有流程发送第一上行业务流。
在上述第二种示例和第三种示例中,通过应用功能网元调整第一数据源发送第一上行业务流的时间,从而使得第一终端设备发送第一上行业务流的时间也进行了相应调整,以保障第一上行业务流的时延确定性,避免调度冲突,提升业务性能。
本申请实施例提供的通信方法,第一设备对第一终端设备的第一上行业务流的第一发送时间进行调整,使得第一接入网设备可以成功为第一终端设备的第一上行业务流分配资源,最终第一上行业务流发送成功,避免第一上行业务流与其他业务流的冲突,从而该方法可以保证第一上行业务流的时延确定性,从而提升业务性能。
基于以上实施例,如图5所示,本申请实施例还提供了一种通信方法,该方法的具体流程可以包括:
步骤501:第一终端设备确定第一上行业务流的第一发送时间。
具体的,第一终端设备通过第一接入网设备对第一终端设备的配置确定第一发送时间。
步骤502:第一终端设备从会话管理网元接收第三时间间隔。
示例性的,第一终端设备可以通过N1接口通过接入和移动性管理功能网元从会话管理网元接收第三时间间隔;或者第一终端设备可以通过第一接入网网元接收第三时间间隔。
具体的,第三时间间隔的具体内容可以参见图4所示的实施例中涉及的第三时间间隔的相关描述,此处不再赘述。
步骤503:第一终端设备将第一发送时间加第三时间间隔得到第二发送时间。
步骤504:第一终端设备按照第二发送时间发送第一上行业务流。
在一种可选的实施方式中,在步骤501之前,第一终端设备向第一接入网设备发送第一请求后,没有接收到用于发送第一上行业务流的资源,或者,第一终端设备没有接收到第一上行业务流的发送成功的反馈信息,或者,第一终端设备在预设时长内没有接收到反馈信息;之后,第一终端设备向会话管理网元发送第二信息,第二信息用于指示第一终端设备未成功发送第一上行业务流。
可选的,第二信息可以包括第一终端设备的标识;或者,包括第一终端设备的标识和第一上行业务流的标识;或者,包括第一终端设备的标识和第一接入网设备的标识;或者,包括第一终端设备的标识、第一上行业务流的标识和第一接入网设备的标识。
会话管理网元接收到第二信息之后的流程可以参见上述图4所示的实施例中涉及的相关描述,此处不再赘述。
采用本申请实施例提供的通信方法,第一终端设备可以按照修改后的第二发送时间发送第一上行业务流,可以保证第一上行业务流的时延确定性,从而提升业务性能。
基于以上实施例,下面通过具体的示例来对本申请实施例提供的通信方法进行详细描述。
图6示出了一种通信方法的示例的流程,以第一终端设备为第一UE,第一接入网设备为RAN,会话管理网元为SMF,用户面功能网元为UPF,统一数据管理网元为UDM,第二设备为RAN,第一设备为PCF、NEF或AF为例来进行说明。
该示例的具体流程可以包括:
步骤601:RAN检测到无法调度第一UE的第一上行业务流。
该步骤可以理解为,RAN检测到空口调度冲突,也即RAN确定第一UE的第一上行 业务流的第一发送时间与第二UE的第二上行业务流的发送时间的第一时间间隔小于第一阈值。该步骤601可参考上述图4所示的实施例中步骤400b的相关描述。
具体的,在第一UE处于Grant-based的调度模式下,RAN如果发现在收到第一UE上行SR时,无法分配相应资源,则确定空口调度冲突,无法满足第一UE对上行资源的需求,此时RAN则可以执行后续步骤602;在第一UE处于Grant-free的半静态调度模式下,RAN如果发现在当前分配的上行时隙并没有收到预期的第一UE的上行业务流时,则RAN可以判断存在上行业务流调度冲突。随后,RAN执行步骤602。
步骤602:RAN向SMF发送第二信息。第二信息用于指示第一UE的第一上行业务流的发送时间与第二UE的第二上行业务流的发送时间的第一时间间隔小于第一阈值,也即通知SMF存在空口调度冲突。
该步骤602可以参考上述图4所示的实施例中步骤401的相关描述。
具体的,第二信息可以包括第一UE的标识,或者包括第一UE的标识和第一上行业务流的标识,或者包括第一UE的标识和RAN的标识,或者包括第一UE的标识、第一上行业务流的标识和RAN的标识。
可选的,第二信息还可以包括第二UE的标识,或者包括第二UE的标识和第二上行业务流的标识。例如,在第一UE处于Grant-based的调度模式时,第二UE可以是第一UE请求上行资源时,同样请求或占用该上行资源的其他UE。
核心网网元(如SMF)通过第二UE的标识,或者,第二UE的标识和第二上行业务流的标识,确定与第一上行业务流冲突的上行业务流是否为第二上行业务流。
应理解的是,第二UE不限于一个UE,可以为多个其他UE,因此上述第二UE的标识可以为多个UE的标识,或者,多个UE的标识和相对应的上行业务流的标识。
示例性的,RAN可以通过AMF或者UPF向SMF发送第二信息。
步骤603:SMF向PCF/NEF/AF发送第一信息,第一信息用于请求PCF/NEF/AF重新调度第一上行业务流。
该步骤603可以参考上述图4所示的实施例中步骤402的相关描述。
具体的,第一信息可以包括第一UE的标识,或者包括第一UE的标识和第一上行业务流的标识,或者包括第一UE的标识和RAN的标识,或者包括第一UE的标识、第一上行业务流的标识和RAN的标识。
可选的,第一信息还可以包括第二UE的标识,或者包括第二UE的标识和第二上行业务流的标识。
其中,当第二信息包括了第二UE的标识,或者包括了第二UE的标识和第二上行业务流的标识时,第一信息可以直接包括第二UE的标识,或者包括第二UE的标识和第二上行业务流的标识。当第二信息不包括上述第二UE的信息(如第二UE的标识,或者,第二UE的标识和第二上行业务流的标识)时,SMF可以先确定第二UE的上述信息,然后SMF将确定的第二UE的上述信息携带在第一信息中。
步骤604:PCF/NEF/AF根据第一信息从UDM查询第一上行业务流的特征信息,确定第一上行业务流的第一发送时间。
该步骤604可以参考上述图4所示的实施例中步骤403的相关描述。
具体的,第一上行业务流的特征信息可以包括第一上行业务流的第一发送时间等,PCF/NEF/AF可以根据第一上行业务流的特征信息确定第一上行业务流的第一发送时间。
步骤605:PCF/NEF/AF将第一发送时间调整为第二发送时间。
该步骤605可以参考上述图4所示的实施例中步骤404的相关描述。
具体的,PCF/NEF/AF将第一发送时间调整为第二发送时间的具体方法,可以参见图4所示的实施例中涉及的第一设备将第一发送时间调整为第二发送时间的相关描述,此处不再赘述。
步骤606:PCF/NEF/AF确定第一发送时间和第二发送时间的第三时间间隔,并根据第三时间间隔确定第一上行业务流的第二PDB。
具体的,PCF/NEF/AF将第一上行业务流的第一PDB减去第三时间间隔,得到第二PDB。
步骤607:PCF/NEF/AF向SMF发送第二PDB和第二发送时间。
可选的,PCF/NEF/AF还可以向SMF发送第三时间间隔。
步骤608:SMF将第一上行业务流的第一PDB修改成第二PDB。
例如,SMF可以通过PDU会话的修改流程,将第一上行业务流的第一PDB修改成第二PDB。
通过SMF将第一PDB修改成第二PDB可以保障端到端的时延,以使第一上行业务流的延迟保持不变,也即保证第一上行业务流的时延确定性。
该步骤606至步骤608可以参考上述图4所示的实施例中步骤405的相关描述。
步骤609:SMF向RAN发送第二发送时间。
该步骤609可以参考上述图4所示的实施例中步骤406的相关描述。
具体的,SMF可以根据第二发送时间更新第一上行业务流的TSCAI,并将更新后的TSCAI发送给RAN,其中更新后的TSCAI包括第二发送时间。这样RAN可以知道第一发送时间被调整为第二发送时间,从而根据第二发送时间,提前分配资源。
步骤610:SMF向第一UE发送第二发送时间或第三时间间隔。
例如,SMF可以通过AMF经N1接口向第一UE发送第二发送时间或第三时间间隔。
应理解,PCF/NEF/AF向SMF发送了第三时间间隔,SMF才可能向第一UE发送第三时间间隔。
该步骤610可以参考上述图5所示的实施例中步骤502的相关描述。
步骤611:第一UE根据第二发送时间或第三时间间隔发送第一上行业务流。
具体的,第一UE接收到第三时间间隔情况下,第一UE可以通过第三时间间隔计算得到第二发送时间,例如,第一UE将第一发送时间加第三时间间隔,得到第二发送时间。然后第一UE按照第二发送时间发送第一上行业务流。该情况可以参考上述图5所示的实施例中步骤503和步骤504中的描述。
第一UE接收到第二发送时间情况下,第一UE可以直接按照第二发送时间发送第一上行业务流。
例如,第一UE将第一上行业务流缓存到第二发送时间再发送。
通过该示例,RAN进行冲突检测,RAN检测到空口调度冲突(也即确定第一UE的第一上行业务流的第一发送时间与第二UE的第二上行业务流的发送时间的第一时间间隔小于第一阈值)后,反馈冲突业务流给核心网网元,由核心网网元进行该业务流的重新调度以及QoS的相应调整,也即由核心网网元重新确定第一UE的第一业务流的发送时间或者设置缓存时间(也即上述第三时间间隔),继而相应调整该第一业务流的QoS要求。核 心网网元将调整好的QoS以及对应的第二发送时间告知RAN,并且将第一UE的第二发送时间或者缓存时间通知到第一UE,从而通知第一UE在正确的空闲时间上发送上行业务流,避免空口调度冲突,提升空口容量以及资源利用效率。
图7示出了另一种通信方法的示例的流程,以第一终端设备为第一UE,第一接入网设备为RAN,会话管理网元为SMF,用户面功能网元为UPF,统一数据管理网元为UDM,第二设备为第一UE,第一设备为PCF、NEF或AF为例来进行说明。
该示例的具体流程可以包括:
步骤701:第一UE确定未成功发送第一上行业务流。
该步骤也可以理解为第一UE感知到上行业务流与其他业务流冲突。
该步骤701可参考上述图4所示的实施例中步骤400a的相关描述。
具体的,在第一UE处于Grant-based的SR模式下,第一UE可以通过发送上行SR(也即上述实施例涉及的第一请求)之后没有接收到用于发送第一上行业务流的资源来确定未成功发送第一上行业务流,也即第一UE通过无法获得上行的Grant来获知当前发送时间会造成空口资源无法分配;在第一UE处于半静态调度下,第一UE可以通过没有接收到或者在预设时长内没有接收到第一上行业务流的发送成功的反馈信息,来确定未成功发送第一上行业务流,也即第一UE通过无法获得上行反馈(上行反馈超时)等方式获知业务流冲突。
步骤702:第一UE向SMF发送第二信息,第二信息用于指示第一UE未成功发送第一上行业务流。
该步骤702可以参考上述图4所示的实施例中步骤401的相关描述。
例如,第一UE通过PDU会话修改请求向SMF发送第二信息。
示例性的,PDU会话请求或第二信息用于请求对当前QoS flow进行修改。
具体的,第二信息可以包括第一UE的标识;或者,第二信息可以包括第一UE的标识和第一上行业务流的标识;或者,第二信息可以包括第一UE的标识和接入的RAN的标识;或者,第二信息可以包括第一UE的标识、第一上行业务流的标识和RAN的标识。
其中,当第二信息中包括RAN的标识时,核心网网元(例如PCF/NEF/AF)可以通过RAN的标识,确定接入该RAN的终端设备的上行业务流中,与第一上行业务流冲突的业务流。
步骤703:SMF向PCF/NEF/AF发送第一信息,第一信息用于请求PCF/NEF/AF重新调度第一上行业务流。
该步骤703可以参考上述图4所示的实施例中步骤402的相关描述。
具体的,第一信息可以包括第一UE的标识,或者包括第一UE的标识和第一上行业务流的标识,或者包括第一UE的标识和RAN的标识,或者包括第一UE的标识、第一上行业务流的标识和RAN的标识。
可选的,第一信息还可以包括第二UE的标识,或者包括第二UE的标识和第二上行业务流的标识。其中,SMF可以先确定第二UE的上述信息(如第二UE的标识,或者,第二UE的标识和第二上行业务流的标识),然后SMF将确定的第二UE的上述信息携带在第一信息中。
步骤704至步骤709可参考图6所示的实施例中步骤604至步骤609的描述,此处不再赘述。
其中,步骤708与步骤608不同的是,步骤708中的PDU会话修改流程是响应第一UE发起的PDU会话修改请求,步骤608中的PDU会话修改流程是SMF发起的。
步骤710:SMF向第一UE发送第二发送时间或第三时间间隔。
例如,SMF响应PDU会话修改请求,并通过响应PDU会话修改请求的消息向第一UE发送第二发送时间或第三时间间隔。
应理解,PCF/NEF/AF向SMF发送了第三时间间隔,SMF才可能向第一UE发送第三时间间隔。
该步骤710可以参考上述图5所示的实施例中步骤502的相关描述。
步骤711:第一UE根据第二发送时间或第三时间间隔发送第一上行业务流。
该步骤的具体内容可以参见步骤611中的相关描述,此处不再赘述。
通过该示例,UE自身确定业务流冲突(也即确定未成功发送第一上行业务流),上报第一上行业务流的相关信息,由核心网网元进行重新调度,规划第一上行业务流的发送时间以及QoS。该方法可以在避免空口调度冲突的同时减少空口计算开销以及信令开销。
图8示出了另一种通信方法的示例的流程,以第一终端设备为第一UE,第一接入网设备为RAN,会话管理网元为SMF,用户面功能网元为UPF,统一数据管理网元为UDM,第二设备为UPF,第一设备为PCF、NEF或AF为例来进行说明。
该示例的具体流程可以包括:
步骤801:UPF确定第一UE的第一上行业务流的发送时间与第二UE的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
该步骤也可以理解为UPF检测到第一上行业务流发生冲突。
具体的,UPF可以通过DPI等方式去检测第一上行业务流是否发生冲突,导致延迟到达。例如,第一上行业务流为视频流时,UPF通过DPI可以获取包负载部分携带的该第一上行业务流的发送时间,并且与当前接收到第一上行业务流的数据包的时间进行对比,从而判断包是否发生空口拥塞导致第一上行业务流延迟到达。当UPF确定第一上行业务流的发送时间与当前接收到第一上行业务流的第一数据包的时间之差大于第二阈值时,则说明第一上行业务流发生冲突,即发生空口拥塞。UPF还可以通过提前获取该第一上行业务流的预期到达时间,当UPF确定该第一上行业务流实际接收时间与预期到达时间之差大于第三阈值,UPF判断发生了空口拥塞。
该步骤801可参考上述图4所示的实施例中步骤400b的相关描述。
步骤802:UPF向SMF发送第二信息,第二信息用于指示第一UE的第一上行业务流的发送时间与第二UE的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
该步骤也可以理解为IPF通知SMF存在空口调度冲突。
该步骤802可以参考上述图4所示的实施例中步骤401的相关描述。
具体的,第二信息可以包括第一UE的标识;或者,第二信息可以包括第一UE的标识和第一上行业务流的标识。
步骤803:SMF向PCF/NEF发送第一信息,第一信息用于请求PCF/NEF重新调度第一上行业务流。
该步骤803可以参考上述图4所示的实施例中步骤402的相关描述。
具体的,第一信息可以包括第一UE的标识,或者包括第一UE的标识和第一上行业务流的标识。
可选的,第一信息还可以包括第二UE的标识,或者包括第二UE的标识和第二上行业务流的标识。
其中,SMF可以先确定第二UE的第二UE的标识,或者确定第二UE的标识和第二上行业务流的标识,然后SMF将第二UE的上述信息(即第二UE的标识,或者第二UE的标识和第二上行业务流的标识)携带在第一信息中。
步骤804:PCF/NEF根据第一信息从UDM查询第一上行业务流的特征信息,确定第一上行业务流的第一发送时间。
该步骤804可以参考上述图4所示的实施例中步骤403的相关描述。
具体的,第一上行业务流的特征信息可以包括第一上行业务流的第一发送时间、第一上行业务流的数据大小或第一上行业务流的发送周期等。
步骤805:PCF/NEF将第一发送时间调整为第二发送时间。
该步骤805可以参考上述图4所示的实施例中步骤404的相关描述。
具体的,PCF/NEF将第一发送时间调整为第二发送时间的具体方法,可以参见图4所示的实施例中涉及的第一设备将第一发送时间调整为第二发送时间的相关描述,此处不再赘述。
步骤806:PCF/NEF向AF发送第二发送时间。
步骤807:AF根据第二发送时间与第一上行业务流在第一UE驻留的时间,确定第一数据源向第一UE发送第一上行业务流的第三发送时间。
也即,AF根据第一UE接收到第一上行业务流到准备发送第一上行业务流的驻留时间,推算第一数据源需要发送该第一上行业务流的时间。
步骤808:AF向第一数据源发送第三发送时间。
第一数据源接收到第三发送时间后,调整向第一UE发送第一上行业务流的发送时间,也即将向第一UE发送第一上行业务流的发送时间调整为第三发送时间。
步骤809:PCF/NEF向SMF发送第二发送时间。
步骤810:SMF向RAN发送第二发送时间。
该步骤810可以参考上述图4所示的实施例中步骤406的相关描述。
具体的,SMF可以根据第二发送时间更新第一上行业务流的TSCAI,并将更新后的TSCAI发送给RAN,其中更新后的TSCAI包括第二发送时间。这样RAN可以知道第一发送时间被调整为第二发送时间,从而根据第二发送时间,提前分配资源。
步骤811:RAN按照TSCAI配置第一UE的第一上行业务流的发送时间。
步骤812:第一UE从第一数据源接收按照第三发送时间发送的第一上行业务流,并发送第一上行业务流。
通过该示例,UPF进行冲突检测(也即确定第一UE的第一上行业务流的第一发送时间与第二UE的第二上行业务流的发送时间的第一时间间隔小于第一阈值),UPF检测到冲突后,向PCF/NEF反馈冲突业务流信息,最终由PCF/NEF进行该第一上行业务流的重新调度,并且通过AF直接修改第一UE外接的第一源设备的第一上行业务流的发送时间。例如,园区监控场景下,可以通过与摄像头的外部接口修改摄像头的I帧发送时间。这样可以在数据源头上避开空口上行调度冲突,减少UE侧以及RAN侧的资源开销,并且通过AF开放接口进行应用调整,避免现有设备的大幅调整,可以在最小改动的基础上保障空口调度,提升空口容量。
基于以上实施例,本申请实施例还提供了一种通信装置。参阅图9所示,通信装置900可以包括收发单元901和处理单元902。其中,收发单元901用于通信装置900接收信息或数据等,或发送信息或数据等,处理单元902用于对通信装置900的动作进行控制管理。处理单元902还可以控制收发单元901执行的步骤。
示例性地,该通信装置900具体可以是上述实施例中的第一设备(如策略控制功能网元、网络开放功能网元或应用功能网元)、第一设备中的处理器,或者芯片,或者芯片系统,或者是一个功能模块等;或者,该通信装置900具体可以是上述实施例中的第二设备(如用户面功能网元、第一接入网设备或第一终端设备)、第二设备的处理器,或者芯片,或者芯片系统,或者是一个功能模块等;或者,该通信装置900具体可以是上述实施例中的会话管理网元、会话管理网元的处理器,或者芯片,或者芯片系统,或者是一个功能模块等;或者,该通信装置900具体可以是上述实施例中的第一终端设备、第一终端设备的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。
在一个实施例中,通信装置900用于实现上述实施例中第一设备的功能时,具体可以包括:
收发单元901用于从会话管理网元接收第一信息,第一信息用于指示第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值;处理单元902用于确定第一终端设备的第一上行业务流的第一发送时间;将第一发送时间调整为第二发送时间,第二发送时间与第二终端设备的第二上行业务流的发送时间的第二时间间隔大于或等于第一阈值;收发单元901还用于向会话管理网元发送第二发送时间。
在一种可选的实施方式中,处理单元902确定第一终端设备的第一上行业务流的第一发送时间时,具体用于:根据第一信息从统一数据管理网元查询第一上行业务流的特征信息,第一上行业务流的特征信息包括第一发送时间。
示例性的,第一信息包括第一终端设备的标识,或者包括第一终端设备的标识和第一上行业务流的标识,或者包括第一终端设备的标识和第一接入网设备的标识,或者包括第一终端设备的标识、第一上行业务流的标识和第一接入网设备的标识。
具体的,处理单元902将第一发送时间调整为第二发送时间时,具体用于:确定第二上行业务流的特征信息;根据第二上行业务流的特征信息,将第一发送时间调整为第二发送时间。
示例性的,第二上行业务流的特征信息包括第二上行业务流的发送时间、第二上行业务流的数据大小或第二上行业务流的发送周期中的至少一项。
可选的,处理单元902确定第二上行业务流的特征信息时,具体用于:获取第一上行业务流的特征信息,第一上行业务流的特征信息包括第一发送时间、第一上行业务流的数据大小或第一上行业务流的发送周期中的至少一项;根据第一上行业务流的特征信息,确定第二上行业务流的特征信息。
具体的,处理单元902确定第二上行业务流的特征信息时,具体用于:第一信息包括第二终端设备的标识,根据第一信息确定第二上行业务流的特征信息。
可选的,第一信息还包括第二上行业务流的标识。
在一种可选的实施方式中,处理单元902根据第二上行业务流的特征信息,将第一发送时间调整为第二发送时间时,具体用于:根据第一上行业务流的特征信息和第二上行业 务流的特征信息计算第二发送时间;将第一发送时间调整为第二发送时间。
示例性的,处理单元902还用于确定第一发送时间和第二发送时间的第三时间间隔;根据第三时间间隔确定第一上行业务流的第二发包延迟预算PDB。
具体的,处理单元902根据第三时间间隔确定第一上行业务流的第二PDB时,具体用于:将第一上行业务流的第一PDB减去第三时间间隔,得到第二PDB。
在一种可选的实施方式中,收发单元901还用于向会话管理网元发送第二PDB。
在一种可选的实施方式中,收发单元901还用于向会话管理网元发送第三时间间隔。
一种示例中,第一设备为应用功能网元,处理单元902还用于:根据第二发送时间,与,第一上行业务流在第一终端设备驻留的时间,确定第一数据源向第一终端设备发送第一上行业务流的第三发送时间;收发单元901还用于向第一数据源发送第三发送时间。
另一种示例中,第一设备为策略控制功能网元或网络开放功能网元,收发单元901还用于向应用功能网元发送第二发送时间。
在另一个实施例中,通信装置900用于实现上述实施例中会话管理网元的功能时,具体可以包括:
收发单元901用于从第二设备接收第二信息;向第一设备发送第一信息,第一信息和第二信息用于指示第一终端设备的第一上行业务流的第一发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值;从第一设备接收第一上行业务流的第二发送时间,第二发送时间与第二终端设备的第二上行业务流的发送时间的第二时间间隔大于或等于第一阈值;向第一接入网设备发送第二发送时间;处理单元902用于控制收发单元901执行上述收发操作。
示例性的,第二信息包括第一终端设备的标识;第一信息包括第一终端设备的标识。
可选的,第二信息包括第一上行业务流的标识或者第一接入网设备的标识中的至少一个;第一信息包括第一上行业务流的标识或者第一接入网设备的标识中的至少一个。
可选的,第二信息包括第二终端设备的标识;第一信息包括第二终端设备的标识。
示例性的,第二信息还包括第二上行业务流的标识;第一信息还包括第二上行业务流的标识。
在一种可选的实施方式中,处理单元902还用于确定第二终端设备,第一信息还包括第二终端设备的标识。
进一步地,处理单元902还用于确定第二上行业务流,第一信息还包括第二上行业务流的标识。
示例性的,收发单元901还用于从第一设备接收第二发包延迟预算PDB;处理单元902还用于将第一上行业务流的第一PDB修改成第二PDB。
可选的,收发单元901还用于从第一设备接收第三时间间隔,第三时间间隔为第一发送时间与第二发送时间的时间间隔;向第一终端设备发送第三时间间隔。
示例性的,收发单元901还用于向第一终端设备发送第二发送时间。
在另一个实施例中,通信装置900用于实现上述实施例中第一终端设备的功能时,具体可以包括:
处理单元902用于确定第一上行业务流的第一发送时间;收发单元901用于从会话管理网元接收第三时间间隔;处理单元902还用于将第一发送时间加第三时间间隔得到第二发送时间;收发单元901还用于按照第二发送时间发送第一上行业务流。
在一种可选的实施方式中,收发单元901还用于向第一接入网设备发送第一请求后,没有接收到用于发送第一上行业务流的资源,或者,没有接收到第一上行业务流的发送成功的反馈信息,或者,在预设时长内没有接收到反馈信息;向会话管理网元发送第二信息,第二信息用于指示第一终端设备未成功发送第一上行业务流。
示例性的,第二信息包括第一终端设备的标识;或者,包括第一终端设备的标识和第一上行业务流的标识;或者,包括第一终端设备的标识和第一接入网设备的标识;或者,包括第一终端设备的标识、第一上行业务流的标识和第一接入网设备的标识。
在另一个实施例中,通信装置900用于实现上述实施例中第二设备的功能时,具体可以包括:
处理单元902用于确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值;收发单元901用于向会话管理网元发送第二信息,第二信息用于指示第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
一种可选的实施方式中,第二设备为第一接入网设备,处理单元902确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值时,具体用于:在收发单元901从第一终端设备接收到第一调度请求后,确定不能为第一上行业务流分配资源,或者,确定当前分配的上行时隙没有接收到第一终端设备的第一上行业务流,则确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
可选的,第二信息包括第一终端设备的标识;或者,第二信息包括第一终端设备的标识和第一上行业务流的标识;或者,第二信息包括第一终端设备的标识和第一接入网设备的标识;或者,第二信息包括第一终端设备的标识、第一上行业务流的标识和第一接入网设备的标识。
示例性的,第二信息还包括第二终端设备的标识;或者第二信息还包括第二终端设备的标识和第二上行业务流的标识。
另一种可选的实施方式中,第二设备为用户面功能网元,处理单元902确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值时,具体用于:获取第一上行业务流的发送时间,并确定第一上行业务流的发送时间与收发单元901当前接收到第一上行业务流的第一数据包的时间之差大于第二阈值,或者,获取第一上行业务流的预期到达时间,并确定预期到达时间与收发单元901当前接收到第一上行业务流的时间之差大于第三阈值,则确定第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值。
可选的,第二信息包括第一终端设备的标识;或者,第二信息包括第一终端设备的标识和第一上行业务流的标识。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可 以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图10所示,通信装置1000可以包括收发器1001和处理器1002。可选的,所述通信装置1000中还可以包括存储器1003。其中,所述存储器1003可以设置于所述通信装置1000内部,还可以设置于所述通信装置1000外部。其中,所述处理器1002可以控制所述收发器1001接收和发送信息、信号或数据等。
具体地,所述处理器1002可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器1002还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器1001、所述处理器1002和所述存储器1003之间相互连接。可选的,所述收发器1001、所述处理器1002和所述存储器1003通过总线1004相互连接;所述总线1004可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器1003,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1003可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器1002执行所述存储器1003所存放的应用程序,实现上述功能,从而实现通信装置1000的功能。
示例性地,该通信装置1000可以是上述实施例中的第一设备(如策略控制功能网元、网络开放功能网元或应用功能网元);还可以是上述实施例中的第二设备(如用户面功能网元、第一接入网设备或第一终端设备);还可以是上述实施例中的会话管理网元;还可以是上述实施例中的第一终端设备。
在一个实施例中,所述通信装置1000在实现上述实施例中第一设备的功能时,收发器1001可以实现上述实施例中的由第一设备执行的收发操作;处理器1002可以实现上述实施例中由第一设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述通信装置1000在实现上述实施例中第二设备的功能时,收发器1001可以实现上述实施例中的由第二设备执行的收发操作;处理器1002可以实现上 述实施例中由第二设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述通信装置1000在实现上述实施例中会话管理网元的功能时,收发器1001可以实现上述实施例中的由会话管理网元执行的收发操作;处理器1002可以实现上述实施例中由会话管理网元执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述通信装置1000在实现上述实施例中第一终端设备的功能时,收发器1001可以实现上述实施例中的由第一终端设备执行的收发操作;处理器1002可以实现上述实施例中由第一终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述实施例中的相关描述,此处不再详细介绍。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的第一设备、第二设备、会话管理网元和第一终端设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片系统,所述芯片系统包括至少一个处理器和通信接口,其中:所述通信接口用于发送和/或接收信号;所述至少一个处理器用于调用至少一个存储器中存储的计算机程序,使得所述芯片系统实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    第一设备从会话管理网元接收第一信息,所述第一信息用于指示第一终端设备的第一上行业务流的发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值;
    所述第一设备确定所述第一终端设备的第一上行业务流的第一发送时间;
    所述第一设备将所述第一发送时间调整为第二发送时间,所述第二发送时间与所述第二终端设备的第二上行业务流的发送时间的第二时间间隔大于或等于所述第一阈值;
    所述第一设备向所述会话管理网元发送所述第二发送时间。
  2. 如权利要求1所述的方法,其特征在于,所述第一设备确定所述第一终端设备的第一上行业务流的第一发送时间,包括:
    所述第一设备根据所述第一信息从统一数据管理网元查询所述第一上行业务流的特征信息,所述第一上行业务流的特征信息包括所述第一发送时间。
  3. 如权利要求2所述的方法,其特征在于,所述第一信息包括所述第一终端设备的标识,或者包括所述第一终端设备的标识和所述第一上行业务流的标识,或者包括所述第一终端设备的标识和第一接入网设备的标识,或者包括所述第一终端设备的标识、所述第一上行业务流的标识和第一接入网设备的标识。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一设备将所述第一发送时间调整为第二发送时间,包括:
    所述第一设备确定所述第二上行业务流的特征信息;
    所述第一设备根据所述第二上行业务流的特征信息,将所述第一发送时间调整为所述第二发送时间。
  5. 如权利要求4所述的方法,其特征在于,所述第二上行业务流的特征信息包括所述第二上行业务流的发送时间、所述第二上行业务流的数据大小或所述第二上行业务流的发送周期中的至少一项。
  6. 如权利要求4或5所述的方法,其特征在于,所述第一设备确定所述第二上行业务流的特征信息,包括:
    所述第一设备获取所述第一上行业务流的特征信息,所述第一上行业务流的特征信息包括所述第一发送时间、所述第一上行业务流的数据大小或所述第一上行业务流的发送周期中的至少一项;
    所述第一设备根据所述第一上行业务流的特征信息,确定所述第二上行业务流的特征信息。
  7. 如权利要求4-6任一项所述的方法,其特征在于,所述第一设备确定所述第二上行业务流的特征信息,包括:
    所述第一信息包括所述第二终端设备的标识,所述第一设备根据所述第一信息确定所述第二上行业务流的特征信息。
  8. 如权利要求7所述的方法,其特征在于,所述第一信息还包括所述第二上行业务流的标识。
  9. 如权利要求4-8任一项所述的方法,其特征在于,所述第一设备根据所述第二上行 业务流的特征信息,将所述第一发送时间调整为所述第二发送时间,包括:
    所述第一设备根据所述第一上行业务流的特征信息和所述第二上行业务流的特征信息计算所述第二发送时间;
    所述第一设备将所述第一发送时间调整为所述第二发送时间。
  10. 如权利要求1-9任一项所述的方法,其特征在于,还包括:
    所述第一设备确定所述第一发送时间和所述第二发送时间的第三时间间隔;
    所述第一设备根据所述第三时间间隔确定所述第一上行业务流的第二发包延迟预算PDB。
  11. 如权利要求10所述的方法,其特征在于,所述第一设备根据所述第三时间间隔确定所述第一上行业务流的第二PDB,包括:
    所述第一设备将所述第一上行业务流的第一PDB减去所述第三时间间隔,得到所述第二PDB。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    所述第一设备向所述会话管理网元发送所述第二PDB。
  13. 如权利要求10-12任一项所述的方法,其特征在于,还包括:
    所述第一设备向所述会话管理网元发送所述第三时间间隔。
  14. 如权利要求1-9任一项所述的方法,其特征在于,所述第一设备为应用功能网元,所述方法还包括:
    所述第一设备根据所述第二发送时间,与,所述第一上行业务流在所述第一终端设备驻留的时间,确定第一数据源向所述第一终端设备发送所述第一上行业务流的第三发送时间;
    所述第一设备向所述第一数据源发送所述第三发送时间。
  15. 如权利要求1-9任一项所述的方法,其特征在于,所述第一设备为策略控制功能网元或网络开放功能网元,所述方法还包括:
    所述第一设备向应用功能网元发送所述第二发送时间。
  16. 一种通信方法,其特征在于,所述方法包括:
    会话管理网元从第二设备接收第二信息;
    所述会话管理网元向第一设备发送第一信息,所述第一信息和所述第二信息用于指示第一终端设备的第一上行业务流的第一发送时间与第二终端设备的第二上行业务流的发送时间的第一时间间隔小于第一阈值;
    所述会话管理网元从所述第一设备接收所述第一上行业务流的第二发送时间,所述第二发送时间与所述第二终端设备的第二上行业务流的发送时间的第二时间间隔大于或等于所述第一阈值;
    所述会话管理网元向第一接入网设备发送所述第二发送时间。
  17. 如权利要求16所述的方法,其特征在于,所述第二信息包括所述第一终端设备的标识;所述第一信息包括所述第一终端设备的标识。
  18. 如权利要求17所述的方法,其特征在于,所述第二信息还包括所述第一上行业务流的标识或者所述第一接入网设备的标识中的至少一个;所述第一信息还包括所述第一上行业务流的标识或者所述第一接入网设备的标识中的至少一个。
  19. 如权利要求17或18所述的方法,其特征在于,所述第二信息还包括所述第二终端 设备的标识;所述第一信息还包括所述第二终端设备的标识。
  20. 如权利要求19所述的方法,其特征在于,所述第二信息还包括所述第二上行业务流的标识;所述第一信息还包括所述第二上行业务流的标识。
  21. 如权利要求17或18所述的方法,其特征在于,还包括:
    所述会话管理网元确定所述第二终端设备,所述第一信息还包括所述第二终端设备的标识。
  22. 如权利要求21所述的方法,其特征在于,还包括:
    所述会话管理网元确定所述第二上行业务流,所述第一信息还包括所述第二上行业务流的标识。
  23. 如权利要求16-22任一项所述的方法,其特征在于,还包括:
    所述会话管理网元从所述第一设备接收第二发包延迟预算PDB;
    所述会话管理网元将所述第一上行业务流的第一PDB修改成所述第二PDB。
  24. 如权利要求16-23任一项所述的方法,其特征在于,还包括:
    所述会话管理网元从所述第一设备接收第三时间间隔,所述第三时间间隔为所述第一发送时间与所述第二发送时间的时间间隔;
    所述会话管理网元向所述第一终端设备发送所述第三时间间隔。
  25. 如权利要求16-23任一项所述的方法,其特征在于,还包括:
    所述会话管理网元向所述第一终端设备发送所述第二发送时间。
  26. 一种通信装置,其特征在于,包括处理器和收发器,其中:
    所述收发器,用于接收和/或发送信息;
    所述处理器,与存储器耦合,用于调用所述存储器中的计算机指令使得所述第一设备执行如权利要求1-15任一项所述的方法。
  27. 一种通信装置,其特征在于,包括处理器和收发器,其中:
    所述收发器,用于接收和/或发送信息;
    所述处理器,与存储器耦合,用于调用所述存储器中的计算机指令使得所述第一设备执行如权利要求16-25任一项所述的方法。
  28. 一种通信系统,其特征在于,所述通信系统包括如权利要求26所述的通信装置和如权利要求27所述的通信装置。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-25任一项所述的方法。
  30. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,使得所述通信装置执行如权利要求1-25任一项所述的方法。
PCT/CN2022/106422 2021-07-27 2022-07-19 一种通信方法、装置和系统 WO2023005728A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22848333.5A EP4354999A1 (en) 2021-07-27 2022-07-19 Communication method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110849170.7A CN115696584A (zh) 2021-07-27 2021-07-27 一种通信方法、装置和系统
CN202110849170.7 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023005728A1 true WO2023005728A1 (zh) 2023-02-02

Family

ID=85058650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106422 WO2023005728A1 (zh) 2021-07-27 2022-07-19 一种通信方法、装置和系统

Country Status (3)

Country Link
EP (1) EP4354999A1 (zh)
CN (1) CN115696584A (zh)
WO (1) WO2023005728A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876159A (zh) * 2018-08-30 2020-03-10 华为技术有限公司 一种提高时延确定性的方法及装置
WO2021059538A1 (ja) * 2019-09-27 2021-04-01 株式会社Nttドコモ セッション管理装置、ユーザプレーン装置、及びアクセス移動管理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876159A (zh) * 2018-08-30 2020-03-10 华为技术有限公司 一种提高时延确定性的方法及装置
WO2021059538A1 (ja) * 2019-09-27 2021-04-01 株式会社Nttドコモ セッション管理装置、ユーザプレーン装置、及びアクセス移動管理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "KI#3A, new solution: Burst arrival time adaptation", 3GPP DRAFT; S2-2004227, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. SA WG2, 22 May 2020 (2020-05-22), Elbonia, pages 1 - 2, XP051890231 *
QUALCOMM INCORPORATED: "KI#3A, new solution: Burst arrival time adaptation", 3GPP DRAFT; S2-2004227, vol. SA WG2, 22 May 2020 (2020-05-22), Elbonia, pages 1 - 2, XP051890231 *

Also Published As

Publication number Publication date
EP4354999A1 (en) 2024-04-17
CN115696584A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
EP3925096B1 (en) 5g system support for virtual tsn bridge management, qos mapping and tsn qbv scheduling
US11356889B2 (en) Quality of service QoS parameter processing method and network element, system, and storage medium
EP3732846B1 (en) Quality of service (qos) control in mobile edge computing (mec)
US11956157B2 (en) Activation of PDU session and QOS flows in 3GPP-based ethernet bridges
US20220256393A1 (en) TSN AND 5GS QoS MAPPING - A USER PLANE BASED METHOD
CN112889254A (zh) 使用策略处理数据包的方法和系统
RU2768788C2 (ru) Способ обработки параметра qos качества услуги и сетевой элемент, система и носитель данных
US20230019215A1 (en) TSC-5G QoS MAPPING WITH CONSIDERATION OF ASSISTANCE TRAFFIC INFORMATION AND PCC RULES FOR TSC TRAFFIC MAPPING AND 5G QoS FLOWS BINDING
WO2021089018A1 (zh) 一种通信方法、装置及系统
JP7399184B2 (ja) 通信方法及び通信装置
WO2023143177A1 (zh) 一种通信方法和通信装置
WO2022252651A1 (zh) 一种无线通信方法及装置
WO2023284551A1 (zh) 通信方法、装置和系统
WO2023005728A1 (zh) 一种通信方法、装置和系统
WO2021134561A1 (zh) 通信方法和通信装置
WO2024032603A1 (zh) 一种通信方法及装置
US20230254859A1 (en) Downlink Transmission Method and Communication Apparatus
WO2024027633A1 (zh) 一种业务流属性配置方法、装置和系统
WO2024022158A1 (zh) 通信方法及装置
US20240064557A1 (en) Method and apparatus for group quality-of-service control of multiple quality-of-service flows
WO2023272743A1 (en) Method, apparatus and computer program
WO2023042044A1 (en) Control signaling between 3gpp network entities and transport network
WO2022259123A1 (en) Data burst volume indication for tsc
CN116866986A (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022848333

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022848333

Country of ref document: EP

Effective date: 20240112

NENP Non-entry into the national phase

Ref country code: DE